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Abstract

The COVID-19 pandemic has greatly impacted the global economy and health care systems,
illustrating the urgent need for timely and inexpensive responses to a pandemic threat in the form of
vaccines and antigen tests. The causative agent of COVID-19 is SARS-CoV-2. The spike protein on
the virus surface interacts with the human angiotensin-converting enzyme (ACE2) via the so-called
receptor binding domain (RBD), facilitating virus entry. The RBD thus represents a prime target for
vaccines, therapeutic antibodies, and antigen test systems. Currently, antigen testing is mostly
conducted by qualitative flow chromatography or via quantitative ELISA-type assays. The latter
mostly utilize materials like protein-adhesive polymers and gold or latex particles. Here we present an
alternative ELISA approach using inexpensive materials and permitting quick detection based on
components produced in the microbial model Ustilago maydis. In this fungus, heterologous proteins
like biopharmaceuticals can be exported by fusion to unconventionally secreted chitinase Ctsl. As a
unique feature, the carrier chitinase binds to chitin allowing its additional use as a purification or

immobilization tag. In this study, we produced different mono- and bivalent SARS-CoV-2 nanobodies
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directed against the viral RBD as Cts1 fusions and screened their RBD binding affinity in vitro and in
vivo. Functional nanobody-Cts1 fusions were immobilized on chitin forming an RBD tethering surface.
This provides a solid base for future development of an inexpensive antigen test utilizing
unconventionally secreted nanobodies as RBD trap and a matching ubiquitous and biogenic surface

for immobilization.

1 Introduction

The current COVID-19 pandemic challenges not only global healthcare systems and economies but
has also underlined the strong demand for novel and versatile strategies to fight viral pandemics. In
this regard, major innovations have already been driven by the pandemic, exemplified by the prompt
development of mMRNA-based vaccines (Kudlay and Svistunov 2022). Furthermore, the adaptation of
monoclonal antibody therapeutics formerly mostly used in cancer patients for the treatment of COVID-
19 represented an important step (Sun and Ho 2020, Bierle et al. 2021).

COVID-19 is caused by SARS-CoV-2. With the onset of the pandemic, the structure of the
virus has been elucidated both on RNA (Jain et al. 2020) and protein level (Korber et al. 2020, Ou et
al. 2020, Walls et al. 2020, Wrapp et al. 2020b). The spike protein complex was identified as a key
player, as it is not only exposed on the surface of the viral particle, but also enables the attachment of
the virus to the host cell via the human Angiotensin receptor 2 (ACE2) (Wang et al. 2020a). This
mechanism has also been observed for other beta corona viruses like SARS-CoV (Hulswit et al. 2016).
Spike proteins of these viral species usually consist of the two main subunits S2 and S1. S2 mainly
serves as anchor of the protein in the viral membrane and also mediates fusion of the viral envelope
and the host cell membrane (Hulswit et al. 2016). S1 is responsible for ACE2 binding (Wang et al.
2020a). Corona virus S1 proteins are generally organized into four domains, of which domains A and
B form the receptor binding domain (RBD) which mediates ACE2 binding (Li et al. 2003, Wang et al.
2020a). The B subdomain of the RBD carries an extended loop that is highly variable among corona
virus species and therefore also referred to as hypervariable region (Kirchdoerfer et al. 2016). All
SARS-CoV-2 variants of concern that have been structurally elucidated to date (B.1.1.7 Alpha, B.1.351
Beta and B.1617 Delta and B.1.1.529 Omicron) carry mutations within the RBD domain that are
assumed to play a role in infectivity and transmissibility of the virus (Baral et al. 2021, Torjesen 2021,
VanBlargan et al. 2022). Therefore, the spike protein and especially its RBD domain are key targets

for the development of therapeutics and vaccines.
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The majority of vaccines cleared for use to date use an mRNA template of the spike protein
that is translated in the host to evoke an immune response (Callaway 2020, Fernandes et al. 2022).
However, since it was realized that vaccinated persons can still be infected with and spread SARS-
CoV-2, there is a strong pressure to further develop test systems and therapeutics for a multi-layered
strategy for COVID-19 treatment and control of SARS-CoV-2 spreading. Antibodies are key to both
test systems and drug development. Camelidae and shark derived single heavy chain antibodies and
derived nanobodies are emerging as potent alternatives to conventional antibodies (Muyldermans
2013, Salvador et al. 2019). Camelidae type antibodies only carry a heavy chain on their 1gG scaffold
as opposed to the light- and heavy chain of regular mammalian antibodies (Muyldermans 2013). This
heavy chain alone (the so-called nanobody) can be quickly adapted to novel targets such as SARS-
CoV-2 and production in microbial hosts is straightforward (Muyldermans et al. 2009, Wrapp et al.
2020a). Nanobodies have been shown to bind ligands in the nanomolar range and are stable under
conditions of chemical and heat induced stress (Muyldermans 2013), which makes them promising
molecules for widespread antigen testing. To this end several SARS-CoV-2 nanobodies engineered
synthetically via phage display or generated directly by immunization of llamas, alpacas, and sharks
have been published (Custodio et al. 2020, Gauhar et al. 2021, Konig et al. 2021).

We utilize the yeast form of the microbial model Ustilago maydis to produce heterologous
proteins including alternative antibody formats like single chain variable fragments (scFvs) and
nanobodies (Sarkari et al. 2014, Terfruchte et al. 2017). Recently, we also established production of
functional synthetic anti-SARS-CoV-2 nanobodies as a proof-of-principle for protein
biopharmaceuticals (Philipp et al. 2021). For secretion of heterologous target proteins, a recently
described unconventional secretion mechanism used by fungus to export chitinase Ctsl during
cytokinesis is exploited (Reindl et al. 2019). Therefore, proteins of interest are fused to Ctsl which
serves as a carrier for the export into the culture supernatant (Stock et al. 2012, Stock et al. 2016). Cts1
exhibits chitin binding activity making it a potential build-in immobilization- and purification tag
(Terfrichte et al. 2017). In addition, Jpsl, a potential anchoring factor needed for Ctsl secretion is
released into the culture medium and can be employed as alternative carrier (Philipp et al. 2021). Of
note, proteins directed to the unconventional secretion pathway are not decorated with potentially
harmful post translational protein modifications such as N-glycosylation which could lead to strong
reactions in patients when proteins are applied as biopharmaceuticals (Stock et al. 2012).

Here, we exploited the dual functionality of chitinase Cts1 to produce different published SARS-
CoV-2 nanobody versions via unconventional Ctsl secretion in U. maydis. Nanobody fusions were

screened for their antigen binding activity in vitro and in vivo. Using the most promising binders, we
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95 established a novel strategy of RBD detection using a chitin surface for immobilization. In the future,
96 these components can be combined to design a novel inexpensive and versatile virus detection system
97  based on fungal compounds and a cognate biogenic chitin surface.

98

99 2 Results

100 2.1 Functional comparison of SARS-CoV-2 nanobody variants produced by
101 unconventional secretion

102 Recently, we established Jpsl as an alternative carrier for heterologous proteins using the
103  production of synthetic nanobodies against SARS-CoV-2 as a test case. We were successful in
104  generating a functional bivalent nanobody directed against SARS-CoV-2 spike protein RBD (Sy®®/1°-
105  Jpsl) (Philipp et al. 2021). However, nanobody export mediated by Cts1 is also of great interest due to
106 its natural ability in mediating both the export of heterologous proteins and chitin binding. The latter
107  property is of potential high value with respect to protein purification and immobilization. Thus, to test
108 the dual applicability of Cts1, we first screened different nanobody-Cts1 fusions for their expression,
109  unconventional secretion and binding activity against SARS-CoV-2 RBD using Sy%®*5-Jpsl as a
110  benchmark (Fig. 1A). To this end four different strains were generated that produce anti-RBD
111 nanobody versions fused to Ctsl. These nanobody versions included the two synthetic nanobodies
112  generated by Wagner et al. (2020) as single entities (Sy*>-Cts1, Sy®®-Cts1) and two llama-derived
113  nanobodies VHH E and VHH V (here termed VHHE and VHHY) generated by Konig et al. (2021)
114  (VHHE-Ctsl, VHHY-Cts1). In addition, a strain expressing a hetero bivalent version, pairing VHHE
115  with VHHY, was designed, since these were shown to display synergistic activity (Konig et al. 2021)
116  (VHHVE-Ctsl). Finally, a strain for production of a double mono bivalent VHHE version was generated
117  to test the binding capability of dimers with identical antigen binding sites (VHHEE-Cts1). The
118  published synthetic nanobody versions Sy%/*°-Cts1 (no antigen binding activity) and bivalent Sy®/5-
119  Jpsl (alternative carrier; shows binding activity), pairing two synthetic nanobodies with different
120 antigen binding sites, served as controls (Philipp et al. 2021). U. maydis expression strains for all
121  protein versions were generated in the background of laboratory strain AB33P8A lacking eight
122 extracellular proteases to optimize secretory yield (Terfriichte et al. 2018). Expression and secretion of
123  all versions was investigated via Western blot analyses. In cell extracts fusion proteins of the expected
124 sizes were present for all variants, however, huge differences in expression level were observed. The
125  analysis of culture supernatants confirmed sufficient secretion for the variants Sy'*>-Cts1, VHHE-Cts1,
126 VHHV-Cts1, VHHEE-Cts1 and Sy%®*°-Jps1, again displaying strong variation in the detected amounts
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127  (Fig. 1 B, Suppl. Fig. 1 A, B). To test for RBD binding activity, cell extracts of all strains containing
128  nanobody-Ctsl fusions were subjected to direct ELISA assays, using recombinant RBD as a bait and
129  a commercial antibody sandwich for detection. The strongest binding was achieved for VHHEE-Cts1
130  and Sy®®¥15-Jps1 while VHHE-Cts1 showed about half the signal intensity. All other variants lacked
131  clear volumetric binding activity (Fig. 1 C, Suppl. Fig. 1 C). Overall, significant binding activity could
132 be demonstrated for 3 of the 8 nanobody variants and binding capabilities of nanobodies were improved
133 in the multimerized variant of VHHEE-Cts1.

134 To further substantiate the results, the three most promising nanobody versions VHHEE-Cts1,
135  VHHE-Cts1 and Sy®15-Jps1 were purified and subjected to direct ELISA against the full length S1
136  protein using an Anti-SARS-CoV-2 QuantiVVac ELISA-kit including controls (Fig. 1 D). All variants
137  depicted significant binding activity with VHHE-Cts1 binding at concentrations of 5 ng/pl and 10 ng/ul
138  and both VHHEE-Cts1 and Sy%/'5-Jps1 showing more than two-fold elevated binding compared to
139  VHHE-Ctsl. In essence, two functional nanobody-Ctsl1-fusion proteins were obtained which were
140  comparable to the current benchmark Sy%®*-Jps1, recognizing both recombinant RBD and full length
141 S1 protein.

142

143

144

145

146
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Figure 1: Functional screen of anti-SARS-CoV-2 nanobody-Ctsl-fusion variants. (A) Schematic representation of
nanobody protein variants fused to chitinase Cts1 as a carrier for unconventional secretion. Synthetic nanobodies Sy* and
Sy® as well as llama-derived nanobodies VHHE, VHHY and bivalent VHHVE as well as a tandem VHHE (VHHEE) were

fused to Cts1 (yellow) via an HA-tag (grey) for detection. A His-tag (grey) was added at the N-terminus as a purification
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152  tag. In the case of the VHHE and VHHY nanobodies GS-linkers (black) introduced by (Koénig et al. 2021) were placed
153  between individual nanobodies and between the nanobodies and Cts1. Sy®/5-Cts1 and Sy®®'>-Jps1 (Philipp et al., 2021)
154  dealt as negative and positive control, respectively. Protein schemes drawn to scale. (B) Western blot analysis to detect
155 nanobody expression and secretion levels. Top, cell extracts: 10 pg of cell extracts producing the indicated protein variants
156  were subjected to Western blot analysis. Bottom, culture supernatants of strains producing indicated protein variants.
157 Proteins were enriched from the supernatant via TCA precipitation, the HA tag was used for detection. Nanobody-Cts1-
158  fusions were detected using an HA-mouse antibody and migrate slightly above their expected sizes around 100 kDa. (C)
159 Direct ELISA of nanobody-Cts1-fusions against 1 pg/well of RBD domain coated to ELISA plate and detected by a
160  sandwich of anti-HA (mouse) and an anti-mouse-HRP conjugate. Cell extracts of indicated expression strains were added
161  towellsin serial dilutions of 0.3 ng/ul, 0.6 ng/pl and 2.5 ng/pl. The experiment was carried out in three biological replicates.
162 Error bars depict standard deviation. (D) Direct ELISA of nanobody-Cts1 fusions against full length spike protein directly
163 detected with an anti-HA-HRP conjugate. Purified nanobody-fusions (100 pg/ml) were added to wells in dilutions of 1:50
164  and 1:100 in technical triplicates. One biological replicate is shown. (+) and (-) indicate controls included in QuantiVac
165  ELISA-kit.

166

167 2.2 Invivo activity of nanobody-Ctsl1 fusions

168  Todetermine if in vitro binding to SARS-CoV-2 RBD translates to binding or even virus neutralization
169 in vivo, adjusted neutralization assays were applied. These assays are widely used to test sera of
170  vaccinated or recovered patients for SARS-CoV-2 neutralizing antibodies (Matusali et al. 2021, Mdller
171  etal. 2021). In this adjusted neutralization assay, infectious SARS-CoV-2 viral particles were diluted
172 two-fold starting at 100 TCID50 (tissue culture infectious dose 50). Dilutions were then pre-incubated
173 with the purified functional nanobody variants VHHE-Cts1, VHHEE-Cts1 and Sy®/5-Jpsl. The
174 mixtures were subsequently used to inoculate Vero cell cultures displaying the ACE2 receptor on their
175  surface to analyze viral replication. To quantify infection and neutralization, gPCR analysis was carried
176  out for each replicate at the onset of infection and at three days’ post infection. VHHE-Cts1 showed no
177  virus neutralization with strongly declining Ct values between t0O and t3, indicating a replicative
178  infection. VHHEE-Cts1 on the other hand showed neutralization up to 25 TCID50 and Sy%¢/*°-Jps1 up
179  to 50 TCID50 as indicated by stable Ct values (Fig. 2 A). These results confirm the functionality of the
180  nanobody fusions VHHEE-Cts1 and Sy®®15-Jps1 even towards infectious virus. Given that binding does
181  not necessarily reflect neutralization, but neutralization definitely includes binding, this also confirms
182  that these two versions are capable of binding SARS-CoV-2 in vivo.

183
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185 Figure 2: Neutralization assays conducted with anti-SARS-CoV-2 nanobody fusions produced in U. maydis. (B)
186 gPCR analysis of infected mammalian cells to detect viral RNA in cell cultures treated with purified nanobody
187  fusions/SARS-CoV-2 mixtures. Ct-values of samples at the onset of infection (t0) and three days’ post infection (t3) are
188 depicted for each viral load and the respective applied nanobody fusion. Strong differences between Ct values of t0 and t3

189 indicate infection. Mean values of three biological replicates are depicted.
190

191 2.3 Characterization of Ctsl chitin binding and immobilization

192 Ctsl is capable of binding to chitin-coated surfaces like chitin magnetic beads without obvious
193  degradation of the polymer (Terfrlichte et al. 2017). This observation could be developed into a strategy
194  for a novel antigen test using an inexpensive surface based on bulk chitin obtained from crab shell or
195 insects for immobilization of Ctsl-nanobody fusions. To test chitin immobilization, we first
196  recapitulated chitin binding on chitin beads using purified recombinant Ctsl (Fig. 3 A). Therefore,
197  beads were mixed with recombinant Cts1 produced in Escherichia coli. After thorough washing, Cts1
198  was eluted from the beads, indicating stable binding and confirming previous results (Terfriichte et al.
199  2017). Analysis of the fractions indicated that a significant amount of the protein was lost in the flow-
200 through, suggesting that binding efficiency could be further improved in the future (Fig. 3 B). Next, B-
201  glucuronidase (Gus)-Ctsl (Stock et al. 2012) obtained from U. maydis was used to quantify previous
202  results (Terfriichte et al. 2017) in the native system and to further characterize the chitin binding
203  capacity of fusion proteins. Gus-Jpsl (Reindl et al. 2020), which is not predicted to bind to chitin, was
204 used as a negative control (Fig. 3 C). Chitin beads were coated with the respective Gus-fusion proteins
205  purified from U. maydis while washing and elution procedures were kept consistent to experiments
206  carried out with recombinant Ctsl. Indeed, Gus-Ctsl bound to chitin beads while no binding was
207  observed for Gus-Jpsl, confirming the binding capability of N-terminal Cts1-fusion proteins (Fig. 3
208 D). Quantification of signal intensities of the different fractions obtained in both experiments indicated

209  that about 44% of the recombinant Cts1 and 68% of the native Gus-Cts1-fusion protein was captured
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by the beads (Fig. 3 E). To finally assay if the fusion protein is functional after immobilization, Gus
activity was determined on chitin beads previously incubated with raw cell extracts of the Gus-Ctsl
expression strain. Activity could specifically be detected on beads incubated with Gus-Cts1 containing
cell extracts while the controls showed only background activity (Fig. 3 F). In essence, functional Cts1-
fusion proteins can be immobilized on chitin beads and immobilization can even be achieved directly

from raw cell extracts.
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Figure 3: Chitin binding capabilities of Cts1 and Cts1-fusion proteins. (A) Experimental setup for initial Ctsl chitin
binding experiments. E. coli derived, purified Cts1 (yellow) was coated to magnetic chitin beads, washed and subsequently
eluted by boiling. (B) Coomassie-stained SDS-PAGE of different fractions obtained in the binding studies with recombinant
Ctsl from E. coli: input (In), flow-through (FT), wash (W1 and W2) and elution (Elu) fractions of the experiment. (C)

Experimental setup for Cts1 chitin binding experiments using U. maydis derived Gus-fusion proteins. Gus-Ctsl (purple-
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223  yellow) was coated to chitin beads, while a second set of beads treated with Gus-Jpsl (purple-red) dealt as a negative
224 control. (D) Western blot analysis of input (In), flow-through (FT), wash (W1 and W2) and elution (Elu) fractions of
225 purified Gus-Cts1 and Gus-Jps1-fusion protein incubated with chitin beads. (E) Relative quantification of SDS-PAGE and
226  Western blot depicted in panels B and D. (F) On-bead Gus assays conducted with cell extracts of Gus-Cts1 and Gus-Jps1
227 incubated with chitin beads. After washing a Gus activity assay was conducted. Conversion from 4-MUG to 4-MU was
228 monitored for 1 h. Cell extracts with Gus-Jps1 and of the progenitor strain (Ctrl) dealt as a negative control. Mean values

229  of three biological replicates are shown. Error bars depict standard deviation.

230 2.4 Assessing the potential of anti-SARS-CoV-2 nanobody-Cts1 fusions for RBD
231 capturing and chitin binding

232 To determine the capturing capabilities of the most promising nanobody variants VHHE-Cts1
233 and VHHE-Cts1, sandwich immunosorbent assays were conducted both on ELISA plates and non-
234 classically on chitin beads. Sy®®15-Jps1 dealt as a control for both assays as it should show activity in
235  plate-based ELISA but not on a chitin surface. In the first experiment, purified VHHE-Cts1, VHHEE-
236  Ctsland Sy%¥*5-Jps1 were coated to ELISA plates, incubated with serial dilutions of recombinant RBD
237  and subsequently detected by a commercial RBD antibody and a cognate HRP conjugate (Fig. 4 A). In
238  this plate-based ELISA all three nanobody variants were capable of capturing the RBD, however, only
239  the most potent versions VHHEE-Cts1 and Sy%¢*°-Jps1 showed volumetric activity for serial RBD
240  dilutions. As observed in the direct ELISA, VHHEE-Cts1 showed the strongest binding capability even
241  at the lowest RBD concentration of 0.1 ng/ul after a detection time of 10 min, showing significantly
242 stronger binding than VHHE-Cts1 which did neither reveal significant binding at 0.1 ng/ul nor
243 volumetric activity with rising concentrations (Fig. 4 B). To determine if detection of RBD domain at
244 similar concentrations can also be achieved using a chitin surface, chitin beads were incubated with
245  purified VHHE-Cts1, VHHEE-Cts1 and Sy®®1-Jps1, mixed with RBD and again binding was detected
246  using commercial antibodies (Fig. 4 C). Activity was obtained for both VHHE-Cts1 and VHHEE-Cts1,
247  while no significant signal could be detected for Sy®®*5-Jps1. As observed before, values for VHHEE-
248  Ctsl were about doubled compared to those for VHHE-Cts1 (Fig. 4 D). In summary, these results
249  demonstrate the potential of chitin-based ELISA using SARS-CoV-2 nanobody-Cts1-fusions and its
250  specificity for the bifunctional Cts1 dealing as carrier and anchor for immobilization.

251
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252
253 Figure 4: Plate-and chitin-based sandwich ELISA using Cts1-nanobody fusions for detection of SARS-CoV-2 RBD.
254 (A) Experimental setup of plate-based sandwich ELISA. The indicated nanobody-Ctsl fusions were used as capture
255  antibodies for serial dilutions of recombinant SARS-CoV-2 RBD (grey). (B) Quantitative results of plate-based sandwich
256  ELISA. RBD (grey) was detected using an anti-RBD-(mouse) antibody and an anti-mouse-HRP conjugate. Mean values of
257  three biological replicates are shown. Error bars depict standard deviation. Definition of statistical significance (***), p-
258  value < 0.05. (C) Experimental setup of chitin-based sandwich ELISA test. The indicated nanobody-Cts1 fusions were
259 coated to chitin beads to serve as capturing nanobodies, while Sy%¥5-Jps1 dealt as negative control that is unable to bind
260 to chitin. (D) Quantitative results of chitin-based sandwich ELISA. RBD was detected using an anti-RBD (mouse) antibody
261 and anti-mouse-HRP conjugate. Sy%¥%5-Jps1 dealt as a negative control. Mean values of three biological replicates are

262 shown. Error bars depict standard deviation. Definition of statistical significance (***), p-value < 0.05.
263

264 To further characterize the RBD capturing capabilities of the chitin-based detection system, the
265  volumetric binding activity of the system was determined. Based on previous results, VHHEE-Cts1 was
266  chosen as the most potent capturing nanobody. To this end, chitin beads were loaded with purified
267  VHHEE-Cts1, subsequently incubated with recombinant RBD in serial dilutions and detected with a
268  commercial antibody sandwich as described above (Fig. 5 A). A colorimetric reaction was obtained

269  within a timeframe of two minutes, reflecting the rising input of the commercial RBD (Fig. 5 B).
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Quantitative fluorescence measurements of the samples confirmed these visual results (Fig. 5 C).
Hence, overall, volumetric detection of SARS-CoV-2 RBD on a chitin surface is feasible, sensitive in
the nanomolar range and in the given setup even faster than on a conventional ELISA plate.
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Figure 5: Chitin-based antigen test. (A) Setup of chitin-based ELISA. VHHEE-Cts1 binds to the chitin magnetic beads
and is used as capture antibody for SARS-CoV-2 RBD. (B) RBD was added to VHHEE-Cts1 coated magnetic chitin beads
in serial dilutions and subsequently detected using anti RBD (mouse) and anti-mouse-HRP antibodies. Picture depicts one
representative replicate of the observed colorimetric reaction in reaction tubes. (C) Quantitative read-out of fluorescence
measurements from chitin beads coated with VHHEE-Cts1, treated with serial dilutions of SARS-CoV-2 RBD. Mean values

of three biological replicates are shown. Error bars depict standard deviation.

3 Discussion

The aim of this study was to expand the repertoire of pharmaceutically relevant proteins produced
in U. maydis towards versatile nanobodies for virus detection. To this end, Cts1-mediated secretion of
active camelid-derived single- and bivalent nanobodies directed against the SARS-CoV-2 RBD was
achieved. As an important strategical step towards industrial application, the produced nanobody
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287  fusions were immobilized on chitin, exploiting the natural capabilities of Ctsl and thus enabling
288  detection of the cognate antigen via chitin-based ELISA.

289 The utilization of protein tags like Ctsl to export “passenger” proteins or peptides is a routine
290 strategy in both bacterial and fungal hosts (Fleissner and Dersch 2010). Classical carriers are
291 extracellular proteins that are naturally secreted in very high amounts and can be used as export proteins
292  to guarantee high yields of secreted fusion protein. One such example are carbohydrate-active proteins
293  like CBH1 from Trichoderma reesei (Zhong et al. 2011). As a positive side-effect, these protein tags
294  can even enhance the solubility like shown for carbohydrate-binding module 66 (CBM66) in E. coli
295 (Koetal. 2021). In our study, different combinations of nanobody and Cts1 carrier resulted in varying
296 levels of expression, secretion and activity. In addition, we observed a strong impact of the carrier
297  choice on activity of the fused nanobody, confirming our earlier study (Philipp et al. 2021). While this
298 underlines the necessity of a screening step of several constructs for each nanobody, it is in line with
299  results obtained in other carrier based secretion systems (Wang et al. 2020b).

300 Similarly, also multiple powerful tags for protein purification and immobilization exist with the
301  polyhistidin, the haemagglutinin or the SUMO tag as a few important examples (Porath et al. 1975,
302  Field et al. 1988, Guerrero et al. 2015). The IMPACT system (New England Biolabs) even exploits a
303 chitin-binding protein tag derived from Mycobacterium xenopi GyrA for protein purification with the
304 intein tag (Chong et al. 1997, Chong et al. 1998). Importantly, in our system, chitinase Cts1l mediates
305  both export and immobilization of the heterologous proteins. Thus, while normally carriers and tags
306  for purification or immobilization are separated, Ctsl intrinsically combines both properties. This
307  unique strategy will enable a very streamlined process design in the future.

308 Currently, we are using affinity chromatography to purify the Ctsl-fusion proteins. In the
309 future, the development of in-situ purification strategies for Ctsl-fusion proteins from culture
310 supernatant could greatly ease the purification process and thereby lower production costs of
311  biopharmaceuticals. Similar non chromatographic purification processes have already proven
312  successful using GST, biotin and streptavidin coated magnetic particles to purify protein from E. coli
313  cell lysates (Franzreb et al. 2006) and supernatants (Fernandes et al. 2016) but also from human serum
314  plasma (Santos et al. 2020).

315 In previous studies we had shown that chitin-coated beads are applicable for the purification of
316  Ctsl-fusion proteins (Terfriichte et al. 2017). Now we expand on that and developed this interaction
317  for nanobody immobilization in immunoassays. Since protein immobilization is generally achieved via
318  protein adhesive polymers and not by specific protein-molecule interaction (Lin 2015, Andryukov

319  2020) this provides a novel tool towards inexpensive surface coating. The use of bio-based polymers
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320  for immobilization is of utmost interest since it allows for reduction of antigen test pricing and use of
321  sustainable and inexpensive resources. To this end a similar study achieved SARS-CoV-2 detection
322  based on nanobody immobilization on cellulose, albeit without using the immobilization tag for export
323  at the same time (Sun et al. 2022).

324 Importantly, RBD capture capability of VHHEE-Ctsl in this study could be shown at
325  concentrations in the low nanomolar range of 2.6 nm (0.1 ng/pl) in plate based ELISA, which is in the
326  described range of other anti-RBD nanobodies between 0.9 nm and 30 nM (Weinstein et al. 2022),
327  (Huo et al. 2020), (Konig et al. 2021). Moreover, published detection capacity of commercially
328 available antigen tests is in the range of 0.65 pg/ul (nucleocapsid protein) to 5 ng/ul (spike protein)
329  (Baker et al. 2020) (Grant et al. 2020). Thus, our chitin-based antigen detection system with a detection
330 capacity of 0.5 ng/pl fits well into the described range, suggesting that it is competitive.

331 In a next step, we envision the application of our chitin immobilization strategy for nanobodies
332 invirus detection for lateral flow assays. To date, detection of lateral flow assays is mostly enabled by
333  colloidal gold particles (Oldenburg et al. 1998 , Billingsley et al. 2017). Current investigation on chitin
334 as a building block for nanocrystals and hydrogels (Xu et al. 2020, Gu et al. 2021), as well as initial
335  experiments on drug loaded chitin scaffolds (Kovalchuk et al. 2019) demonstrates that generation of
336  colloidal chitin particles loaded with nanobodies is a future possibility to further lower antigen test
337  prices by exchanging gold as basic resource for detection by chitin.

338 Of note, we did not only verify the applicability of the nanobodies in virus detection but also
339  successfully tested the neutralization of SARS-CoV-2 in vivo. This confirms nanobody binding of the
340 infectious virus as opposed to only the RBD domain in vitro, which is necessary for antigen test
341 application. The neutralizing activity could further motivate research towards drug development using
342  unconventionally secreted proteins from U. maydis which as maize pathogen induces the formation of
343  edible tumors and can thus be considered innocuous for humans (Juarez-Montiel et al. 2011).
344  Nanobodies are currently discussed as novel drug targets due to ease of production, multimerization
345 and favorable in vivo attributes, such as improved tissue penetration and decreased immunogenicity
346  (Bannas et al. 2017, Salvador et al. 2019). Neutralizing mAbs are normally employed in
347  biopharmaceutical cocktails in patients (Marrocco et al. 2019, Sun and Ho 2020). This strategy is
348  applicable to nanobodies as well, however a study has shown comparable SARS-CoV-2 neutralization
349  between a nanobody cocktail and a bivalent version of the same nanobodies in hamster models (Pymm
350 etal.2021), demonstrating that cocktails are not required, when bivalent constructs are used. U. maydis
351  might be especially suited for the generation and production of larger multivalent constructs, given its

352  ability to secrete huge proteins via the unconventional secretion route with a lack of N-glycosylation
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353 (Stock et al. 2012). Especially, since N-glycosylation has been shown to negatively affect
354  pharmacokinetics of mAbs and even increased cytotoxicity before (Mastrangeli et al. 2020).

355 In summary, we provide a solid proof-of-principle for a chitin-based antigen test facilitated by
356  components derived from unconventional secretion in U. maydis. We envision that in combination
357  with sophisticated process engineering this technique could be developed into a lab-on-a-chip strategy
358 (Zhuang et al. 2020). Thus, protein-based immobilization of nanobodies for target capture and
359  detection are promising tools to develop alternative versatile and affordable technology for antigen
360 testing.

361

362 4 Materials and methods

363 4.1 Molecular biology methods
364 All plasmids (pUMa/pUx vectors) generated in this study were obtained using standard

365  molecular biology methods established for U. maydis including restriction ligation and Gibson cloning
366  (Gibson et al. 2009). Enzymes for cloning were purchased from NEB (Ipswich, MA, USA). For the
367  generation of pUMa4678 and 4679 agfpnb was excised from pUMa2240 (Terfrichte et al. 2017) by
368  hydrolyzation with BamHI and Spel. DNA sequences encoding for Sy*®and Sy® (Walter et al. 2020)
369  were amplified from synthetic gene blocks (IDT Coralville, 1A, USA) using oligonucleotide pairs
370  0AB908/0AB909 and 0AB910/0AB911, respectively (Table 1). Subsequently PCR products were
371  hydrolyzed with BamHI and Spel and inserted into the backbone of pUMa2113 via restriction ligation
372  cloning to generate pUMa4678 and 4679. Generation of pUx4 and pUx5 was achieved by excision of
373  agfpnb from pUMa2240 with BamHI and Spel and amplification of vhhe and vhhv with BamHI and
374 Spel restriction sites from synthetic gene blocks using oligo nucleotide pairs 0CD359/0CD360 and
375 0CD363/0CD364, respectively. These sequences were subsequently hydrolyzed with BamHI and Spel
376  and inserted into the backbone of pUMa2240 via restriction ligation cloning, thereby generating pUx4
377 and pUx5. pUx6 was generated in a similar manner. However, after the hydrolyzation of the
378  pUMa2240 backbone vhhe was amplified once with a BamHI and EcoR1 and once with an EcoRI and
379  Spel hydrolyzation sites. After hydrolyzation two sequences for vhhe were inserted into the open
380 reading frame via restriction ligation cloning, thereby encoding for fusion protein VHHEE-Cts1. For
381  the generation of pUX7 this process was repeated but instead of using two vhhe sequences with differing
382  hydrolyzation sites, the first vhhe sequence with BamHI and EcoRI hydrolyzation sites was exchanged

383  for vhhv with corresponding hydrolyzation sites.
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384

385  Table 1. DNA oligonucleotides used in this study.
Designation Nucleotide sequence (5"- 3")
oMB372_jpsl_fw TTAGGCGCGCCATGCCAGGCATCTCC
0MB373_jpsl_rev TTAGGGCCCTTAGGATTCCGCATCGATTGGGG

ATATAGGATCCATGGCGGCCCATCACCACCATCACCACCATCACCACCA
TCATATGCAGGTGCAGCTCG

0AB909_Sy15 rev ATATAACTAGTCGAGACGGTGACCTGGGTGC
TATAGGATCCATGGCGGCCCATCACCACCATCACCACCATCACCACCAT
CATATGCAGGTGCAGCTCGTCGAG

0AB911 sy68_rev ATATATACTAGTCGAGACGGTGACCTGGGTGC
ATATAGGATCCATGGCGGCCCATCACCACCATCACCACCATCACCACCA
TCATATGCAGGTGCAGCTCGTCG

0CD360_VHHE rev ATATGAATTCATGCAGGTGCAGCTCGTCG
ATATACTAGTAGAGCCACCACCACCAGAGCCACCACCACCAGAGCCACC
ACCACCCGACGAGACGGTGACGAGCG
ATATGAATTCAGAGCCACCACCACCAGAGCCACCACCACCAGAGCCACC
ACCACCCGACGAGACGGTGACGAGC
ATATAGGATCCATGGCGGCCCATCACCACCATCACCACCATCACCACCA
TCATATGCAGGTGCAGCTCGTCG
ATATACTAGTAGAGCCACCACCACCAGAGCCACCACCACCAGAGCCACC
ACCACCCGACGAGACGGTGACCTGG
ATATGAATTCAGAGCCACCACCACCAGAGCCACCACCACCAGAGCCACC
ACCACCCGACGAGACGGTGACCTG

0AB908_Sy15_fw

0AB910_Sy68_fw

0CD359 VHHE fw

0CD361_VHHE linker

0CD362_VHHE linker

0CD363_VHHY_fw

0oCD364_VHHY _rev

0CD365_VHHY_linker

386

387 4.2 Strain generation

388 U. maydis strains used in this study were obtained by homologous recombination yielding
389  genetically stable strains (Table 2). For genomic integrations at the ip locus, integrative plasmids were
390 used (Stock et al. 2012). For genomic integration at the ip locus, integrative plasmids contained the ip"
391 allele, promoting carboxin (Chx) resistance. Thus, plasmids were linearized within the ip’ allele using
392  restriction enzymes Sspl and Swal to allow for homologous recombination with the ip® locus. For all
393  genetic manipulations, U. maydis protoplasts were transformed with linear DNA fragments. All strains
394  were verified by Southern blot analysis. For in locus modifications the flanking regions were amplified
395 as probes. For ip insertions, the probe was obtained by PCR using the primer combination
396 0oMF502/0MF503 and the template pUMa260. Primer sequences are listed in Table 1.
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397
398  Table 2. U. maydis strains used in this study.

Strains Relevant genotype/ Resistance Strain Plasmids Manipula | Pro-genitor Refere
collectio | transformed / | ted locus (UMa?) nce

n  no. | Resistance?
(UMat)

AB33P8A a2 PnarbW2bE1 PhleoR Terfriic
FRT10[um046414::hyg] hte et al.
FRT11[um039474] 2018
FRT6[um039754]
FRT5[Um044004] 2413 um04926
FRT3[um119084]
FRT2[um00064]
FRTwt[um021784]
FRT1[um049264] HygR

AB33P8A a2 PnarbW2bE1 PhleoR 2418 pUMa2113 ip 2413 Terfriic
Gus-Ctsl FRT10[um046414::hyg] hte et al.
FRT11[um03947] 2018
FRT6[Um039754]
FRT5[um044004]
FRT3[um11908]
FRT2[um000644]
FRTWt[um021784]
FRT1[um049264] HygR
ipS[Pomagus:shh:cts1]ipRCbxR

AB33PBAGUS | a2 PrarbW2bEL PhleoR 2900 pUMa3012 ip 2413 Philipp
-Jpsl FRT10[um046414::hyg] et al
FRT11[um039474] 2022
FRT6[um039754]
FRT5[um044004]
FRT3[um11908]
FRT2[um000644]
FRTWt[um021784]
FRT1[um049264] HygR
ipS[Pomagus:shh:jps1]ipRCbxR

AB33P8A a2 PnarbW2bE1 PhleoR 3360 pUMa4678 ip 2413 This
Sy»-Ctsl FRT10[um046414::hyg] study
FRT11[um03947]
FRT6[um039754]
FRT5[um04400]
FRT3[um11908]
FRT2[um000644]
FRTwt[um021784]
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FRT1[um04926] HygR
ipS[Pomahis:sybody#15:ha:cts1]ipRCh
xR

AB33P8A
Sy®-Ctsl

a2 PnarbW2bE1 PhleoR
FRT10[um046414::hyg]
FRT11[um039474]
FRT6[UmM039754]
FRT5[um044004]
FRT3[um11908]
FRT2[um00064]
FRTwt[um021784]
FRT1[um049264] HygR
ipS[Pomahis:sybody#68:ha:cts1]ipRCh
xR

3361

pUMad679

2413

This
study

AB33P8A
Sys¢/15-Ctsl

a2 PnarbW2bE1 PhleoR
FRT10[um046414::hyg]
FRT11[um03947.4]
FRT6[um039754]
FRT5[um04400]
FRT3[um11908]
FRT2[um00064]
FRTwt[um021784]
FRT1[um049264] HygR

ipS[Pomasybody#68:his:sybody#15:ha:

cts1]ipRChxR

Ux1

puUx1

2413

Philipp
et al
2022

AB33P8A
VHHE-Cts1

a2 PnarbW2bE1 PhleoR
FRT10[um046414::hyg]
FRT11[um03947.]
FRT6[um039754]

FRT5[um044004]

FRT3[um119084]

FRT2[um000644]
FRTWt[um021784]
FRT1[um049264] HygR
ipS[Pomahis:vhhe:gs:ha:cts1]ipRCbhxR

Ux4

pUx4

2413

This
study

AB33P8A
VHHV-Ctsl

a2 PnarbW2bE1 PhleoR
FRT10[um046414::hyg]
FRT11[um039474]
FRT6[um039754]
FRT5[um04400]
FRT3[um119084]
FRT2[um000644]
FRTWt[um021784]

Ux5

pUx5

2413

This
study
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FRT1[um04926] HygR
ipS[Pomahis:vhhv:gs:ha:cts1]ipRCbxR

AB33P8A a2 PnarbW2bE1 PhleoR Ux6 pUx6 ip 2413 This
VHHEE-Cts1 FRT10[um046414::hyg] study
FRT11[um039474]
FRT6[UmM039754]

FRT5[um04400.]

FRT3[um119084]

FRT2[um00064]
FRTWt[um021784]
FRT1[um049264] HygR
ipS[Pomahis:vhhe:gs:vhhe:gs:ha:cts1]i
pRCbxR

AB33P8A a2 PnarbW2bE1 PhleoR Ux7 puUx7 ip 2413 This
VHHVYE-Cts1 | FRT10[um046414::hyg] study
FRT11[um03947.4]
FRT6[um039754]

FRT5[um044004]

FRT3[um119084]

FRT2[um00064]
FRTwt[um021784]
FRT1[um049264] HygR
ipS[Pomahis:vhhv:gs:vhhe:gs:ha:cts1]i
pRCbxR

AB33P8A a2 PnarbW2bE1 PhleoR Ux8 pUx8 ip 2413 Philipp
Sys815.Jps1 FRT10[um046414::hyg] et al
FRT11[um039474] 2022
FRT6[um039754]

FRT5[um04400]

FRT3[um11908]

FRT2[um00064]
FRTwt[um021784]
FRT1[um049264] HygR
ipS[Pomasybody#68:his:sybody#15:ha:
jps1]ipR CbxR

399  Tinternal strain collection numbers (UMa/Ux codes)
400 2 Plasmids generated in our working group are integrated in a plasmid collection and termed pUMa or pUx plus a 4-digit

401  number as identifier.

402

403 4.3 Cultivation
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404 U. maydis strains were grown at 28 °C in complete medium supplemented with 1% (w/v) glucose
405  (CM-glc) if not described differently. Solid media were supplemented with 2% (w/v) agar agar. Growth
406  phenotypes were evaluated using the BioLector microbioreactor (m2p-labs). MTP-R48-BOH round
407  plates were inoculated with 1.5 ml culture per well and incubated at 1,000 rpm at 28 °C. Backscatter
408 light with a gain of 25 or 20 was used to determine biomass.

409

410 4.4 Quantification of Gus activity on chitin beads

411 Gus activity was determined to quantify chitin binding of Gus-Cts1 using the specific substrate
412  4-methylumbelliferyl -D galactopyranoside (MUG, Sigma—Aldrich). To his end 50 pg of U. maydis
413  cell extracts were diluted in chitin binding buffer to a final volume of 500 ul. 50 ul chitin magnetic
414  beads (New England Biolabs, Ipswich, MA, USA) were washed with 500 ul water, equilibrated with
415 500 pl chitin binding buffer (500 mM NaCl, 50 mM Tris-HCI buffer pH 8.0, 0,05 % Tween-20 (v/v))
416  and subsequently incubated with cell extracts in binding buffer at 4 °C on a stirring wheel for 16 h.
417  Subsequently, chitin beads were washed with 500 pl chitin binding buffer and 500 ul of water, taken
418  up in 2x Gus assay buffer (10 mM sodium phosphate buffer pH 7.0, 28 UM B-mercaptoethanol, 0.8
419 mMEDTA, 0.0042% (v/v) lauroyl-sarcosin, 0.004% (v/v) Triton X-100, 2 mM MUG, 0.2 mg/ml (w/v)
420 BSA) and transferred to black 96-well plates. Relative fluorescence units (RFUs) were determined
421  using a plate reader (Tecan, Mannedorf, Switzerland) for 100 min at 28 °C with measurements every
422 5 minutes (excitation/emission wavelengths: 365/465 nm, gain 60). For quantification of conversion
423  of MUG to the fluorescent product 4-methylumbelliferone (MU), a calibration curve was determined
424 wusing 0, 1, 5, 10, 25, 50, 100, 200 pM MU.

425

426 4.5 Trichloroacetic acid precipitation

427 Gus-Ctsl and Gus-Jpsl secretion was analyzed by TCA precipitation of culture broths.
428  Therefore, 2 ml of cultures grown in Verduyn medium (55.5 mM Glucose, 74.7 mM NH4CI, 0.81 mM
429  MgS04x7H,0, 0.036 mM FeSO4x7H>0, 36.7 mM KH2PO4, 100 MM MES pH 6.5, 0.051 mM EDTA,
430 0.025 mM ZnSO4x7H.0, 0.041 mM CaCl,, 0.016 mM HsbBOgz, 6.7 uM MnCl>x2H.0, 2.3 uM
431  CoClx6H20, 1.9 uM CuSO4x5H20, 1.9 uM Na2Mo04x2H>0, 0.6 uM KI) to an ODego of 3 were
432  harvested by centrifugation at 11.000 x g and supernatant was transferred to a fresh reaction tube. 1
433  ml of cell free supernatants of cultures were chilled on ice, mixed with 400 pl 50% (v/v) TCA solution
434 and incubated on ice at 4 °C overnight. Subsequently, protein pellets were harvested by centrifugation
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435 at 11.000 x g at 4 °C for 30 min. Supernatants were discarded and pellets were washed with 300 pul of
436  -20 °C acetone followed by centrifugation at 11.000 x g at 4 °C for 20 min two times. Pellets were
437  dried at room temperature and resuspended in Laemmli buffer containing 0.12 M NaOH. Resuspended
438  pellets were denatured at 95 °C for 10 min and then subjected to SDS-PAGE and Western blot analysis.
439

440 4.6 Generation of cell extracts

441 For the verification of protein production via Western blot or further IMAC purification, cultures
442  were grown to an ODeoo 0f 1.0 and harvested at 5000 x g for 5 min in centrifugation tubes. Until further
443  use, pellets were stored at —20 °C. For preparation of cell extracts, cell pellets were resuspended in 1
444 mil cell extract lysis buffer (L00 mM sodium phosphate buffer pH 8.0, 10 mM Tris/HCI pH 8.0, 8 M
445 urea, 1 mM DTT, 1 mM PMSF, 2.5 mM benzamidine, 1 mM pepstatin A, 2x complete protease
446  inhibitor cocktail (Roche, Sigma/Aldrich, Billerica, MA, United States) and cells were crushed by
447  agitation with glass beads at 2,500 rpm for 12 min at 4 °C. After centrifugation (11,000 x g for 30 min
448  at 4°C), the supernatant was separated from cell debris and was transferred to a fresh reaction tube. For
449  direct use protein concentration was determined by Bradford assay (BioRad, Hercules, CA, United
450  States) (Bradford 1976). Otherwise, cell extracts were subjected to IMAC purification.

451

452 4.7 SDS PAGE and Western blot analysis

453 To assay protein production and secretion, 10 pg of cell extract or TCA precipitated samples
454  were subjected to SDS-PAGE. SDS-PAGE was conducted using 10% (w/v) acrylamide gels.
455  Subsequently, proteins were transferred to methanol activated PVDF membranes using semi-dry
456  Western blotting. Nanobody fusion proteins were detected using a primary anti-HA (mouse; 1:3,000,
457  Sigma-Aldrich, St. Louis, MO, USA). An anti-mouse IgG-horseradish peroxidase (HRP) conjugate
458  (1:3,000 Promega, Fitchburg, United States) was used as secondary antibody. HRP activity was
459  detected using the Amersham ™ ECL ™ Prime Western Blotting Detection Reagent (GE Healthcare,
460  Chalfont St Giles, United Kingdom) and a LAS4000 chemiluminescence imager (GE Healthcare Life
461  Sciences, Freiburg, Germany).

462

463 4.8 IMAC purification of His-tagged protein
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464 Purification of U. maydis derived nanobody fusion proteins was achieved by generation of cell
465  extracts from 400 ml of U. maydis culture harvested at an ODeoo of 1.0 and subsequent Nickel?*-NTA
466  purification. Therefore, culture harvested at 5000 x g for 5 min was resuspended in 8 ml lysis buffer
467 (10 mM imidazole, 50 mM NaH2PO4, 300 mM NaCl, pH 8.0), 1.6 ml glass beads were added to cell
468  suspension and cells were crushed by agitation with glass beads at 2,500 rpm at 4 °C for 12 min.
469  Subsequently, cell debris was removed by centrifugation at 11,000 x g at 4 °C for 30 min. Nickel?*-
470  NTA matrix was settled in empty columns and after flow-through of ethanol, equilibrated with 10
471  column volumes of lysis buffer. Subsequently, matrix was dissolved in cleared cell extracts and the
472  mixture was incubated on a stirring wheel at 4 °C for 1 h. Subsequently, flow-through was discarded
473  and matrix was washed with 5 column volumes of washing buffer (20 mM imidazole 50 mM NaH2POa,
474 300 mM NacCl, pH 8.0). Protein was eluted in two fractions of 2 ml each using elution buffer 1 (lysis
475  buffer, 150 mM imidazole) and elution buffer 2 (lysis buffer, 250 mM imidazole). For application in
476  ELISA elution fractions were pooled via Amicon Ultra-15 50k centrifugal filter units (Merck Millipore,
477  Burlington, MA, USA). Elution buffer was chosen for the intended application (coating buffer for
478  sandwich ELISA, chitin binding buffer for chitin ELISA, PBS-T for direct detection, see chapters 4.10-
479  4.11 for buffer composition).

480

481 4.9 Invivo neutralization assays

482 Nanobodies were IMAC purified and stored at 4 °C prior to incubation with SARS-CoV-2.
483  Nanobodies at concentration of 0.5 mg/ml in PBS-buffer were incubated with SARS-CoV-2 particles
484  in serial dilutions for 1 h at 37 °C. Subsequently, Vero cells (ATCC-CCL-81) displaying ACE2 were
485  inoculated with pre incubated samples. After three days of incubation visual microscopic analysis was
486  conducted using an Eclipse TS100 (Nikon, Minato, Japan) to observe cytopathic effects and thus
487  determine if infection had occurred. gPCR analysis was conducted using anti-SARS-CoV-2 primer
488  pairs specific to the E-gene (Corman et al. 2020) and Lightmix Modular SARS and Wuhan CoV E-
489  gene (Roche Lifescience, Basel, Switzerland) in an ABI 7500 Fast PCR cycler (PE applied biosystems,
490  Waltham, MA, USA).

491 4.10 Direct ELISA

492 For detection of nanobody binding activity protein adsorbing 384-well microtiter plates
493  (Nunc® Maxisorp™, ThermoFisher Scientific, Waltham, MA, USA) were used. Wells were coated
494  with 1 pg Gfp for anti-GfpNB or 1 pg commercially available SARS-CoV-2 Spike-RBD-domain
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495  protein for SARS-CoV-2 nanobody-Cts1-fusion proteins (Invitrogen, Waltham Massachusetts, USA).
496  Recombinant Gfp was produced in E. coli and purified by Ni?*-chelate affinity chromatography as
497  described earlier (Terfruchte et al. 2017). 1 pg BSA per well dealt as negative control (NEB, Ipswich,
498 MA, USA). Samples were applied in a final volume of 100 ul coating buffer (100 mM Tris-HCL pH
499 8,150 mM NaCl, 1 mM EDTA) per well at room temperature for at least 16 h. Blocking was conducted
500 for at least 4 h at room temperature with 5% (w/v) skimmed milk in coating buffer. Subsequently, 5%
501  (w/v) skimmed milk in PBS (137 mM NacCl, 2.7 mM KCI, 10 mM Na;HPOQOg4, 1.8 mM KH2PO4, pH
502  7.2) were added to defined protein amounts of nanobody fusion protein samples purified from culture
503  supernatants or cell extracts via Ni>*-NTA gravity flow and respective controls. 100 pl of sample was
504  added to wells coated with the cognate antigen and BSA. The plate was incubated with samples and
505  controls over night at 4 °C. After 3x PBS-T (PBS supplemented with 0.05% (v/v) Tween-20, 100 pl
506  per well) washing, a primary anti-HA antibody (mouse, Sigma-Aldrich, St. Louis, MO, USA) 1: 5,000
507  diluted in PBS supplemented with skimmed milk (5% w/v) was added (100 ul per well) and incubated
508 for 2 h at room temperature. Then wells were washed again three times with PBS-T (100 pl per well)
509 and incubated with a secondary mouse-HRP antibody (goat, Promega, Madison, W1, USA) (50 ul per
510  well) for 1 h at room temperature (1: 5,000 in PBS supplemented with skimmed milk (5% wi/v)).
511  Subsequently, wells were washed three times with PBS-T and three times with PBS and incubated with
512 Quanta Red™ enhanced chemifluorescent HRP substrate (50:50:1, 50 pl per well, ThermoFisher
513  Scientific, Waltham, MA, USA) at room temperature for 15 min. The reaction was stopped with 10 pl
514 Quanta Red™ stop solution per well and fluorescence readout was performed at 570 nm excitation and
515 600 nm emission using an Infinite M200 plate reader (Tecan, Méannedorf, Switzerland).

516  For ELISA against the full-length spike protein, experiments were carried out with the Anti-SARS-
517 CoV-2-QuantiVac-ELISA (1gG)-Kit (Euroimmun, Libeck, Germany) according to the manual.
518 Controls were detected using the secondary anti-human-HRP antibody delivered with the Kit.
519  Nanobody fusions were detected using anti-HA-HRP (Miltenyi Biotec, Bergisch Gladbach, Germany).
520

521 4.11 Sandwich ELISA

522 To determine nanobody-Cts1-fusion capabilities to act as capture antibody for an antigen test
523  application, a mixture of 0.5 pg of IMAC purified protein and 0.5 pg BSA (New England Biolabs,
524 Ipswich, MA, USA) in 100 pl of coating buffer per well was added to 384-well microtiter plates (1 pg
525  without BSA for direct detection). Coating was conducted for 16 h at 4 °C. Subsequently, plates were
526  Dblocked with 5% skimmed milk in coating buffer for 2 h at room temperature. RBD samples were
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527  added in serial dilutions in a volume of 100 pl sample buffer (5% skimmed milk powder in PBS-T)
528 and incubated for 2 h at room temperature. Subsequently plates were washed 3 times with PBS-T and
529  primary antibody (anti-RBD-mouse, R&D systems, Minneapolis, MN, USA) was added in a dilution
530 of 1: 5,000 in sample buffer and incubated for 2 h at room temperature. Afterwards wells were washed
531 again with PBS-T thrice and incubated with secondary mouse-HRP antibody (goat, Promega,
532  Fitchburg, WI, United States) was added in a dilution of 1: 5,000 in 50 pl sample buffer and incubated
533  for 1 h at room temperature. Prior to detection plates were washed thrice with 100 pl PBS-T and three
534  times with 100 pl PBS per well. Detection was carried out using Quanta Red™ enhanced
535 chemifluorescent HRP substrate (50:50:1, 50 ul per well, ThermoFisher Scientific, Waltham, MA,
536  USA) at room temperature for 10 min. The reaction was stopped with 10 ul Quanta Red™ stop solution
537  per well and fluorescence readout was performed at 570 nm excitation and 600 nm emission using an
538 Infinite M200 plate reader (Tecan, Méannedorf, Switzerland).

539

540 4.12 Chitin based sandwich ELISA

541 For chitin-based sandwich ELISA 50 pl of chitin magnetic beads (New England Biolabs,
542  Ipswich, MA, USA) were transferred into a 1.5 ml reaction tube, washed with 500 pl of water and
543  equilibrated in 500 pl of chitin binding buffer (500 mM NaCl, 50 mM Tris-HCI buffer pH 8.0, 0,05%
544 Tween-20 (v/v)). Subsequently 2 ug of IMAC purified protein was added in a final volume of 500 pl
545  chitin binding buffer. Coating was conducted on a stirring wheel at 4 °C for 16 h. Afterwards chitin
546  beads were blocked with 5% skimmed milk powder in chitin binding buffer on a stirring wheel at room
547  temperature for 2 h. In the next step chitin beads were washed thrice with PBS-T, RBD samples were
548  added in serial dilutions in a volume of 100 pl ELISA sample buffer and incubated on a stirring wheel
549  at room temperature for 2 h. After removal of the sample buffer chitin magnetic beads were taken up
550 in 100 ul PBS-T, transferred to a fresh reaction tube and subsequently washed three times with 500 pl
551  PBS-T before addition of primary antibody (R&D systems, Minneapolis, MN, USA) 1:5000 in 200 pl
552  sample buffer. The primary antibody was incubated with chitin magnetic beads on a stirring wheel at
553  room temperature for 2 h. Subsequent to primary antibody removal chitin magnetic beads were washed
554 three times with PBS-T and incubated with secondary mouse-HRP antibody (goat, Promega, Fitchburg,
555  United States) 1:5000 in 100 ul sample buffer on a stirring wheel at room temperature for 1 h. For
556  detection chitin magnetic beads were washed three times with 500 pl PBS-T and three times with 500
557  ul PBS before being taken up in 100 pl Quanta Red™ enhanced chemifluorescent HRP substrate
558  (50:50:1, 50 ul per well, ThermoFisher Scientific, Waltham, MA, USA) and transferred to a black 96-
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559  well microtiter plate. Fluorescence readout was performed 2 min after addition of the substrate at 570
560 nm excitation and 600 nm emission using an Infinte M200 plate reader (Tecan, Mé&nnedorf,

561  Switzerland) after stopping of the reaction with 10 pul QuantaRed™ stop solution.
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