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1 

Abstract 13 

Nearly all trait-associated variants identified in GWAS are non-coding. The cis regulatory effects 14 
of these variants have been extensively characterized, but how they impact gene regulation in 15 
trans has been the subject of much fewer studies. Mapping trans genetic effects is very 16 
challenging because their effect sizes tend to be small and a large multiple testing burden 17 
reduces the power to detect them. In addition, read mapping biases can lead to many false 18 
positives. To reduce mapping biases and substantially improve power to map trans-eQTLs, we 19 
developed a pipeline called trans-PCO, which combines careful read and gene filters with a 20 
principal component (PC)-based multivariate association test. Our simulations demonstrate that 21 
trans-PCO substantially outperforms existing trans-eQTL mapping methods, including univariate 22 
and primary PC-based methods. We applied trans-PCO to two gene expression datasets from 23 
whole blood, DGN (N = 913) and eQTLGen (N = 31,684), to identify trans-eQTLs associated 24 
with gene co-expression networks and hallmark gene sets representing well-defined biological 25 
processes. In total, we identified 14,985 high-quality trans-eSNPs–module pairs associated with 26 
197 co-expression gene modules and biological processes. To better understand the effects of 27 
trait-associated variants on gene regulatory networks, we performed colocalization analyses 28 
between GWAS loci of 46 complex traits and trans-eQTLs identified in DGN. We highlight 29 
several examples where our map of trans effects helps us understand how trait-associated 30 
variants impact gene regulatory networks and biological pathways. For example, we found that 31 
a locus associated with platelet traits near ARHGEF3 trans-regulates a set of co-expressed 32 
genes significantly enriched in the platelet activation pathway. Additionally, six red blood cell 33 
trait-associated loci trans-regulate a gene set representing heme metabolism, a crucial process 34 
in erythropoiesis. In conclusion, trans-PCO is a powerful and reliable tool that detects trans 35 
regulators of cellular pathways and networks, which opens up new opportunities to learn the 36 
impact of trait-associated loci on gene regulatory networks. 37 
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2 

Main 39 

Genome-wide association studies (GWAS) have identified tens of thousands of genetic loci 40 
associated with a large number of complex traits and diseases. More than 90% of GWAS loci 41 
are located in non-coding regions of the genome and are thought to affect human traits by 42 
regulating gene expression1–5. Nearly all studies to date have focused on understanding the 43 
effects of trait-associated variants on gene expression in cis, which only include effects on 44 
genes that are near the associated loci. However, multiple lines of evidence suggest cis-45 
regulatory effects only capture a small proportion of the heritability of complex traits and 46 
diseases. For example, Yao et al.6 estimated that only an average of 11% of trait heritability is 47 
explained by cis-genetic effects on gene expression levels. We previously hypothesized that 48 
trans-eQTLs, despite having very small effects on each individual gene, may cumulatively 49 
account for a large proportion of trait variance7. Indeed, our modeling indicates that trans-eQTL 50 
effects account for twice as much genetic variance in complex traits as cis-eQTL effects7. Thus, 51 
establishing a representative map of genetic variants and their trans effects is a critical step 52 
toward understanding complex trait and disease genetics.  53 
 54 
Two major challenges have precluded trans-eQTL discovery to date. First, trans-eQTL mapping 55 
is extremely prone to false positives due to mapping errors that cause short sequences to map 56 
to homologous regions of the genome8. This causes spurious associations between the 57 
mapping coverages at multiple homologous regions, which result in strong but artificial trans-58 
eQTL signals if unaccounted for. The second challenge is by far more difficult to overcome:  59 
trans-eQTLs are challenging to detect compared to cis-eQTLs because (i) they have much 60 
smaller effect sizes than cis-eQTLs7, and (ii) a genome-wide search of trans-eQTLs involves a 61 
huge number of statistical tests (~10� SNPs� ~20� genes) resulting in a heavy burden of 62 
multiple testing corrections.  63 
 64 
Previous work in yeast and human cells suggests that trans-eQTLs generally affect the 65 
expression levels of multiple genes. In particular, Albert et al.9 found that the 90% of trans-66 
eQTLs in their yeast segregant system could be mapped to just 102 hotspot loci that regulate a 67 
median of 425 genes each. In fact, three hotspots were found to affect over half of the 5600 68 
expressed trans-regulated genes, indicating that some trans-eQTLs may have significant 69 
genome-wide effects. In humans, the largest trans-eQTL study to date from eQTLGen10 (n = 70 
31,684) identified 59,786 trans-eQTL signals for 3,853 SNPs, indicating that each locus affects 71 
at least 15 genes on average. Thus, compared to the traditional approach of testing the 72 
association between genetic variants and the expression level of a single gene11,12, testing trans 73 
associations between genetic variants and the expression levels of a group of genes can greatly 74 
improve the power to identify trans-eQTLs. 75 
 76 
Indeed, many disease-associated loci are “peripheral master regulators”, which regulate 77 
multiple genes in the core disease-relevant pathways7,13. For example, KLF14, which is 78 
significantly associated with type 2 diabetes, is a peripheral master regulator that modulates the 79 
expression of 385 genes involved in lipid metabolism14. Other examples include the 80 
FTO/IRX3/IRX5 locus in obesity15 or the p53 tumor-suppressor gene in cancers16. A method 81 
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that can detect a large number of trans-eQTLs associated with multiple genes in gene networks 82 
would allow functional interpretation of more disease associated loci and shed light on the 83 
underlying mechanisms.  84 
 85 
The co-regulation and co-expression patterns of genes driven by trans-eQTL have long been 86 
recognized. Yet, most methods do not directly map trans-eQTLs of co-expressed gene sets, but 87 
rather use the coexpression patterns to improve cis-eQTL or trans-eQTL mapping of a single 88 
gene. Some utilized the co-expression patterns of genes to account for hidden variation in trans-89 
eQTL analysis, and thus improves power while reducing false trans-eQTL discovery. For 90 
example, Joo et al.17 used the global correlation structure of genes to capture and remove 91 
confounding effects from trans associations. Similarly, Rakitsch and Stegle18 utilized the local 92 
co-expression patterns of trans- target genes to infer the appropriate covariates to be included 93 
in trans-eQTL association testing. Zhou and Cai19 jointly modeled the effects of cis regulatory 94 
variants and gene regulatory networks on expression levels of a target gene, therefore allowing 95 
the simultaneous identification of cis-eQTL and regulatory networks; the model then identifies 96 
individual trans-eGenes, which are mediated by the cis regulatory effects. Several studies 97 
aimed to identify trans-eQTLs of co-expressed genes. For example, some studies20,21 used 98 
tensor decomposition to decompose gene expressions of multiple tissues into a few latent 99 
components, which might capture gene co-expression, to identify trans-eQTLs of the 100 
components. However, the method requires gene expression data of multiple tissues, which is 101 
not readily available for many gene expression studies. Rotival et al.22 used independent 102 
component analyses to identify co-expression gene sets, and subsequently tested for the 103 
enrichment of trans signals in the gene sets by hypergeometric tests. More recently, Kolberg et 104 
al.23 identified 38 trans-eQTLs (10% FDR) associated co-expressed gene modules, by testing 105 
the association between SNPs and a single ‘eigengene’ (essentially the primary principal 106 
component, PC1) of gene modules that captures the co-expression pattern. Nonetheless, PC1 107 
has very limited power at identifying genetic effects (see below and Figure 2). Dutta et al.24 108 
leveraged canonical correlation analysis to identify trans associations between multiple 109 
disease–associated SNPs and multiple genes, by integrating with GWAS signals. However, the 110 
method has different goals than identifying trans-eQTLs of multiple genes in specific tissues (for 111 
example, it is useful for identifying “core” like disease genes and processes for a specific 112 
disease; see Discussion and Supplementary Note).  113 
 114 
Our main goal is to develop a method for detecting trans-eQTLs associated with multiple genes 115 
in a gene module by using multivariate association. Multivariate association methods tend to be 116 
more powerful than univariate association methods. Detecting trans-eQTLs of gene modules 117 
containing multiple co-regulated genes can also potentially improve power by reducing multiple 118 
testing burdens, because the number of tested gene modules is much less than the number of 119 
genes. However, there are caveats. First, sequence similarity among distinct genomic regions 120 
can lead to severe false positive discovery issues in trans-eQTL mapping8. This is especially 121 
problematic in mapping trans-eQTLs of co-expression gene modules because genes can be 122 
falsed clustered due to sequence similarities8. For example, the top latent components in 123 
study20 mostly represent genes sharing homologous sequences. Therefore, we need to be extra 124 
diligent about multi-mapping of sequencing reads when mapping trans-eQTLs of co-expression 125 
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gene modules. Second, the naïve way of using a single component, such as the first gene 126 
expression PC, to represent the gene modules and use it as the response variable in 127 
association tests, can significantly reduce power. While the primary PC captures the largest 128 
amount of total variance in gene expression levels, it can be less powerful or even powerless in 129 
detecting significant associations than higher-order PCs, because the direction of the genetic 130 
effects on the genes may not align with the primary PC25,26. It is also difficult to predict which 131 
higher-order PC has the highest power26.  132 
 133 
To combat this, we propose trans-PCO, a flexible approach that uses the PCA-based omnibus 134 
test26 (PCO) to combine multiple PCs and improve power to detect trans-eQTLs. Trans-PCO 135 
tackles both major challenges in trans-eQTL mapping. First, trans-PCO carefully filters 136 
sequencing reads and genes based on mappability across different regions of the genome to 137 
avoid false positives due to multi-mapping8,27,28. Second, trans-PCO uses a novel multivariate 138 
association test26 to detect genetic variants with effects on multiple genes in predefined sets and 139 
captures genetic effects on multiple PCs. By default, trans-PCO defines sets of genes based on 140 
co-expression gene modules as identified by WGCNA29. It also accepts user-defined sets; for 141 
example, genes that belong to the same gene ontology30, KEGG pathway31, or protein 142 
complex32.  143 
 144 
We applied trans-PCO to RNA-sequencing data from the Depression Genes and Networks 145 
study27 (DGN, sample size N = 913) and the summary-level statistics from the eQTLGen study10 146 
(sample size N = 31,684) to identify trans-eQTLs associated with co-expression gene modules 147 
and well-defined biological processes in whole blood. In total, trans-PCO identified 14,985 high-148 
quality trans-eSNPs–module pairs associated with 197 co-expression gene modules and 149 
biological processes. We also performed colocalization analysis33 of GWAS loci of 46 complex 150 
traits and trans-eQTLs, in order to explore how trait-associated variants impact gene regulatory 151 
networks and pathways in trans. All trans-eQTLs that are associated with gene co-expression 152 
networks and biological pathways can be found in www.networks-liulab.org/transPCO.  153 
 154 
  155 
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Results 156 

Overview of the method 157 

We developed the trans-PCO pipeline to detect trans-eQTLs that are associated with the 158 
expression levels of a group of genes (gene module) by using a PC-based multivariate 159 
association test26 that combines multiple gene expression PCs. The trans-PCO method consists 160 
of three main steps (Figure 1).  161 
 162 
First, trans-PCO pre-processes RNA-seq data to reduce false positive trans-eQTL associations 163 
due to read multimapping errors. Specifically, trans-PCO removes all sequencing reads mapped 164 
to low mappability regions of the genome (mappability score <1, Methods) before profiling gene 165 
expression levels. These procedures substantially reduce the occurrence of false positive trans-166 
eQTLs due to sequencing alignment errors8,28. When only summary-level data are available 167 
(e.g., eQTLGen dataset10), trans-PCO dynamically excludes from the module any genes that 168 
are cross-mappable to genes within 100 kb of the tested SNP.  169 
 170 
Second, trans-PCO groups genes into clusters, which alleviates the burden of multiple testing 171 
by reducing the number of statistical tests and thus increases the statistical power. By default, 172 
trans-PCO determines the gene groupings by using WGCNA29 to identify co-expression 173 
modules from gene expression levels (see Methods). We remove covariates and confounders, 174 
such as batch effects, gene expression PCs, and cell type proportions (e.g., DGN dataset27), 175 
from gene expression levels before grouping gene modules. This step is necessary to ensure 176 
that the gene modules are not primarily driven by confounding factors. Trans-PCO also allows 177 
customization of the gene groups or sets, i.e., genes in the same pathway or protein-protein 178 
interaction network30–32 can be grouped into user-defined gene modules.  179 
 180 
Lastly, trans-PCO tests for association between each SNP and the expression levels of the 181 
genes in each gene module by adapting the PCO method, which combines multiple gene 182 
expression PCs by using six PC-based statistical tests: PCMinP, PCFisher, PCLC, WI, Wald 183 
and VC (see Methods for details). Each PC-based test combines multiple PCs uniquely, which 184 
allow signals under various genetic architectures to be captured. PCO evaluates the six PC-185 
based tests and takes the minimum p-value as the final test statistic. The final p-values are 186 
computed according to Liu et al.26 (also see Methods). Only PCs with eigenvalues ��> 0.1 are 187 
used in trans-PCO (See Supplementary Note). To avoid identifying associations driven by cis-188 
effects, we excluded from the module all genes on the same chromosome as the test SNP. To 189 
correct for multiple testing, we performed 10 permutations to establish an empirical null 190 
distribution of p-values (See Supplementary Note).  191 
 192 
 193 
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194 
Figure 1. Three main steps in trans-PCO pipeline. The first step of trans-PCO pre-processes195 
RNA-seq data to reduce false positive trans-eQTL associations due to read alignment errors.196 
The second step involves grouping genes into gene sets, such as co-expression modules or197 
biological pathways. The last step tests for trans-eQTLs of each gene set by a PC-based198 
multivariate association test17.  199 

Trans-PCO outperforms existing methods in simulations 200 

We performed simulations to evaluate the power of trans-PCO in detecting trans-eQTLs201 
associated with multiple genes. We primarily compared the power to (i) the standard univariate202 
test (“MinP”), and (ii) the primary PC-based test (“PC1”, Kolberg et al.23; see Methods). We used203 
a co-expression gene module consisting of 101 genes from the DGN dataset (module 29). In204 
null simulations, we simulated the z-scores between a SNP and  genes in a gene205 
module following the null distribution, , where is the residualized expression206 
correlation matrix. In power simulations, we generated z-scores from the distribution207 

, where  is sample size (N = 200,400,600, and 800) and  is a vector208 
representing the true effect sizes of the SNP on  genes. Among  genes, a proportion  of209 
them are causal with non-zero effects. Therefore, we generated  from a point normal210 
distribution, where  for proportion , and ,211 
otherwise. The trans-genetic variance is   ( ), which is a low and realistic per SNP212 
heritability for trans effects. We simulated 10,000 SNPs and performed 1000 simulations.  213 
 214 
To compare the power of different approaches to identify trans-eQTLs, we defined significant215 
univariate tests for a gene module based on the minimum p-values across  genes. For the216 
primary PC-based method, we used PC1 of the gene module co-expression matrix to represent217 
the module and tested it for associations. In power simulations, we set significance levels at218 
10% FDR to be consistent with real data analysis. We computed power as the average219 
proportion of significant tests out of 10,000 simulated SNPs across 1000 simulations.  220 
 221 
Trans-PCO significantly outperformed the univariate test and the primary PC method across222 
different sample sizes and proportions of causal genes (Figure 2). Specifically, the power of223 
trans-PCO increases rapidly with increasing sample sizes. At the sample size of 800, assuming224 
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30% of genes have causal effects in the gene module, the power of trans-PCO is 74%,225 
compared to 15% for the univariate test and 0.0018% for the primary PC method (Figure 2A). 226 
 227 
We also compared the power of each method across various causal gene proportions using a228 
fixed sample size (n=500). All three methods have little power in detecting trans-eQTLs when229 
the proportion of causal genes is below 10%. However, above this threshold, the power of trans-230 
PCO increases dramatically: 36% at 30% causal genes and 86% at 50% causal genes. In231 
contrast, the univariate and the primary PC methods remain almost powerless for nearly all232 
simulated scenarios (Figure 2B). We note that the primary PC method appears to be almost233 
powerless across the scenarios, which agrees with the previous observation that the primary PC234 
can be less powerful than higher-order PCs in GWAS11. Simulation results at various genetic235 
variances can be found in Supplementary Materials, including at extremely low proportions of236 
causal genes and high trans effects (Figure S1). We found that the univariate method only237 
outperforms trans-PCO when the proportion of causal genes is extremely low, such as only one238 
causal gene in the entire gene set, and the trans effects are large. Trans-PCO gains more239 
power when there are more than 1 causal gene, as it aggregates multiple weak effects to240 
improve power. Null simulations demonstrated all three methods are well-controlled for false-241 
positive inflations (Figure S2).  242 
 243 

244 
Figure 2. Power of trans-PCO across different sample sizes and causal gene proportions,245 
in comparison to PC1 (Kolberg et al.23) and univariate (MinP) methods. (A) Power246 
comparison across various sample sizes (N = 200, 400, 600, and 800). Trans-genetic247 
variance  was simulated to be 0.001 and the proportion of causal genes in the gene module248 
was 30%. Error bars representing 95% confidence intervals are plotted, but many are too smal249 
to be visible. See numerical results in Table S2. (B) Power comparison across different250 
proportions of causal genes in the gene module. The simulated sample size was 500. Points251 
show average power across 1000 simulations. Error bars representing 95% confidence intervals252 
are plotted, but many are too small to be visible. See numerical results in Table S2.  253 
 254 
We also included comparisons to two additional methods: ARCHIE proposed by Dutta et al.24255 
and a method by Rovital et al.22 (see Supplementary Note, Figure S19 and Figure S20). We256 
showed that ARCHIE is not powerful at detecting trans-eQTL effects from a SNP to multiple257 
genes, which are the effects trans-PCO was designed for (Figure S19D). We note that the main258 
goal of ARCHIE is to identify trait-specific gene sets associated with GWAS loci, whereas trans-259 
PCO is designed to map trans-eQTLs for any user-specified gene sets in specific tissues or cell260 
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types (see Supplementary Note, Figure S19 and Discussion). Rovital et al.22 is based on the 261 
primary PC-based approach and we showed that the method also has limited power at 262 
identifying weak trans-eQTL effects (Supplementary Note and Figure S20).  263 

Trans-PCO identifies 3899 trans-eSNP–module pairs associated 264 

with co-expression gene modules in the DGN dataset 265 

We used trans-PCO to identify trans-eQTLs associated with co-expression gene modules in 266 
RNA-seq data from whole blood samples of the DGN cohort (N = 913)27. WGCNA29 identified 267 
166 co-expression gene modules, with the number of genes in each module ranging between 268 
625 (module 1, M1) and 10 (module 166, M166) (Supplementary Table S1). We then performed 269 
genome-wide scans of trans-eQTLs for each gene module. At 10% FDR, trans-PCO identified 270 
significant trans-eQTLs for 102 out of 166 gene modules, corresponding to 3899 significant 271 
trans-eSNP–module pairs (Supplementary Table S3). Many trans-eSNPs are in linkage-272 
disequilibrium (LD). Using LD clumping to group trans-eSNPs into LD-independent loci 273 
(R2<0.2), we found 202 trans-loci–module pairs (Figure 3A, Table S3, Table S4).  274 
 275 
We compared trans-eQTL signals detected in DGN by trans-PCO to signals identified by the 276 
univariate method in Battle et al.27. Out of 12,132 genes analyzed by trans-PCO, the univariate 277 
method detected 326 significant trans-eSNP–gene pairs for 128 genes at 5% FDR27. At the 278 
same FDR level, trans-PCO identified 3031 significant trans-eSNP–gene module pairs for 75 279 
gene modules. We compared the magnitude of the significant trans-eQTL effects detected by 280 
trans-PCO and the univariate method. More specifically, we compared the maximum univariate 281 
z-scores of SNPs and each gene in significant trans-eSNP–module pairs identified by trans-282 
PCO to the z-scores of significant trans-eSNP–gene pairs by the univariate method. We found 283 
that the maximum z-scores of trans-PCO signals are much smaller than z-scores of the 284 
univariate method signals (Figure 3B), indicating that our multivariate approach can detect 285 
much smaller trans effects than univariate methods.  286 
 287 
We also applied the primary PC method (Kolberg et al.23) to DGN, and identified 1483 288 
significant trans-eSNP–module pairs (55 trans-loci–module pairs) at 10% FDR, and 1464 pairs 289 
(99%) were detected by trans-PCO (Figure S13A). Notably, in total, trans-PCO identified more 290 
than twice the signals than the primary PC method. However, the primary PC method identified 291 
more signals than expected, as it was previously shown to be powerless in the simulations. We 292 
note that we simulated weak effects and sparse causal proportions to better reflect common and 293 
realistic trans effects, and the primary PC method is powerless in these settings. We performed 294 
additional simulations with large effects and high causal proportions, and the primary PC 295 
method achieved 50% power as trans-PCO (see Supplementary Note, Figure S18). 296 
Additionally, we found in the DGN dataset that the univariate z-scores of trans signals detected 297 
by the primary PC method are larger than those of trans-PCO signals (Figure S13B-D). 298 
Therefore, the trans signals detected by the primary PC method are likely of strong trans 299 
effects, and trans-PCO is able to detect additional weak trans effects. Statistically, PC1 can also 300 
have good statistical power when the trans effects align with the direction of PC126. To 301 
demonstrate this, we performed simulations under the assumption that the genetic effect vector 302 
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perfectly aligns with the primary PC direction. We found that the primary PC method has higher 303 
power than trans-PCO and MinP methods under this special circumstance (Figure S14). 304 
However, it is impossible to predict when the genetic effects align with gene expression PCs.  305 

Trans-eQTLs are enriched in variants with cis-regulatory effects on 306 

transcription factors 307 

We found that only 31 trans-eSNPs (1%) are in coding regions, suggesting that a very small 308 
proportion of trans-eQTLs impact gene expression levels in trans by altering protein coding 309 
sequences. Several studies have shown that trans-eQTLs have cis-regulatory effects, impacting 310 
the expression levels or splicing of nearby genes10,27; thus, we evaluated our identified trans-311 
eQTLs for concomitant cis-regulatory activity. We first overlapped trans-eSNPs with cis-eQTLs 312 
and cis-splicing QTLs (cis-sQTLs) in DGN34. Of the 2955 trans-eSNPs (Table S3), we found that 313 
71% are significant cis-eSNPs in DGN, and 46% are significant cis-sSNPs, together accounting 314 
for 73% of all trans-eSNPs. To further examine whether the cis and trans effects are driven by 315 
the same variant, we performed colocalization analysis of trans-eQTLs with cis-eQTLs and cis-316 
sQTLs using coloc33 (see Methods). Specifically, we first grouped trans-eSNP–gene module 317 
pairs into 179 trans-region–gene module pairs, based on 200kb fixed-width regions (see 318 
Methods). We then performed colocalization analyses between the trans-eQTLs and cis-319 
eQTLs/cis-sQTLs. We found that 51 out of 179 trans regions colocalized with a cis-eQTL 320 
(PP4>0.75, Figure 3C and Figure S3). 41 trans-loci colocalized with a cis-sQTL. Overall, 60 321 
trans-loci share causal variants with at least one cis-eQTL or cis-sQTL (Figure 3C, Table S5), 322 
confirming that trans-eQTL effects are generally mediated through cis-gene regulation. 323 
Additionally, a large fraction of trans-loci (66%) do not colocalize with cis-eQTLs or cis-sQTLs. 324 
While power may have limited our ability to detect colocalization of some trans-eQTLs and cis-325 
eQTLs, there might also exist unknown trans-regulatory mechanisms, independent of cis gene 326 
expression or splicing, which is subject to future studies.  327 
 328 
We also investigated the types and functions of genes that are likely to mediate trans-eQTL 329 
effects. We found that the genes nearest trans-eQTLs are highly enriched in “RNA polymerase 330 
II transcription regulatory region sequence-specific DNA binding” (adjusted P = 1.26 � 10��) and 331 
“DNA-binding transcription factor activity” (adjusted P = 1.39 � 10��, Table S6), suggesting that 332 
transcription factors are important mediators of trans-eQTL effects. Indeed, trans-PCO identified 333 
and replicated several well-known master trans regulators in blood, such as IKZF128,35,36, 334 
NFKBIA28, NFE210,28,37, and PLAGL128,36 (Figure 3A). We also found colocalization of these 335 
trans-eQTLs with cis-eQTLs at the NFKBIA, NFE2 and PLAGL1 loci (Figure 3D, Figure S3), 336 
supporting the conclusion that these genes are likely the cis-mediating genes.  337 

High quality map of trans-eSNP to gene module associations improves 338 

functional interpretation  339 

Most of the gene modules used in trans-PCO have functional annotations, which allows us to 340 
interpret the functional roles of the trans-eQTLs identified by the method. We first functionally 341 
annotated the 166 co-expression modules using g:Profiler38, which performs functional 342 
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enrichment analysis on gene sets using predefined gene ontology and pathway annotations. 343 
This allowed us to annotate 131 of the 166 modules with at least one significantly enriched gene 344 
ontology or pathway (Table S7).  345 
 346 
These annotations helped us interpret the function of identified trans effects. For example, the 347 
trans-eQTL signal near IKZF1 (on chromosome 7) is significantly associated with 27 gene 348 
modules. IKZF1 encodes a transcription factor IKAROS that belongs to the family of zinc finger 349 
DNA binding proteins39. The IKZF1 (IKAROS) trans-target gene module 159 (M159) is 350 
significantly enriched in the “positive regulation of transcription of Notch receptor target” 351 
(adjusted P = 6.82 � 10��, Figure 3E). Reassuringly, it was previously found that IKAROS is a 352 
repressor of many Notch targets, and our trans-eQTL signal further supports the trans 353 
regulation of Notch signaling pathway by IKAROS40. IKZF1 trans-target module 3 (M3) is 354 
significantly enriched in the gene ontology term “defense response to virus” (Figure S4, adjusted 355 
P = 8.7 � 10���) and M35 is significantly enriched in the innate immune system (adjusted P = 356 
4.09 � 10���). This data supports the conclusion that the IKZF1 locus plays a trans-regulatory 357 
role in immune responses (Figure 3E). The trans-eQTLs near NFKBIA, which encode NF-358 
kappa-B inhibitor subunit A, are significantly associated with module 66 (M66) (adjusted P 359 
� 1.8 � 10��, adjusted P � 9.9 � 10��). Interestingly, we found that M66 is highly enriched in 360 
NF-kappa-B signaling pathway (adjusted P = 8.35 � 10��, Figure 3E), which supports the trans 361 
regulation of the NF-kappa-B signaling pathway by NFKBIA. The complete list of trans-eQTLs 362 
signals and functional annotations of trans-target gene modules can be found in Supplementary 363 
Table S4 and Table S7.  364 

Trans-PCO identifies 965 trans-eSNP–module pairs associated 365 

with well-defined biological processes  366 

To further demonstrate the utility of trans-PCO, we applied trans-PCO to 50 MSigDB hallmark 367 
gene sets, which represent well-defined biological processes30, including DNA repair, 368 
coagulation, heme metabolism, Notch signaling etc. (Table S15). Each gene set contains 369 
between 32 and 200 genes. In DGN, we identified 965 significant trans-eSNP–module pairs, 370 
corresponding to 41 gene sets and 120 trans-loci–module pairs (R2<0.2), at 10% FDR level 371 
(Figure S5, Table S3, Table S16).  372 
 373 
Trans-eQTLs associated with well-defined biological processes facilitate interpretation of the 374 
trans-eQTL signals. For example, we identified several trans-eQTL signals at the NLRC5 locus 375 
(Table S16). The trans target gene set is the “interferon alpha response” gene set, suggesting 376 
trans regulation from NLRC5 to the interferon signaling pathway. Reassuringly, earlier studies 377 
have confirmed that NLRC5 is a master regulator for MHC class II genes and negatively 378 
regulates the interferon signaling pathway41,42. The trans-eQTL signals also validated our 379 
previous interpretations of trans-eQTLs associated with co-expression gene modules. For 380 
example, in agreement with our analysis of co-expression modules, we found that the IKZF1 381 
locus is significantly associated with several immune-related biological processes, such as 382 
interferon gamma response (Table S16, Figure 3E).  383 
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 384 

385 
Figure 3. Trans-PCO identifies trans-eQTLs associated with co-expression gene modules386 
in DGN. (A) Significant trans-eQTL signals associated with 166 co-expression modules in387 
DGN. Chromosomal positions of trans-eSNPs are on the x-axis, and gene modules are on the388 
y-axis. Point sizes are -Log10(P) values of significant trans-eQTLs. Purple and orange represent389 
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odd and even chromosomes, respectively. (B) Comparison of the magnitude of significant trans-390 
eQTLs effects detected by trans-PCO and the univariate method. X-axis shows signal 391 
categories: trans-PCO specific signals (Trans-PCO), univariate test specific signals (Univariate), 392 
and signals identified by both methods (Both). The maximum z-scores of each SNP and each 393 
gene in a gene module is used to represent the SNP-module pair. The numbers on top are the 394 
number of signals in each category. Line type represents the target type of signals (gene 395 
module vs single gene). Y-axis is the absolute value of the z-scores of the signals. (C) 396 
Colocalization of trans-eQTLs and cis-e/sQTLs. The gray bar represents the trans-loci used 397 
for colocalization analyses. The bar highlighted in blue represents trans-loci colocalized with cis-398 
sQTLs, red for cis-eQTLs, and mixed color for either cis-eQTLs or cis-sQTLs. (D) 399 
Colocalization of trans-eQTLs of Module 66 and cis-eQTLs of NFKBIA. (E) Functional 400 
annotations of gene sets facilitate functional interpretation of trans-eQTL signals. The 401 
trans-eQTLs near NFKBIA and IKZF1 are associated with several gene modules. The bar plots 402 
show the functional enrichments in modules. The numerical values of enrichments are in Table 403 
S7.  404 

Trans-PCO improves understanding of trans regulatory effects of 405 

disease-associated loci 406 

To understand trans regulatory effects of genetic variants associated with complex traits, we 407 
performed colocalization analysis of trans-eQTL signals with GWAS loci of 46 complex traits 408 
and diseases, including 29 blood traits and 8 other common complex traits (such as height and 409 
BMI) from the UK Biobank37,43 and 9 autoimmune diseases34,44–50 (Methods and Table S8).  410 
 411 
We grouped the trans-eSNPs into 200kb regions (or trans-loci) for colocalization analyses (see 412 
Methods). The 3899 trans-eQTLs associated with co-expression gene modules were grouped 413 
into 179 trans-region–module pairs. 42 out of 46 complex traits have at least one GWAS loci 414 
colocalized with one of 179 trans-region–module pairs. On average across all traits, 8.8% of 415 
trans-loci colocalize with GWAS loci (Figure 4A, Table S9). We observed a higher proportion of 416 
colocalization with blood traits (mean proportion 12.0%) than non-blood traits (mean proportion 417 
1.5%). Although we expect some higher proportions of colocalization with blood traits to occur in 418 
a whole blood sample, our results may also indicate some residual effects due to cell 419 
composition--despite corrections for cell composition using both gene expression PCs and 420 
estimated cell-type proportions27, such that some trans-eQTLs may regulate the abundance of 421 
cell proportions and therefore are associated genes that are specifically expressed in certain 422 
cell types. Our results are consistent with a recent study by the eQTLGen consortium, which 423 
has shown that trans-eQTLs in whole blood reflect a combination of cell-type composition and 424 
intracellular effects10.  425 

 426 
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427 
Figure 4. Colocalization of trans-eQTLs with GWAS loci of 42 complex traits with at least428 
one colocalization region. (A) The number of colocalized trans-loci associated with co-429 
expression gene modules with GWAS loci. The traits are first ordered by broad categories:430 
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blood traits, autoimmune diseases, and other traits in UKBB. The traits within each category are 431 
then ordered by the total number of colocalized regions. (B) Heatmap of the number of 432 
colocalized trans-loci associated with co-expression gene modules with GWAS loci 433 
between each module and trait. The traits are first ordered by broad categories: white blood 434 
cells (Orange), red blood cells (Red), platelet cells (Blue), autoimmune diseases (Green) and 435 
other traits in UKBB (Black). The traits within each category are then ordered by the number of 436 
colocalized gene modules. The blue shades represent the number of colocalized regions. (C) 437 
Heritability enrichment of Module 4 (M4) in blood traits. Heritability enrichment was 438 
estimated by using S-LDSC. Error bars are 95% confidence intervals. (D) Colocalization of 439 
mean platelet volume associated locus near ARHGEF3 and trans-eQTL of M4. (E) 440 
Heatmap of the number of colocalized trans-loci associated with MSigDB hallmark gene 441 
sets with GWAS loci across modules and blood traits. The blue shades represent the 442 
number of colocalized regions. (F) Colocalization of GWAS loci associated red blood cell 443 
traits and trans-eQTLs associated with heme metabolism. Six loci associated with red blood 444 
cell traits are associated with heme metabolism in trans. Numerical results can be found in 445 
Table S17. Colocalization plots of the other loci are in Figure S6. 446 
 447 
Nevertheless, we found several trans-eQTLs that colocalized with GWAS loci, which revealed 448 
specific interpretable pathways or functional gene sets (Figure 4B, Table S10). For example, 449 
trans-eQTLs associated with co-expression module 4 (M4) colocalized with 24 out of 29 blood 450 
traits (Figure 4B). M4 is highly enriched for genes involved in platelet activation (adjusted P = 451 
1.12 � 10���, Figure S4, Table S7). One of the colocalized trans-eSNPs associated with M4 is 452 
in the introns of the ARHGEF3 gene (Figure 4D), which has been shown to play a significant 453 
role in platelet size in mice51. To further support the interpretation of colocalized signals, we 454 
estimated heritability enrichment of M4 in blood traits using stratified LDscore regression52 (S-455 
LDSC, Figure 4C). We reasoned that an enrichment of trait heritability near genes in a module 456 
would strongly support the involvement of a module in the genetic etiology of a trait. Strikingly, 457 
we found that M4 is significantly enriched in the heritability of multiple blood traits, and the 458 
enrichment was especially strong for platelet traits such as platelet distribution width 459 
(enrichment = 6.5 �, P = 7.0 � 10��) and mean platelet volume (enrichment = 6.7 �, P = 460 
1.2 � 10��, Figure 4C, Table S11). Additionally, we evaluated whether M4 genes are 461 
significantly enriched in genes associated with platelet traits, identified by transcriptome-side 462 
association studies (TWAS). There are 1339 unique genes significantly associated with platelet 463 
traits in the UK Biobank53. M4 genes are significantly enriched in TWAS genes associated with 464 
platelet traits (88 overlap genes, p-value=6.7x10-10, Fisher’s exact test), which further supports 465 
the role of M4 in platelet traits. Finally, we identified that the ARHGEF3 locus is significantly 466 
associated with the MSigDB coagulation hallmark gene set (Table S16). These findings 467 
strengthen the model where genetic variation near ARHGEF3 impacts the expression levels of 468 
multiple genes that are involved in platelet biology and that also harbor nearby genetic variation 469 
associated with platelet traits.  470 
  471 
We also performed colocalization analysis of trans-eQTLs associated MSigDB hall mark gene 472 
sets (Figure 4E, Table S17). One of the gene sets represents heme metabolism, which is an 473 
essential process underlying erythroblast differentiation and red blood cell counts. We found 474 
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that six trans-eQTL loci of heme metabolism significantly colocalized with GWAS loci associated 475 
with red blood cell traits, such as hemoglobin concentration, red blood cell count, and 476 
reticulocyte count (PP4=0.76-1.00, Figure 4F, Figure S6, Table S17). We found that the genes 477 
in the gene sets are significantly enriched in TWAS significant genes associated with 478 
hemoglobin levels in the UK Biobank (35 overlap genes, p-value=8.1x10-4, Fisher’s exact test), 479 
which further supports the role of the hallmark gene set in red blood cell traits. Our results 480 
provide evidence that these six loci regulate heme metabolism in trans, which is an essential 481 
process underlying erythroblast differentiation and red blood cell counts.  482 
 483 
In another example, we found a trans-eQTL near IKZF1 for M3 that colocalizes with 11 blood 484 
traits, seven of which are related to white blood cells (Table S10). As mentioned previously, M3 485 
is significantly enriched for gene ontology terms including “defense response to virus” (adjusted 486 
P = 8.7 � 10���) and “negative regulation of viral processes” (adjusted P = 1.07 � 10���, Table 487 
S7). The enrichments are driven by many genes related to interferon (e.g., IFI6, IFI16, IRF7), 488 
which are proteins released by host cells in response to the presence of viruses and indicate 489 
immune related functions (Table S1, Table S7). Additionally, our heritability analysis of genes in 490 
M3 identified enrichments for multiple traits associated with blood cell-type count including 491 
neutrophil count (enrichment = 2.3�, P = 1.7 � 10�	) and white blood cell count (enrichment = 492 
2.1�, P = 1.3 � 10�	, Figure S7). Our analyses support that the white blood cell associated 493 
locus IKZF1 regulates immune response pathways in trans.  494 
 495 
Taken together, our functional map of trans-eQTLs revealed concrete examples where genetic 496 
variants associated with complex traits also influence a biological pathway or a coherent set of 497 
genes with similar functions. Thus, trans-eQTL of gene sets have the potential to reveal trans-498 
regulatory mechanisms underlying complex traits and diseases. The complete list of 499 
colocalization signals for each trait can be found in Supplementary Table S10.  500 

Summary-statistics–based trans-PCO identified 10,167 trans-501 

eSNP–module pairs in eQTLGen 502 

We developed summary-statistics–based trans-PCO to increase its applicability to gene 503 
expression datasets of large sample sizes, such as eQTLGen10 (N=31,684, whole blood). To 504 
ensure that summary-statistics–based trans-PCO signals are well-controlled for test statistics 505 
inflation and false positives, we added two steps to the original pipeline. First, we carefully 506 
select gene sets to minimize the noise when approximating the gene correlation matrices. When 507 
only summary statistics are available, the correlation matrix of each gene set is approximated 508 
with the correlations of z-scores of the insignificantly associated SNPs of each gene. A low ratio 509 
of SNPs to genes (<50) results in a noisy approximation of correlation matrices and test 510 
statistics inflation (Figure 6A, Methods, and Supplementary Note). Therefore, we only use gene 511 
modules with ratios greater than 50 to test for trans-eQTLs, which we show are well-controlled 512 
for inflation (Figure 5A, Figure S8). Second, we remove genes in the module that are cross-513 
mappable to the test SNP loci (see details in Methods) in the association test to reduce false 514 
positives caused by multi-mapping reads.  515 
 516 
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The eQTLGen study performed the standard univariate trans-eQTL mapping on a subset of 517 
10,317 GWAS SNPs and the summary statistics of these trans-eQTLs are available. We applied 518 
the summary-statistics–based trans-PCO to these summary statistics to identify trans-eQTLs 519 
associated co-expression gene modules and MSigDB hallmark gene sets.  520 
 521 
Of the 166 co-expression gene modules identified in DGN, we used 129 modules with reliable 522 
correlation matrix approximations to ensure the trans-eQTL signals are well-controlled for 523 
inflation (Figure 5A, Figure S8, Methods, and Supplementary Note). Similarly, Of the 50 524 
MSigDB hallmark gene sets, we only used 11 gene sets with accurate correlation matrix 525 
approximations (Figure S17). In total, there were 4533 genes in the tested co-expression gene 526 
modules and hallmark gene sets. For co-expression gene modules, we identified 8116 trans-527 
eSNP–gene co-expression module pairs, corresponding to 2161 eQTLGen test SNPs and 122 528 
gene modules (Figure 5B, Table S3, Table S12). For hallmark gene sets, we found 2051 529 
significant trans-eSNP–hallmark gene set pairs, corresponding to 1018 SNPs and all 11 530 
hallmark gene sets, using Bonferroni correction (Table S3, Table S18). In eQTLGen, we did not 531 
perform LD clumping on trans-eSNPs, because they were GWAS SNPs associated with 532 
different traits and diseases. The univariate method used in eQTLGen12 identified 1050 hub 533 
SNPs targeting more than 10 genes at 5% FDR, 89% of which are also identified by trans-PCO 534 
(Figure 5C).  535 
 536 
The large sample size in eQTLGen improves the power of trans-eQTL detection. Of the 3899 537 
significant trans-eSNP–co-expression module pairs in DGN, 38 pairs were also tested in 538 
eQTLGen. Reassuringly, we found that all 38 trans signals were replicated in eQTLGen (under 539 
a replication P-value cutoff of 0.1/38, Table S13) and all association p-values were highly 540 
significant (P � 10���, Figure S9). In contrast, most of the trans-eQTL signals in eQTLGen were 541 
not found in DGN. For example, of the 7577 SNP-module pairs analyzed in both datasets, there 542 
were 7291 pairs (96%) that were uniquely identified in eQTLGen (which is defined as at least 1 543 
MB away from trans-eQTL SNPs in DGN). This is not surprising, because the association p-544 
values are much smaller in the eQTLGen dataset due to the larger sample size (Figure S10).  545 
Similarly, eight significant trans-eSNP–hallmark gene set pairs in DGN were tested in 546 
eQTLGen, and all of them were replicated. We also compared eQTLGen signals by trans-PCO 547 
to those identified by ARCHIE in Dutta et al.24 (see Supplementary Note and Figure S19).  548 
 549 
The nearest genes of eQTLGen trans-eQTLs are significantly enriched in DNA binding activity 550 
(adjusted P = 3.73 � 10�	) and transcription factor binding (adjusted P = 1.74 � 10��) , as well 551 
as immune responses, such as cytokine receptor activity (adjusted P = 7.27 � 10��) or MHC 552 
class II receptor activity (adjusted P = 9.93 � 10��, Figure 5B, Table S14). We found that the 553 
enrichment of immune responses was driven by trans-eQTLs in the HLA region on chromosome 554 
6 (such as HLA-DRA, HLA-DRB1 etc, Table S12) or near cytokine receptor genes (such as 555 
IL23R, IL1R1, CXCR4 and genes on the chemokine receptor gene cluster region: CCR2, CCR3, 556 
CCR5 etc). These trans-eQTLs are associated with several autoimmune diseases, such as type 557 
1 diabetes, autoimmune thyroid diseases, cutaneous lupus erythematosus and inflammatory 558 
bowel disease (Table S12). The trans-PCO signals help us understand the trans regulatory 559 
mechanism of these loci. For example, we found that the trans target gene modules of the HLA 560 
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loci are enriched in immune related functions, such as cytokine production (M44), B cell561 
differentiation (M54), IgE binding (M60), TNF signaling pathway (M62), T cell activation (M63562 
and M87), and cytokine signaling pathway (M62 and M76, Figure 5D). The IL23R locus is563 
associated with cytokine signaling pathway (M76) in trans. The chemokine receptor genes were564 
associated with several gene modules including cytokine production (M44), IgE binding (M60)565 
and T cell activation (M87). These trans-eQTL signals support the conclusion that genetic loci566 
associated with autoimmune disease regulate immune related pathways in trans.  567 
 568 
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Figure 5. Trans-PCO identifies trans-eQTLs associated with co-expression gene modules 570 
and MSigDB hallmark gene sets in eQTLGen. (A) Summary-statistics–based trans-PCO is 571 
well controlled for test statistics inflations. We show gene module 1 (size 625) as an 572 
example. SNP to gene ratios used for correlation matrix estimation are in different shapes and 573 
colors. Red-yellow shades represent higher ratios (>=50) and blue shades represent lower 574 
ratios. Gray area shows 95% CI. Trans-PCO used a minimum ratio of 50. (B) 8199 significant 575 
trans-eSNP–module pairs associated with co-expression modules in eQTLGen. 576 
Chromosomal positions of trans-eSNPs are on the x-axis and gene modules are on the y-axis. 577 
Point sizes are -Log10(P) values of significant trans-eQTLs. (C) The majority of hub SNPs 578 
targeting more than 10 genes in the original eQTLGen study are identified by trans-PCO. 579 
Light blue bar represents the total number of trans-eQTLs in the original eQTLGen study at 5% 580 
FDR level. Dark blue bar represents the trans-eQTLs also detected by trans-PCO under 581 
Bonferroni correction that are associated with co-expression modules or MSigDB gene sets. 582 
The bar on the right shows the trans-eQTLs detected only by trans-PCO. (D) The HLA locus is 583 
associated with several immune related gene modules in trans. The bar plots show the 584 
functional enrichment of co-expression gene modules.  585 

Discussion 586 

In summary, we developed a powerful method, trans-PCO, to detect trans-eQTLs associated 587 
with expression levels of co-expressed or co-regulated genes. The multivariate approach of 588 
trans-PCO can detect much smaller trans effects (Figure 3B, Figure S13) and is substantially 589 
more powerful than existing methods. (Figure 2). Trans-PCO is also flexible. It can be applied 590 
to both RNA-seq data with genotypes or summary statistics, and the user can employ various 591 
definitions of gene sets. Applying trans-PCO to both the DGN and the eQTLGen datasets, we 592 
identified nearly 15,000 trans-eSNP–module pairs associated with co-expression modules and 593 
well-defined biological processes. Trans-eQTLs with annotated gene modules facilitate our 594 
understanding of the trans-eQTL signals. These trans-eQTLs also improve our understanding of 595 
the trans regulatory effects of disease associated loci. We highlight multiple examples where 596 
our map of trans effects helps us identify how trait-associated variants impact gene regulatory 597 
networks and pathways. For example, we found six genetic loci associated with red blood cell 598 
traits to have significant trans-associations with the heme metabolism gene set. It is possible 599 
that these genetic loci are “peripheral master regulators” that regulate core processes of red 600 
blood cell production. 601 
 602 
We thoroughly compared the performance of trans-PCO versus other methods, such as the 603 
PC1–based method by Kolberg et al.23, ARCHIE by Dutta et al.24 and Rovital et al.22. Trans-604 
PCO and the PC1–based method are both designed to identify individual trans-eQTLs of any 605 
gene sets containing multiple genes, and the comparison between them is straightforward in 606 
both simulations and real data analyses. However, ARCHIE is different and not directly 607 
comparable to the other two methods for several reasons (see more discussions in 608 
Supplementary Note). First, ARCHIE captures only trait-specific trans regulations. It identifies 609 
sets of gene-expressions trans-regulated by sets of known trait-related genetic variants. In 610 
addition, ARCHIE tests significance against a competitive null hypothesis, which uses cc-values 611 
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of all eQTLGen trait-associated variants as empirical null distribution and reflects trans 612 
regulations not specific to any trait. Therefore, an ARCHIE p-value reflects significance of trait-613 
specific patterns. In contrast, trans-PCO identifies trans-eQTLs under the general null 614 
hypothesis assuming no trans effects. Therefore, trans-PCO can be used to generate 615 
comprehensive maps of trans-eQTLs in tissues and cell types, in non-trait-specific manner. 616 
Using ARCHIE to perform genome-wide scan of trans-eQTLs in a non-trait specific manner can 617 
be challenging, as non-trait specific p-value is not computable in current implementation of the 618 
method and it will be extremely computational challenging (due to the computational intensive 619 
resampling procedure and difficulty of manipulating whole-genome LD matrices). Second, trans-620 
PCO and ARCHIE are designed to capture different trans regulatory effects. ARCHIE is 621 
powerful when multiple disease–associated variants have weak effects on a single gene (for 622 
example, multiple GWAS variants converge onto the core genes through trans regulation) or 623 
multiple disease–associated variants have weak effects on multiple genes (Figure 2 in Dutta et 624 
al.24), in which multiple genes are not co-regulated by a shared trans genetic locus. In contrast, 625 
trans-PCO is designed to capture weak trans signals of a variant on multiple co-regulated 626 
genes, for example, a transcription factor has trans effects on multiple target genes. We include 627 
detailed comparison of the two methods using both simulations and real data analyses (see 628 
Supplementary Notes and Figure S19). Our results support that the two methods are powered 629 
at detecting different trans signals. Third, ARCHIE identifies components, consisting of multiple 630 
trait-associated SNPs and multiple genes, where sets of gene expressions are trans regulated 631 
by sets of trait-associated variants. Without knowing the exact trans-eQTL SNP driving the trans 632 
regulation, it is hard to further study trans regulatory mechanisms of the trans-eQTLs, for 633 
example, whether the trans-eQTL is also a cis-eQTL, or which gene is the trans regulator. 634 
Fourth, ARCHIE takes all genes as input and infers gene sets that are trans-regulated by 635 
disease-associated variants, whereas trans-PCO is flexible to be applied to any user-defined 636 
gene set of interest to identify trans-eQTLs. The genes in the ARCHIE components are likely 637 
“core” genes for a specific disease and can be used to find key biological processes for the 638 
disease. Trans-PCO could also be used to identify disease relevant genes and processes 639 
through follow up analyses, such as colocalization analyses. In summary, trans-PCO and 640 
ARCHIE have different goals and are designed for detecting different types of trans signals. Yet, 641 
we thoroughly compared ARCHIE and trans-PCO in both simulations and real data analyses 642 
(Supplementary Note), (1) in simulations, we evaluated whether ARCHIE can identify regular 643 
trans-eQTLs detectable by other methods (trans-PCO, PC1–based and univariate method), (2) 644 
in real data analyses (eQTLGen summary statistics), we evaluated whether trans-PCO can 645 
identify trans-signals identified by ARCHIE. We believe these comparisons will provide insights 646 
on when and how these methods should best be used. In addition, Rovital et al.22 used 647 
independent component analyses to identify components representing co-expression patterns 648 
from the expression of all genes, and identified trans-eQTLs that have enriched trans 649 
associations with the components. However, we demonstrated through simulations that the 650 
Rotival et al. method has minimal power to identify weak trans effects (Supplementary Note, 651 
Figure S20).  652 
 653 
A limitation of multivariate association tests, including trans-PCO, is that they do not explicitly 654 
identify which genes in the gene sets are significantly associated with the test SNP. While 655 
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functional annotations of gene sets facilitate our understanding of the trans-eQTL signals, it is 656 
possible that the genes driving trans-associations are different from the genes driving functional 657 
enrichment of the gene sets. Therefore, the biological interpretation of trans-eQTL signals 658 
should be supported with other evidence before it is considered definitive. However, there are 659 
exploratory analyses that can help prioritize genes in the network that are key drivers of the 660 
underlying signal. For example, by examining the univariate association p-values between the 661 
trans-eQTL SNP and each gene in the network, the user can prioritize genes with the most 662 
significant p-values as likely trans targets. Furthermore, the users can also use the �1 statistics 663 
on the univariate p-values to estimate the proportion of genes that have true trans effects in the 664 
network. While the exact molecular mechanism requires further validation, the large number of 665 
trans-eQTLs identified by trans-PCO in our study opens up new opportunities to understand 666 
complex traits-associated loci and underlying mechanisms.  667 
 668 
Trans-eQTLs identified in bulk tissues can be a combination of cell composition trans-eQTLs, 669 
which are driven by cell type proportions, and intracellular trans-eQTLs, which capture trans 670 
regulatory effects in a single cell type. To get higher proportions of intracellular eQTLs, the 671 
common approach is to correct for cell type proportions in association tests. For example, the 672 
eQTLGen study12 corrected for cell proportion effect by using gene expression PCs. They 673 
validated some trans-eQTLs using single-cell RNA sequencing data, indicating that these trans-674 
eQTLs were intracellular trans-eQTLs. In our analysis of DGN dataset, we included the 675 
estimated cell proportions as covariates, in addition to gene expression PCs. This strategy 676 
might have given rise to higher proportions of intracellular trans-eQTLs. Co-expression gene 677 
modules could also capture cell proportion effects. In our study, we removed cell proportions 678 
from gene expression levels before clustering genes into co-expression modules. While this can 679 
correct for cell proportion effects in the co-expression modules to some extent, we note that it 680 
does not guarantee their complete removal.  681 
 682 
Many studies, including ours, seek to avoid cell composition effects. However, by closely 683 
examining trans-eQTLs discovered in our study, we think cell composition trans-eQTLs can be 684 
biologically interesting too. For example, the IKZF1 locus is significantly associated with several 685 
gene modules enriched with viral defense and other immune related functions in trans. The 686 
locus is also significantly associated with white blood cell proportions. Given the general 687 
function of white blood cells in fighting infections, these observations raise the possibility that 688 
the trans-eQTLs near IKZF1 regulate antiviral activity by affecting white blood cell-type 689 
proportion. Supporting this hypothesis, we found earlier that genetic variants near IKZF1 are 690 
also associated with expression levels of genes in M159, which are enriched in genes involved 691 
in the Notch signaling pathway. The Notch signaling pathway plays a central role in cell 692 
proliferation, cell fate, and cell differentiation54; thus, our analyses reveal a plausible mode of 693 
action whereby genetic variants near IKZF1 impact multiple immune-related functions by 694 
influencing white blood cell-type proportions. In future studies, it could be interesting to 695 
specifically identify cell proportion effects and understand their role in complex traits.  696 
 697 
Identifying the network effects of genetic variants not only shed light on molecular mechanisms 698 
of complex associated loci, it can also have important translational applications, for example, in 699 
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drug discovery and development. First, genes that are associated with disease relevant 700 
pathways can serve as evidence for therapeutic targets of the disease. In a preliminary analysis, 701 
we examined whether allergy drug targets are more likely to be associated with immune-related 702 
gene sets. Among a total of 142 gene sets (129 co-expression gene modules and 11 hallmark 703 
gene sets) used for trans-eQTL identification in eQTLGen, 19 were defined as immune-related. 704 
We used 55 launched allergy drug target genes from The Broad Institute Drug Repurposing Hub 705 
(https://repo-hub.broadinstitute.org/repurposing), 5 of which are near allergy associated loci in 706 
eQTLGen. Interestingly, we found all 5 targets to be associated with immune-related gene sets 707 
(Table S19). Detailed analyses can be found in Supplementary Note. While the enrichment is 708 
not statistically significant (P=0.12, Fisher’s exact test; Table S20), it is likely due to the small 709 
number of drug targets included in our analyses. Additionally, we observed that the trans gene 710 
modules of drug targets converge to gene sets whose functions are highly relevant to allergy. 711 
For example, three drug targets (IL3, UGT3A1 and SLC37A4) are associated with gene sets 712 
enriched for the B cell signaling pathway. More comprehensive analyses are beyond the scope 713 
of this study, yet our preliminary analyses have demonstrated that one can consider genes that 714 
have strong trans associations with disease-relevant pathways to identify drug targets for the 715 
specific disease, especially those with known disease-relevant pathways. Second, network 716 
effects of disease variants can be used for repurposing existing drug compounds to new 717 
diseases. Drug repurposing can substantially reduce cost and time to develop new treatments. 718 
If the gene expression profiles of an existing drug is enriched for genes in the trans-network of 719 
another disease’s associated loci, it can serve as an evidence for repurposing. Additionally, 720 
knowing the network effects of a gene can also help evaluate the safety of a potential drug 721 
target. Therapeutic perturbation of a drug target can affect expressions of many downstream 722 
genes. While some of them are in the desired disease pathways, others are in pathways 723 
associated with other phenotypes, inducing unwanted side-effects. We believe comprehensive 724 
catalogs of trans-networks effects in human cell types and tissues will serve as important 725 
resources for interpretation of trans regulatory effects of disease associated loci as well as 726 
translation applications. Therefore, we made all the trans-PCO trans-eQTL signals, with 727 
functional annotation of the gene sets, publicly available, downloadable and browsable in 728 
www.networks-liulab.org/transPCO.  729 
 730 

  731 
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Methods 732 

Trans-PCO pipeline 733 

We test if a genetic variant is associated with genes in a module through trans regulations using 734 
the multivariate model as follows, 735 

��� � �
� � ���� � �
� � ������� !" � !, 736 
where � is the dosage of a reference allele representing the genotype of a SNP, �� is the effect 737 
of the SNP on �-th gene in the module with # genes, and �� is the expression level of the �-th 738 
gene. To test if a SNP of interest is significantly associated with the module, we test the null 739 
hypothesis, 740 

$�: �� � � � �
 � 0. 741 
We use a PC-based omnibus test (PCO)26, which is a powerful and robust PC-based approach 742 
aiming at testing genetic association with multiple genes with no prior knowledge of the true 743 
effects.  744 
 745 
Specifically, PCO combines multiple single PC-based tests in linear and non-linear ways, 746 
corresponding to a range of causal relationships between the genetic variant and genes, to 747 
achieve higher power and better robustness. A single PC-based test (most commonly the first 748 
primary '(�) is, 749 

)�
�
� *�

�+ , -.*�
��, ��0, 1 1 � 1 #, 750 

where + is a # � 1 vector of univariate summary statistic z-scores of the SNP for # genes in a 751 
module, *� is the �-th eigenvector of the covariance matrix 2
�
 of +, �� is the corresponding 752 
eigenvalue, and � represents the true causal effect. PCO combines six PC-based tests, 753 
including, 754 
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���  755 

where 6� is the p-value of )�
�
. These two tests take the best p-value of single PC-based tests 756 

and combine multiple PC p-values as the test statistic. Other tests include, 757 
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which are linear and quadratic combinations of each single PC-based test weighted by 759 
eigenvalues. The six tests achieve best power in specific genetic settings with different true 760 
causal effects26. PCO takes the best p-value of the PC-based tests as the final test statistic, 761 

)�
� � 5�4 6��
����,�
������,�
�
,� ,�!"#,$
%, 762 

to achieve robustness under unknown genetic architectures while maintaining a high power. 763 
The p-value of PCO test statistics can be computed by performing an inverse-normal 764 
transformation of the test statistics, 765 

6����
� 1 9 'B5�4 C��.6��
����,�
������,�
�
,� ,�!"#,$
%0 D C��.)�
�

&'� 0E, 766 

where C�� denotes the inverse standard normal cumulative distribution function. The p-value 767 
can be efficiently computed using a multivariate normal distribution as described in Liu et al.26. 768 
 769 
To prevent cis-regulatory effects from driving the identified trans associations between a SNP 770 
and module, we removed genes in the module that are on the same chromosome as the tested 771 
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variant. In addition, to avoid false positive signals in trans associations due to alignment errors, 772 
we discarded RNA-seq reads that are mapped to multiple locations or poorly mapped genomic 773 
regions (mappability score <1)27,28 before quantifying gene expression levels.  774 

Simulation 775 

To evaluate the power of trans-PCO, we performed a series of simulations with various 776 
parameter settings corresponding to different genetic architectures. We applied trans-PCO to 777 
the simulated datasets and assessed the false positive rate and statistical power. We also ran 778 
two additional statistical tests, a univariate test (“MinP”) and a primary PC-based test (“PC1”), to 779 
compare their performances with trans-PCO and to obtain more in-depth insights on trans-PCO, 780 

)�
�
� *�

�+, )���� � 5�4B6�
( , � , 6


(E. 781 

The PC1 based test takes only the first PC as the proxy of a gene module and uses it as the 782 
response variable to test for genetic variants with significant associations. We also compared 783 
trans-PCO with a non-PC based statistical test, MinP, which takes the minimum p-value across 784 
genes in the module as the test statistics.  785 
 786 
To implement trans-PCO, PC1, and MinP tests, there are two main pieces of information that 787 
are required as input, i.e. correlation matrix of the gene module and summary statistics (z-788 
scores) of SNPs with genes in the module. We used a gene module from the RNA-seq data 789 
(see Genotype and RNA-seq QC) consisting of 101 genes (# � 101) and the corresponding 790 
correlation matrix to make the settings more realistic. We sampled z-scores of 10� SNPs from 791 
the null distribution, 792 

+)*�� , -.0, 2���0. 793 
We tested the associations between each SNP and the gene module using the above three 794 
tests and evaluated the p-values against the uniform distribution to validate if the statistical tests 795 
are well calibrated.  796 
 797 
We also simulated 10k z-scores of SNPs from the alternative distribution, 798 

++", , -.√4�����- , 0�� , 2���0, 799 

where 4 is the sample size, � is a 101G-long vector representing the causal effect of a SNP on 800 
101 genes, and G is the proportion of true target genes in the module. Each component of � 801 
follows -.0, H'

�0, where H'
� is the genetic variance. By default, we set the sample size 4 to be 802 

500, 30% genes (30) in the module are true trans target genes, and H'
� to be 0.001. To evaluate 803 

how three tests perform across different genetic architectures, we simulated multiple scenarios 804 
across varying sample sizes, target gene proportions, and genetic variances. Specifically, we 805 
looked at the cases where sample size is 200, 400, 600, and 800, causal genes proportion is 806 
1%, 5%, 10%, 30%, and 50%, and genetic variance is 0.002, 0.003, 0.004, 0.005, and 0.006. 807 
We simulated 10k SNPs and performed 1000 simulations. To control the false discovery rate, 808 
we corrected the p-values for multiple testing based on the simulated empirical null distribution 809 
of p-values, to keep it consistent with the method used in the RNA-seq dataset (see 810 
Supplementary Note). An association is significant if its adjusted p-value is lower than 0.1. The 811 
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power is calculated as the proportion of SNPs that were identified to be significant among 10k 812 
SNPs.  813 

Genotype and RNA-seq QC 814 

We analyzed an RNA-seq dataset from whole blood27. We performed a series of QC on 815 
individuals, genotypes, RNA-seq reads, and genes before quantifying gene expression profiles. 816 
Specifically, we referred to the procedures in Liu et al.28. For individual-level QC, we removed 817 
related individuals from 922 samples with RNA-seq reads available and kept 913 individuals in 818 
total for further analysis. For genotype-level QC, we used SNPs with genotyping rate�>�99%, 819 
minor allele frequency�>�5%, and Hardy-Weinberg equilibrium < 10��.  820 
 821 
RNA-seq reads can be falsely aligned to genomic regions with high sequence similarity. The 822 
misalignment onto these regions can lead to false positive signals in trans-eQTL analysis and 823 
spurious correlations in gene co-expression networks8. To help address this problem, we 824 
performed RNA-seq read-level QC to remove the reads with alignment issues. To be more 825 
specific, we filtered out the reads that were mapped to multiple genomic regions and reads with 826 
>2 mismatches. We also removed the reads aligned to regions with low mappability. 827 
 828 
On the gene level, we quantified the gene expression levels as Transcript Per Million (TPM). We 829 
first normalized the expression levels across samples to the normal distribution by quantile 830 
normalization, and then we normalized the expression levels across genes. We also filtered out 831 
genes that are not protein-coding, lincRNA genes, or genes on sex chromosomes. As a result, 832 
there are 12,132 genes left for follow up analysis. Finally, to control for potential confounding 833 
factors and capture the co-expressed gene modules only driven by genetic effects, we 834 
regressed out covariates from the expression profiles. We used biological and technical 835 
covariates, including genotype PCs, expression PCs, and blood cell type proportions27,28.  836 

Identification of the gene co-expression network 837 

We are interested in jointly testing co-regulated genes in a multivariate association test. To this 838 
end, we first used WGCNA29 to construct a gene co-expression network, where genes are 839 
connected through correlations among their residualized expression levels. WGCNA uses 840 
hierarchical clustering to cut the network into separate gene modules with highly correlated 841 
expression levels. We used the default parameter settings, except that we specified the 842 
minimum module size parameter (‘minModuleSize’) to 10 to obtain small gene modules.  843 

Colocalization of trans-eQTLs and GWAS loci 844 

To explore the role of trans-eQTLs in understanding complex traits and diseases, we performed 845 
colocalization between trans-eQTLs of a gene module and GWAS loci of 46 complex traits and 846 
diseases. Specifically, we used GWAS summary statistics of 29 blood-related traits37 and 8 847 
other traits from UK Biobank, provided by Neale Lab (http://www.nealelab.is/uk-biobank/), and 9 848 
autoimmune diseases collected in Mu et al.34 (Table S8).  849 
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 850 
To define a region to perform colocalization, we first selected the trans-eQTL with the most 851 
significant p-value and expanded a 200kb flanking genomic region centered at the lead SNP as 852 
a region to perform colocalization analysis. We then moved on to the next most significant SNP 853 
and expanded a 200kb flanking region. We stopped searching for lead SNPs when all trans-854 
eQTLs were included. This resulted in 255 trans region-module pairs. As two adjacent regions 855 
could correspond to the same colocalization signal, we marked adjacent regions as a region 856 
group if their lead SNPs were within 200kb, which generated 179 trans-region–module pairs in 857 
total. We ran colocalization analysis between each 200kb trans region and GWAS loci of 46 858 
complex traits using the R package coloc33, assuming there is at most one causal variant for 859 
each region. We used the default priors and 0.75 as the PP4 cutoff for significant 860 
colocalizations. We defined a merged region group as being colocalized with a trait if any of its 861 
200kb sub-regions has significant colocalization with the trait. We visualized the colocalized 862 
regions using LocusCompareR55.  863 

Colocalization of trans-eQTLs and cis-e/sQTLs 864 

We performed colocalization analysis between trans-eQTLs and cis-eQTLs (cis-sQTLs) of 865 
genes near the trans-eQTLs. We used the same 179 trans-region–module pairs defined in the 866 
colocalization analysis of GWAS loci. For a trans loci, we searched for the genes within 500 kb 867 
around the lead trans-eQTLs of the loci, and used these genes to perform colocalization. We 868 
used summary statistics of cis-eQTLs and cis-sQTLs in the DGN dataset from Mu et al.34. We 869 
ran coloc33 with default priors and 0.75 as PP4 cutoff.  870 

Trait heritability enrichment in gene modules 871 

To investigate whether a gene module is enriched for trait heritability, we applied stratified LD 872 
score regression52 (S-LDSC) to 166 co-expression gene modules and 46 complex traits and 873 
diseases. Specifically, for each module we defined the annotation set as the SNPs within 874 
genomic regions of genes in the module and also a 500 base-pair window around the genes. 875 
We also included 97 annotations from the baseline model. Partitioned heritability enrichment 876 
was calculated as the proportion of trait heritability contributed by SNPs in the module 877 
annotation over the proportion of SNPs in that annotation.  878 

Summary-statistics–based trans-PCO applied to eQTLGen 879 

The eQTLGen Consortium10 has conducted the largest cis- and trans-eQTLs association 880 
analyses in blood to date. Specifically, 31,684 samples were tested for over 11 million SNPs 881 
across 37 cohorts. The summary statistics of trans-eQTLs are available for 10,317 trait-882 
associated SNPs on 19,942 genes.  883 
 884 
We applied our pipeline trans-PCO to eQTLGen summary statistics, using the same 166 co-885 
expression gene modules defined in DGN dataset. We searched for trans-eQTLs among 10,317 886 
SNPs.  887 
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 888 
The eQTLGen summary statistics are marginal z-scores meta-weighted across multiple cohorts. 889 
Most z-scores are from studies where the RNA-seq reads with mappability issues were not 890 
filtered out before quantifying gene expression profiles. Therefore, directly applying trans-PCO 891 
to the summary statistics can lead to false positive signals, which are driven by the cross-892 
mappability between the genes in the module and the cis-gene of the test SNP. In order to 893 
reduce false positive trans signals, we removed from the gene module genes that are cross-894 
mappable to the cis-gene (within 100kb) of the test SNP, which is a common practice used in 895 
previous studies8,27,56. We further removed genes on the same chromosome as the test SNP to 896 
prevent the detected trans effects from being dominated by cis regulations.  897 
 898 
The gene expression profiles are not available in eQTLGen. Therefore, to estimate the gene 899 
correlation 2 of a module, we searched among eQTLGen SNPs for SNPs insignificantly 900 
associated with the module (null SNPs) (see Supplementary Note for details). We observed that 901 
there are less null SNPs that can be found for large modules. And simulations show that the low 902 
ratio of the number of null SNPs used for 2 estimation to the module size leads to false positive 903 
signals (Supplementary Note). Therefore, we removed 37 gene modules with ratios lower than 904 
50. Finally, we performed trans-PCO on the remaining 129 gene modules.  905 
 906 
  907 
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Data availability 908 

All trans-eQTL signals, with functional annotation of the gene sets, can be browsed and 909 
downloaded at www.networks-liulab.org/transPCO. The genotype and gene expression data of 910 
DGN were downloaded by application through the NIMH Center for Collaborative Genomic 911 
Studies on Mental Disorders, under the “Depression Genes and Networks study (D. Levinson, 912 
PI)”. The eQTLGen summary statistics are publicly available at https://www.eqtlgen.org/. The 913 
MSigDB hallmark gene sets are publicly available at http://www.gsea-914 
msigdb.org/gsea/msigdb/human/genesets.jsp?collection=H. GWAS summary statistics of traits 915 
in the UK Biobank are available at Neale Lab (http://www.nealelab.is/uk-biobank/).  916 
  917 
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Code availability 918 

The trans-PCO pipeline and code to reproduce analyses is available at https://github.com/liliw-919 
w/Trans. This work also uses TensorQTL (https://github.com/broadinstitute/tensorqtl) to perform 920 
QTL mapping between genotypes and single genes, R package coloc 921 
(https://github.com/chr1swallace/coloc) to perform colocalization analyses between trans-eQTLs 922 
and cis-eQTLs, cis-sQTLs and GWAS loci, and S-LDSC software (https://github.com/bulik/ldsc) 923 
to estimate trait heritability enrichment in gene modules.  924 
  925 
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