

1 *Trans-eQTL mapping in gene sets identifies*

2 *network effects of genetic variants*

3 Lili Wang^{1,2}, Nikita Babushkin², Zhonghua Liu³, Xuanyao Liu^{1,2,4*}

4

5 ¹The Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago,

6 IL, USA

7 ²Department of Medicine, Section of Genetic Medicine, University of Chicago, Chicago, IL, USA

8 ³Department of Biostatistics, Columbia University, New York, NY, USA

9 ⁴Department of Human Genetics, University of Chicago, Chicago, IL, USA

10

11 *Correspondence to xuanyao@uchicago.edu

12

13 Abstract

14 Nearly all trait-associated variants identified in GWAS are non-coding. The *cis* regulatory effects
15 of these variants have been extensively characterized, but how they impact gene regulation in
16 *trans* has been the subject of much fewer studies. Mapping *trans* genetic effects is very
17 challenging because their effect sizes tend to be small and a large multiple testing burden
18 reduces the power to detect them. In addition, read mapping biases can lead to many false
19 positives. To reduce mapping biases and substantially improve power to map *trans*-eQTLs, we
20 developed a pipeline called trans-PCO, which combines careful read and gene filters with a
21 principal component (PC)-based multivariate association test. Our simulations demonstrate that
22 trans-PCO substantially outperforms existing *trans*-eQTL mapping methods, including univariate
23 and primary PC-based methods. We applied trans-PCO to two gene expression datasets from
24 whole blood, DGN ($N = 913$) and eQTLGen ($N = 31,684$), to identify *trans*-eQTLs associated
25 with gene co-expression networks and hallmark gene sets representing well-defined biological
26 processes. In total, we identified 14,985 high-quality *trans*-eSNPs–module pairs associated with
27 197 co-expression gene modules and biological processes. To better understand the effects of
28 trait-associated variants on gene regulatory networks, we performed colocalization analyses
29 between GWAS loci of 46 complex traits and *trans*-eQTLs identified in DGN. We highlight
30 several examples where our map of *trans* effects helps us understand how trait-associated
31 variants impact gene regulatory networks and biological pathways. For example, we found that
32 a locus associated with platelet traits near *ARHGEF3* *trans*-regulates a set of co-expressed
33 genes significantly enriched in the platelet activation pathway. Additionally, six red blood cell
34 trait-associated loci *trans*-regulate a gene set representing heme metabolism, a crucial process
35 in erythropoiesis. In conclusion, trans-PCO is a powerful and reliable tool that detects *trans*
36 regulators of cellular pathways and networks, which opens up new opportunities to learn the
37 impact of trait-associated loci on gene regulatory networks.

38

39 Main

40 Genome-wide association studies (GWAS) have identified tens of thousands of genetic loci
41 associated with a large number of complex traits and diseases. More than 90% of GWAS loci
42 are located in non-coding regions of the genome and are thought to affect human traits by
43 regulating gene expression¹⁻⁵. Nearly all studies to date have focused on understanding the
44 effects of trait-associated variants on gene expression in *cis*, which only include effects on
45 genes that are near the associated loci. However, multiple lines of evidence suggest *cis*-
46 regulatory effects only capture a small proportion of the heritability of complex traits and
47 diseases. For example, Yao et al.⁶ estimated that only an average of 11% of trait heritability is
48 explained by *cis*-genetic effects on gene expression levels. We previously hypothesized that
49 *trans*-eQTLs, despite having very small effects on each individual gene, may cumulatively
50 account for a large proportion of trait variance⁷. Indeed, our modeling indicates that *trans*-eQTL
51 effects account for twice as much genetic variance in complex traits as *cis*-eQTL effects⁷. Thus,
52 establishing a representative map of genetic variants and their *trans* effects is a critical step
53 toward understanding complex trait and disease genetics.

54

55 Two major challenges have precluded *trans*-eQTL discovery to date. First, *trans*-eQTL mapping
56 is extremely prone to false positives due to mapping errors that cause short sequences to map
57 to homologous regions of the genome⁸. This causes spurious associations between the
58 mapping coverages at multiple homologous regions, which result in strong but artificial *trans*-
59 eQTL signals if unaccounted for. The second challenge is by far more difficult to overcome:
60 *trans*-eQTLs are challenging to detect compared to *cis*-eQTLs because (i) they have much
61 smaller effect sizes than *cis*-eQTLs⁷, and (ii) a genome-wide search of *trans*-eQTLs involves a
62 huge number of statistical tests ($\sim 10^6$ SNPs $\times \sim 20k$ genes) resulting in a heavy burden of
63 multiple testing corrections.

64

65 Previous work in yeast and human cells suggests that *trans*-eQTLs generally affect the
66 expression levels of multiple genes. In particular, Albert et al.⁹ found that the 90% of *trans*-
67 eQTLs in their yeast segregant system could be mapped to just 102 hotspot loci that regulate a
68 median of 425 genes each. In fact, three hotspots were found to affect over half of the 5600
69 expressed *trans*-regulated genes, indicating that some *trans*-eQTLs may have significant
70 genome-wide effects. In humans, the largest *trans*-eQTL study to date from eQTLGen¹⁰ ($n =$
71 31,684) identified 59,786 *trans*-eQTL signals for 3,853 SNPs, indicating that each locus affects
72 at least 15 genes on average. Thus, compared to the traditional approach of testing the
73 association between genetic variants and the expression level of a single gene^{11,12}, testing *trans*
74 associations between genetic variants and the expression levels of a group of genes can greatly
75 improve the power to identify *trans*-eQTLs.

76

77 Indeed, many disease-associated loci are “peripheral master regulators”, which regulate
78 multiple genes in the core disease-relevant pathways^{7,13}. For example, *KLF14*, which is
79 significantly associated with type 2 diabetes, is a peripheral master regulator that modulates the
80 expression of 385 genes involved in lipid metabolism¹⁴. Other examples include the
81 *FTO/IRX3/IRX5* locus in obesity¹⁵ or the p53 tumor-suppressor gene in cancers¹⁶. A method

82 that can detect a large number of *trans*-eQTLs associated with multiple genes in gene networks
83 would allow functional interpretation of more disease associated loci and shed light on the
84 underlying mechanisms.

85
86 The co-regulation and co-expression patterns of genes driven by *trans*-eQTL have long been
87 recognized. Yet, most methods do not directly map *trans*-eQTLs of co-expressed gene sets, but
88 rather use the coexpression patterns to improve *cis*-eQTL or *trans*-eQTL mapping of a single
89 gene. Some utilized the co-expression patterns of genes to account for hidden variation in *trans*-
90 eQTL analysis, and thus improves power while reducing false *trans*-eQTL discovery. For
91 example, Joo et al.¹⁷ used the global correlation structure of genes to capture and remove
92 confounding effects from *trans* associations. Similarly, Rakitsch and Stegle¹⁸ utilized the local
93 co-expression patterns of *trans*- target genes to infer the appropriate covariates to be included
94 in *trans*-eQTL association testing. Zhou and Cai¹⁹ jointly modeled the effects of *cis* regulatory
95 variants and gene regulatory networks on expression levels of a target gene, therefore allowing
96 the simultaneous identification of *cis*-eQTL and regulatory networks; the model then identifies
97 individual *trans*-eGenes, which are mediated by the *cis* regulatory effects. Several studies
98 aimed to identify *trans*-eQTLs of co-expressed genes. For example, some studies^{20,21} used
99 tensor decomposition to decompose gene expressions of multiple tissues into a few latent
100 components, which might capture gene co-expression, to identify *trans*-eQTLs of the
101 components. However, the method requires gene expression data of multiple tissues, which is
102 not readily available for many gene expression studies. Rotival et al.²² used independent
103 component analyses to identify co-expression gene sets, and subsequently tested for the
104 enrichment of *trans* signals in the gene sets by hypergeometric tests. More recently, Kolberg et
105 al.²³ identified 38 *trans*-eQTLs (10% FDR) associated co-expressed gene modules, by testing
106 the association between SNPs and a single ‘eigengene’ (essentially the primary principal
107 component, PC1) of gene modules that captures the co-expression pattern. Nonetheless, PC1
108 has very limited power at identifying genetic effects (see below and Figure 2). Dutta et al.²⁴
109 leveraged canonical correlation analysis to identify *trans* associations between multiple
110 disease-associated SNPs and multiple genes, by integrating with GWAS signals. However, the
111 method has different goals than identifying *trans*-eQTLs of multiple genes in specific tissues (for
112 example, it is useful for identifying “core” like disease genes and processes for a specific
113 disease; see Discussion and Supplementary Note).

114
115 Our main goal is to develop a method for detecting *trans*-eQTLs associated with multiple genes
116 in a gene module by using multivariate association. Multivariate association methods tend to be
117 more powerful than univariate association methods. Detecting *trans*-eQTLs of gene modules
118 containing multiple co-regulated genes can also potentially improve power by reducing multiple
119 testing burdens, because the number of tested gene modules is much less than the number of
120 genes. However, there are caveats. First, sequence similarity among distinct genomic regions
121 can lead to severe false positive discovery issues in *trans*-eQTL mapping⁸. This is especially
122 problematic in mapping *trans*-eQTLs of co-expression gene modules because genes can be
123 falsely clustered due to sequence similarities⁸. For example, the top latent components in
124 study²⁰ mostly represent genes sharing homologous sequences. Therefore, we need to be extra
125 diligent about multi-mapping of sequencing reads when mapping *trans*-eQTLs of co-expression

126 gene modules. Second, the naïve way of using a single component, such as the first gene
127 expression PC, to represent the gene modules and use it as the response variable in
128 association tests, can significantly reduce power. While the primary PC captures the largest
129 amount of total variance in gene expression levels, it can be less powerful or even powerless in
130 detecting significant associations than higher-order PCs, because the direction of the genetic
131 effects on the genes may not align with the primary PC^{25,26}. It is also difficult to predict which
132 higher-order PC has the highest power²⁶.

133
134 To combat this, we propose trans-PCO, a flexible approach that uses the PCA-based omnibus
135 test²⁶ (PCO) to combine multiple PCs and improve power to detect *trans*-eQTLs. Trans-PCO
136 tackles both major challenges in *trans*-eQTL mapping. First, trans-PCO carefully filters
137 sequencing reads and genes based on mappability across different regions of the genome to
138 avoid false positives due to multi-mapping^{8,27,28}. Second, trans-PCO uses a novel multivariate
139 association test²⁶ to detect genetic variants with effects on multiple genes in predefined sets and
140 captures genetic effects on multiple PCs. By default, trans-PCO defines sets of genes based on
141 co-expression gene modules as identified by WGCNA²⁹. It also accepts user-defined sets; for
142 example, genes that belong to the same gene ontology³⁰, KEGG pathway³¹, or protein
143 complex³².

144
145 We applied trans-PCO to RNA-sequencing data from the Depression Genes and Networks
146 study²⁷ (DGN, sample size $N = 913$) and the summary-level statistics from the eQTLGen study¹⁰
147 (sample size $N = 31,684$) to identify *trans*-eQTLs associated with co-expression gene modules
148 and well-defined biological processes in whole blood. In total, trans-PCO identified 14,985 high-
149 quality *trans*-eSNPs–module pairs associated with 197 co-expression gene modules and
150 biological processes. We also performed colocalization analysis³³ of GWAS loci of 46 complex
151 traits and *trans*-eQTLs, in order to explore how trait-associated variants impact gene regulatory
152 networks and pathways in *trans*. All *trans*-eQTLs that are associated with gene co-expression
153 networks and biological pathways can be found in www.networks-liulab.org/transPCO.

154
155

156 Results

157 Overview of the method

158 We developed the trans-PCO pipeline to detect *trans*-eQTLs that are associated with the
159 expression levels of a group of genes (gene module) by using a PC-based multivariate
160 association test²⁶ that combines multiple gene expression PCs. The trans-PCO method consists
161 of three main steps (Figure 1).

162

163 First, trans-PCO pre-processes RNA-seq data to reduce false positive *trans*-eQTL associations
164 due to read multimapping errors. Specifically, trans-PCO removes all sequencing reads mapped
165 to low mappability regions of the genome (mappability score <1, Methods) before profiling gene
166 expression levels. These procedures substantially reduce the occurrence of false positive *trans*-
167 eQTLs due to sequencing alignment errors^{8,28}. When only summary-level data are available
168 (e.g., eQTLGen dataset¹⁰), trans-PCO dynamically excludes from the module any genes that
169 are cross-mappable to genes within 100 kb of the tested SNP.

170

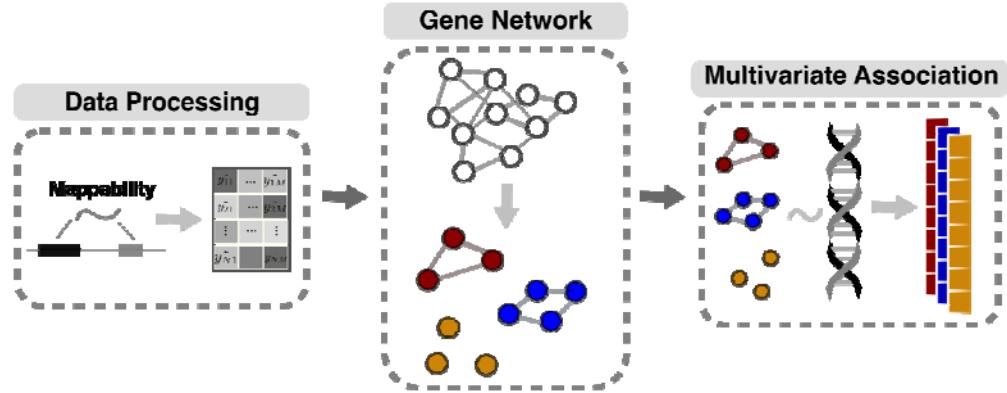
171 Second, trans-PCO groups genes into clusters, which alleviates the burden of multiple testing
172 by reducing the number of statistical tests and thus increases the statistical power. By default,
173 trans-PCO determines the gene groupings by using WGCNA²⁹ to identify co-expression
174 modules from gene expression levels (see Methods). We remove covariates and confounders,
175 such as batch effects, gene expression PCs, and cell type proportions (e.g., DGN dataset²⁷),
176 from gene expression levels before grouping gene modules. This step is necessary to ensure
177 that the gene modules are not primarily driven by confounding factors. Trans-PCO also allows
178 customization of the gene groups or sets, i.e., genes in the same pathway or protein-protein
179 interaction network³⁰⁻³² can be grouped into user-defined gene modules.

180

181 Lastly, trans-PCO tests for association between each SNP and the expression levels of the
182 genes in each gene module by adapting the PCO method, which combines multiple gene
183 expression PCs by using six PC-based statistical tests: PCMinP, PCFisher, PCLC, WI, Wald
184 and VC (see Methods for details). Each PC-based test combines multiple PCs uniquely, which
185 allow signals under various genetic architectures to be captured. PCO evaluates the six PC-
186 based tests and takes the minimum p-value as the final test statistic. The final p-values are
187 computed according to Liu et al.²⁶ (also see Methods). Only PCs with eigenvalues $\lambda_k > 0.1$ are
188 used in trans-PCO (See Supplementary Note). To avoid identifying associations driven by *cis*-
189 effects, we excluded from the module all genes on the same chromosome as the test SNP. To
190 correct for multiple testing, we performed 10 permutations to establish an empirical null
191 distribution of p-values (See Supplementary Note).

192

193



194
195 **Figure 1. Three main steps in trans-PCO pipeline.** The first step of trans-PCO pre-processes
196 RNA-seq data to reduce false positive *trans*-eQTL associations due to read alignment errors.
197 The second step involves grouping genes into gene sets, such as co-expression modules or
198 biological pathways. The last step tests for *trans*-eQTLs of each gene set by a PC-based
199 multivariate association test¹⁷.

200 Trans-PCO outperforms existing methods in simulations

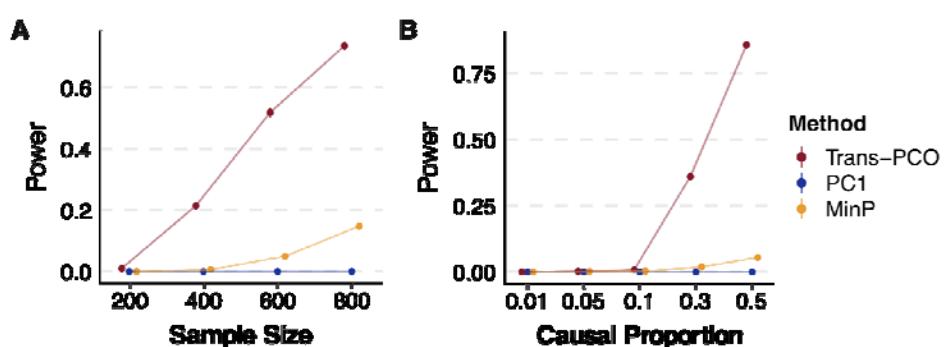
201 We performed simulations to evaluate the power of trans-PCO in detecting *trans*-eQTLs
202 associated with multiple genes. We primarily compared the power to (i) the standard univariate
203 test (“MinP”), and (ii) the primary PC-based test (“PC1”, Kolberg et al.²³; see Methods). We used
204 a co-expression gene module consisting of 101 genes from the DGN dataset (module 29). In
205 null simulations, we simulated the z-scores between a SNP and \mathbf{y}_{res} genes in a gene
206 module following the null distribution, $\mathcal{N}(0, 1)$, where \mathbf{y}_{res} is the residualized expression
207 correlation matrix. In power simulations, we generated z-scores from the distribution
208 $\mathcal{N}(\mathbf{z}_{\text{true}}, \mathbf{I})$, where \mathbf{z}_{true} is sample size ($N = 200, 400, 600$, and 800) and \mathbf{I} is a vector
209 representing the true effect sizes of the SNP on \mathbf{y}_{res} genes. Among \mathbf{y}_{res} genes, a proportion of
210 them are causal with non-zero effects. Therefore, we generated \mathbf{z}_{true} from a point normal
211 distribution, where $\mathbf{z}_{\text{true}} \sim \mathcal{N}(0, 1)$ for proportion $\text{causal} = 0.05$, and $\mathbf{z}_{\text{true}} = 0$,
212 otherwise. The *trans*-genetic variance is $\text{causal}^2 + (1 - \text{causal})^2$ ($\text{causal}^2 + (1 - \text{causal})^2$), which is a low and realistic per SNP
213 heritability for *trans* effects. We simulated 10,000 SNPs and performed 1000 simulations.
214

215 To compare the power of different approaches to identify *trans*-eQTLs, we defined significant
216 univariate tests for a gene module based on the minimum p-values across \mathbf{y}_{res} genes. For the
217 primary PC-based method, we used PC1 of the gene module co-expression matrix to represent
218 the module and tested it for associations. In power simulations, we set significance levels at
219 10% FDR to be consistent with real data analysis. We computed power as the average
220 proportion of significant tests out of 10,000 simulated SNPs across 1000 simulations.
221

222 Trans-PCO significantly outperformed the univariate test and the primary PC method across
223 different sample sizes and proportions of causal genes (**Figure 2**). Specifically, the power of
224 trans-PCO increases rapidly with increasing sample sizes. At the sample size of 800, assuming

225 30% of genes have causal effects in the gene module, the power of trans-PCO is 74%,
226 compared to 15% for the univariate test and 0.0018% for the primary PC method (**Figure 2A**).
227

228 We also compared the power of each method across various causal gene proportions using a
229 fixed sample size ($n=500$). All three methods have little power in detecting *trans*-eQTLs when
230 the proportion of causal genes is below 10%. However, above this threshold, the power of trans-
231 PCO increases dramatically: 36% at 30% causal genes and 86% at 50% causal genes. In
232 contrast, the univariate and the primary PC methods remain almost powerless for nearly all
233 simulated scenarios (**Figure 2B**). We note that the primary PC method appears to be almost
234 powerless across the scenarios, which agrees with the previous observation that the primary PC
235 can be less powerful than higher-order PCs in GWAS¹¹. Simulation results at various genetic
236 variances can be found in Supplementary Materials, including at extremely low proportions of
237 causal genes and high *trans* effects (Figure S1). We found that the univariate method only
238 outperforms trans-PCO when the proportion of causal genes is extremely low, such as only one
239 causal gene in the entire gene set, and the *trans* effects are large. Trans-PCO gains more
240 power when there are more than 1 causal gene, as it aggregates multiple weak effects to
241 improve power. Null simulations demonstrated all three methods are well-controlled for false-
242 positive inflations (Figure S2).
243



244
245 **Figure 2. Power of trans-PCO across different sample sizes and causal gene proportions,**
246 **in comparison to PC1 (Kolberg et al.²³) and univariate (MinP) methods. (A) Power**
247 **comparison across various sample sizes ($N = 200, 400, 600$, and 800).** Trans-genetic
248 variance was simulated to be 0.001 and the proportion of causal genes in the gene module
249 was 30%. Error bars representing 95% confidence intervals are plotted, but many are too small
250 to be visible. See numerical results in Table S2. (B) Power comparison across different
251 **proportions of causal genes in the gene module.** The simulated sample size was 500. Points
252 show average power across 1000 simulations. Error bars representing 95% confidence intervals
253 are plotted, but many are too small to be visible. See numerical results in Table S2.

254
255 We also included comparisons to two additional methods: ARCHIE proposed by Dutta et al.²⁴
256 and a method by Rovital et al.²² (see Supplementary Note, Figure S19 and Figure S20). We
257 showed that ARCHIE is not powerful at detecting *trans*-eQTL effects from a SNP to multiple
258 genes, which are the effects trans-PCO was designed for (Figure S19D). We note that the main
259 goal of ARCHIE is to identify trait-specific gene sets associated with GWAS loci, whereas trans-
260 PCO is designed to map *trans*-eQTLs for any user-specified gene sets in specific tissues or cell

261 types (see Supplementary Note, Figure S19 and Discussion). Rovital et al.²² is based on the
262 primary PC-based approach and we showed that the method also has limited power at
263 identifying weak *trans*-eQTL effects (Supplementary Note and Figure S20).

264 **Trans-PCO identifies 3899 *trans*-eSNP–module pairs associated
265 with co-expression gene modules in the DGN dataset**

266 We used trans-PCO to identify *trans*-eQTLs associated with co-expression gene modules in
267 RNA-seq data from whole blood samples of the DGN cohort ($N = 913$)²⁷. WGCNA²⁹ identified
268 166 co-expression gene modules, with the number of genes in each module ranging between
269 625 (module 1, M1) and 10 (module 166, M166) (Supplementary Table S1). We then performed
270 genome-wide scans of *trans*-eQTLs for each gene module. At 10% FDR, trans-PCO identified
271 significant *trans*-eQTLs for 102 out of 166 gene modules, corresponding to 3899 significant
272 *trans*-eSNP–module pairs (Supplementary Table S3). Many *trans*-eSNPs are in linkage-
273 disequilibrium (LD). Using LD clumping to group *trans*-eSNPs into LD-independent loci
274 ($R^2 < 0.2$), we found 202 *trans*-loci–module pairs (**Figure 3A**, Table S3, Table S4).

275

276 We compared *trans*-eQTL signals detected in DGN by trans-PCO to signals identified by the
277 univariate method in Battle et al.²⁷. Out of 12,132 genes analyzed by trans-PCO, the univariate
278 method detected 326 significant *trans*-eSNP–gene pairs for 128 genes at 5% FDR²⁷. At the
279 same FDR level, trans-PCO identified 3031 significant *trans*-eSNP–gene module pairs for 75
280 gene modules. We compared the magnitude of the significant *trans*-eQTL effects detected by
281 trans-PCO and the univariate method. More specifically, we compared the maximum univariate
282 z-scores of SNPs and each gene in significant *trans*-eSNP–module pairs identified by trans-
283 PCO to the z-scores of significant *trans*-eSNP–gene pairs by the univariate method. We found
284 that the maximum z-scores of trans-PCO signals are much smaller than z-scores of the
285 univariate method signals (**Figure 3B**), indicating that our multivariate approach can detect
286 much smaller *trans* effects than univariate methods.

287

288 We also applied the primary PC method (Kolberg et al.²³) to DGN, and identified 1483
289 significant *trans*-eSNP–module pairs (55 *trans*-loci–module pairs) at 10% FDR, and 1464 pairs
290 (99%) were detected by trans-PCO (Figure S13A). Notably, in total, trans-PCO identified more
291 than twice the signals than the primary PC method. However, the primary PC method identified
292 more signals than expected, as it was previously shown to be powerless in the simulations. We
293 note that we simulated weak effects and sparse causal proportions to better reflect common and
294 realistic *trans* effects, and the primary PC method is powerless in these settings. We performed
295 additional simulations with large effects and high causal proportions, and the primary PC
296 method achieved 50% power as trans-PCO (see Supplementary Note, Figure S18).
297 Additionally, we found in the DGN dataset that the univariate z-scores of *trans* signals detected
298 by the primary PC method are larger than those of trans-PCO signals (Figure S13B-D).
299 Therefore, the *trans* signals detected by the primary PC method are likely of strong *trans*
300 effects, and trans-PCO is able to detect additional weak *trans* effects. Statistically, PC1 can also
301 have good statistical power when the *trans* effects align with the direction of PC1²⁶. To
302 demonstrate this, we performed simulations under the assumption that the genetic effect vector

303 perfectly aligns with the primary PC direction. We found that the primary PC method has higher
304 power than trans-PCO and MinP methods under this special circumstance (Figure S14).
305 However, it is impossible to predict when the genetic effects align with gene expression PCs.

306 **Trans-eQTLs are enriched in variants with *cis*-regulatory effects on**
307 **transcription factors**

308 We found that only 31 *trans*-eSNPs (1%) are in coding regions, suggesting that a very small
309 proportion of *trans*-eQTLs impact gene expression levels in *trans* by altering protein coding
310 sequences. Several studies have shown that *trans*-eQTLs have *cis*-regulatory effects, impacting
311 the expression levels or splicing of nearby genes^{10,27}; thus, we evaluated our identified *trans*-
312 eQTLs for concomitant *cis*-regulatory activity. We first overlapped *trans*-eSNPs with *cis*-eQTLs
313 and *cis*-splicing QTLs (*cis*-sQTLs) in DGN³⁴. Of the 2955 *trans*-eSNPs (Table S3), we found that
314 71% are significant *cis*-eSNPs in DGN, and 46% are significant *cis*-sSNPs, together accounting
315 for 73% of all *trans*-eSNPs. To further examine whether the *cis* and *trans* effects are driven by
316 the same variant, we performed colocalization analysis of *trans*-eQTLs with *cis*-eQTLs and *cis*-
317 sQTLs using coloc³³ (see Methods). Specifically, we first grouped *trans*-eSNP–gene module
318 pairs into 179 *trans*-region–gene module pairs, based on 200kb fixed-width regions (see
319 Methods). We then performed colocalization analyses between the *trans*-eQTLs and *cis*-
320 eQTLs/*cis*-sQTLs. We found that 51 out of 179 *trans* regions colocalized with a *cis*-eQTL
321 (PP4>0.75, **Figure 3C** and Figure S3). 41 *trans*-loci colocalized with a *cis*-sQTL. Overall, 60
322 *trans*-loci share causal variants with at least one *cis*-eQTL or *cis*-sQTL (**Figure 3C**, Table S5),
323 confirming that *trans*-eQTL effects are generally mediated through *cis*-gene regulation.
324 Additionally, a large fraction of *trans*-loci (66%) do not colocalize with *cis*-eQTLs or *cis*-sQTLs.
325 While power may have limited our ability to detect colocalization of some *trans*-eQTLs and *cis*-
326 eQTLs, there might also exist unknown *trans*-regulatory mechanisms, independent of *cis* gene
327 expression or splicing, which is subject to future studies.

328
329 We also investigated the types and functions of genes that are likely to mediate *trans*-eQTL
330 effects. We found that the genes nearest *trans*-eQTLs are highly enriched in “RNA polymerase
331 II transcription regulatory region sequence-specific DNA binding” (adjusted $P = 1.26 \times 10^{-3}$) and
332 “DNA-binding transcription factor activity” (adjusted $P = 1.39 \times 10^{-3}$, Table S6), suggesting that
333 transcription factors are important mediators of *trans*-eQTL effects. Indeed, trans-PCO identified
334 and replicated several well-known master *trans* regulators in blood, such as *IKZF1*^{28,35,36},
335 *NFKBIA*²⁸, *NFE2*^{10,28,37}, and *PLAGL1*^{28,36} (**Figure 3A**). We also found colocalization of these
336 *trans*-eQTLs with *cis*-eQTLs at the *NFKBIA*, *NFE2* and *PLAGL1* loci (**Figure 3D**, Figure S3),
337 supporting the conclusion that these genes are likely the *cis*-mediating genes.

338 **High quality map of *trans*-eSNP to gene module associations improves**
339 **functional interpretation**

340 Most of the gene modules used in trans-PCO have functional annotations, which allows us to
341 interpret the functional roles of the *trans*-eQTLs identified by the method. We first functionally
342 annotated the 166 co-expression modules using g:Profiler³⁸, which performs functional

343 enrichment analysis on gene sets using predefined gene ontology and pathway annotations.
344 This allowed us to annotate 131 of the 166 modules with at least one significantly enriched gene
345 ontology or pathway (Table S7).

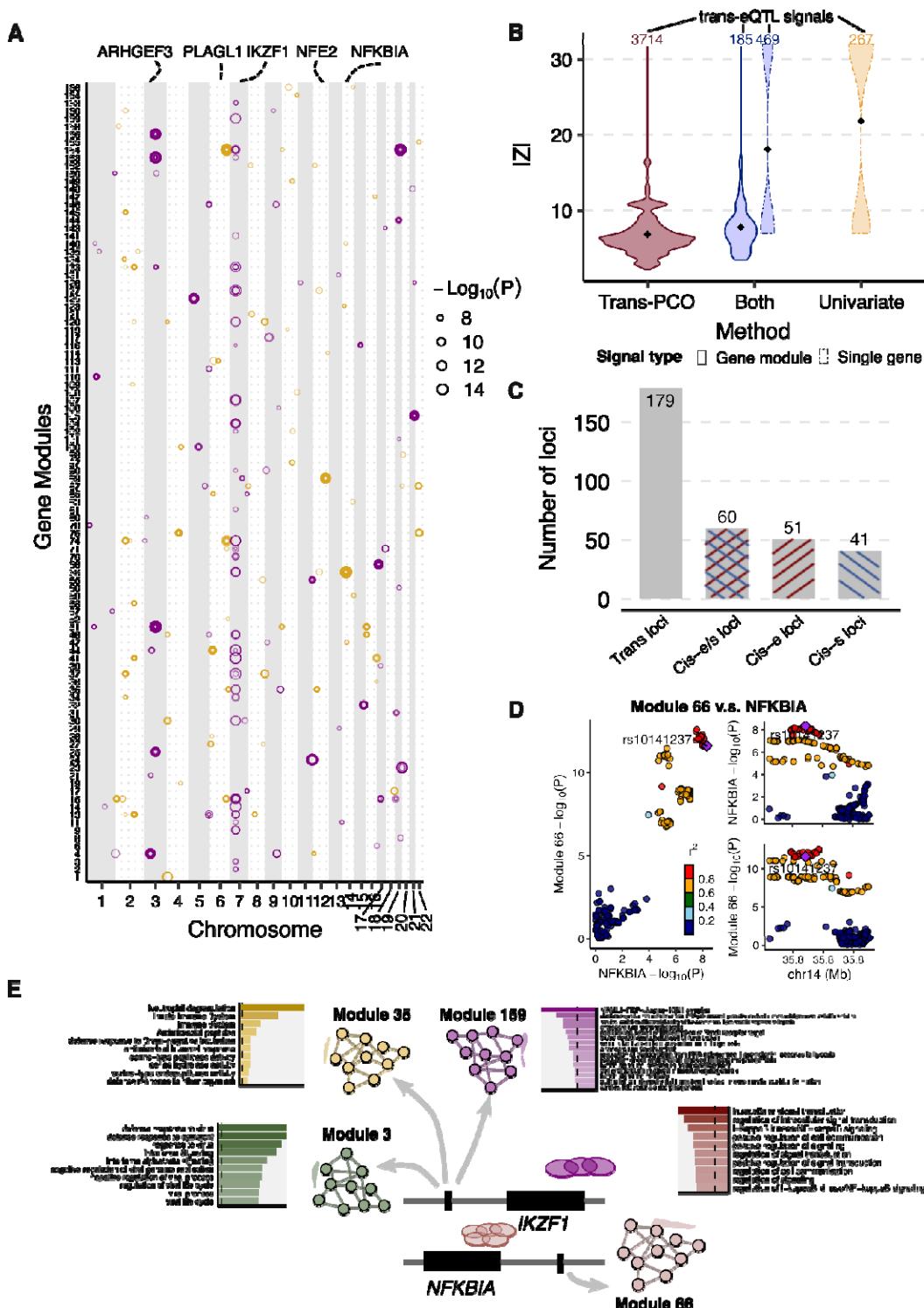
346
347 These annotations helped us interpret the function of identified *trans* effects. For example, the
348 *trans*-eQTL signal near *IKZF1* (on chromosome 7) is significantly associated with 27 gene
349 modules. *IKZF1* encodes a transcription factor IKAROS that belongs to the family of zinc finger
350 DNA binding proteins³⁹. The *IKZF1* (IKAROS) *trans*-target gene module 159 (M159) is
351 significantly enriched in the “positive regulation of transcription of Notch receptor target”
352 (adjusted $P = 6.82 \times 10^{-3}$, **Figure 3E**). Reassuringly, it was previously found that IKAROS is a
353 repressor of many Notch targets, and our *trans*-eQTL signal further supports the *trans*
354 regulation of Notch signaling pathway by IKAROS⁴⁰. *IKZF1* *trans*-target module 3 (M3) is
355 significantly enriched in the gene ontology term “defense response to virus” (Figure S4, adjusted
356 $P = 8.7 \times 10^{-31}$) and M35 is significantly enriched in the innate immune system (adjusted $P =$
357 4.09×10^{-17}). This data supports the conclusion that the *IKZF1* locus plays a *trans*-regulatory
358 role in immune responses (**Figure 3E**). The *trans*-eQTLs near *NFKB1A*, which encode NF-
359 kappa-B inhibitor subunit A, are significantly associated with module 66 (M66) (adjusted P
360 $< 1.8 \times 10^{-7}$, adjusted $P < 9.9 \times 10^{-2}$). Interestingly, we found that M66 is highly enriched in
361 NF-kappa-B signaling pathway (adjusted $P = 8.35 \times 10^{-5}$, **Figure 3E**), which supports the *trans*
362 regulation of the NF-kappa-B signaling pathway by *NFKB1A*. The complete list of *trans*-eQTLs
363 signals and functional annotations of *trans*-target gene modules can be found in Supplementary
364 Table S4 and Table S7.

365 Trans-PCO identifies 965 *trans*-eSNP–module pairs associated 366 with well-defined biological processes

367 To further demonstrate the utility of trans-PCO, we applied trans-PCO to 50 MSigDB hallmark
368 gene sets, which represent well-defined biological processes³⁰, including DNA repair,
369 coagulation, heme metabolism, Notch signaling etc. (Table S15). Each gene set contains
370 between 32 and 200 genes. In DGN, we identified 965 significant *trans*-eSNP–module pairs,
371 corresponding to 41 gene sets and 120 *trans*-loci–module pairs ($R^2 < 0.2$), at 10% FDR level
372 (Figure S5, Table S3, Table S16).

373
374 *Trans*-eQTLs associated with well-defined biological processes facilitate interpretation of the
375 *trans*-eQTL signals. For example, we identified several *trans*-eQTL signals at the *NLRC5* locus
376 (Table S16). The *trans* target gene set is the “interferon alpha response” gene set, suggesting
377 *trans* regulation from *NLRC5* to the interferon signaling pathway. Reassuringly, earlier studies
378 have confirmed that *NLRC5* is a master regulator for MHC class II genes and negatively
379 regulates the interferon signaling pathway^{41,42}. The *trans*-eQTL signals also validated our
380 previous interpretations of *trans*-eQTLs associated with co-expression gene modules. For
381 example, in agreement with our analysis of co-expression modules, we found that the *IKZF1*
382 locus is significantly associated with several immune-related biological processes, such as
383 interferon gamma response (Table S16, **Figure 3E**).

384



385

386 **Figure 3. Trans-PCO identifies trans-eQTLs associated with co-expression gene modules**
 387 **in DGN. (A) Significant trans-eQTL signals associated with 166 co-expression modules in**
 388 **DGN.** Chromosomal positions of trans-eSNPs are on the x-axis, and gene modules are on the
 389 y-axis. Point sizes are $-\text{Log}_{10}(P)$ values of significant trans-eQTLs. Purple and orange represent

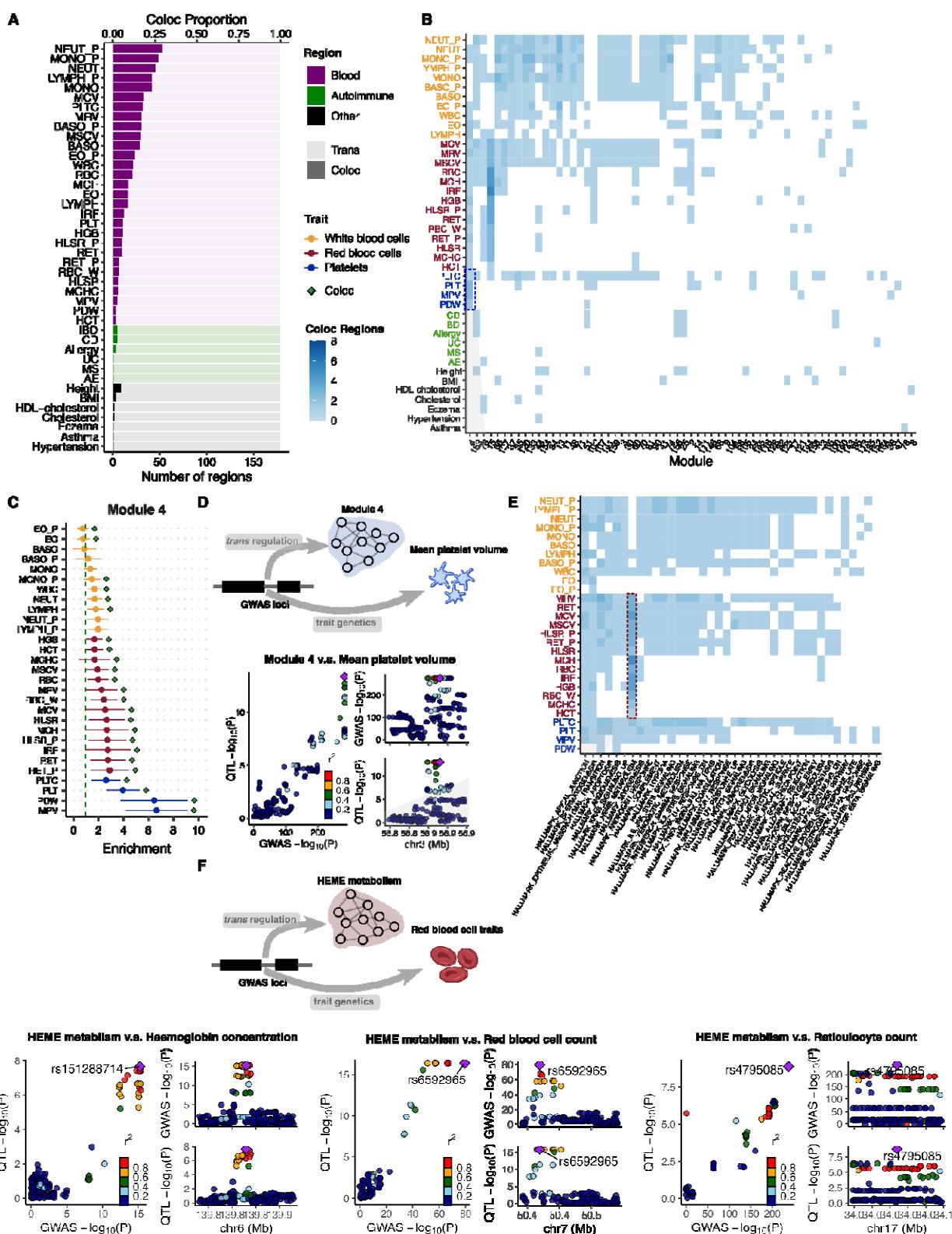
390 odd and even chromosomes, respectively. **(B)** Comparison of the magnitude of significant *trans*-
391 eQTLs effects detected by trans-PCO and the univariate method. X-axis shows signal
392 categories: trans-PCO specific signals (Trans-PCO), univariate test specific signals (Univariate),
393 and signals identified by both methods (Both). The maximum z-scores of each SNP and each
394 gene in a gene module is used to represent the SNP-module pair. The numbers on top are the
395 number of signals in each category. Line type represents the target type of signals (gene
396 module vs single gene). Y-axis is the absolute value of the z-scores of the signals. **(C)**
397 **Colocalization of *trans*-eQTLs and *cis*-e/sQTLs.** The gray bar represents the *trans*-loci used
398 for colocalization analyses. The bar highlighted in blue represents *trans*-loci colocalized with *cis*-
399 sQTLs, red for *cis*-eQTLs, and mixed color for either *cis*-eQTLs or *cis*-sQTLs. **(D)**
400 **Colocalization of *trans*-eQTLs of Module 66 and *cis*-eQTLs of *NFKBIA*.** **(E) Functional**
401 **annotations of gene sets facilitate functional interpretation of *trans*-eQTL signals.** The
402 *trans*-eQTLs near *NFKBIA* and *IKZF1* are associated with several gene modules. The bar plots
403 show the functional enrichments in modules. The numerical values of enrichments are in Table
404 S7.

405 Trans-PCO improves understanding of *trans* regulatory effects of 406 disease-associated loci

407 To understand *trans* regulatory effects of genetic variants associated with complex traits, we
408 performed colocalization analysis of *trans*-eQTL signals with GWAS loci of 46 complex traits
409 and diseases, including 29 blood traits and 8 other common complex traits (such as height and
410 BMI) from the UK Biobank^{37,43} and 9 autoimmune diseases^{34,44–50} (Methods and Table S8).

411 We grouped the *trans*-eSNPs into 200kb regions (or *trans*-loci) for colocalization analyses (see
412 Methods). The 3899 *trans*-eQTLs associated with co-expression gene modules were grouped
413 into 179 *trans*-region–module pairs. 42 out of 46 complex traits have at least one GWAS loci
414 colocalized with one of 179 *trans*-region–module pairs. On average across all traits, 8.8% of
415 *trans*-loci colocalize with GWAS loci (**Figure 4A**, Table S9). We observed a higher proportion of
416 colocalization with blood traits (mean proportion 12.0%) than non-blood traits (mean proportion
417 1.5%). Although we expect some higher proportions of colocalization with blood traits to occur in
418 a whole blood sample, our results may also indicate some residual effects due to cell
419 composition--despite corrections for cell composition using both gene expression PCs and
420 estimated cell-type proportions²⁷, such that some *trans*-eQTLs may regulate the abundance of
421 cell proportions and therefore are associated genes that are specifically expressed in certain
422 cell types. Our results are consistent with a recent study by the eQTLGen consortium, which
423 has shown that *trans*-eQTLs in whole blood reflect a combination of cell-type composition and
424 intracellular effects¹⁰.

426



427

428 **Figure 4. Colocalization of trans-eQTLs with GWAS loci of 42 complex traits with at least**
 429 **one colocalization region. (A) The number of colocalized trans-loci associated with co-**
 430 **expression gene modules with GWAS loci. The traits are first ordered by broad categories:**

431 blood traits, autoimmune diseases, and other traits in UKBB. The traits within each category are
432 then ordered by the total number of colocalized regions. **(B) Heatmap of the number of**
433 **colocalized *trans*-loci associated with co-expression gene modules with GWAS loci**
434 **between each module and trait.** The traits are first ordered by broad categories: white blood
435 cells (Orange), red blood cells (Red), platelet cells (Blue), autoimmune diseases (Green) and
436 other traits in UKBB (Black). The traits within each category are then ordered by the number of
437 colocalized gene modules. The blue shades represent the number of colocalized regions. **(C)**
438 **Heritability enrichment of Module 4 (M4) in blood traits.** Heritability enrichment was
439 estimated by using S-LDSC. Error bars are 95% confidence intervals. **(D) Colocalization of**
440 **mean platelet volume associated locus near ARHGEF3 and *trans*-eQTL of M4.** **(E)**
441 **Heatmap of the number of colocalized *trans*-loci associated with MSigDB hallmark gene**
442 **sets with GWAS loci across modules and blood traits.** The blue shades represent the
443 number of colocalized regions. **(F) Colocalization of GWAS loci associated red blood cell**
444 **traits and *trans*-eQTLs associated with heme metabolism.** Six loci associated with red blood
445 cell traits are associated with heme metabolism in *trans*. Numerical results can be found in
446 Table S17. Colocalization plots of the other loci are in Figure S6.

447
448 Nevertheless, we found several *trans*-eQTLs that colocalized with GWAS loci, which revealed
449 specific interpretable pathways or functional gene sets (**Figure 4B**, Table S10). For example,
450 *trans*-eQTLs associated with co-expression module 4 (M4) colocalized with 24 out of 29 blood
451 traits (**Figure 4B**). M4 is highly enriched for genes involved in platelet activation (adjusted $P =$
452 1.12×10^{-12} , Figure S4, Table S7). One of the colocalized *trans*-eSNPs associated with M4 is
453 in the introns of the *ARHGEF3* gene (**Figure 4D**), which has been shown to play a significant
454 role in platelet size in mice⁵¹. To further support the interpretation of colocalized signals, we
455 estimated heritability enrichment of M4 in blood traits using stratified LDscore regression⁵² (S-
456 LDSC, **Figure 4C**). We reasoned that an enrichment of trait heritability near genes in a module
457 would strongly support the involvement of a module in the genetic etiology of a trait. Strikingly,
458 we found that M4 is significantly enriched in the heritability of multiple blood traits, and the
459 enrichment was especially strong for platelet traits such as platelet distribution width
460 (enrichment = $6.5 \times$, $P = 7.0 \times 10^{-5}$) and mean platelet volume (enrichment = $6.7 \times$, $P =$
461 1.2×10^{-5} , **Figure 4C**, Table S11). Additionally, we evaluated whether M4 genes are
462 significantly enriched in genes associated with platelet traits, identified by transcriptome-side
463 association studies (TWAS). There are 1339 unique genes significantly associated with platelet
464 traits in the UK Biobank⁵³. M4 genes are significantly enriched in TWAS genes associated with
465 platelet traits (88 overlap genes, p -value = 6.7×10^{-10} , Fisher's exact test), which further supports
466 the role of M4 in platelet traits. Finally, we identified that the *ARHGEF3* locus is significantly
467 associated with the MSigDB coagulation hallmark gene set (Table S16). These findings
468 strengthen the model where genetic variation near *ARHGEF3* impacts the expression levels of
469 multiple genes that are involved in platelet biology and that also harbor nearby genetic variation
470 associated with platelet traits.

471
472 We also performed colocalization analysis of *trans*-eQTLs associated MSigDB hall mark gene
473 sets (**Figure 4E**, Table S17). One of the gene sets represents heme metabolism, which is an
474 essential process underlying erythroblast differentiation and red blood cell counts. We found

475 that six *trans*-eQTL loci of heme metabolism significantly colocalized with GWAS loci associated
476 with red blood cell traits, such as hemoglobin concentration, red blood cell count, and
477 reticulocyte count (PP4=0.76-1.00, **Figure 4F**, Figure S6, Table S17). We found that the genes
478 in the gene sets are significantly enriched in TWAS significant genes associated with
479 hemoglobin levels in the UK Biobank (35 overlap genes, p -value=8.1x10⁻⁴, Fisher's exact test),
480 which further supports the role of the hallmark gene set in red blood cell traits. Our results
481 provide evidence that these six loci regulate heme metabolism in *trans*, which is an essential
482 process underlying erythroblast differentiation and red blood cell counts.
483

484 In another example, we found a *trans*-eQTL near *IKZF1* for M3 that colocalizes with 11 blood
485 traits, seven of which are related to white blood cells (Table S10). As mentioned previously, M3
486 is significantly enriched for gene ontology terms including "defense response to virus" (adjusted
487 $P = 8.7 \times 10^{-31}$) and "negative regulation of viral processes" (adjusted $P = 1.07 \times 10^{-17}$, Table
488 S7). The enrichments are driven by many genes related to interferon (e.g., *IFI6*, *IFI16*, *IRF7*),
489 which are proteins released by host cells in response to the presence of viruses and indicate
490 immune related functions (Table S1, Table S7). Additionally, our heritability analysis of genes in
491 M3 identified enrichments for multiple traits associated with blood cell-type count including
492 neutrophil count (enrichment = 2.3 \times , $P = 1.7 \times 10^{-4}$) and white blood cell count (enrichment =
493 2.1 \times , $P = 1.3 \times 10^{-4}$, Figure S7). Our analyses support that the white blood cell associated
494 locus *IKZF1* regulates immune response pathways in *trans*.
495

496 Taken together, our functional map of *trans*-eQTLs revealed concrete examples where genetic
497 variants associated with complex traits also influence a biological pathway or a coherent set of
498 genes with similar functions. Thus, *trans*-eQTL of gene sets have the potential to reveal *trans*-
499 regulatory mechanisms underlying complex traits and diseases. The complete list of
500 colocalization signals for each trait can be found in Supplementary Table S10.

501 Summary-statistics–based *trans*-PCO identified 10,167 *trans*- 502 eSNP–module pairs in eQTLGen

503 We developed summary-statistics–based *trans*-PCO to increase its applicability to gene
504 expression datasets of large sample sizes, such as eQTLGen¹⁰ (N=31,684, whole blood). To
505 ensure that summary-statistics–based *trans*-PCO signals are well-controlled for test statistics
506 inflation and false positives, we added two steps to the original pipeline. First, we carefully
507 select gene sets to minimize the noise when approximating the gene correlation matrices. When
508 only summary statistics are available, the correlation matrix of each gene set is approximated
509 with the correlations of z-scores of the insignificantly associated SNPs of each gene. A low ratio
510 of SNPs to genes (<50) results in a noisy approximation of correlation matrices and test
511 statistics inflation (Figure 6A, Methods, and Supplementary Note). Therefore, we only use gene
512 modules with ratios greater than 50 to test for *trans*-eQTLs, which we show are well-controlled
513 for inflation (**Figure 5A**, Figure S8). Second, we remove genes in the module that are cross-
514 mappable to the test SNP loci (see details in Methods) in the association test to reduce false
515 positives caused by multi-mapping reads.
516

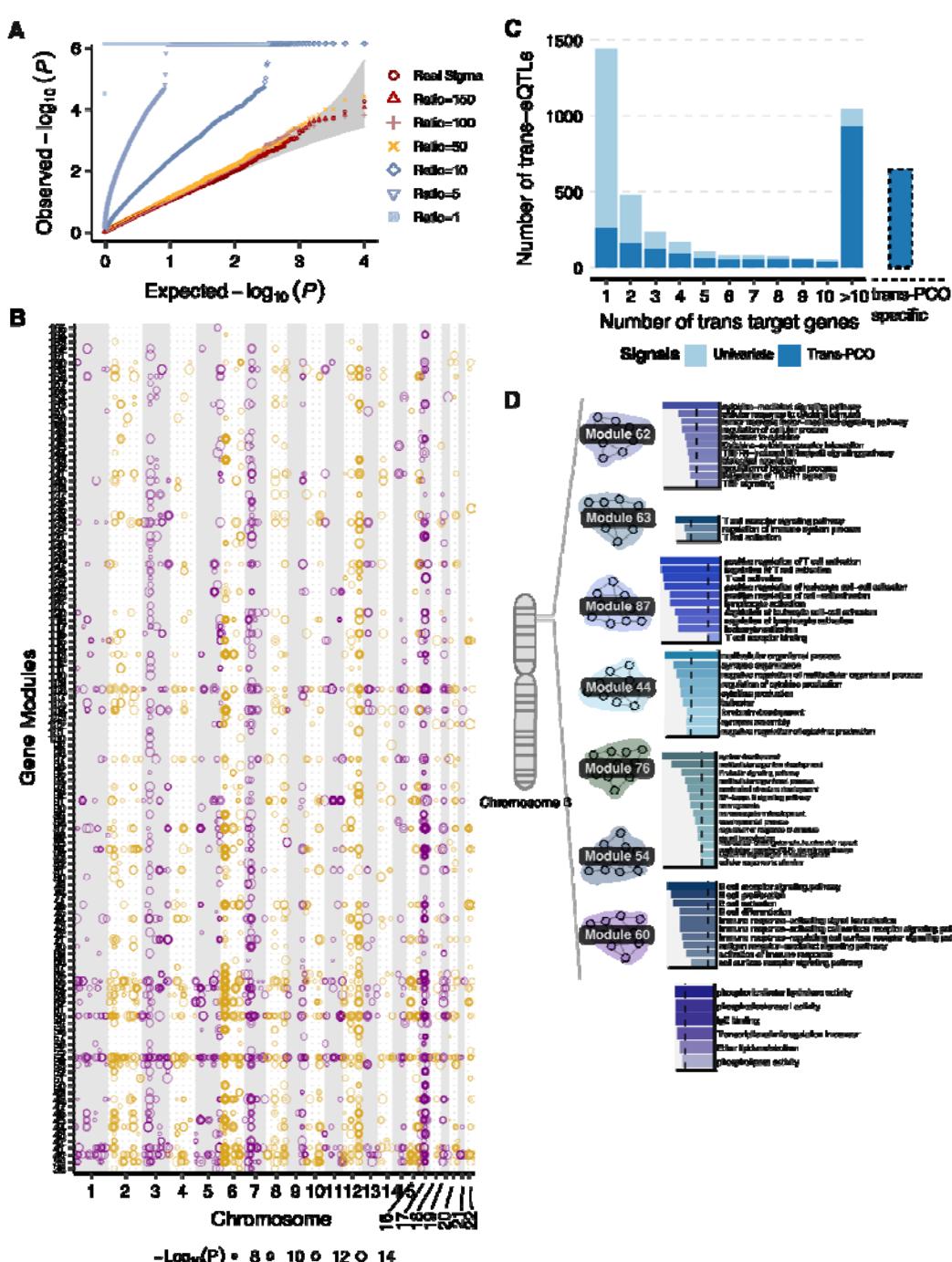
517 The eQTLGen study performed the standard univariate *trans*-eQTL mapping on a subset of
518 10,317 GWAS SNPs and the summary statistics of these *trans*-eQTLs are available. We applied
519 the summary-statistics-based trans-PCO to these summary statistics to identify *trans*-eQTLs
520 associated co-expression gene modules and MSigDB hallmark gene sets.

521
522 Of the 166 co-expression gene modules identified in DGN, we used 129 modules with reliable
523 correlation matrix approximations to ensure the *trans*-eQTL signals are well-controlled for
524 inflation (**Figure 5A**, Figure S8, Methods, and Supplementary Note). Similarly, Of the 50
525 MSigDB hallmark gene sets, we only used 11 gene sets with accurate correlation matrix
526 approximations (Figure S17). In total, there were 4533 genes in the tested co-expression gene
527 modules and hallmark gene sets. For co-expression gene modules, we identified 8116 *trans*-
528 eSNP–gene co-expression module pairs, corresponding to 2161 eQTLGen test SNPs and 122
529 gene modules (**Figure 5B**, Table S3, Table S12). For hallmark gene sets, we found 2051
530 significant *trans*-eSNP–hallmark gene set pairs, corresponding to 1018 SNPs and all 11
531 hallmark gene sets, using Bonferroni correction (Table S3, Table S18). In eQTLGen, we did not
532 perform LD clumping on *trans*-eSNPs, because they were GWAS SNPs associated with
533 different traits and diseases. The univariate method used in eQTLGen¹² identified 1050 hub
534 SNPs targeting more than 10 genes at 5% FDR, 89% of which are also identified by trans-PCO
535 (**Figure 5C**).
536

537 The large sample size in eQTLGen improves the power of *trans*-eQTL detection. Of the 3899
538 significant *trans*-eSNP–co-expression module pairs in DGN, 38 pairs were also tested in
539 eQTLGen. Reassuringly, we found that all 38 *trans* signals were replicated in eQTLGen (under
540 a replication P-value cutoff of 0.1/38, Table S13) and all association p-values were highly
541 significant ($P < 10^{-12}$, Figure S9). In contrast, most of the *trans*-eQTL signals in eQTLGen were
542 not found in DGN. For example, of the 7577 SNP-module pairs analyzed in both datasets, there
543 were 7291 pairs (96%) that were uniquely identified in eQTLGen (which is defined as at least 1
544 MB away from *trans*-eQTL SNPs in DGN). This is not surprising, because the association p-
545 values are much smaller in the eQTLGen dataset due to the larger sample size (Figure S10).
546 Similarly, eight significant *trans*-eSNP–hallmark gene set pairs in DGN were tested in
547 eQTLGen, and all of them were replicated. We also compared eQTLGen signals by trans-PCO
548 to those identified by ARCHIE in Dutta et al.²⁴ (see Supplementary Note and Figure S19).
549

550 The nearest genes of eQTLGen *trans*-eQTLs are significantly enriched in DNA binding activity
551 (adjusted $P = 3.73 \times 10^{-4}$) and transcription factor binding (adjusted $P = 1.74 \times 10^{-7}$), as well
552 as immune responses, such as cytokine receptor activity (adjusted $P = 7.27 \times 10^{-7}$) or MHC
553 class II receptor activity (adjusted $P = 9.93 \times 10^{-5}$, **Figure 5B**, Table S14). We found that the
554 enrichment of immune responses was driven by *trans*-eQTLs in the HLA region on chromosome
555 6 (such as *HLA-DRA*, *HLA-DRB1* etc, Table S12) or near cytokine receptor genes (such as
556 *IL23R*, *IL1R1*, *CXCR4* and genes on the chemokine receptor gene cluster region: *CCR2*, *CCR3*,
557 *CCR5* etc). These *trans*-eQTLs are associated with several autoimmune diseases, such as type
558 1 diabetes, autoimmune thyroid diseases, cutaneous lupus erythematosus and inflammatory
559 bowel disease (Table S12). The trans-PCO signals help us understand the *trans* regulatory
560 mechanism of these loci. For example, we found that the *trans* target gene modules of the HLA

561 loci are enriched in immune related functions, such as cytokine production (M44), B cell
 562 differentiation (M54), IgE binding (M60), TNF signaling pathway (M62), T cell activation (M63
 563 and M87), and cytokine signaling pathway (M62 and M76, **Figure 5D**). The *IL23R* locus is
 564 associated with cytokine signaling pathway (M76) in *trans*. The chemokine receptor genes were
 565 associated with several gene modules including cytokine production (M44), IgE binding (M60)
 566 and T cell activation (M87). These *trans*-eQTL signals support the conclusion that genetic loci
 567 associated with autoimmune disease regulate immune related pathways in *trans*.



570 **Figure 5. Trans-PCO identifies *trans*-eQTLs associated with co-expression gene modules**
571 **and MSigDB hallmark gene sets in eQTLGen. (A) Summary-statistics-based trans-PCO is**
572 **well controlled for test statistics inflations.** We show gene module 1 (size 625) as an
573 example. SNP to gene ratios used for correlation matrix estimation are in different shapes and
574 colors. Red-yellow shades represent higher ratios ($>=50$) and blue shades represent lower
575 ratios. Gray area shows 95% CI. Trans-PCO used a minimum ratio of 50. **(B) 8199 significant**
576 ***trans*-eSNP-module pairs associated with co-expression modules in eQTLGen.**

577 Chromosomal positions of *trans*-eSNPs are on the x-axis and gene modules are on the y-axis.
578 Point sizes are $-\log_{10}(P)$ values of significant *trans*-eQTLs. **(C) The majority of hub SNPs**
579 **targeting more than 10 genes in the original eQTLGen study are identified by trans-PCO.**
580 Light blue bar represents the total number of *trans*-eQTLs in the original eQTLGen study at 5%
581 FDR level. Dark blue bar represents the *trans*-eQTLs also detected by trans-PCO under
582 Bonferroni correction that are associated with co-expression modules or MSigDB gene sets.
583 The bar on the right shows the *trans*-eQTLs detected only by trans-PCO. **(D) The HLA locus is**
584 **associated with several immune related gene modules in *trans*.** The bar plots show the
585 functional enrichment of co-expression gene modules.

586 DISCUSSION

587 In summary, we developed a powerful method, trans-PCO, to detect *trans*-eQTLs associated
588 with expression levels of co-expressed or co-regulated genes. The multivariate approach of
589 trans-PCO can detect much smaller *trans* effects (**Figure 3B**, Figure S13) and is substantially
590 more powerful than existing methods. (**Figure 2**). Trans-PCO is also flexible. It can be applied
591 to both RNA-seq data with genotypes or summary statistics, and the user can employ various
592 definitions of gene sets. Applying trans-PCO to both the DGN and the eQTLGen datasets, we
593 identified nearly 15,000 *trans*-eSNP-module pairs associated with co-expression modules and
594 well-defined biological processes. *Trans*-eQTLs with annotated gene modules facilitate our
595 understanding of the *trans*-eQTL signals. These *trans*-eQTLs also improve our understanding of
596 the *trans* regulatory effects of disease associated loci. We highlight multiple examples where
597 our map of *trans* effects helps us identify how trait-associated variants impact gene regulatory
598 networks and pathways. For example, we found six genetic loci associated with red blood cell
599 traits to have significant *trans*-associations with the heme metabolism gene set. It is possible
600 that these genetic loci are “peripheral master regulators” that regulate core processes of red
601 blood cell production.

602 We thoroughly compared the performance of trans-PCO versus other methods, such as the
603 PC1-based method by Kolberg et al.²³, ARCHIE by Dutta et al.²⁴ and Rovital et al.²². Trans-
604 PCO and the PC1-based method are both designed to identify individual *trans*-eQTLs of any
605 gene sets containing multiple genes, and the comparison between them is straightforward in
606 both simulations and real data analyses. However, ARCHIE is different and not directly
607 comparable to the other two methods for several reasons (see more discussions in
608 Supplementary Note). First, ARCHIE captures only trait-specific *trans* regulations. It identifies
609 sets of gene-expressions trans-regulated by sets of known trait-related genetic variants. In
610 addition, ARCHIE tests significance against a competitive null hypothesis, which uses cc-values

612 of all eQTLGen trait-associated variants as empirical null distribution and reflects *trans*
613 regulations not specific to any trait. Therefore, an ARCHIE p-value reflects significance of trait-
614 specific patterns. In contrast, trans-PCO identifies *trans*-eQTLs under the general null
615 hypothesis assuming no *trans* effects. Therefore, trans-PCO can be used to generate
616 comprehensive maps of *trans*-eQTLs in tissues and cell types, in non-trait-specific manner.
617 Using ARCHIE to perform genome-wide scan of *trans*-eQTLs in a non-trait specific manner can
618 be challenging, as non-trait specific p-value is not computable in current implementation of the
619 method and it will be extremely computational challenging (due to the computational intensive
620 resampling procedure and difficulty of manipulating whole-genome LD matrices). Second, trans-
621 PCO and ARCHIE are designed to capture different *trans* regulatory effects. ARCHIE is
622 powerful when multiple disease-associated variants have weak effects on a single gene (for
623 example, multiple GWAS variants converge onto the core genes through *trans* regulation) or
624 multiple disease-associated variants have weak effects on multiple genes (Figure 2 in Dutta et
625 al.²⁴), in which multiple genes are not co-regulated by a shared *trans* genetic locus. In contrast,
626 trans-PCO is designed to capture weak *trans* signals of a variant on multiple co-regulated
627 genes, for example, a transcription factor has *trans* effects on multiple target genes. We include
628 detailed comparison of the two methods using both simulations and real data analyses (see
629 Supplementary Notes and Figure S19). Our results support that the two methods are powered
630 at detecting different *trans* signals. Third, ARCHIE identifies components, consisting of multiple
631 trait-associated SNPs and multiple genes, where sets of gene expressions are *trans* regulated
632 by sets of trait-associated variants. Without knowing the exact *trans*-eQTL SNP driving the *trans*
633 regulation, it is hard to further study *trans* regulatory mechanisms of the *trans*-eQTLs, for
634 example, whether the *trans*-eQTL is also a *cis*-eQTL, or which gene is the *trans* regulator.
635 Fourth, ARCHIE takes all genes as input and infers gene sets that are *trans*-regulated by
636 disease-associated variants, whereas trans-PCO is flexible to be applied to any user-defined
637 gene set of interest to identify *trans*-eQTLs. The genes in the ARCHIE components are likely
638 “core” genes for a specific disease and can be used to find key biological processes for the
639 disease. Trans-PCO could also be used to identify disease relevant genes and processes
640 through follow up analyses, such as colocalization analyses. In summary, trans-PCO and
641 ARCHIE have different goals and are designed for detecting different types of *trans* signals. Yet,
642 we thoroughly compared ARCHIE and trans-PCO in both simulations and real data analyses
643 (Supplementary Note), (1) in simulations, we evaluated whether ARCHIE can identify regular
644 *trans*-eQTLs detectable by other methods (trans-PCO, PC1-based and univariate method), (2)
645 in real data analyses (eQTLGen summary statistics), we evaluated whether trans-PCO can
646 identify *trans*-signals identified by ARCHIE. We believe these comparisons will provide insights
647 on when and how these methods should best be used. In addition, Rovital et al.²² used
648 independent component analyses to identify components representing co-expression patterns
649 from the expression of all genes, and identified *trans*-eQTLs that have enriched *trans*
650 associations with the components. However, we demonstrated through simulations that the
651 Rovital et al. method has minimal power to identify weak *trans* effects (Supplementary Note,
652 Figure S20).

653
654 A limitation of multivariate association tests, including trans-PCO, is that they do not explicitly
655 identify which genes in the gene sets are significantly associated with the test SNP. While

656 functional annotations of gene sets facilitate our understanding of the *trans*-eQTL signals, it is
657 possible that the genes driving *trans*-associations are different from the genes driving functional
658 enrichment of the gene sets. Therefore, the biological interpretation of *trans*-eQTL signals
659 should be supported with other evidence before it is considered definitive. However, there are
660 exploratory analyses that can help prioritize genes in the network that are key drivers of the
661 underlying signal. For example, by examining the univariate association p-values between the
662 *trans*-eQTL SNP and each gene in the network, the user can prioritize genes with the most
663 significant p-values as likely *trans* targets. Furthermore, the users can also use the π_1 statistics
664 on the univariate p-values to estimate the proportion of genes that have true *trans* effects in the
665 network. While the exact molecular mechanism requires further validation, the large number of
666 *trans*-eQTLs identified by trans-PCO in our study opens up new opportunities to understand
667 complex traits-associated loci and underlying mechanisms.

668
669 *Trans*-eQTLs identified in bulk tissues can be a combination of cell composition *trans*-eQTLs,
670 which are driven by cell type proportions, and intracellular *trans*-eQTLs, which capture *trans*
671 regulatory effects in a single cell type. To get higher proportions of intracellular eQTLs, the
672 common approach is to correct for cell type proportions in association tests. For example, the
673 eQTLGen study¹² corrected for cell proportion effect by using gene expression PCs. They
674 validated some *trans*-eQTLs using single-cell RNA sequencing data, indicating that these *trans*-
675 eQTLs were intracellular *trans*-eQTLs. In our analysis of DGN dataset, we included the
676 estimated cell proportions as covariates, in addition to gene expression PCs. This strategy
677 might have given rise to higher proportions of intracellular *trans*-eQTLs. Co-expression gene
678 modules could also capture cell proportion effects. In our study, we removed cell proportions
679 from gene expression levels before clustering genes into co-expression modules. While this can
680 correct for cell proportion effects in the co-expression modules to some extent, we note that it
681 does not guarantee their complete removal.

682
683 Many studies, including ours, seek to avoid cell composition effects. However, by closely
684 examining *trans*-eQTLs discovered in our study, we think cell composition *trans*-eQTLs can be
685 biologically interesting too. For example, the *IKZF1* locus is significantly associated with several
686 gene modules enriched with viral defense and other immune related functions in *trans*. The
687 locus is also significantly associated with white blood cell proportions. Given the general
688 function of white blood cells in fighting infections, these observations raise the possibility that
689 the *trans*-eQTLs near *IKZF1* regulate antiviral activity by affecting white blood cell-type
690 proportion. Supporting this hypothesis, we found earlier that genetic variants near *IKZF1* are
691 also associated with expression levels of genes in M159, which are enriched in genes involved
692 in the Notch signaling pathway. The Notch signaling pathway plays a central role in cell
693 proliferation, cell fate, and cell differentiation⁵⁴; thus, our analyses reveal a plausible mode of
694 action whereby genetic variants near *IKZF1* impact multiple immune-related functions by
695 influencing white blood cell-type proportions. In future studies, it could be interesting to
696 specifically identify cell proportion effects and understand their role in complex traits.

697
698 Identifying the network effects of genetic variants not only shed light on molecular mechanisms
699 of complex associated loci, it can also have important translational applications, for example, in

700 drug discovery and development. First, genes that are associated with disease relevant
701 pathways can serve as evidence for therapeutic targets of the disease. In a preliminary analysis,
702 we examined whether allergy drug targets are more likely to be associated with immune-related
703 gene sets. Among a total of 142 gene sets (129 co-expression gene modules and 11 hallmark
704 gene sets) used for *trans*-eQTL identification in eQTLGen, 19 were defined as immune-related.
705 We used 55 launched allergy drug target genes from The Broad Institute Drug Repurposing Hub
706 (<https://repo-hub.broadinstitute.org/repurposing>), 5 of which are near allergy associated loci in
707 eQTLGen. Interestingly, we found all 5 targets to be associated with immune-related gene sets
708 (Table S19). Detailed analyses can be found in Supplementary Note. While the enrichment is
709 not statistically significant ($P=0.12$, Fisher's exact test; Table S20), it is likely due to the small
710 number of drug targets included in our analyses. Additionally, we observed that the *trans* gene
711 modules of drug targets converge to gene sets whose functions are highly relevant to allergy.
712 For example, three drug targets (*IL3*, *UGT3A1* and *SLC37A4*) are associated with gene sets
713 enriched for the B cell signaling pathway. More comprehensive analyses are beyond the scope
714 of this study, yet our preliminary analyses have demonstrated that one can consider genes that
715 have strong *trans* associations with disease-relevant pathways to identify drug targets for the
716 specific disease, especially those with known disease-relevant pathways. Second, network
717 effects of disease variants can be used for repurposing existing drug compounds to new
718 diseases. Drug repurposing can substantially reduce cost and time to develop new treatments.
719 If the gene expression profiles of an existing drug is enriched for genes in the *trans*-network of
720 another disease's associated loci, it can serve as an evidence for repurposing. Additionally,
721 knowing the network effects of a gene can also help evaluate the safety of a potential drug
722 target. Therapeutic perturbation of a drug target can affect expressions of many downstream
723 genes. While some of them are in the desired disease pathways, others are in pathways
724 associated with other phenotypes, inducing unwanted side-effects. We believe comprehensive
725 catalogs of *trans*-networks effects in human cell types and tissues will serve as important
726 resources for interpretation of *trans* regulatory effects of disease associated loci as well as
727 translation applications. Therefore, we made all the trans-PCO *trans*-eQTL signals, with
728 functional annotation of the gene sets, publicly available, downloadable and browsable in
www.networks-liulab.org/transPCO.

730

731

732 Methods

733 Trans-PCO pipeline

734 We test if a genetic variant is associated with genes in a module through *trans* regulations using
735 the multivariate model as follows,

736
$$[y_1 \cdots y_K] = G[\beta_1 \cdots \beta_K] + covariates + e,$$

737 where G is the dosage of a reference allele representing the genotype of a SNP, β_k is the effect
738 of the SNP on k -th gene in the module with K genes, and y_k is the expression level of the k -th
739 gene. To test if a SNP of interest is significantly associated with the module, we test the null
740 hypothesis,

741
$$H_0: \beta_1 = \cdots = \beta_K = 0.$$

742 We use a PC-based omnibus test (PCO)²⁶, which is a powerful and robust PC-based approach
743 aiming at testing genetic association with multiple genes with no prior knowledge of the true
744 effects.

745

746 Specifically, PCO combines multiple single PC-based tests in linear and non-linear ways,
747 corresponding to a range of causal relationships between the genetic variant and genes, to
748 achieve higher power and better robustness. A single PC-based test (most commonly the first
749 primary PC_1) is,

750
$$T_{PC_k} = \mu_k^T Z \sim N(\mu_k^T \beta, \lambda_k), 1 \leq k \leq K,$$

751 where Z is a $K \times 1$ vector of univariate summary statistic z-scores of the SNP for K genes in a
752 module, μ_k is the k -th eigenvector of the covariance matrix $\Sigma_{K \times K}$ of Z , λ_k is the corresponding
753 eigenvalue, and β represents the true causal effect. PCO combines six PC-based tests,
754 including,

755
$$PCMinP = \min_{1 \leq k \leq K} p_k, \text{ and } PCFisher = -2 \sum_{k=1}^K \log(p_k),$$

756 where p_k is the p-value of T_{PC_k} . These two tests take the best p-value of single PC-based tests
757 and combine multiple PC p-values as the test statistic. Other tests include,

758
$$PCLC = \sum_{k=1}^K \frac{T_{PC_k}}{\lambda_k}, WI = \sum_{k=1}^K T_{PC_k}^2, Wald = \sum_{k=1}^K \frac{T_{PC_k}^2}{\lambda_k}, VC = \sum_{k=1}^K \frac{T_{PC_k}^2}{\lambda_k^2},$$

759 which are linear and quadratic combinations of each single PC-based test weighted by
760 eigenvalues. The six tests achieve best power in specific genetic settings with different true
761 causal effects²⁶. PCO takes the best p-value of the PC-based tests as the final test statistic,

762
$$T_{PCO} = \min p_{\{PCMinP, PCFisher, PCLC, WI, Wald, VC\}},$$

763 to achieve robustness under unknown genetic architectures while maintaining a high power.
764 The p-value of PCO test statistics can be computed by performing an inverse-normal
765 transformation of the test statistics,

766
$$p_{T_{PCO}} = 1 - P\{\min \Phi^{-1}(p_{\{PCMinP, PCFisher, PCLC, WI, Wald, VC\}}) > \Phi^{-1}(T_{PCO}^{obs})\},$$

767 where Φ^{-1} denotes the inverse standard normal cumulative distribution function. The p-value
768 can be efficiently computed using a multivariate normal distribution as described in Liu et al.²⁶.

769

770 To prevent *cis*-regulatory effects from driving the identified *trans* associations between a SNP
771 and module, we removed genes in the module that are on the same chromosome as the tested

772 variant. In addition, to avoid false positive signals in *trans* associations due to alignment errors,
773 we discarded RNA-seq reads that are mapped to multiple locations or poorly mapped genomic
774 regions (mappability score <1)^{27,28} before quantifying gene expression levels.

775 Simulation

776 To evaluate the power of trans-PCO, we performed a series of simulations with various
777 parameter settings corresponding to different genetic architectures. We applied trans-PCO to
778 the simulated datasets and assessed the false positive rate and statistical power. We also ran
779 two additional statistical tests, a univariate test (“MinP”) and a primary PC-based test (“PC1”), to
780 compare their performances with trans-PCO and to obtain more in-depth insights on trans-PCO,
781

$$T_{PC_1} = \mu_1^T Z, T_{MinP} = \min\{p_1^g, \dots, p_K^g\}.$$

782 The PC1 based test takes only the first PC as the proxy of a gene module and uses it as the
783 response variable to test for genetic variants with significant associations. We also compared
784 trans-PCO with a non-PC based statistical test, MinP, which takes the minimum p-value across
785 genes in the module as the test statistics.

786

787 To implement trans-PCO, PC1, and MinP tests, there are two main pieces of information that
788 are required as input, i.e. correlation matrix of the gene module and summary statistics (z-
789 scores) of SNPs with genes in the module. We used a gene module from the RNA-seq data
790 (see Genotype and RNA-seq QC) consisting of 101 genes ($K = 101$) and the corresponding
791 correlation matrix to make the settings more realistic. We sampled z-scores of 10^7 SNPs from
792 the null distribution,

$$Z_{NULL} \sim N(0, \Sigma_{101}).$$

793 We tested the associations between each SNP and the gene module using the above three
794 tests and evaluated the p-values against the uniform distribution to validate if the statistical tests
795 are well calibrated.

796

797 We also simulated 10k z-scores of SNPs from the alternative distribution,

$$Z_{Alt} \sim N(\sqrt{n}[\beta_{101\gamma}, 0]^T, \Sigma_{101}),$$

798 where n is the sample size, β is a 101γ -long vector representing the causal effect of a SNP on
799 101 genes, and γ is the proportion of true target genes in the module. Each component of β
800 follows $N(0, \sigma_b^2)$, where σ_b^2 is the genetic variance. By default, we set the sample size n to be
801 500, 30% genes (30) in the module are true *trans* target genes, and σ_b^2 to be 0.001. To evaluate
802 how three tests perform across different genetic architectures, we simulated multiple scenarios
803 across varying sample sizes, target gene proportions, and genetic variances. Specifically, we
804 looked at the cases where sample size is 200, 400, 600, and 800, causal genes proportion is
805 1%, 5%, 10%, 30%, and 50%, and genetic variance is 0.002, 0.003, 0.004, 0.005, and 0.006.
806 We simulated 10k SNPs and performed 1000 simulations. To control the false discovery rate,
807 we corrected the p-values for multiple testing based on the simulated empirical null distribution
808 of p-values, to keep it consistent with the method used in the RNA-seq dataset (see
809 Supplementary Note). An association is significant if its adjusted p-value is lower than 0.1. The
810

812 power is calculated as the proportion of SNPs that were identified to be significant among 10k
813 SNPs.

814 Genotype and RNA-seq QC

815 We analyzed an RNA-seq dataset from whole blood²⁷. We performed a series of QC on
816 individuals, genotypes, RNA-seq reads, and genes before quantifying gene expression profiles.
817 Specifically, we referred to the procedures in Liu et al.²⁸. For individual-level QC, we removed
818 related individuals from 922 samples with RNA-seq reads available and kept 913 individuals in
819 total for further analysis. For genotype-level QC, we used SNPs with genotyping rate $> 99\%$,
820 minor allele frequency $> 5\%$, and Hardy-Weinberg equilibrium $< 10^{-6}$.

821
822 RNA-seq reads can be falsely aligned to genomic regions with high sequence similarity. The
823 misalignment onto these regions can lead to false positive signals in *trans*-eQTL analysis and
824 spurious correlations in gene co-expression networks⁸. To help address this problem, we
825 performed RNA-seq read-level QC to remove the reads with alignment issues. To be more
826 specific, we filtered out the reads that were mapped to multiple genomic regions and reads with
827 > 2 mismatches. We also removed the reads aligned to regions with low mappability.

828
829 On the gene level, we quantified the gene expression levels as Transcript Per Million (TPM). We
830 first normalized the expression levels across samples to the normal distribution by quantile
831 normalization, and then we normalized the expression levels across genes. We also filtered out
832 genes that are not protein-coding, lincRNA genes, or genes on sex chromosomes. As a result,
833 there are 12,132 genes left for follow up analysis. Finally, to control for potential confounding
834 factors and capture the co-expressed gene modules only driven by genetic effects, we
835 regressed out covariates from the expression profiles. We used biological and technical
836 covariates, including genotype PCs, expression PCs, and blood cell type proportions^{27,28}.

837 Identification of the gene co-expression network

838 We are interested in jointly testing co-regulated genes in a multivariate association test. To this
839 end, we first used WGCNA²⁹ to construct a gene co-expression network, where genes are
840 connected through correlations among their residualized expression levels. WGCNA uses
841 hierarchical clustering to cut the network into separate gene modules with highly correlated
842 expression levels. We used the default parameter settings, except that we specified the
843 minimum module size parameter ('minModuleSize') to 10 to obtain small gene modules.

844 Colocalization of *trans*-eQTLs and GWAS loci

845 To explore the role of *trans*-eQTLs in understanding complex traits and diseases, we performed
846 colocalization between *trans*-eQTLs of a gene module and GWAS loci of 46 complex traits and
847 diseases. Specifically, we used GWAS summary statistics of 29 blood-related traits³⁷ and 8
848 other traits from UK Biobank, provided by Neale Lab (<http://www.nealelab.is/uk-biobank/>), and 9
849 autoimmune diseases collected in Mu et al.³⁴ (Table S8).

850
851 To define a region to perform colocalization, we first selected the *trans*-eQTL with the most
852 significant p-value and expanded a 200kb flanking genomic region centered at the lead SNP as
853 a region to perform colocalization analysis. We then moved on to the next most significant SNP
854 and expanded a 200kb flanking region. We stopped searching for lead SNPs when all *trans*-
855 eQTLs were included. This resulted in 255 *trans* region-module pairs. As two adjacent regions
856 could correspond to the same colocalization signal, we marked adjacent regions as a region
857 group if their lead SNPs were within 200kb, which generated 179 *trans*-region–module pairs in
858 total. We ran colocalization analysis between each 200kb *trans* region and GWAS loci of 46
859 complex traits using the R package coloc³³, assuming there is at most one causal variant for
860 each region. We used the default priors and 0.75 as the PP4 cutoff for significant
861 colocalizations. We defined a merged region group as being colocalized with a trait if any of its
862 200kb sub-regions has significant colocalization with the trait. We visualized the colocalized
863 regions using LocusCompareR⁵⁵.

864 Colocalization of *trans*-eQTLs and *cis*-e/sQTLs

865 We performed colocalization analysis between *trans*-eQTLs and *cis*-eQTLs (*cis*-sQTLs) of
866 genes near the *trans*-eQTLs. We used the same 179 *trans*-region–module pairs defined in the
867 colocalization analysis of GWAS loci. For a *trans* loci, we searched for the genes within 500 kb
868 around the lead *trans*-eQTLs of the loci, and used these genes to perform colocalization. We
869 used summary statistics of *cis*-eQTLs and *cis*-sQTLs in the DGN dataset from Mu et al.³⁴. We
870 ran coloc³³ with default priors and 0.75 as PP4 cutoff.

871 Trait heritability enrichment in gene modules

872 To investigate whether a gene module is enriched for trait heritability, we applied stratified LD
873 score regression⁵² (S-LDSC) to 166 co-expression gene modules and 46 complex traits and
874 diseases. Specifically, for each module we defined the annotation set as the SNPs within
875 genomic regions of genes in the module and also a 500 base-pair window around the genes.
876 We also included 97 annotations from the baseline model. Partitioned heritability enrichment
877 was calculated as the proportion of trait heritability contributed by SNPs in the module
878 annotation over the proportion of SNPs in that annotation.

879 Summary-statistics–based trans-PCO applied to eQTLGen

880 The eQTLGen Consortium¹⁰ has conducted the largest *cis*- and *trans*-eQTLs association
881 analyses in blood to date. Specifically, 31,684 samples were tested for over 11 million SNPs
882 across 37 cohorts. The summary statistics of *trans*-eQTLs are available for 10,317 trait-
883 associated SNPs on 19,942 genes.

884
885 We applied our pipeline trans-PCO to eQTLGen summary statistics, using the same 166 co-
886 expression gene modules defined in DGN dataset. We searched for *trans*-eQTLs among 10,317
887 SNPs.

888
889 The eQTLGen summary statistics are marginal z-scores meta-weighted across multiple cohorts.
890 Most z-scores are from studies where the RNA-seq reads with mappability issues were not
891 filtered out before quantifying gene expression profiles. Therefore, directly applying trans-PCO
892 to the summary statistics can lead to false positive signals, which are driven by the cross-
893 mappability between the genes in the module and the *cis*-gene of the test SNP. In order to
894 reduce false positive *trans* signals, we removed from the gene module genes that are cross-
895 mappable to the *cis*-gene (within 100kb) of the test SNP, which is a common practice used in
896 previous studies^{8,27,56}. We further removed genes on the same chromosome as the test SNP to
897 prevent the detected *trans* effects from being dominated by *cis* regulations.
898
899 The gene expression profiles are not available in eQTLGen. Therefore, to estimate the gene
900 correlation Σ of a module, we searched among eQTLGen SNPs for SNPs insignificantly
901 associated with the module (null SNPs) (see Supplementary Note for details). We observed that
902 there are less null SNPs that can be found for large modules. And simulations show that the low
903 ratio of the number of null SNPs used for Σ estimation to the module size leads to false positive
904 signals (Supplementary Note). Therefore, we removed 37 gene modules with ratios lower than
905 50. Finally, we performed trans-PCO on the remaining 129 gene modules.
906
907

908 Data availability

909 All *trans*-eQTL signals, with functional annotation of the gene sets, can be browsed and
910 downloaded at www.networks-liulab.org/transPCO. The genotype and gene expression data of
911 DGN were downloaded by application through the NIMH Center for Collaborative Genomic
912 Studies on Mental Disorders, under the “Depression Genes and Networks study (D. Levinson,
913 PI)”. The eQTLGen summary statistics are publicly available at <https://www.eqtldgen.org/>. The
914 MSigDB hallmark gene sets are publicly available at [http://www.gsea-
915 msigdb.org/gsea/msigdb/human/genesets.jsp?collection=H](http://www.gsea-msigdb.org/gsea/msigdb/human/genesets.jsp?collection=H). GWAS summary statistics of traits
916 in the UK Biobank are available at Neale Lab (<http://www.nealelab.is/uk-biobank/>).
917

918 Code availability

919 The trans-PCO pipeline and code to reproduce analyses is available at <https://github.com/liliw->
920 [w/Trans](https://github.com/broadinstitute/tensorql). This work also uses TensorQL (<https://github.com/broadinstitute/tensorql>) to perform
921 QTL mapping between genotypes and single genes, R package coloc
922 (<https://github.com/chr1swallace/coloc>) to perform colocalization analyses between trans-eQTLs
923 and cis-eQTLs, cis-sQTLs and GWAS loci, and S-LDSC software (<https://github.com/bulik/ldsc>)
924 to estimate trait heritability enrichment in gene modules.
925

926 Declaration of interests

927 The authors declare no competing interests.

928

929 References

- 930 1. Maurano, M.T., Humbert, R., Rynes, E., Thurman, R.E., Haugen, E., Wang, H., Reynolds, A.P., Sandstrom, R., Qu, H., Brody, J., et al. (2012). Systematic Localization of Common 931 Disease-Associated Variation in Regulatory DNA. *Science* 337, 1190–1195. 932 10.1126/science.1222794.
- 933 2. Lango Allen, H., Estrada, K., Lettre, G., Berndt, S.I., Weedon, M.N., Rivadeneira, F., Willer, C.J., Jackson, A.U., Vedantam, S., Raychaudhuri, S., et al. (2010). Hundreds of variants 934 clustered in genomic loci and biological pathways affect human height. *Nature* 467, 832– 935 838. 10.1038/nature09410.
- 936 3. Hindorff, L.A., Sethupathy, P., Junkins, H.A., Ramos, E.M., Mehta, J.P., Collins, F.S., and 937 Manolio, T.A. (2009). Potential etiologic and functional implications of genome-wide 938 association loci for human diseases and traits. *Proc. Natl. Acad. Sci.* 106, 9362–9367. 939 10.1073/pnas.0903103106.
- 940 4. Watanabe, K., Stringer, S., Frei, O., Umićević Mirkov, M., de Leeuw, C., Polderman, T.J.C., 941 van der Sluis, S., Andreassen, O.A., Neale, B.M., and Posthuma, D. (2019). A global 942 overview of pleiotropy and genetic architecture in complex traits. *Nat. Genet.* 51, 1339– 943 1348. 10.1038/s41588-019-0481-0.
- 944 5. Nicolae, D.L., Gamazon, E., Zhang, W., Duan, S., Dolan, M.E., and Cox, N.J. (2010). Trait- 945 associated SNPs are more likely to be eQTLs: annotation to enhance discovery from 946 GWAS. *PLoS Genet.* 6, e1000888.
- 947 6. Yao, D.W., O'Connor, L.J., Price, A.L., and Gusev, A. (2020). Quantifying genetic effects on 948 disease mediated by assayed gene expression levels. *Nat. Genet.* 52, 626–633. 949 10.1038/s41588-020-0625-2.
- 950 7. Liu, X., Li, Y.I., and Pritchard, J.K. (2019). Trans Effects on Gene Expression Can Drive 951 Omnipotent Inheritance. *Cell* 177, 1022–1034.e6. 10.1016/j.cell.2019.04.014.
- 952 8. Saha, A., and Battle, A. (2019). False positives in trans-eQTL and co-expression analyses 953 arising from RNA-sequencing alignment errors. *F1000Research* 7, 1860. 954 10.12688/f1000research.17145.2.
- 955 9. Albert, F.W., Bloom, J.S., Siegel, J., Day, L., and Kruglyak, L. (2018). Genetics of trans- 956 regulatory variation in gene expression. *eLife* 7, e35471. 10.7554/eLife.35471.
- 957 10. Võsa, U., Claringbould, A., Westra, H.-J., Bonder, M.J., Deelen, P., Zeng, B., Kirsten, H., 958 Saha, A., Kreuzhuber, R., Yazar, S., et al. (2021). Large-scale cis- and trans-eQTL analyses 959 identify thousands of genetic loci and polygenic scores that regulate blood gene expression. 960 *Nat. Genet.* 53, 1300–1310. 10.1038/s41588-021-00913-z.
- 961 11. Kim, S., and Xing, E.P. (2009). Statistical Estimation of Correlated Genome Associations to 962 a Quantitative Trait Network. *PLOS Genet.* 5, e1000587. 10.1371/journal.pgen.1000587.
- 963 12. Ferreira, M.A.R., and Purcell, S.M. (2009). A multivariate test of association. *Bioinformatics* 964 25, 132–133. 10.1093/bioinformatics/btn563.
- 965 13. Boyle, E.A., Li, Y.I., and Pritchard, J.K. (2017). An Expanded View of Complex Traits: From 966 Polygenic to Omnipotent. *Cell* 169, 1177–1186. 10.1016/j.cell.2017.05.038.
- 967 14. Small, K.S., Todorčević, M., Civelek, M., El-Sayed Moustafa, J.S., Wang, X., Simon, M.M., 968 Fernandez-Tajes, J., Mahajan, A., Horikoshi, M., Hugill, A., et al. (2018). Regulatory variants 969 at KLF14 influence type 2 diabetes risk via a female-specific effect on adipocyte size and 970 body composition. *Nat. Genet.* 50, 572–580. 10.1038/s41588-018-0088-x.
- 971 15. Smemo, S., Tena, J.J., Kim, K.-H., Gamazon, E.R., Sakabe, N.J., Gómez-Marín, C., Aneas, 972 I., Credidio, F.L., Sobreira, D.R., Wasserman, N.F., et al. (2014). Obesity-associated 973 variants within FTO form long-range functional connections with IRX3. *Nature* 507, 371– 974 375. 10.1038/nature13138.
- 975 16. Vogelstein, B., Lane, D., and Levine, A.J. (2000). Surfing the p53 network. *Nature* 408, 976

978 307–310. 10.1038/35042675.

979 17. J Joo, J.W., Sul, J.H., Han, B., Ye, C., and Eskin, E. (2014). Effectively identifying regulatory
980 hotspots while capturing expression heterogeneity in gene expression studies. *Genome
981 Biol.* 15, r61. 10.1186/gb-2014-15-4-r61.

982 18. Rakitsch, B., and Stegle, O. (2016). Modelling local gene networks increases power to
983 detect trans-acting genetic effects on gene expression. *Genome Biol.* 17, 33.
984 10.1186/s13059-016-0895-2.

985 19. Zhou, X., and Cai, X. (2021). Joint eQTL mapping and inference of gene regulatory network
986 improves power of detecting both cis- and trans-eQTLs. *Bioinformatics* 38, 149–156.
987 10.1093/bioinformatics/btab609.

988 20. Hore, V., Viñuela, A., Buil, A., Knight, J., McCarthy, M.I., Small, K., and Marchini, J. (2016).
989 Tensor decomposition for multiple-tissue gene expression experiments. *Nat. Genet.* 48,
990 1094–1100. 10.1038/ng.3624.

991 21. Ramdhani, S., Navarro, E., Udine, E., Efthymiou, A.G., Schilder, B.M., Parks, M., Goate, A.,
992 and Raj, T. (2020). Tensor decomposition of stimulated monocyte and macrophage gene
993 expression profiles identifies neurodegenerative disease-specific trans-eQTLs. *PLOS
994 Genet.* 16, e1008549. 10.1371/journal.pgen.1008549.

995 22. Rotival, M., Zeller, T., Wild, P.S., Maouche, S., Szymczak, S., Schillert, A., Castagné, R.,
996 Deiseroth, A., Proust, C., Brochetton, J., et al. (2011). Integrating Genome-Wide Genetic
997 Variations and Monocyte Expression Data Reveals Trans-Regulated Gene Modules in
998 Humans. *PLOS Genet.* 7, e1002367. 10.1371/journal.pgen.1002367.

999 23. Kolberg, L., Kerimov, N., Peterson, H., and Alasoo, K. (2020). Co-expression analysis
1000 reveals interpretable gene modules controlled by trans-acting genetic variants. *eLife* 9,
1001 e58705. 10.7554/eLife.58705.

1002 24. Dutta, D., He, Y., Saha, A., Arvanitis, M., Battle, A., and Chatterjee, N. (2022). Aggregative
1003 trans-eQTL analysis detects trait-specific target gene sets in whole blood. *Nat. Commun.*
1004 13, 4323. 10.1038/s41467-022-31845-9.

1005 25. Aschard, H., Vilhjálmsson, B.J., Greliche, N., Morange, P.-E., Trégouët, D.-A., and Kraft, P.
1006 (2014). Maximizing the Power of Principal-Component Analysis of Correlated Phenotypes in
1007 Genome-wide Association Studies. *Am. J. Hum. Genet.* 94, 662–676.
1008 10.1016/j.ajhg.2014.03.016.

1009 26. Liu, Z., and Lin, X. (2019). A Geometric Perspective on the Power of Principal Component
1010 Association Tests in Multiple Phenotype Studies. *J. Am. Stat. Assoc.* 114, 975–990.
1011 10.1080/01621459.2018.1513363.

1012 27. Battle, A., Mostafavi, S., Zhu, X., Potash, J.B., Weissman, M.M., McCormick, C.,
1013 Haudenschild, C.D., Beckman, K.B., Shi, J., Mei, R., et al. (2014). Characterizing the
1014 genetic basis of transcriptome diversity through RNA-sequencing of 922 individuals.
1015 *Genome Res.* 24, 14–24. 10.1101/gr.155192.113.

1016 28. Liu, X., Mefford, J.A., Dahl, A., He, Y., Subramaniam, M., Battle, A., Price, A.L., and Zaitlen,
1017 N. (2020). GBAT: a gene-based association test for robust detection of trans-gene
1018 regulation. *Genome Biol.* 21, 211. 10.1186/s13059-020-02120-1.

1019 29. Langfelder, P., and Horvath, S. (2008). WGCNA: an R package for weighted correlation
1020 network analysis. *BMC Bioinformatics* 9, 559. 10.1186/1471-2105-9-559.

1021 30. Liberzon, A., Birger, C., Thorvaldsdóttir, H., Ghandi, M., Mesirov, J.P., and Tamayo, P.
1022 (2015). The Molecular Signatures Database Hallmark Gene Set Collection. *Cell Syst.* 1,
1023 417–425. 10.1016/j.cels.2015.12.004.

1024 31. Kanehisa, M., Furumichi, M., Sato, Y., Ishiguro-Watanabe, M., and Tanabe, M. (2021).
1025 KEGG: integrating viruses and cellular organisms. *Nucleic Acids Res.* 49, D545–D551.
1026 10.1093/nar/gkaa970.

1027 32. Szklarczyk, D., Gable, A.L., Nastou, K.C., Lyon, D., Kirsch, R., Pyysalo, S., Doncheva, N.T.,
1028 Legeay, M., Fang, T., Bork, P., et al. (2021). The STRING database in 2021: customizable

1029 protein–protein networks, and functional characterization of user-uploaded
1030 gene/measurement sets. *Nucleic Acids Res.* **49**, D605–D612. 10.1093/nar/gkaa1074.

1031 33. Giambartolomei, C., Vukcevic, D., Schadt, E.E., Franke, L., Hingorani, A.D., Wallace, C.,
1032 and Plagnol, V. (2014). Bayesian Test for Colocalisation between Pairs of Genetic
1033 Association Studies Using Summary Statistics. *PLOS Genet.* **10**, e1004383.
1034 10.1371/journal.pgen.1004383.

1035 34. Mu, Z., Wei, W., Fair, B., Miao, J., Zhu, P., and Li, Y.I. (2021). The impact of cell type and
1036 context-dependent regulatory variants on human immune traits. *Genome Biol.* **22**, 122.
1037 10.1186/s13059-021-02334-x.

1038 35. Westra, H.-J., Peters, M.J., Esko, T., Yaghootkar, H., Schurmann, C., Kettunen, J.,
1039 Christiansen, M.W., Fairfax, B.P., Schramm, K., Powell, J.E., et al. (2013). Systematic
1040 identification of trans eQTLs as putative drivers of known disease associations. *Nat. Genet.*
1041 **45**, 1238–1243. 10.1038/ng.2756.

1042 36. Luijk, R., Dekkers, K.F., van Iterson, M., Arindrarto, W., Claringbould, A., Hop, P.,
1043 Boomsma, D.I., van Duijn, C.M., van Greevenbroek, M.M.J., Veldink, J.H., et al. (2018).
1044 Genome-wide identification of directed gene networks using large-scale population
1045 genomics data. *Nat. Commun.* **9**, 3097. 10.1038/s41467-018-05452-6.

1046 37. Morris, J.A., Daniloski, Z., Domingo, J., Barry, T., Ziosi, M., Glinos, D.A., Hao, S., Mimitou,
1047 E.P., Smibert, P., Roeder, K., et al. (2021). Discovery of target genes and pathways of blood
1048 trait loci using pooled CRISPR screens and single cell RNA sequencing. Preprint at bioRxiv,
1049 10.1101/2021.04.07.438882 10.1101/2021.04.07.438882.

1050 38. Raudvere, U., Kolberg, L., Kuzmin, I., Arak, T., Adler, P., Peterson, H., and Vilo, J. (2019).
1051 g:Profiler: a web server for functional enrichment analysis and conversions of gene lists
1052 (2019 update). *Nucleic Acids Res.* **47**, W191–W198. 10.1093/nar/gkz369.

1053 39. Schwickert, T.A., Tagoh, H., Gültekin, S., Dakic, A., Axelsson, E., Minnich, M., Ebert, A.,
1054 Werner, B., Roth, M., Cimmino, L., et al. (2014). Stage-specific control of early B cell
1055 development by the transcription factor Ikaros. *Nat. Immunol.* **15**, 283–293.
1056 10.1038/ni.2828.

1057 40. Lemarié, M., Bottardi, S., Mavungou, L., Pak, H., and Milot, E. (2021). IKAROS is required
1058 for the measured response of NOTCH target genes upon external NOTCH signaling. *PLOS*
1059 *Genet.* **17**, e1009478. 10.1371/journal.pgen.1009478.

1060 41. Cui, J., Zhu, L., Xia, X., Wang, H.Y., Legras, X., Hong, J., Ji, J., Shen, P., Zheng, S., Chen,
1061 Z.J., et al. (2010). NLRC5 Negatively Regulates the NF-κB and Type I Interferon Signaling
1062 Pathways. *Cell* **141**, 483–496. 10.1016/j.cell.2010.03.040.

1063 42. Kobayashi, K.S., and van den Elsen, P.J. (2012). NLRC5: a key regulator of MHC class I-
1064 dependent immune responses. *Nat. Rev. Immunol.* **12**, 813–820. 10.1038/nri3339.

1065 43. Bycroft, C., Freeman, C., Petkova, D., Band, G., Elliott, L.T., Sharp, K., Motyer, A.,
1066 Vukcevic, D., Delaneau, O., O'Connell, J., et al. (2018). The UK Biobank resource with deep
1067 phenotyping and genomic data. *Nature* **562**, 203–209. 10.1038/s41586-018-0579-z.

1068 44. Liu, J.Z., van Sommeren, S., Huang, H., Ng, S.C., Alberts, R., Takahashi, A., Ripke, S., Lee,
1069 Jostins, L., Shah, T., et al. (2015). Association analyses identify 38 susceptibility loci
1070 for inflammatory bowel disease and highlight shared genetic risk across populations. *Nat.*
1071 *Genet.* **47**, 979–986. 10.1038/ng.3359.

1072 45. de Lange, K.M., Moutsianas, L., Lee, J.C., Lamb, C.A., Luo, Y., Kennedy, N.A., Jostins, L.,
1073 Rice, D.L., Gutierrez-Achury, J., Ji, S.-G., et al. (2017). Genome-wide association study
1074 implicates immune activation of multiple integrin genes in inflammatory bowel disease. *Nat.*
1075 *Genet.* **49**, 256–261. 10.1038/ng.3760.

1076 46. Ferreira, M.A., Vonk, J.M., Baurecht, H., Marenholz, I., Tian, C., Hoffman, J.D., Helmer, Q.,
1077 Tillander, A., Ullemar, V., van Dongen, J., et al. (2017). Shared genetic origin of asthma,
1078 hay fever and eczema elucidates allergic disease biology. *Nat. Genet.* **49**, 1752–1757.
1079 10.1038/ng.3985.

1080 47. Loh, P.-R., Kichaev, G., Gazal, S., Schoech, A.P., and Price, A.L. (2018). Mixed-model
1081 association for biobank-scale datasets. *Nat. Genet.* **50**, 906–908. 10.1038/s41588-018-
1082 0144-6.

1083 48. INTERNATIONAL MULTIPLE SCLEROSIS GENETICS CONSORTIUM (2019). Multiple
1084 sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility.
1085 *Science* **365**, eaav7188. 10.1126/science.aav7188.

1086 49. Ferreira, M.A.R., Mathur, R., Vonk, J.M., Szwajda, A., Brumpton, B., Granell, R., Brew, B.K.,
1087 Ullemar, V., Lu, Y., Jiang, Y., et al. (2019). Genetic Architectures of Childhood- and Adult-
1088 Onset Asthma Are Partly Distinct. *Am. J. Hum. Genet.* **104**, 665–684.
1089 10.1016/j.ajhg.2019.02.022.

1090 50. Bentham, J., Morris, D.L., Graham, D.S.C., Pinder, C.L., Tombleson, P., Behrens, T.W.,
1091 Martín, J., Fairfax, B.P., Knight, J.C., Chen, L., et al. (2015). Genetic association analyses
1092 implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of
1093 systemic lupus erythematosus. *Nat. Genet.* **47**, 1457–1464. 10.1038/ng.3434.

1094 51. Zou, S., Teixeira, A.M., Kostadima, M., Astle, W.J., Radhakrishnan, A., Simon, L.M.,
1095 Truman, L., Fang, J.S., Hwa, J., Zhang, P., et al. (2017). SNP in human ARHGEF3
1096 promoter is associated with DNase hypersensitivity, transcript level and platelet function,
1097 and Arhgef3 KO mice have increased mean platelet volume. *PLOS ONE* **12**, e0178095.
1098 10.1371/journal.pone.0178095.

1099 52. Finucane, H.K., Bulik-Sullivan, B., Gusev, A., Trynka, G., Reshef, Y., Loh, P.-R., Anttila, V.,
1100 Xu, H., Zang, C., Farh, K., et al. (2015). Partitioning heritability by functional annotation
1101 using genome-wide association summary statistics. *Nat. Genet.* **47**, 1228–1235.
1102 10.1038/ng.3404.

1103 53. Rowland, B., Venkatesh, S., Tardaguila, M., Wen, J., Rosen, J.D., Tapia, A.L., Sun, Q.,
1104 Graff, M., Vuckovic, D., Lettre, G., et al. (2022). Transcriptome-wide association study in UK
1105 Biobank Europeans identifies associations with blood cell traits. *Hum. Mol. Genet.* **31**,
1106 2333–2347. 10.1093/hmg/ddac011.

1107 54. Artavanis-Tsakonas, S., Rand, M.D., and Lake, R.J. (1999). Notch Signaling: Cell Fate
1108 Control and Signal Integration in Development. *Science* **284**, 770–776.
1109 10.1126/science.284.5415.770.

1110 55. Liu, B., Gloudemans, M.J., Rao, A.S., Ingelsson, E., and Montgomery, S.B. (2019).
1111 Abundant associations with gene expression complicate GWAS follow-up. *Nat. Genet.* **51**,
1112 768–769. 10.1038/s41588-019-0404-0.

1113 56. Consortium, T.Gte. (2020). The GTEx Consortium atlas of genetic regulatory effects across
1114 human tissues. *Science* **369**, 1318–1330. 10.1126/SCIENCE.AAZ1776.

1115

1116 Acknowledgements

1117 We thank Y. Li, A. Dahl, Y. Gilad and Z. Mu for useful scientific discussions. We thank N.
1118 Gonzales, C. Jones and S. Sumner for editing the manuscript. This work was funded through
1119 the NIGMS Maximizing Investigators' Research Award (R35GM138084).

1120

1121

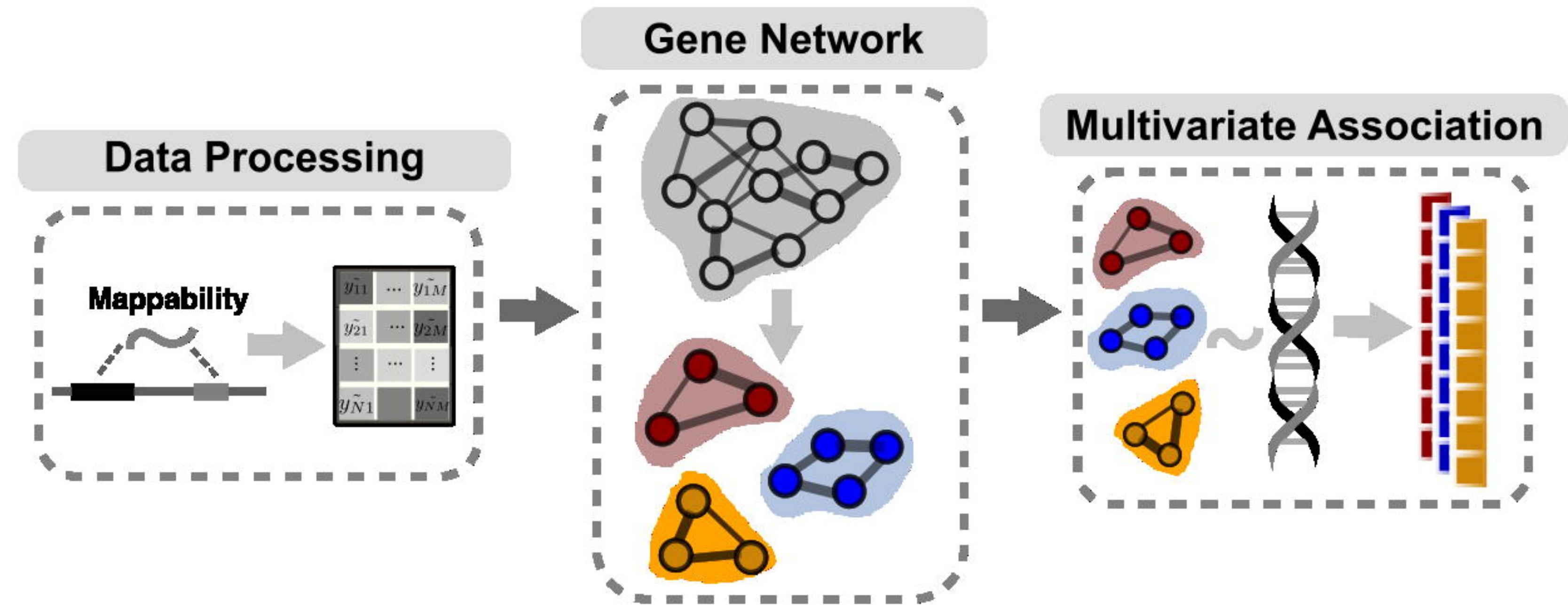
1122

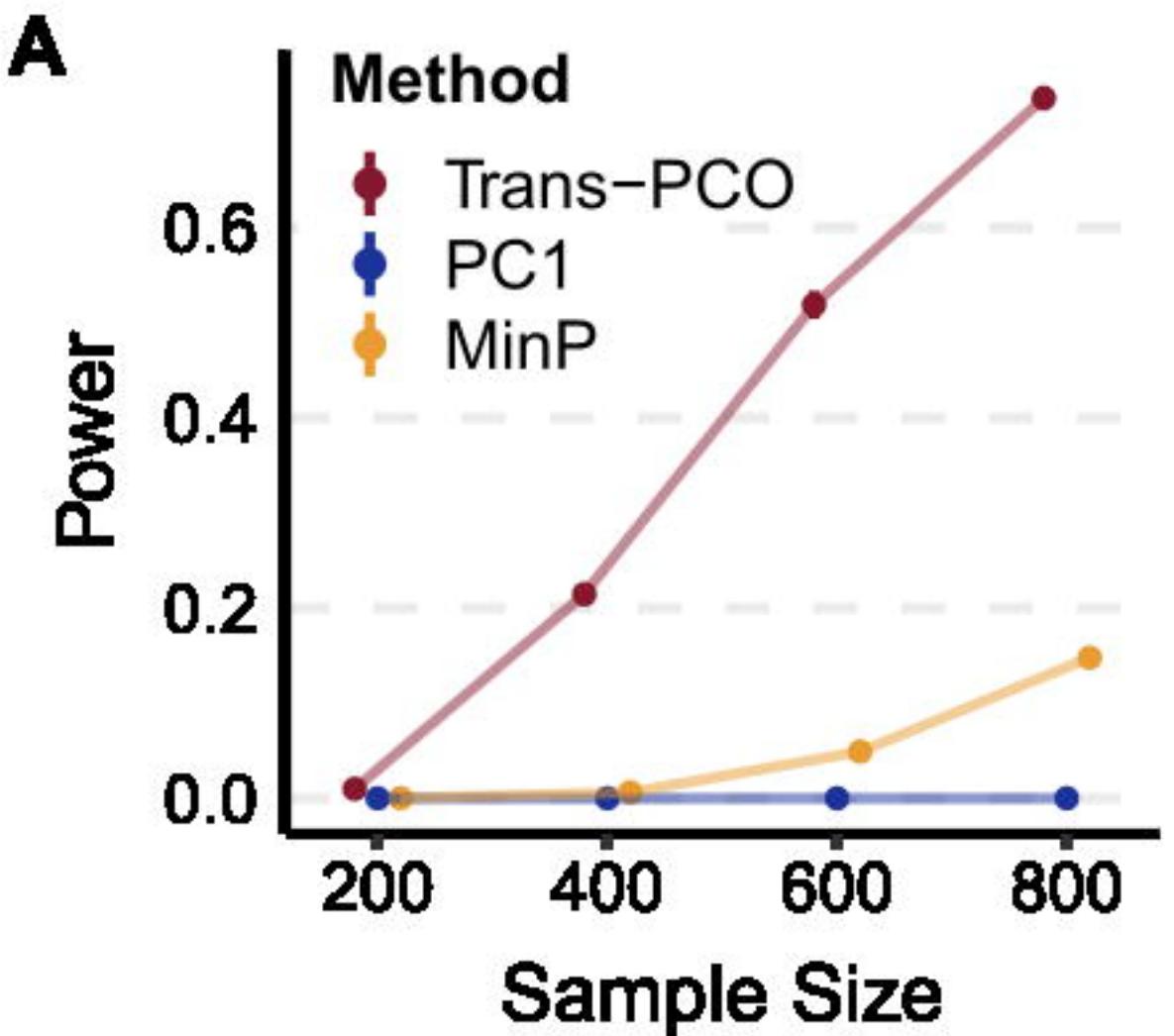
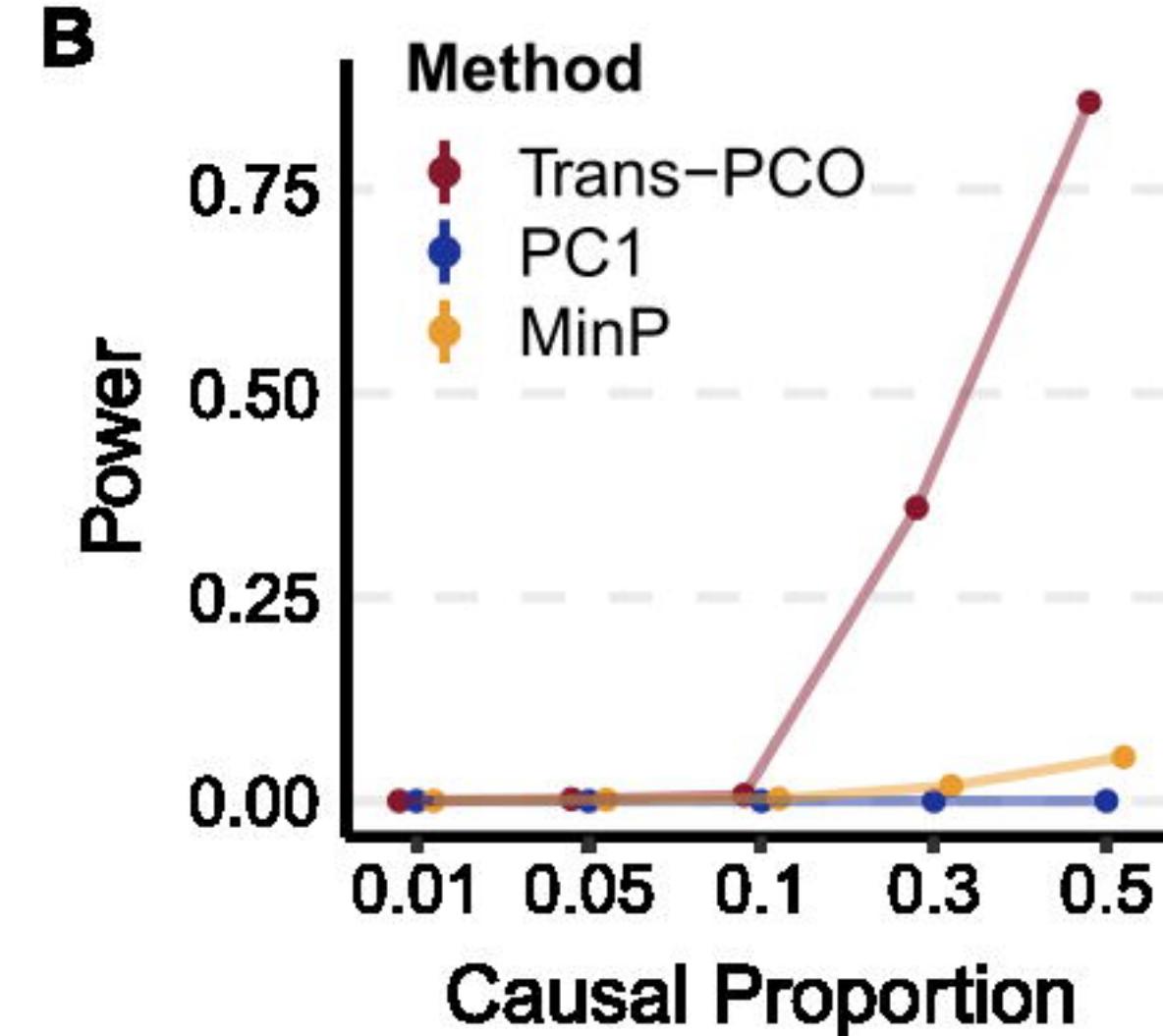
1123 **Supplementary information**

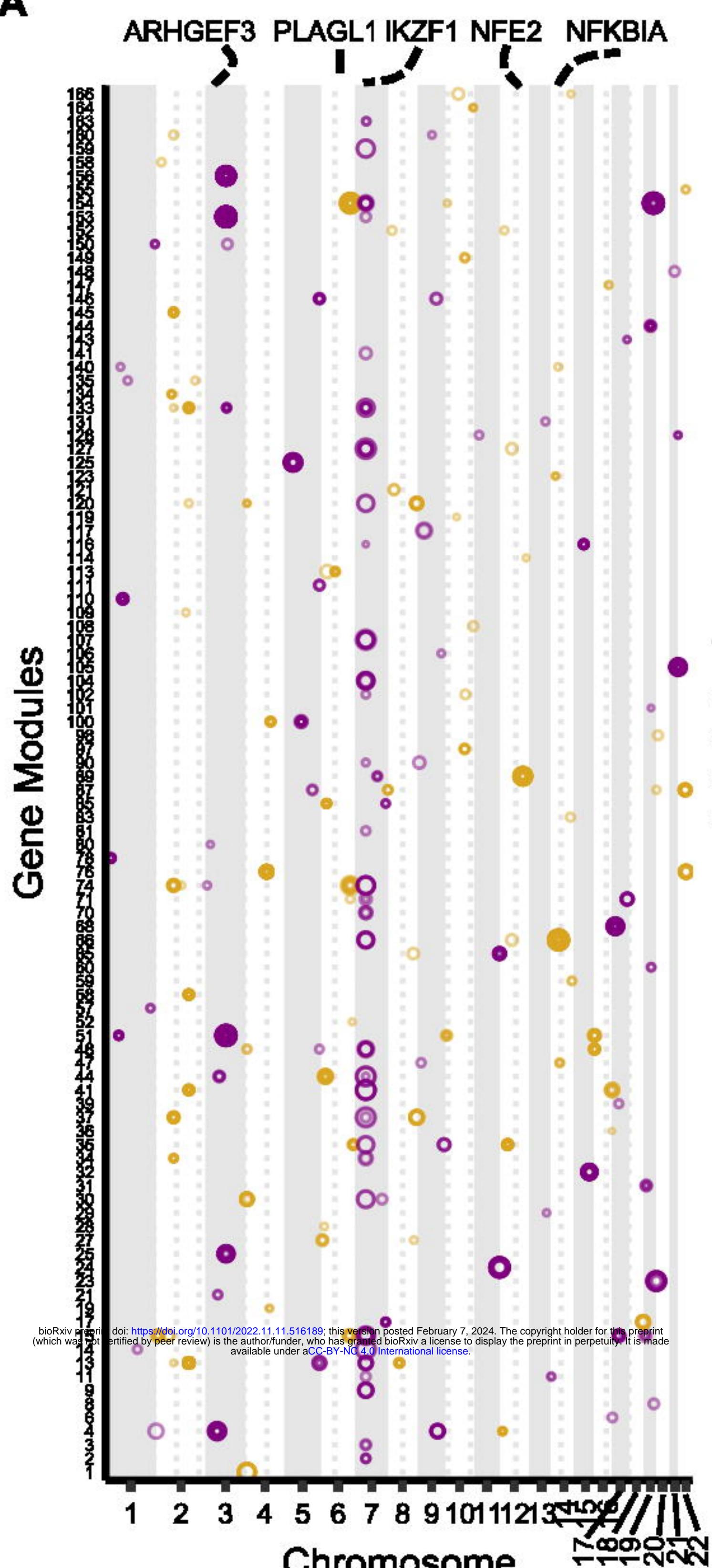
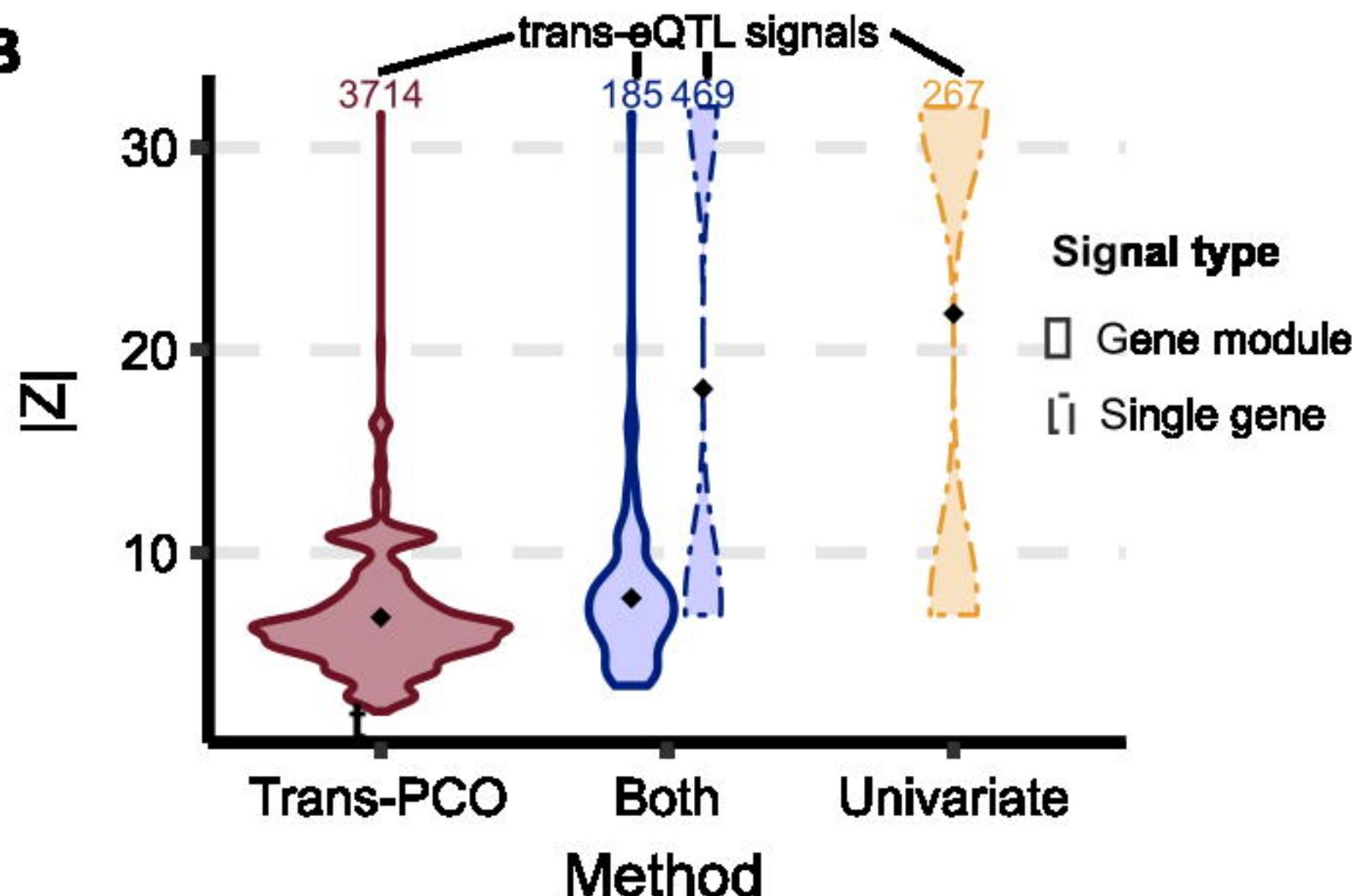
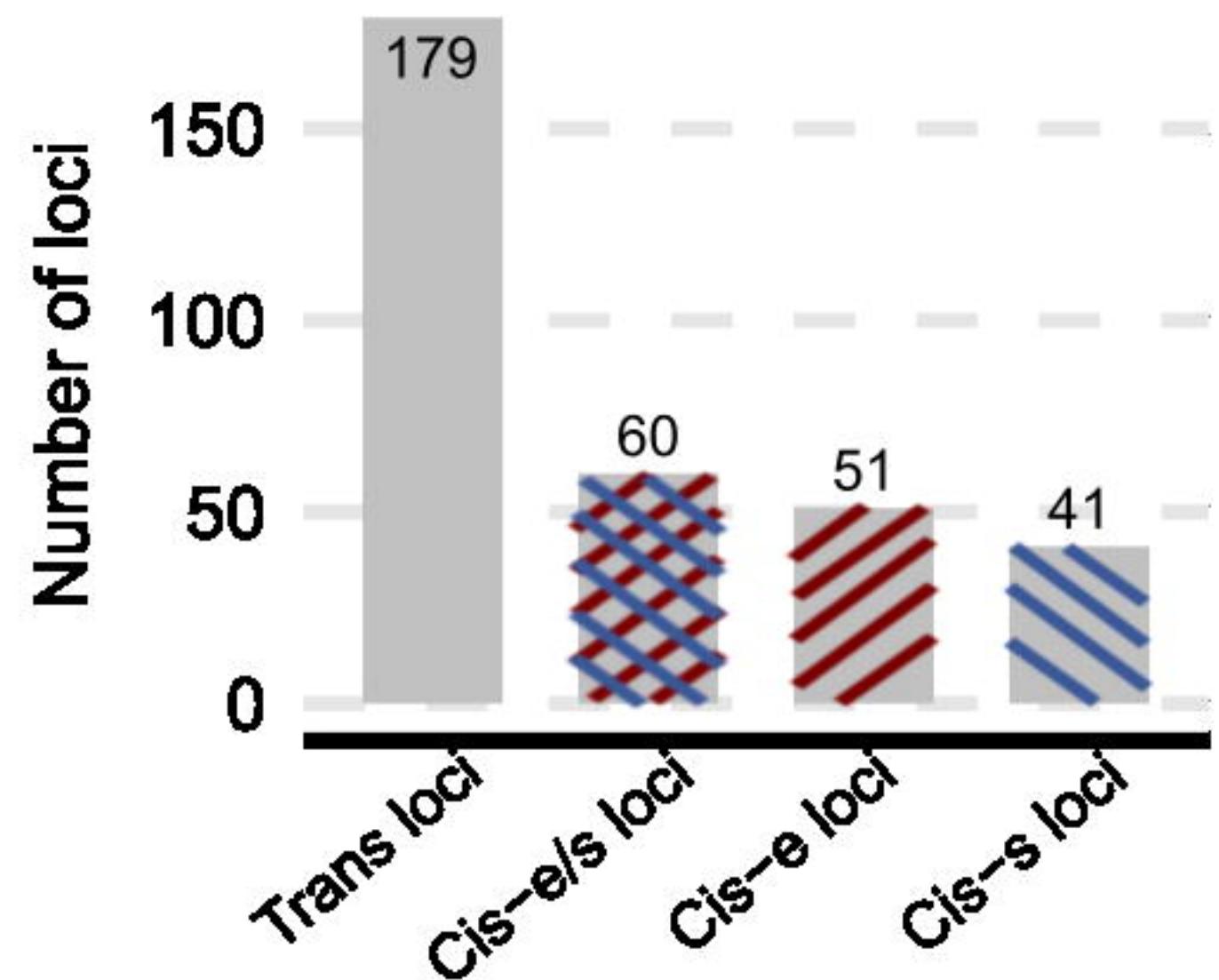
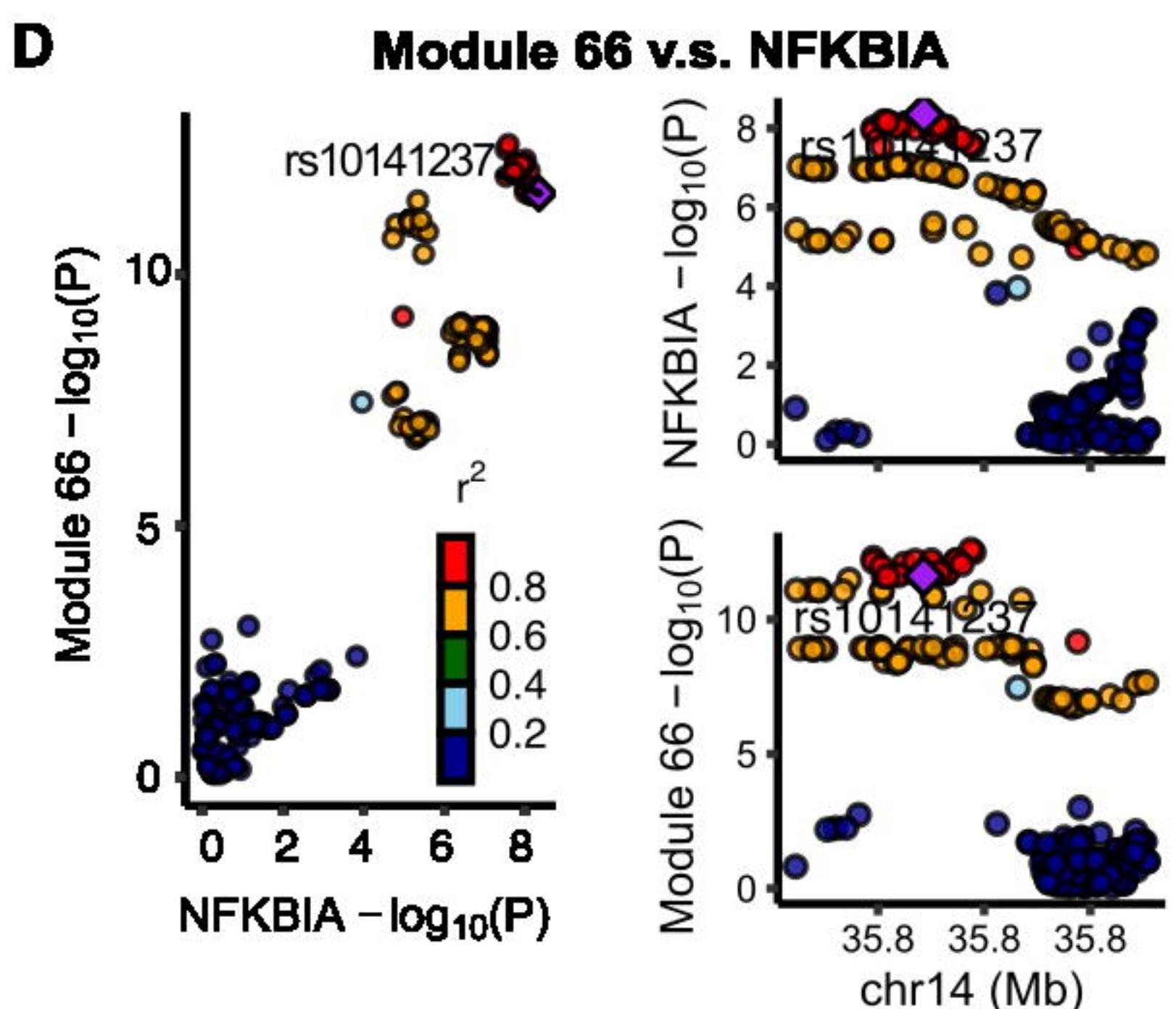
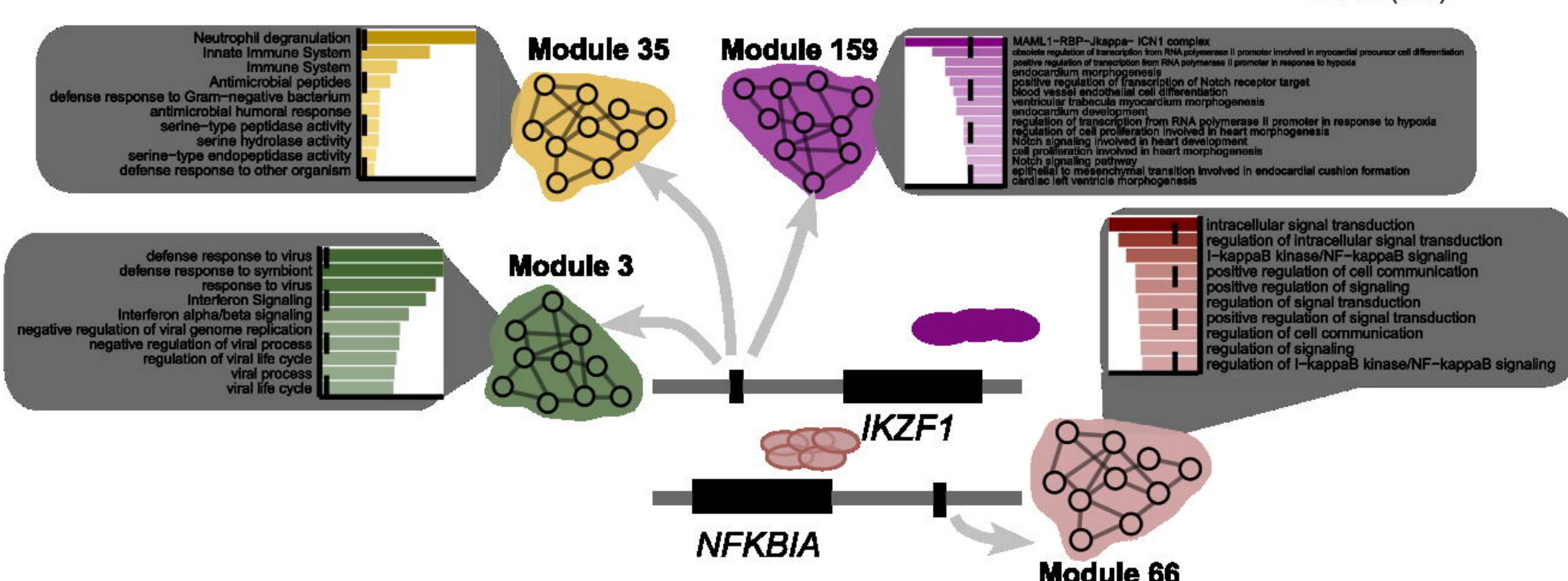
1124 Supplementary Note, Supplementary Figures 1-29, and Supplementary Tables 1-20.

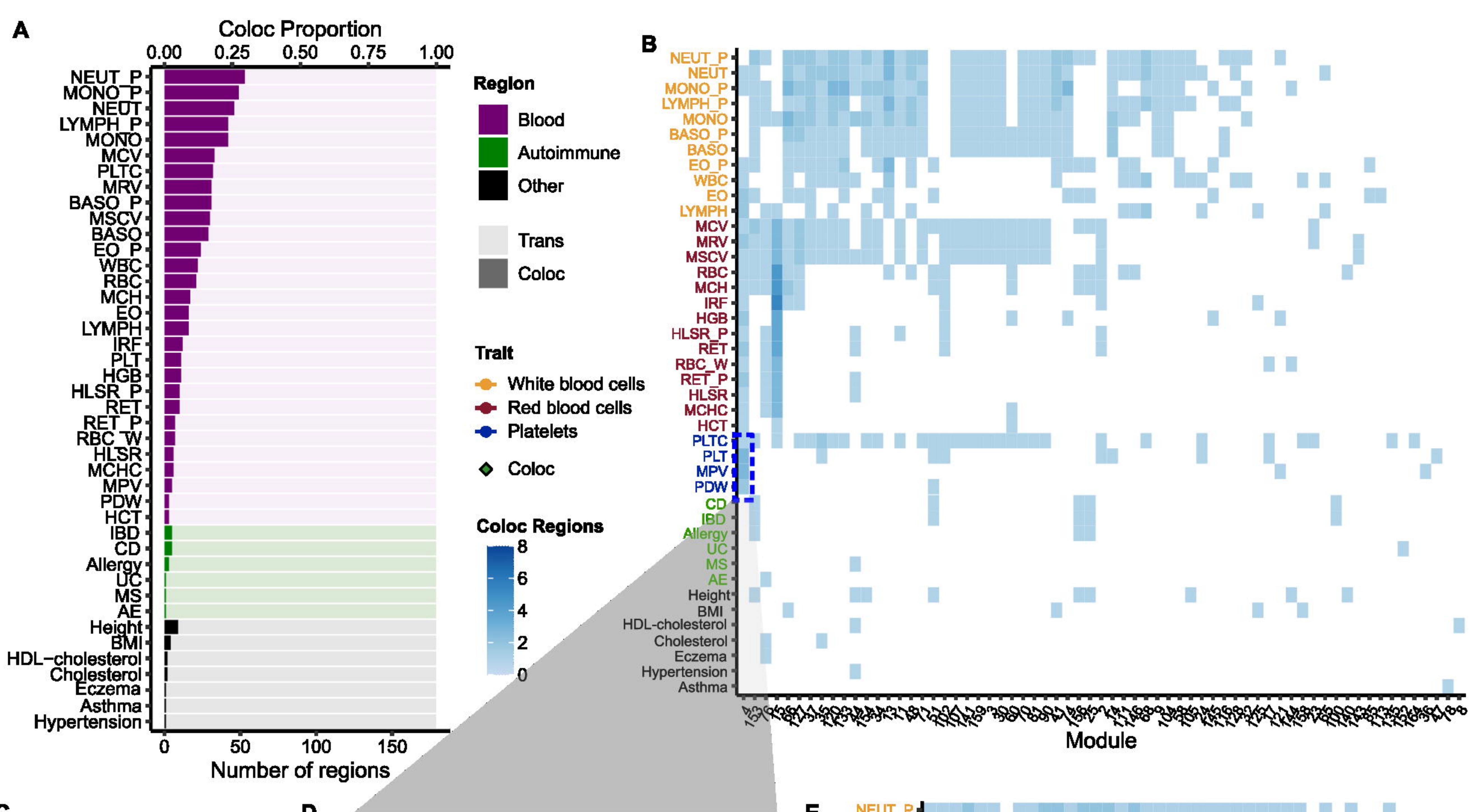
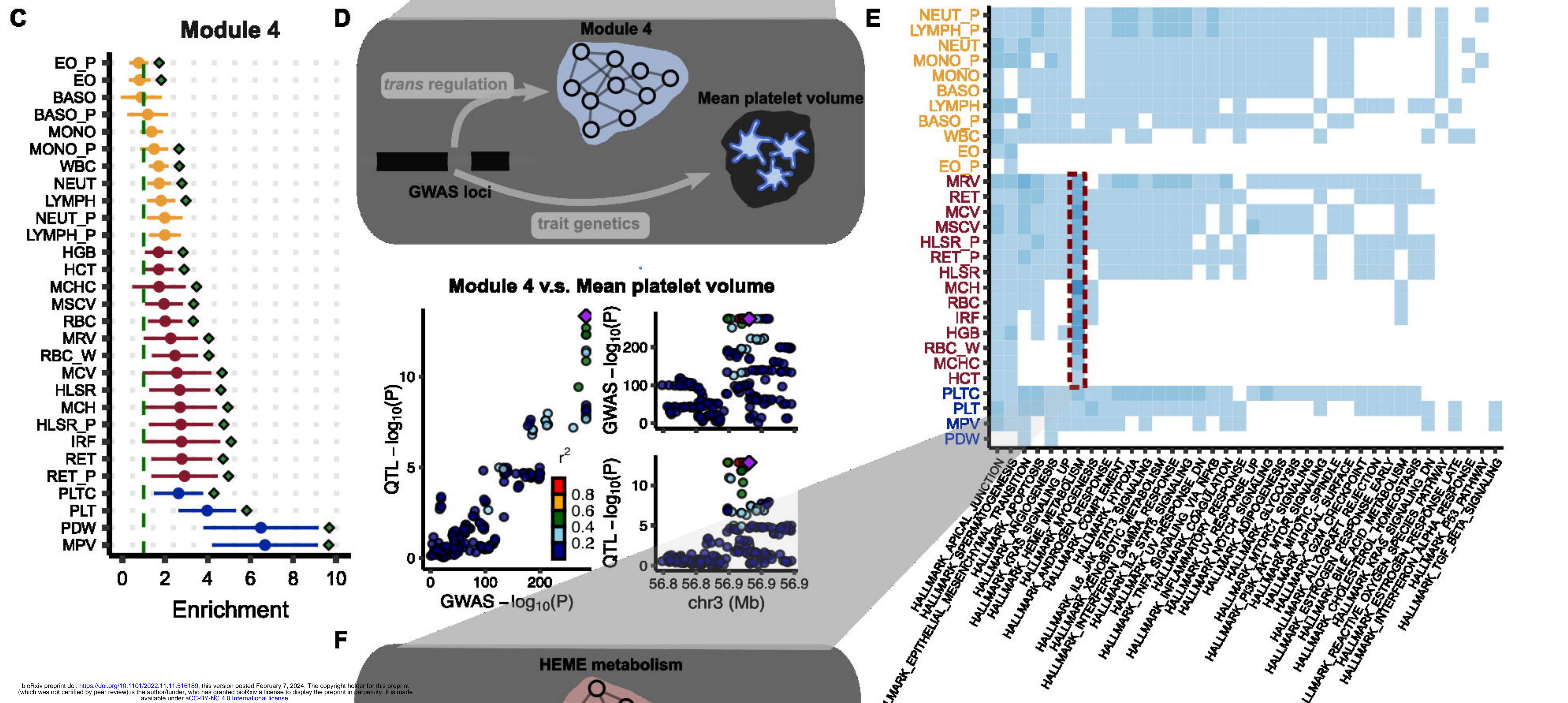
1125

1126

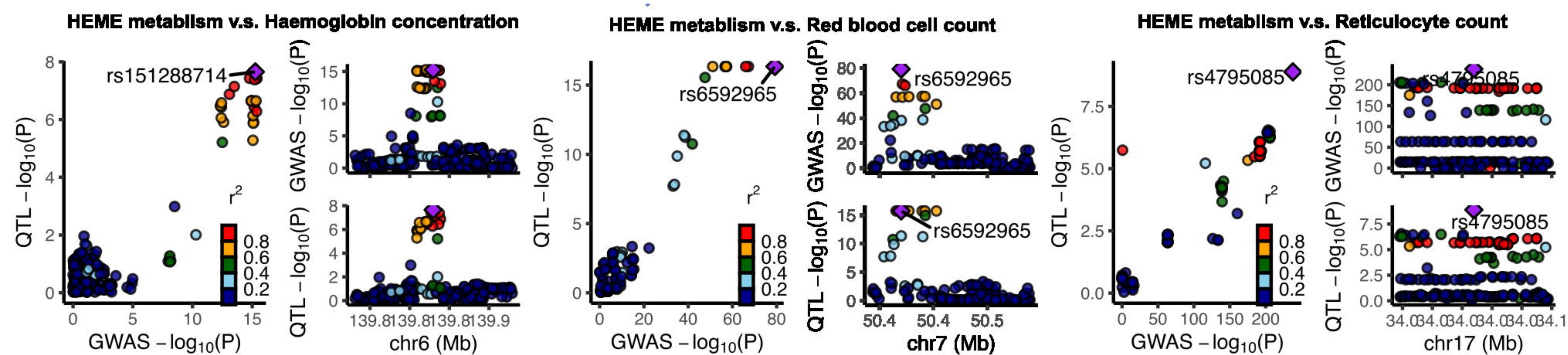


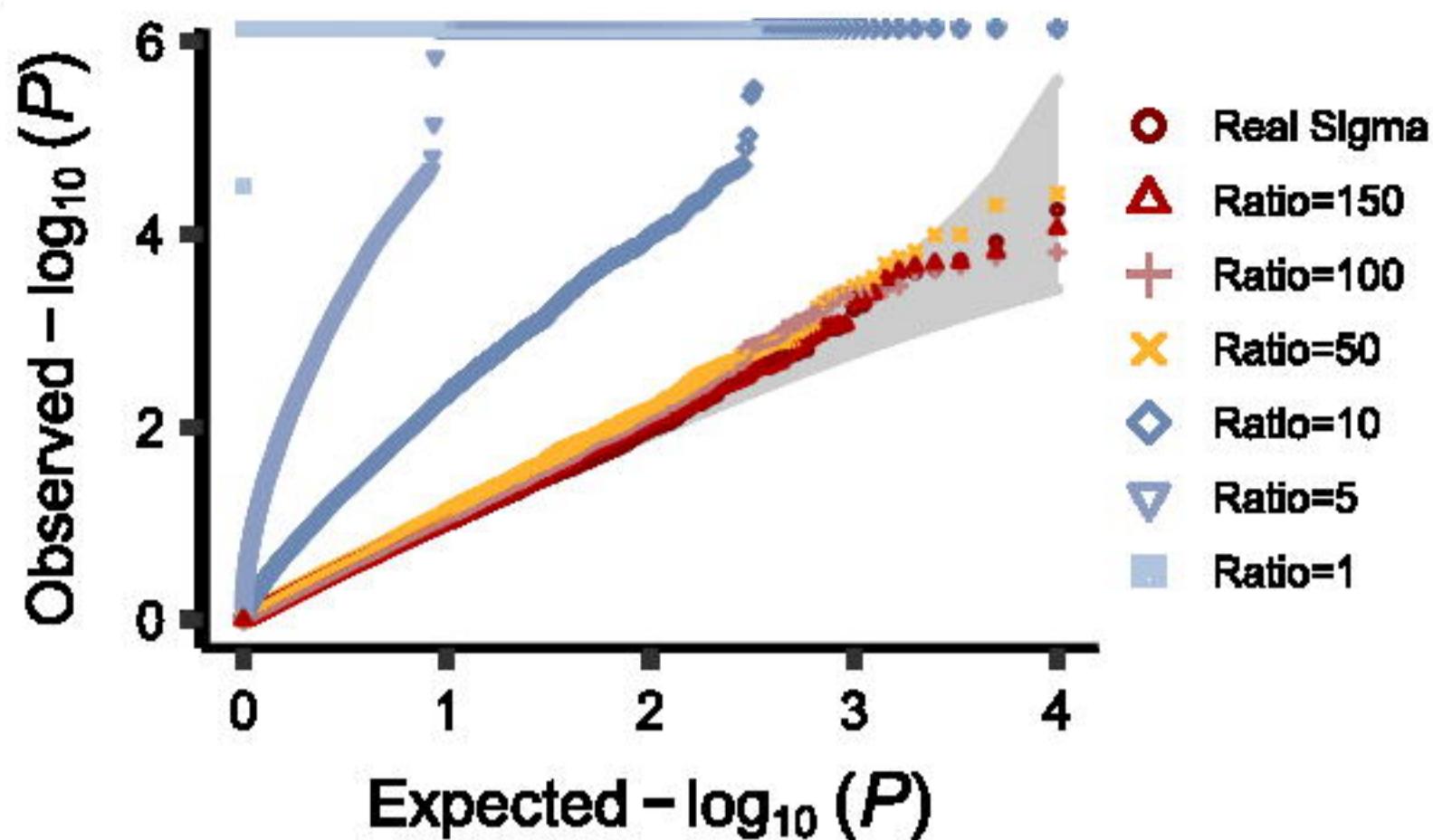
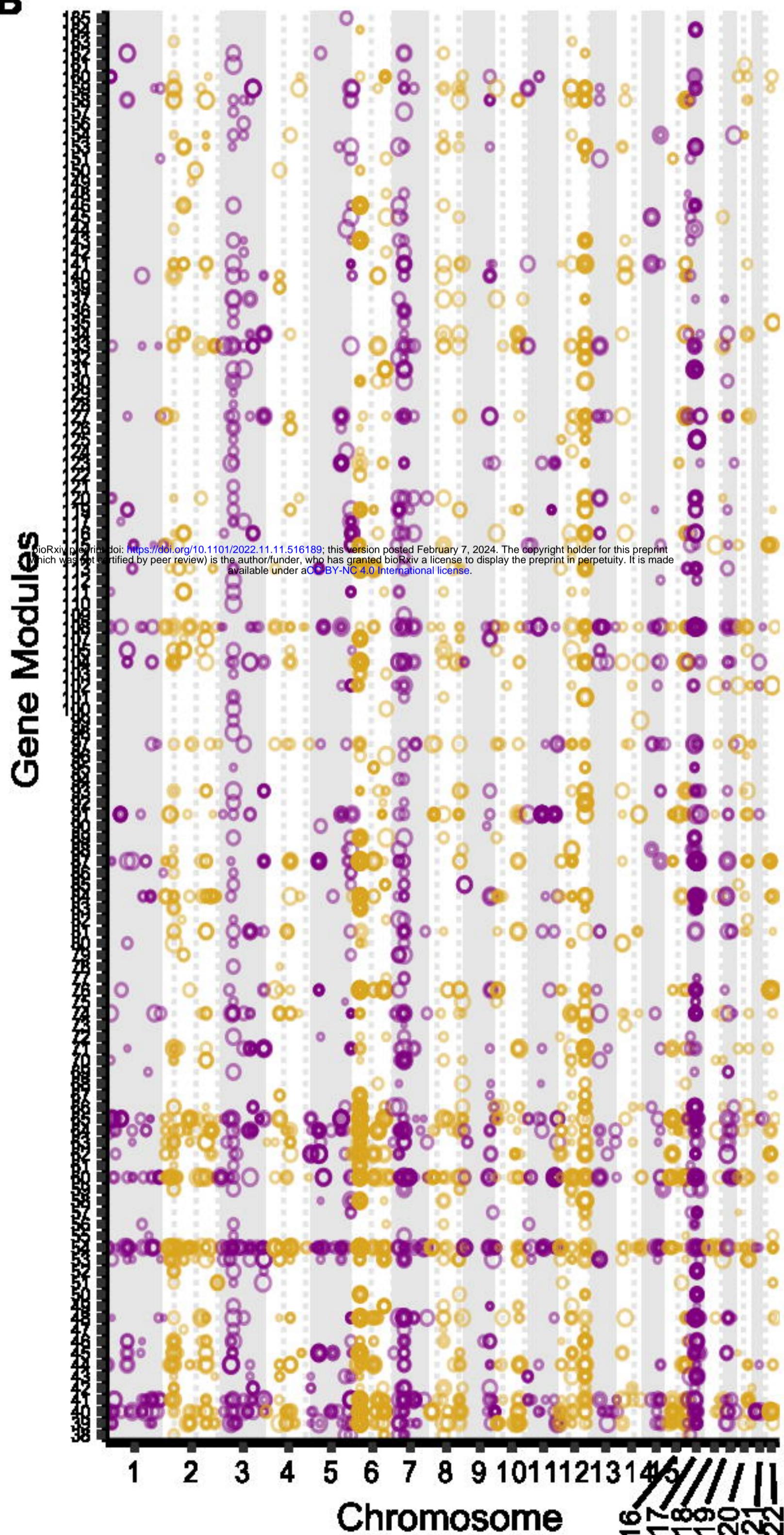
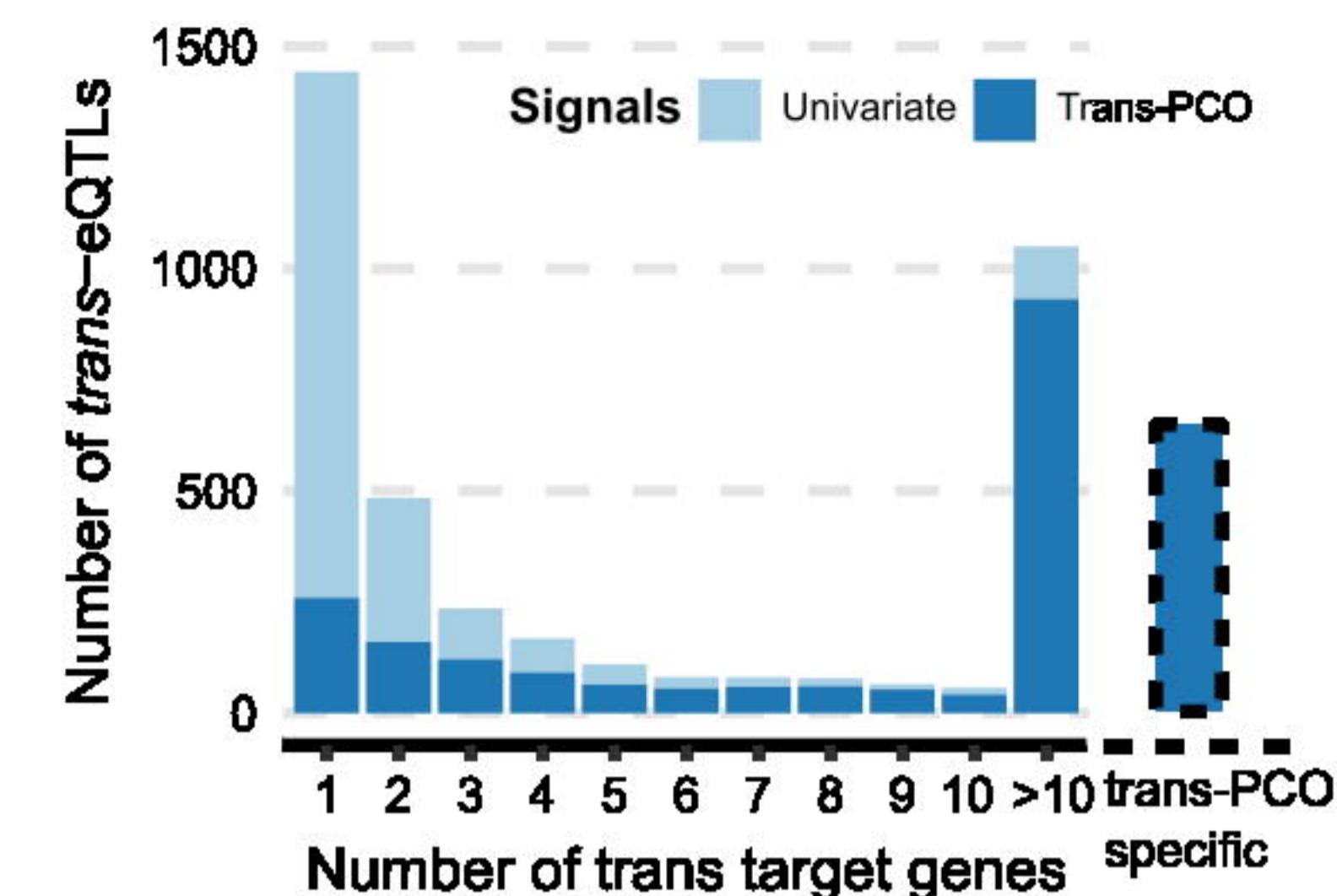
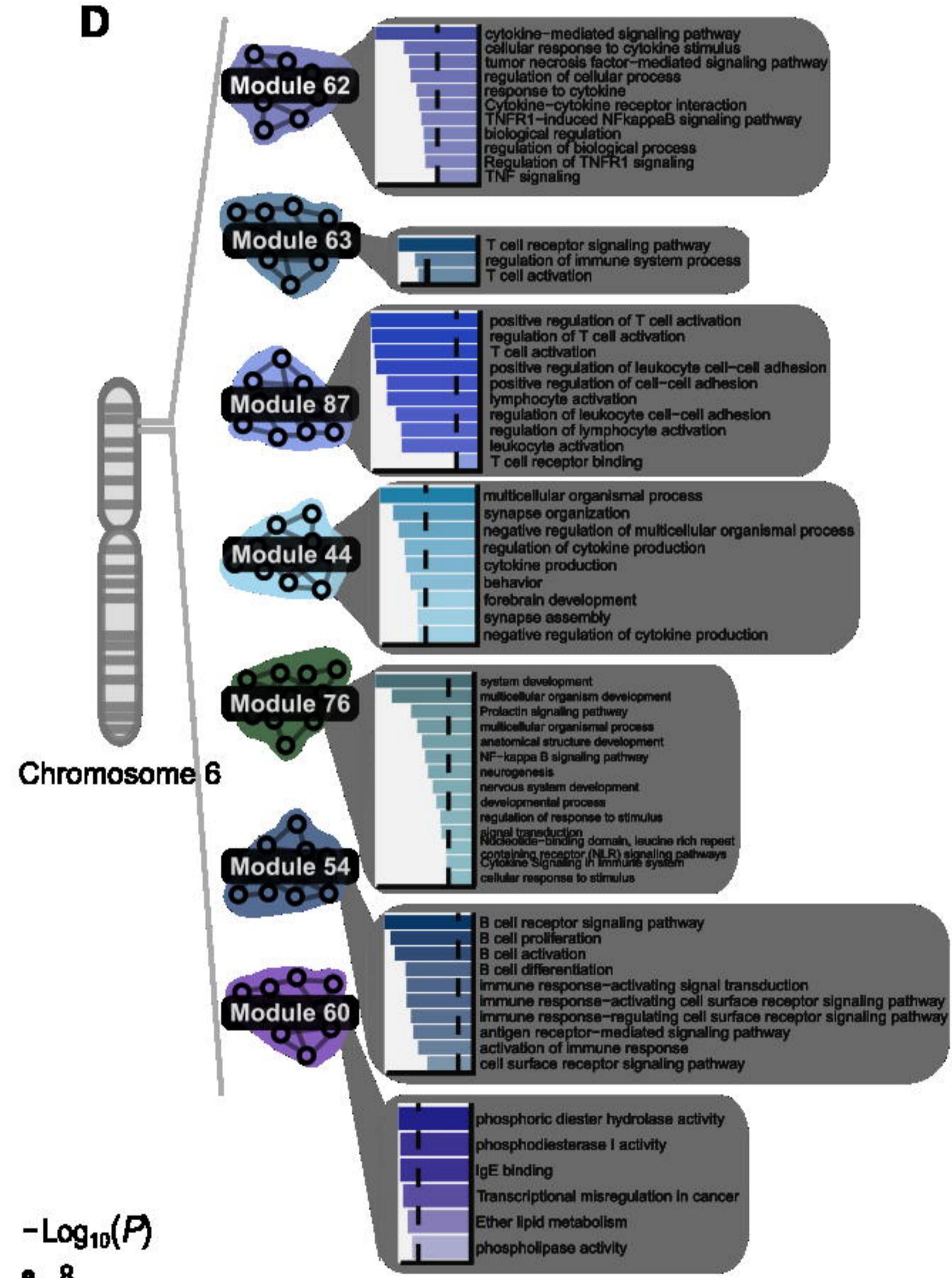


A**B****C****D****E**



bioRxiv preprint doi: <https://doi.org/10.1101/2022.11.11.576189>; this version posted February 7, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.



A**B****C****D**

$-\text{Log}_{10}(P)$

- 8
- 10
- 12
- 14