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Abstract

Nearly all trait-associated variants identified in GWAS are non-coding. The cis regulatory effects
of these variants have been extensively characterized, but how they impact gene regulation in
trans has been the subject of much fewer studies. Mapping trans genetic effects is very
challenging because their effect sizes tend to be small and a large multiple testing burden
reduces the power to detect them. In addition, read mapping biases can lead to many false
positives. To reduce mapping biases and substantially improve power to map trans-eQTLs, we
developed a pipeline called trans-PCO, which combines careful read and gene filters with a
principal component (PC)-based multivariate association test. Our simulations demonstrate that
trans-PCO substantially outperforms existing trans-eQTL mapping methods, including univariate
and primary PC-based methods. We applied trans-PCO to two gene expression datasets from
whole blood, DGN (N = 913) and eQTLGen (N = 31,684), to identify trans-eQTLs associated
with gene co-expression networks and hallmark gene sets representing well-defined biological
processes. In total, we identified 14,985 high-quality trans-eSNPs—module pairs associated with
197 co-expression gene modules and biological processes. To better understand the effects of
trait-associated variants on gene regulatory networks, we performed colocalization analyses
between GWAS loci of 46 complex traits and trans-eQTLs identified in DGN. We highlight
several examples where our map of trans effects helps us understand how trait-associated
variants impact gene regulatory networks and biological pathways. For example, we found that
a locus associated with platelet traits near ARHGEF3 trans-regulates a set of co-expressed
genes significantly enriched in the platelet activation pathway. Additionally, six red blood cell
trait-associated loci trans-regulate a gene set representing heme metabolism, a crucial process
in erythropoiesis. In conclusion, trans-PCO is a powerful and reliable tool that detects trans
regulators of cellular pathways and networks, which opens up new opportunities to learn the
impact of trait-associated loci on gene regulatory networks.
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Main

Genome-wide association studies (GWAS) have identified tens of thousands of genetic loci
associated with a large number of complex traits and diseases. More than 90% of GWAS loci
are located in non-coding regions of the genome and are thought to affect human traits by
regulating gene expression'™. Nearly all studies to date have focused on understanding the
effects of trait-associated variants on gene expression in cis, which only include effects on
genes that are near the associated loci. However, multiple lines of evidence suggest cis-
regulatory effects only capture a small proportion of the heritability of complex traits and
diseases. For example, Yao et al.® estimated that only an average of 11% of trait heritability is
explained by cis-genetic effects on gene expression levels. We previously hypothesized that
trans-eQTLs, despite having very small effects on each individual gene, may cumulatively
account for a large proportion of trait variance’. Indeed, our modeling indicates that trans-eQTL
effects account for twice as much genetic variance in complex traits as cis-eQTL effects’. Thus,
establishing a representative map of genetic variants and their trans effects is a critical step
toward understanding complex trait and disease genetics.

Two major challenges have precluded trans-eQTL discovery to date. First, trans-eQTL mapping
is extremely prone to false positives due to mapping errors that cause short sequences to map
to homologous regions of the genome®. This causes spurious associations between the
mapping coverages at multiple homologous regions, which result in strong but artificial trans-
eQTL signals if unaccounted for. The second challenge is by far more difficult to overcome:
trans-eQTLs are challenging to detect compared to cis-eQTLs because (i) they have much
smaller effect sizes than cis-eQTLs’, and (ii) a genome-wide search of trans-eQTLs involves a
huge number of statistical tests (~10° SNPsx ~20k genes) resulting in a heavy burden of
multiple testing corrections.

Previous work in yeast and human cells suggests that trans-eQTLs generally affect the
expression levels of multiple genes. In particular, Albert et al.® found that the 90% of trans-
eQTLs in their yeast segregant system could be mapped to just 102 hotspot loci that regulate a
median of 425 genes each. In fact, three hotspots were found to affect over half of the 5600
expressed trans-regulated genes, indicating that some trans-eQTLs may have significant
genome-wide effects. In humans, the largest trans-eQTL study to date from eQTLGen™ (n =
31,684) identified 59,786 trans-eQTL signals for 3,853 SNPs, indicating that each locus affects
at least 15 genes on average. Thus, compared to the traditional approach of testing the
association between genetic variants and the expression level of a single gene®'?, testing trans
associations between genetic variants and the expression levels of a group of genes can greatly
improve the power to identify trans-eQTLSs.

Indeed, many disease-associated loci are “peripheral master regulators”, which regulate
multiple genes in the core disease-relevant pathways’*®. For example, KLF14, which is
significantly associated with type 2 diabetes, is a peripheral master regulator that modulates the
expression of 385 genes involved in lipid metabolism'. Other examples include the
FTO/IRX3/IRX5 locus in obesity™ or the p53 tumor-suppressor gene in cancers'®. A method
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82 that can detect a large number of trans-eQTLs associated with multiple genes in gene networks
83 would allow functional interpretation of more disease associated loci and shed light on the
84  underlying mechanisms.
85
86  The co-regulation and co-expression patterns of genes driven by trans-eQTL have long been
87  recognized. Yet, most methods do not directly map trans-eQTLs of co-expressed gene sets, but
88 rather use the coexpression patterns to improve cis-eQTL or trans-eQTL mapping of a single
89 gene. Some utilized the co-expression patterns of genes to account for hidden variation in trans-
90 eQTL analysis, and thus improves power while reducing false trans-eQTL discovery. For
91 example, Joo et al.'” used the global correlation structure of genes to capture and remove
92  confounding effects from trans associations. Similarly, Rakitsch and Stegle®® utilized the local
93  co-expression patterns of trans- target genes to infer the appropriate covariates to be included
94 in trans-eQTL association testing. Zhou and Cai* jointly modeled the effects of cis regulatory
95 variants and gene regulatory networks on expression levels of a target gene, therefore allowing
96 the simultaneous identification of cis-eQTL and regulatory networks; the model then identifies
97 individual trans-eGenes, which are mediated by the cis regulatory effects. Several studies
98 aimed to identify trans-eQTLs of co-expressed genes. For example, some studies®®*?* used
99 tensor decomposition to decompose gene expressions of multiple tissues into a few latent
100 components, which might capture gene co-expression, to identify trans-eQTLs of the
101  components. However, the method requires gene expression data of multiple tissues, which is
102  not readily available for many gene expression studies. Rotival et al.?* used independent
103 component analyses to identify co-expression gene sets, and subsequently tested for the
104  enrichment of trans signals in the gene sets by hypergeometric tests. More recently, Kolberg et
105 al.® identified 38 trans-eQTLs (10% FDR) associated co-expressed gene modules, by testing
106 the association between SNPs and a single ‘eigengene’ (essentially the primary principal
107 component, PC1) of gene modules that captures the co-expression pattern. Nonetheless, PC1
108  has very limited power at identifying genetic effects (see below and Figure 2). Dutta et al.**
109 leveraged canonical correlation analysis to identify trans associations between multiple
110 disease—associated SNPs and multiple genes, by integrating with GWAS signals. However, the
111  method has different goals than identifying trans-eQTLs of multiple genes in specific tissues (for
112  example, it is useful for identifying “core” like disease genes and processes for a specific
113 disease; see Discussion and Supplementary Note).
114
115 Our main goal is to develop a method for detecting trans-eQTLs associated with multiple genes
116 in a gene module by using multivariate association. Multivariate association methods tend to be
117  more powerful than univariate association methods. Detecting trans-eQTLs of gene modules
118 containing multiple co-regulated genes can also potentially improve power by reducing multiple
119 testing burdens, because the number of tested gene modules is much less than the number of
120 genes. However, there are caveats. First, sequence similarity among distinct genomic regions
121  can lead to severe false positive discovery issues in trans-eQTL mapping®. This is especially
122  problematic in mapping trans-eQTLs of co-expression gene modules because genes can be
123  falsed clustered due to sequence similarities®. For example, the top latent components in
124  study?® mostly represent genes sharing homologous sequences. Therefore, we need to be extra
125  diligent about multi-mapping of sequencing reads when mapping trans-eQTLs of co-expression
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126  gene modules. Second, the naive way of using a single component, such as the first gene
127  expression PC, to represent the gene modules and use it as the response variable in
128 association tests, can significantly reduce power. While the primary PC captures the largest
129  amount of total variance in gene expression levels, it can be less powerful or even powerless in
130 detecting significant associations than higher-order PCs, because the direction of the genetic
131  effects on the genes may not align with the primary PC*?°. It is also difficult to predict which
132  higher-order PC has the highest power?.

133

134  To combat this, we propose trans-PCO, a flexible approach that uses the PCA-based omnibus
135 test?®® (PCO) to combine multiple PCs and improve power to detect trans-eQTLs. Trans-PCO
136 tackles both major challenges in trans-eQTL mapping. First, trans-PCO carefully filters
137 sequencing reads and genes based on mappability across different regions of the genome to
138  avoid false positives due to multi-mapping®?"?®®. Second, trans-PCO uses a novel multivariate
139  association test?® to detect genetic variants with effects on multiple genes in predefined sets and
140 captures genetic effects on multiple PCs. By default, trans-PCO defines sets of genes based on
141  co-expression gene modules as identified by WGCNA?. It also accepts user-defined sets; for
142  example, genes that belong to the same gene ontology®®, KEGG pathway*!, or protein
143  complex®.

144

145 We applied trans-PCO to RNA-sequencing data from the Depression Genes and Networks
146  study?’ (DGN, sample size N = 913) and the summary-level statistics from the eQTLGen study*®
147  (sample size N = 31,684) to identify trans-eQTLs associated with co-expression gene modules
148 and well-defined biological processes in whole blood. In total, trans-PCO identified 14,985 high-
149  quality trans-eSNPs—module pairs associated with 197 co-expression gene modules and
150  biological processes. We also performed colocalization analysis®®* of GWAS loci of 46 complex
151 traits and trans-eQTLs, in order to explore how trait-associated variants impact gene regulatory
152  networks and pathways in trans. All trans-eQTLs that are associated with gene co-expression
153 networks and biological pathways can be found in www.networks-liulab.org/transPCO.

154

155
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156 Results

157 Overview of the method

158 We developed the trans-PCO pipeline to detect trans-eQTLs that are associated with the
159 expression levels of a group of genes (gene module) by using a PC-based multivariate
160  association test?® that combines multiple gene expression PCs. The trans-PCO method consists
161  of three main steps (Figure 1).

162

163  First, trans-PCO pre-processes RNA-seq data to reduce false positive trans-eQTL associations
164  due to read multimapping errors. Specifically, trans-PCO removes all sequencing reads mapped
165 to low mappability regions of the genome (mappability score <1, Methods) before profiling gene
166  expression levels. These procedures substantially reduce the occurrence of false positive trans-
167 eQTLs due to sequencing alignment errors®?®. When only summary-level data are available
168  (e.g., eQTLGen dataset™®), trans-PCO dynamically excludes from the module any genes that
169  are cross-mappable to genes within 100 kb of the tested SNP.

170

171  Second, trans-PCO groups genes into clusters, which alleviates the burden of multiple testing
172 by reducing the number of statistical tests and thus increases the statistical power. By default,
173  trans-PCO determines the gene groupings by using WGCNA? to identify co-expression
174  modules from gene expression levels (see Methods). We remove covariates and confounders,
175 such as batch effects, gene expression PCs, and cell type proportions (e.g., DGN dataset®"),
176  from gene expression levels before grouping gene modules. This step is necessary to ensure
177 that the gene modules are not primarily driven by confounding factors. Trans-PCO also allows
178  customization of the gene groups or sets, i.e., genes in the same pathway or protein-protein
179 interaction network®*? can be grouped into user-defined gene modules.

180

181 Lastly, trans-PCO tests for association between each SNP and the expression levels of the
182 genes in each gene module by adapting the PCO method, which combines multiple gene
183  expression PCs by using six PC-based statistical tests: PCMinP, PCFisher, PCLC, WI, Wald
184 and VC (see Methods for details). Each PC-based test combines multiple PCs uniquely, which
185 allow signals under various genetic architectures to be captured. PCO evaluates the six PC-
186 based tests and takes the minimum p-value as the final test statistic. The final p-values are
187  computed according to Liu et al.* (also see Methods). Only PCs with eigenvalues 1,,> 0.1 are
188 used in trans-PCO (See Supplementary Note). To avoid identifying associations driven by cis-
189 effects, we excluded from the module all genes on the same chromosome as the test SNP. To
190 correct for multiple testing, we performed 10 permutations to establish an empirical null
191  distribution of p-values (See Supplementary Note).

192

193
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195 Figure 1. Three main steps in trans-PCO pipeline. The first step of trans-PCO pre-processes
196 RNA-seq data to reduce false positive trans-eQTL associations due to read alignment errors.
197 The second step involves grouping genes into gene sets, such as co-expression modules or
198 biological pathways. The last step tests for trans-eQTLs of each gene set by a PC-based
199  multivariate association test'’.

200 Trans-PCO outperforms existing methods in simulations

201 We performed simulations to evaluate the power of trans-PCO in detecting trans-eQTLs
202  associated with multiple genes. We primarily compared the power to (i) the standard univariate
203 test (“MinP”), and (ii) the primary PC-based test (“PC1”, Kolberg et al.?®; see Methods). We used
204  a co-expression gene module consisting of 101 genes from the DGN dataset (module 29). In

205  null simulations, we simulated the z-scores between a SNP and genes in a gene
206 module following the null distribution, , where is the residualized expression
207  correlation matrix. In power simulations, we generated z-scores from the distribution
208 B , Where is sample size (N = 200,400,600, and 800) and is a vector
209 representing the true effect sizes of the SNP on  genes. Among genes, a proportion  of
210 them are causal with non-zero effects. Therefore, we generated from a point normal
211  distribution, where for proportion , and ,
212  otherwise. The trans-genetic variance is ( ), which is a low and realistic per SNP

213  heritability for trans effects. We simulated 10,000 SNPs and performed 1000 simulations.

214

215 To compare the power of different approaches to identify trans-eQTLs, we defined significant
216  univariate tests for a gene module based on the minimum p-values across genes. For the
217  primary PC-based method, we used PC1 of the gene module co-expression matrix to represent
218 the module and tested it for associations. In power simulations, we set significance levels at
219 10% FDR to be consistent with real data analysis. We computed power as the average
220  proportion of significant tests out of 10,000 simulated SNPs across 1000 simulations.

221

222  Trans-PCO significantly outperformed the univariate test and the primary PC method across
223  different sample sizes and proportions of causal genes (Figure 2). Specifically, the power of
224  trans-PCO increases rapidly with increasing sample sizes. At the sample size of 800, assuming
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225 30% of genes have causal effects in the gene module, the power of trans-PCO is 74%,
226  compared to 15% for the univariate test and 0.0018% for the primary PC method (Figure 2A).
227

228 We also compared the power of each method across various causal gene proportions using a
229 fixed sample size (n=500). All three methods have little power in detecting trans-eQTLs when
230 the proportion of causal genes is below 10%. However, above this threshold, the power of trans-
231 PCO increases dramatically: 36% at 30% causal genes and 86% at 50% causal genes. In
232  contrast, the univariate and the primary PC methods remain almost powerless for nearly all
233  simulated scenarios (Figure 2B). We note that the primary PC method appears to be almost
234  powerless across the scenarios, which agrees with the previous observation that the primary PC
235  can be less powerful than higher-order PCs in GWAS". Simulation results at various genetic
236  variances can be found in Supplementary Materials, including at extremely low proportions of
237 causal genes and high trans effects (Figure S1). We found that the univariate method only
238  outperforms trans-PCO when the proportion of causal genes is extremely low, such as only one
239 causal gene in the entire gene set, and the trans effects are large. Trans-PCO gains more
240 power when there are more than 1 causal gene, as it aggregates multiple weak effects to
241  improve power. Null simulations demonstrated all three methods are well-controlled for false-
242  positive inflations (Figure S2).

243
A B
» [ ]
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. * 050 Method
g 04 g ¢ Trans-PCO
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0.0 = - e - 0.00] = —r —
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245  Figure 2. Power of trans-PCO across different sample sizes and causal gene proportions,
246 in comparison to PC1 (Kolberg et al.?®) and univariate (MinP) methods. (A) Power
247 comparison across various sample sizes (N = 200, 400, 600, and 800). Trans-genetic
248  variance was simulated to be 0.001 and the proportion of causal genes in the gene module
249  was 30%. Error bars representing 95% confidence intervals are plotted, but many are too small
250 to be visible. See numerical results in Table S2. (B) Power comparison across different
251  proportions of causal genes in the gene module. The simulated sample size was 500. Points
252  show average power across 1000 simulations. Error bars representing 95% confidence intervals
253  are plotted, but many are too small to be visible. See numerical results in Table S2.

254

255  We also included comparisons to two additional methods: ARCHIE proposed by Dutta et al.?*
256 and a method by Rovital et al.?” (see Supplementary Note, Figure S19 and Figure S20). We
257  showed that ARCHIE is not powerful at detecting trans-eQTL effects from a SNP to multiple
258 genes, which are the effects trans-PCO was designed for (Figure S19D). We note that the main
259 goal of ARCHIE is to identify trait-specific gene sets associated with GWAS loci, whereas trans-
260 PCO is designed to map trans-eQTLs for any user-specified gene sets in specific tissues or cell
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261 types (see Supplementary Note, Figure S19 and Discussion). Rovital et al.?* is based on the

262 primary PC-based approach and we showed that the method also has limited power at
263 identifying weak trans-eQTL effects (Supplementary Note and Figure S20).

264 Trans-PCO identifies 3899 trans-eSNP—module pairs associated
265 With co-expression gene modules in the DGN dataset

266  We used trans-PCO to identify trans-eQTLs associated with co-expression gene modules in
267 RNA-seq data from whole blood samples of the DGN cohort (N = 913)*”. WGCNA® identified
268 166 co-expression gene modules, with the number of genes in each module ranging between
269 625 (module 1, M1) and 10 (module 166, M166) (Supplementary Table S1). We then performed
270 genome-wide scans of trans-eQTLs for each gene module. At 10% FDR, trans-PCO identified
271  significant trans-eQTLs for 102 out of 166 gene modules, corresponding to 3899 significant
272  trans-eSNP-module pairs (Supplementary Table S3). Many trans-eSNPs are in linkage-
273  disequilibrium (LD). Using LD clumping to group trans-eSNPs into LD-independent loci
274  (R2<0.2), we found 202 trans-loci-module pairs (Figure 3A, Table S3, Table S4).

275

276  We compared trans-eQTL signals detected in DGN by trans-PCO to signals identified by the
277  univariate method in Battle et al.?”. Out of 12,132 genes analyzed by trans-PCO, the univariate
278 method detected 326 significant trans-eSNP—gene pairs for 128 genes at 5% FDR?'. At the
279 same FDR level, trans-PCO identified 3031 significant trans-eSNP—gene module pairs for 75
280 gene modules. We compared the magnitude of the significant trans-eQTL effects detected by
281 trans-PCO and the univariate method. More specifically, we compared the maximum univariate
282  z-scores of SNPs and each gene in significant trans-eSNP—module pairs identified by trans-
283  PCO to the z-scores of significant trans-eSNP—gene pairs by the univariate method. We found
284  that the maximum z-scores of trans-PCO signals are much smaller than z-scores of the
285 univariate method signals (Figure 3B), indicating that our multivariate approach can detect
286  much smaller trans effects than univariate methods.

287

288 We also applied the primary PC method (Kolberg et al.*®) to DGN, and identified 1483
289  significant trans-eSNP—module pairs (55 trans-loci-module pairs) at 10% FDR, and 1464 pairs
290 (99%) were detected by trans-PCO (Figure S13A). Notably, in total, trans-PCO identified more
291 than twice the signals than the primary PC method. However, the primary PC method identified
292  more signals than expected, as it was previously shown to be powerless in the simulations. We
293 note that we simulated weak effects and sparse causal proportions to better reflect common and
294  realistic trans effects, and the primary PC method is powerless in these settings. We performed
295 additional simulations with large effects and high causal proportions, and the primary PC
296 method achieved 50% power as trans-PCO (see Supplementary Note, Figure S18).
297  Additionally, we found in the DGN dataset that the univariate z-scores of trans signals detected
298 by the primary PC method are larger than those of trans-PCO signals (Figure S13B-D).
299 Therefore, the trans signals detected by the primary PC method are likely of strong trans
300 effects, and trans-PCO is able to detect additional weak trans effects. Statistically, PC1 can also
301 have good statistical power when the trans effects align with the direction of PC1%. To
302 demonstrate this, we performed simulations under the assumption that the genetic effect vector
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303 perfectly aligns with the primary PC direction. We found that the primary PC method has higher
304  power than trans-PCO and MinP methods under this special circumstance (Figure S14).
305 However, it is impossible to predict when the genetic effects align with gene expression PCs.

306 Trans-eQTLs are enriched in variants with cis-regulatory effects on
307 transcription factors

308 We found that only 31 trans-eSNPs (1%) are in coding regions, suggesting that a very small
309 proportion of trans-eQTLs impact gene expression levels in trans by altering protein coding
310 sequences. Several studies have shown that trans-eQTLs have cis-regulatory effects, impacting
311 the expression levels or splicing of nearby genes'®?’; thus, we evaluated our identified trans-
312 eQTLs for concomitant cis-regulatory activity. We first overlapped trans-eSNPs with cis-eQTLs
313  and cis-splicing QTLs (cis-sQTLs) in DGN**. Of the 2955 trans-eSNPs (Table S3), we found that
314  71% are significant cis-eSNPs in DGN, and 46% are significant cis-sSNPs, together accounting
315 for 73% of all trans-eSNPs. To further examine whether the cis and trans effects are driven by
316 the same variant, we performed colocalization analysis of trans-eQTLs with cis-eQTLs and cis-
317 sQTLs using coloc® (see Methods). Specifically, we first grouped trans-eSNP—gene module
318 pairs into 179 trans-region—gene module pairs, based on 200kb fixed-width regions (see
319 Methods). We then performed colocalization analyses between the trans-eQTLs and cis-
320 eQTLs/cis-sQTLs. We found that 51 out of 179 trans regions colocalized with a cis-eQTL
321 (PP4>0.75, Figure 3C and Figure S3). 41 trans-loci colocalized with a cis-sQTL. Overall, 60
322  trans-loci share causal variants with at least one cis-eQTL or cis-sQTL (Figure 3C, Table S5),
323 confirming that trans-eQTL effects are generally mediated through cis-gene regulation.
324  Additionally, a large fraction of trans-loci (66%) do not colocalize with cis-eQTLs or cis-sQTLs.
325  While power may have limited our ability to detect colocalization of some trans-eQTLs and cis-
326 eQTLs, there might also exist unknown trans-regulatory mechanisms, independent of cis gene
327  expression or splicing, which is subject to future studies.

328

329 We also investigated the types and functions of genes that are likely to mediate trans-eQTL
330 effects. We found that the genes nearest trans-eQTLs are highly enriched in “RNA polymerase
331 Il transcription regulatory region sequence-specific DNA binding” (adjusted P = 1.26 x 10~3) and
332 “DNA-binding transcription factor activity” (adjusted P = 1.39 x 1073, Table S6), suggesting that
333 transcription factors are important mediators of trans-eQTL effects. Indeed, trans-PCO identified
334 and replicated several well-known master trans regulators in blood, such as IKZF128%3%,
335 NFKBIA%®, NFE2%%3" and PLAGL1%*® (Figure 3A). We also found colocalization of these
336 trans-eQTLs with cis-eQTLs at the NFKBIA, NFE2 and PLAGLL1 loci (Figure 3D, Figure S3),
337  supporting the conclusion that these genes are likely the cis-mediating genes.

338 High quality map of trans-eSNP to gene module associations improves
339 functional interpretation

340 Most of the gene modules used in trans-PCO have functional annotations, which allows us to
341 interpret the functional roles of the trans-eQTLs identified by the method. We first functionally
342 annotated the 166 co-expression modules using g:Profiler®, which performs functional
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343  enrichment analysis on gene sets using predefined gene ontology and pathway annotations.
344  This allowed us to annotate 131 of the 166 modules with at least one significantly enriched gene
345  ontology or pathway (Table S7).

346

347 These annotations helped us interpret the function of identified trans effects. For example, the
348 trans-eQTL signal near IKZF1 (on chromosome 7) is significantly associated with 27 gene
349  modules. IKZF1 encodes a transcription factor IKAROS that belongs to the family of zinc finger
350 DNA binding proteins®. The IKZF1 (IKAROS) trans-target gene module 159 (M159) is
351  significantly enriched in the “positive regulation of transcription of Notch receptor target”
352 (adjusted P = 6.82 x 1073, Figure 3E). Reassuringly, it was previously found that IKAROS is a
353 repressor of many Notch targets, and our trans-eQTL signal further supports the trans
354  regulation of Notch signaling pathway by IKAROS®. IKZF1 trans-target module 3 (M3) is
355  significantly enriched in the gene ontology term “defense response to virus” (Figure S4, adjusted
356 P =8.7x10731) and M35 is significantly enriched in the innate immune system (adjusted P =
357  4.09 x 10717). This data supports the conclusion that the IKZF1 locus plays a trans-regulatory
358 role in immune responses (Figure 3E). The trans-eQTLs near NFKBIA, which encode NF-
359 kappa-B inhibitor subunit A, are significantly associated with module 66 (M66) (adjusted P
360 < 1.8x1077, adjusted P < 9.9 x 1072). Interestingly, we found that M66 is highly enriched in
361 NF-kappa-B signaling pathway (adjusted P = 8.35 x 107>, Figure 3E), which supports the trans
362 regulation of the NF-kappa-B signaling pathway by NFKBIA. The complete list of trans-eQTLs
363  signals and functional annotations of trans-target gene modules can be found in Supplementary
364 Table S4 and Table S7.

365 Trans-PCO identifies 965 trans-eSNP—module pairs associated
366  Wwith well-defined biological processes

367  To further demonstrate the utility of trans-PCO, we applied trans-PCO to 50 MSigDB hallmark
368 gene sets, which represent well-defined biological processes®, including DNA repair,
369 coagulation, heme metabolism, Notch signaling etc. (Table S15). Each gene set contains
370  between 32 and 200 genes. In DGN, we identified 965 significant trans-eSNP—module pairs,
371  corresponding to 41 gene sets and 120 trans-loci-module pairs (R2<0.2), at 10% FDR level
372  (Figure S5, Table S3, Table S16).

373

374  Trans-eQTLs associated with well-defined biological processes facilitate interpretation of the
375 trans-eQTL signals. For example, we identified several trans-eQTL signals at the NLRC5 locus
376 (Table S16). The trans target gene set is the “interferon alpha response” gene set, suggesting
377  trans regulation from NLRC5 to the interferon signaling pathway. Reassuringly, earlier studies
378 have confirmed that NLRC5 is a master regulator for MHC class Il genes and negatively
379 regulates the interferon signaling pathway**?. The trans-eQTL signals also validated our
380 previous interpretations of trans-eQTLs associated with co-expression gene modules. For
381 example, in agreement with our analysis of co-expression modules, we found that the IKZF1
382 locus is significantly associated with several immune-related biological processes, such as
383 interferon gamma response (Table S16, Figure 3E).
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Figure 3. Trans-PCO identifies trans-eQTLs associated with co-expression gene modules
in DGN. (A) Significant trans-eQTL signals associated with 166 co-expression modules in
DGN. Chromosomal positions of trans-eSNPs are on the x-axis, and gene modules are on the
y-axis. Point sizes are -Log;0(P) values of significant trans-eQTLs. Purple and orange represent
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390 odd and even chromosomes, respectively. (B) Comparison of the magnitude of significant trans-
391 eQTLs effects detected by trans-PCO and the univariate method. X-axis shows signal
392 categories: trans-PCO specific signals (Trans-PCO), univariate test specific signals (Univariate),
393 and signals identified by both methods (Both). The maximum z-scores of each SNP and each
394 gene in a gene module is used to represent the SNP-module pair. The numbers on top are the
395 number of signals in each category. Line type represents the target type of signals (gene
396 module vs single gene). Y-axis is the absolute value of the z-scores of the signals. (C)
397 Colocalization of trans-eQTLs and cis-e/sQTLs. The gray bar represents the trans-loci used
398 for colocalization analyses. The bar highlighted in blue represents trans-loci colocalized with cis-
399 sQTLs, red for cis-eQTLs, and mixed color for either cis-eQTLs or cis-sQTLs. (D)
400 Colocalization of trans-eQTLs of Module 66 and cis-eQTLs of NFKBIA. (E) Functional
401 annotations of gene sets facilitate functional interpretation of trans-eQTL signals. The
402 trans-eQTLs near NFKBIA and IKZF1 are associated with several gene modules. The bar plots
403  show the functional enrichments in modules. The numerical values of enrichments are in Table
404  S7.

405 Trans-PCO improves understanding of trans regulatory effects of
406 disease-associated loci

407  To understand trans regulatory effects of genetic variants associated with complex traits, we
408 performed colocalization analysis of trans-eQTL signals with GWAS loci of 46 complex traits
409 and diseases, including 29 blood traits and 8 other common complex traits (such as height and
410  BMI) from the UK Biobank®'** and 9 autoimmune diseases®****>° (Methods and Table S8).

411

412  We grouped the trans-eSNPs into 200kb regions (or trans-loci) for colocalization analyses (see
413 Methods). The 3899 trans-eQTLs associated with co-expression gene modules were grouped
414  into 179 trans-region—module pairs. 42 out of 46 complex traits have at least one GWAS loci
415  colocalized with one of 179 trans-region—module pairs. On average across all traits, 8.8% of
416  trans-loci colocalize with GWAS loci (Figure 4A, Table S9). We observed a higher proportion of
417  colocalization with blood traits (mean proportion 12.0%) than non-blood traits (mean proportion
418  1.5%). Although we expect some higher proportions of colocalization with blood traits to occur in
419 a whole blood sample, our results may also indicate some residual effects due to cell
420  composition--despite corrections for cell composition using both gene expression PCs and
421  estimated cell-type proportions®’, such that some trans-eQTLs may regulate the abundance of
422  cell proportions and therefore are associated genes that are specifically expressed in certain
423  cell types. Our results are consistent with a recent study by the eQTLGen consortium, which
424  has shown that trans-eQTLs in whole blood reflect a combination of cell-type composition and
425  intracellular effects™.

426
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427
428  Figure 4. Colocalization of trans-eQTLs with GWAS loci of 42 complex traits with at least

429 one colocalization region. (A) The number of colocalized trans-loci associated with co-
430 expression gene modules with GWAS loci. The traits are first ordered by broad categories:
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431 blood traits, autoimmune diseases, and other traits in UKBB. The traits within each category are
432  then ordered by the total number of colocalized regions. (B) Heatmap of the number of
433 colocalized trans-loci associated with co-expression gene modules with GWAS loci
434  between each module and trait. The traits are first ordered by broad categories: white blood
435 cells (Orange), red blood cells (Red), platelet cells (Blue), autoimmune diseases (Green) and
436  other traits in UKBB (Black). The traits within each category are then ordered by the number of
437  colocalized gene modules. The blue shades represent the number of colocalized regions. (C)
438  Heritability enrichment of Module 4 (M4) in blood traits. Heritability enrichment was
439  estimated by using S-LDSC. Error bars are 95% confidence intervals. (D) Colocalization of
440 mean platelet volume associated locus near ARHGEF3 and trans-eQTL of M4. (E)
441  Heatmap of the number of colocalized trans-loci associated with MSigDB hallmark gene
442  sets with GWAS loci across modules and blood traits. The blue shades represent the
443  number of colocalized regions. (F) Colocalization of GWAS loci associated red blood cell
444  traits and trans-eQTLs associated with heme metabolism. Six loci associated with red blood
445  cell traits are associated with heme metabolism in trans. Numerical results can be found in
446  Table S17. Colocalization plots of the other loci are in Figure S6.

447

448 Nevertheless, we found several trans-eQTLs that colocalized with GWAS loci, which revealed
449  specific interpretable pathways or functional gene sets (Figure 4B, Table S10). For example,
450 trans-eQTLs associated with co-expression module 4 (M4) colocalized with 24 out of 29 blood
451 traits (Figure 4B). M4 is highly enriched for genes involved in platelet activation (adjusted P =
452  1.12x 10712, Figure S4, Table S7). One of the colocalized trans-eSNPs associated with M4 is
453 in the introns of the ARHGEF3 gene (Figure 4D), which has been shown to play a significant
454  role in platelet size in mice®’. To further support the interpretation of colocalized signals, we
455  estimated heritability enrichment of M4 in blood traits using stratified LDscore regression®? (S-
456 LDSC, Figure 4C). We reasoned that an enrichment of trait heritability near genes in a module
457  would strongly support the involvement of a module in the genetic etiology of a trait. Strikingly,
458 we found that M4 is significantly enriched in the heritability of multiple blood traits, and the
459  enrichment was especially strong for platelet traits such as platelet distribution width
460  (enrichment = 6.5%x, P = 7.0x107°) and mean platelet volume (enrichment = 6.7 x, P =
461 1.2x107°, Figure 4C, Table S11). Additionally, we evaluated whether M4 genes are
462  significantly enriched in genes associated with platelet traits, identified by transcriptome-side
463  association studies (TWAS). There are 1339 unique genes significantly associated with platelet
464 traits in the UK Biobank™. M4 genes are significantly enriched in TWAS genes associated with
465  platelet traits (88 overlap genes, p-value=6.7x10"°, Fisher's exact test), which further supports
466 the role of M4 in platelet traits. Finally, we identified that the ARHGEF3 locus is significantly
467  associated with the MSigDB coagulation hallmark gene set (Table S16). These findings
468  strengthen the model where genetic variation near ARHGEF3 impacts the expression levels of
469  multiple genes that are involved in platelet biology and that also harbor nearby genetic variation
470  associated with platelet traits.

471

472  We also performed colocalization analysis of trans-eQTLs associated MSigDB hall mark gene
473  sets (Figure 4E, Table S17). One of the gene sets represents heme metabolism, which is an
474  essential process underlying erythroblast differentiation and red blood cell counts. We found

14


https://doi.org/10.1101/2022.11.11.516189
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.11.516189; this version posted February 7, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

475  that six trans-eQTL loci of heme metabolism significantly colocalized with GWAS loci associated
476  with red blood cell traits, such as hemoglobin concentration, red blood cell count, and
477  reticulocyte count (PP4=0.76-1.00, Figure 4F, Figure S6, Table S17). We found that the genes
478 in the gene sets are significantly enriched in TWAS significant genes associated with
479  hemoglobin levels in the UK Biobank (35 overlap genes, p-value=8.1x10™, Fisher's exact test),
480  which further supports the role of the hallmark gene set in red blood cell traits. Our results
481  provide evidence that these six loci regulate heme metabolism in trans, which is an essential
482  process underlying erythroblast differentiation and red blood cell counts.

483

484  In another example, we found a trans-eQTL near IKZF1 for M3 that colocalizes with 11 blood
485 traits, seven of which are related to white blood cells (Table S10). As mentioned previously, M3
486 s significantly enriched for gene ontology terms including “defense response to virus” (adjusted
487 P =8.7 x 10731) and “negative regulation of viral processes” (adjusted P = 1.07 x 10717, Table
488 S7). The enrichments are driven by many genes related to interferon (e.g., IFI6, IFI16, IRF7),
489  which are proteins released by host cells in response to the presence of viruses and indicate
490 immune related functions (Table S1, Table S7). Additionally, our heritability analysis of genes in
491 M3 identified enrichments for multiple traits associated with blood cell-type count including
492  neutrophil count (enrichment = 2.3x, P = 1.7 x 10~%) and white blood cell count (enrichment =
493 2.1x, P = 1.3x107*, Figure S7). Our analyses support that the white blood cell associated
494  locus IKZF1 regulates immune response pathways in trans.

495

496  Taken together, our functional map of trans-eQTLs revealed concrete examples where genetic
497  variants associated with complex traits also influence a biological pathway or a coherent set of
498 genes with similar functions. Thus, trans-eQTL of gene sets have the potential to reveal trans-
499 regulatory mechanisms underlying complex traits and diseases. The complete list of
500 colocalization signals for each trait can be found in Supplementary Table S10.

501  Summary-statistics—based trans-PCO identified 10,167 trans-
502  eSNP-module pairs in eQTLGen

503 We developed summary-statistics—based trans-PCO to increase its applicability to gene
504 expression datasets of large sample sizes, such as eQTLGen™ (N=31,684, whole blood). To
505 ensure that summary-statistics—based trans-PCO signals are well-controlled for test statistics
506 inflation and false positives, we added two steps to the original pipeline. First, we carefully
507 select gene sets to minimize the noise when approximating the gene correlation matrices. When
508 only summary statistics are available, the correlation matrix of each gene set is approximated
509 with the correlations of z-scores of the insignificantly associated SNPs of each gene. A low ratio
510 of SNPs to genes (<50) results in a noisy approximation of correlation matrices and test
511  statistics inflation (Figure 6A, Methods, and Supplementary Note). Therefore, we only use gene
512 modules with ratios greater than 50 to test for trans-eQTLs, which we show are well-controlled
513 for inflation (Figure 5A, Figure S8). Second, we remove genes in the module that are cross-
514 mappable to the test SNP loci (see details in Methods) in the association test to reduce false
515  positives caused by multi-mapping reads.

516
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517 The eQTLGen study performed the standard univariate trans-eQTL mapping on a subset of
518 10,317 GWAS SNPs and the summary statistics of these trans-eQTLs are available. We applied
519 the summary-statistics—based trans-PCO to these summary statistics to identify trans-eQTLs
520 associated co-expression gene modules and MSigDB hallmark gene sets.

521

522  Of the 166 co-expression gene modules identified in DGN, we used 129 modules with reliable
523  correlation matrix approximations to ensure the trans-eQTL signals are well-controlled for
524 inflation (Figure 5A, Figure S8, Methods, and Supplementary Note). Similarly, Of the 50
525 MSigDB hallmark gene sets, we only used 11 gene sets with accurate correlation matrix
526  approximations (Figure S17). In total, there were 4533 genes in the tested co-expression gene
527 modules and hallmark gene sets. For co-expression gene modules, we identified 8116 trans-
528 eSNP-gene co-expression module pairs, corresponding to 2161 eQTLGen test SNPs and 122
529 gene modules (Figure 5B, Table S3, Table S12). For hallmark gene sets, we found 2051
530 significant trans-eSNP-hallmark gene set pairs, corresponding to 1018 SNPs and all 11
531 hallmark gene sets, using Bonferroni correction (Table S3, Table S18). In eQTLGen, we did not
532  perform LD clumping on trans-eSNPs, because they were GWAS SNPs associated with
533 different traits and diseases. The univariate method used in eQTLGen"? identified 1050 hub
534  SNPs targeting more than 10 genes at 5% FDR, 89% of which are also identified by trans-PCO
535 (Figure 5C).

536

537 The large sample size in eQTLGen improves the power of trans-eQTL detection. Of the 3899
538  significant trans-eSNP—co-expression module pairs in DGN, 38 pairs were also tested in
539 eQTLGen. Reassuringly, we found that all 38 trans signals were replicated in eQTLGen (under
540 a replication P-value cutoff of 0.1/38, Table S13) and all association p-values were highly
541  significant (P < 10712, Figure S9). In contrast, most of the trans-eQTL signals in eQTLGen were
542  not found in DGN. For example, of the 7577 SNP-module pairs analyzed in both datasets, there
543  were 7291 pairs (96%) that were uniquely identified in eQTLGen (which is defined as at least 1
544  MB away from trans-eQTL SNPs in DGN). This is not surprising, because the association p-
545 values are much smaller in the eQTLGen dataset due to the larger sample size (Figure S10).
546  Similarly, eight significant trans-eSNP-hallmark gene set pairs in DGN were tested in
547 eQTLGen, and all of them were replicated. We also compared eQTLGen signals by trans-PCO
548  to those identified by ARCHIE in Dutta et al.** (see Supplementary Note and Figure S19).

549

550 The nearest genes of eQTLGen trans-eQTLs are significantly enriched in DNA binding activity
551 (adjusted P = 3.73 x 10~%) and transcription factor binding (adjusted P = 1.74 x 10~7) , as well
552 as immune responses, such as cytokine receptor activity (adjusted P = 7.27 x 1077) or MHC
553 class Il receptor activity (adjusted P = 9.93 x 1075, Figure 5B, Table S14). We found that the
554  enrichment of immune responses was driven by trans-eQTLs in the HLA region on chromosome
555 6 (such as HLA-DRA, HLA-DRB1 etc, Table S12) or near cytokine receptor genes (such as
556 IL23R, IL1R1, CXCR4 and genes on the chemokine receptor gene cluster region: CCR2, CCR3,
557  CCRS etc). These trans-eQTLs are associated with several autoimmune diseases, such as type
558 1 diabetes, autoimmune thyroid diseases, cutaneous lupus erythematosus and inflammatory
559 bowel disease (Table S12). The trans-PCO signals help us understand the trans regulatory
560 mechanism of these loci. For example, we found that the trans target gene modules of the HLA
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561 loci are enriched in immune related functions, such as cytokine production (M44), B cell
562 differentiation (M54), IgE binding (M60), TNF signaling pathway (M62), T cell activation (M63
563 and M87), and cytokine signaling pathway (M62 and M76, Figure 5D). The IL23R locus is
564  associated with cytokine signaling pathway (M76) in trans. The chemokine receptor genes were
565 associated with several gene modules including cytokine production (M44), IgE binding (M60)
566 and T cell activation (M87). These trans-eQTL signals support the conclusion that genetic loci
567  associated with autoimmune disease regulate immune related pathways in trans.
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570 Figure 5. Trans-PCO identifies trans-eQTLs associated with co-expression gene modules
571 and MSigDB hallmark gene sets in eQTLGen. (A) Summary-statistics—based trans-PCO is
572 well controlled for test statistics inflations. We show gene module 1 (size 625) as an
573 example. SNP to gene ratios used for correlation matrix estimation are in different shapes and
574  colors. Red-yellow shades represent higher ratios (>=50) and blue shades represent lower
575  ratios. Gray area shows 95% CI. Trans-PCO used a minimum ratio of 50. (B) 8199 significant
576 trans-eSNP—-module pairs associated with co-expression modules in eQTLGen.
577 Chromosomal positions of trans-eSNPs are on the x-axis and gene modules are on the y-axis.
578 Point sizes are -Log;o(P) values of significant trans-eQTLs. (C) The majority of hub SNPs
579 targeting more than 10 genes in the original eQTLGen study are identified by trans-PCO.
580 Light blue bar represents the total number of trans-eQTLs in the original eQTLGen study at 5%
581 FDR level. Dark blue bar represents the trans-eQTLs also detected by trans-PCO under
582  Bonferroni correction that are associated with co-expression modules or MSigDB gene sets.
583  The bar on the right shows the trans-eQTLs detected only by trans-PCO. (D) The HLA locus is
584 associated with several immune related gene modules in trans. The bar plots show the
585 functional enrichment of co-expression gene modules.

ss6  DISCUSSION

587 In summary, we developed a powerful method, trans-PCO, to detect trans-eQTLs associated
588  with expression levels of co-expressed or co-regulated genes. The multivariate approach of
589 trans-PCO can detect much smaller trans effects (Figure 3B, Figure S13) and is substantially
590 more powerful than existing methods. (Figure 2). Trans-PCO is also flexible. It can be applied
591 to both RNA-seq data with genotypes or summary statistics, and the user can employ various
592  definitions of gene sets. Applying trans-PCO to both the DGN and the eQTLGen datasets, we
593 identified nearly 15,000 trans-eSNP—module pairs associated with co-expression modules and
594  well-defined biological processes. Trans-eQTLs with annotated gene modules facilitate our
595 understanding of the trans-eQTL signals. These trans-eQTLs also improve our understanding of
596 the trans regulatory effects of disease associated loci. We highlight multiple examples where
597  our map of trans effects helps us identify how trait-associated variants impact gene regulatory
598 networks and pathways. For example, we found six genetic loci associated with red blood cell
599 traits to have significant trans-associations with the heme metabolism gene set. It is possible
600 that these genetic loci are “peripheral master regulators” that regulate core processes of red
601  blood cell production.

602

603  We thoroughly compared the performance of trans-PCO versus other methods, such as the
604 PCl-based method by Kolberg et al.?®, ARCHIE by Dutta et al.** and Rovital et al.??. Trans-
605 PCO and the PCl-based method are both designed to identify individual trans-eQTLs of any
606 gene sets containing multiple genes, and the comparison between them is straightforward in
607 both simulations and real data analyses. However, ARCHIE is different and not directly
608 comparable to the other two methods for several reasons (see more discussions in
609 Supplementary Note). First, ARCHIE captures only trait-specific trans regulations. It identifies
610 sets of gene-expressions trans-regulated by sets of known trait-related genetic variants. In
611 addition, ARCHIE tests significance against a competitive null hypothesis, which uses cc-values
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612 of all eQTLGen trait-associated variants as empirical null distribution and reflects trans
613 regulations not specific to any trait. Therefore, an ARCHIE p-value reflects significance of trait-
614  specific patterns. In contrast, trans-PCO identifies trans-eQTLs under the general null
615 hypothesis assuming no trans effects. Therefore, trans-PCO can be used to generate
616 comprehensive maps of trans-eQTLs in tissues and cell types, in non-trait-specific manner.
617 Using ARCHIE to perform genome-wide scan of trans-eQTLs in a non-trait specific manner can
618 be challenging, as non-trait specific p-value is not computable in current implementation of the
619 method and it will be extremely computational challenging (due to the computational intensive
620 resampling procedure and difficulty of manipulating whole-genome LD matrices). Second, trans-
621 PCO and ARCHIE are designed to capture different trans regulatory effects. ARCHIE is
622  powerful when multiple disease—associated variants have weak effects on a single gene (for
623 example, multiple GWAS variants converge onto the core genes through trans regulation) or
624  multiple disease—associated variants have weak effects on multiple genes (Figure 2 in Dutta et
625 al.?%), in which multiple genes are not co-regulated by a shared trans genetic locus. In contrast,
626 trans-PCO is designed to capture weak trans signals of a variant on multiple co-regulated
627  genes, for example, a transcription factor has trans effects on multiple target genes. We include
628 detailed comparison of the two methods using both simulations and real data analyses (see
629  Supplementary Notes and Figure S19). Our results support that the two methods are powered
630 at detecting different trans signals. Third, ARCHIE identifies components, consisting of multiple
631 trait-associated SNPs and multiple genes, where sets of gene expressions are trans regulated
632 by sets of trait-associated variants. Without knowing the exact trans-eQTL SNP driving the trans
633 regulation, it is hard to further study trans regulatory mechanisms of the trans-eQTLs, for
634 example, whether the trans-eQTL is also a cis-eQTL, or which gene is the trans regulator.
635 Fourth, ARCHIE takes all genes as input and infers gene sets that are trans-regulated by
636  disease-associated variants, whereas trans-PCO is flexible to be applied to any user-defined
637 gene set of interest to identify trans-eQTLs. The genes in the ARCHIE components are likely
638  “core” genes for a specific disease and can be used to find key biological processes for the
639 disease. Trans-PCO could also be used to identify disease relevant genes and processes
640 through follow up analyses, such as colocalization analyses. In summary, trans-PCO and
641 ARCHIE have different goals and are designed for detecting different types of trans signals. Yet,
642  we thoroughly compared ARCHIE and trans-PCO in both simulations and real data analyses
643 (Supplementary Note), (1) in simulations, we evaluated whether ARCHIE can identify regular
644  trans-eQTLs detectable by other methods (trans-PCO, PCl-based and univariate method), (2)
645 in real data analyses (eQTLGen summary statistics), we evaluated whether trans-PCO can
646 identify trans-signals identified by ARCHIE. We believe these comparisons will provide insights
647 on when and how these methods should best be used. In addition, Rovital et al.?* used
648 independent component analyses to identify components representing co-expression patterns
649 from the expression of all genes, and identified trans-eQTLs that have enriched trans
650 associations with the components. However, we demonstrated through simulations that the
651 Rotival et al. method has minimal power to identify weak trans effects (Supplementary Note,
652  Figure S20).

653

654 A limitation of multivariate association tests, including trans-PCO, is that they do not explicitly
655 identify which genes in the gene sets are significantly associated with the test SNP. While

19


https://doi.org/10.1101/2022.11.11.516189
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.11.516189; this version posted February 7, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

656  functional annotations of gene sets facilitate our understanding of the trans-eQTL signals, it is
657  possible that the genes driving trans-associations are different from the genes driving functional
658 enrichment of the gene sets. Therefore, the biological interpretation of trans-eQTL signals
659 should be supported with other evidence before it is considered definitive. However, there are
660 exploratory analyses that can help prioritize genes in the network that are key drivers of the
661 underlying signal. For example, by examining the univariate association p-values between the
662 trans-eQTL SNP and each gene in the network, the user can prioritize genes with the most
663  significant p-values as likely trans targets. Furthermore, the users can also use the n1 statistics
664  on the univariate p-values to estimate the proportion of genes that have true trans effects in the
665 network. While the exact molecular mechanism requires further validation, the large number of
666 trans-eQTLs identified by trans-PCO in our study opens up new opportunities to understand
667  complex traits-associated loci and underlying mechanisms.

668

669  Trans-eQTLs identified in bulk tissues can be a combination of cell composition trans-eQTLs,
670 which are driven by cell type proportions, and intracellular trans-eQTLs, which capture trans
671 regulatory effects in a single cell type. To get higher proportions of intracellular eQTLs, the
672 common approach is to correct for cell type proportions in association tests. For example, the
673 eQTLGen study™ corrected for cell proportion effect by using gene expression PCs. They
674  validated some trans-eQTLs using single-cell RNA sequencing data, indicating that these trans-
675 eQTLs were intracellular trans-eQTLs. In our analysis of DGN dataset, we included the
676 estimated cell proportions as covariates, in addition to gene expression PCs. This strategy
677  might have given rise to higher proportions of intracellular trans-eQTLs. Co-expression gene
678 modules could also capture cell proportion effects. In our study, we removed cell proportions
679  from gene expression levels before clustering genes into co-expression modules. While this can
680 correct for cell proportion effects in the co-expression modules to some extent, we note that it
681  does not guarantee their complete removal.

682

683 Many studies, including ours, seek to avoid cell composition effects. However, by closely
684  examining trans-eQTLs discovered in our study, we think cell composition trans-eQTLs can be
685  Dbiologically interesting too. For example, the IKZF1 locus is significantly associated with several
686 gene modules enriched with viral defense and other immune related functions in trans. The
687 locus is also significantly associated with white blood cell proportions. Given the general
688  function of white blood cells in fighting infections, these observations raise the possibility that
689 the trans-eQTLs near IKZF1 regulate antiviral activity by affecting white blood cell-type
690 proportion. Supporting this hypothesis, we found earlier that genetic variants near IKZF1 are
691 also associated with expression levels of genes in M159, which are enriched in genes involved
692 in the Notch signaling pathway. The Notch signaling pathway plays a central role in cell
693 proliferation, cell fate, and cell differentiation®*; thus, our analyses reveal a plausible mode of
694 action whereby genetic variants near IKZF1 impact multiple immune-related functions by
695 influencing white blood cell-type proportions. In future studies, it could be interesting to
696  specifically identify cell proportion effects and understand their role in complex traits.

697

698 Identifying the network effects of genetic variants not only shed light on molecular mechanisms
699 of complex associated loci, it can also have important translational applications, for example, in
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700 drug discovery and development. First, genes that are associated with disease relevant
701  pathways can serve as evidence for therapeutic targets of the disease. In a preliminary analysis,
702  we examined whether allergy drug targets are more likely to be associated with immune-related
703 gene sets. Among a total of 142 gene sets (129 co-expression gene modules and 11 hallmark
704  gene sets) used for trans-eQTL identification in eQTLGen, 19 were defined as immune-related.
705  We used 55 launched allergy drug target genes from The Broad Institute Drug Repurposing Hub
706  (https://repo-hub.broadinstitute.org/repurposing), 5 of which are near allergy associated loci in
707  eQTLGen. Interestingly, we found all 5 targets to be associated with immune-related gene sets
708 (Table S19). Detailed analyses can be found in Supplementary Note. While the enrichment is
709 not statistically significant (P=0.12, Fisher's exact test; Table S20), it is likely due to the small
710 number of drug targets included in our analyses. Additionally, we observed that the trans gene
711  modules of drug targets converge to gene sets whose functions are highly relevant to allergy.
712  For example, three drug targets (IL3, UGT3A1l and SLC37A4) are associated with gene sets
713  enriched for the B cell signaling pathway. More comprehensive analyses are beyond the scope
714  of this study, yet our preliminary analyses have demonstrated that one can consider genes that
715 have strong trans associations with disease-relevant pathways to identify drug targets for the
716  specific disease, especially those with known disease-relevant pathways. Second, network
717  effects of disease variants can be used for repurposing existing drug compounds to new
718 diseases. Drug repurposing can substantially reduce cost and time to develop new treatments.
719  If the gene expression profiles of an existing drug is enriched for genes in the trans-network of
720  another disease’s associated loci, it can serve as an evidence for repurposing. Additionally,
721  knowing the network effects of a gene can also help evaluate the safety of a potential drug
722  target. Therapeutic perturbation of a drug target can affect expressions of many downstream
723  genes. While some of them are in the desired disease pathways, others are in pathways
724  associated with other phenotypes, inducing unwanted side-effects. We believe comprehensive
725 catalogs of trans-networks effects in human cell types and tissues will serve as important
726  resources for interpretation of trans regulatory effects of disease associated loci as well as
727  translation applications. Therefore, we made all the trans-PCO trans-eQTL signals, with
728  functional annotation of the gene sets, publicly available, downloadable and browsable in
729  www.networks-liulab.org/transPCO.

730

731
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732 Methods

733 Trans-PCO pipeline

734  We test if a genetic variant is associated with genes in a module through trans regulations using
735  the multivariate model as follows,
736 [V1 - Yk]| = G|B1 " Pg| + covariates + e,
737  where G is the dosage of a reference allele representing the genotype of a SNP, f3, is the effect
738  of the SNP on k-th gene in the module with K genes, and y, is the expression level of the k-th
739 gene. To test if a SNP of interest is significantly associated with the module, we test the null
740  hypothesis,
741 Hy: By =+ =P =0.
742  We use a PC-based omnibus test (PC0O)?°, which is a powerful and robust PC-based approach
743 aiming at testing genetic association with multiple genes with no prior knowledge of the true
744  effects.
745
746  Specifically, PCO combines multiple single PC-based tests in linear and non-linear ways,
747  corresponding to a range of causal relationships between the genetic variant and genes, to
748  achieve higher power and better robustness. A single PC-based test (most commonly the first
749  primary PCy) is,
750 Toc, = M Z ~ N "B, ), 1 <k <K,
751 where Z is a K x 1 vector of univariate summary statistic z-scores of the SNP for K genes in a
752  module, y, is the k-th eigenvector of the covariance matrix X, of Z, A, is the corresponding
753 eigenvalue, and S represents the true causal effect. PCO combines six PC-based tests,
754  including,
755 PCMinP = min,<p<xPx, and PCFisher = —2YX_, log(py),
756  where py is the p-value of Ty, . These two tests take the best p-value of single PC-based tests
757 and combine multiple PC p-values as the test statistic. Other tests include,
TPCkZ

PP
759 which are linear and quadratic combinations of each single PC-based test weighted by
760 eigenvalues. The six tests achieve best power in specific genetic settings with different true
761 causal effects?®. PCO takes the best p-value of the PC-based tests as the final test statistic,

gk TPy

T 2
758 PCLC = Bf_ =%, WI = Tf_; Tpc,*, Wald = 3f_, —*
Kk Kk

VC =3k

762 Tpco = min P{pcminpP,PCFisher,PCLC,WI,Wald,VC}

763 to achieve robustness under unknown genetic architectures while maintaining a high power.
764 The p-value of PCO test statistics can be computed by performing an inverse-normal
765  transformation of the test statistics,

766 Prpco =1—P {min Cb_l(P{PCMinP,PCFisher,PCLC,WI,Wale,Vc}) > qb‘l(TIS’gg)},

767 where ¢~! denotes the inverse standard normal cumulative distribution function. The p-value
768  can be efficiently computed using a multivariate normal distribution as described in Liu et al.?°.
769

770 To prevent cis-regulatory effects from driving the identified trans associations between a SNP
771 and module, we removed genes in the module that are on the same chromosome as the tested
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772  variant. In addition, to avoid false positive signals in trans associations due to alignment errors,
773  we discarded RNA-seq reads that are mapped to multiple locations or poorly mapped genomic
774  regions (mappability score <1)?"?® before quantifying gene expression levels.

775 Simulation

776 To evaluate the power of trans-PCO, we performed a series of simulations with various
777  parameter settings corresponding to different genetic architectures. We applied trans-PCO to
778  the simulated datasets and assessed the false positive rate and statistical power. We also ran
779  two additional statistical tests, a univariate test (“MinP”) and a primary PC-based test (“PC1"), to
780  compare their performances with trans-PCO and to obtain more in-depth insights on trans-PCO,
781 Tpe, = " Z, Toginp = min{pig,'-~ ’Pig}-

782  The PC1 based test takes only the first PC as the proxy of a gene module and uses it as the
783  response variable to test for genetic variants with significant associations. We also compared
784  trans-PCO with a non-PC based statistical test, MinP, which takes the minimum p-value across
785 genes in the module as the test statistics.

786

787  To implement trans-PCO, PC1, and MinP tests, there are two main pieces of information that
788 are required as input, i.e. correlation matrix of the gene module and summary statistics (z-
789  scores) of SNPs with genes in the module. We used a gene module from the RNA-seq data
790 (see Genotype and RNA-seq QC) consisting of 101 genes (K = 101) and the corresponding
791  correlation matrix to make the settings more realistic. We sampled z-scores of 107 SNPs from
792  the null distribution,

793 Zyyrr ~ N(0, Z191).

794  We tested the associations between each SNP and the gene module using the above three
795 tests and evaluated the p-values against the uniform distribution to validate if the statistical tests
796  are well calibrated.

797
798  We also simulated 10k z-scores of SNPs from the alternative distribution,
799 Zate ~ N(Wn[B1o1y, 01", Z101),

800 where n is the sample size, B is a 101y-long vector representing the causal effect of a SNP on
801 101 genes, and y is the proportion of true target genes in the module. Each component of
802 follows N(O, ag), where alf is the genetic variance. By default, we set the sample size n to be
803 500, 30% genes (30) in the module are true trans target genes, and o to be 0.001. To evaluate
804  how three tests perform across different genetic architectures, we simulated multiple scenarios
805 across varying sample sizes, target gene proportions, and genetic variances. Specifically, we
806 looked at the cases where sample size is 200, 400, 600, and 800, causal genes proportion is
807 1%, 5%, 10%, 30%, and 50%, and genetic variance is 0.002, 0.003, 0.004, 0.005, and 0.006.
808 We simulated 10k SNPs and performed 1000 simulations. To control the false discovery rate,
809  we corrected the p-values for multiple testing based on the simulated empirical null distribution
810 of p-values, to keep it consistent with the method used in the RNA-seq dataset (see
811  Supplementary Note). An association is significant if its adjusted p-value is lower than 0.1. The
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812  power is calculated as the proportion of SNPs that were identified to be significant among 10k
813  SNPs.

814 Genotype and RNA-seq QC

815 We analyzed an RNA-seq dataset from whole blood®’. We performed a series of QC on
816 individuals, genotypes, RNA-seq reads, and genes before quantifying gene expression profiles.
817  Specifically, we referred to the procedures in Liu et al.?®. For individual-level QC, we removed
818 related individuals from 922 samples with RNA-seq reads available and kept 913 individuals in
819 total for further analysis. For genotype-level QC, we used SNPs with genotyping rate(1>799%,
820  minor allele frequency! > 15%, and Hardy-Weinberg equilibrium < 107°.

821

822 RNA-seq reads can be falsely aligned to genomic regions with high sequence similarity. The
823 misalignment onto these regions can lead to false positive signals in trans-eQTL analysis and
824  spurious correlations in gene co-expression networks®. To help address this problem, we
825 performed RNA-seq read-level QC to remove the reads with alignment issues. To be more
826  specific, we filtered out the reads that were mapped to multiple genomic regions and reads with
827  >2 mismatches. We also removed the reads aligned to regions with low mappability.

828

829  On the gene level, we quantified the gene expression levels as Transcript Per Million (TPM). We
830 first normalized the expression levels across samples to the normal distribution by quantile
831 normalization, and then we normalized the expression levels across genes. We also filtered out
832 genes that are not protein-coding, liINcCRNA genes, or genes on sex chromosomes. As a result,
833 there are 12,132 genes left for follow up analysis. Finally, to control for potential confounding
834 factors and capture the co-expressed gene modules only driven by genetic effects, we
835 regressed out covariates from the expression profiles. We used biological and technical
836  covariates, including genotype PCs, expression PCs, and blood cell type proportions®”?.

837 Identification of the gene co-expression network

838 We are interested in jointly testing co-regulated genes in a multivariate association test. To this
839 end, we first used WGCNA? to construct a gene co-expression network, where genes are
840 connected through correlations among their residualized expression levels. WGCNA uses
841  hierarchical clustering to cut the network into separate gene modules with highly correlated
842  expression levels. We used the default parameter settings, except that we specified the
843  minimum module size parameter (‘minModuleSize’) to 10 to obtain small gene modules.

sa4  Colocalization of trans-eQTLs and GWAS loci

845  To explore the role of trans-eQTLs in understanding complex traits and diseases, we performed
846  colocalization between trans-eQTLs of a gene module and GWAS loci of 46 complex traits and
847  diseases. Specifically, we used GWAS summary statistics of 29 blood-related traits®’ and 8
848  other traits from UK Biobank, provided by Neale Lab (http://www.nealelab.is/uk-biobank/), and 9
849  autoimmune diseases collected in Mu et al.** (Table S8).
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850

851 To define a region to perform colocalization, we first selected the trans-eQTL with the most
852  significant p-value and expanded a 200kb flanking genomic region centered at the lead SNP as
853  aregion to perform colocalization analysis. We then moved on to the next most significant SNP
854 and expanded a 200kb flanking region. We stopped searching for lead SNPs when all trans-
855  eQTLs were included. This resulted in 255 trans region-module pairs. As two adjacent regions
856  could correspond to the same colocalization signal, we marked adjacent regions as a region
857  group if their lead SNPs were within 200kb, which generated 179 trans-region—module pairs in
858 total. We ran colocalization analysis between each 200kb trans region and GWAS loci of 46
859  complex traits using the R package coloc®, assuming there is at most one causal variant for
860 each region. We used the default priors and 0.75 as the PP4 cutoff for significant
861 colocalizations. We defined a merged region group as being colocalized with a trait if any of its
862  200kb sub-regions has significant colocalization with the trait. We visualized the colocalized
863  regions using LocusCompareR®®.

864 Colocalization of trans-eQTLs and cis-e/sQTLs

865 We performed colocalization analysis between trans-eQTLs and cis-eQTLs (cis-sQTLs) of
866 genes near the trans-eQTLs. We used the same 179 trans-region—module pairs defined in the
867  colocalization analysis of GWAS loci. For a trans loci, we searched for the genes within 500 kb
868 around the lead trans-eQTLs of the loci, and used these genes to perform colocalization. We
869 used summary statistics of cis-eQTLs and cis-sQTLs in the DGN dataset from Mu et al.**. We
870 ran coloc® with default priors and 0.75 as PP4 cutoff.

g71  Trait heritability enrichment in gene modules

872  To investigate whether a gene module is enriched for trait heritability, we applied stratified LD
873  score regression®’ (S-LDSC) to 166 co-expression gene modules and 46 complex traits and
874  diseases. Specifically, for each module we defined the annotation set as the SNPs within
875 genomic regions of genes in the module and also a 500 base-pair window around the genes.
876 We also included 97 annotations from the baseline model. Partitioned heritability enrichment
877 was calculated as the proportion of trait heritability contributed by SNPs in the module
878  annotation over the proportion of SNPs in that annotation.

879 Summary-statistics—based trans-PCO applied to eQTLGen

880 The eQTLGen Consortium™ has conducted the largest cis- and trans-eQTLs association
881 analyses in blood to date. Specifically, 31,684 samples were tested for over 11 million SNPs
882 across 37 cohorts. The summary statistics of trans-eQTLs are available for 10,317 trait-
883 associated SNPs on 19,942 genes.

884

885 We applied our pipeline trans-PCO to eQTLGen summary statistics, using the same 166 co-
886  expression gene modules defined in DGN dataset. We searched for trans-eQTLs among 10,317
887  SNPs.
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888

889 The eQTLGen summary statistics are marginal z-scores meta-weighted across multiple cohorts.
890 Most z-scores are from studies where the RNA-seq reads with mappability issues were not
891 filtered out before quantifying gene expression profiles. Therefore, directly applying trans-PCO
892 to the summary statistics can lead to false positive signals, which are driven by the cross-
893  mappability between the genes in the module and the cis-gene of the test SNP. In order to
894  reduce false positive trans signals, we removed from the gene module genes that are cross-
895 mappable to the cis-gene (within 100kb) of the test SNP, which is a common practice used in
896  previous studies®?”*®. We further removed genes on the same chromosome as the test SNP to
897  prevent the detected trans effects from being dominated by cis regulations.

898

899 The gene expression profiles are not available in eQTLGen. Therefore, to estimate the gene
900 correlation X of a module, we searched among eQTLGen SNPs for SNPs insignificantly
901 associated with the module (null SNPs) (see Supplementary Note for details). We observed that
902 there are less null SNPs that can be found for large modules. And simulations show that the low
903 ratio of the number of null SNPs used for X estimation to the module size leads to false positive
904  signals (Supplementary Note). Therefore, we removed 37 gene modules with ratios lower than
905 50. Finally, we performed trans-PCO on the remaining 129 gene modules.

906
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o0s Data availability

909 All trans-eQTL signals, with functional annotation of the gene sets, can be browsed and
910 downloaded at www.networks-liulab.org/transPCQO. The genotype and gene expression data of
911 DGN were downloaded by application through the NIMH Center for Collaborative Genomic
912  Studies on Mental Disorders, under the “Depression Genes and Networks study (D. Levinson,
913 PI)". The eQTLGen summary statistics are publicly available at https://www.eqtlgen.org/. The
914 MSigDB  hallmark gene sets are publicly available at http://www.gsea-
915 msigdb.org/gsea/msigdb/human/genesets.jsp?collection=H. GWAS summary statistics of traits
916 inthe UK Biobank are available at Neale Lab (http://www.nealelab.is/uk-biobank/).
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o18 Code availability

919 The trans-PCO pipeline and code to reproduce analyses is available at https://github.com/liliw-
920 w/Trans. This work also uses TensorQTL (https://github.com/broadinstitute/tensorgtl) to perform
921 QTL mapping between genotypes and single genes, R package coloc
922  (https://github.com/chriswallace/coloc) to perform colocalization analyses between trans-eQTLs
923 and cis-eQTLs, cis-sQTLs and GWAS loci, and S-LDSC software (https://github.com/bulik/Idsc)
924  to estimate trait heritability enrichment in gene modules.

925

28


https://doi.org/10.1101/2022.11.11.516189
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.11.516189; this version posted February 7, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

o26 Declaration of interests

927  The authors declare no competing interests.
928

29


https://doi.org/10.1101/2022.11.11.516189
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.11.516189; this version posted February 7, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

29 References

930 1. Maurano, M.T., Humbert, R., Rynes, E., Thurman, R.E., Haugen, E., Wang, H., Reynolds,

931 A.P., Sandstrom, R., Qu, H., Brody, J., et al. (2012). Systematic Localization of Common
932 Disease-Associated Variation in Regulatory DNA. Science 337, 1190-1195.

933 10.1126/science.1222794.

934 2. Lango Allen, H., Estrada, K., Lettre, G., Berndt, S.I., Weedon, M.N., Rivadeneira, F., Willer,
935 C.J., Jackson, A.U., Vedantam, S., Raychaudhuri, S., et al. (2010). Hundreds of variants
936 clustered in genomic loci and biological pathways affect human height. Nature 467, 832—
937 838. 10.1038/nature09410.

938 3. Hindorff, L.A., Sethupathy, P., Junkins, H.A., Ramos, E.M., Mehta, J.P., Collins, F.S., and
939 Manolio, T.A. (2009). Potential etiologic and functional implications of genome-wide

940 association loci for human diseases and traits. Proc. Natl. Acad. Sci. 106, 9362—-9367.

941 10.1073/pnas.0903103106.

942 4. Watanabe, K., Stringer, S., Frei, O., Umicevi¢ Mirkov, M., de Leeuw, C., Polderman, T.J.C.,
943 van der Sluis, S., Andreassen, O.A., Neale, B.M., and Posthuma, D. (2019). A global

944 overview of pleiotropy and genetic architecture in complex traits. Nat. Genet. 51, 1339—
945 1348. 10.1038/s41588-019-0481-0.

946 5. Nicolae, D.L., Gamazon, E., Zhang, W., Duan, S., Dolan, M.E., and Cox, N.J. (2010). Trait-
947 associated SNPs are more likely to be eQTLs: annotation to enhance discovery from

948 GWAS. PLoS Genet. 6, €1000888.

949 6. Yao, D.W., O’Connor, L.J., Price, A.L., and Gusev, A. (2020). Quantifying genetic effects on
950 disease mediated by assayed gene expression levels. Nat. Genet. 52, 626—633.

951 10.1038/s41588-020-0625-2.

952 7. Liu, X,, Li, Y.l., and Pritchard, J.K. (2019). Trans Effects on Gene Expression Can Drive
953 Omnigenic Inheritance. Cell 177, 1022-1034.e6. 10.1016/j.cell.2019.04.014.

954 8. Saha, A., and Battle, A. (2019). False positives in trans-eQTL and co-expression analyses
955 arising from RNA-sequencing alignment errors. FL000Research 7, 1860.

956 10.12688/f1000research.17145.2.

957 9. Albert, F.W., Bloom, J.S., Siegel, J., Day, L., and Kruglyak, L. (2018). Genetics of trans-
958 regulatory variation in gene expression. elLife 7, e35471. 10.7554/eLife.35471.

959  10. Vb6sa, U., Claringbould, A., Westra, H.-J., Bonder, M.J., Deelen, P., Zeng, B., Kirsten, H.,
960 Saha, A., Kreuzhuber, R., Yazar, S., et al. (2021). Large-scale cis- and trans-eQTL analyses
961 identify thousands of genetic loci and polygenic scores that regulate blood gene expression.
962 Nat. Genet. 53, 1300-1310. 10.1038/s41588-021-00913-z.

963 11. Kim, S., and Xing, E.P. (2009). Statistical Estimation of Correlated Genome Associations to
964 a Quantitative Trait Network. PLOS Genet. 5, e1000587. 10.1371/journal.pgen.1000587.
965 12. Ferreira, M.A.R., and Purcell, S.M. (2009). A multivariate test of association. Bioinformatics
966 25, 132-133. 10.1093/bioinformatics/btn563.

967 13. Boyle, E.A., Li, Y.l., and Pritchard, J.K. (2017). An Expanded View of Complex Traits: From
968 Polygenic to Omnigenic. Cell 169, 1177-1186. 10.1016/j.cell.2017.05.038.

969 14. Small, K.S., Todorcevic¢, M., Civelek, M., El-Sayed Moustafa, J.S., Wang, X., Simon, M.M.,
970 Fernandez-Tajes, J., Mahajan, A., Horikoshi, M., Hugill, A., et al. (2018). Regulatory variants
971 at KLF14 influence type 2 diabetes risk via a female-specific effect on adipocyte size and
972 body composition. Nat. Genet. 50, 572-580. 10.1038/s41588-018-0088-x.

973 15. Smemo, S., Tena, J.J., Kim, K.-H., Gamazon, E.R., Sakabe, N.J., Gébmez-Marin, C., Aneas,
974 l., Credidio, F.L., Sobreira, D.R., Wasserman, N.F., et al. (2014). Obesity-associated

975 variants within FTO form long-range functional connections with IRX3. Nature 507, 371—
976 375. 10.1038/nature13138.

977 16. Vogelstein, B., Lane, D., and Levine, A.J. (2000). Surfing the p53 network. Nature 408,

30


https://doi.org/10.1101/2022.11.11.516189
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.11.516189; this version posted February 7, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

978 307-310. 10.1038/35042675.
979 17.JJoo,J.W, Sul, J.H., Han, B., Ye, C., and Eskin, E. (2014). Effectively identifying regulatory
980 hotspots while capturing expression heterogeneity in gene expression studies. Genome
981 Biol. 15, r61. 10.1186/gb-2014-15-4-r61.
982  18. Rakitsch, B., and Stegle, O. (2016). Modelling local gene networks increases power to
983 detect trans-acting genetic effects on gene expression. Genome Biol. 17, 33.
984 10.1186/s13059-016-0895-2.
985 19. Zhou, X., and Cai, X. (2021). Joint eQTL mapping and inference of gene regulatory network
986 improves power of detecting both cis- and trans-eQTLs. Bioinformatics 38, 149-156.
987 10.1093/bioinformatics/btab609.
988 20. Hore, V., Vifiuela, A., Buil, A., Knight, J., McCarthy, M.l., Small, K., and Marchini, J. (2016).
989 Tensor decomposition for multiple-tissue gene expression experiments. Nat. Genet. 48,
990 1094-1100. 10.1038/ng.3624.
991 21. Ramdhani, S., Navarro, E., Udine, E., Efthymiou, A.G., Schilder, B.M., Parks, M., Goate, A.,
992 and Raj, T. (2020). Tensor decomposition of stimulated monocyte and macrophage gene
993 expression profiles identifies neurodegenerative disease-specific trans-eQTLs. PLOS
994 Genet. 16, €1008549. 10.1371/journal.pgen.1008549.
995 22. Rotival, M., Zeller, T., Wild, P.S., Maouche, S., Szymczak, S., Schillert, A., Castagné, R.,
996 Deiseroth, A., Proust, C., Brocheton, J., et al. (2011). Integrating Genome-Wide Genetic
997 Variations and Monocyte Expression Data Reveals Trans-Regulated Gene Modules in
998 Humans. PLOS Genet. 7, €1002367. 10.1371/journal.pgen.1002367.
999  23. Kolberg, L., Kerimov, N., Peterson, H., and Alasoo, K. (2020). Co-expression analysis
1000 reveals interpretable gene modules controlled by trans-acting genetic variants. eLife 9,
1001 e58705. 10.7554/eLife.58705.
1002 24. Dutta, D., He, Y., Saha, A., Arvanitis, M., Battle, A., and Chatterjee, N. (2022). Aggregative
1003 trans-eQTL analysis detects trait-specific target gene sets in whole blood. Nat. Commun.
1004 13, 4323. 10.1038/s41467-022-31845-9.
1005 25. Aschard, H., Vilhjalmsson, B.J., Greliche, N., Morange, P.-E., Trégouét, D.-A., and Kraft, P.
1006 (2014). Maximizing the Power of Principal-Component Analysis of Correlated Phenotypes in
1007 Genome-wide Association Studies. Am. J. Hum. Genet. 94, 662—-676.
1008 10.1016/j.ajhg.2014.03.016.
1009  26. Liu, Z., and Lin, X. (2019). A Geometric Perspective on the Power of Principal Component
1010 Association Tests in Multiple Phenotype Studies. J. Am. Stat. Assoc. 114, 975-990.
1011 10.1080/01621459.2018.1513363.
1012  27. Battle, A., Mostafavi, S., Zhu, X., Potash, J.B., Weissman, M.M., McCormick, C.,
1013 Haudenschild, C.D., Beckman, K.B., Shi, J., Mei, R., et al. (2014). Characterizing the
1014 genetic basis of transcriptome diversity through RNA-sequencing of 922 individuals.
1015 Genome Res. 24, 14-24. 10.1101/gr.155192.113.
1016 28. Liu, X., Mefford, J.A., Dahl, A., He, Y., Subramaniam, M., Battle, A., Price, A.L., and Zaitlen,
1017 N. (2020). GBAT: a gene-based association test for robust detection of trans-gene
1018 regulation. Genome Biol. 21, 211. 10.1186/s13059-020-02120-1.
1019  29. Langfelder, P., and Horvath, S. (2008). WGCNA: an R package for weighted correlation
1020 network analysis. BMC Bioinformatics 9, 559. 10.1186/1471-2105-9-559.
1021 30. Liberzon, A., Birger, C., Thorvaldsdottir, H., Ghandi, M., Mesirov, J.P., and Tamayo, P.
1022 (2015). The Molecular Signatures Database Hallmark Gene Set Collection. Cell Syst. 1,
1023 417-425. 10.1016/j.cels.2015.12.004.
1024  31. Kanehisa, M., Furumichi, M., Sato, Y., Ishiguro-Watanabe, M., and Tanabe, M. (2021).
1025 KEGG: integrating viruses and cellular organisms. Nucleic Acids Res. 49, D545-D551.
1026 10.1093/nar/gkaa970.
1027 32. Szklarczyk, D., Gable, A.L., Nastou, K.C., Lyon, D., Kirsch, R., Pyysalo, S., Doncheva, N.T.,
1028 Legeay, M., Fang, T., Bork, P., et al. (2021). The STRING database in 2021: customizable

31


https://doi.org/10.1101/2022.11.11.516189
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.11.516189; this version posted February 7, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

1029 protein—protein networks, and functional characterization of user-uploaded

1030 gene/measurement sets. Nucleic Acids Res. 49, D605-D612. 10.1093/nar/gkaal074.

1031  33. Giambartolomei, C., Vukcevic, D., Schadt, E.E., Franke, L., Hingorani, A.D., Wallace, C.,
1032 and Plagnol, V. (2014). Bayesian Test for Colocalisation between Pairs of Genetic

1033 Association Studies Using Summary Statistics. PLOS Genet. 10, e1004383.

1034 10.1371/journal.pgen.1004383.

1035 34. Mu, Z., Wei, W., Fair, B., Miao, J., Zhu, P., and Li, Y.l. (2021). The impact of cell type and
1036 context-dependent regulatory variants on human immune traits. Genome Biol. 22, 122.
1037 10.1186/s13059-021-02334-x.

1038 35. Westra, H.-J., Peters, M.J., Esko, T., Yaghootkar, H., Schurmann, C., Kettunen, J.,

1039 Christiansen, M.W., Fairfax, B.P., Schramm, K., Powell, J.E., et al. (2013). Systematic
1040 identification of trans eQTLs as putative drivers of known disease associations. Nat. Genet.
1041 45, 1238-1243. 10.1038/ng.2756.

1042  36. Luijk, R., Dekkers, K.F., van Iterson, M., Arindrarto, W., Claringbould, A., Hop, P.,

1043 Boomsma, D.I., van Duijn, C.M., van Greevenbroek, M.M.J., Veldink, J.H., et al. (2018).
1044 Genome-wide identification of directed gene networks using large-scale population

1045 genomics data. Nat. Commun. 9, 3097. 10.1038/s41467-018-05452-6.

1046 37. Morris, J.A., Daniloski, Z., Domingo, J., Barry, T., Ziosi, M., Glinos, D.A., Hao, S., Mimitou,
1047 E.P., Smibert, P., Roeder, K., et al. (2021). Discovery of target genes and pathways of blood
1048 trait loci using pooled CRISPR screens and single cell RNA sequencing. Preprint at bioRxiv,
1049 10.1101/2021.04.07.438882 10.1101/2021.04.07.438882.

1050 38. Raudvere, U., Kolberg, L., Kuzmin, I., Arak, T., Adler, P., Peterson, H., and Vilo, J. (2019).
1051 g:Profiler: a web server for functional enrichment analysis and conversions of gene lists
1052 (2019 update). Nucleic Acids Res. 47, W191-W198. 10.1093/nar/gkz369.

1053 39. Schwickert, T.A., Tagoh, H., Giiltekin, S., Dakic, A., Axelsson, E., Minnich, M., Ebert, A.,
1054 Werner, B., Roth, M., Cimmino, L., et al. (2014). Stage-specific control of early B cell

1055 development by the transcription factor lIkaros. Nat. Immunol. 15, 283-293.

1056 10.1038/ni.2828.

1057 40. Lemarié, M., Bottardi, S., Mavoungou, L., Pak, H., and Milot, E. (2021). IKAROS is required
1058 for the measured response of NOTCH target genes upon external NOTCH signaling. PLOS
1059 Genet. 17, €1009478. 10.1371/journal.pgen.1009478.

1060  41. Cui, J., Zhu, L., Xia, X., Wang, H.Y., Legras, X., Hong, J., Ji, J., Shen, P., Zheng, S., Chen,
1061 Z.J., et al. (2010). NLRC5 Negatively Regulates the NF-kB and Type | Interferon Signaling
1062 Pathways. Cell 141, 483-496. 10.1016/j.cell.2010.03.040.

1063  42. Kobayashi, K.S., and van den Elsen, P.J. (2012). NLRC5: a key regulator of MHC class I-
1064 dependent immune responses. Nat. Rev. Immunol. 12, 813—-820. 10.1038/nri3339.

1065  43. Bycroft, C., Freeman, C., Petkova, D., Band, G., Elliott, L.T., Sharp, K., Motyer, A.,

1066 Vukcevic, D., Delaneau, O., O'Connell, J., et al. (2018). The UK Biobank resource with deep
1067 phenotyping and genomic data. Nature 562, 203—209. 10.1038/s41586-018-0579-z.

1068  44. Liu, J.Z., van Sommeren, S., Huang, H., Ng, S.C., Alberts, R., Takahashi, A., Ripke, S., Lee,
1069 J.C., Jostins, L., Shah, T., et al. (2015). Association analyses identify 38 susceptibility loci
1070 for inflammatory bowel disease and highlight shared genetic risk across populations. Nat.
1071 Genet. 47, 979-986. 10.1038/ng.3359.

1072  45. de Lange, K.M., Moutsianas, L., Lee, J.C., Lamb, C.A., Luo, Y., Kennedy, N.A., Jostins, L.,
1073 Rice, D.L., Gutierrez-Achury, J., Ji, S.-G., et al. (2017). Genome-wide association study
1074 implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nat.
1075 Genet. 49, 256-261. 10.1038/ng.3760.

1076  46. Ferreira, M.A., Vonk, J.M., Baurecht, H., Marenholz, I., Tian, C., Hoffman, J.D., Helmer, Q.,
1077 Tillander, A., Ullemar, V., van Dongen, J., et al. (2017). Shared genetic origin of asthma,
1078 hay fever and eczema elucidates allergic disease biology. Nat. Genet. 49, 1752-1757.
1079 10.1038/ng.3985.

32


https://doi.org/10.1101/2022.11.11.516189
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.11.516189; this version posted February 7, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

1080 47. Loh, P.-R., Kichaev, G., Gazal, S., Schoech, A.P., and Price, A.L. (2018). Mixed-model

1081 association for biobank-scale datasets. Nat. Genet. 50, 906-908. 10.1038/s41588-018-
1082 0144-6.

1083  48. INTERNATIONAL MULTIPLE SCLEROSIS GENETICS CONSORTIUM (2019). Multiple
1084 sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility.
1085 Science 365, eaav7188. 10.1126/science.aav7188.

1086  49. Ferreira, M.A.R., Mathur, R., Vonk, J.M., Szwajda, A., Brumpton, B., Granell, R., Brew, B.K.,
1087 Ullemar, V., Lu, Y., Jiang, Y., et al. (2019). Genetic Architectures of Childhood- and Adult-
1088 Onset Asthma Are Partly Distinct. Am. J. Hum. Genet. 104, 665-684.

1089 10.1016/j.ajhg.2019.02.022.

1090 50. Bentham, J., Morris, D.L., Graham, D.S.C., Pinder, C.L., Tombleson, P., Behrens, T.W.,
1091 Martin, J., Fairfax, B.P., Knight, J.C., Chen, L., et al. (2015). Genetic association analyses
1092 implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of
1093 systemic lupus erythematosus. Nat. Genet. 47, 1457-1464. 10.1038/ng.3434.

1094 51. Zou, S., Teixeira, A.M., Kostadima, M., Astle, W.J., Radhakrishnan, A., Simon, L.M.,

1095 Truman, L., Fang, J.S., Hwa, J., Zhang, P., et al. (2017). SNP in human ARHGEF3

1096 promoter is associated with DNase hypersensitivity, transcript level and platelet function,
1097 and Arhgef3 KO mice have increased mean platelet volume. PLOS ONE 12, e0178095.
1098 10.1371/journal.pone.0178095.

1099 52. Finucane, H.K., Bulik-Sullivan, B., Gusev, A., Trynka, G., Reshef, Y., Loh, P.-R., Anttila, V.,
1100 Xu, H., Zang, C., Farh, K., et al. (2015). Partitioning heritability by functional annotation
1101 using genome-wide association summary statistics. Nat. Genet. 47, 1228-1235.

1102 10.1038/ng.3404.

1103 53. Rowland, B., Venkatesh, S., Tardaguila, M., Wen, J., Rosen, J.D., Tapia, A.L., Sun, Q.,
1104 Graff, M., Vuckovic, D., Lettre, G., et al. (2022). Transcriptome-wide association study in UK
1105 Biobank Europeans identifies associations with blood cell traits. Hum. Mol. Genet. 31,
1106 2333-2347. 10.1093/hmg/ddac011.

1107  54. Artavanis-Tsakonas, S., Rand, M.D., and Lake, R.J. (1999). Notch Signaling: Cell Fate
1108 Control and Signal Integration in Development. Science 284, 770-776.

1109 10.1126/science.284.5415.770.

1110  55. Liu, B., Gloudemans, M.J., Rao, A.S., Ingelsson, E., and Montgomery, S.B. (2019).

1111 Abundant associations with gene expression complicate GWAS follow-up. Nat. Genet. 51,
1112 768-769. 10.1038/s41588-019-0404-0.

1113  56. Consortium, T.Gte. (2020). The GTEx Consortium atlas of genetic regulatory effects across
1114 human tissues. Science 369, 1318-1330. 10.1126/SCIENCE.AAZ1776.

1115

33


https://doi.org/10.1101/2022.11.11.516189
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.11.516189; this version posted February 7, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

1116  Acknowledgements

1117 We thank Y. Li, A. Dahl, Y. Gilad and Z. Mu for useful scientific discussions. We thank N.
1118 Gonzales, C. Jones and S. Sumner for editing the manuscript. This work was funded through
1119 the NIGMS Maximizing Investigators' Research Award (R35GM138084).

1120

1121

1122

34


https://doi.org/10.1101/2022.11.11.516189
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.11.516189; this version posted February 7, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

1123 Supplementary information

1124  Supplementary Note, Supplementary Figures 1-29, and Supplementary Tables 1-20.
1125
1126

35


https://doi.org/10.1101/2022.11.11.516189
http://creativecommons.org/licenses/by-nc/4.0/

Data Processing

'------------.‘,

|
1]
I
B
B
[
Il
&

if

i

1 Mappability
I N a4

| ¢ *.

. o— —
g

%

i B I NN NN NN E =

=i

Gene Network

F *
g i
i [l
i i
i [
N i
il &
0 |
g [
) i
i [l
i i
i [
N i
Y &
I R &

Il - . . E = EE = e

i

Multivariate Association

A I
i ] |
o 4
.-.:‘:-. o [ I
e et
o y | I
B & |
5 s 1
e F
B . |
"‘:'.ru_-_':;."


https://doi.org/10.1101/2022.11.11.516189
http://creativecommons.org/licenses/by-nc/4.0/

Method
¢ Trans—-PCO

&

200

PC1
MinP

[

400 600
Sample Size

800

Method

¢ Trans-PCO
¢ PC1
MinP

001 0,05 01 03 05
Causal Proportion


https://doi.org/10.1101/2022.11.11.516189
http://creativecommons.org/licenses/by-nc/4.0/

A

Gene Modules

y;
34
31
e

e e e e e S NS S A A S e e

ed February 7, 2024. The copyright holder for pmint
ORxiv a license to display the preprint in perpetuity#it is'hade
nse.

2 345678910112 J
Chromosome

Module 35

B trans-gaQTL signals N
3714 185 489 267
30 \
\ |
ARHGEE3 PLAGL1IKZF1 NFE2 NFKBIA ' Signal type
y K .-l' I; I’- 20 1 [l Gene module
5 ° N |1 Single gene
°
® R © 10
o O
O
o o
‘I
o i Trans-PCO Both Univariate
° ‘HEH | Method
o © C
B 179
. ° — 150
u.-.- t_é
& B L ~Logo(P) qf 100
Q o0 8 b2
-]
o 10 - 50
H Y , 0 12 =
ﬂ Ll O 14
2 ? 3
2
o . u
) &5 ' B
© 8
g °
(o]
0o LEe
o
© o

Module 66 —log4o(P)

0 2 4 6 8
NFKBIA - log1o(P)

Module 66 —1o0g4o(P)

35.86 3546 3548
chr14 (Mb)

Module 159



https://doi.org/10.1101/2022.11.11.516189
http://creativecommons.org/licenses/by-nc/4.0/

A Coloc Proportion
0.

0 026 050 075 1.00 B

o

[
LYMPH P{ I— Bl Biood
| .
[ ] . Autoimmune
[
] . Other
= MCV
= Trans MRV
o MSCV
B . Coloc RBC i3
= MCH I
= i
HGB M
e <2
= Tralt RBC W
REI%EE = = Red blood cells MCHC
HCT
R?_ﬁ:_ _gg = 2= Platelets PLTC -:
PLT
MCHC1 ¢ Coloc MPV Y g
it -
HCTH | : IBD
IEB = Colog Regions | A"E{%
Alleln:% I MS
| 6 AE
i . ™y
Height4 B :j HDL-cholesterol
g\dl i 2 Cholesterol
HDL-cholesterolq | . Eczema
Cholesterolq | 0 Hypertension
%f:sznﬁma I | Asthma
thma
Hypertension 4 | KNS I T I N S A N S M S R N SR A S
0 50 100 150 | Module

Number of regions -

C D
Module 4
EO P
EO trans regulation
BASO
BASQ P
MONO
MONO_P =
WBC =0 P .
NEUT hlglg ny
LYMPH MoV H
NEUT_P .
LYMPH_P ik 'y
_ HLSR P i
HGB RET P -
HCT * HLSR I
MCHC Module 4 v.s. Mean platelet volume MCH 0
MSCV ~ RIER(F; 1
EBR?, ‘ B HGB E
RBC_W g 820 RBC_W I,
Le. MCHC o
MCV 1 i HCT i g
HLSR ’n".‘" % 100 PLTC v
M B z PLT
HLSR P D 5 O MPV
IRF - - PDW
RET o,
RET P r_l EE 10
PLTC S =
PLT o
PDW 15
MPV E
O 9
0 100 200 56.8 56.8 56.9 56.9 56.9
Enrichment GWAS gl Cal (W)
F
e e b
frans regulation
trait genetics
HEME metablism v.s. Haemoglobin concentration HEME metablism v.s. Red blood cell count HEME metablism v.s. Reticulocyte count
8 00 @
rs151288714=@ 2 15 e " é’rsssggg% rs47950859
rs6592965

QTL -log1o(P)

1 O
D o®

: ,?

o383 83

s{ o o
=
’ S
|
- 15 RO
=
é 5 o] & o rs6592965

o N A~ O
o

QTL —|Og1n(P) GWAS —|Og1 u(P
QTL -log1o(P) GWAS -log1o(P)

15

0 5 10 139.8139.8139.8139.9 0O 20 40 60 80 50.4 50.4 50.5 0 50 100 150 200  34.(84.(84.034.(84.084.1
GWAS -log+o(P) chré (Mb) GWAS -log1o(P) chr7 (Mb) GWAS -logqo(P) chr17 (Mb)

QTL -logio(P) GWAS —10g1o(P)


https://doi.org/10.1101/2022.11.11.516189
http://creativecommons.org/licenses/by-nc/4.0/

O

E 1500
N O Real Sigma iln Signals Univariate - TransPCO
691 A Ratio=150 Ia
o <= Ratio=100 O SHGi
13 Ratio=50 J::___a
D =
: 4
o= N
B (»
0 Ratio=1 . 900
- 3
0 1 2 3 4 E
z o=
Expected '|Ug1u (P) 0 N == ) I =) = W
| . 12 3 456 7 8 9 10>10trans-PCO
2d o ‘HE B i Number of trans target genes SPecific
Ej’: , ;_::nap 0 oo ’
Hdo © 39 B o 48 l
! £ 9 |
4 R SRR A B b
{K
E‘ 0 &f é ° g Mm.:iule-ﬁz
© : Ox 3 tB
:E_': o . 2 g °q 3 8§ © "
: QO E ¢
i oo Poad® ° o % o o ¥
r; P .8 ¢,
j..r o @ gon 9 o 0O l.': % o
7 o o © 08 o o
]
J: P o n " 3 o
‘ E 2
ASRE T et ;g’;x)l;?mg&sh;afalfmefg e T A T o
E E @Iableundera BY- NGA e onallcense . o Q G
R e °o® e
= 000 00
m ?'l: o 0 0o 20
o &%
8 = ! | Module 76
G- 60 Chromosome 6
%:_‘ ‘ o:_’f: ; |
. © Module 54
(o I - |
» o 8
o 3 € ]
oodd i Module 60
o

Omﬂ

D T T e e e e e A e R I W e S N T

3# :?U
o 12
* @ufwz s»w o

5 6 7 8 9101112131
Chromosome

I

- Fl_l—wm



https://doi.org/10.1101/2022.11.11.516189
http://creativecommons.org/licenses/by-nc/4.0/

