

1 **TITLE: Attenuated humoral responses in HIV infection after SARS-CoV-2 vaccination**
2 **are linked to global B cell defects and cellular immune profiles**

3 Emma Touizer^{*1}, Aljawharah Alrubbayi^{*1,2}, Rosemarie Ford¹, Noshin Hussain¹, Pehuén
4 Pereyra Gerber³, Hiu-Long Shum¹, Chloe Rees-Spear¹, Luke Muir¹, Ester Gea-Mallorquí²,
5 Jakub Kopycinski², Dylan Jankovic¹, Christopher Pinder¹, Thomas A Fox¹, Ian Williams⁴,
6 Claire Mullender⁵, Irfaan Maan^{4,5}, Laura Waters⁴, Margaret Johnson^{1,6}, Sara Madge⁶,
7 Michael Youle^{1,6}, Tristan Barber^{5,6}, Fiona Burns^{5,6}, Sabine Kinloch^{1,6}, Sarah Rowland-
8 Jones², Richard Gilson^{4,5}, Nicholas J Matheson^{3,7}, Emma Morris¹, Dimitra Peppa^{1,4,5*}, Laura
9 E McCoy^{1*}

10 1. Institute for Immunity and Transplantation, Division of Infection and Immunity,
11 University College London, UK

12 2. Nuffield Department of Medicine, University of Oxford, UK

13 3. Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department
14 of Medicine, University of Cambridge, UK

15 4. Mortimer Market Centre, Department of HIV, Central and North West London NHS
16 Trust, UK

17 5. Institute for Global Health, University College London, UK

18 6. The Ian Charleson Day Centre, Royal Free Hospital NHS Foundation Trust UK

19 7. NHS Blood and Transplant, Cambridge, UK

20

21 **ABSTRACT**

22 People living with HIV (PLWH) on suppressive antiretroviral therapy (ART) can have residual
23 immune dysfunction and often display poorer responses to vaccination. We assessed in a
24 cohort of PLWH (n=110) and HIV negative controls (n=64) the humoral and spike-specific B-
25 cell responses following 1, 2 or 3 SARS-CoV-2 vaccine doses. PLWH had significantly lower
26 neutralizing antibody (nAb) titers than HIV-negative controls at all studied timepoints.
27 Moreover, their neutralization breadth was reduced with fewer individuals developing a
28 neutralizing response against the Omicron variant (BA.1) relative to controls. We also
29 observed a delayed development of neutralization in PLWH that was underpinned by a
30 reduced frequency of spike-specific memory B cells (MBCs) and pronounced B cell
31 dysfunction. Improved neutralization breadth was seen after the third vaccine dose in PLWH
32 but lower nAb responses persisted and were associated with global, but not spike-specific,
33 MBC dysfunction. In contrast to the inferior antibody responses, SARS-CoV-2 vaccination
34 induced robust T cell responses that cross-recognized variants in PLWH. Strikingly, a subset
35 of PLWH with low or absent neutralization had detectable functional T cell responses. These
36 individuals had reduced numbers of circulating T follicular helper cells and an enriched
37 population of CXCR3⁺CD127⁺CD8⁺ T cells after two doses of SARS-CoV-2 vaccination, which
38 may compensate for sub-optimal serological responses in the event of infection. Therefore,
39 normalisation of B cell homeostasis could improve serological responses to vaccines in PLWH
40 and evaluating T cell immunity could provide a more comprehensive immune status profile in
41 these individuals and others with B cell imbalances.

42 INTRODUCTION

43 People living with HIV (PLWH) appear to be at a higher risk of hospitalisation and
44 worse clinical outcomes from COVID-19 disease, especially in the context of cellular
45 immunosuppression and unsuppressed HIV viral load (Cooper et al., 2020). Although
46 antiretroviral therapy (ART) has dramatically improved life expectancy in PLWH, the
47 persistence of immune dysfunction raises concerns about the overall effectiveness and
48 durability of vaccine responses in this potentially more vulnerable patient group, in line with
49 other immunocompromised groups (Herzog Tzarfati et al., 2021; Kamar et al., 2021). As a
50 result, PLWH were included in priority group 4 and 6 in the UK for earlier COVID-19
51 vaccination than the general population. The Joint Committee on Vaccination and
52 Immunization (JCVI) advised to invite this patient group for a 4th booster dose (Baskaran et
53 al., 2021; Bertagnolio et al., 2022; Dandachi et al., 2021; Hoffmann et al., 2021; Jcvi, 2022;
54 Noe et al., 2021; Western Cape Department of Health in collaboration with the National
55 Institute for Communicable Diseases, 2021; Yang et al., 2021). Previously, defects have been
56 observed in serological vaccine responses in PLWH. For example after a full course of
57 hepatitis B (Cruciani et al., 2009) or influenza vaccination (George et al., 2015) and long-term
58 responses to vaccination can be shorter-lived in PLWH compared to the general population
59 (Kernéis et al., 2014). We and others have previously shown a failure to mount a robust
60 antibody response following COVID-19 vaccination in advanced HIV infection with low CD4 T
61 cell counts below 200 cells/ μ l (Hassold et al., 2022; Nault et al., 2021; Noe et al., 2021; Spinelli
62 et al., 2021; Touizer et al., 2021).

63 Data on vaccine efficacy and immunogenicity in PLWH remains limited (reviewed in
64 (Mullender et al., 2022)), and while there are some conflicting results, meta-analyses (Tamuzi
65 et al., 2022) and recent studies (Woldemeskel et al., 2022) have shown reduced levels of
66 seroconversion and neutralization after a second dose of viral vector vaccine dose in PLWH,
67 with lower CD4 T cell count/viraemia and older age resulting in a more impaired response and
68 more rapid breakthrough infection (Sun et al., 2022). Data after three vaccine doses are
69 scarce, especially of evaluating efficacy against Omicron. However, the data available thus
70 far suggest that the third vaccine dose provides a strong boost to antibody responses
71 regardless of the CD4 T cell count, including in those who had previously not seroconverted
72 (Vergori et al., 2022). Moreover, most studies on SARS-CoV-2 vaccine responses in PLWH
73 to date have mostly focussed on evaluating humoral responses and generated limited data on
74 functional T cell responses (Ogbe et al., 2022b) or cellular profiles of T or B cells. Therefore,
75 it remains unclear what role HIV-associated immune dysfunction plays in serological and
76 cellular outcome after SARS-CoV-2 vaccination.

77 Inferior serological responses to vaccination in PLWH are most commonly linked to
78 HIV-induced immune destruction of CD4 T cells and imbalance of the CD4:CD8 T cell
79 populations (Fuster et al., 2016; Pallikkuth et al., 2018). Despite effective ART, chronic
80 immune activation in HIV can lead to exhaustion of the adaptive immune system (Fenwick et
81 al., 2019). This can translate into impaired T cell responses, likely limiting T follicular helper
82 (T_{FH}) cell help to B cells, resulting in lower serological outputs. There is also substantial
83 evidence for dysfunction/exhaustion in the B cell compartment during chronic infections that
84 may limit antibody responses against the infecting pathogen (Burton et al., 2018; Portugal et
85 al., 2015). This B cell dysfunction persists to a variable degree after HIV viral suppression
86 (Moir and Fauci, 2013, 2017), but how these B cell defects impact serological responses to
87 vaccination has not yet been fully elucidated. Furthermore, there is substantial age-related
88 decline in immune function leading to senescence in both the T and B cell compartments,
89 which may be accelerated in PLWH and could further influence vaccine responses (Nasi et
90 al., 2017).

91 In this study we have evaluated in a well-curated cohort of PLWH and HIV-negative
92 controls following three SARS-CoV-2 vaccine doses, the relationship between humoral and
93 functional T cell responses against Omicron and other variants of concern (VOC). To achieve
94 this goal, we have assessed how spike-specific memory B cell (MBC) responses, global MBC
95 profiles, CD4 and CD8 T cell phenotypes are linked with serological outcomes in PLWH to
96 better understand which factors may modulate immune responses to vaccination.

97 **RESULTS**

98 **Lower levels of seroconversion and neutralizing antibodies after SARS-CoV-2 99 immunization in PLWH without a history of prior COVID-19 disease**

100 Participants were recruited between January 2021 and April 2022 (n=110 PLWH and n=64
101 HIV-negative controls) as described in **Table 1**. Participants were sampled after 1, 2 or 3
102 doses of a SARS-CoV-2 vaccine and compared cross-sectionally. In addition, in 53 PLWH
103 and 44 controls, responses were assessed longitudinally where sequential samples were
104 available. SARS-CoV-2 spike-specific IgG were tested for binding against the S1 subunit of
105 the SARS-CoV-2 spike protein in a semi-quantitative ELISA (Ng et al., 2020; Rees-Spear et
106 al., 2021) to determine seropositivity. Neutralizing antibodies (nAbs) were measured against
107 the ancestral vaccine-matched Wuhan Hu-1 SARS-CoV-2 (WT) strain by pseudovirus
108 neutralization (Rees-Spear et al., 2021). Approximately 90% of HIV-negative controls and
109 80% of PLWH with no prior history of SARS-CoV-2 infection seroconverted. However, while
110 over 82% of controls produced a neutralizing response after one vaccine dose, only 29% of

111 PLWH did so (**Figure 1A**). As described (Reynolds et al., 2021), prior history of SARS-CoV-2
112 infection was associated with a higher level of seroconversion and the development of nAbs
113 in all individuals at every studied timepoint regardless of HIV status (**Figure 1A**).

114 Notably, PLWH had lower titers of nAbs than HIV-negative controls at all timepoints
115 regardless of prior SARS-CoV-2 infection (**Figure 1B, C**). Overall, a similar trend was seen in
116 binding responses (**Supplementary Figure 1A, B**), and nAb titers correlated significantly with
117 both binding titers for S1 IgG and nAb titers obtained from a live virus neutralization assay
118 (**Supplementary Figure 1C, D**), as previously reported (Brouwer et al., 2020; Graham et al.,
119 2021). Given that this observational cohort includes a mixture of SARS-CoV-2 vaccine types,
120 it was notable that both binding and neutralizing titers remained significantly lower in PLWH
121 compared to controls when only those who had received mRNA-based vaccines were
122 considered (**Supplementary Figure 1E, F**). A similar analysis for viral vector-based vaccines
123 was not feasible due to insufficient numbers in the control group. Both at the pre- and post-
124 third vaccine dose timepoints, there were more SARS-CoV-2 naïve PLWH that fail to produce
125 nAbs (**Figure 1A, 1B, Supplementary Figure 1A**) compared to the control group. This could
126 be biased by the cross-sectional nature of the analysis as at the pre-third vaccine dose
127 timepoint, additional PLWH were recruited, some with complex co-morbidities. However, the
128 observed differences persisted when PLWH were stratified for co-morbidities
129 (**Supplementary Figure 1G**).

130 Longitudinal samples from 53 PLWH and 44 controls were then evaluated to assess
131 binding antibody responses and nAbs over time after each vaccine dose. These included
132 samples after the first dose and for at least one additional timepoint, often including a baseline,
133 post-second, pre-third and post-third sample (**Figure 1D**). This analysis revealed two clear
134 trajectories of the development of neutralization, firstly where nAbs were detected after a
135 single vaccine dose (Gilbert et al., 2022), defined here as “standard neutralization”, and
136 secondly where neutralization was not achieved until after the second dose or later, defined
137 as “delayed neutralization”. Most HIV-negative controls without prior SARS-CoV-2 infection
138 show a standard neutralization profile, with only 3 individuals failing to mount a neutralizing
139 response until after the second dose (**Figure 1D**), and a similar effect was seen with binding
140 responses (**Supplementary Figure 1H-K**). In contrast, two-thirds of SARS-CoV-2 naïve
141 PLWH did not make a detectable neutralizing response until after the second dose and a
142 substantial proportion of them lost detectable neutralizing activity before the third dose (**Figure**
143 **1A, E**). However, both PLWH and HIV-negative controls with a history of SARS-CoV-2
144 infection made a standard neutralizing response (**Figure 1F, G**). Therefore, having identified
145 this delayed neutralization phenotype in SARS-CoV-2 naïve PLWH, we have evaluated its
146 relationship with total CD4 T cell counts, which are known to be important for SARS-CoV-2

147 vaccine responses in PLWH (Hassold et al., 2022; Nault et al., 2021; Noe et al., 2021; Touizer
148 et al., 2021). No significant difference was seen in median CD4 T cell count or CD4:CD8 T
149 cell ratio between PLWH with standard or delayed neutralization profiles (**Figure 1H, I**); or
150 correlate either with the rapid development of neutralization (**Supplementary Figure 1M, N**).

151 **Delayed neutralization is associated with lower frequency of spike-specific MBCs and**
152 **a perturbed MBC global phenotype**

153 Spike is the SARS-CoV-2 glycoprotein and is the sole antigen in most vaccines. It has been
154 previously shown that infection and vaccination produce spike-specific MBCs in proportion to
155 serological responses (Cohen et al., 2021; Dan et al., 2020; Goel et al., 2021; Jeffery-Smith
156 et al., 2022; Terreri et al., 2022). Given that the delay in neutralization observed more
157 frequently in PLWH was not clearly associated with peripheral CD4 T cell counts, we next
158 assessed the relationship with global MBCs and spike-reactive MBC frequency and
159 phenotype, using a previously validated flow cytometry panel, with memory B cells defined as
160 CD19+ CD20+ CD38^{lo/-} IgD- (**Supplementary Figure 2**). This analysis was performed on
161 available PBMC samples after the first vaccine dose, using SARS-CoV-2 naïve baseline
162 samples to determine the antigen-specific gate (**Figure 2A**). We observed a significantly lower
163 frequency of spike-specific MBCs in SARS-CoV-2 naïve participants after the first dose as
164 compared to those with a history of prior infection, regardless of HIV status (**Figure 2B**).
165 Moreover, a lower frequency of spike-specific MBCs was observed in SARS-CoV-2 naïve
166 participants who had a delayed neutralization response, although notably there was a small
167 number of donors in the standard neutralization group (**Figure 2C**). In line with this, the
168 percentage of spike-specific MBCs showed a strong correlation with the nAb titer (**Figure 2D**)
169 in agreement with previous findings during SARS-CoV-2 convalescence (Jeffery-Smith et al.,
170 2022).

171 Subsequent gating on CD21 and CD27 expression allowed the identification of four
172 populations of class-switched MBCs: CD21- CD27- atypical MBCs (also known as tissue-like
173 memory); CD21- CD27+ activated MBCs; CD21+CD27+ classical resting MBCs and CD21+
174 CD27- switched naïve (also known as intermediate memory) MBCs (**Figure 2E**) as previously
175 described (Jeffery-Smith et al., 2022). Global defects in the balance of these MBC subsets
176 have been identified previously in PLWH (reviewed in (Moir and Fauci, 2017)), including those
177 on ART (Pensiero et al., 2013), with increased numbers of activated and atypical MBCs
178 concurrent with a decrease in resting MBCs. This phenotype is exemplified in (**Figure 2E**) for
179 a PLWH and a HIV-negative control. We have hypothesised that these inherent defects may
180 have an impact on the quality of serological responses after SARS-CoV-2 vaccination. Global
181 phenotyping of the MBC response after the first vaccine dose revealed that individuals with
182 delayed neutralization, consisting largely of PLWH, had significantly lower numbers of resting

183 MBCs (CD21+ CD27+) and greater numbers of both CD21- CD27+ activated MBCs and
184 CD21- CD27- atypical MBCs compared to those with standard neutralization (**Figure 2F**).
185 Moreover, lower frequencies of resting MBCs correlated with lower nAb titers (**Figure 2G**).
186 Higher levels of atypical MBCs significantly correlated with lower nAb titers, although the
187 strength of this association was relatively weak ($r=-0.4867$) (**Figure 2H**). Together these
188 findings suggest that the MBC subset perturbations seen in PLWH could account for the lower
189 serological output.

190 **Improved neutralization breadth after the third SARS-CoV-2 dose in PLWH but lower**
191 **nAb responses persist and are associated with global, but not spike-specific, MBC**
192 **dysfunction**

193 To assess the breadth of nAb responses across the cohort, samples from all timepoints were
194 tested against an Omicron pseudovirus (BA.1 strain), which represented the dominant
195 circulating strain at the time of the post third vaccine dose sampling. Due to the substantial
196 antigenic changes in the Omicron spike (McCallum et al., 2022), in participants with no prior
197 infection, over 50% of HIV-negative controls and more than 90% of PLWH were not able to
198 neutralize Omicron after the first vaccine dose (**Figure 3A**). The second dose enabled most
199 of the control group to mount a neutralizing response whereas only a quarter of SARS-CoV-2
200 naïve PLWH had nAbs against Omicron. In the SARS-CoV-2 naïve groups, the third dose
201 enabled 100% of HIV-negative controls to neutralize Omicron and increased the frequency of
202 neutralization among PLWH to over 70% (**Figure 3A**). As in the analysis of WT neutralization
203 for individuals without prior SARS-CoV-2 infection, median Omicron ID₅₀ titers were lower in
204 SARS-CoV-2 naïve PLWH compared to HIV-negative controls at all timepoints (**Figure 3B**).
205 Additionally, there was no significant difference when individuals with complex co-morbidities
206 were removed from the PLWH cohort at the third vaccine dose (**Supplementary Figure 3C**)
207 or whether they had previously been infected with SARS-CoV-2. These data suggest that the
208 third vaccine dose was effective in both boosting nAb titer and broadening the response to
209 Omicron, especially in SARS-CoV-2 naïve PLWH, thus rendering their responses closer to
210 those of SARS-CoV-2 naïve HIV-negative controls (**Figure 3B-C**).

211 Next, we evaluated cross-sectionally the B cell phenotype after the third vaccine dose.
212 In contrast to the first vaccine dose, there was no significant difference between the frequency
213 of spike-specific MBCs when individuals were stratified by whether they had been previously
214 infected with SARS-CoV-2 or not (**Figure 3D**) regardless of HIV status. However, the
215 frequency of spike-specific MBCs after the third dose correlated with Omicron titers (**Figure**
216 **3E**). This suggests that after three vaccine doses these individuals had mounted a specific B
217 cell response, and that the quantity of spike-specific B cells remained linked to the improved
218 neutralization potency and breadth observed (**Figure 3A-C**). Given that all individuals

219 assessed after the third dose made a robust spike-specific MBC response, we wanted to
220 evaluate further whether alterations in spike-specific MBC phenotype also contributed to
221 differences in serum neutralization (**Figure 3A, B, F, Supplementary Figure 3A-B**). Spike-
222 specific B cells were found to be comparable across the different MBC subsets in both PLWH
223 and HIV-negative controls, except for a trend to fewer spike-specific resting MBCs in PLWH
224 as compared to controls (**Figure 3G**). This was the case even though the global MBC
225 population for these post third vaccine dose samples showed classical anomalies in MBCs
226 associated with HIV infection (**Figure 3H**). These data suggest that SARS-CoV-2 serum
227 antibody responses are lower potentially because of a global MBC disturbance thereby limiting
228 the overall B cell response. In line with this proposal, we anticipated that underlying global
229 MBC disturbances would also influence the efficiency of the antigen-specific B cell response
230 in other ways, beyond limiting the number of spike-specific MBCs, for example by limiting
231 class-switching. Indeed, this is supported by our data showing similar levels of IgG+ and IgM+
232 global MBCs in both groups (**Figure 3I**) but a significantly lower level of spike-specific IgG+
233 MBCs in PLWH after the third vaccine dose as compared to controls, and conversely a higher
234 frequency of spike-specific IgM+ MBCs (**Figure 3J**).

235 **SARS-CoV-2 vaccination induces robust T cell responses that cross-recognize
236 variants in PLWH**

237 To increase our understanding of the complementary role of cellular immunity after
238 vaccination, we have examined T cell responses in our cohort, including their reactivity to
239 SARS-CoV-2 variants. The magnitude of spike-specific T cell responses was assessed cross-
240 sectionally by IFN- γ -ELISpot using overlapping peptide (OLP) pools covering the complete
241 sequences of the WT spike glycoprotein as previously described (Alrubayyi et al., 2021). The
242 majority of PLWH had detectable SARS-CoV-2-specific T cell responses at levels comparable
243 to HIV-negative individuals following each vaccine dose (**Figure 4A-C**). A greater magnitude
244 of spike-specific T cells was observed in individuals with prior SARS-CoV-2 infection,
245 irrespective of HIV status (**Figure 4A-C**) in keeping with previous reports (Lozano-Ojalvo et
246 al., 2021; Prendecki et al., 2021; Reynolds et al., 2021). There were no detectable T cell
247 responses in a small number of PLWH with no prior exposure to SARS-CoV-2 across all
248 timepoints. These were participants with incomplete immune reconstitution on ART and/or
249 additional co-morbidities, such as transplant recipients on immunosuppressive therapy
250 (**Figure 4A-C**). Next, we examined the longitudinal evolution of T cell responses in a subgroup
251 of donors with available PBMC samples. In SARS-CoV-2 naïve individuals, spike-specific T
252 cell responses increased following the first vaccine dose, peaked after the second dose and
253 were maintained after the third vaccine dose (**Figure 4D**). In one HIV-positive, SARS-CoV-2-
254 naïve donor with advanced immunosuppression and persistently low CD4 T cell count of 100

255 cells/µL on ART, a third dose (mRNA) vaccine was able to elicit a T cell response despite no
256 evidence of neutralization (**Figure 4D**). A higher proportion of PLWH without prior SARS-CoV-
257 2 infection had detectable T cell responses at baseline compared to HIV-negative controls,
258 which could represent the presence of cross-reactive responses to other pathogens, probably
259 to related coronaviruses (**Figure 4D**) (Braun et al., 2020; Grifoni et al., 2020; Le Bert et al.,
260 2020; Mateus et al., 2020; Sekine et al., 2020). However, due to the small number of
261 participants with detectable T cell responses at baseline, this study was not powered to detect
262 any association between the presence of cross-reactive T cells and magnitude of vaccine-
263 induced T cell responses. In donors with prior SARS-CoV-2 infection, there was a boosting
264 effect to spike-specific T cells following the first vaccine dose in both study groups (**Figure**
265 **4D**). In parallel we have tested T cell responses to CMV-pp65 and HIV-gag peptide stimulation
266 within the same individuals across all timepoints. Overall, PLWH with no prior exposure to
267 SARS-CoV-2 had robust responses to CMV-pp65 stimulation, as expected given their higher
268 CMV seroprevalence compared to HIV negative donors. CMV-specific responses in these
269 individuals were higher compared to SARS-CoV-2 and Gag-specific responses following each
270 vaccine dose (**Supplementary Figure. 4 A-C**). Prior SARS-CoV-2 exposure resulted in
271 comparable SARS-CoV-2 and CMV-pp65 T cell responses after the third vaccine dose in
272 PLWH (**Supplementary Figure. 4C**). No significant differences were detected between
273 SARS-CoV-2 and CMV-specific responses in HIV-negative individuals (**Supplementary**
274 **Figure. 4A-C**). Overall, these results demonstrate a robust induction of T cell responses to
275 SARS-CoV-2 vaccination in PLWH despite attenuated antibody responses.

276 Previous work has demonstrated that T cell responses are largely retained against
277 variants of concern (VOCs), including the highly transmissible BA.1 Omicron variant, and
278 therefore may be important when antibody levels wane or new variants emerge that can partly
279 escape antibody responses. To determine T cell reactivity to VOCs, we assessed T cell
280 responses to the mutated regions, including Omicron, in our study cohort. The magnitude of
281 T cell responses against B.1.1.529 was comparable between PLWH and HIV-negative donors
282 regardless of prior SARS-CoV-2 infection (**Figure 4E**). Notably, responses were further
283 enhanced by a third vaccine dose in all donors, irrespective of prior SARS-CoV-2 infection or
284 HIV status and in keeping with the beneficial effect of a third vaccine dose in boosting humoral
285 responses (**Figure 4E**). T cell reactivity to Omicron and other VOCs, including Alpha, Beta
286 and Delta, was comparable between HIV-negative and PLWH with or without prior SARS-
287 CoV-2 infection after three vaccine doses, and these responses were maintained against the
288 ancestral Wuhan Hu-1 spike peptide pool, reinforcing the relative resilience of T cell responses
289 to spike variation (**Supplementary Figure 4D-E**). We noted that three HIV-negative and five
290 HIV-positive individuals, regardless of prior SARS-CoV-2 infection, had no detectable T cell

291 responses to the Wuhan Hu-1 peptide pool, covering only the affected regions of spike. This
292 could be in part due to the VOC mutations occurring in regions that are poorly targeted by T
293 cell responses in some individuals (Reynolds et al., 2021).

294 Although spike-specific T cell responses were detected at similar frequencies across
295 all groups (**Figure 4A-C**), there was variation in the magnitude of responses. To better
296 understand the factors underlying this heterogeneity, we examined the role of various HIV
297 parameters (Alrubayyi et al., 2021). We have previously reported an association between the
298 CD4:CD8 T cell ratio and total SARS-CoV-2 responses, especially against the nucleocapsid
299 (N) and membrane (M) protein, in PLWH recovering from COVID-19 disease (Alrubayyi et al.,
300 2021). No correlation was observed between the CD4:CD8 T cell ratio and spike-specific T
301 cell responses following vaccination in our cohort (**Supplementary Figure 4F-H**). However, a
302 positive correlation was detected between the CD4 T cell count and spike-specific T cell
303 responses after the first vaccine dose ($r=0.5153$) in SARS-CoV-2 naïve PLWH (**Figure 4E**).
304 This association was weaker after the second vaccine dose ($r=0.4596$) and non-significant
305 after the third dose (**Figure 4F, G**). Together these observations suggest that an effective
306 helper T cell response could drive the induction of cellular immunity following vaccination in
307 individuals without prior exposure to SARS-CoV-2. However, the lack of an association
308 between CD4 T cell counts and antibody responses further underlines the relative importance
309 of HIV-associated B cell defects in modulating the induction of effective humoral immunity in
310 addition to potential insufficient T cell priming.

311 **A proportion of PLWH had low or absent nAbs ($ID_{50} < 150$) but detectable T cell
312 responses following vaccination**

313 We examined next the relationship between humoral and cellular responses by comparing
314 antibody responses and neutralization titers with T cell responses detected by IFN- γ -ELISpot
315 following SARS-CoV-2 vaccination. Overall, spike-specific T cells following the first, second
316 and third vaccine doses correlated positively with respective nAb titers in HIV-negative and
317 PLWH. These associations were stronger in PLWH after the first ($r=0.5402$; $p=0.0014$) and
318 second dose of vaccine ($r=0.5038$, $p=0.0004$), similarly to HIV-negative controls (**Figure 5A-C**).
319 Similar associations were observed for S1 IgG binding titers (**Supplementary Figure 5A-C**).
320 One HIV-positive SARS-CoV-2 naïve donor with a low CD4 T cell count of 40 cells/ μ L on
321 ART, and one individual with relapsed lymphoma, both had no detectable humoral and cellular
322 responses after 2 or 3 doses of mRNA vaccine. Interestingly a proportion of PLWH, in
323 particular those without prior SARS-CoV-2 infection, had low or absent nAbs ($ID_{50} < 150$) but
324 detectable T cell responses following vaccination (**Figure 5A-C**). To better visualise these
325 relationships in SARS-CoV-2 naïve individuals, we ranked T cell responses after second and

326 third doses according to the magnitude of neutralizing antibodies (**Figure 5E-G**). All of the
327 HIV-negative donors had detectable cellular and neutralizing antibodies (**Figure 5D**).
328 However, a proportion of SARS-CoV-2 naïve PLWH with low or absent nAbs (n=9 out of 10)
329 had measurable cellular responses to the spike protein after two vaccine doses (**Figure 5E**).
330 These donors were all controlled on ART with a median CD4 T cell count of 680 cells/µL and
331 no significant underlying co-morbidity (Supplementary Table 1). Although all HIV-negative
332 individuals had both detectable nAbs and cellular responses post third dose (**Figure 2F**), a
333 small number of PLWH SARS-CoV-2 naïve donors (n=7 out of 9) had detectable T cell
334 responses in the absence of, or only low-level, neutralization (**Figure 5G**). Similarly, these
335 donors were all well controlled on ART with a median CD4 T cell count of 492 cells/µL. One
336 of these donors who presented with advanced HIV infection had a persistently low CD4 T cell
337 count (100 cells/µL), and one of the donors recruited after a third vaccine dose had a previous
338 splenectomy. These data suggest that in a small proportion of PLWH, serological non-
339 responders or with evidence of low-level neutralization, cellular immune responses may play
340 an important compensatory role.

341 **PLWH with suboptimal serological responses demonstrate an expansion of**
342 **CXCR3⁺CD127⁺ CD8⁺ T cells after two doses of SARS-CoV-2 vaccination**

343 The presence of detectable T cell responses in a subgroup of SARS-CoV-2 naïve HIV-positive
344 donors with low or absent nAbs after two or three vaccine doses prompted us to further
345 evaluate the phenotype of the T cell compartment. We have compared T cell immune
346 signatures in SARS-CoV-2 naïve PLWH with potent neutralization titers (>1:150) and
347 functional T cell responses (PLWH SARS-CoV-2 naïve nAb^{high}T⁺, n=9), with SARS-CoV-2
348 naïve PLWH with low/absent nAbs and a functional T cell responses (PLWH SARS-CoV-2-
349 nAb^{low}T⁺, n=9). Both groups were age and sex matched, well controlled on ART and with a
350 similar median CD4 T cell count (**Supplementary Table 1**). We have used an unbiased
351 approach and unsupervised high-dimensional analysis, global t-distributed stochastic
352 neighbour embedding (t-SNE), followed by FlowSOM clustering, in circulating T cell
353 populations in the two groups. Ten major CD4 and CD8 T cell subsets were examined using
354 a combination of various activation and differentiation markers, including CD45RA, CCR7,
355 CD127, CD25, CXCR3, CXCR5, PD-1, and CD38 (**Figure 6A and Supplementary Figure**
356 **6A-B**). There was no difference in the frequencies of the main T cell subsets in the two groups
357 (**Supplementary Figure 6D**). Among CD4 T cells, there was a reduction in circulating
358 CXCR3⁺CXCR5⁺ T follicular helper (T_{FH}) subsets observed in HIV-positive nAb^{low} compared
359 to nAb⁺ donors (**Figure 6 A,B**). The reduced abundance of CXCR3⁺CXCR5⁺ T_{FH} in nAb^{low}
360 HIV-positive subjects was further confirmed by manual gating (**Figure 6C, D and**
361 **Supplementary 3C**). CXCR3⁺CXCR5⁺ T_{FH} cells correlated with SARS-CoV-2 neutralization

362 levels in HIV-positive SARS-CoV-2 naïve individuals ($r=0.5294$ $p=0.02388$) (**Figure 6E**),
363 suggesting that reduced availability of T_{FH} cells could influence the magnitude of vaccine-
364 induced SARS-CoV-2 antibody responses.

365 We have next examined the CD8 T cell compartment in the two groups. Notably, a
366 prominent cluster delineated by the expression of CXCR3 $^{+}$ CD127 $^{+}$ CD38 $^{+}$ CCR7 $^{+}$ CD45RA $^{+}$
367 was significantly enriched in PLWH SARS-CoV-2- nAb $^{-/low}T^{+}$ (**Figure 6F, G and**
368 **Supplementary 6B**). The higher abundance of CXCR3 $^{+}$ CD127 $^{+}$ CD38 $^{+}$ CCR7 $^{+}$ CD45RA $^{+}$ cells
369 in PLWH SARS-CoV-2- nAb $^{-/low}T^{+}$ was further confirmed by manual gating ($p=0.04$) (**Figure**
370 **6H, I and Supplementary 6C**). Correlation analysis of these populations showed a positive
371 association between their frequencies and SARS-CoV-2-specific T cell responses following
372 two vaccine doses in PLWH with nAb $^{-/low}$ (**Figure 6**), supporting the notion that these subsets
373 could contribute to the observed induction of T cell responses in PLWH who lacked or
374 generated low nAb responses. Overall, our analysis of the global T cell profile of individuals
375 with low/absent nAbs but detectable functional T cell responses revealed that reduced
376 availability of T_{FH} cells could contribute to the serological defect observed in conjunction with
377 the previously highlighted imbalance in MBCs. Moreover, we have identified a subset of CD8
378 T cells that is overrepresented in PLWH with low/absent nAbs and may enable stronger
379 functional T cell responses, supported by recent findings showing that CXCR3 $^{+}$ CD8 T cells
380 are polyfunctional and associated with survival in critical SARS-CoV-2 patients, and have been
381 observed in other immunosuppressed groups (Adam et al., 2021; Gao et al., 2022).

382 **DISCUSSION**

383 Accumulating evidence suggests that a broad and well-coordinated immune response is
384 required for protection against severe COVID-19 disease. The emergence of VOCs with
385 increased ability to evade nAbs has reinforced the need for a more comprehensive
386 assessment of adaptive immunity after vaccination, especially in more vulnerable groups
387 including some PLWH. Our data show that PLWH who are well controlled on ART, elicited
388 poorer humoral responses, in terms of magnitude and neutralizing ability compared to HIV-
389 negative donors following first, second and third doses of SARS-CoV-2 vaccine. This was
390 related to global B cell but not antigen-specific B cell dysfunction, thereby providing new
391 insights into what enables a fully-fledged vaccine response. In contrast, T cell responses were
392 comparable in the two groups and detectable, even in a small group of PLWH with very poor
393 serological responses, suggesting a potentially important non-redundant immunological role
394 for functional T cells. Overall, our data reinforce the beneficial effect of an additional vaccine
395 dose in boosting adaptive immune responses (Vergori et al., 2022), especially against
396 circulating VOCs in this patient group.

397 Weaker humoral responses were observed in PLWH compared to HIV-negative
398 controls after each dose of vaccine when matched by prior SARS-CoV-2 status. While the
399 third dose largely narrowed the gap between PLWH and controls, and enabled Omicron
400 neutralization, 13% of SARS-CoV-2 naïve PLWH still no nAbs after 3 vaccine doses. This
401 suggests additional doses/targeted vaccines could be merited, especially given 28% of SARS-
402 CoV-2 naïve PLWH failed to neutralize Omicron after the third vaccine dose. Previous studies
403 among similar cohorts of PLWH with undetectable HIV viral loads have produced mixed
404 results, as previously reviewed (Mullender et al., 2022). SARS-CoV-2 viral vector vaccines
405 have shown similar magnitude and durability of antibody responses to HIV-negative controls
406 (Frater et al., 2021; Ogbe et al., 2022b) but reduced levels of seroconversion and
407 neutralization have been reported after two doses in PLWH in a more recent study
408 (Woldemeskel et al., 2022). Furthermore, viral vector vaccines, lower CD4 T cell
409 count/viraemia and old age have been linked to lower serological responses and breakthrough
410 infection (Sun et al., 2022). In terms of mRNA vaccines, both non-significant (Heftdal et al.,
411 2022; Levy et al., 2021) and significant decreases in humoral responses have been reported
412 in PLWH (Bessen et al., 2022; Brumme et al., 2022; Hensley et al., 2022; Jedicke et al., 2022).
413 These differences may be due to the size of cohorts examined and the range of immune
414 reconstitution in these PLWH. In contrast to previous work (Hassold et al., 2022; Nault et al.,
415 2021; Noe et al., 2021; Touizer et al., 2021), we have found no association between the CD4
416 T cell count and serological outcome, which could be due to insufficient power in this study to
417 detect differences. Moreover, few studies have addressed T cell activity after a third SARS-
418 CoV-2 vaccine dose in this population, but in agreement with our findings a strong boosting
419 effect of a third vaccine dose has been reported regardless of the CD4 T cell count (Vergori
420 et al., 2022). Thus, the lower level of nAbs observed here in PLWH could be in part due to
421 potential differences in boosting of memory responses to enable breadth against Omicron
422 after three vaccine doses.

423 Serological data correlated significantly with frequency of spike-specific MBCs. The B
424 cell phenotyping confirmed the characteristic and persistent defects seen in global MBCs in
425 the setting of HIV (reviewed in (Moir and Fauci, 2017)). Specifically, we have observed lower
426 frequencies of resting MBCs and higher frequencies of atypical and activated MBCs. This
427 dysregulated MBC phenotype was also associated with a delay in developing nAbs after the
428 first dose regardless of HIV status. Further evaluation of antigen-specific MBCs in a group of
429 individuals after the third vaccine dose led to the interesting observation that spike-specific
430 MBCs present in PLWH had a similar memory B cell phenotype as HIV-negative controls,
431 albeit fewer resting MBCs. However, higher levels of global atypical MBCs, also observed in
432 PLWH with lower neutralization at the third vaccine dose, suggest that the excess atypical

433 MBCs may be effectively exhausted, as has been described (Moir et al., 2008). Therefore,
434 SARS-CoV-2 serum antibody responses may be lower not because spike-specific responses
435 are enriched within atypical MBCs and therefore unable to progress to an antibody secreting
436 phenotype (as has been postulated for HIV/HBV (Burton et al., 2018; Meffre et al., 2016)), but
437 rather because of global MBC disturbance. Thus, we propose that this reduced nAb to
438 vaccination in PLWH may not be due to an alteration in the phenotype of antigen-specific cells
439 but rather limited numbers of MBCs available to participate in the antigen-specific response
440 via the canonical pathway.

441 In contrast to serological responses, SARS-CoV-2 vaccination elicited comparable T
442 cell responses between PLWH and HIV-negative controls at all sampling points, and these
443 responses were largely preserved against circulating VOCs, including Omicron, following
444 three vaccine doses. Similarly, to the scenario seen in antibody responses, prior SARS-CoV-
445 2 infection also resulted in higher T cell responses to vaccination (Lozano-Ojalvo et al., 2021;
446 Prendecki et al., 2021; Reynolds et al., 2021). Interestingly, detectable T cell responses were
447 noted in a proportion of SARS-CoV-2 naïve individuals at baseline (Alrubayyi et al., 2021;
448 Ogbe et al., 2022a), which could represent pre-existing cross-reactive T cell cells due to past
449 infection with other coronaviruses (Casado et al., 2022). An association between CD4 T cell
450 counts and the magnitude of T cell responses was observed in SARS-CoV-2 naïve PLWH
451 following vaccination, highlighting the relevance of immune cell reconstitution in producing
452 effective immunity to vaccination, especially in people who lack memory responses elicited by
453 natural infection. In this cohort, PLWH were well-controlled on ART and had undetectable HIV
454 viral loads. Both PLWH with, and without, prior SARS-CoV-2 exposure had similar median
455 CD4 T cell counts (602 and 560 cells/ μ l, respectively) despite different serological outcomes.
456 However, the full impact of HIV-related immunosuppression, in addition to other factors,
457 including age, sex and presence of co-morbidities, in dampening effective and long-lived
458 memory responses needs to be addressed in future larger prospective studies. It is possible
459 that different vaccine schedules, i.e., homologous versus heterologous vaccination, could also
460 account for the observed heterogeneity in cellular immune responses. A heterologous viral
461 vectored/mRNA vaccination has been described to lead to increased reactogenicity,
462 combining the advantages from both vaccine classes (Banki et al., 2022). Due to limited
463 numbers, it has not been possible to address the impact of different vaccine platforms in our
464 cohort. Whether a heterologous approach induces more effective, resilient, and durable
465 responses in PLWH merits further investigation to gain better insight into the design of the
466 most effective/optimized vaccination schedules.

467 Overall humoral responses correlated with the magnitude of T cell responses and our
468 findings corroborate the importance of T_{FH} cells supporting effective B cell responses after

469 vaccination. Notably, in a small subgroup of patients (serological non- or low-level
470 responders), there were detectable T cell responses characterised by a CXCR3+CD127+ CD8
471 T phenotype. This phenotype was not clearly related to HIV parameters or presence of co-
472 morbidities. These T cell populations have been linked with increased survival in people
473 infected with SARS-CoV-2 and are consistent with observations in patient groups who lack B
474 cell responses (Gao et al., 2022). Upregulation of CXCR3 in vaccine-induced T cells with
475 potential to home to lung mucosa in tuberculosis (Jeyanathan et al., 2017) suggests that these
476 CD8 T cells described herein could play a role in the protection against severe respiratory
477 diseases such as SARS-CoV-2. Future prospective studies in larger cohorts are needed to
478 validate these findings and fully address how these vaccine-induced T cell responses could
479 mediate protection, thereby guiding the design of novel immunization strategies.

480 Our study has several limitations. These include a cross-sectional analysis, which
481 precludes the establishment of causal relationships. Our cohort is heterogeneous, with
482 differences in sex, age and levels of immunosuppression that may contribute to the variability
483 in the magnitude of responses. Moreover, the current analysis provides an overview of
484 responses after up to three vaccine doses, and therefore further work is required to assess
485 the durability and resilience of these responses against subvariants and additional vaccine
486 doses.

487 Despite these caveats, our study provides new insights into the reasons why some
488 PLWH fail to produce effective humoral responses, and an in-depth assessment of B cell
489 responses. The observation of a more abundant CD8 T cell profile in some PLWH with absent
490 or low-level antibody responses supports the notion that virus-specific CD8 T cells could
491 compensate for defects in humoral immunity after SARS-CoV-2 vaccination in PLWH, as
492 previously described for other immunocompromised groups (Gao et al., 2022). Overall, our
493 data supports the benefit of a third SARS-CoV-2 dose in inducing nAbs against Omicron in
494 PLWH, as it does in the general population. Future prospective studies are needed to fully
495 evaluate humoral responses incorporating T cell metrics and potential early waning of
496 responses to fully determine the correlates of protection against disease and the need for
497 regular booster/altered vaccine schedules.

498 **Acknowledgements**

499 We are grateful to all the clinic staff and participants at the Mortimer Market Centre and Ian
500 Charleson Day Centre, in particular Rebecca Matthews, Aran Dhillon, Connor McAlpine,
501 Paulina Prymas, Marzia Fiorino, Thomas Fernandez, Jonathan Edwards and Hemat Nargis.
502 The authors would like to thank James E Voss of the Scripps Research Institute for the gift of

503 Hela ACE2 expressing cells and Peter Cherepanov of the Francis Crick Institute for
504 recombinant S1 antigen.

505 **Funding**

506 This study was supported by UKRI MRC grant (MR/W020556/1) to LEM, DP and EM and an
507 NIH award (R01AI55182) to (DP). LEM receives funding from the European Research Council
508 (ERC) under the European Union's 1053 Horizon 2020 research and innovation programme
509 (Grant Agreement No. 757601) and is supported by a Career Development Award
510 (MR/R008698/1). ET is supported by an MRC studentship (MR/N013867/1), AA by a Saudi
511 Ministry of Education studentship (FG-350441) and TF by a Wellcome Trust Clinical PhD
512 Fellowship (216358/Z/19/Z). NJM is supported by an MRC grant (MR/T032413/1), a NHSBT
513 grant (WPA15-02), the Addenbrooke's Charitable Trust (900239) and the NIHR Cambridge
514 BRC.

515 **MATERIALS & METHODS**

516 **Ethics statement**

517 The protocols for the following study were approved by the local Research Ethics Committee
518 (REC) Berkshire (REC 16/SC/0265) and South Central - Hampshire B (REC 19/SC/0423).
519 The study complied with all relevant ethical regulations for work with human participants and
520 conformed to the Helsinki declaration principles and Good Clinical Practice (GCP) guidelines.
521 All subjects enrolled into the study provided written informed consent.

522 **Patient recruitment and sampling**

523 There were 110 HIV+ participants who were virally suppressed and on ART and 64 HIV-
524 negative healthy controls were recruited as part of either the Jenner II or the Vaccine in Clinical
525 Infection (VCI) cohorts. PBMCs and plasma (or serum) were collected at the following
526 timepoints: baseline, post-first dose (≥ 12 days following the first dose), post-second dose (≤ 70
527 days following the second dose), pre-third dose (≥ 70 days following the second dose), and
528 post-third dose (> 7 days following the third dose). Participants received a mix of available
529 SARS-CoV-2 vaccination (Pfizer-BioNTech's BNT162b2; Moderna's mRNA-1273 or Astra-
530 Zeneca's AZD1222) according to Joint Committee on Vaccination and Immunization, UK,
531 guidelines (Jcvi, 2022). Not every participant was sampled at all timepoints. At each visit,
532 participants were asked to report any history of SARS-CoV-2 infection.

533 Between vaccinations, 4 previously SARS-CoV-2 naïve participants (2 HIV-, 2 HIV+) reported
534 a SARS-CoV-2 infection, as such, any subsequent timepoints were moved into the 'prior
535 SARS-CoV-2 infection' group for analysis. Similarly, 3 participants with prior SARS-CoV-2
536 reported a further infection (2 HIV-, 1 HIV+). All participants were recruited at the Mortimer
537 Market Centre for Sexual Health and HIV Research and the Ian Charleson Day Centre at the
538 Royal Free Hospital (London, UK) following written informed consent as part of a study
539 approved by the local ethics board committee. Additional information about demographic and
540 sampling can be found in Supplementary Table 1.

541 **PBMC isolation**

542 Whole blood was collected in heparin-coated tubes. PBMCs were isolated from whole blood
543 via density-gradient sedimentation. Whole blood was first spun via centrifugation for 5 min at
544 800g. Plasma was then collected, aliquoted and stored at -80°C for further use. Remaining
545 blood was diluted with RPMI (Gibco), layered over an appropriate volume of Ficoll (Cytiva)
546 and then spun via centrifugation for 20min at 800g without brake. The PBMC layer was
547 collected and washed with RPMI to be spun via centrifugation for 10 min at 400g. PBMCs

548 were stained with trypan blue and counted using Automated Cell Counter (BioRad, Hercules,
549 California, USA). PBMCs were then cryopreserved in a cryovial in cell recovery freezing
550 medium containing 10% dimethyl sulfoxide (DMSO) (Sigma) and 90% heat-inactivated fetal
551 bovine serum (FBS) and stored at -80 °C in a Mr. Frosty freezing container overnight before
552 being transferred into liquid nitrogen for further storage. If present, serum separator tubes
553 were spun at 400g for 5 min to collect serum and then stored at -80°C for further use.

554 **Semi-quantitative S1 ELISA**

555 This assay was set up previously by our lab (Alrubayyi et al., 2021; O’Nions et al., 2020).
556 Briefly, in a 96-half-well NUNC Maxisorp™ plate (Nalgene, NUNC International, Hereford,
557 UK), three columns were coated overnight at 4°C with 25 µl of goat anti-human F(ab)'2
558 (1:1000) in PBS, the other nine columns were coated with 25µl of SARS-CoV-2 WT S1 protein
559 (a kind gift from Peter Cherepanov (Ng et al., 2020), The Francis Crick Institute) at 3 µg/ml in
560 PBS. The next day, plates were washed with PBS-T (0.05% Tween in PBS) and blocked for
561 1 hour (h) at room temperature (RT) with assay buffer (5% milk powder PBS-T). Assay buffer
562 was then removed and 25 µl of patient plasma at dilutions from 1:50–1:10000 in assay buffer
563 added to the S1-coated wells in duplicate. Serial dilutions of known concentrations of IgG were
564 added to the F(ab)'2 IgG-coated wells in triplicate to generate an internal standard curve. After
565 2 h of incubation at RT, plates were washed with PBS-T and 25 µl alkaline phosphatase (AP)-
566 conjugated goat anti-human IgG (Jackson ImmunoResearch) at a 1:1000 dilution was added
567 to each well and incubated for 1 h at RT. Plates were then washed with PBS-T, and 25 µl of
568 AP substrate (Sigma Aldrich) added. Optical density (OD) was measured using a Multiskan™
569 FC (Thermo Fisher-Scientific UK) plate reader at 405 nm and S1-specific IgG titers were
570 interpolated from the IgG standard curve using 4PL regression curve-fitting on GraphPad
571 Prism 9.

572 **Total IgG ELISA**

573 To measure total IgG levels in plasma, a 96-half-well NUNC Maxisorp™ plate (Nalgene,
574 NUNC International, Hereford, UK) was entirely coated overnight at 4°C with 25 µl of goat anti-
575 human F(ab)'2 (1:1000). As above, plates were washed in PBS-T and blocked for 1 h at RT
576 in assay buffer. 25µl of serial dilutions of patient plasma (1:100 to 1:10000000) were added in
577 duplicates to the plate alongside known concentrations of IgG in triplicates. As above, after
578 2 h of incubation at RT, plates were washed with PBS-T and 25 µl AP-conjugated goat anti-
579 human IgG was added and then incubated for 1 h at RT. Plates were washed with PBS-T, and
580 25 µl of AP substrate added. ODs were measured using a Multiskan™ FC (Thermo Fischer

581 Scientific-UK)plate reader at 405 nm and total IgG titers interpolated from the IgG standard
582 curve using 4PL regression curve-fitting on GraphPad Prism 9.

583 **IgG purification**

584 As the PLWH participants in this study were on ART which can interfere with the lentivirus-
585 based pseudotype neutralization assay IgG was purified from plasma using a 96-well protein
586 G spin plate (Pierce™). Plasma was incubated in wells containing protein G at RT for 30 min.
587 The captured IgG was then eluted with 0.1M Glycine (pH=2-3) twice into 2M Tris (pH=7.5-9)
588 buffer. To remove Tris/Glycine buffer from the purified IgG, the eluate was concentrated
589 (Thermo Scientific™ Pierce Protein Concentrator PES, 50K MWCO, 0.5 mL) and washed
590 thrice at 10000rpm for 10 min before quantification by measuring absorbance of 280nm on a
591 NanoDrop™ (ThermoFischer). The entire volume of purified IgG was then filtered sterile using
592 a 0.22µm PDVF hydrophilic membrane FiltrEX™ filter plate (Corning) and stored at 4°C for
593 further use.

594 **Pseudovirus production**

595 In a T75 flask, 3×10^6 HEK-293T cells were seeded in 10ml of complete DMEM Dulbecco's
596 Modified Eagle's Medium (Gibco) supplemented with 10% FBS and 50µg/ml penicillin-
597 streptomycin. The next day, the following transfection mix was prepared: 1ml of Opti-MEM™
598 (Gibco); 90µl of PEI-max (1mg/ml); 10µg of p8.91 HIV-1 gag/pol packaging plasmid (Zufferey
599 et al., 1997); pCSLW HIV-1 luciferase reporter vector plasmid (Wright et al., 2008) and 5µg of
600 either SARS-CoV-2 spike plasmid of interest, specifically WT (Wuhan-hu-1) or Omicron
601 (BA.1/B.1.1.529.1) (Seow et al., 2020) as indicated in the results section. The transfection mix
602 was left to incubate for 20 min before being added to the cells and left to incubate at 37°C 5%
603 CO₂ for 72h before being collected and filtered through a 0.45µm filter (Millipore) and either
604 used directly in an assay or stored at -80°C.

605 **Pseudovirus neutralization**

606 Neutralization assays were performed in 96-well plates by adding either duplicate serial
607 dilutions of neat plasma in complete Dulbecco's Modified Eagle medium (Thermo Fisher
608 Scientific-UK (DMEM) starting at 1:20 dilution for HIV-negative samples or the appropriate
609 amount of purified IgG for HIV+ samples to give a starting dilution equivalent to 200 or
610 400µg/ml of IgG as based on total IgG. These dilutions were incubated with the appropriate
611 amount of filtered pseudotyped virus for 1h at 37°C 5% CO₂ before adding 10000/ml HeLa-
612 ACE2 cells (kind gift from James Voss, The Scripps Research Institute, USA) in 100µl per
613 well. After a 72h incubation at 37°C 5% CO₂, the supernatant was removed, and cells lysed.

614 Bright-Glo™ luciferase substrate (Promega) was added, and relative light unit (RLU) values
615 were read on a Glomax® (Promega) or BioTek Synergy™ H1 (Agilent) plate reader. RLU
616 readouts were used to calculate the reciprocal inhibitory dilution at which 50% of the virus
617 activity is neutralized by plasma (ID₅₀) for each sample on GraphPad Prism 9.

618 **Live neutralization**

619 The SARS-CoV-2 virus used in this study was the wildtype (lineage B) isolate SARS-CoV-
620 2/human/Liverpool/REMRQ0001/2020, a kind gift from Ian Goodfellow (University of
621 Cambridge), isolated by Lance Turtle (University of Liverpool) and David Matthews and
622 Andrew Davidson (University of Bristol) (Daly et al., 2020; Patterson et al., 2020)(Plasma was
623 heat-inactivated at 56°C for 30 mins before use, and neutralizing antibody titres at 50%
624 inhibition (NT₅₀) measured as previously described (Bergamaschi et al., 2021; Gerber et al.,
625 2022; van der Klaauw et al., 2022). In brief, luminescent HEK293T-ACE2-30F-PLP2 reporter
626 cells (clone B7) expressing SARS-CoV-2 Papain-like protease-activatable circularly permuted
627 firefly luciferase (FFluc) were seeded in flat-bottomed 96-well plates. The next day, SARS-
628 CoV-2 viral stock (MOI=0.01) was pre-incubated with a 3-fold dilution series of each sample
629 for 2 h at 37°C, then added to the cells. 16 h post-infection, cells were lysed in Bright-Glo™
630 Luciferase Buffer (Promega) diluted 1:1 with PBS and 1% NP-40, and FFluc activity measured
631 by luminometry. Experiments were conducted in duplicate. To obtain NT₅₀, titration curves
632 were plotted as FFluc vs log (serum dilution), then analysed by non-linear regression using
633 the Sigmoidal, 4PL, X is log(concentration) function in GraphPad Prism. NT₅₀ were quantitated
634 when (1) at least 50% inhibition was observed at the lowest serum dilution tested (1:10, or
635 1:20 for pre-diluted samples), and (2) a sigmoidal curve with a good fit was generated.
636 Samples with no detectable neutralizing activity were assigned an arbitrary NT₅₀ equivalent to
637 the lower limit of quantification.

638 **Production of biotinylated protein**

639 To produce biotinylated spike and receptor binding domain (RBD) protein, HEK-293F cells
640 were seeded at 1x10⁶ cells/ml in Freestyle™ 293 Expression Medium (Gibco). The next day,
641 a transfection mix was prepared (for 200ml of cells) of 72µg of spike-Avi-His tag or RBD-Avi-
642 His tag plasmid and 18µg of BirA plasmid (Graham et al., 2021; Seow et al., 2020) into 11ml
643 of Opti-MEM™, alongside 2ml of PEI-Max® and 3ml of 10mM biotin, and left to incubate at
644 37°C 5% CO₂ in a shaking incubator for 7 days before harvesting for purification. The
645 supernatant was purified using an imidazole (Sigma-Aldrich) buffer at a final concentration of
646 20mM during binding to the His GraviTrap™ (Cytiva) column and 500mM imidazole for elution.
647 The eluted protein was then concentrated with a 100KD Amicon® Ultra concentrator (Merck)

648 and washed with PBS before quantification using a NanoDrop™. Biotinylated protein was then
649 further purified through size exclusion chromatography using an AKTA™ pure system with a
650 Superdex® 200 Increase 10/300 GL column (Sigma-Aldrich) to select for fractions containing
651 trimeric spike or RBD protein.

652 **B cell phenotypic flow cytometric analysis**

653 As previously described (Jeffery-Smith et al., 2022), 1µg of biotinylated spike with either
654 streptavidin-conjugated allophycocyanin (APC) (ProZyme) and phycoerythrin (PE) (ProZyme)
655 and 0.5µg of biotinylated RBD with BV421 (BioLegend) were incubated for 30 minutes in the
656 dark to generate fluorochrome-linked biotinylated tetramers. Previously cryopreserved
657 aliquots of 5x10⁶ or 10x10⁶ cell aliquots of PBMCs were quickly thawed in PBS, then stained
658 with a panel of phenotyping antibodies and biotinylated tetramers (see Supplementary Table
659 2) or phenotyping antibodies only for FMO controls. PBMCs were then washed with PBS and
660 fixed in Cytofix/Cytoperm™ (BD) buffer. Compensation controls were prepared according to
661 manufacturer's instructions using Anti-Mouse Ig, κ CompBeads™ (BD). Samples were
662 acquired on an LSRIFortessa™ (BD) flow cytometer. Data was analysed (see Supplementary
663 Figure 2 for gating strategy) on FlowJo v10 (FlowJo, BD). For further analysis of the phenotype
664 of spike-specific MBCs, analysis was limited to samples for which at least 50 cells were
665 acquired in the CD19+ CD20+ CD38lo/- IgD- MBCs (excluding CD27-CD27+ cells) spike-PE+
666 spike-APC+ gate as previously defined (Jeffery-Smith et al., 2022).

667

Protein	Fluorochrome	1X PBS
1µg purified biotinylated spike	1µl streptavidin-conjugated APC	7µl
1µg purified biotinylated spike	0.5µl streptavidin-conjugated APC	7.5µl
0.5µg purified biotinylated spike	1µl streptavidin-conjugated BV421	8µl

668

Marker	Fluorochrome	Reference	Concentration	Bait panel	FMO panel
IgG	FITC	BD #560952	5:100	Yes	Yes

Live/Dead	UV	Invitrogen #L23105	2:1000	Yes	Yes
CD19	BV786	BD #740968	2:100	Yes	Yes
CD27	BUV395	BD #563815	1:100	Yes	Yes
IgD	PE/Cy7	BD #561314	1:100	Yes	Yes
IgM	APC/Cy7	BioLegend #314520	1:100	Yes	Yes
CD20	AF700	BD #560631	1:100	Yes	Yes
CD21	BV711	BD #563163	1:100	Yes	Yes
CD38	PE-dazzle	BD #562288	0.5:100	Yes	Yes
CD3	BV510	BioLegend #317332	0.5:100	Yes	Yes
CD14	BV510	BioLegend #301842	0.5:100	Yes	Yes
RBD-STREP	BV421	BioLegend #405226	2:100	Yes	
Spike-STREP	PE	Agilent #PJRS25-1	2:100	Yes	
Spike-STREP	APC	Agilent #PJ25S	2:100	Yes	

669

670 **T cell phenotypic flow cytometric analysis**

671 The flow cytometric analysis has been described in detail previously (Alrubayyi et al., 2021).
672 Briefly, purified cryopreserved PBMCs samples were thawed and rested for 2 hours at 37°C
673 in complete RPMI medium (RPMI supplemented with penicillin-streptomycin, L-Glutamine,
674 HEPES, non-essential amino acids, 2-Mercaptoethanol, and 10% FBS). After 2-hour
675 incubation, cells were washed and plated in a 96-round bottom plate at 0.5-1x10⁶ per well and
676 stained for chemokine markers (CXCR3, CCR7 and CXCR5) for 30 minutes at 37 °C. Cells
677 were then washed and stained with surface markers at 4 °C for 20 min with different
678 combinations of antibodies in the presence of fixable live/dead stain (Invitrogen). After 20 min
679 of incubation, cells were washed with PBS, and fixed with 4% paraformaldehyde for 15 min at
680 RT. Samples were acquired on a LSRII Fortessa™ X-20 using FACSDiva™ version 8.0 (BD

681 Biosciences) and subsequent data analysis was performed using FlowJo v10 (Treestar). The
682 gating strategies used for flow cytometry experiments are provided in **Figure 6** and
683 **Supplementary Figure 6**.

Antibodies	Supplier	Identifier	Clone	Dilution
APC/Cy7 anti-human CD197 (CCR7)	BioLegend	Cat # 353212	Clone # G043H7	1 in 50ul
Brilliant Violet 650™ anti-human CD127 (IL-7Ra) Antibody	BioLegend	Cat # 351325	Clone # A019D5	1 in 100ul
Brilliant Violet 650™ anti-human CD3 Antibody	BioLegend	Cat # 317324	Clone # OKT3	1 in 100ul
Brilliant Violet 711™ anti-human CD27 Antibody	BioLegend	Cat # 302833	Clone # O323	1 in 100ul
Brilliant Violet 785™ anti-human CD38 Antibody	BioLegend	Cat # 303530	Clone # HIT2	1 in 50ul
Alexa Fluor® 700 anti-human CD45RA Antibody	BioLegend	Cat # 304120	Clone # HI100	1 in 50ul
Brilliant Violet 421™ anti-human CD279 (PD-1) Antibody	BioLegend	Cat # 329920	Clone # EH12.2H7	1 in 100ul
PE/Dazzle™ 594 anti-human CD4 Antibody	BioLegend	Cat # 300548	Clone # RPA-T4	1 in 100ul
Brilliant Violet 711™ anti-human CD8a Antibody	BioLegend	Cat # 301044	Clone # RPA-T8	1 in 100ul
Brilliant Violet 510™ anti-human CD14 Antibody	BioLegend	Cat # 301842	Clone # M5E2	1 in 200ul
Brilliant Violet 510™ anti-human CD19 Antibody	BioLegend	Cat # 302242	Clone # HIB19	1 in 200ul
BB515 Rat Anti-Human CXCR5 (CD185)	BD Biosciences	Cat # 564624	Clone # RF8B2	1 in 50ul
BV605 Mouse Anti-Human CD56	BD Biosciences	Cat # 562780	Clone # NCAM16.2	1 in 50ul
PE-Cy7 Mouse Anti-Human CD25	BD Biosciences	Cat # 335824	Clone # 2A3	1 in 50ul
PE-Cy™5 Mouse Anti-Human CD183	BD Biosciences	Cat # 551128	Clone # 1C6/CXCR3	1 in 25ul
PerCP-eFluor 710 Anti-Human CD3	eBioscience	Cat # 46-0037-42	Clone # OKT3	1 in 100ul
APC Anti-Human CD19	BioLegend	Cat # 302212	Clone # HIB19	1 in 100ul

684

685 **High-dimensional data analysis of flow cytometry data**

686 Visualization of high-dimensional single-cell data (viSNE) (van der Maatens, 2014) and
687 FlowSOM (Van Gassen et al., 2015) analyses were performed using the Cytobank platform
688 (<https://www.cytobank.org>). Concatenated files were used to evaluate overall CD4 and CD8
689 T cell landscape in different groups. Cells were manually gated for lymphocytes, singlets,
690 CD14-CD19- live cells, CD3+ and CD4+ or CD8+ and then subjected to viSNE analysis. The

691 viSNE clustering analysis was performed on 8 parameters (CCR7, CD45RA, CD127, PD-1,
692 CD38, CXCR5, CXCR3, CD25). Equal event sampling was selected across all samples.
693 FlowSOM was then performed using the same markers outlined previously for viSNE and with
694 the following parameters: number of clusters 100, number of metaclusters 10; the size of
695 clusters 15 pixels (Cytobank default).

696 **Ex vivo IFN-γ ELISpot assay**

697 The IFN-γ ELISpot assays were performed as described previously (Alrubayyi et al., 2021).
698 Briefly, 96-well ELISpot plates (S5EJ044I10; Merck Millipore, Darmstadt, Germany) pre-
699 wetted with 30 µl of 70% ethanol for 2 min before washing with 200 µl of sterile PBS. Anti-IFN-
700 γ coating antibody (10 µg/ml in PBS; clone 1-D1K; Mabtech, Nacka Strand, Sweden) was then
701 added and the plates incubated overnight at 4 °C. Prior to addition of cells, ELISpot plates
702 were washed with PBS and blocked with R10 (RPMI supplemented with penicillin-
703 streptomycin, L-glutamine, and 10% FBS) for a minimum of 2 h at 37 °C. Cells were then
704 added at 2×10^5 cells/well, in duplicate, and stimulated with overlapping peptide pools at
705 2 µg/ml for 16–18 h at 37 °C. Unstimulated cells were used as a negative control while PHA
706 (10 µg/ml, Sigma-Aldrich) stimulated cells were used as a positive control. Plates were then
707 washed with 0.05% Tween/PBS (Sigma Aldrich) and incubated for 2 h with an IFN-γ detection
708 antibody (1 µg/ml; clone mAb-7B6-1; Mabtech) followed by 1 h incubation with AP-conjugated
709 streptavidin (1:1000 in PBS, Mabtech). Plates were then washed and visualized using the
710 VECTASTAIN® Elite® ABC-HRP kit according to the manufacturer's instructions (Mabtech).
711 Antigen-specific T cell responses were quantified by subtracting the number of spots in
712 unstimulated cells from the peptide stimulated cells. An additional threshold of >5 SFU/ 10^6
713 PBMCs was used. Participants who lacked T cell responses to the positive stimuli (PHA) or
714 where antigen-specific responses found to be lower than two standard deviations of negative
715 controls were excluded from the results.

716 **Overlapping peptide pools:**

717 For the detection of antigen-specific T cell responses, purified cryopreserved PBMCs were
718 stimulated with the following peptide pools: (1) Wild-type SARS-CoV-2 spike; SARS-CoV-2
719 spike PepTivator® protein pools (Miltenyi Biotec, Gladbach, GER) were used to test T cell
720 responses against full spike proteome. (2) VOC spike-specific peptide pools; the WuhanHu-1
721 and variant pools containing peptides from the Wuhan Hu-1, Alpha (B.1.1.7), Beta (B.1.351),
722 Delta (B.1.617.2) and Omicron (BA.1/B.1.1.529.1) sequences (9, 19, 32 and 83 peptides,
723 respectively) were used to define T cell responses to mutated Spike sequences in SARS-CoV-
724 2 variants. Alpha and Beta peptide pools were synthesised by GL Biochem Shanghai Ltd,

725 China and previously used in (Reynolds et al., 2021). The corresponding controls to Alpha
726 and Beta pools with Wuhan Hu-1 amino-acid sequences were compared in parallel within the
727 same donor. Delta and Omicron pools were obtained from Miltenyi Biotec. (3) Non-SARS-
728 CoV-2 antigens: Peptide pools of the pp65 protein of human cytomegalovirus (CMV) (Miltenyi
729 Biotec, Gladbach, GER), or HIV-1 gag peptide pools (NIH AIDS Reagent Repository) were
730 used as positive/negative controls.

Reagents	Supplier	Identifier
PepTivator CMV pp65, human	Miltenyi Biotec	Cat # 130-093-438
PepTivator SARS-CoV-2 Prot_S Delta	Miltenyi Biotec	Cat # 130-128-763
PepTivator SARS-CoV-2 Prot_S Com	Miltenyi Biotec	Cat # 130-127-953
PepTivator® SARS-CoV-2 Prot_S Omicron	Miltenyi Biotec	Cat # 130-129-928
Wuhan Hu-1 Alpha	Biochem Shanghai	Customised
Wuhan Hu-1 Beta	Biochem Shanghai	Customised
Alpha Mutation Pool	Biochem Shanghai	Customised
Beta Mutation Pool	Biochem Shanghai	Customised
Human IFN- γ ELISpot Kit	Mabtech	Cat # P3420-2A
BD Cytofix/Cytoperm™ Fixation/Permeabilization Solution Kit	BD Biosciences	Cat # 554714
Phytohemagglutinin-L (PHA-L)	Sigma-aldrich	Cat # 11-249-738-001
anti-human IFN-gamma mAb 1-D1K, purified	Mabtech	Cat # 3420-3-1000
MSCRN-IP DURA 0.45UM CLEAR 50/PK	Millipore	Cat # MAIPN4550
mmPACT® AMEC Red Substrate, Peroxidase	2B Scientific	Cat # SK-4285
Vectastain ELite ABC PK-6100	2B Scientific	Cat # PK-6100

731 **Statistical analysis**

732 All statistical analysis were carried out in GraphPad Prism 9.0 (GraphPad). All tests were two-
733 tailed. Mann-Whitney U-test (MWU) was used to compare unpaired, non-parametric data
734 whilst Wilcoxon matched-pairs sign rank test (WMP) was used to compare paired, non-
735 parametric data. Non-parametric Spearman test was used for correlation analysis between
736 two sets of data. Error bars represent mean + standard deviation. Statistical significance in
737 the figures is shown as p-value >0.0332 (*); >0.0021 (**); >0.0002 (***) and >0.0001 (****).

738 **REFERENCES**

739 Adam, L., Rosenbaum, P., Quentrec, P., Parizot, C., Bonduelle, O., Guillou, N., Corneau, A.,
740 Dorgham, K., Miyara, M., Luyt, C.E., *et al.* (2021). CD8+PD-L1+CXCR3+ polyfunctional T
741 cell abundances are associated with survival in critical SARS-CoV-2-infected patients. *JCI*
742 *Insight* 6.

743 Alrubayyi, A., Gea-Mallorqui, E., Touizer, E., Hameiri-Bowen, D., Kopycinski, J., Charlton,
744 B., Fisher-Pearson, N., Muir, L., Rosa, A., Roustan, C., *et al.* (2021). Characterization of
745 humoral and SARS-CoV-2 specific T cell responses in people living with HIV. *Nat Commun*
746 12, 5839.

747 Banki, Z., Mateus, J., Rossler, A., Schafer, H., Bante, D., Riepler, L., Grifoni, A., Sette, A.,
748 Simon, V., Falkensammer, B., *et al.* (2022). Heterologous ChAdOx1/BNT162b2 vaccination
749 induces stronger immune response than homologous ChAdOx1 vaccination: The pragmatic,
750 multi-center, three-arm, partially randomized HEVACC trial. *EBioMedicine* 80, 104073.

751 Baskaran, V., Lawrence, H., Lansbury, L.E., Webb, K., Safavi, S., Zainuddin, N.I., Huq, T.,
752 Eggleston, C., Ellis, J., Thakker, C., *et al.* (2021). Co-infection in critically ill patients with
753 COVID-19: an observational cohort study from England. *J Med Microbiol* 70.

754 Bergamaschi, L., Mescia, F., Turner, L., Hanson, A.L., Kotagiri, P., Dunmore, B.J., Ruffieux,
755 H., De Sa, A., Huhn, O., Morgan, M.D., *et al.* (2021). Longitudinal analysis reveals that
756 delayed bystander CD8+ T cell activation and early immune pathology distinguish severe
757 COVID-19 from mild disease. *Immunity* 54, 1257-1275 e1258.

758 Bertagnolio, S., Thwin, S.S., Silva, R., Nagarajan, S., Jassat, W., Fowler, R., Haniffa, R.,
759 Reveiz, L., Ford, N., Doherty, M., *et al.* (2022). Clinical features of, and risk factors for,
760 severe or fatal COVID-19 among people living with HIV admitted to hospital: analysis of data
761 from the WHO Global Clinical Platform of COVID-19. *Lancet HIV* 9, e486-e495.

762 Bessen, C., Plaza-Sirvent, C., Bhat, J., Marheinecke, C., Urlaub, D., Bonowitz, P., Busse, S.,
763 Schumann, S., Vidal Blanco, E., Skaletz-Rorowski, A., *et al.* (2022). Impact of SARS-CoV-2
764 vaccination on systemic immune responses in people living with HIV. *medRxiv*,
765 2022.2004.2008.22273605-22272022.22273604.22273608.22273605.

766 Braun, J., Loyal, L., Frentschi, M., Wendisch, D., Georg, P., Kurth, F., Hippensiel, S.,
767 Dingeldey, M., Kruse, B., Fauchere, F., *et al.* (2020). SARS-CoV-2-reactive T cells in healthy
768 donors and patients with COVID-19. *Nature* 587, 270-274.

769 Brouwer, P.J.M., Caniels, T.G., van der Straten, K., Snitselaar, J.L., Aldon, Y., Bangaru, S.,
770 Torres, J.L., Okba, N.M.A., Claireaux, M., Kerster, G., *et al.* (2020). Potent neutralizing
771 antibodies from COVID-19 patients define multiple targets of vulnerability. *Science* 369, 643-
772 650.

773 Brumme, Z.L., Mwimanzi, F., Lapointe, H.R., Cheung, P.K., Sang, Y., Duncan, M.C.,
774 Yaseen, F., Agafitei, O., Ennis, S., Ng, K., *et al.* (2022). Humoral immune responses to
775 COVID-19 vaccination in people living with HIV receiving suppressive antiretroviral therapy.
776 *NPJ Vaccines* 7.

777 Burton, A.R., Pallett, L.J., McCoy, L.E., Suveizdyte, K., Amin, O.E., Swadling, L., Alberts, E.,
778 Davidson, B.R., Kennedy, P.T., Gill, U.S., *et al.* (2018). Circulating and intrahepatic antiviral
779 B cells are defective in hepatitis B. *J Clin Invest* 128, 4588-4603.

780 Casado, J.L., Vizcarra, P., Haemmerle, J., Velasco, H., Martin-Hondarza, A., Rodriguez-
781 Dominguez, M.J., Velasco, T., Martin, S., Romero-Hernandez, B., Fernandez-Escribano, M.,
782 *et al.* (2022). Pre-existing T cell immunity determines the frequency and magnitude of
783 cellular immune response to two doses of mRNA vaccine against SARS-CoV-2. *Vaccine X*
784 11, 100165.

785 Cohen, K.W., Linderman, S.L., Moodie, Z., Czartoski, J., Lai, L., Mantus, G., Norwood, C.,
786 Nyhoff, L.E., Edara, V.V., Floyd, K., *et al.* (2021). Longitudinal analysis shows durable and

787 broad immune memory after SARS-CoV-2 infection with persisting antibody responses and
788 memory B and T cells. *Cell Rep Med* 2, 100354.

789 Cooper, T.J., Woodward, B.L., Alom, S., and Harky, A. (2020). Coronavirus disease 2019
790 (COVID-19) outcomes in HIV/AIDS patients: a systematic review. *HIV Med* 21, 567-577.

791 Cruciani, M., Mengoli, C., Serpelloni, G., Lanza, A., Gomma, M., Nardi, S., Rimondo, C.,
792 Bricolo, F., Consolaro, S., Trevisan, M.T., *et al.* (2009). Serologic response to hepatitis B
793 vaccine with high dose and increasing number of injections in HIV infected adult patients.
794 *Vaccine* 27, 17-22.

795 Daly, J.L., Simonetti, B., Klein, K., Chen, K.E., Williamson, M.K., Anton-Plagaro, C.,
796 Shoemark, D.K., Simon-Gracia, L., Bauer, M., Hollandi, R., *et al.* (2020). Neuropilin-1 is a
797 host factor for SARS-CoV-2 infection. *Science* 370, 861-865.

798 Dan, J.M., Mateus, J., Kato, Y., Hastie, K.M., Yu, E.D., Faliti, C.E., Grifoni, A., Ramirez, S.I.,
799 Haupt, S., Frazier, A., *et al.* (2020). Immunological memory to SARS-CoV-2 assessed for up
800 to eight months after infection. *bioRxiv*.

801 Dandachi, D., Geiger, G., Montgomery, M.W., Karmen-Tuohy, S., Golzy, M., Antar, A.A.R.,
802 Libre, J.M., Camazine, M., Diaz-De Santiago, A., Carlucci, P.M., *et al.* (2021).
803 Characteristics, Comorbidities, and Outcomes in a Multicenter Registry of Patients With
804 Human Immunodeficiency Virus and Coronavirus Disease 2019. *Clin Infect Dis* 73, e1964-
805 e1972.

806 Fenwick, C., Joo, V., Jacquier, P., Noto, A., Banga, R., Perreau, M., and Pantaleo, G.
807 (2019). T-cell exhaustion in HIV infection. *Immunol Rev* 292, 149-163.

808 Frater, J., Ewer, K.J., Ogbe, A., Pace, M., Adele, S., Adland, E., Alagaratnam, J., Aley, P.K.,
809 Ali, M., Ansari, M.A., *et al.* (2021). Safety and immunogenicity of the ChAdOx1 nCoV-19
810 (AZD1222) vaccine against SARS-CoV-2 in HIV infection: a single-arm substudy of a phase
811 2/3 clinical trial. *The Lancet HIV* 0.

812 Fuster, F., Vargas, J.I., Jensen, D., Sarmiento, V., Acuna, P., Peirano, F., Fuster, F., Arab,
813 J.P., Martinez, F., and Core, H.I.V.S.G. (2016). CD4/CD8 ratio as a predictor of the response
814 to HBV vaccination in HIV-positive patients: A prospective cohort study. *Vaccine* 34, 1889-
815 1895.

816 Gao, Y., Cai, C., Wullimann, D., Niessl, J., Rivera-Ballesteros, O., Chen, P., Lange, J.,
817 Cuapio, A., Blennow, O., Hansson, L., *et al.* (2022). Immunodeficiency syndromes
818 differentially impact the functional profile of SARS-CoV-2-specific T cells elicited by mRNA
819 vaccination. *Immunity*.

820 George, V.K., Pallikkuth, S., Parmigiani, A., Alcaide, M., Fischl, M., Arheart, K.L., and
821 Pahwa, S. (2015). HIV infection Worsens Age-Associated Defects in Antibody Responses to
822 Influenza Vaccine. *The Journal of Infectious Diseases* 211, 1959-1959.

823 Gerber, P.P., Duncan, L.M., Greenwood, E.J., Marelli, S., Naamati, A., Teixeira-Silva, A.,
824 Crozier, T.W., Gabaev, I., Zhan, J.R., Mulroney, T.E., *et al.* (2022). A protease-activatable
825 luminescent biosensor and reporter cell line for authentic SARS-CoV-2 infection. *PLoS*
826 *Pathog* 18, e1010265.

827 Gilbert, P.B., Montefiori, D.C., McDermott, A.B., Fong, Y., Benkeser, D., Deng, W., Zhou, H.,
828 Houchens, C.R., Martins, K., Jayashankar, L., *et al.* (2022). Immune correlates analysis of
829 the mRNA-1273 COVID-19 vaccine efficacy clinical trial. *Science* 375, 43-50.

830 Goel, R.R., Painter, M.M., Apostolidis, S.A., Mathew, D., Meng, W., Rosenfeld, A.M.,
831 Lundgreen, K.A., Reynaldi, A., Khouri, D.S., Pattekar, A., *et al.* (2021). mRNA vaccines
832 induce durable immune memory to SARS-CoV-2 and variants of concern. *Science* 374.

833 Graham, C., Seow, J., Huettner, I., Khan, H., Koupou, N., Acors, S., Winstone, H.,
834 Pickering, S., Galao, R.P., Dupont, L., *et al.* (2021). Neutralization potency of monoclonal

835 antibodies recognizing dominant and subdominant epitopes on SARS-CoV-2 Spike is
836 impacted by the B.1.1.7 variant. *Immunity* 54, 1-14.

837 Grifoni, A., Weiskopf, D., Ramirez, S.I., Mateus, J., Dan, J.M., Moderbacher, C.R., Rawlings,
838 Sutherland, A., Premkumar, L., Jadi, R.S., *et al.* (2020). Targets of T Cell Responses to
839 SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals.
840 *Cell* 181, 1489-1501 e1415.

841 Hassold, N., Brichler, S., Ouedraogo, E., Leclerc, D., Carroue, S., Gater, Y., Alloui, C.,
842 Carbonnelle, E., Bouchaud, O., Mechai, F., *et al.* (2022). Impaired antibody response to
843 COVID-19 vaccination in advanced HIV infection. *AIDS* 36, F1-F5.

844 Heftdal, L.D., Knudsen, A.D., Hamm, S.R., Hansen, C.B., Møller, D.L., Pries-Heje, M., Fogh,
845 K., Hasselbalch, R.B., Jarlhelt, I., Pérez-Alós, L., *et al.* (2022). Humoral response to two
846 doses of BNT162b2 vaccination in people with HIV. *Journal of Internal Medicine* 291, 513-
847 513.

848 Hensley, K.S., Jongkees, M.J., Geers, D., GeurtsvanKessel, C.H., Ash Dalm, V.,
849 Papageorgiou, G., Steggink, H., Gorska, A., den Hollander, J.G., Bierman, W.F.W., *et al.*
850 (2022). Immunogenicity and reactogenicity of SARS-CoV-2 vaccines in people living with
851 HIV: a nationwide prospective cohort study in the Netherlands. *medRxiv*,
852 2022.2003.2031.22273221-22272022.22273203.22273231.22273221.

853 Hoffmann, C., Casado, J.L., Harter, G., Vizcarra, P., Moreno, A., Cattaneo, D., Meraviglia,
854 P., Spinner, C.D., Schabaz, F., Grunwald, S., *et al.* (2021). Immune deficiency is a risk factor
855 for severe COVID-19 in people living with HIV. *HIV Med* 22, 372-378.

856 Jcvi (2022). COVID-19 Greenbook chapter 14a.

857 Jedicke, N., Stankov, M.V., Cossmann, A., Dopfer-Jablonka, A., Knuth, C., Ahrenstorff, G.,
858 Ramos, G.M., and Behrens, G.M.N. (2022). Humoral immune response following prime and
859 boost BNT162b2 vaccination in people living with HIV on antiretroviral therapy. *HIV Medicine*
860 23, 558-563.

861 Jeffery-Smith, A., Burton, A.R., Lens, S., Rees-Spear, C., Davies, J., Patel, M., Gopal, R.,
862 Muir, L., Aiano, F., Doores, K.J., *et al.* (2022). SARS-CoV-2-specific memory B cells can
863 persist in the elderly who have lost detectable neutralizing antibodies. *Journal of Clinical
864 Investigation* 132.

865 Jeyanathan, M., Afkhami, S., Khera, A., Mandur, T., Damjanovic, D., Yao, Y., Lai, R.,
866 Haddadi, S., Dvorkin-Gheva, A., Jordana, M., *et al.* (2017). CXCR3 Signaling Is Required for
867 Restricted Homing of Parenteral Tuberculosis Vaccine-Induced T Cells to Both the Lung
868 Parenchyma and Airway. *J Immunol* 199, 2555-2569.

869 Kernéis, S., Launay, O., Turbelin, C., Batteux, F., Hanslik, T., and Boëlle, P.Y. (2014). Long-
870 term immune responses to vaccination in HIV-infected patients: A systematic review and
871 meta-analysis. *Clinical Infectious Diseases* 58, 1130-1139.

872 Le Bert, N., Tan, A.T., Kunasegaran, K., Tham, C.Y.L., Hafezi, M., Chia, A., Chng, M.H.Y.,
873 Lin, M., Tan, N., Linster, M., *et al.* (2020). SARS-CoV-2-specific T cell immunity in cases of
874 COVID-19 and SARS, and uninfected controls. *Nature* 584, 457-462.

875 Levy, I., Wieder-Finesod, A., Litchevsky, V., Biber, A., Indenbaum, V., Olmer, L., Huppert,
876 A., Mor, O., Goldstein, M., Levin, E.G., *et al.* (2021). Immunogenicity and safety of the
877 BNT162b2 mRNA COVID-19 vaccine in people living with HIV-1. *Clinical Microbiology and
878 Infection* 27, 1851-1851.

879 Lozano-Ojalvo, D., Camara, C., Lopez-Granados, E., Nozal, P., Del Pino-Molina, L., Bravo-
880 Gallego, L.Y., Paz-Artal, E., Pion, M., Correa-Rocha, R., Ortiz, A., *et al.* (2021). Differential
881 effects of the second SARS-CoV-2 mRNA vaccine dose on T cell immunity in naive and
882 COVID-19 recovered individuals. *Cell Rep* 36, 109570.

883 Mateus, J., Grifoni, A., Tarke, A., Sidney, J., Ramirez, S.I., Dan, J.M., Burger, Z.C.,
884 Rawlings, S.A., Smith, D.M., Phillips, E., *et al.* (2020). Selective and cross-reactive SARS-
885 CoV-2 T cell epitopes in unexposed humans. *Science* 370, 89-94.

886 McCallum, M., Czudnochowski, N., Rosen, L.E., Zepeda, S.K., Bowen, J.E., Walls, A.C.,
887 Hauser, K., Joshi, A., Stewart, C., Dillen, J.R., *et al.* (2022). Structural basis of SARS-CoV-2
888 Omicron immune evasion and receptor engagement. *Science* 375, 864-868.

889 Meffre, E., Louie, A., Bannock, J., Kim, L.J.Y., Ho, J., Frear, C.C., Kardava, L., Wang, W.,
890 Buckner, C.M., Wang, Y., *et al.* (2016). Maturational characteristics of HIV-specific
891 antibodies in viremic individuals. *JCI Insight* 1, :e84610-:e84610.

892 Moir, S., and Fauci, A.S. (2013). Insights Into B Cells And Hiv-Specific B-Cell Responses In
893 Hiv-Infected Individuals. *Immunological Reviews* 254, 207-224.

894 Moir, S., and Fauci, A.S. (2017). B-cell responses to HIV infection (Blackwell Publishing Ltd),
895 pp. 33-48.

896 Moir, S., Ho, J., Malaspina, A., Wang, W., DiPoto, A.C., O'Shea, M.A., Roby, G., Kottilil, S.,
897 Arthos, J., Proschan, M.A., *et al.* (2008). Evidence for HIV-associated B cell exhaustion in a
898 dysfunctional memory B cell compartment in HIV-infected viremic individuals. *Journal of
899 Experimental Medicine* 205, 1797-1805.

900 Mullender, C., da Costa, K.A.S., Alrubayyi, A., Pett, S.L., and Peppa, D. (2022). SARS-CoV-
901 2 immunity and vaccine strategies in people with HIV. *Oxford Open Immunology*, iqac005.

902 Nasi, M., De Biasi, S., Gibellini, L., Bianchini, E., Pecorini, S., Bacca, V., Guaraldi, G.,
903 Mussini, C., Pinti, M., and Cossarizza, A. (2017). Ageing and inflammation in patients with
904 HIV infection. *Clinical and Experimental Immunology* 187, 44-52.

905 Nault, L., Marchitto, L., Goyette, G., Tremblay-Sher, D., Fortin, C., Martel-Laferrière, V.,
906 Trottier, B., Richard, J., Durand, M., Kaufmann, D., *et al.* (2021). Covid-19 vaccine
907 immunogenicity in people living with HIV-1. *bioRxiv*, 2021.2008.2013.456258-
908 452021.456208.456213.456258.

909 Ng, K.W., Faulkner, N., Cornish, G.H., Rosa, A., Harvey, R., Hussain, S., Ulferts, R., Earl,
910 C., Wrobel, A.G., Benton, D.J., *et al.* (2020). Preexisting and de novo humoral immunity to
911 SARS-CoV-2 in humans. *Science* 370, 1339-1343.

912 Noe, S., Ochana, N., Wiese, C., Schabaz, F., Von Krosigk, A., Heldwein, S., Rasshofer, R.,
913 Wolf, E., and Jonsson-Oldenbuettel, C. (2021). Humoral response to SARS-CoV-2 vaccines
914 in people living with HIV. *Infection* 1, 1-1.

915 Ogbe, A., Pace, M., Bittaye, M., Tipoe, T., Adele, S., Alagaratnam, J., Aley, P.K., Ansari,
916 M.A., Bara, A., Broadhead, S., *et al.* (2022a). Durability of ChAdOx1 nCoV-19 vaccination in
917 people living with HIV. *JCI Insight* 7.

918 Ogbe, A., Pace, M., Bittaye, M., Tipoe, T., Adele, S., Alagaratnam, J., Aley, P.K., Ansari,
919 M.A., Bara, A., Broadhead, S., *et al.* (2022b). Durability of ChAdOx1 nCoV-19 vaccination in
920 people living with HIV. *JCI Insight* 7.

921 Pallikkuth, S., De Armas, L.R., Pahwa, R., Rinaldi, S., George, V.K., Sanchez, C.M., Pan, L.,
922 Dickinson, G., Rodriguez, A., Fischl, M., *et al.* (2018). Impact of aging and HIV infection on
923 serologic response to seasonal influenza vaccination. *AIDS* 32, 1085-1094.

924 Patterson, E.I., Prince, T., Anderson, E.R., Casas-Sanchez, A., Smith, S.L., Cansado-Utrilla,
925 C., Solomon, T., Griffiths, M.J., Acosta-Serrano, A., Turtle, L., *et al.* (2020). Methods of
926 Inactivation of SARS-CoV-2 for Downstream Biological Assays. *J Infect Dis* 222, 1462-1467.

927 Pensiero, S., Galli, L., Nozza, S., Ruffin, N., Castagna, A., Tambussi, G., Hejde, B.,
928 Minciagno, D., Riva, A., Malnati, M., *et al.* (2013). B-cell subset alterations and correlated
929 factors in HIV-1 infection. *Aids* 27, 1209-1217.

930 Portugal, S., Tipton, C.M., Sohn, H., Kone, Y., Wang, J., Li, S., Skinner, J., Virtaneva, K.,
931 Sturdevant, D.E., Porcella, S.F., *et al.* (2015). Malaria-associated atypical memory B cells
932 exhibit markedly reduced B cell receptor signaling and effector function. *Elife* 4.

933 Prendecki, M., Clarke, C., Brown, J., Cox, A., Gleeson, S., Guckian, M., Randell, P., Pria,
934 A.D., Lightstone, L., Xu, X.N., *et al.* (2021). Effect of previous SARS-CoV-2 infection on
935 humoral and T-cell responses to single-dose BNT162b2 vaccine. *Lancet* 397, 1178-1181.

936 Rees-Spear, C., Muir, L., Griffith, S.A., Heaney, J., Aldon, Y., Snitselaar, J.L., Thomas, P.,
937 Graham, C., Seow, J., Lee, N., *et al.* (2021). The effect of spike mutations on SARS-CoV-2
938 neutralization. *Cell Reports* 34.

939 Reynolds, C.J., Pade, C., Gibbons, J.M., Butler, D.K., Otter, A.D., Menacho, K., Fontana, M.,
940 Smit, A., Sackville-West, J.E., Cutino-Moguel, T., *et al.* (2021). Prior SARS-CoV-2 infection
941 rescues B and T cell responses to variants after first vaccine dose. *Science*.

942 Sekine, T., Perez-Potti, A., Rivera-Ballesteros, O., Stralin, K., Gorin, J.B., Olsson, A.,
943 Llewellyn-Lacey, S., Kamal, H., Bogdanovic, G., Muschiol, S., *et al.* (2020). Robust T Cell
944 Immunity in Convalescent Individuals with Asymptomatic or Mild COVID-19. *Cell* 183, 158-
945 168 e114.

946 Seow, J., Graham, C., Merrick, B., Acors, S., Pickering, S., Steel, K.J.A., Hemmings, O.,
947 O'Byrne, A., Koupou, N., Galao, R.P., *et al.* (2020). Longitudinal observation and decline of
948 neutralizing antibody responses in the three months following SARS-CoV-2 infection in
949 humans. *Nature Microbiology* 5.

950 Spinelli, M.A., Peluso, M.J., Lynch, K.L., Yun, C., Glidden, D.V., Henrich, T.J., Deeks, S.G.,
951 and Gandhi, M. (2021). Differences in Post-mRNA Vaccination Severe Acute Respiratory
952 Syndrome Coronavirus 2 (SARS-CoV-2) Immunoglobulin G (IgG) Concentrations and
953 Surrogate Virus Neutralization Test Response by Human Immunodeficiency Virus (HIV)
954 Status and Type of Vaccine: A Ma. *Clinical Infectious Diseases*.

955 Sun, J., Zheng, Q., Madhira, V., Olex, A.L., Anzalone, A.J., Vinson, A., Singh, J.A., French,
956 E., Abraham, A.G., Mathew, J., *et al.* (2022). Association Between Immune Dysfunction and
957 COVID-19 Breakthrough Infection After SARS-CoV-2 Vaccination in the US. *JAMA Intern
958 Med* 182, 153-162.

959 Tamuzi, J.L., Muyaya, L.M., Mitra, A., and Nyasulu, P.S. (2022). Systematic review and
960 meta-analysis of COVID-19 vaccines safety, tolerability, and efficacy among HIV-infected
961 patients. *medRxiv*, 2022.2001.2011.22269049.

962 Terreri, S., Piano Mortari, E., Vinci, M.R., Russo, C., Alteri, C., Albano, C., Colavita, F.,
963 Gramigna, G., Agrati, C., Linardos, G., *et al.* (2022). Persistent B cell memory after SARS-
964 CoV-2 vaccination is functional during breakthrough infections. *Cell Host Microbe* 30, 400-
965 408 e404.

966 Touizer, E., Alrubayyi, A., Rees-Spear, C., Fisher-Pearson, N., Griffith, S.A., Muir, L.,
967 Pellegrino, P., Waters, L., Burns, F., Kinloch, S., *et al.* (2021). Failure to seroconvert after
968 two doses of BNT162b2 SARS-CoV-2 vaccine in a patient with uncontrolled HIV. *The Lancet
969 HIV* 8, e317-e318.

970 van der Klaauw, A.A., Horner, E.C., Pereyra-Gerber, P., Agrawal, U., Foster, W.S., Spencer,
971 S., Vergese, B., Smith, M., Henning, E., Ramsay, I.D., *et al.* (2022). Accelerated waning of
972 the humoral response to SARS-CoV-2 vaccines in obesity. *medRxiv*,
973 2022.2006.2009.22276196.

974 van der Maatens, L. (2014). Accelerating t-SNE using Tree-Based Algorithms. *J Mach Learn
975 Res* 15, 3221-3245.

976 Van Gassen, S., Callebaut, B., Van Helden, M.J., Lambrecht, B.N., Demeester, P., Dhaene,
977 T., and Saeys, Y. (2015). FlowSOM: Using self-organizing maps for visualization and
978 interpretation of cytometry data. *Cytometry A* 87, 636-645.

979 Vergori, A., Cozzi Lepri, A., Cicalini, S., Matusali, G., Bordoni, V., Lanini, S., Meschi, S.,
980 Iannazzo, R., Mazzotta, V., Colavita, F., *et al.* (2022). Immunogenicity to COVID-19 mRNA
981 vaccine third dose in people living with HIV. *Nat Commun* 13, 4922.

982 Western Cape Department of Health in collaboration with the National Institute for
983 Communicable Diseases, S.A. (2021). Risk Factors for Coronavirus Disease 2019 (COVID-
984 19) Death in a Population Cohort Study from the Western Cape Province, South Africa. *Clin
985 Infect Dis* 73, e2005-e2015.

986 Woldemeskel, B.A., Karaba, A.H., Garliss, C.C., Beck, E.J., Wang, K.H., Laeyendecker, O.,
987 Cox, A.L., and Blankson, J.N. (2022). The BNT162b2 mRNA Vaccine Elicits Robust Humoral
988 and Cellular Immune Responses in People Living With Human Immunodeficiency Virus
989 (HIV). *Clin Infect Dis* 74, 1268-1270.

990 Wright, E., Temperton, N.J., Marston, D.A., McElhinney, L.M., Fooks, A.R., and Weiss, R.A.
991 (2008). Investigating antibody neutralization of lyssaviruses using lentiviral pseudotypes: a
992 cross-species comparison. *The Journal of General Virology* 89, 2204-2204.

993 Yang, X., Sun, J., Patel, R.C., Zhang, J., Guo, S., Zheng, Q., Olex, A.L., Olatosi, B.,
994 Weissman, S.B., Islam, J.Y., *et al.* (2021). Associations between HIV infection and clinical
995 spectrum of COVID-19: a population level analysis based on US National COVID Cohort
996 Collaborative (N3C) data. *Lancet HIV* 8, e690-e700.

997 Zufferey, R., Nagy, D., Mandel, R.J., Naldini, L., and Trono, D. (1997). Multiply attenuated
998 lentiviral vector achieves efficient gene delivery in vivo. *Nature Biotechnology* 15, 871-875.

999

Table 1: Cohort Demographics. Cohort demographics, clinical characteristics and number of participants per timepoints for each group. AZ= AZD1222 ; Moderna= mRNA-1273; Pfizer= BNT162b2.

	HIV- (n=64)		HIV+ (n=110)	
	SARS-CoV-2- (n=27)	SARS-CoV-2+ (n=37)	SARS-CoV-2- (n=65)	SARS-CoV-2+ (n=45)
	Clinical parameters			
% female	76%	40%	8%	17%
% BAME	28%	24%	21%	44%
Median age (range)	33(21-65)	41(23-66)	53 (22-93)	49 (26-73)
HIV viral load	-	-	Undetectable (<50)	Undetectable (<50)
Median CD4 count (range)	-	-	602 (22-1360)	560(200-1229)
Median CD4:CD8 ratio (range)	-	-	0.74 (0.13-3.05)	0.98 (0.37-2.55)
Comorbidities				
Diabetes, n	-	1	5	3
Hypertension/CVD, n	-	3	3	6
Renal disease, n	-	-	2	1
Liver disease, n	-	-	2	2
Respiratory disease, n	-	1	3	1
Weakened immune system inc. cancer/transplant, n	-	-	8	1
Advanced HIV/HepB co-infection, n	-	-	4	-
Other	-	-	Splenectomy Sarcoidosis	Splenectomy
Timepoints				
Post first dose				
N=	17	28	31	32
Median days post-previous dose (range)	14(12-74)	19 (12-60)	20(12-102)	22(13-82)
Vaccine (AZ Moderna Pfizer)	3 2 12	3 1 24	19 2 10	21 0 11
Post second dose				
N=	18	25	30	24
Median days post-previous dose (range)	39(23-67)	26(15-68)	20(7-48)	21(9-52)
Vaccine (AZ Moderna Pfizer)	3 3 12	2 1 23	17 1 12	12 0 12
Pre third dose				
N=	21	26	39	16
Median days post-previous dose (range)	129(75-258)	129(76-236)	125(72-218)	119(86-317)
Vaccine (AZ Moderna Pfizer)	-	-	-	-
Post third dose				
N=	14	25	34	17
Median days post-previous dose (range)	21(13-43)	43(18-129)	40 (9-149)	65(7-140)
Vaccine (AZ Moderna Pfizer)	0 3 12	0 2 23	1 2 32	1 0 16

FIGURES

Figure 1: Weaker post vaccination antibody responses in SARS-CoV-2 naïve PLWH.

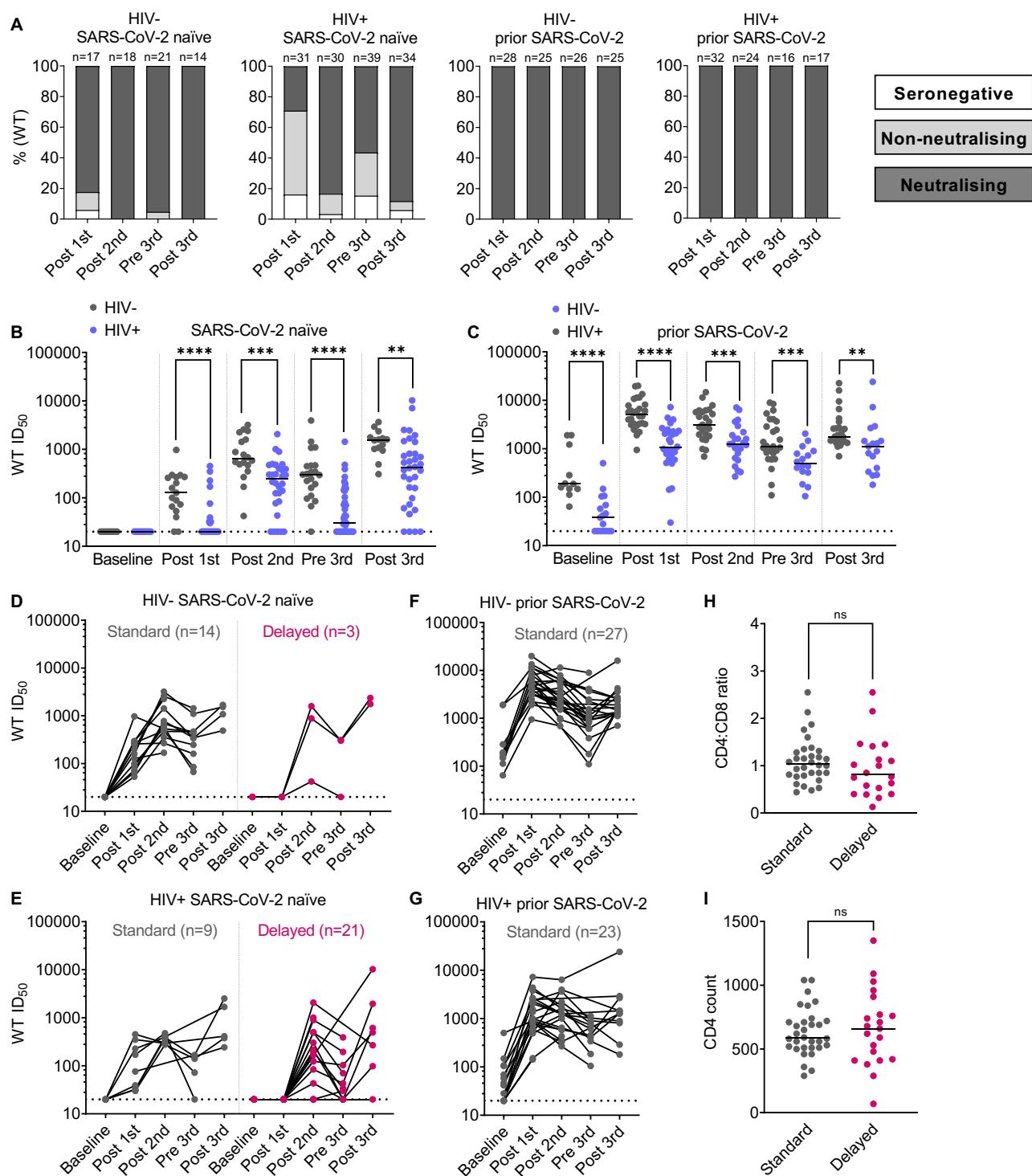
(A) Percentage of individuals with detectable neutralizing antibody response, non-neutralizing but binding response, or seronegative at each timepoint as color-coded in the key. The headings above each graph show HIV status and previous SARS-CoV-2 exposure. N numbers for each group are indicated above each column.

(B) WT pseudovirus neutralization reciprocal 50% inhibitory titers (ID_{50}) in PLWH (blue) compared to HIV-negative controls (grey) stratified by vaccination timepoint (on the x-axis) for individuals without prior SARS-CoV-2 infection. The dotted line represents the lower limit of the assay ($ID_{50}=1:20$). Where no neutralization was detected, samples were assigned an ID_{50} of $<1:20$ as this was the limit of assay detection. Each data point represents the mean of $n=2$ biological repeats, each measured in duplicates. N numbers match those in (A), Statistical test: Mann Whitney U-test (MWU).

(C) Shows the equivalent data for those with prior SARS-CoV-2 infection, N numbers match those in (A).

(D) Longitudinal ID_{50} titers for HIV-negative controls without prior SARS-CoV-2 infection who provided at least two longitudinal samples, including a post first dose sample. Samples that were neutralizing after the first dose are categorised as exhibiting a standard neutralizing response and colored grey, those that only achieve neutralization after the second dose, exhibit a delayed neutralizing response and are color-coded in magenta. N numbers for each category are indicated on the graph.

(E) Shows the equivalent data for PLWH without prior SARS-CoV-2 infection.


(F) Shows the equivalent data for HIV-negative controls with prior SARS-CoV-2 infection.

(G) Shows the equivalent data for PLWH with prior SARS-CoV-2 infection.

(H) CD4 T cell counts and

(I) CD4:CD8 T cell ratio for PLWH stratified by standard (grey) or delayed neutralization (magenta). N numbers are as per D-G. Statistical test: MWU.

FIGURE 1

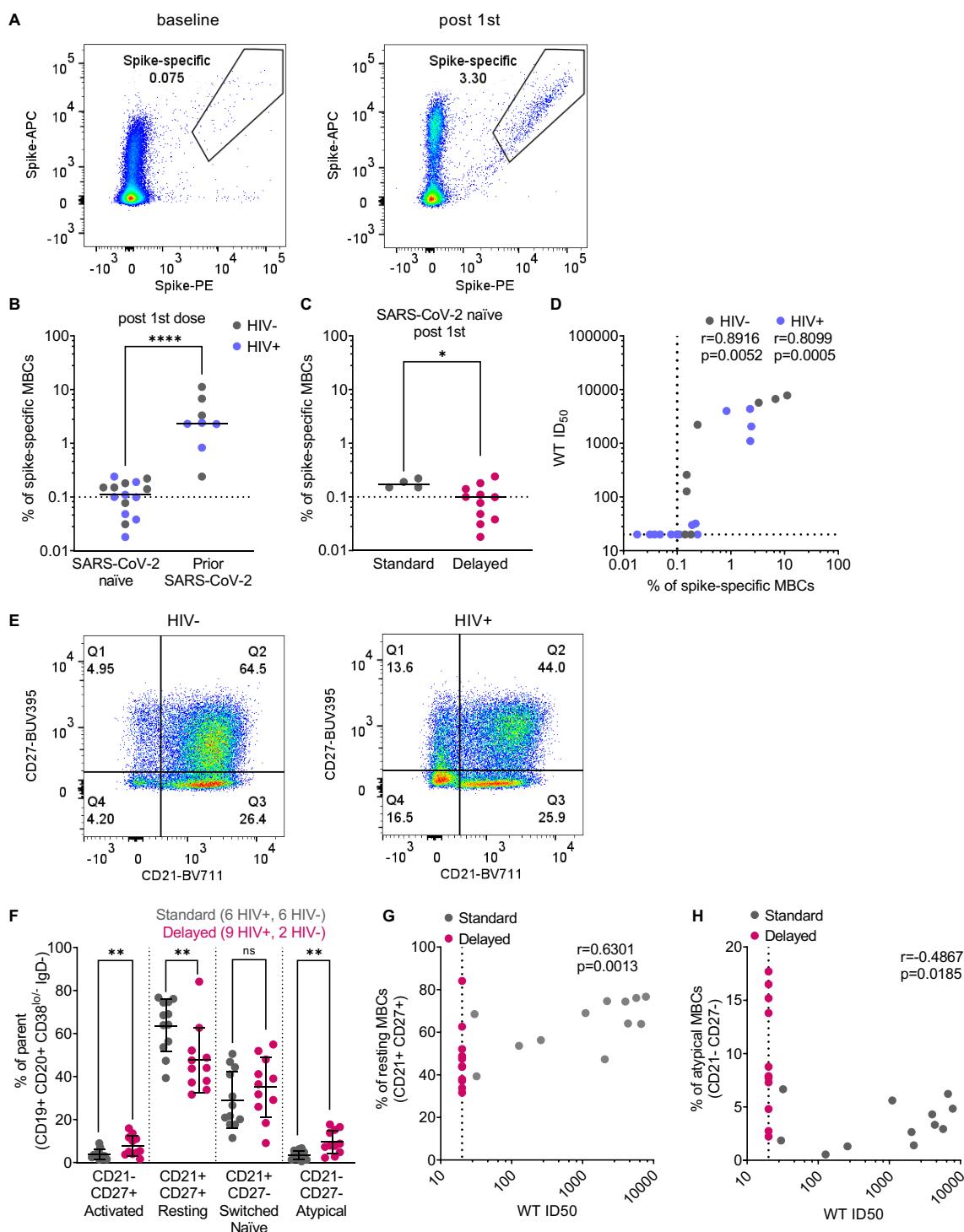
Figure 2: Neutralization titer is associated with the frequency of spike-specific MBCs after the first vaccine dose

(A) Spike-specific MBCs (CD19+ CD20+ CD38^{lo/mid} IgD-excluding switched naïve CD27- CD21+ cell) according to spike-PE and spike-APC in a representative naïve pre-vaccine sample (left) or representative post-vaccine sample (right) after the first vaccine dose.

(B) Percentage of spike-specific MBC after the first vaccine dose stratified by prior SARS-CoV-2 infection, statistical test: M-Whitney U test (MWU). Dotted lines represent lower limit of sensitivity of the assay (0.1% spike-specific MBCs, based on (Jeffery-Smith et al., 2022)).

(C) Percentage of spike-specific MBCs in SARS-CoV-2 naïve donors after the first vaccine dose, stratified by delayed (magenta) or standard (grey) neutralization profile, statistical test: MWU. Dotted lines represent lower limit of sensitivity of the assay (0.1% spike-specific MBCs)

(D) Correlation of the percent of spike-specific MBC with WT ID₅₀ titers stratified by PLWH (blue) and controls (grey) after the first dose, statistical test: Spearman's rank correlation coefficient.


(E) Distribution of MBCs (CD19+ CD20+ CD38^{lo/mid} IgD-) subtypes according to CD27- BUV395 and CD21-BV711 in a representative HIV-negative donor sample (left) or PLWH donor sample (right).

(F) Percentage of MBC subtypes (activated CD27+ CD21-; resting CD27+ CD21+; switched naïve; switched naïve CD27- CD21+ and CD27- CD21- atypical) after the first vaccine dose stratified by delayed or standard neutralization profile. Statistical test: MWU

(G) Correlation of the percentage of resting CD27+ CD21+ MBCs with WT ID₅₀ titers stratified by delayed (magenta) or standard (grey) neutralization profile after the first vaccine dose, statistical test: Spearman's rank correlation coefficient.

(H) Correlation of the percent of switched naïve CD27- CD21+ MBCs with WT ID₅₀ titers stratified by delayed (magenta) or standard (grey) neutralization profile after the first vaccine dose, statistical test: Spearman's rank correlation coefficient.

FIGURE 2

Figure 3: Improved neutralization against Omicron after the third vaccine dose in PLWH accompanied by minimal alteration in the spike-specific MBC phenotype

(A) Percentage of individuals with detectable neutralizing response, non-neutralizing but binding response, or seronegative at each timepoint as color-coded in the key (neutralization against Omicron pseudovirus). Headings above each graph show the HIV status and previous SARS-CoV-2 exposure. N numbers for each group are indicated above each column.

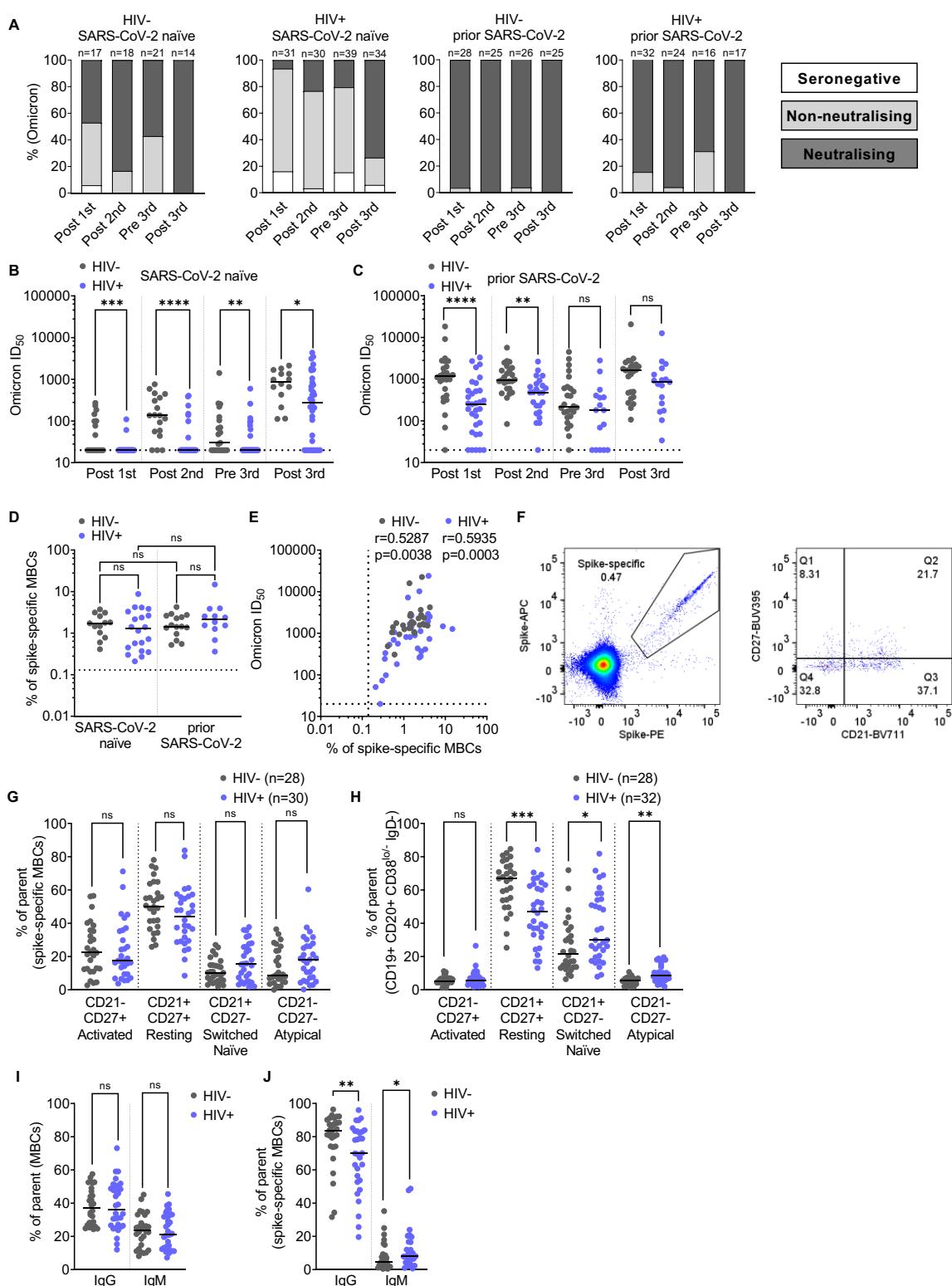
(B) Omicron pseudovirus neutralization ID₅₀ in PLWH (blue) compared to HIV-negative controls (grey) stratified by vaccination timepoint (on the x-axis) for individuals without prior SARS-CoV-2 infection. Statistical test: Mann-Whitney U test (MWU).

(C) Shows the equivalent data for those with prior SARS-CoV-2 infection, N numbers match those in (A).

(D) Percentage of spike-specific MBCs in PLWH (blue) and HIV-negative donors (grey) after the third vaccine dose stratified by SARS-CoV-2 infection. Statistical test: MWU.

(E) Correlation between Omicron ID₅₀ titers and percentage of spike-specific MBCs in PLWH (blue) and HIV-negative donors (grey) after the third vaccine dose. Statistical test: Spearman's rank correlation coefficient.

(F) Representative gating strategy to identify spike-specific MBCs subtypes.

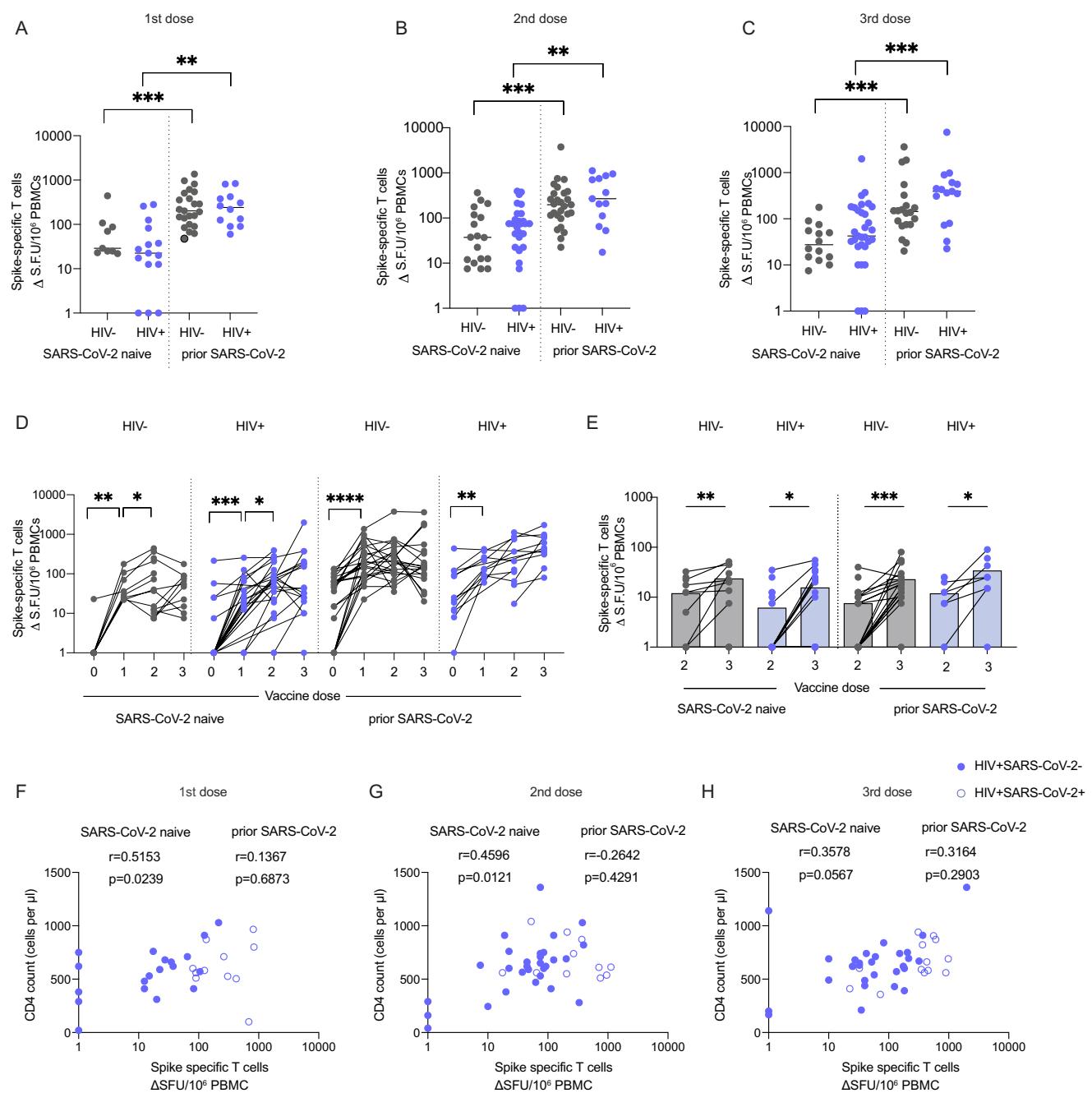

(G) Percentage of spike-specific MBCs subtypes (activated CD27+ CD21-; resting CD27+ CD21+; switched naïve; switched naïve CD27- CD21+ and CD27- CD21- atypical) after the third vaccine dose in PLWH (blue) and HIV-negative donors (grey). Statistical test: MWU.

(H) Percentage of MBCs subtypes (activated CD27+ CD21-; resting CD27+ CD21+; switched naïve; switched naïve CD27- CD21+ and CD27- CD21- atypical) after the third vaccine dose in PLWH (blue) and HIV-negative donors (grey). Statistical test: MWU.

(I) Percentage of IgG and IgM in MBCs (excluding switched naïve CD27- CD21+ fraction) after the third vaccine dose in PLWH (blue) and HIV-negative donors (grey). Statistical test: MWU.

(J) Percentage of IgG and IgM in spike-specific MBCs after the third vaccine dose in PLWH (blue) and HIV-negative donors (grey). Statistical test: MWU.

FIGURE 3

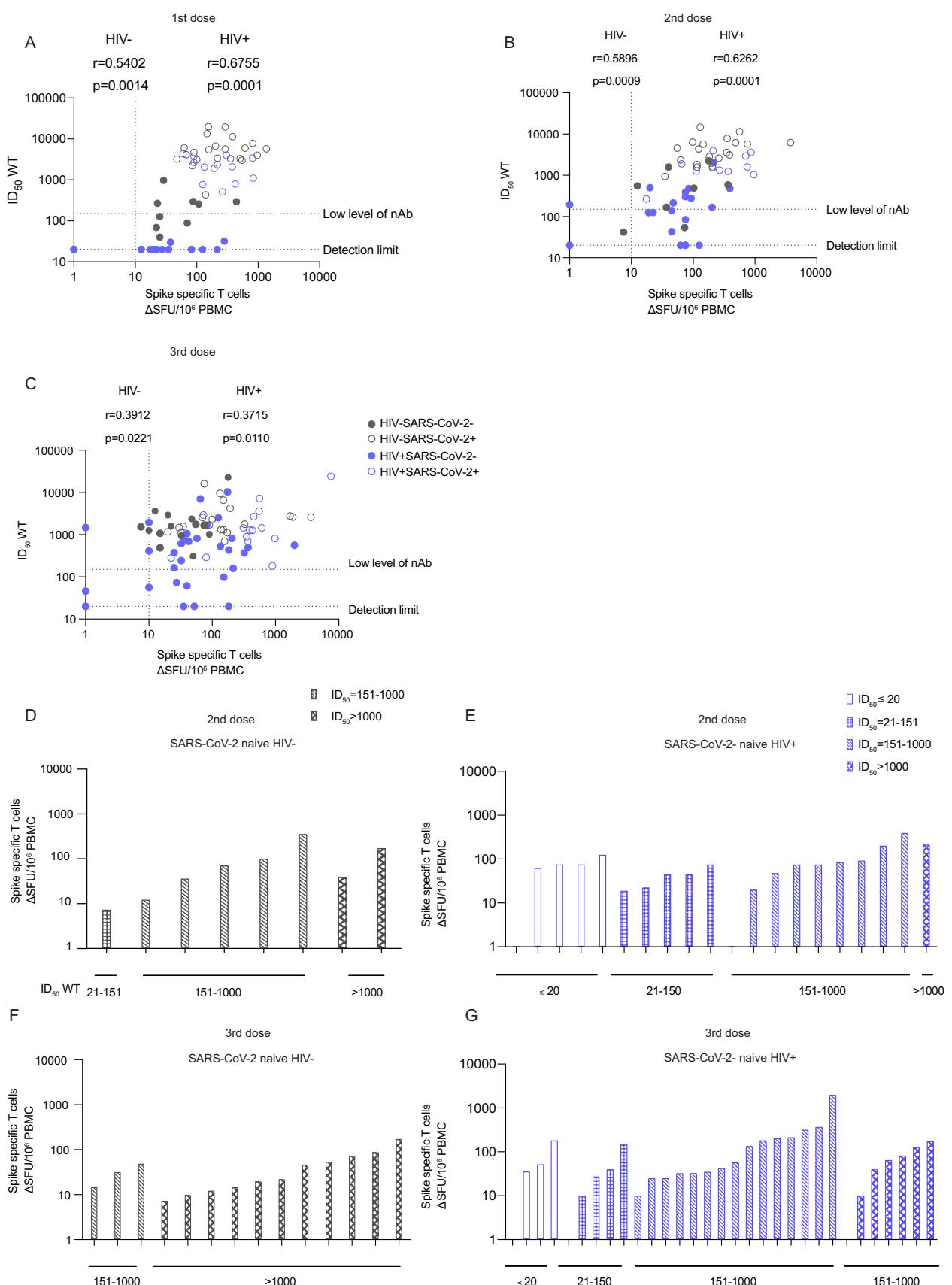

Figure 4. Comparable magnitude of spike-specific T-cell responses following SARS-CoV-2 vaccination in HIV-positive and HIV-negative individuals.

(A-C) Cross-sectional analysis of the magnitude of the IFN- γ -ELISpot responses to the SARS-CoV-2 spike peptide pools in HIV-negative (grey) and HIV-positive (blue) individuals, with or without prior SARS-CoV-2 infection following first dose (A) second dose (B) and third dose (C). (HIV-SARS-CoV-2- first dose n=9, second dose n=18, third dose n=14; HIV+SARS-CoV-2- frist dose n=15, second dose n=29, third dose n=31; HIV-SARS-CoV-2+ first dose n=23, second dose n=27, third dose n=20; HIV+SARS-CoV-2+ first dose n=12, second dose n=13, third dose n=15). Statistical test: Mann-Whitney U-test (MWU). **(D)** Longitudinal analysis of the spike specific T cell responses in PLWH and HIV-negative subjects. Statistical test: Wilcoxon matched-pairs sign rank test (WMP).

(E) Longitudinal and cross-sectional analysis of the magnitude of T cell responses to B.1.1.529 after two or three vaccine doses (n=11 HIV-SARS-CoV-2-, n=20 HIV+SARS-CoV-2-, n=22 HIV-SARS-CoV-2+, n=10 HIV+SARS-CoV-2+). Statistical test: MWU and WMP.

(F-H) Correlation between the CD4 T cell count in HIV-positive individuals and magnitude of spike-specific T cell responses after first dose (F), second dose (G), and (H) third dose. Statistical test: Spearman's rank correlation coefficient

FIGURE 4


Figure. 5: Interrelations between humoral and cellular responses following SARS-CoV-2 vaccination in HIV positive and HIV negative individuals.

(A-C) Correlation of spike-specific T cell responses with nAb titers after first dose (A) second dose (B) and third vaccine dose (C) of vaccine in HIV-negative and HIV-positive donors, with or without prior SARS-CoV-2 infection (limit of detection $ID_{50}=20$, low level of nAb $ID_{50}=150$). Statistical test: Spearman's rank correlation coefficient.

(D-E) Hierarchy of the spike-specific T cell responses ordered by their nAb titers in HIV-negative (D) and HIV-positive (E) SARS-CoV-2 naïve donors after two vaccine doses.

(F-J) Hierarchy of the spike-specific T cell responses after three vaccine doses in HIVnegative (F) and positive (J) SARS-CoV-2 naïve participants.

FIGURE 5

Figure 6. Phenotypic characterization of CD4 and CD8 T cells from SARS-CoV-2 naïve HIV positive individuals according to their neutralization levels.

(A) viSNE map of FlowSOM metaclusters of CD4 T cells from HIV positive SARS-CoV-2 naïve subjects after two vaccine doses ($nab^{-/low}$ = no neutralization or low level of neutralization, nAb^{high} =high neutralization level; $n=9$ in each group). Each point on the high-dimensional mapping represents an individual cell, and metaclusters are color-coded.

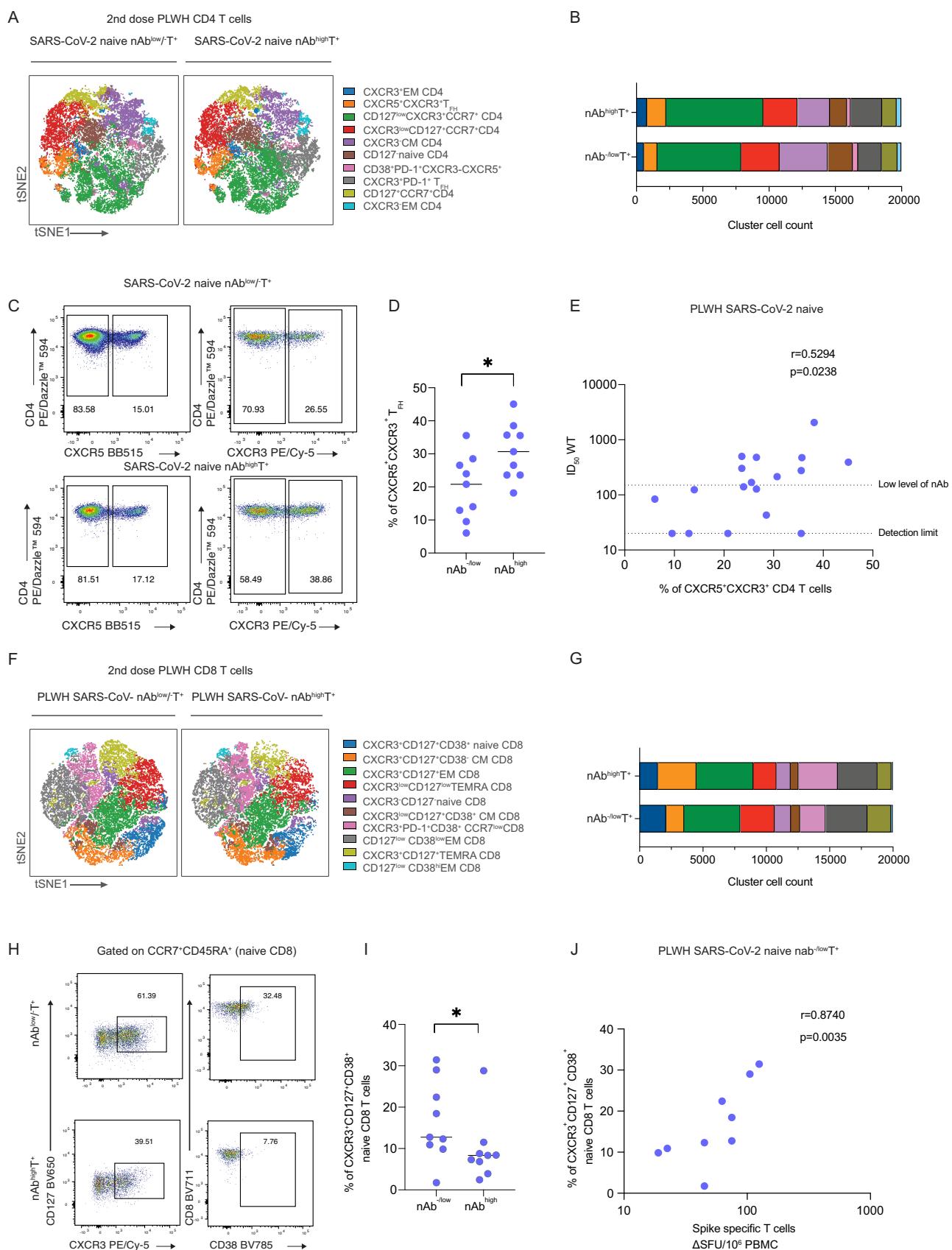
(B) Cell count of each FlowSOM metaclusters out of total CD4 T cells (20,000 cells/group).

(C) Representative flow plots from a $nAb^{-/low}$ and nAb^{high} SARS-CoV-2 naïve HIV-positive donor showing expression of CXCR5 and CXCR3 within CD4 T cells.

(D) Summary analysis of the percentage of CXCR5 $^{+}$ CXCR3 $^{+}$ CD4 T cells ($n=9$ for each group). Statistical test: Mann-Whitney U-test (MWU).

(E) Correlation between frequency of CXCR5 $^{+}$ CXCR3 $^{+}$ CD4 T cells and ID_{50} neutralization level in $nAb^{-/low}$ and nAb^{high} SARS-CoV-2 naïve HIV-positive individuals after two vaccine doses. Statistical test: Spearman's rank correlation coefficient.

(F) viSNE map of FlowSOM metaclusters of CD8 T cells from $nAb^{-/low}$ and nAb^{high} HIV-positive SARS-CoV-2 naïve subjects after two doses of the vaccine ($n=9$ in each group).


(G) Cell count of each CD8 FlowSOM metaclusters out of total CD8 T cells (20,000 cells/group).

(H) Representative flow plots from a $nAb^{-/low}$ and nAb^{high} SARS-CoV-2 naïve HIV-positive donor showing expression of CXCR3, CD127, and CD38 within naïve CD8 T cells.

(I) Summary analysis of the percentage of CD127 $^{+}$ CXCR3 $^{+}$ CD38 $^{+}$ naive CD8 T cells ($n=9$ for each group). Statistical test: MWU.

(J) Correlation between proportion of CD127 $^{+}$ CXCR3 $^{+}$ CD38 $^{+}$ naive CD8 T cells and SARS-CoV-2 specific T cell responses in $nAb^{-/low}$ HIV-positive SARS-CoV-2 naïve subjects. Statistical test: Spearman's rank correlation coefficient.

FIGURE 6

