

1 **Profiling of chimeric RNAs in human retinal development with retinal organoids**

2

3 Wen Wang^{1, #}, Xiao Zhang^{1, #}, Ning Zhao¹, Ze-Hua Xu¹, Kangxin Jin¹, Zi-Bing Jin^{1*}

4

5 ¹ Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical

6 University, Beijing 100730, China;

7 [#] Contributed equally.

8

9 ^{*}Correspondence: Zi-Bing Jin, E-mail: jinzb502@ccmu.edu.cn, ORCID:

10 0000-0003-0515-698X

11

12 **Abstract**

13 Chimeric RNAs have been found in both cancer and healthy human cells. They have
14 regulatory effects on human stem/progenitor cell differentiation, stemness
15 maintenance and central nervous system (CNS) development. However, their
16 physiological functions in the retinal development remain unknown. Based on the
17 human embryonic stem cells (hESC)-derived retinal organoids (ROs) spanning from
18 day 0 to day 120, we present the expression atlas of chimeric RNAs throughout the
19 developing ROs. We confirmed the existence of some common chimeric RNAs and
20 also discovered many novel chimeric RNAs during retinal development. We focused
21 on CTNNBIP1-CLSTN1 (CTCL) whose downregulation causes precocious neuronal
22 differentiation and a marked reduction of neural progenitors in human cerebral
23 organoids. Our study found that CTCL also plays a key role in human retinogenesis,
24 CTCL loss-of-function obstructed RO differentiation but prompted the retinal pigment
25 epithelial (RPE) differentiation. Together, this work provides a landscape of chimeric
26 RNAs and reveals evidence for their crucial roles in human retina development.

27

28 **Key words**

29 Chimeric RNAs, Retinal organoids (ROs), Human, CTNNBIP1, CLSTN1, Retinal
30 development, Differentiation

31

32 **Introduction**

33 The human retina is a laminar structure with a large number of different
34 constituent cells that form morphologically and functionally distinct circuits. They
35 work in parallel and in combination to produce complex visual output (Hoon et al.,
36 2014). During retinogenesis, different subtypes of neurons are generated from the
37 same group of retinal progenitor cells and self-assembled accurately into a
38 functionally mature retina (Masland, 2012).

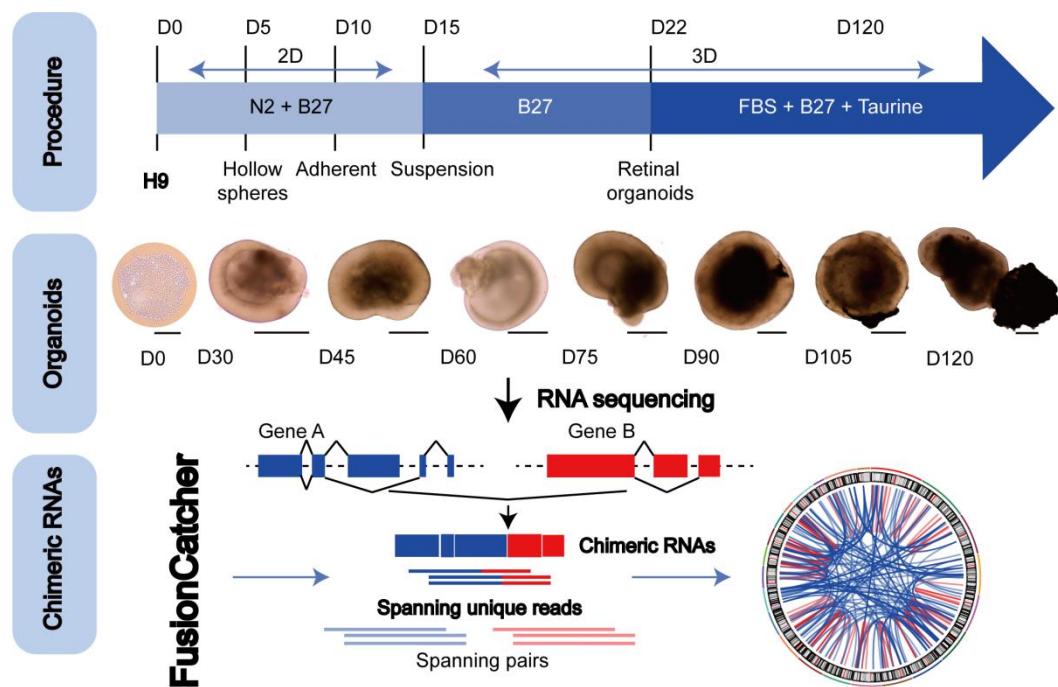
39 Dissecting the molecular mechanisms of human retinogenesis and functional
40 maintenance has always been the main focus and a difficult issue, which is
41 particularly important for the treatment of human-specific diseases such as macular
42 degeneration. A few groups systematically expounded the transcriptomics, chromatin
43 accessibility and proteomic dynamics during human and mouse retinogenesis (Huang
44 et al., 2022), and comprehensively described the similarities and differences during
45 this process. They identified an unexpected role for ATOH7 expression in regulation
46 of photoreceptor specification during late retinogenesis (Lu et al., 2020), as well as
47 the enriched bivalent modification of H3K4me3 and H3K27me3 in human but not in
48 murine retinogenesis (Lu et al., 2020), further underscore the limitations of using the
49 mouse models to study human retinal and the critical role of transcriptional regulation
50 in human retinogenesis.

51 Chimeric RNAs are the ligation products of two or even more DNA or RNA
52 sequences before or after transcription. They can be further translated into proteins in
53 addition to their RNA form, which increases the richness of the transcriptome and

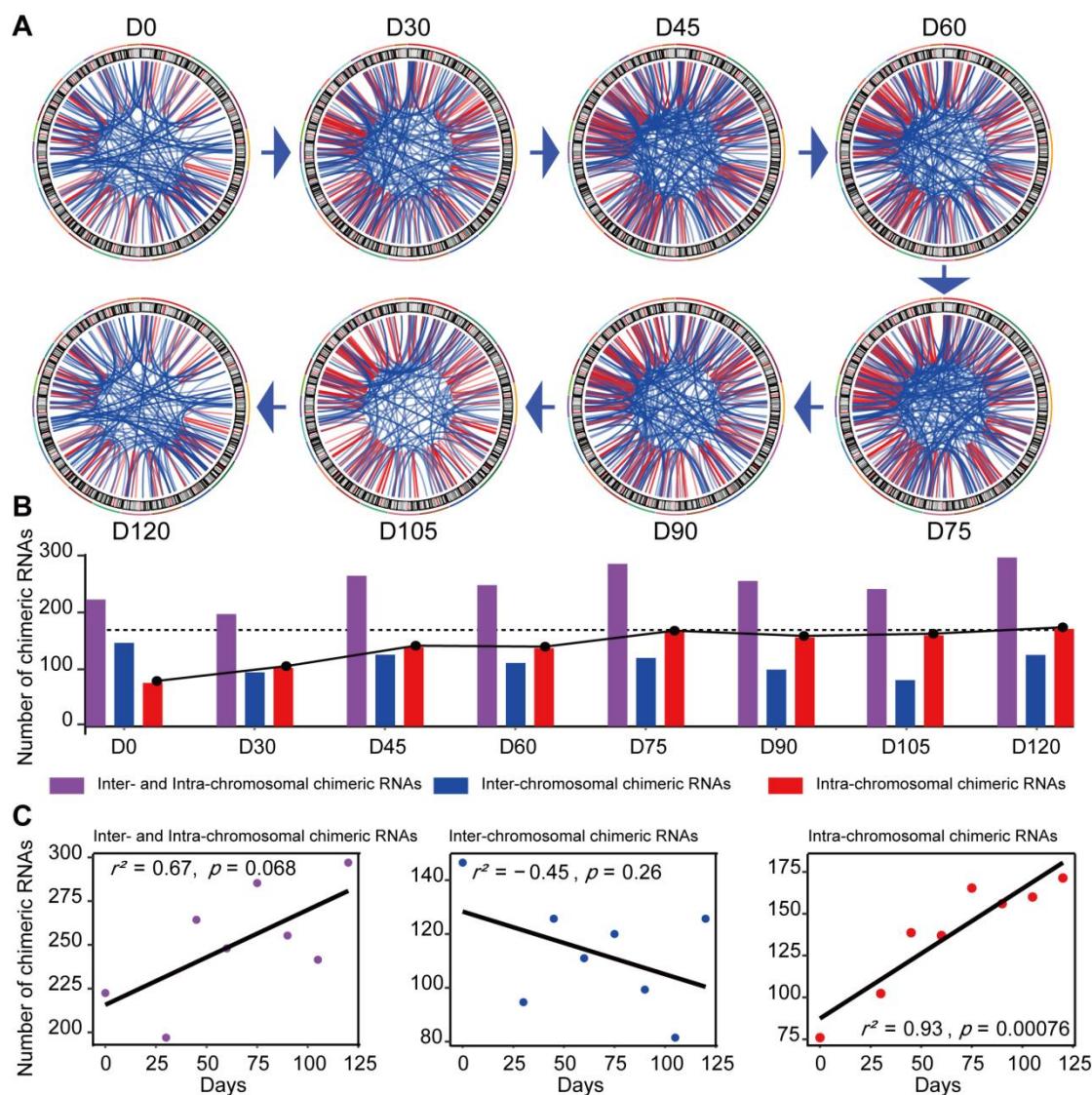
54 proteome. Previous studies of chimeric RNAs have focused on tumors and larger
55 tissues and organs, and found that chimeric RNAs are widely present in human
56 normal and tumor tissues as part of the transcriptome and can regulate the life
57 activities of individual cells (Elfman & Li, 2018; Hu et al., 2018; Mertens et al., 2015;
58 Singh et al., 2020). It has been shown that chimeric RNAs in normal human cortex
59 increase with age and show differences in individual cells and tissues (Mehani et al.,
60 2020), which highlights the critical role of chimeric RNAs in CNS development and
61 cell lineage maintenance. In 2021, Luo's group found that downregulation of CTCL
62 affects cerebral organoids growth, causing premature neuronal differentiation and a
63 marked reduction of neural progenitors (Ou et al., 2021). As retina is a part of the
64 CNS, we hypothesize that CTCL also exists in the retina and plays an important role
65 in retinal development.

66 The role of chimeric RNAs in human retinogenesis remains unexplored. This
67 study aims to investigate the molecular mechanism of human retinal development and
68 function maintenance in a new perspective of chimeric RNAs. Difficulties in
69 obtaining normal human retinal tissue have hampered studies related to human retinal
70 development. The emergence of ROs could circumvent this problem (Jin et al., 2019).
71 Our group has extensive experience in retinal organoid culture and has conducted a
72 series of studies using ROs (Deng et al., 2018; Ma et al., 2022; Pan et al., 2020;
73 Zhang et al., 2021). For example, we, along with other groups, used ROs to confirm
74 that retinoblastoma tumor cells are derived from retinal maturing cone cells (Clevers,
75 2016; Jin et al., 2019; Li et al., 2022; Liu et al., 2021; Liu et al., 2020).

76 In this study, we use hESC-derived ROs and perform RNA sequencing. We found
77 that chimeric RNA CTCL is critical in the process of organoid differentiation towards
78 ROs or RPE. Retinal progenitor cells with a relatively high level of CTCL expression
79 will differentiate towards ROs, while those with a relatively low level of CTCL will
80 differentiate towards RPE. These results provide important evidence for the
81 physiological function of chimeric RNAs in retinogenesis.


82

83 **Results**


84 **Chimeric RNAs are present throughout the retinogenesis**

85 To explore the chimeric RNAs in the developing human retina, we cultured ROs
86 according to the methods described previously and collected organoid tissues from 0
87 to 120 days for RNA sequencing (Kim et al., 2019; Lowe et al., 2016) (Figure 1, top
88 panel and middle panel). Using FusionCatcher software, we examined chimeric RNAs
89 in 22 human ROs covering eight developmental stages, including day 0 (D0), 30, 45,
90 60, 75, 90, 105 and 120, corresponding to in vivo developmental stages D0, 30, 45, 60,
91 75, 90, 105 and 120 (Cowan et al., 2020). To reduce false positive results, only if
92 spanning unique reads were recognized at least once, the splicing events would be
93 considered as positive chimeric RNA candidates (Figure 1, bottom panel).

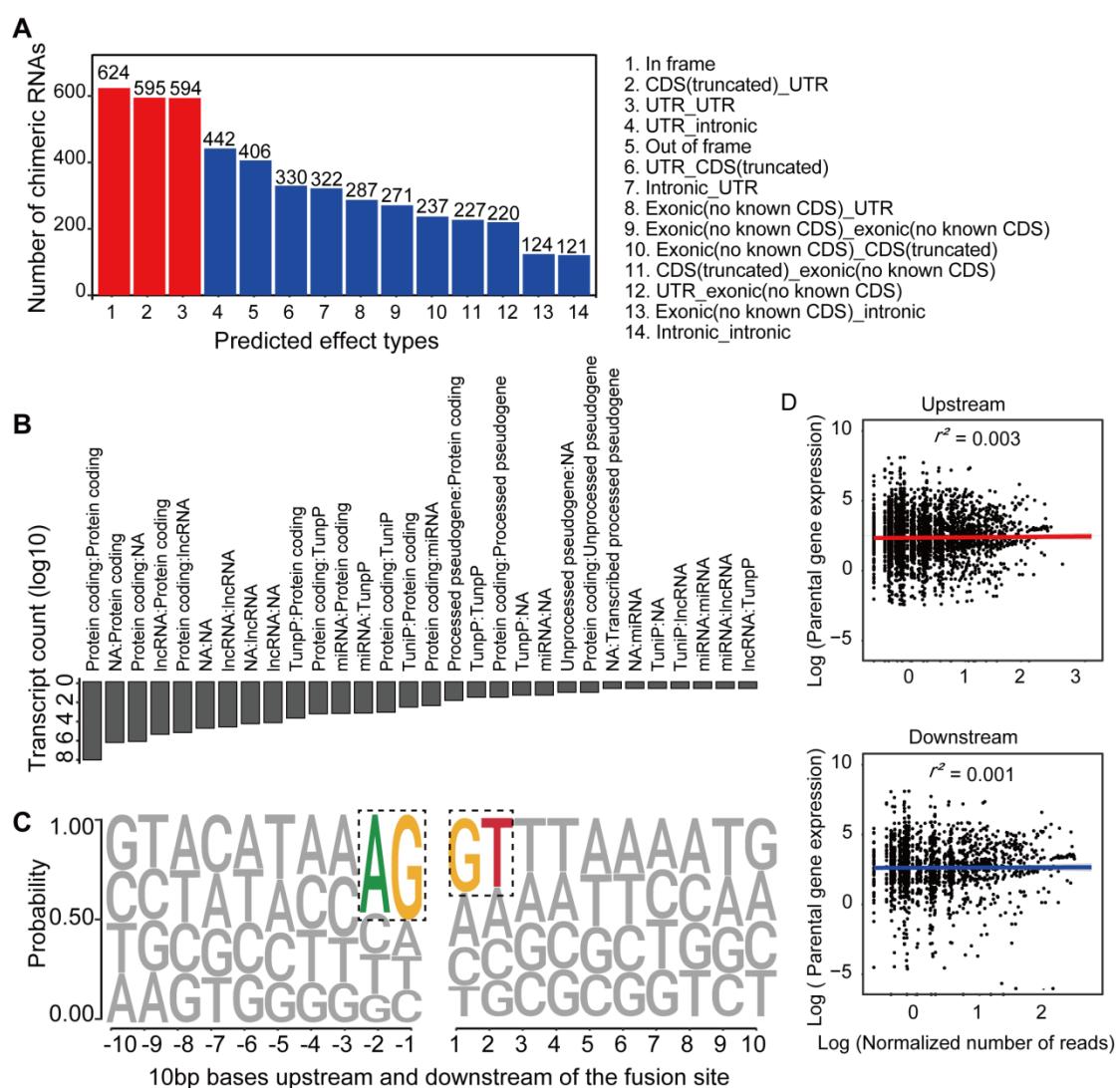
94

103 Chimeric RNAs were continuously expressed during RO development (Figure
104 2A). Chimeric events were categorized according to the locations of the parental
105 genes on the chromosome, either inter-chromosomal or intra-chromosomal. While the
106 number of intra-chromosomal chimeric RNAs increased with the development of ROs
107 ($r^2 = 0.93$, $p = 0.00076$, Pearson's correlation analysis), there was no such trend for
108 inter-chromosomal chimeric RNAs (Figure 2B-C). Chimeric events can also be
109 categorized according to the predicted effect (Figure 3 – figure supplement 1). In the
110 top 3 categories, the number of "In frame" chimeric RNAs was 11.2%, followed by
111 "CDS(truncated)_UTR" (10.7%) and "UTR_UTR" (10.7%) (Figure 3A). We further
112 classified chimeric events according to the type of their parental genes. The majority
113 of chimeric RNAs were formed between two protein-coding genes (61.9%) (Figure
114 3B).
115

116

117 **Figure 2. Expression of chimeric RNAs in the developing human retinal**

118 **organoids**


119 (A) Circos plots of genomic distribution of chimeric RNA parental genes observed in
120 this work. Red lines indicate parental genes located in the same chromosome. Blue
121 lines indicate parental genes located in different chromosomes. The outermost colored
122 lines of circos plots represent chromosomes.

123 (B) Types of chimeric RNAs based on parental genes' genomic distribution.

124 (C) Correlation analysis of the number of chimeric RNAs and developmental stages

125 with Pearson's correlation analysis.

126

128 **Figure 3. Characterization of chimeric RNAs in the developing human retinal
129 organoids**

130 (A) Top 14 types and corresponding numbers of chimeric RNAs based on predicted
131 effects.

132 (B) Biotype quantification of parental gene combinations in all samples. TunpP:
133 Transcribed unprocessed pseudogene; TuniP: Transcribed unitary pseudogene.

134 (C) Motifs consisting of 20 bp DNA sequences around the fusion site.

135 (D) Spearman correlation analysis of expression level of chimeric RNAs and their

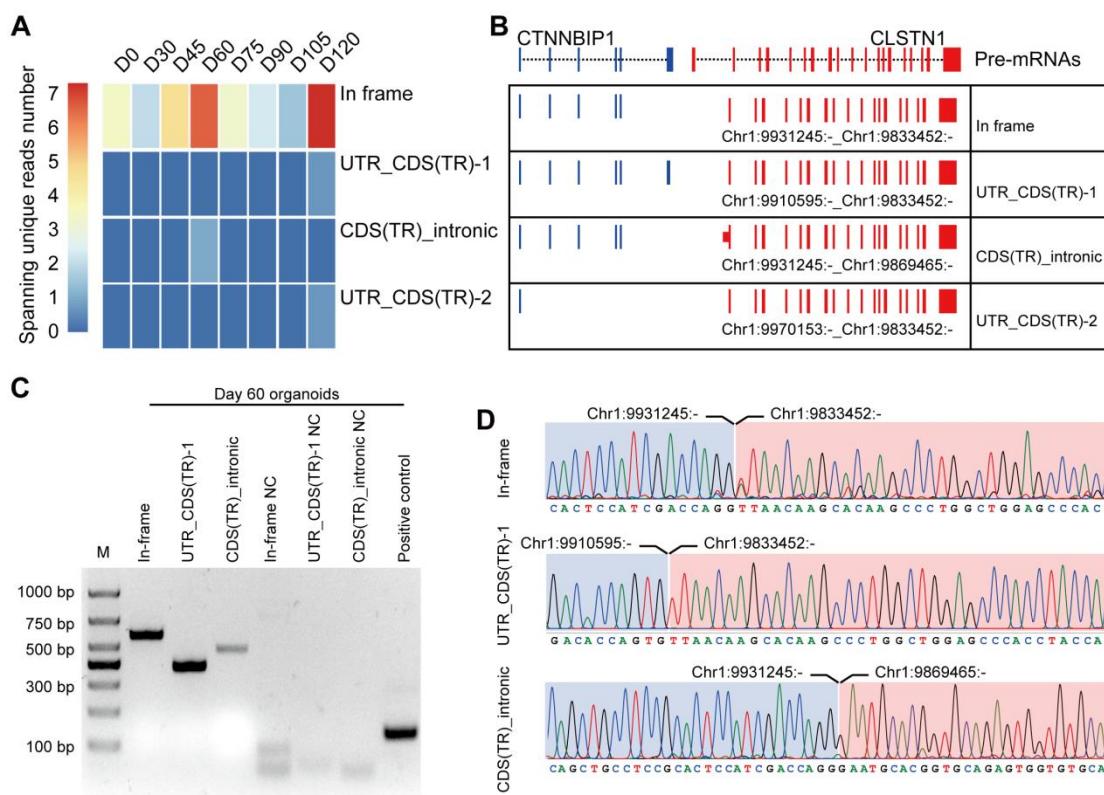
136 parental genes, $p > 0.05$.

137 **Figure 3 – figure supplement 1.** Types of chimeric RNAs based on predicted effect.

138

139

140 Next, we examined the motifs covering 10-bp sequences immediately upstream
141 or downstream to the fusion site of parental genes and found that the canonical
142 GT/AG donor-acceptor motif had the highest position weight (Figure 3C). In addition,
143 we also found that the expression of chimeric RNAs did not correlate with the
144 expression of parental genes (Figure 3D). These results were consistent with previous
145 reports (Ou et al., 2021; Singh et al., 2020), indicating that the procedure of screening
146 chimeric RNAs was reliable and those chimeric RNAs do not arise randomly, which
147 suggested that they play a role in the normal development and physiological activity
148 of the retina.


149 **CTCL is present in all the stages of human retinal development**

150 CTCL has been shown to have a regulatory role for human cerebral development.
151 Similarly, four isoforms of CTCL joined by alternative splicing of parent pre-mRNAs
152 are detected in the ROs RNA-seq results. In-frame CTCL was dynamically expressed
153 during RO development (Figure 4A-B) and there are two obvious higher expression
154 timepoints, D60 and D120, respectively. Around D120, retinal cells like cones, rods,
155 horizontal cells have been generated, therefore, we chose D60 when most retinal cells
156 are progenitor cells. To further validate the presence of CTCL in the developing
157 human ROs, we extracted total RNAs from D60 human ROs, followed by reverse
158 transcription and Sanger sequencing using specific primers to amplify the fragments
159 containing fusion sites between CTNNBIP1 and CLSTN1 (Figures 4C-D and table
160 S1). At D60, in-frame, UTR_CDS(truncated)-1 and CDS(truncated)Intronic CTCL
161 isoforms were confirmed but UTR_CDS(truncated)-2 CTCL was not detected. The

162 dynamic presence of CTCL, especially the in-frame isoform, suggested that it may

163 play a role in human retina development.

164

166 **Figure 4. Four isoforms of CTCL are present in the retinal organoids**

167 (A) Heatmap of CTCL's spanning unique reads of each isoform in the indicated stages.

168 UTR_CDS(TR)-1: UTR_CDS(truncated)-1; CDS(TR)Intronic:

169 CDS(truncated)Intronic; UTR_CDS(TR)-2: UTR_CDS(truncated)-2.

170 (B) Schematic diagram of the structures of the four isoforms of CTCL. Blue represents

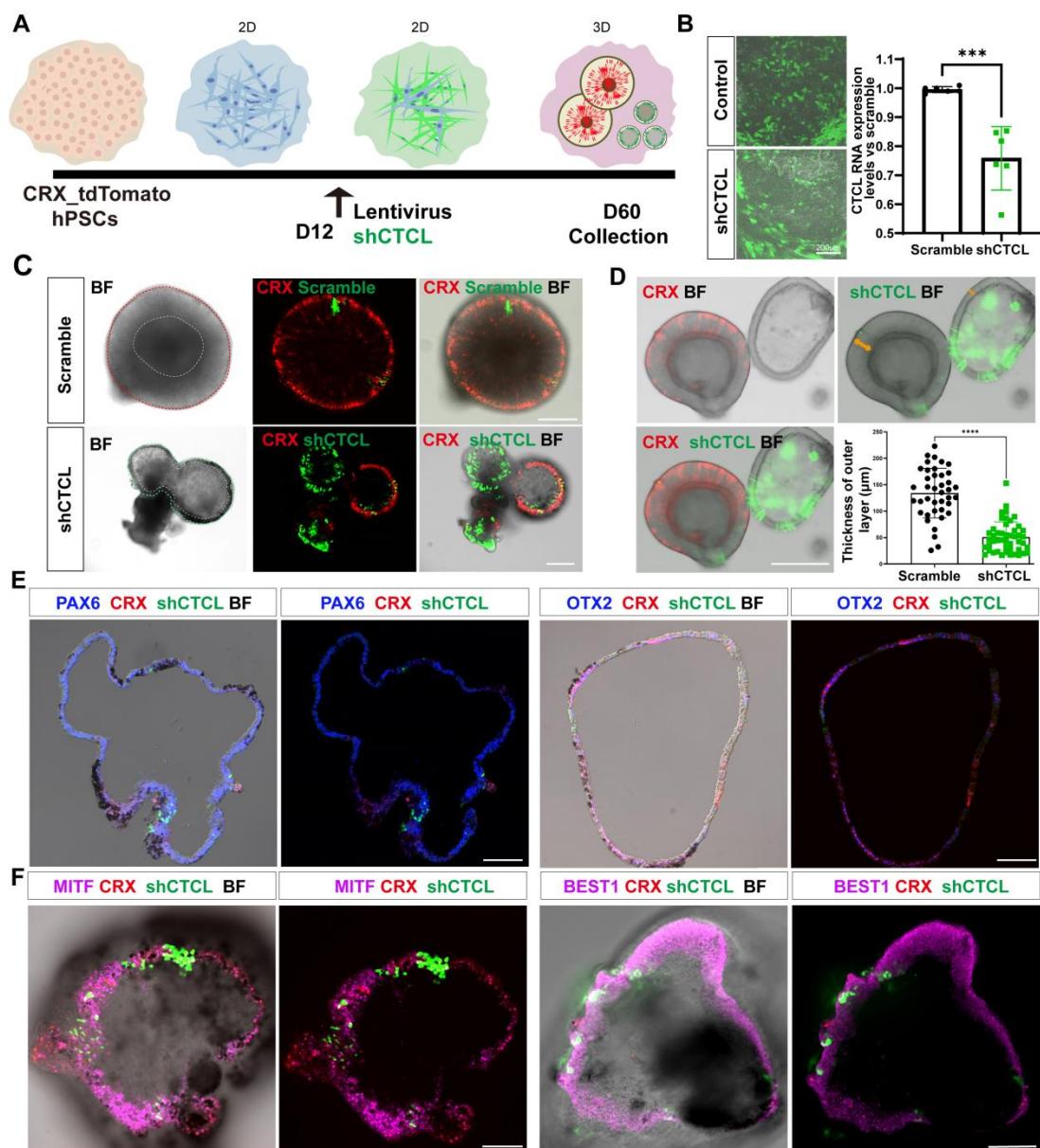
171 upstream parental gene, red represents downstream parental gene.

172 (C) PCR validation of four isoforms of CTCL in ROs at day 60.

173 (D) Sanger sequencing to verify three isoforms of CTCL.

174

175 **The CTCL knockdown obstructed ROs differentiation but prompted the RPE
176 differentiation**


177 According to the CTCL RNA expression levels (Figure 4A), we focus on the D60
178 in-frame CTCL to explore the function of chimeric CTCL. A hPSC line with
179 CRX-tdTomato reporter was used in the CTCL knockdown experiment (Pan et al.,
180 2020). ROs were differentiated according to the previous report (Lowe et al., 2016)
181 (Figure 5 – figure supplement 1) (Video 1). Lentivirus carrying shCTCL
182 (short-hairpin CTCL) or scramble shRNA (Table S1) infected the retinal cells at D12.
183 After 3 days, cells were collected for the knockdown efficiency analysis (Figure
184 5A-B). Comparing with the scramble shRNA group, in-frame CTCL RNA level was
185 reduced to around 70% (Figure 5B). The RNA levels of parental genes, *CTNNBIP1*
186 and *CLSTN1*, displayed no significant differences in comparison with the scramble
187 shRNA group (Figure 5 – figure supplement 2).

188 At D60, ROs with scramble shRNA displayed the typical RO morphology with the
189 generation of photoreceptor precursors (CRX⁺) (Figure 5C, upper panel). In the
190 shCTCL group, the morphology of the organoids changed with a thinner outer layer,
191 and the CRX proteins diminished where the pigments appeared (Figure 5C, lower
192 panel). We measured the average thickness of the outer layers in those two groups
193 (Figure 5D, outer layer indicated with orange arrows), there is a dramatic decrease of
194 the outer layer thickness in the shCTCL group (avg ± sd vs avg ± sd).

195 In order to identify the aberrations in cell fate specification caused by CTCL
196 knockdown, we examined the organoids with retinal progenitor specific markers,

197 PAX6 and OTX2. It showed that PAX6 was widely expressed, but OTX2 was much
198 less, and CRX appeared when shCTCL was low (Figure 5E). As we know, CRX is
199 highly expressed in photoreceptors and lowly expressed in mature RPE (Lidgerwood
200 et al., 2021). While the organoids acquired the features of RPE (pigments), we
201 believed that the outer layer of CTCL-knockdown organoids switched to RPE fates.
202 To further confirm this, we were immunostained the organoids with RPE-specific
203 markers, MITF, BEST1 and RPE65, which were present in the nucleus, cytoplasm
204 and intracellular regions, respectively (Figure 5F, Figure 5 - figure supplement 3A,
205 Figure 5 - figure supplement 3C). By contrast, no pigments or RPE-specific markers
206 were observed in the scramble shRNA group, only the PAX6 was detected in the
207 nucleus (Figure 5 - figure supplement 3B, Figure 5 - figure supplement 3D-F). These
208 results indicated that CTCL is essential for the ROs' differentiation and CTCL
209 knockdown would promote the RPE cell fate at the expense of neural retinal cells.

210

211

212 **Figure 5. The CTCL knockdown obstructed ROs' differentiation but prompted**
213 **the RPE differentiation**

214 (A) A schema illustrated the shRNA experiments. A CRX-tdTomato report line was
215 used in this experiment. The shCTCL or scramble shRNA lentivirus transfected the
216 retinal cells in three independent experiments on D12. All samples for shRNA
217 experiments were collected on day 60, except those for analysis of knockdown
218 efficiency.

219 (B) Samples were obtained 48-72 hours after infection to examine the knockdown
220 efficiency. There were two technical replicates for three independent experiments,
221 *t-test*, $p < 0.001$.

222 (C) D60 shRNA (Scramble)-transfected ROs displayed a typical morphology of ROs
223 with the expression of CRX. ShCTCL-transfected organoids showed thinner outer
224 layers with much less CRX expression. BF, bright-field images, same as below.

225 (D) The shCTCL group displayed much thinner outer layers (orange arrows in right
226 panel). The outer layer thickness of 25 organoids from each group was measured for
227 statistics analysis, *t-test*, $p < 0.0001$.

228 (E) The section immunostaining of neural progenitor markers PAX6 and OTX2, and
229 differentiated cell markers CRX, in shCTCL-treated organoids. Scale bars = 100 μ m.

230 (F) Whole-mount immunostaining of shCTCL-transfected organoids with CRX,
231 shCTCL, and RPE specific markers MITF and BEST1. Scale bars = 100 μ m.

232 **Figure 5 – figure supplement 1.** Images at different timepoints. This RO
233 differentiation method was a combination of 2D and 3D culture. On D60, CTCL
234 downregulated organoids displayed a thinner outer layer. Live imaging showed D60
235 organoids were represent with CRX reporter tdTomato (red) and shCTCL reporter
236 GFP (green). Scale bars = 400 μ m.

237 **Figure 5 – figure supplement 2.** The RT-qPCR quantification of CTCL parental gene
238 expression. (A) The knockdown experiments showed no effect on the RNA
239 expression levels of CTNNBIP1, $n = 4$, *t-test*, $p > 0.05$. (B) The knockdown
240 experiments showed no effect on the RNA expression levels of CLSTN1, $n = 4$, *t-test*,

241 $p > 0.05$.

242 **Figure 5 – figure supplement 3.** Cryosection immunofluorescence staining for D60

243 organoids. (A, B) Immunostaining of RPE specific marker MITF at

244 CTCL-knockdown organoids (A) and scramble shRNA organoids (B). (C, D)

245 Immunostaining of RPE specific marker RPE65 at CTCL-knockdown organoids (C)

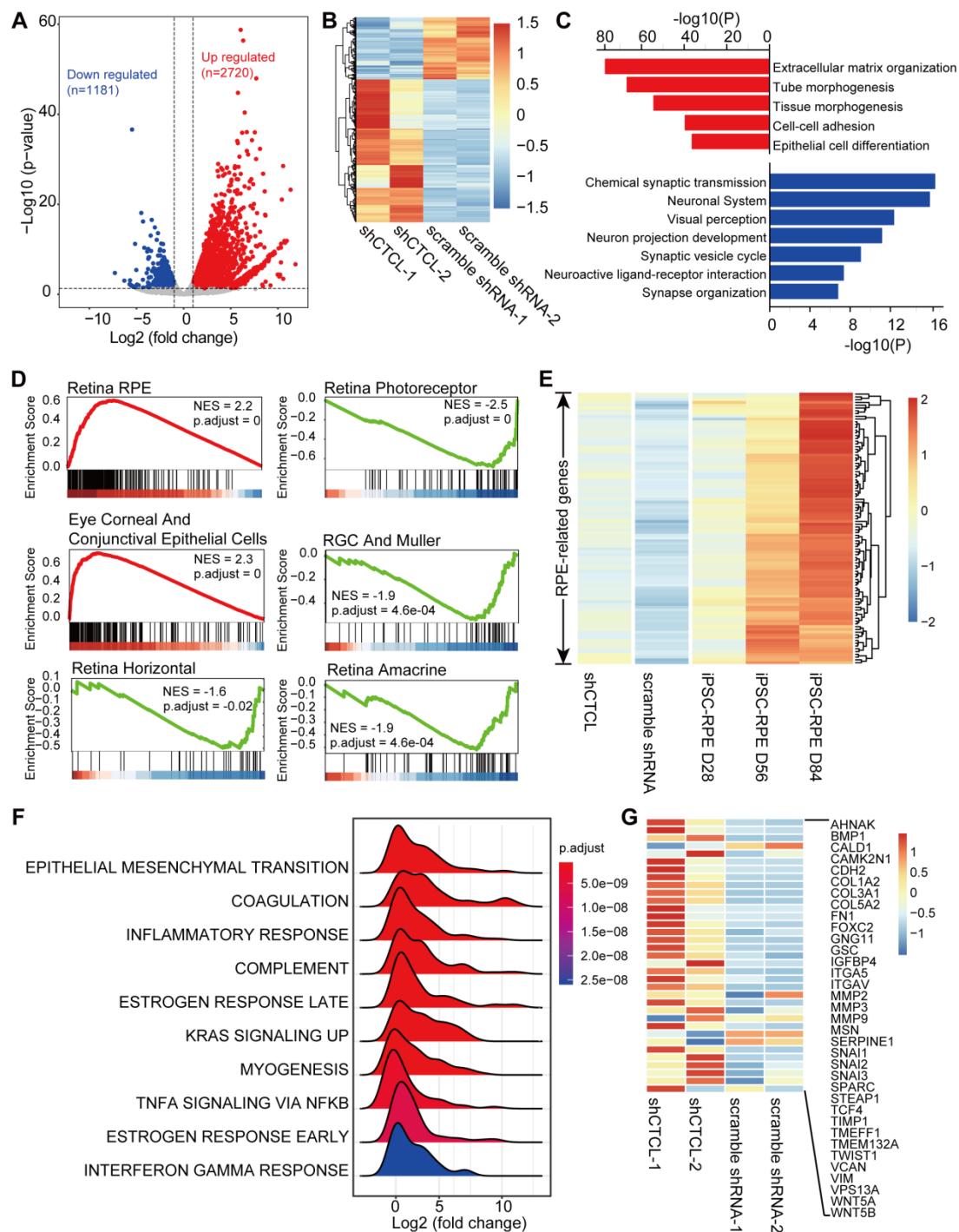
246 and scramble shRNA organoids (D). The lower panel showed the amplified images of

247 the indicated areas. (E, F) Immunostaining of PAX6 at CTCL-knockdown organoids

248 (E) and scramble shRNA organoids (F). Scale bars = 100 μ m. BF, bright-field images.

249

250 **The underlying molecular changes in CTCL knockdown ROs**


251 The above results suggested that CTCL is essential for cell fate conversion in
252 normal retinogenesis. To investigate the underlying molecular regulation, we
253 compared the transcriptomes of shCTCL and scramble shRNA-treated organoids by
254 analyzing the bulk RNA-seq results. We obtained 3901 differentially expressed genes
255 (DEGs) (shCTCL vs. scramble shRNA, $|\text{Log2 (fold change)}| > 1$, $p\text{-value} < 0.05$),
256 among which 2720 were upregulated and 1181 down regulated (Figure 6A-B).

257 To investigate the biological pathways affected by the loss of function of CTCL, we
258 used Metascape to perform functional enrichment for upregulated and downregulated
259 DEGs. Upregulated DEGs are significantly enriched in the extracellular matrix
260 organization, morphogenesis and epithelial cell differentiation associated pathways.
261 On the other hand, downregulated DEGs are significantly enriched in the
262 neurogenesis associated pathways (Figure 6C). To further understand the changes in
263 cell composition between shCTCL and scramble shRNA-treated organoids, we used
264 the Gene Set Enrichment Analysis (GSEA) to analyze whole gene list of
265 shRNA-treated organoids. GSEA analysis with c8 as a reference gene set (Mootha et
266 al., 2003; Subramanian et al., 2005) revealed that genes of RPE, eye corneal and
267 conjunctival epithelial cells were significantly upregulated with shCTCL organoids;
268 however, all genes related to neural retinal component cells (photoreceptor cells, mi
269 ller glial cells, horizontal cell, amacrine cell, retinal ganglion cell) were
270 downregulated (Figure 6D). Moreover, the expression pattern of RPE-related genes in
271 shCTCL organoids was similar to that of RPE cultured from induced pluripotent stem

272 cells (Maruotti et al., 2015) (Figure 6E and Figure 6 – figure supplement 1A). At the
273 same time, CTCL maintains at a low expression status during RPE development
274 (Figure 6 – figure supplement 1B). These results suggested that CTCL has a positive
275 role in the normal development of ROs and that CTCL deficiency would promote the
276 differentiation of retinal progenitor towards RPE.

277 To further explore the molecular mechanisms involved in this process, we used
278 hallmark gene sets (Mootha et al., 2003; Subramanian et al., 2005) to perform GSEA
279 analysis. The most significantly enriched pathway was epithelial mesenchymal
280 transition (EMT) (Figure 6F). And most EMT-related genes are relatively highly
281 expressed in shCTCL-treated organoids (Figure 6G). which is particularly essential
282 for neural crest delamination of vertebrates and for generating different tissues
283 during organismal development (Kim et al., 2014). Therefore, we believe that the
284 downregulation of CTCL expression activated the EMT pathway which altered the
285 directions of cell differentiation.

286

287

288 **Figure 6. Transcriptome alterations in CTCL-knockdown retinal organoids**

289 **(A)** Volcano plot shows differentially expressed genes (p -values < 0.05 and $|Log2$
 290 $(shCTCL/scramble)| > 1$) between shCTCL and scramble shRNA-treated organoids at
 291 D60.

292 **(B)** Heatmap of DEGs in shCTCL and scramble shRNA-treated organoids.

293 (C) Functional enrichment analysis of up- and down-regulated DEGs.

294 (D) GSEA results showed enriched gene sets in shCTCL-treated organoids using the

295 c8 reference gene set.

296 (E) Expression of RPE-related genes in shCTCL-treated, scramble shRNA-treated

297 organoids.

298 (F) GSEA results showed the enriched gene sets in shCTCL-treated organoids using

299 the hallmark reference gene set.

300 (G) Expression of EMT related genes in shCTCL-treated, scramble shRNA-treated

301 organoids.

302 **Figure 6 – figure supplement 1.** (A) Bright-field image of mature RPE differentiated

303 from induced pluripotent stem cells. (B) The qRT-PCR results of CTCL RNA

304 expression levels in D60 CTCL-knockdown organoids and the differentiated RPEs at

305 the indicated timepoints. It showed that CTCL was significantly downregulated in

306 RPEs, even compared with the shCTCL-treated retinal organoids, $n = 4$, *t-test*, $p <$

307 0.0001.

308

309 **Discussion**

310 The term "chimeric RNA" refers to any transcript consisting of transcripts from
311 different parental genes, including gene fusion transcripts (Wu et al., 2019). Chimeric
312 RNAs are formed by splicing transcripts from two parental genes, a process that
313 generates new dysregulated wild-type proteins, new fusion proteins and new
314 non-coding RNAs, expanding the abundance of transcriptome and proteome. The first
315 chimeric RNA was discovered to be caused by chromosomal rearrangements, i.e.,
316 BCR-ABL1, which is associated with chronic leukemia (Ren, 2005). Subsequently,
317 cis-splicing between neighboring genes was also found to generate chimeric RNAs,
318 such as CTCF-sensitive cis-spliced fusion RNAs that can cause prostate cancer (Qin
319 et al., 2015). Addition, chimeric RNAs can be generated by long-distance inter- and
320 intra-chromosomal trans-splicing (Li et al., 2008). Early phase of studies had focused
321 on the role of chimeric RNAs in cancer, where they contribute to cancer development,
322 and serve as biomarkers and therapeutic targets.

323 It is now well established that chimeric RNAs occur abundantly in normal human
324 tissues and have a regulatory role in cellular life activities. In this work, we study
325 chimeric RNAs in retina for the first time. We present the expression atlas of chimeric
326 RNAs throughout the developing ROs. We identified three isoforms of CTCL, and the
327 in-frame isoform has been reported to play a key role in cerebral development
328 previously (Ou et al., 2021). By using the ROs as model for loss-of-function
329 experiments, we found that the in-frame CTCL also has a key role in the development
330 of the retina and that CTCL deficiency obstructed RO differentiation but prompted the

331 RPE differentiation.

332 In-frame CTCL is generated by cis-splicing fusion of the first 5 exons of
333 CTNNBIP1 and the last 17 exons of CLSTN1. The 5' parental gene CTNNBIP1 is a
334 receptor for β -catenin, and their binding promotes the catabolism of β -catenin, which
335 in turn puts the wnt pathway in an inactive state (Fu et al., 2018). CLSTN1 is a
336 member of the calsyntenin family, a subset of the cadherin superfamily. It can mediate
337 the axonal anterograde transport of certain types of vesicles (Nagase et al., 1998). The
338 interesting question is that whether CTCL keeps the biparental functions and/or
339 acquired novel functions? Previous report demonstrated that CTCL could fine-tune
340 wnt signaling to regulate cerebral development (Ou et al., 2021). Therefore, in this
341 study, we had expected that CTCL functions by modulating the wnt signaling pathway
342 or by impacting vesicular transport. However, surprisingly, the GSEA and DEG
343 functional enrichment results did not show significant changes in these two biological
344 pathways (Figure6 C, D, F). The differences between the shCTCL or scramble
345 shRNA-treated organoids were mainly about EMT, extracellular matrix organization,
346 morphogenesis, epithelial cell differentiation and neurogenesis associated pathways,
347 which implicate that even the same chimeric RNAs may function differently in
348 different tissues.

349 Chimeric RNAs can function in both transcriptome and proteome levels. In this
350 study, we verified CTCL expression at the transcriptional level but failed to detect its
351 protein as in brain organoids (Ou et al., 2021). The differentiation of RPE from human
352 parthenogenetic embryonic stem cell was previously reported and miR-204 targeting

353 CTNNBIP1 was found to determine this process (Li et al., 2012). This suggests that
354 regulation at the RNA level can play a decisive role in the differentiation of RPE. In
355 our study, we found that the expression levels of both parent genes (CTNNBIP1 and
356 CLSTN1) and CTCL were not correlated, and that the expression levels of both parent
357 genes were unaffected between shCTCL or scramble shRNA-treated organoids.
358 Therefore, we suggest that CTCL exerts its regulatory roles in human retinal
359 development mainly through RNA rather than protein, which may also explain why
360 CTCL affects different biological pathways in cerebral and retinal development.

361 In summary, we identified the chimeric RNAs in the developing human ROs and
362 found that loss-of-function of CTCL obstructed neuroretinal differentiation while
363 prompted the RPE differentiation. This study for the first time revealed a key role of
364 chimeric RNAs in human retinal development, providing new insights of chimeric
365 RNAs in regulating tissue development.

366

367 **Materials and methods**

368 **RNA sequencing and data analysis**

369 A total amount of 1-3 μ g RNA per sample was used as input material for the RNA
370 sample preparations. Sequencing libraries were generated using VAHTS Universal V6
371 RNA-seq Library Prep Kit for Illumina ® (NR604-01/02) following the
372 manufacturer's recommendations and index codes were added to attribute sequences
373 to each sample. Briefly, mRNA was purified from total RNA using poly-T
374 oligo-attached magnetic beads. Then we added fragmentation buffer to break the

375 mRNA into short fragments. First strand cDNA was synthesized using random
376 hexamer primer and RNase H. Second strand cDNA synthesis was subsequently
377 performed using buffer, dNTPs, DNA polymerase I and RNase H. And then, the
378 double stranded cDNA was purified by AMPure P beads or QiaQuick PCR kit. The
379 purified double stranded cDNA was repaired at the end, added a tail and connected to
380 the sequencing connector, then the fragment size was selected, and finally the final
381 cDNA library was obtained by PCR enrichment.

382 We used FusionCatcher software (<https://github.com/ndaniel/fusioncatcher>) to identify
383 chimeric RNAs in human ROs. Positive chimeric RNAs identified using
384 FusionCatcher were selected with alignment of spanning unique reads. The
385 expression level of chimeric RNAs was reflected from log
386 (Spanning_unique_reads/Total_number_of_reads*10000000) value. To analyze the
387 expression of parental genes in human ROs, raw reads were first mapped to the hg38
388 human genome reference sequence by Hisat2 software, then transcripts were
389 assembled with featureCounts. Metascape (<https://metascape.org/gp/index.html>) is
390 used for functional annotation. The position weight matrix of the 20 bp DNA
391 sequence motif around the fusion site was calculated by the seqLogo R package.
392 GSEA analysis is done with the R package clusterProfiler.

393 **Generation of ROs from hESCs**

394 The CRX- tdTomato human ES reporter line was used for the ROs differentiation. The
395 hESCs were cultured to 80% confluence. Cell colonies were dissociated using dispase
396 buffer (Stem cell, 07923) for 5 minutes at 37 °C and were then cut into smaller

397 pieces/aggregates. The aggregates were collected and mixed with Matrigel (RD). The
398 solidified gel with ES cells were dispersed into small pieces with medium containing
399 1:1 mixture of DMEM/F12, neurobasal medium, and 0.5x N2 supplement (GIBCO),
400 0.5x B27 supplement (GIBCO), 1x MEM-NEAA (GIBCO), 2 mM Glutamax
401 (GIBCO), 0.1 mM 2-mercaptoethanol. At day 1 (D1), hollow cysts could be
402 observed in the dish and cysts started to attach to the culture dish and spread in 3 days.
403 At D5, the cysts were dispersed into two culture dishes with same medium. Medium
404 was changed every 5 days. On D15, detaching the cells with dispase and change to
405 medium with DMEM/F12 (3:1), 1x B27 supplement (GIBCO), 1x MEM-NEAA
406 (GIBCO) for a week. Optic vesicles formed in this period. Finally, optic vesicles were
407 transferred to serum medium with DMEM/F12 (3:1), 1x B27 supplement (GIBCO), 1x
408 MEM-NEAA (GIBCO), 8% FBS (GIBCO), 100 mM Taurine (Sigma-Aldrich) and 2
409 mM Glutamax (GIBCO). ROs would be collected at D60.

410 **CTCL knockdown in the ROs**

411 RNA interference oligo (5'-TGCTTGTAAACCTGGTCGA-3') against CTCL was
412 cloned into lentivirus vector (pLenti-U6-shRNA-EF1a-EGFP-T2A-Puro-WPRE). D12
413 retinal cells were infected with lentiviruses (MOI=10) for 6 hours, and replaced with
414 fresh medium. The fluorescence was detected after 48 hours. The expression of CTCL,
415 CTNNBIP1 and CLSTN1 in retinal cells were analyzed at D15 by quantitative PCR.

416 **Immunostaining of cryosections**

417 ROs were fixed in 4% PFA for 30 minutes and imbedded in O.C.T. compound and
418 sectioned into 10 μ m slices. The cryosections were blocked with 0.5% Triton X-100

419 in 4% BSA for 1 hour. After that, sections were incubated in primary antibodies
420 (diluted in 4% BSA supplied with 0.5% Triton X-100) at 4 °C overnight. The
421 following primary antibodies were used: anti-OTX2 (1:200, Cat. #ab183951; Abcam),
422 anti-PAX6 (1:200, Cat.# 901301; Biolegend), anti-SOX2(1:200, Cat.# sc-365823;
423 Santa Cruz), anti-HuC/D (1:100, Cat.# A21271; Invitrogen), anti-MITF (1:100, Cat. #
424 ab3201; Abcam), anti-GFAP (1:200, Cat.# sc-33673; Santa Cruz), anti-Sox9 (1:200,
425 Cat.# 711048; Invitrogen), anti- RxR γ (1:100, Cat.# sc-365252; Santa Cruz), and
426 anti-Ki67 (1:200, Cat.# ab15580; Abcam). After washed with PBS, cryosections were
427 stained with Alexa Fluor-conjugated secondary antibodies (diluted 1:500, Invitrogen)
428 for 1 hour at room temperature in the dark.

429 **Quantification and statistical analysis**

430 Heatmap was plotted with the R package Pheatmap. All plots were drawn with R
431 package ggplot2. Detailed statistical analysis of experiments can be found in the
432 figure legends, including the statistical tests used, exact values and biological
433 replicates.

434

435 **RESOURCE AVAILABILITY**

436 Further information and requests for reagents should be directed to and will be
437 fulfilled by the lead contact, Professor Zi-Bing Jin (jinzb502@ccmu.edu.cn).

438 **Materials availability**

439 All unique/stable reagents generated in this study are available from the lead contact
440 with a completed materials transfer agreement.

441 **Data and code availability**

442 The Gene Expression Omnibus (GEO) numbers for the bulk RNA-seq of organoids in
443 this paper are GEO: GSE136929. All software used is open and freely available. The
444 published article includes main datasets generated during this study.

445 **Acknowledgments**

446 This study was partially supported by grants from National Natural Science
447 Foundation of China (82125007).

448 **Competing interest**

449 The authors declare that no competing interests exist.

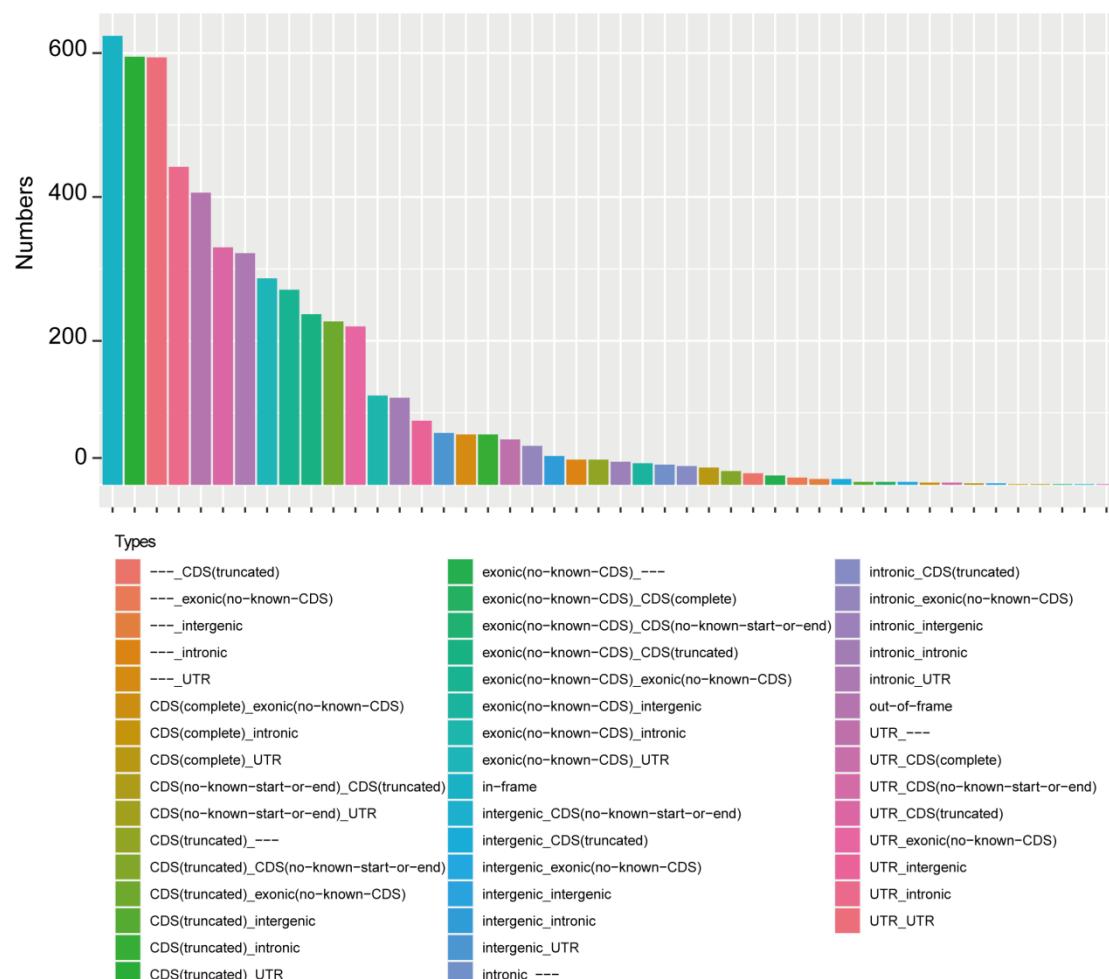
450 **Author contributions**

451 Zi-Bing Jin designed and supervised the study, provided financial supports and
452 revised the manuscript; Wen Wang performed the computational analysis and
453 interpreted the data, wrote the manuscript; Xiao Zhang carried out the experiments;
454 Ning Zhao and Ze-Hua Xu performed the stem cell differentiation; Kangxin Jin
455 interpreted the results and revised the manuscript.

456 **References**

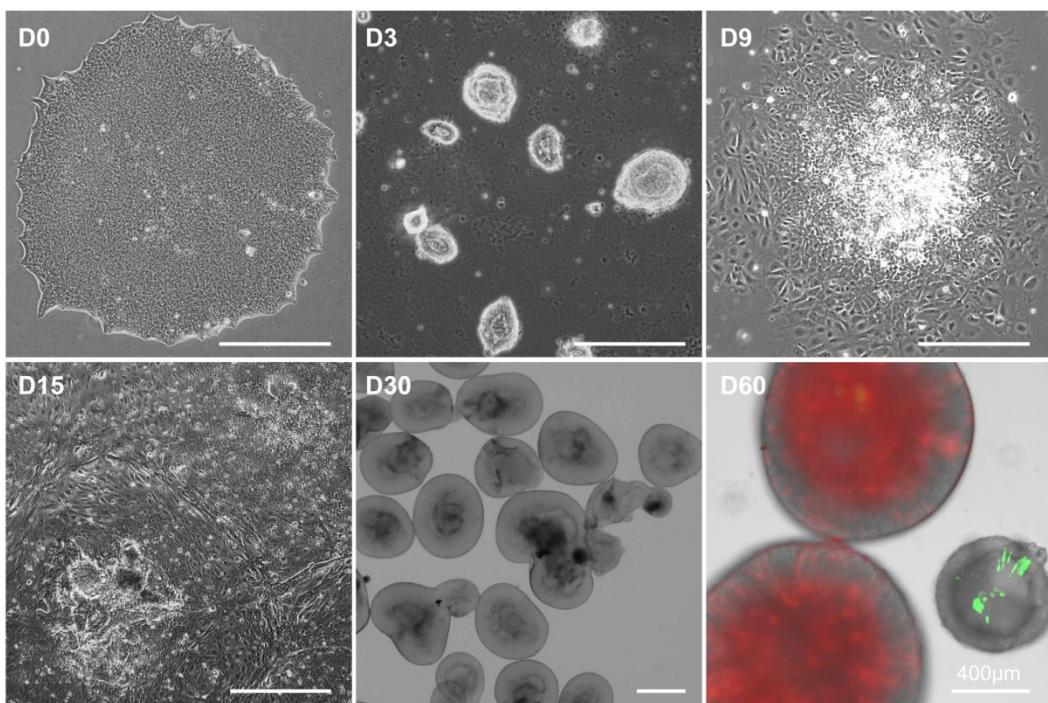
- 457 Clevers, H. (2016). Modeling Development and Disease with Organoids. *Cell*, 165(7), 1586-1597.
458 <https://doi.org/10.1016/j.cell.2016.05.082>
- 459 Cowan, C. S., Renner, M., De Gennaro, M., Gross-Scherf, B., Goldblum, D., Hou, Y., . . . Roska, B.
460 (2020). Cell Types of the Human Retina and Its Organoids at Single-Cell Resolution. *Cell*, 182(6),
461 1623-1640 e1634. <https://doi.org/10.1016/j.cell.2020.08.013>
- 462 Deng, W. L., Gao, M. L., Lei, X. L., Lv, J. N., Zhao, H., He, K. W., . . . Jin, Z. B. (2018). Gene
463 Correction Reverses Ciliopathy and Photoreceptor Loss in iPSC-Derived Retinal Organoids from
464 Retinitis Pigmentosa Patients. *Stem Cell Reports*, 10(4), 1267-1281.
465 <https://doi.org/10.1016/j.stemcr.2018.02.003>
- 466 Elfman, J., & Li, H. (2018). Chimeric RNA in Cancer and Stem Cell Differentiation. *Stem Cells Int*,
467 2018, 3178789. <https://doi.org/10.1155/2018/3178789>
- 468 Fu, X., Zhu, X., Qin, F., Zhang, Y., Lin, J., Ding, Y., . . . Gao, Q. (2018). Linc00210 drives

- 469 Wnt/beta-catenin signaling activation and liver tumor progression through CTNNBIP1-dependent
470 manner. *Mol Cancer*, 17(1), 73. <https://doi.org/10.1186/s12943-018-0783-3>
- 471 Hoon, M., Okawa, H., Della Santina, L., & Wong, R. O. (2014). Functional architecture of the retina:
472 development and disease. *Prog Retin Eye Res*, 42, 44-84.
473 <https://doi.org/10.1016/j.preteyeres.2014.06.003>
- 474 Hu, X., Wang, Q., Tang, M., Barthel, F., Amin, S., Yoshihara, K., . . . Verhaak, R. G. W. (2018).
475 TumorFusions: an integrative resource for cancer-associated transcript fusions. *Nucleic Acids Res*,
476 46(D1), D1144-D1149. <https://doi.org/10.1093/nar/gkx1018>
- 477 Huang, L., Li, R., Ye, L., Zhang, S., Tian, H., Du, M., . . . Yang, Z. (2022). Deep Sc-RNA sequencing
478 decoding the molecular dynamic architecture of the human retina. *Sci China Life Sci*.
479 <https://doi.org/10.1007/s11427-021-2163-1>
- 480 Jin, Z. B., Gao, M. L., Deng, W. L., Wu, K. C., Sugita, S., Mandai, M., & Takahashi, M. (2019).
481 Stemming retinal regeneration with pluripotent stem cells. *Prog Retin Eye Res*, 69, 38-56.
482 <https://doi.org/10.1016/j.preteyeres.2018.11.003>
- 483 Kim, S., Lowe, A., Dharmat, R., Lee, S., Owen, L. A., Wang, J., . . . Liu, W. (2019). Generation,
484 transcriptome profiling, and functional validation of cone-rich human retinal organoids. *Proc Natl Acad
485 Sci U S A*, 116(22), 10824-10833. <https://doi.org/10.1073/pnas.1901572116>
- 486 Kim, Y. S., Yi, B. R., Kim, N. H., & Choi, K. C. (2014). Role of the epithelial-mesenchymal transition
487 and its effects on embryonic stem cells. *Exp Mol Med*, 46, e108. <https://doi.org/10.1038/emm.2014.44>
- 488 Li, H., Wang, J., Mor, G., & Sklar, J. (2008). A neoplastic gene fusion mimics trans-splicing of RNAs
489 in normal human cells. *Science*, 321(5894), 1357-1361. <https://doi.org/10.1126/science.1156725>
- 490 Li, W. B., Zhang, Y. S., Lu, Z. Y., Dong, L. J., Wang, F. E., Dong, R., & Li, X. R. (2012). Development
491 of retinal pigment epithelium from human parthenogenetic embryonic stem cells and microRNA
492 signature. *Invest Ophthalmol Vis Sci*, 53(9), 5334-5343. <https://doi.org/10.1167/iovs.12-8303>
- 493 Li, Y. P., Wang, Y. T., Wang, W., Zhang, X., Shen, R. J., Jin, K., . . . Jin, Z. B. (2022). Second hit impels
494 oncogenesis of retinoblastoma in patient-induced pluripotent stem cell-derived retinal organoids: direct
495 evidence for Knudson's theory. *PANS nexus*, 1(4), pgac162.
496 <https://doi.org/10.1093/pnasnexus/pgac162/6670843>
- 497 Lidgerwood, G. E., Senabouth, A., Smith-Anttila, C. J. A., Gnanasambandapillai, V., Kaczorowski, D.
498 C., Amann-Zalcenstein, D., . . . Pebay, A. (2021). Transcriptomic Profiling of Human Pluripotent Stem
499 Cell-derived Retinal Pigment Epithelium over Time. *Genomics Proteomics Bioinformatics*, 19(2),
500 223-242. <https://doi.org/10.1016/j.gpb.2020.08.002>
- 501 Liu, H., Hua, Z. Q., & Jin, Z. B. (2021). Modeling human retinoblastoma using embryonic stem
502 cell-derived retinal organoids. *STAR Protoc*, 2(2), 100444. <https://doi.org/10.1101/2021.100444>
- 503 Liu, H., Zhang, Y., Zhang, Y. Y., Li, Y. P., Hua, Z. Q., Zhang, C. J., . . . Jin, Z. B. (2020). Human
504 embryonic stem cell-derived organoid retinoblastoma reveals a cancerous origin. *Proc Natl Acad Sci U
505 SA*, 117(52), 33628-33638. <https://doi.org/10.1073/pnas.2011780117>
- 506 Lowe, A., Harris, R., Bhansali, P., Cvekl, A., & Liu, W. (2016). Intercellular Adhesion-Dependent Cell
507 Survival and ROCK-Regulated Actomyosin-Driven Forces Mediate Self-Formation of a Retinal
508 Organoid. *Stem Cell Reports*, 6(5), 743-756. <https://doi.org/10.1016/j.stemcr.2016.03.011>
- 509 Lu, Y., Shiau, F., Yi, W., Lu, S., Wu, Q., Pearson, J. D., . . . Clark, B. S. (2020). Single-Cell Analysis of
510 Human Retina Identifies Evolutionarily Conserved and Species-Specific Mechanisms Controlling
511 Development. *Dev Cell*, 53(4), 473-491 e479. <https://doi.org/10.1016/j.devcel.2020.04.009>
- 512 Ma, C., Jin, K., & Jin, Z. B. (2022). Generation of Human Patient iPSC-derived Retinal Organoids to

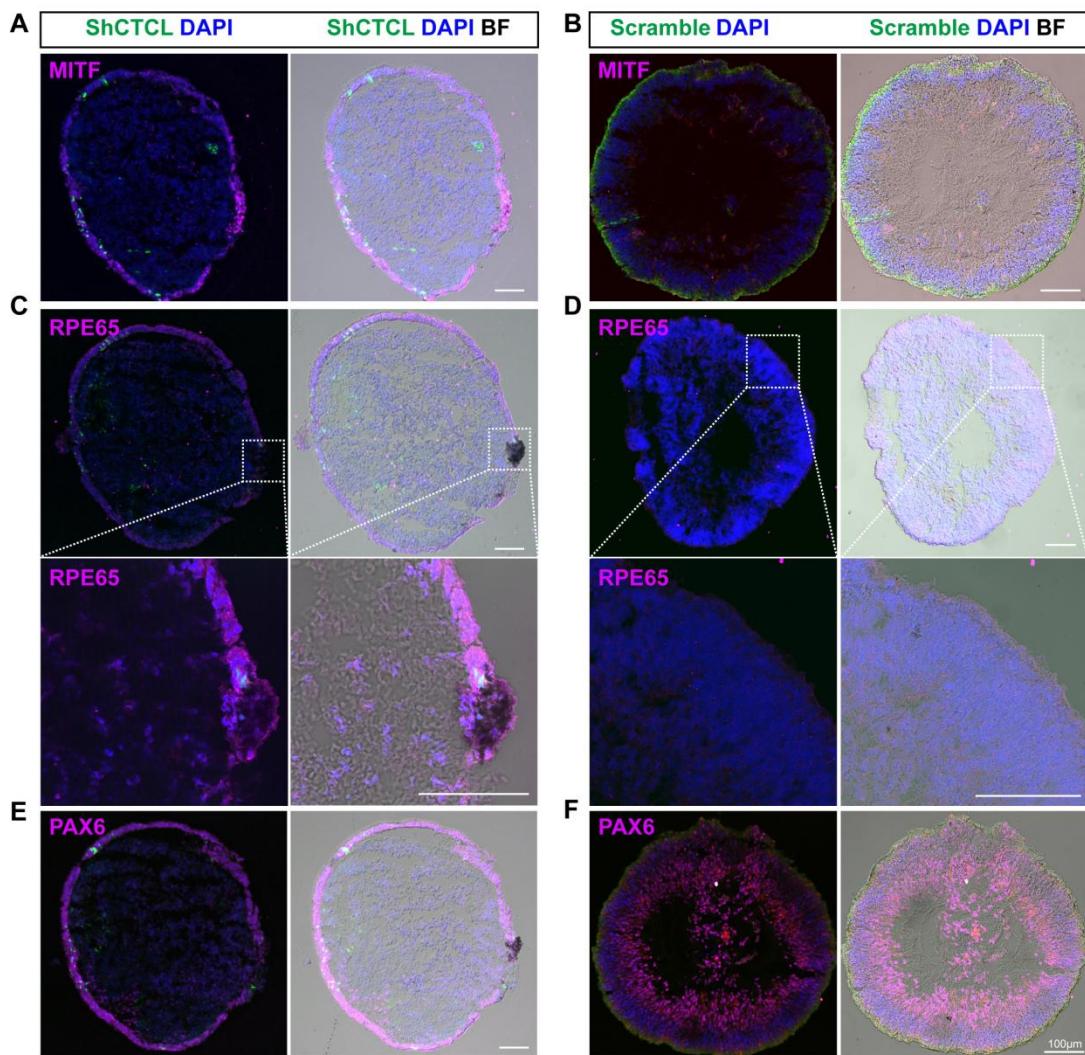

- 513 Model Retinitis Pigmentosa. *J Vis Exp*(184). <https://doi.org/10.3791/64045>
- 514 Maruotti, J., Sripathi, S. R., Bharti, K., Fuller, J., Wahlin, K. J., Ranganathan, V., . . . Zack, D. J. (2015).
- 515 Small-molecule-directed, efficient generation of retinal pigment epithelium from human pluripotent
- 516 stem cells. *Proc Natl Acad Sci U S A*, 112(35), 10950-10955. <https://doi.org/10.1073/pnas.1422818112>
- 517 Masland, R. H. (2012). The neuronal organization of the retina. *Neuron*, 76(2), 266-280.
- 518 <https://doi.org/10.1016/j.neuron.2012.10.002>
- 519 Mehani, B., Narta, K., Paul, D., Raj, A., Kumar, D., Sharma, A., . . . Mukhopadhyay, A. (2020). Fusion
- 520 transcripts in normal human cortex increase with age and show distinct genomic features for single
- 521 cells and tissues. *Sci Rep*, 10(1), 1368. <https://doi.org/10.1038/s41598-020-58165-6>
- 522 Mertens, F., Johansson, B., Fioretos, T., & Mitelman, F. (2015). The emerging complexity of gene
- 523 fusions in cancer. *Nat Rev Cancer*, 15(6), 371-381. <https://doi.org/10.1038/nrc3947>
- 524 Mootha, V. K., Lindgren, C. M., Eriksson, K. F., Subramanian, A., Sihag, S., Lehar, J., . . . Groop, L. C.
- 525 (2003). PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately
- 526 downregulated in human diabetes. *Nat Genet*, 34(3), 267-273. <https://doi.org/10.1038/ng1180>
- 527 Nagase, T., Ishikawa, K., Suyama, M., Kikuno, R., Hirosawa, M., Miyajima, N., . . . Ohara, O. (1998).
- 528 Prediction of the coding sequences of unidentified human genes. XII. The complete sequences of 100
- 529 new cDNA clones from brain which code for large proteins in vitro. *DNA Res*, 5(6), 355-364.
- 530 <https://doi.org/10.1093/dnares/5.6.355>
- 531 Ou, M. Y., Xiao, Q., Ju, X. C., Zeng, P. M., Huang, J., Sheng, A. L., & Luo, Z. G. (2021). The
- 532 CTNNBIP1-CLSTN1 fusion transcript regulates human neocortical development. *Cell Rep*, 35(13),
- 533 109290. <https://doi.org/10.1016/j.celrep.2021.109290>
- 534 Pan, D., Xia, X. X., Zhou, H., Jin, S. Q., Lu, Y. Y., Liu, H., . . . Jin, Z. B. (2020). COCO enhances the
- 535 efficiency of photoreceptor precursor differentiation in early human embryonic stem cell-derived
- 536 retinal organoids. *Stem Cell Res Ther*, 11(1), 366. <https://doi.org/10.1186/s13287-020-01883-5>
- 537 Qin, F., Song, Z., Babiceanu, M., Song, Y., Facemire, L., Singh, R., . . . Li, H. (2015). Discovery of
- 538 CTCF-sensitive Cis-spliced fusion RNAs between adjacent genes in human prostate cells. *PLoS Genet*,
- 539 11(2), e1005001. <https://doi.org/10.1371/journal.pgen.1005001>
- 540 Ren, R. (2005). Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. *Nat*
- 541 *Rev Cancer*, 5(3), 172-183. <https://doi.org/10.1038/nrc1567>
- 542 Singh, S., Qin, F., Kumar, S., Elfman, J., Lin, E., Pham, L. P., . . . Li, H. (2020). The landscape of
- 543 chimeric RNAs in non-diseased tissues and cells. *Nucleic Acids Res*, 48(4), 1764-1778.
- 544 <https://doi.org/10.1093/nar/gkz1223>
- 545 Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., . . . Mesirov, J.
- 546 P. (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide
- 547 expression profiles. *Proc Natl Acad Sci U S A*, 102(43), 15545-15550.
- 548 <https://doi.org/10.1073/pnas.0506580102>
- 549 Wu, H., Li, X., & Li, H. (2019). Gene fusions and chimeric RNAs, and their implications in cancer.
- 550 *Genes Dis*, 6(4), 385-390. <https://doi.org/10.1016/j.gendis.2019.08.002>
- 551 Zhang, X., Wang, W., & Jin, Z. B. (2021). Retinal organoids as models for development and diseases.
- 552 *Cell Regen*, 10(1), 33. <https://doi.org/10.1186/s13619-021-00097-1>
- 553

554 **Video and supplementary**

555 **Video 1.** The 4 days live cell imaging of retinal organoid differentiation from D3 to

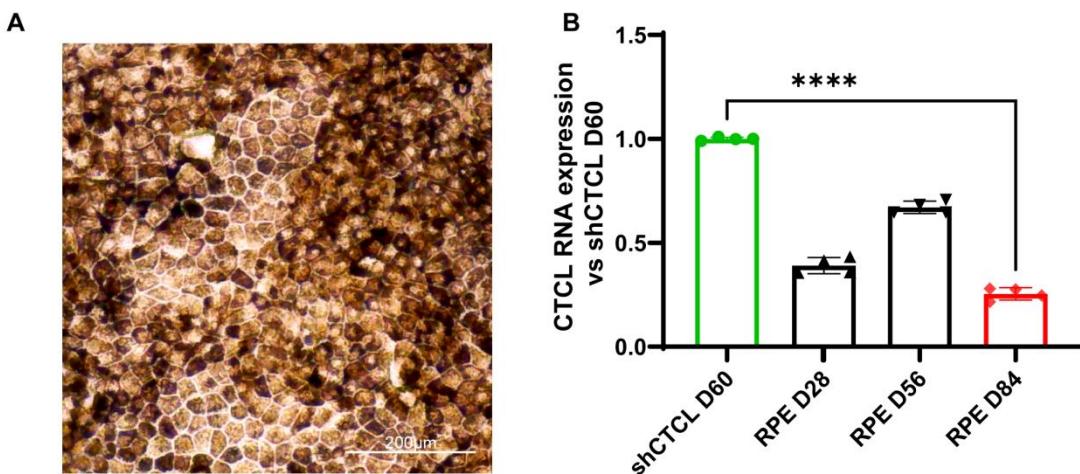


556 D7.

557 **Supplementary table 1.** Key resource tables.



558

559 **Figure 3 – figure supplement 1.** Types of chimeric RNAs based on predicted effect.



568 expression. (A) The knockdown experiments showed no effect on the RNA
569 expression levels of CTNNBIP1, $n = 4$, *t-test*, $p > 0.05$. (B) The knockdown
570 experiments showed no effect on the RNA expression levels of CLSTN1, $n = 4$, *t-test*,
571 $p > 0.05$.

572
573 **Figure 5 – figure supplement 3.** Cryosection immunofluorescence staining for D60
574 organoids. (A, B) Immunostaining of RPE specific marker MITF at
575 CTCL-knockdown organoids (A) and scramble shRNA organoids (B). (C, D)
576 Immunostaining of RPE specific marker RPE65 at CTCL-knockdown organoids (C)

577 and scramble shRNA organoids (D). The lower panel showed the amplified images of
578 the indicated areas. (E, F) Immunostaining of PAX6 at CTCL-knockdown organoids
579 (E) and scramble shRNA organoids (F). Scale bars = 100 μ m. BF, bright-field images.

581 **Figure 6 - figure supplement 1.** (A) Bright-field image of mature RPE differentiated
582 from induced pluripotent stem cells. (B) The qRT-PCR results of CTCL RNA
583 expression levels in D60 CTCL-knockdown organoids and the differentiated RPEs at
584 the indicated timepoints. It showed that CTCL was significantly downregulated in
585 RPEs, even compared with the shCTCL-treated retinal organoids, $n = 4$, *t-test*, $p <$
586 0.0001.

587