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ABSTRACT 44 

Acute myeloid leukaemia (AML) patients harbouring certain chromosome abnormalities 45 

have particularly adverse prognosis. For these patients, targeted therapies have not yet made a 46 

significant clinical impact. To understand the molecular landscape of poor prognosis AML 47 

we profiled 74 patients from two different centres (in UK and Finland) at the proteomic, 48 

phosphoproteomic and drug response phenotypic levels. These data were complemented with 49 

transcriptomics analysis for 39 cases. Data integration highlighted a phosphoproteomics 50 

signature that define two biologically distinct groups of KMT2A rearranged leukaemia, 51 

which we term MLLGA and MLLGB. MLLGA presented increased DOT1L 52 

phosphorylation, HOXA gene expression, CDK1 activity and phosphorylation of proteins 53 

involved in RNA metabolism, replication and DNA damage when compared to MLLGB and 54 

no KMT2A rearranged samples. MLLGA was particularly sensitive to 15 compounds 55 

including genotoxic drugs and inhibitors of mitotic kinases and inosine-5-monosphosphate 56 

dehydrogenase (IMPDH) relative to other cases. Intermediate-risk KMT2A-MLLT3 cases 57 

were mainly represented in a third group closer to MLLGA than to MLLGB.  The expression 58 

of IMPDH2 and multiple nucleolar proteins was higher in MLLGA and correlated with the 59 

response to IMPDH inhibition in KMT2A rearranged leukaemia, suggesting a role of the 60 

nucleolar activity in sensitivity to treatment. In summary, our multilayer molecular profiling 61 

of AML with poor prognosis and KMT2A-MLLT3 karyotypes identified a 62 

phosphoproteomics signature that defines two biologically and phenotypically distinct groups 63 

of KMT2A rearranged leukaemia. These data provide a rationale for the potential 64 

development of specific therapies for AML patients characterised by the MLLGA 65 

phosphoproteomics signature identified in this study.  66 

INTRODUCTION 67 

Acute Myeloid Leukaemia (AML) is a highly heterogeneous malignancy characterised by 68 

impairment of myeloid progenitor cell differentiation, leading to their clonal expansion and, 69 

ultimately, bone marrow failure1. Despite advances in the development of targeted therapies 70 

for AML, current treatments are not curative for most patients2. Cases presenting complex 71 

karyotypes, KMT2A-rearrangements (excluding KMT2A-MLLT3) and alterations on certain 72 

chromosomes (e.g. deletions in chromosomes 5, 7 and 19) and genes (e.g. TP53 mutations) 73 

present particularly poor prognosis and, for these patients, targeted therapies are not yet 74 

available3. The short overall survival of AML cases with adverse genetic alterations 75 

highlights the need of new therapies for these patients4-7. 76 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2022. ; https://doi.org/10.1101/2022.11.10.515949doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.10.515949
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

3 

 

In this work, we subjected a cohort of 74 AML patients with poor prognosis or KMT2A-77 

MLLT3 karyotypes from two different centres (in UK and Finland) to proteomic and 78 

phosphoproteomic analysis as well as drug response profiling to 627 drugs. For most patients, 79 

sufficient material was also available for additional analysis at the genomic and 80 

transcriptomics levels. Proteomics data was additionally mined for proteomic methylation 81 

and acetylation post-translational modification analysis. We focused our investigation in the 82 

characterization of KMT2A\MLL rearranged AML (KMT2Ar-AML) phosphoproteomics 83 

because cells with this karyotype showed distinct phosphoproteomes relative to other poor-84 

risk AML cases.  85 

The KMT2A gene, also known as mixed lineage leukaemia or MLL, is located on 86 

chromosome 11q23 and encodes a methyltransferase for histone H3 at K4. Balanced 87 

chromosome rearrangements between 11q23 and other chromosomes, present in ~5% of de 88 

novo AML, generate several distinct KMT2A fusion proteins8, the most frequent of which 89 

are MLLT3 (not considered an adverse karyotype), MLLT1, MLLT10, ELL and MLLT49. In 90 

KMT2Ar-AML, the c-terminal portion of KMT2A – responsible for the methyl transferase 91 

activity of the enzyme – is replaced by a region of the fusion partner that leads to the 92 

recruitment, probably indirectly in most of the cases, of the DOT1L and TEFb complexes to 93 

the KMT2A fusion binding sites. These complexes have Histone H3 K79 methyltransferase 94 

and kinase activities, respectively. Aberrantly activated DOT1L and TEFb at regulatory 95 

regions of HOXA and other KMT2A target genes subvert the transcriptional programmes that 96 

promote normal leukaemogenesis10-12.  97 

Although the molecular biology of KMT2Ar-AML is relatively well understood, it is not 98 

clear whether the distinct KMT2A fusion partners confer cells with different phenotypes. 99 

Furthermore, current knowledge has not yet translated into KMT2Ar-AML specific therapies. 100 

Targeted personalised therapies require the stratification of cases into phenotypically 101 

homogeneous patient groups predicted to respond or not to given treatments. Traditionally, 102 

the application of genomic approaches to derive molecular profiles of healthy and pathogenic 103 

tissues have driven the development of biomarkers used for patient stratification13,14. 104 

However, the realisation that non-genomic mechanisms contribute to drug resistance to anti-105 

cancer therapies15 has spurred the application of proteomics and phosphoproteomics 106 

approaches to rationalise drug response phenotypes16,17. These other omic analytical 107 

platforms measure the consequences of several layers of regulation (protein expression, 108 

modification and direct enzymatic activity) that determine phenotypes18-21, and therefore, 109 
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have the potential to define biomarkers for the stratification of patients into phenotypically 110 

homogeneous groups with greater precision than when just using genetic approaches by 111 

themselves22-24. 112 

Here, we identified a phosphoproteomics signature that defined two biologically distinct 113 

groups of KMT2Ar-AML patients with differential sensitivity to multiple approved and 114 

experimental drugs. Focusing on the mode of action of the IMPDH inhibitor AVN-944, we 115 

found that the sensitivity to this compound was associated to the expression of IMPDH2 in 116 

KMT2Ar-AML as well as to the expression of multiple proteins linked to nucleolar biology 117 

and RNA metabolism. To determine causality, we stablished that IMPDH inhibition 118 

increased the phosphorylation of nucleolar proteins with roles in ribosomal RNA (rRNA) 119 

metabolism only in cells sensitive to the inhibitor of this enzyme. Overall, our study uncovers 120 

subgroups of biochemically distinct KMT2Ar-AML with differential drug response 121 

phenotypes. 122 

RESULTS 123 

Overview of multi-omic analysis of poor-risk and KMT2A-MLLT3 AML 124 

Our study initially included 74 patient samples with poor-risk or KMT2A-MLLT3 125 

karyotypes and 4 samples derived from healthy donors (Figure 1a). Samples were collected 126 

by the Barts Cancer Institute tissue bank in UK (n=56) and the Institute for Molecular 127 

Medicine in Finland (n=18). To increase the robustness of our analysis, we performed a 128 

quality control analysis which led to the exclusion of 19 samples from our 129 

phospho(proteomic) dataset. Excluded samples were mislabelled as AML (n=2) or presented 130 

high number of red blood cells (n=1), T-cells (n=12) or low viability (n=5). In the remaining 131 

55 patient samples (BCI, n=40; FIMM, n=15), the most represented karyotypes were 132 

complex karyotype followed by KMT2Ar and alterations in chromosome 7(-7/del(7)) (Figure 133 

1b). In general, KMT2Ar-AML cases were younger than patients in other karyotype groups 134 

(Supplementary Figure 1b) and, as previously described25, presented leukaemia with 135 

morphological features associated to myelomonocytic (M4) or monocytic (M5) 136 

differentiation (Supplementary Figure 1b).  137 

Mononuclear cells from AML patients and healthy donors were collected from peripheral 138 

blood or bone marrow aspirates and subjected to genomics, transcriptomics, proteomics, 139 

phosphoproteomics and a PTMs analysis that included peptide methylation and acetylation. 140 

Kinase activity was estimated from phosphoproteomics data and cells were subjected to an ex 141 
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vivo drug screening (Figure 1a). Our study quantified 26,710 phosphopeptides 4,760 142 

acetylated or methylated peptides, 6,637 proteins and 84 kinase activities in all 59 individuals 143 

(55 patients and 4 healthy donors) (Figure 1c). A total of 33,561 mRNAs were quantified in 144 

39 patients, and 54 frequently mutated genes in AML were sequenced in 40 patients (Figure 145 

1c). Samples from 47 patients and 2 independent healthy donors (PBMCs) were subjected to 146 

an ex vivo drug screen consisting of 627 compounds assessed across a variable number of 147 

patients, with 482 compounds assessed in 30 patients or more (Figure 1c and Supplementary 148 

Figure 1c). These results provide the community with the most comprehensive multi-omics 149 

dataset of poor-risk AML to date. 150 

Phosphoproteomics defines two subgroups of KMT2Ar-AML 151 

Targeted therapies require the stratification of patients into phenotypically homogeneous 152 

groups. Since phosphorylation regulates the activity of proteins that determine the cell 153 

phenotype, we investigated the use of phosphoproteomics as a means to classify poor-risk 154 

AML patients. We completed a principal component analysis (PCA) with all identified 155 

phosphopeptides to assess the global quality of our phosphoproteomics data. We observed no 156 

separation of samples as a function of source (peripheral blood or bone marrow) or origin 157 

(UK or Finland) (Supplementary Figure 2a and b), showing that the data was normalized for 158 

potential batch effects. In addition, this analysis separated healthy donors from AML samples 159 

(Figure 1d). Further characterization of the phosphoproteome of our patient cohort revealed 160 

that cells from healthy donors showed a substantial alteration of phosphorylation sites when 161 

compared with cells with -7/del(7), complex and KMT2Ar karyotypes (Figure 1e, upper 162 

panel). In addition, KMT2Ar-AML cases showed the greater number of significantly 163 

increased phosphorylation sites relative to other karyotypes (Figure 1e, lower panel), thus 164 

suggesting that the phosphoproteome of KMT2Ar-AML cases is distinct from those of other 165 

poor-risk AML cases.  166 

To investigate the nature of the KMT2Ar specific phosphoproteome in more detail, we 167 

generated a KMT2Ar signature which we used in a machine learning (ML) approach, based 168 

on random forest, to classify AML samples as follows. First, we split our cohort of patients 169 

from the BCI into training (n=36) and validation sets (n=8) and used the FIMM cases as an 170 

additional verification set (n=15) (Figure 2a and Supplementary Figure 3a). A feature 171 

selection process was subsequently applied by comparing the phosphoproteome of cases in 172 

the training set with KMT2Ar against samples with other karyotypes (by t-test, 173 

Supplementary Figure 3b), from which phosphopeptides with the lowest p-values were 174 
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selected. To avoid overfitting, we selected a number of features equal to half the number of 175 

samples in the training set (n=18) (Figure 2a). To define classes, we then analysed by PCA 176 

the resulting KMT2Ar phosphoproteomics signature in all samples in our patient cohort. PC1 177 

separated KMT2Ar-AML from other AML samples (Figure 2b). Sample dispersion in the 178 

PCA plot, followed by clustering analysis, indicated that the group with KMT2Ar could be 179 

further subdivided into two distinctive groups with two samples separated from the other 180 

eight (Figure 2c). We used the cluster of eight samples to define an area in the PCA and we 181 

labelled all samples in that area as KMT2A group A (MLLGA) and all samples out of that 182 

area as No-MLLGA (Figure 2b). Next, a new random forest classification model, trained 183 

using the training set and the phosphoproteomics signature with MLLGA or No-MLLGA as 184 

labels, was used to reclassify samples (Figure 2d). Cases that were in the MLLGA area 185 

(T5876 and SF13) or did not present KMT2Ar were correctly classified as MLLGA or No-186 

MLLGA, respectively. Four samples in the validation or verification set presented KMT2Ar 187 

and were out of the MLLGA. Cases T2353, SF02 and SF16 were clearly separated from the 188 

MLLGA area and were classified as No-MLLGA, while sample SF10 that was closed to the 189 

MLLGA area was classified as MLLGA and considered as MLLGA in further analyses 190 

(Figure 2b and 2d, lower panel). Of note, samples classified as MLLGA (n=11) mainly 191 

presented KMT2A fusion proteins involving MLLT4 (n=6) or MLLT10 (n=3), while MLLT3 192 

(n=1) and TET1 (n=1) were the other KMT2A partners represented in this group. 193 

Interestingly, analysis of feature importance showed that the most relevant features for the 194 

ML model were phosphorylation sites on DOT1L (Figure 2e), a protein highly associated to 195 

the biology of KMT2Ar-AML26. Together, this analysis uncovered an 18-phosphopeptide 196 

signature that separates KMT2Ar-AML cases into two groups based on a ML model in which 197 

DOT1L phosphorylation is an important contributor. 198 

Distinctive DOT1L-TEFb complex phosphorylation and HOXA gene expression in 199 

KMT2Ar groups 200 

Most of the characterised KMT2A fusion proteins directly or indirectly recruit the DOT1L 201 

and TEFb complexes to the regulatory regions of target genes27 (Figure 3a). Since the 202 

phosphorylation of DOT1L was an important contributor to MLLGA in our ML model, we 203 

next considered if MLLGA samples presented a specific phosphorylation pattern in DOT1L 204 

and TEFb complex components. We found that MLLGA samples presented a significantly 205 

increased phosphorylation of sites in DOT1L, MLLT10, MLLT4 and EAF2 and a 206 

significantly reduced phosphorylation of AFF4 sites when compared to No-MLL (i.e., non-207 
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KMT2Ar cases) and MLLGB (i.e., KMT2Ar-AML cases that were not classified as 208 

MLLGA) (Figure 3b). In addition, compared to the No-MLL group, MLLGA and MLLGB 209 

presented a significantly reduced phosphorylation of KMT2A at sites located in the c-210 

terminal region that is replaced by the fusion partner (Figure 3b). There was no difference in 211 

KMT2A expression between the different groups and protein and phosphorylation site 212 

abundances were not significantly correlated (Supplementary Figure 4a and b). Similarly, 213 

changes in the protein or mRNA levels of DOT1L and TEFb complex components were not 214 

correlated with their extent of phosphorylation (Supplementary Figures 4c and d).  215 

DOT1L is an epigenetic modulator that specifically methylates histone H3 at K7928. In 216 

KMT2Ar-AML, the aberrant activity of DOT1L and TEFb complexes lead to an increase in 217 

the expression of genes in the HOXA cluster11 (Figure 3a). Consistent with this, we found 218 

that that MLLGA significantly increased mRNAs levels for multiple HOXA genes (Figure 219 

3c) and long non-coding RNAs located in the HOXA cluster when compared to MLLGB or 220 

No-MLL samples (Supplementary Figure 4e). MLLGA also presented a significantly 221 

increased protein expression and phosphorylation of HOXA10 (Supplementary Figure 4f and 222 

g). Of note, our data show that MLLGA but not MLLGB presented a reduced methylation of 223 

histone H3 at K79 when compared with No-MLL (Figure 3d). We further found that the 224 

mRNA levels of multiple HOXA genes positively correlated with the phosphorylation of 225 

DOT1L and other components of the DOT1L complex and were inversely correlated with the 226 

global methylation of histone H3 at K79 (Figure 3e). Overall, our data on DOT1L and TEFb 227 

complex phosphorylation, global H3 methylation at K79 and HOXA gene expression indicate 228 

that MLLGA cases have high activity of DOT1L and TEFb at KMT2A target genes.  229 

AML cases with t(9:11) rearrangements generate a KMT2A-MLLT3 fusion protein but these 230 

cases are not classified as poor-risk. Intriguingly, however, KMT2A-MLLT3 proteins are 231 

also able to recruit the DOT1L and TEFb complexes to the KMT2A target genes29. To 232 

investigate if KMT2A-MLLT3 cases resemble MLLGA or MLLGB, we generated a new 233 

phosphoproteomics dataset for KMT2Ar-AML samples (n=33) that comprised all samples 234 

previously classified as MLLGA and MLLGB (n=16). In addition, we analysed new cases 235 

containing the following karyotypes: KMT2A-MLLT3 (n=10), MLLT10 (n=1), MLLT4 236 

(n=2), MLLT11 (n=2), t(11;19) rearrangements that generates fusions with ELL or MLLT1 237 

(n=1) and rearrangements involving 11q23 (Unknown; n=1). Although we reduced 60% the 238 

amount of starting material due to sample availability limitations, we identified and 239 

quantified 10,503 phosphopeptides in this experiment. Unsupervised PCA analysis using 240 
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phosphopeptides differentially expressed between MLLGA and MLLGB showed that new 241 

samples with KMT2A-MLLT4 and MLLT10 fusion proteins located close to MLLGA 242 

samples, whereas the sample with KMT2A-ELL/MLLT1 fusion located close to MLLGB 243 

samples (Figure 4a). Interestingly, KMTA2-MLLT3 and MLLT11 formed a new group with 244 

low PC2 that located much closer to MLLGA than to MLLGB (Figure 4a), suggesting that 245 

the phosphoproteomes of KMT2A-MLLT3 and MLLT11 samples are more similar to 246 

MLLGA than to MLLGB.  247 

To confirm our results showing differences in MLLGA and MLLGB in independent datasets, 248 

we collected publicly available mRNA expression data in a cohort of 42 young patients (aged 249 

<18 years) with KMT2Ar-AML from Pigazzi et al30. We considered cases with 250 

rearrangements involving MLLT4 and MLLT10 cytogenetically similar to our MLLGA and 251 

patients with rearrangements involving ELL, MLLT1 and SEPTIN6 similar to our MLLGB. 252 

Consistent with our results, we found that patients in the Pigazzi et al dataset with 253 

MLLT4/MLLT10 rearrangements significantly overexpressed several HOXA genes when 254 

compared to patients with ELL/MLLT1/SEPTIN6 (ELL/M1/S6) rearrangements (Figure 4b). 255 

MLLT3/MLLT11 patients showed higher expression of HOXA4 than ELL/M1/S6 patients 256 

(Figure 4b). We also collected publicly available data for 80 patients of the TARGET-20 257 

dataset31. We subdivided the dataset in patients with no KMT2A rearrangements (No-MLL) 258 

and patients with KMT2A rearrangements with MLLT4 or MLLT10 (MLLT4/10), MLLT3 or 259 

other genes (Other-MLL). We found that MLLT4/10 patients overexpressed HOXA genes 260 

when compared to No-MLL and to Other-MLL patients (with the exception of HOXA7; 261 

Figure 4c). MLLT3 patients also overexpress HOXA7, HOXA9 and HOXA10 genes when 262 

compared to No-MLL, while no differences in HOXA gene expression was found between 263 

No-MLL and Other-MLL (Figure 4c). These data confirm our initial findings on the 264 

existence of two biochemically distinct KMT2Ar groups with distinct patterns of pathway 265 

activities and further suggest the presence of a third group comprising MLLT3 and MLLT11 266 

that is closer to MLLGA than to MLLGB.  267 

MLLGA cases present an increased phosphorylation of proteins involved in RNA 268 

splicing, replication and DNA damage and an increased activity of CDK1 269 

We next investigated whether, in addition to differences in HOXA gene expression and 270 

DOTL1/TEFb complexes, the MLLGA and MLLGB subgroups of KMT2Ar cases have other 271 

molecular differences. We found that MLLGA significantly increased or decreased the 272 

expression of multiple transcripts, proteins, phosphopeptides and acetylated or methylated 273 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2022. ; https://doi.org/10.1101/2022.11.10.515949doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.10.515949
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

9 

 

peptides when compared to MLLGB or the No-MLL group (Figure 5a). AML groups also 274 

presented several hundred significant differences across protein or phosphorylated, 275 

methylated or acetylated peptide levels when compared to normal myeloid cells (Figure 5b). 276 

Functional differences between groups of patients may be exploited to design therapies 277 

targeted to such subgroups. However, successful therapies should also aim to target functions 278 

that are not essential for the biology of normal cells. Ontology and pathway enrichment 279 

analysis on the phosphoproteomics dataset highlighted phosphoproteins linked to GTPase 280 

activity, actin binding and Fc receptor mediated phagocytosis to be significantly reduced in 281 

MLLGA relative to other cases (Figure 5c). Functions linked to RNA splicing, replication 282 

and the DNA damage response were enriched in the sets of phosphoproteins significantly 283 

increased in MLLGA compared to other cases (Figure 5c), and in MLLGA and No-MLL 284 

groups relative to myeloid cells from healthy donors (Normal) (Figure 5d), although the 285 

significance and the magnitude of the enrichment was higher in MLLGA cases (Figure 5d). 286 

DNA damage response proteins that significantly increased in phosphorylation in MLLGA 287 

included BRCA1 at S1466, S1542 and T1622, ERCC5 at S356, FANCE at S356, MDC1 at 288 

S168 and S196 and RIF1 at S22, among others (Supplementary Figure 5a). Similarly, the 289 

phosphorylation of proteins involved in DNA replication, such as RB1 at S37 and the MCM 290 

helicase components MCM2 at T106, MCM4 at S131 and MCM6 at T266, was also higher in 291 

MLLGA than in MLLGB, No-MLL and Normal groups (Supplementary Figure 5a and 5b). 292 

Together, these results uncovered biochemical pathways significantly enriched in MLLGA 293 

cells, including RNA splicing process, cell replication rate and DNA damage, when 294 

compared to the other AML subgroups and normal myeloid cells. 295 

To identify differences in kinase activities across groups, we derived values of kinase activity 296 

from the phosphoproteomics data using KSEA32. The activities of kinases with roles in 297 

regulating mitosis and replication were increased in MLLGA. Specifically, MLLGA cases 298 

showed elevated CDK1 activity relative to all other groups, high CDC7 and CDK2 activities 299 

relative to No-MLL and Normal cases and high mTOR and other CDKs activities relative to 300 

Normal cases (Figure 5e and Supplementary Figure 5c). In addition, PRKCD and SRC 301 

activities were decreased in No-MLL and MLLGA when compared to MLLGB and Normal, 302 

while MAP2K1 activity was increased in MLLGB compared to all other groups (Figure 5e). 303 

Finally, several tyrosine kinases including SYK, EGFR, BTK, FYN and LCK were increased 304 

in the Normal group when compared to No-MLL and MLLGA (Supplementary Figure 5c). 305 

The No-MLL group presented and increased activity of DYRK1A when compared to the 306 
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other two groups. These data show that MLLGA present a higher activity of kinases that 307 

positively regulate the cell cycle and cell proliferation when compared with normal myeloid 308 

cells and other AML groups.  309 

The profound molecular differences between the KMT2Ar groups could translate into distinct 310 

clinical outcomes. A Kaplan-Maier curve showed that MLLGB cases trend to present a 311 

higher overall survival when compared to MLLGA and No-MLL although the difference was 312 

not statistically significant (Supplementary Figure 5d). Therefore, MLLGB cases trend to 313 

have a better prognosis than MLLGA and No-MLL patients. 314 

MLLGA is more sensitive to genotoxic drugs and inhibitors of mitotic kinases and 315 

IMPDH 316 

We next aimed to assess whether differences in the biochemistry of KMT2Ar-AML 317 

subgroups translate into phenotypic differences that could be exploited clinically. Our multi-318 

omics platform outlined above (Figure 1c) included a drug screening for 627 compounds 319 

based on the reduction of the cell number as a function of treatment, where high drug 320 

sensitivity scores (DSS) indicates high sensitivity to the compound. When considering the 321 

whole poor-risk and KMT2A-MLLT3 patient cohort, compounds that inhibit RNA synthesis 322 

and protein degradation were the most efficient agents on average, while receptor tyrosine 323 

kinase (RTK), PI3K/AKT/MTOR and epigenetic inhibitors where the most abundant 324 

compound types in our drug panel (Figure 6a).  325 

Consistent with the increase in the activity of CDKs and pro-proliferative pathways in the 326 

MLLGA subgroup (Figure 5e), our drug screening showed mitotic poisons and genotoxic 327 

compounds particularly more effective in cells from MLLGA, relative to other cases. 328 

Specifically, 51 compounds were significantly more effective in MLLGA cases compared to 329 

those in the No-MLL group, while 17 agents, including apoptotic modulators like BCL-XL 330 

inhibitors, were significantly more effective in No-MLL (Figure 6b and Supplementary 331 

Figure 6a). Similarly, 25 compounds were significantly more effective in the MLLGA than in 332 

the MLLGB (Figure 6b and Supplementary Figure 6b). A total of 15 agents were 333 

significantly more effective in MLLGA when compared to both MLLGB and No-MLL 334 

(Figure 6b and c). These included topoisomerase inhibitors (etoposide and doxorubicin), 335 

nucleotide analogues (cytarabine and gemcitabine) and inhibitors developed to target CHEK1 336 

(prexasertib), PARP1 (nilaparib), IMPDH (AVN-944), c-MET (tivatinib), PLK (volasertib), 337 

AURKA/B (AZD1152, alisertib, MK-8745 and TAK-901), CDK4/6 (palbociclib) and Wee1 338 
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(AZD1775) (Figure 6c). Correlation analysis revealed that the phosphorylation of several 339 

DOT1L/TEFb complex components and the expression of multiple HOXA genes were 340 

significantly associated with the responses to drugs that were more effective in MLLGA 341 

relative to other groups (Figure 6d). Interestingly, the phosphopeptides DOT1L(S1001/7) and 342 

EAF2(S159) presented a significantly positive correlation with the response to all these 343 

compounds (Figure 6d). 344 

Since most of the 15 compounds that are more effective in MLLGA target mainly 345 

proliferative cells33,34, we then asked whether the rate of ex vivo cell proliferation determined 346 

responses to these agents. In agreement with these cases having high activity of the cell cycle 347 

related kinases CDK1 and CDC7 (Figure 5c), we found that cells from MLLGA samples 348 

proliferated significantly faster than those from other AML subgroups (Supplementary Figure 349 

6c). Proliferation rate also positively correlated with the extent of phosphorylations of 350 

DOT1L and EAF2, the expression of HOXA3, 4 and 7 and the phosphorylation of HOXA9 351 

(Figure 6d). Of note, cell proliferation rate significantly correlated with the DSS for 70 352 

compounds (Supplementary Figure 6d) that included 13 of the 15 compounds that were more 353 

effective in MLLGA than in MLLGB and No-MLL (Figure 6d and Supplementary Figure 354 

6e). However, when we compared classifications of KMT2Ar based on our 355 

phosphoproteomics signature or on the cellular proliferation rate, the MLLGA vs MLLGB 356 

stratification provided greater and more significant DSS differences than stratification by 357 

proliferation rate for all the MLLGA-specific compounds (Figure 6e). Together, these results 358 

uncovered 15 drugs that are particularly effective in MLLGA cases and indicate that, 359 

although contributing, proliferation rate is not the main determinant in how cells respond to 360 

MLLGA-specific compounds ex vivo. 361 

High expression of IMPDH2 and nucleolar proteins as determinants of IMPDH 362 

inhibitor efficacy in MLLGA 363 

Having identified a set of drugs that are specific for the MLLGA subgroup of KMT2Ar-364 

AML, we next explored factors, other than proliferation rate, that could be used to rationalise 365 

responses to these agents in the context of KMT2Ar-AML biology. We focused on AVN-944 366 

because this compound inhibits the IMPDH enzymes that are essential for “de novo” 367 

synthesis of purine nucleotides35, and because we observed that AVN-944 DSS significantly 368 

correlates with IMPDH2 protein levels (Figure 7a, left panel), thus highlighting a clear link 369 

between drug activity and target expression. This correlation was similar to the correlation 370 

between the DSS for AVN-944 and the cellular proliferation rate (Supplementary Figure 6a, 371 
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left panel). In a karyotype-based stratified analysis, IMPDH2 protein and RNA expression 372 

strongly correlated with AVN-944 DSS in KMT2Ar-AML samples, while no correlation was 373 

observed for samples with other poor-risk karyotypes (Figure 7a, right panel and b). In 374 

addition, AVN-994 DSS correlated better with IMPDH2 expression than with cell 375 

proliferation in KMT2Ar-AML samples (Supplementary Figure 7a, right panel). AVN-944 376 

DSS did not correlate with IMPDH1 protein levels in KMT2Ar-AML, but it presented a 377 

strong negative correlation with the protein levels of DPYD, the limiting enzyme for the 378 

degradation of pyrimidine nucleotides36 (Supplementary Figure 7b and c). No association was 379 

observed between AVN-944 DSS and proliferation or the protein levels of IMPDH1 or 380 

DPYD in the No-MLL group (Supplementary Figure7 a-c). MLLGA, when compared to 381 

MLLGB, showed a higher sensitivity to AVN-944 and IMPDH2 expression and lower DPYD 382 

levels but presented no differences in proliferation and IMPDH1 expression (Supplementary 383 

Figure 7d and Figure 7c). These data suggest that IMPDH2 expression is a major determinant 384 

of IMPDH inhibitor sensitivity in KMT2Ar-AML and it is more expressed in MLLGA cases. 385 

In addition, since IMPDH and DPYD are key regulators of nucleotide metabolism, these data 386 

suggest that nucleotide metabolism is altered in MLLGA. 387 

In addition to IMPDH2 and DPYD, sensitivity to AVN-944 positively or negatively 388 

correlated with the levels of 609 and 294 proteins, respectively (Figure 7d). Ontology and 389 

term enrichment analysis showed a significant enrichment of proteins linked to focal 390 

adhesion and the plasma membrane in the group that negatively correlated with the response 391 

to AVN-944 (Figure 7e). Conversely, proteins associated to RNA processing and the 392 

nucleolus were significantly enriched in the set that positively correlated with AVN-944 DSS 393 

(Figure 7e). Nucleolar proteins, whose expression correlated with AVN-944 sensitivity and 394 

were increased in MLLGA, included NPM1, NCL, UBF1 among others (Supplementary 395 

Figure 7e and f). These results show that proteins involved in nucleolar biology, which are 396 

highly expressed in MLLGA, are associated to the sensitivity to IMPDH inhibitors in 397 

KMT2Ar-AML. 398 

Next, to stablish a causative link between high expressions of nucleolar proteins in MLLGA 399 

and high responses to IMPDH inhibitors seen in this KMT2Ar-AML subgroup, we 400 

investigated whether targeting IMPDH had a higher impact in the nucleolar activity in 401 

MLLGA than in MLLGB. We hypothesised that this greater interference would manifest as a 402 

differential phosphorylation of nucleolar proteins between MLLGA and MLLB treated with 403 

IMPDH inhibitors37-39. To this end, we analysed the phosphoproteome of samples R6171 and 404 
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T2354, which were respectively classified as MLLGA and MLLGB, treated with AVN-944 405 

for 24h. PCA of these data showed that R6171 and T2354 separated in PC1 space, while 406 

DMSO treated samples trended to separate from AVN-944 treated samples in the PC2 axis 407 

for R6171 (Supplementary Figure 8a). We also observed that AVN-944 significantly 408 

increased the phosphorylation of a similar number of peptides in R6171 and T2354 cells 409 

(Supplementary Figure 8b). More specifically, 1 µM AVN-994 significantly increased the 410 

phosphorylation of 43 phosphopeptides in proteins linked to the nucleolus in R6171, while it 411 

only increased the phosphorylation of 16 in T2354 (Figure 7f). Conversely, AVN-994 412 

significantly reduced the phosphorylation of more peptides in T2354 than in R6171 413 

(Supplementary Figure 8b). In the specific case of peptides in proteins linked to the 414 

nucleolus, AVN-994 reduced the phosphorylation of 46 peptides in T2354 and only 6 in 415 

R6171 (Figure 7f). Phosphopeptides located in proteins involved in the ribosome biology that 416 

were only significantly affected by AVN-944 in R6171 included EXOSC9, NCL, NOL8, 417 

PWP1, RPL4 and TAF1D among others (Figure 7g). After treatment with 1 µM AVN-944, 418 

the number of significantly increased phosphopeptides in proteins linked to RNA splicing and 419 

DNA damage was also higher in R6171 than in T2354 (Figure 7f). Overall, we found that the 420 

expression of key nucleolar regulators of rRNA synthesis and metabolism correlates with 421 

IMPDH inhibitor sensitivity. In addition, our results indicate that IMPDH inhibitors are, at 422 

least partially, more effective in MLLGA than in MLLGB because they have a greater impact 423 

on nucleolar biology in this KMT2Ar-AML subgroup. 424 

DISCUSSION 425 

Recent advances in our understanding of AML biology and genetics has led to the 426 

development of new-targeted therapies to treat subpopulations of patients40,41. However, 427 

patients with poor-risk karyotypes still present low overall survival, thus highlighting the 428 

need for new drug targets and biomarkers to improve precision medicine in these patients42. 429 

Comprehensive analyses of the molecular pathways deregulated in malignant cells have 430 

provided substantial new knowledge of disease biology, from which new drug targets and 431 

signatures for patient stratification can be derived16,19,21,43. To understand the molecular and 432 

biochemical landscape of poor-risk AML, we performed an integrative analysis of data 433 

obtained from multiple omics platforms. Unlike previous multi-omics studies, we also carried 434 

out a comprehensive functional phenotypic analysis by drug sensitivity screening against 627 435 

compounds (Figure 1 a-c, Supplementary Figure 1 and Supplementary Table 1)44. Detailed 436 

analysis of the other subgroups and data integration will be described elsewhere.  437 
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Here, we focused on the phosphoproteomics data of KMT2Ar cases because, interestingly, 438 

we found large differences in the phosphoproteomes of the different karyotypes within the 439 

poor-risk cases in our study, with KMT2Ar AML being the most biologically distinct AML 440 

subtype relative to other poor-risk cases (Figure 1e). Following this observation, we derived a 441 

phosphoproteomics signature that classified KMT2Ar-AML patients into two biochemically 442 

distinct groups, which we termed MLL group A (MLLGA) and MLL group B (MLLGB) 443 

(Figure 2 c and d). Of note, these results indicate that KMT2Ar-AML is a heterogeneous 444 

condition from the biochemical/proteomic standpoint. 445 

Multiple KMT2A fusion proteins recruit DOT1L and TEFb complexes to the HOXA cluster 446 

and other KMT2A targets to promote transcription elongation by methylating histone H3 at 447 

K79 and phosphorylating the RNA polymerase II12,13. Aberrant expression of HOXA genes 448 

and other KMT2A targets promotes the leukaemogenic process10. In our study, MLLGA 449 

cases showed increased phosphorylation of several components of the DOT1L and TEFb 450 

complexes and elevated expression of multiple genes coded by the HOXA cluster when 451 

compared to other groups (Figure 3 a-c). HOXA gene expression has been used before to 452 

split leukaemia cases with KMT2A rearrangements. Indeed, ALL cases with KMT2A-AFF1 453 

have been subdivided in two distinct subgroups based on HOXA gene expression with the 454 

group with low HOXA expression showing the worst prognosis45-48. However, our data 455 

suggest that the MLLGA that presented high HOXA gene expression show the worst overall 456 

survival in AML (Supplementary Figure 5d). In addition, MLLGA, but not MLLGB, cases 457 

presented a reduction of Histone H3 K79 methylation when compared to the No-MLL group 458 

(Figure 3d). Global reduction of histone H3 K79 methylation has been previously observed in 459 

KMT2Ar-AML patients49. Cases with KMT2A-MLLT3 rearrangements show much better 460 

outcome than the KMT2A-MLLT4 and MLLT10 cases represented in MLLGA and are not 461 

considered poor risk. However, these rearrangements generate fusion proteins able to recruit 462 

the DOT1L and TEFb complexes to the KMT2A target genes29. Our analysis show that 463 

KMT2A-MLLT3 cases together with KMT2A-MLLT11 cases are mainly represented in a 464 

third intermediate group that is more similar to MLLGA than to MLLGB (Figure 4a). To 465 

validate these results in two independent datasets based on RNA expression30, we used the 466 

KMT2A fusion partner to group KMT2Ar-AML cases into MLLGA, MLLGB and the 467 

intermediate MLLT3/MLLT11 group. Consistent with our data, we found that the groups 468 

similar to MLLGA over expressed multiple HOXA genes when compared to the groups 469 

similar to MLLGB while the MLLT3/MLLT11 group trend to express intermediate levels of 470 
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these genes (Figure 4b and c). In summary, these data suggest that cells derived from 471 

MLLGA cases present a higher activity of the DOT1L and TEFb complexes recruited to the 472 

KMT2A target genes when compared to MLLGB and No-MLL, while cells from KMT2A-473 

MLLT3 cases would present an intermediate activity more similar to MLLGA than to 474 

MLLGB. 475 

Cells from MLLGA cases also showed an increased phosphorylation of proteins involved in 476 

RNA splicing, replication and DNA damage response (DDR) when compared to MLLGB, 477 

No-MLL and healthy myeloid cells (Figure 5c and d). CDC7 activity was increased only in 478 

MLLGA cases when compared to No-MLL (Figure 5e). CDC7 directly phosphorylates and 479 

regulates the activity of MCM, a helicase that plays a key role in replication50, and, 480 

consistently, we found that MLLGA presented an increased phosphorylation of three MCM 481 

subunits (Supplementary Figure 5b). Phosphorylation of key regulators of the DDR like the 482 

BRD1-BRCA1 complex or MDC151 were also increased in MLLGA (Supplementary Figure 483 

5a), which suggests that MLLGA cases are subjected to higher levels of DNA damage. It is 484 

tempting to speculate that the finding of increased phosphorylation of proteins that participate 485 

in the replication process may indicate that replicative stress could lead to an increase in 486 

DNA damage in these cases. 487 

Since our phosphoproteomic signature stratified KMT2Ar-AML patients into two defined 488 

groups (Figures 2-5 and Supplementary Figures 4-5), we hypothesised that these subgroups 489 

would also present functional differences that could be exploited therapeutically. We 490 

therefore mined our ex vivo high content drug sensitivity screening against 627 compounds 491 

(Figure 6a)52. This analysis revealed that MLLGA samples, when compared to other groups, 492 

were more sensitive to 15 agents targeting topoisomerase II, nucleotide polymerization, 493 

CHEK1, PARP1, IMPDH2, c-Met, CDK4/6, Wee1, PLK and AURK (Figure 6b and c). Since 494 

most of these compounds target mainly proliferating cells33,34, we were prompted to 495 

investigate whether responses to these agents were correlated with the proliferation rate of the 496 

treated samples (Figure 6d and Supplementary Figure 5d-e). These experiments revealed that 497 

KMT2Ar-AML cases of the MLLGA, but not MLLGB, group proliferate at higher rate than 498 

those from the No-MLL group. Consistent with these observations, KSEA analysis of the 499 

phosphoproteomics data showed high activity of the mitotic kinase CDK1 in MLLGA cells 500 

(Figure 5e and Supplementary Figure 5c). However, our phosphoproteomics signature was 501 

more accurate than the proliferation rate in stratifying KMT2Ar-AML samples into responder 502 

and non-responder groups to these compounds (Figure 6e). Thus, these data indicate that the 503 
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capacity of cells to proliferate influenced the response to the compounds that were more 504 

effective in MLLGA but other factors also contribute to the higher efficacy of these agents in 505 

this subgroup of KMT2Ar-AML cases. 506 

MLLGA cases, represented by KMT2Ar involving MLLT4 and MLLT10 are highly sensitive 507 

to “ex vivo” treatment with the standard chemotherapeutics cytarabine and doxorubicin 508 

(Figure 5c). However, patients with these karyotypes present poorer outcomes when 509 

compared to other KMT2Ar (Supplementary Figure 5d)53,54. Discrepancies between outcome 510 

and “ex vivo” response to chemotherapy were also observed in infant ALL cases, where the 511 

presence KMT2Ar is associated with poor prognosis, but ALL cells with KMT2A-AFF1 512 

rearrangements (the most frequent KMT2Ar in ALL) are more sensitive to “ex vitro” 513 

treatment with cytarabine55,56. In AML, high BM blast percentage is linked to KMT2Ar and 514 

low overall survival, but it is also a marker of increased proliferation, a major factor in the ex 515 

vivo response to chemotherapy57,58. Therefore, the results of our “ex vivo” assay for standard 516 

chemotherapy are in line with previous knowledge. As for the predictive nature of our “ex 517 

vivo” analysis, multiple publications have shown that the ex vivo drug response platform 518 

used in this study predicts patient response for several targeted drugs52,59,60. For example, a 519 

study of 37 relapsed AML patients showed a 59% objective response to the tailored 520 

therapies61. However, we acknowledge that it is difficult to extrapolate ex vivo response data 521 

to patient outcome in all cases. Our data indicate that MLLGA are more sensitive to 522 

chemotherapeutic drugs than an AML group that includes cases associated to high 523 

chemotherapy resistance (complex karyotype, TP53 mutations and t(6;9) rearrangements). In 524 

addition, KMT2A-MLLT3 cases who tend to respond to chemotherapy, are closer to 525 

MLLGA than MLLGB (Figure 4a) and would be expected to respond better to 526 

chemotherapeutics than No-MLL and MLLGB. These observations are, to some extent at 527 

least, compatible with the results of our ex vivo analysis, but clinical trials will ultimately be 528 

required to confirm the clinical relevance of our findings. 529 

We focused on inhibitors of the inositol monophosphate dehydrogenase (IMPDH) because 530 

we found a clear link between target expression and drug efficacy within KMT2Ar-AML 531 

cases, and these compounds have been assessed for the treatment of cancer and other 532 

pathologies in multiple clinical trials; the FDA has consequently already approved their use 533 

in transplanted patients35. Consistent with our findings, a recent study reported that an 534 

IMPDH inhibitor reduced more effectively the proliferation in cord blood (CB) cells 535 

transformed with KMT2A-MLLT3 than in CB cells transformed with RUNX1-RUNX1T1 or 536 
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in non-transformed CB cells62. IMPDHs are the rate limiting enzymes for de novo synthesis 537 

of guanosine, a precursor of the GMP required for DNA and RNA synthesis. Of the two 538 

IMPDH isoforms, only IMPDH2 has been found to be overexpressed in multiple cancer 539 

types35. We found that IMPDH2 but not IMPDH1 protein and RNA expression positively 540 

correlated with the response to the IMPDH inhibitor AVN-944 in KMT2Ar-AML cases but, 541 

of note, not in the No-MLL group (Figure 7 a-b and Supplementary Figure 7b). We also 542 

found that the expression of DPYD, the limiting enzyme for pyrimidine nucleotide 543 

degradation36, negatively correlated with the response to AVN-944 in KMT2Ar-AML 544 

(Supplementary Figure 7c). MLLGA responded better to AVN-944 than MLLGB, 545 

overexpressed IMPDH2 and presented lower levels of DPYD (Figure, 7c and Supplementary 546 

Figure 7d). Taken together, these data indicate that nucleotide metabolism is a determinant of 547 

responses to IMPDH inhibitors in KMT2Ar-AML but not in other AML cases. 548 

In agreement with these results, we found that proteins whose expression positively 549 

correlated with AVN-944 response were enriched in nucleolar components. Anti-cancer 550 

properties of IMPDH inhibitors have been attributed to the inhibition of DNA synthesis63. 551 

However, recent work suggests that the increased guanosine synthesis in IMPDH2 552 

overexpressing cells enables the formation of a pathologic nucleolus that uses the excess of 553 

guanosine for tRNA and rRNA synthesis and contributes to the malignant process. Of 554 

relevance, RNA processes and in particular rRNA synthesis utilize large amounts of 555 

nucleotides and generate vulnerabilities to IMPDH inhibitors. Therefore, cells that present a 556 

pathologic nucleolus are highly sensitive to IMPDH inhibitors64-66. Consistently, cells from 557 

MLLGA cases expressed significantly higher levels of key nucleolar proteins like 558 

nucleophosmin (NPM1), nucleolin (NCL) and UBF1 than MLLGB cases (Figure 7e and 559 

Supplementary Figure 7e-f). Furthermore, treatment with an IMPDH inhibitor impacted the 560 

phosphorylation of nucleolar proteins involved in rRNA expression and metabolism, like 561 

TAF1D and XRN2, and in the activation of TP53 after nucleolar stress, such as RPL4 and the 562 

MYBBP1-RPP8/NML axis in MLLGA but not in MLLGB (Figure 7f-g) 67-70. These data 563 

suggest that IMPDH inhibitors produced a greater impairment of ribosome biogenesis in 564 

MLLGA than in MLLGB. Therefore, our study indicates that the ability of IMPDH inhibitors 565 

to interfere with the nucleolar biology is, at least partially, responsible for the higher 566 

efficiency of these compounds in MLLGA. 567 

In summary, we performed a deep multilayer molecular profiling of poor-risk and KMT2A-568 

MLLT3 AML patients matched to the responses to hundreds of compounds in ex-vivo 569 
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testing. Mining this dataset will allow identification of drug targets, mechanisms of drug 570 

action and biomarkers in poor-risk AML. As a proof of concept, here, we used these datasets 571 

to identify a phosphoproteomics signature that stratified KMT2Ar-AML cases in two 572 

biochemically and functionally distinct subgroups of patients. Although, ultimately, clinical 573 

trials will be required to confirm the clinical relevance of our findings, our study provides a 574 

rationale for the potential testing of IMPDH inhibitors (and potentially other mitotic and 575 

genotoxic drugs) in KMT2Ar-AML patients positive for the MLLGA phosphoproteomic 576 

signature identified in this study. 577 

MATERIALS AND METHODS 578 

Ethics Approval  579 

Patients gave informed consent for the storage and use of their blood cells for research 580 

purposes. Experiments were performed in accordance with the Local Research Ethics 581 

Committee, as previously described16.  582 

Primary Samples 583 

Mononuclear cells from peripheral blood or bone marrow biopsies were isolated in the BCI 584 

or FIMM tissue bank facilities and stored in liquid nitrogen. 585 

Proteomics, phosphoproteomics and PTM analysis 586 

Thawing of AML primary samples  587 

Cells were thawed at 37°C, transferred to 50 mL falcon tubes and incubated for 5 min at 588 

37°C with 500 µL of DNAse Solution (Sigma Aldrich, Cat# D4513-1VL; resuspended in 10 589 

mL of PBS). Then, 10 mL of 2% FBS in PBS were added and the cell suspension was 590 

centrifuged at 525g for 5 min at RT. Supernatant was discarded and cells were resuspended in 591 

10 mL of complete IMDM (IMDM supplemented with 10% FBS and 1% 592 

Penicillin/Streptomycin; Thermo-Fisher Scientific Cat# 12440053, 10500-064 and 15140122, 593 

respectively), filtered through a 70 µm strainer and counted. Dilutions of 15x106 cells in 10 594 

mL of complete IMDM for each sample were incubated for 3h in an incubator at 37°C and 595 

5% CO2. For cell harvesting, cell suspensions were centrifuged for 5 min at 525g at 5°C, 596 

pellets were washed twice with PBS supplemented with phosphatase inhibitors (1 mM 597 

Na3VO4 and 1 mM NaF). Pellets were transferred to low protein binding tubes (Sigma-598 

Aldrich, Cat# Z666513-100EA) and stored at -80°C 599 

Purification of myeloid cells from PBMCs 600 
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Myeloid cells were purified from PBMCs using Easy Sep Human Myeloid positive selection 601 

kit (Stem cell technology; Cat# 18653). The kit positively selects myeloid cells positive for 602 

CD33 and CD66b. detailed explanation of procedure can be found in the supplementary 603 

materials. 604 

ANV-944 treatment 605 

R6171 and T3254 were thawed as described for thawing AML primary samples. 10 to 15x106 606 

cells were resuspended in 10 mL of complete IMDM and treated with either vehicle (DMSO) 607 

or the indicated concentrations of AVN-944 (MedChemExpress, Cat# HY-13560) for 24h. 608 

The final concentration of DMSO (Thermo-Fisher Scientific, Cat# 10213810) was 609 

maintained at 0.1%. Cells were harvested as indicated for thawing AML primary samples and 610 

processed for phosphoproteomics analysis using 250 µg of protein. 611 

Sample processing and MS analysis 612 

Samples were processed and analysed as previously described16,32. For the poor risk cohort, 613 

samples were lysed and 250 µg of protein were subjected to reduction, alkylation and trypsin 614 

digestion. Protein extracts from two healthy donors were pooled to obtain 3 samples with 250 615 

µg of protein and the fourth sample was obtained by pooling protein extracts from all 6 616 

donors. After digestion, 220 µg were used for phoshoproteomics analysis and 30 µg for 617 

proteomics analysis. Samples for phosphoproteomics analysis were subjected to desalting 618 

using Oasis cartridges and phosphoenrichment using TiO2, while samples for proteomics 619 

were desalted using carbon spin tips. Samples were dried in a speed vac, resuspended in 620 

reconstitution buffer and run in a LC-MS/MS platform. For the KMT2Ar cohort, 100µg of 621 

protein were subjected to reduction, alkylation and trypsin digestion. Peptide suspensions 622 

were subjected to desalting and phosphoenrichment using TiO2. The LC-MS/MS platform 623 

consisted of a Dionex UltiMate 3000 RSLC coupled to Q Exactive™ Plus Orbitrap Mass 624 

Spectrometer (Thermo-Fisher Scientific) through an EASY-Spray source. Peptides and 625 

proteins were identified using Mascot (v2.6.0) and quantified using Pescal (vBeta2018). A 626 

detailed explanation for the generation and analysis of mass spectrometry data can be found 627 

as supplementary material  628 

DNA Sequencing 629 

Total RNA and genomic DNA were extracted from patient PBMC or BM samples using the 630 

RNeasy and DNeasy Blood & Tissue Kits (Qiagen), respectively, following standard 631 

procedures, and concentrations were determined using Qubit® 3.0 Fluorometer. 632 
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DNA targeted next-generation sequencing (NGS) analysis was performed using the TruSight 633 

Myeloid Sequencing panel (Illumina, San Diego, CA, USA) targeting 54 genes (full coding 634 

exons of 15 genes: BCOR, BCORL1, CDKN2A, CEBPA, CUX1, DNMT3A, ETV6/TEL, 635 

EZH2, KDM6A, IKZF1, PHF6, RAD21, RUNX1/AML1, STAG2, ZRSR2, and exonic 636 

hotspots of 39 genes: ABL1, ASXL1, ATRX, BRAF, CALR, CBL, CBLB, CBLC, CSF3R, 637 

FBXW7, FLT3, GATA1, GATA2, GNAS, HRAS, IDH1, IDH2, JAK2, JAK3, KIT, KRAS, 638 

KMT2A/MLL, MPL, MYD88, NOTCH1, NPM1, NRAS, PDGFRA, PTEN, PTPN11, 639 

SETBP1, SF3B1, SMC1A, SMC3, SRSF2, TET2, TP53, U2AF1, WT1). Amplicon 640 

sequencing libraries were prepared from 50 ng of DNA per sample. Input DNA quantitation 641 

was performed using a Qubit 3.0 Fluorometer with Qubit 1X dsDNA HS Assay Kit (Life 642 

Technologies). After quality control and equimolar pooling paired-end sequencing of the 643 

libraries was performed on a NextSeq (Illumina, San Diego, CA, USA) instrument with 644 

NextSeq 500 High Output v2 Kit to generate 2×150 read lengths according to manufacturer’s 645 

instructions. Sequence data were analyzed using the TruSeq Amplicon v3.0.0 app in 646 

BaseSpace™ Sequence Hub. After demultiplexing and FASTQ file generation, the software 647 

uses a custom banded Smith-Waterman aligner to align the reads against the human hg19 648 

reference genome to create BAM files. Variant calling for the specified regions was 649 

performed using the Somatic Variant Caller (5% threshold, read stitching on). 650 

mRNA Sequencing 651 

RNA libraries were prepared using DNBseq sequencing technology and sequenced on a 652 

BGISEQ-500 sequencer generating 2x100bp paired-end reads. RNA-seq was performed at a 653 

depth of 100 million reads per sample. RNA-Seq data was aligned using HiSat2 v2.1.0 to 654 

GRCh38.p10 with the ensembl v91 reference annotation. Gene level counts were generated 655 

using htseq-count v0.13.5 656 

Drug sensitivity and resistance testing (DSRT) 657 

A library of 627 commercially available chemotherapeutic and targeted oncology compounds 658 

were tested at 5 concentrations in 10-fold dilutions. The library consisted of 180 approved 659 

drugs, 334 investigational compounds and 113 probes (Supplementary Table X). The 660 

chemical compounds, DMSO (negative control) and benzethonium chloride (positive 661 

controls) were added to 384-well plates using an acoustic liquid dispensing system ECHO 662 

500/550 (Labcyte). Biobanked frozen MNCs were thawed, resuspended in CM (conditioned 663 

medium) constituted of 77.5% RPMI 1640, 10% FCS, 12.5% human HS-5 bone marrow 664 
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stromal cell line derived conditioned medium and 1% penicillin and streptomycin, let recover 665 

for 3h, and live cells counted. Compounds were first dissolved by adding 5μL of cell free 666 

medium, followed by 20μL cell suspension containing 5,000 viable cells to each well using 667 

EL 406 plate washer-dispenser (BioTek). The plates were incubated at 37°C in 5% CO2 for 668 

72h. Subsequently, CellTiter-Glo (Promega) reagent was added to all wells and cell viability 669 

was measured using a PHERA star FS multimode plate reader (BMG Labtech). 670 

The drug responses passing the data quality assessment were included in further analysis71. 671 

Drug sensitivity scores (DSS) were calculated as shown previously44. 672 

Estimation of the Proliferation rate 673 

Proliferation rate was estimated form drug sensitivity screening data using the change in 674 

luminescence of untreated cells between day 0 and day 3 of treatment. Thus, Luminescence 675 

ratio = (luminescence at day 0/luminescence at day3)x100. 676 

Statistics 677 

Statistical analysis was carried out in excel or in R-4.0.0 using base functions or the ggpubr 678 

package (https://CRAN.R-project.org/package=ggpubr). ML model performance was 679 

evaluated using caret package and base functions (https://CRAN.R-680 

project.org/package=caret). Correlation matrices were generated using the corrplot package 681 

(https://CRAN.R-project.org/package=corrplot) and cluster dendrograms were generated 682 

using factoextra package (https://cran.r-project.org/web/packages/factoextra/index.html). 683 

Term enrichment analysis of protein subsets was performed using David Bioinformatics 684 

(https://david.ncifcrf.gov/). Details of the procedure can be found as supplementary material. 685 

David Bioinformatics results were parsed to CSV files and dot plots were constructed in an R 686 

environment using the ggplot2 package (https://CRAN.R-project.org/package=ggplot2).  687 
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 904 

FIGURE LEGENDS 905 

Figure 1. Deep multiomic analysis of poor-risk and KMT2A-MLLT3 AML. a Workflow 906 

used for the molecular profiling of the patients. b Patient cohort as a function of karyotype. c 907 

Overview of analysed features across the omics layers of the study. d Phosphoproteomics 908 

separate healthy donor from AML samples in PCA. e Number of differentially 909 

phosphorylated peptides across karyotype groups and healthy cells. Phosphopeptides were 910 

counted when p-value <0.05 and fold change (log2) > 0.8 (positive values) or <-0.8 (negative 911 

values). Statistical significance was calculated using unpaired two-sided Student’s t-test. 912 

Section a was created with BioRender.com. 913 

Figure 2. Identification of a phosphoproteomics signature that stratifies KMT2A 914 

rearranged leukaemia into two biochemically distinct groups. a Phosphoproteomics 915 

signature across samples in the training (BCI, UK) and testing (FIMN, Finland) sets. b PCA 916 

using the phosphoproteomics signature shown in a. c Definition of the KMT2Ar group 917 

MLLGA using hierarchical cluster analysis of PC1 and PC2 (in b) in the training set samples. 918 

d Probability of training and testing set samples to belong to MLLGA or No-MLLGA 919 

calculated with a random forest classification model. e Rank of feature relevance in the 920 

classification model in d. 921 
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Figure 3. MLLGA increased the phosphorylation of DOT1L and TEFb complex 922 

components and the expression of HOXA genes. a Schematic of mechanism used by 923 

KMT2A fusion proteins to induce HOXA gene expression. b, c, d Phosphorylation of 924 

DOT1L, TEFb complex components and KMT2A (b),  HOXA gene expression (c) and 925 

histone H3 K79  methylation (d) across newly identified KMT2Ar groups. e Spearman 926 

correlation matrix for variables shown in a to d. f HOXA gene expression in dataset obtained 927 

from30. Data points represent individual patient observations. Boxplots indicate median, 1st 928 

and 3rd quartiles. Whiskers extends from the hinge to the largest and lowest value no further 929 

than 1.5 times the distance between the 1st and 3rd quartiles (a-d). For phosphoproteomics 930 

and methylation analyses, Normal (n=4), MLLGA (n=11), MLLGB (n=5) and No-MLL 931 

(n=39) (b and d); for mRNA analysis, Normal (n=0), MLLGA (n=9), MLLGB (n=3) and No-932 

MLL (n=27) (c). Statistical significance was calculated using unpaired two-sided Student’s t-933 

test. **** p ≤ 0.0001, *** p ≤ 0.001, ** p ≤ 0.01 and * p ≤ 0.05. (a-d). Crossed dots indicate 934 

no statistically significant correlation (e). 935 

Figure 4. Phosphoproteome of KMT2A-MLL3 samples more similar to MLLGA than to 936 

MLLGB a PCA patients with KMT2Ar-AML using differentially expressed 937 

phosphopeptides between MLLGA and MLLGB b HOXA gene expression in the dataset 938 

obtained from30. c HOXA gene expression in the dataset obtained from31.  Data points 939 

represent individual patient observations. Boxplots indicate median, 1st and 3rd quartiles. 940 

Whiskers extends from the hinge to the largest and lowest value no further than 1.5 times the 941 

distance between the 1st and 3rd quartiles (b and c). For mRNA analysis, MLLT4/10/11 942 

(n=23), MLLT3 (n=11), ELL/M1/S6 (n=8) in (b), and No-MLL (n=40), MLLT4/10 (n=18), 943 

MLLT3 (n=13), Other-MLL(n=9) in (c). Statistical significance was calculated using 944 

unpaired two-sided Student’s t-test. **** p ≤ 0.0001, *** p ≤ 0.001, ** p ≤ 0.01 and * p ≤ 945 

0.05. (b and c). 946 

Figure 5. MLLGA increased the phosphorylation of proteins involved in RNA 947 

metabolism, replication and DNA damage response. a Expression levels of mRNA, 948 

protein, peptide phosphorylation and peptide methylation and acetylation across KMT2Ar 949 

groups. b Term enrichment analysis across KMT2Ar groups. c Estimation of kinase activity 950 

across KMT2Ar groups. d Expression levels of mRNA, protein, peptide phosphorylation and 951 

peptide methylation and acetylation in KMT2Ar groups compared to normal cells. e Term 952 

enrichment analysis in KMT2Ar groups compared to normal cells. Statistical significant was 953 

calculated using unpaired two-sided Student’s t-test. For mRNA analysis, Normal (n=0), 954 
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MLLGA (n=9), MLLGB (n=3) and No-MLL (n=27) and for proteomics, phosphoproteomics, 955 

KSEA and methylation and acetylation analyses, Normal (n=4), MLLGA (n=11), MLLGB 956 

(n=5) and No-MLL (n=39) (a and c-d). Phosphopeptides were counted when p-value <0.05 957 

and fold change (log2) > 0.7 (positive values) or <-0.7 (negative values) (a and d). Boxplots 958 

indicate median, 1st and 3rd quartiles. Whiskers extend from the hinge to the largest and 959 

lowest value no further than 1.5 times the distance between the 1st and 3rd quartiles. **** p 960 

≤ 0.0001, *** p ≤ 0.001, ** p ≤ 0.01 and * p ≤ 0.05 (c). Statistical difference was calculated 961 

using a modified Fisher’s exact test. FDR values obtained by the adjustment of p-values 962 

using the Benjamini-Hochberg procedure (b and e). GA is MLLGA, GB is MLLGB and No-963 

M is No-MLL. 964 

Figure 6. Genotoxic drugs and compounds targeting the DNA damage response and the 965 

cell cycle progression are highly effective in MLLGA. a Overview of the ex vivo response 966 

of AML samples to 482 compounds. b Compound response for agents that are more efficient 967 

in any of the KMT2Ar groups. c Compound response for agents that are more efficient in 968 

MLLGA than in MLLGB and No-MLL. d Spearman rank correlation rho values between 969 

compound response and proliferation or the mRNA, protein, phosphorylation or 970 

methylation/acetylation levels of DOT1L/TEFb complex components, HOXA genes or 971 

Histone H3. e Compound response (DSS) as a function of stratification based on KMT2Ar 972 

groups or proliferation for patients with KMT2Ar-AML. High pro group included samples 973 

with proliferation rate higher than the average rate for KMT2Ar-AML patients, while Low 974 

pro group included samples with proliferation rate lower than the average rate for KMT2Ar-975 

AML patients. Only compounds tested in at least 30 patients were included, and data are 976 

represented as mean ± SEM (a). Dot colour indicate karyotype as in Figure 3b, and boxplots 977 

indicate median, 1st and 3rd quartiles. Whiskers extend from the hinge to the largest and 978 

lowest value no further than 1.5 times the distance between the 1st and 3rd quartiles (c). (n) is 979 

indicated in brackets (a, c and e). Statistical significance was calculated using unpaired two-980 

sided Student’s t-test. **** p ≤ 0.0001, *** p ≤ 0.001, ** p ≤ 0.01 and * p ≤ 0.05. (b and c) 981 

Correlation was calculated using Spearman correlation and crosses denote correlations that 982 

are not statistically significant (p>0.5) (d). 983 

Figure 7. IMPDH2 expression and the nucleolar metabolism are significantly associated 984 

with responses to AVN-944 in KMT2Ar-AML. a, b Spearman rank correlation between 985 

response to AVN-944 and IMDH2 protein (a) and mRNA (b) expression. c Protein 986 

expression of IMPDH2 across MLLGA and MLLGB. d Distribution of Spearman rank 987 
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correlation values between response (DSS) for AVN-944 and protein expression. e Term 988 

enrichment analysis in the sets of proteins significantly positively or negatively correlated in 989 

d. f Number of phosphopeptides significantly affected by 24h treatment with 1 µM AVN-944 990 

as a function of term linkage. Phosphopeptides were counted when p-value <0.05 and fold 991 

change (log2) > 0.7 (positive values) or <-0.7 (negative values). g Selection of proteins 992 

significantly affected by treatment with 1 µM AVN-944 and linked to the nucleolus or the 993 

ribosome biology. Statistical significance was calculated using unpaired two-sided Student’s 994 

t-test (c, f and g). **** p ≤ 0.0001, *** p ≤ 0.001, ** p ≤ 0.01 and * p ≤ 0.05 (c and g). FDR 995 

values obtained by the adjustment of p-values using the Benjamini-Hochberg procedure (c 996 

and d). Statistical difference was calculated using a modified Fisher’s exact test (d). In g, n=4 997 

biological replicates. 998 
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