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Abstract
Integrative approaches that simultaneously model multi-omics data have gained increasing
popularity because they provide holistic system biology views of multiple or all components
in a biological system of interest. Canonical correlation analysis (CCA) is a correlation-based
integrative method. It was initially designed to extract latent features shared between two
assays by finding the linear combinations of features – referred to as canonical vectors
(CVs) – within each assay that achieve maximal across-assay correlation. Sparse multiple
CCA (SMCCA), a widely-used derivative of CCA, allows more than two assays but can result
in non-orthogonal CVs when applied to high-dimensional data. Here, we incorporated a
variation of the Gram-Schmidt (GS) algorithm with SMCCA to improve orthogonality among
CVs. Applying our SMCCA-GS method to proteomics and methylomics data from the
Multi-Ethnic Study of Atherosclerosis (MESA) and Jackson Heart Study (JHS), we identified
strong associations between blood cell counts and protein abundance. This finding suggests
that adjustment of blood cell composition should be considered in protein-based association
studies. Importantly, CVs obtained from two independent cohorts demonstrate transferability
across the cohorts. For example, proteomic CVs learned from JHS explain similar amounts
of blood cell count phenotypic variance in MESA, explaining 39.0% ~ 50.0% variation in JHS
and 38.9% ~ 49.1% in MESA, similar transferability was observed for other omics-CV-trait
pairs. This suggests that biologically meaningful and cohort-agnostic variation is captured by
CVs. We further developed Sparse Supervised Multiple CCA (SSMCCA) to allow supervised
integration analysis for more than two assays. We anticipate that applying our SMCCA-GS
and SSMCCA on various cohorts would help identify cohort-agnostic biologically meaningful
relationships between multi-omics data and phenotypic traits.

Author Summary
Comprehensive understanding of human complex traits may benefit from incorporation of
molecular features from multiple biological layers such as genome, epigenome,
transcriptome, proteome, and metabolome. CCA is a correlation-based method for
multi-omics data which reduces the dimension of each omic assay to several orthogonal
components – commonly referred to as canonical vectors (CVs). The widely-used SMCCA
method allows effective dimension reduction and integration of multi-omics data, but suffers
from potentially highly correlated CVs when applied to high-dimensional omics data. Here,
we improve the statistical independence among the CVs by adopting a variation of the GS
algorithm. We applied our SMCCA-GS method to proteomic and methylomic data from two
cohort studies, MESA and JHS. Our results reveal a pronounced effect of blood cell counts
on protein abundance, strongly suggesting blood cell composition adjustment in
protein-based association studies may be necessary. Finally, we present SSMCCA which
allows supervised CCA analysis for the association between one phenotype of interest and
more than two assays. We anticipate that SMCCA-GS would help reveal meaningful
system-level factors from biological processes involving features from multiple assays; and
SSMCCA would further empower interrogation of these factors for phenotypic traits related
to health and diseases.
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Introduction
In recent years, there has been rapid growth in high-dimensional multi-omics datasets
(including DNA methylation, RNA-sequencing, metabolomics, proteomics, genomics,
microbiome, etc). However, careful analyses with integrative methods are needed to fully
utilize these rich datasets and provide mechanistic insights into health and disease related
outcomes. While many methods have been published [1–3], few studies have evaluated
these methods on large-scale datasets from human samples. In addition, despite quite a few
successful examples of integrating two omics data-types [4–8], particularly detection of
quantitative trait loci using genomic data, there are much fewer such examples of integrative
analyses across more than two omics data types.

One promising method for using multi-omics data to explain phenotypic variation in
health outcomes is canonical correlation analysis (CCA) [9]. CCA is a statistical technique to
identify associations among two assays where each assay contains multiple variables.
Specifically, CCA finds a linear combination of variables in each assay that leads to the
maximal correlation of the two linear combinations. Principal component analysis (PCA) can
be considered as a special case of CCA as the optimization objective is the same in the
case that the same data is used for the two assays. CCA is a commonly adopted dimension
reduction and information extraction method in genomic studies [1,10–13] as increasingly
more modern genomic studies collect data from multiple assays.

An extension of CCA by Witten & Tibshirani [1] called sparse multiple CCA (SMCCA)
allows for the input of multiple assays. We hypothesized that this method would be helpful
for high-dimensional multi-omics data exploration and for understanding and extracting
omics signatures that reflect biologically relevant variations. Specifically, we here leverage
our CCA-based method extended from Witten & Tibshirani's SMCCA to extract low-dimensional
latent variables from high-dimensional multi-omics data and use them to explain phenotypic
traits, focusing on blood cell indices, along with basic demographic and anthropometric
characteristics . We perform CCA-based analyses in two studies with rich multi-omics data in
hundreds of individuals, the Multi-Ethnic Study of Atherosclerosis (MESA) and the Jackson
Heart Study (JHS).

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 10, 2022. ; https://doi.org/10.1101/2022.11.10.515908doi: bioRxiv preprint 

https://paperpile.com/c/77wjLw/sIHP+LSnA+G4cg
https://paperpile.com/c/77wjLw/ew0t+INR0+92EZ+RF1r+Vt43
https://paperpile.com/c/77wjLw/Ncrl
https://paperpile.com/c/77wjLw/sIHP+NIhW+uYZz+hrqa+WrOR
https://paperpile.com/c/77wjLw/sIHP
https://doi.org/10.1101/2022.11.10.515908
http://creativecommons.org/licenses/by/4.0/


Results

CCA Pipline

Fig 1. Cartoon illustration of a typical CCA-based method for three assays. X, Y, and Z
are three assays with 4, 5, and 6 features respectively. When applying a CCA-based method
on them to compute 4 canonical vectors (CVs), we would first get their weight matrices
Wx, Wy, Wz, each of which contains 4 weight vectors. By multiplying each assay matrix (left
panel) and its corresponding weight matrix (middle panel), we obtain the CV matrix for the
assay (right panel) where each column corresponds to one CV.

A typical CCA-based method generates orthogonal canonical vectors (CVs), which are
low-dimensional summaries to represent latent variables underlying the multi-assay input
data. Fig 1 is a cartoon illustration where we have three assays ( , , and ) for three
samples. For presentation brevity, we only show how we obtain the top 4 CVs. For each
assay, CCA infers 4 vectors of weights (e.g., , , , and for assay ),
which leads to four CVs. For example, , the top CV for assay , is obtained by

. The weights are inferred by maximizing the correlation of CVs across three
assays. Note that in the rightmost CV matrices, each column of a CV matrix is one CV of the
corresponding assay. In addition, CVs corresponding to the same column cross assays are
expected to have maximal correlation (for instance, , , are most
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correlated), while CVs in different columns are expected to be orthogonal or independent
from each other in the same assay.

Leveraging CCA to identify and correct sample swaps
We first explored CCA for quality control (QC) purposes in multi-omics data. CCA, a
multivariate statistical method, extracts correlated latent variations across multiple assays
and thus naturally lends itself to multi-omics QC. We developed a CCA-based sample
matching method (Fig 2A-C). For brevity, assume we have two assays and with
sample sizes and (with N overlapping). First, using the N overlapping samples, we
obtain top K (K=30 by default) CVs. Applying the learned CVs to all samples, we define
similarity scores where , ,
and and are vectors of dimension . We then construct a similarity score
matrix, where the , entry is . Outliers are detected according to this similarity
score matrix [14]. Supposing that a specific sample indexed by is identified as an outlier,
its similarity score, , would be significantly smaller than where
indexes a “non-problematic” sample. We search the rest of the samples to identify a better
mutual match (e.g., finding a sample with and comparable to

). We have found such an approach effective in identifying samples with
mismatching ‘omic features and finding potential matches from other samples. Fig 2D-F
shows an example from MESA where we swapped labels of samples # 82 and # 593 in their
proteomics data (labels assigned at random, Fig 2E), while keeping their methylomics data
labels intact. Similarly, Fig 2F shows the impact of swapping labels for these samples in the
methylomics data (while keeping the protein data labels intact). The top CV alone can
identify both as outliers when labels in either assay are swapped.
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Fig 2. CCA-based method to identify and correct sample swaps. (A-C) Schematic of the method;
(D-F) Proof-of-concept example in MESA. X-axis: top CV or CV1 from proteomics data for each
sample; Y-axis: top CV or CV1 from methylomics data for each sample. The two clusters of points
reflect the two sexes. We swap the labels for two samples (with example individual IDs 82 and 593),
either their proteomics data (Fig 2E) or their methylomics data (Fig 2F).

Modified Gram-Schmidt Algorithm Improves Orthogonality
SMCCA implemented in the PMA R package does not always provide the expected
orthogonal CVs. For example, Fig 3A-B shows results from PMA’s implementation of
unsupervised SMCCA when applied to MESA proteomics and methylomics data (detailed in
Methods) where we observe extensive correlation among the CVs. In the presence of
undesired correlated CVs, users will have to perform a secondary filtering step to generate a
list of non-redundant CVs, or else variation in omics data captured by the later CVs may
overlap with variance captured by former CVs. Therefore, we sought to improve
orthogonality among generated CVs for capturing distinct information from the integrated
multi-omics data. Specifically, we follow the Gram–Schmidt (GS) strategy [15] which
generates CVs sequentially by progressively subtracting the previous CV from the input
matrices (detailed in Methods). Fig 3C-D shows substantially improved orthogonality among
the CVs when applied to the same MESA proteomics and methylomics data.

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 10, 2022. ; https://doi.org/10.1101/2022.11.10.515908doi: bioRxiv preprint 

https://paperpile.com/c/77wjLw/sRX1
https://doi.org/10.1101/2022.11.10.515908
http://creativecommons.org/licenses/by/4.0/


Fig 3. Improved orthogonality among CVs by adopting the Gram–Schmidt (GS)
strategy. CVs are inferred from MESA proteomics and methylomics data using
unsupervised SMCCA. Each row and column represent one CV, ranging from CV1 to CV50.
(A-B) Results from PMA implementation. A shows CVs from proteomics data, and B from
methylomics data. (C-D) Results from our SMCCA-GS implementation. C from proteomics
data, and D from methylomics data.

Proteomics CVs explain considerable amounts of variation in
blood cell counts
We also applied our implementation to proteomics and methylomics data in JHS. As these
unsupervised CVs are anticipated to capture shared latent variables underlying the
proteomics and methylation datasets, we hypothesized that the CVs may explain a
non-negligible amount of variation in various phenotypes. Our primary phenotypes of interest
in this work are blood cell traits, including white blood cell count (WBC), red blood cell count
(RBC) and platelet count (PLT). We also considered age and body mass index (BMI), as
“control” phenotypes which have been widely reported to explain considerable variability in
proteomics and methylomics data. For each of the five outcome phenotypes, we fit
regression models to estimate the percent of variation explained by the top 50 CVs from
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each of the two omics data, namely proteomics and methylomics (detailed in Methods). For
each cohort (MESA or JHS), we had two sets of CVs, one derived from the cohort’s own
omics data, the other derived from applying the CV weights inferred from the other cohort.

We found that top CVs, from each of the two omics data, explain considerable amounts
of variation in almost all of the outcomes evaluated (Fig 4). For example, top 50 methylomics
CVs inferred in JHS explained 0.72, 0.35, 0.37, 0.34, 0.30 variation in age, BMI, WBC, RBC,
and PLT respectively, in JHS (Fig 4A). We also observe high transferability between MESA
and JHS. For example, the top 50 methylomics CVs inferred in MESA explained similar
amounts of variation in RBC: 0.33 in MESA (itself) (Fig 4C) and 0.30 when applied to JHS
(Fig 4D). Such high transferability suggests that latent variables learned by CCA might
reflect essential biological processes shared across cohorts. We also note that these ’s
from methylomics data were most likely under-estimated because the CVs were constructed
using the top 10,000 most variable CpG sites (see Methods) instead of the entire over
800,000 sites, for computational reasons. These findings are not surprising: for instance,
blood cell composition (notably for white blood cell subtypes) has been long known to
influence the methylome. For that reason, in epigenome-wide association studies (EWAS), it
has been standard practice to first estimate the leukocyte proportions from methylomics data
and adjust for these cell type proportions in subsequent association analysis [16]. Given
shared precursors for all hematological cell types, we found it relatively unsurprising that
RBC and PLT also had a high percent variation explained by methylomics CVs. Similarly,
age [17] and BMI [18] have been known to explain substantial variability in methylomics
data, and are commonly adjusted for as covariates.

More interestingly, the amounts of variation in various outcomes explained by top 50
proteomics CVs are even higher, ranging 0.39-0.77 in JHS and 0.39-0.72 in MESA. Large
for age and BMI are expected since both have been reported to rather broadly affect protein
profiles [19,20]. Strikingly, for blood cell traits are also considerable, and comparable to
BMI, 0.50, 0.45, 0.39 respectively for WBC, RBC and PLT in JHS using CVs inferred in JHS.
Confirmatorily, when applying CV weights inferred from MESA to JHS, we obtained similar

’s: 0.44, 0.47, 0.39 for WBC, RBC and PLT respectively. Similar patterns were also
observed in MESA. These considerable amounts of variations in blood cell counts explained
by top proteomics CVs have important implications for association studies involving
proteomics data: we should consider adjusting for blood cell proportions in these association
studies, under the same rationale in EWAS (variability driven by blood cell subtype
abundance is likely not of interest for many disease outcomes of interest whose association
with proteomics data is being examined).
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Fig 4. Proportion of variation in outcomes explained by CVs. (A) CVs were inferred
using proteomics and methylomics in JHS. The top 50 CVs were used to calculate the
(Y-axis) for each outcome (X-axis). (B) We obtained CVs in JHS by applying the weights
inferred from MESA, and then calculated in the same way as in A. (C) CVs were inferred
using proteomics and methylomics in MESA. (D) CVs were obtained in MESA by applying
the weights inferred from JHS.

CVs vs Principal Components (PCs)
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Fig 5. Comparison of , PCs vs CVs. Each column corresponds to one outcome. Within
each panel, top row (JHS) shows results in JHS using JHS-inferred CVs. Second row
(JHS->MESA) shows results in MESA, also using JHS-inferred weights. Third row (MESA)
shows results in MESA, this time using MESA-inferred CVs. Last row (MESA->JHS) shows
results in JHS, also using MESA-inferred weights. (A) Proteomics. (B) Methylomics. In each
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sub-figure, X-axis indicates the number of CVs or PCs used and Y-axis the proportion of
variation explained in the outcome (i.e., ).

Although CVs are inferred jointly from multi-omics data, we have focused on analyzing CVs
from each omics data type separately for their predictive power of outcomes of interest.
Thus, we naturally are interested in comparing the CCA-based approach with the standard
PCA approach since we can obtain PCs separately for each omics data. Note first that we
expect larger and more assay-specific batch effects in JHS than MESA. For example, JHS
proteomics data was generated in 3 batches [21], and separately from the methylomics data.
In contrast, MESA proteomics and methylomics data were all generated through the MESA
TOPMed pilot over a short time period [22,23]. Results shown in Fig 5 supported our
expectations: overall we observe that a lower number of JHS inferred CVs are needed to
explain the outcomes with higher r2 compared to JHS inferred PCs, indicating that top CVs
inferred from JHS data tend to capture biological variations while top PCs tend to reflect
more assay-specific technical variations. The contrasts are most pronounced with age and
WBC for proteomics data, and with age for methyomics data. For example, in JHS,
proteomics-CV1 explained 33% variation in WBC (blue + on the leftmost side of Fig 5A3)
while proteomics-PC1 only explained 7.7% (purple + on the leftmost side of Fig 5A3). This
noticeable advantage continued until ~20 CVs/PCs. For instance, the top 15 proteomics-CVs
in JHS explained 44% variation in WBC (blue X in Fig 5A3) while top 15 proteomics-PCs
only explained 29% (purple X in Fig 5A3). Similar advantages of CVs over PCs were
observed in MESA, but were less pronounced as expected due to the smaller and less
assay-specific batch effects in MESA. Reassuringly, applying JHS inferred CV weights to
MESA showed advantages similar to those in JHS, more pronounced than using CVs
inferred in MESA itself, further demonstrating the power of CVs to capture biologically
relevant variations under the presence of assay-specific batch effects.

Supervised Sparse Multiple CCA

Extending Supervised Sparse CCA to Supervised Sparse Multiple CCA
So far we have generated and evaluated unsupervised CCA where the CVs are inferred
from multi-omics data only, without considering any outcomes of interest. Although we
assessed the relationship between unsupervised CVs and several outcomes of interest, the
CVs themselves were inferred without knowledge of the outcomes. In practice, when we are
primarily interested in a particular outcome, supervised approaches can be more effective
and powerful. The PMA R package implements a sparse supervised CCA (SSCCA) method.
However, this implementation only accepts two omics data at a time, which limits our
capabilities in real datasets where there are more than two assays. For instance, in both
MESA and JHS, we also have whole genome sequencing (WGS) data [24]. We
implemented a sparse supervised multiple CCA (SSMCCA) method to accomodate more
than two assays of omics data. Our implementation follows the idea in Witten et al., (2009)
where a feature selection step is performed within each assay to retain (by default) top ~80%
features most correlated with the outcome of interest. Features selected from each assay
form new input matrices to which we then apply our implementation of unsupervised SMCCA
with the adapted Gram-Schmidt algorithm.
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Fig 6. Comparison of SSCCA and SSMCCA. (A) proteomics, and (B) methylomics. Each
row corresponds to a phenotype (from bottom to top, Age, BMI, WBC, RBC, and PLT). Circle
size reflects the significance of the difference between two methods. Color reflects the
difference between the variation of phenotype explained by SSCCA and our SSMCCA.
Therefore, a larger circle means that the difference between two methods is more significant.
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Note that we use rectangles for insignificant difference with p > 0.01. Red means that our
SSMCCA explains more phenotypic variation while blue means that SSCCA explains more.

To ensure our SSMCCA implementation generates sensible supervised CVs, we first
compared results from PMA’s SSCCA implementation, when there are two assays of data.
Specifically, we compared correlations between inferred supervised CV1 and the
corresponding outcomes of interest. We compared SSCCA and our SSMCCA by running
two methods with 100 different random seeds and for each seed, testing the variation of
each outcome explained by supervised proteomics CVs and supervised methylomics CVs
(Fig 6). We found that in most cases, the amount of variation in outcomes captured by
SSMCCA CVs is comparable or significantly higher than SSCCA, indicated by large red
circles. For example, Fig 6A third row third column, SSMCCA proteomics CV1 explains
4.17% variation in PLT in MESA, while SSCCA 3.48% (significance of their difference is
p-value = ). In a few cases, the amount of variation captured by SSMCCA CV1 is
significantly smaller than SSCCA CV1. For example Fig 6B row 2 column 1, although the
difference in terms of percent variation explained in RBC by SSCCA vs SSMCCA
methylomics CV1 is highly significant (p-value = ), the absolute difference (

) is tiny.

Biologically Meaningful Features Detected by SSMCCA
We applied SSMCCA to three assays – proteomics, methylomics, and genotypes – from
MESA to obtain 50 CVs for each assay, and then used standard regression models to
assess associations with phenotypes – age, BMI, WBC, RBC, and PLT. CV-phenotype pairs
were considered to be significantly associated when p-value < 1E-4 (Bonferroni correction),
adjusting for covariates detailed in S2 Table. In MESA, we identified 58 significant
CV-phenotype pairs, and 5 of them were validated in JHS with the same p-value threshold of
8.62E-4 and same direction of effect (S3 Table). For example WBC and proteomics CV3
were strongly associated in both cohorts (p-value = 2.7E-15 in MESA, 6.8E-16 in JHS, S3
Table). Features with high absolute weight coefficients in this CV (S5 Table) are biologically
relevant for WBC. For example, stem cell factor soluble receptor, which has the highest
weight, is known to play a key role in hematopoiesis [25]. Lipocalin 2, with the second
highest weight, has been reported to be associated with human neutrophil granules [26].

For each phenotype, we then assembled all features from each assay with non-zero
weight for phenotype-associated CVs in S3 Table, and annotated each feature to a gene, on
which we performed pathway enrichment analysis (described in methods section). For
comparison, we also performed the same pathway enrichment analysis using features
individually associated with each phenotype, where association is declared when FDR <
0.05 for each assay-phenotype-cohort combination. Comparing these two sets of pathway
enrichment results, we found several pathways only revealed (p.adjust < 0.05) by our
SSMCCA, including the growth factor binding GO term, DisGeNET progressive chronic
graft-versus-host disease (GVHD) and polypoidal choroidal vasculopathy genesets. All of
these pathways have been reported to be related to BMI in previous literature [27–30].
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Discussion
Large quantities of data across multiple omics (transcriptomics, proteomics, metabolomics,
genomics, methylomics, etc) modalities is currently being generated, for example through
efforts funded by NIH’s Precision Medicine Initiative [24,31] as well as other large federally
funded studies [32]. These high dimensional and complex multi-assay data are unfortunately
still too often analyzed only separately (e.g., applying PCA separately to genotype, gene
expression, or methylation data) or in a pairwise manner (for example mQTL analysis
examining relationships between genome and methylome, or pQTL analysis examining
relationships between genome and proteome). Many innovative methods have been
proposed (https://github.com/mikelove/awesome-multi-omics [accessed on 2022-07-25]) for
integrative analysis but evaluations in large-scale real omics data are still lacking, with fewer
impartial appraisals available to guide method choice in practice.

In the work presented here, we apply CCA-based methods to complex multi-omics
datasets to assess their capabilities and limitations. In particular, for the widely used PMA
implementation of the SMCCA methods, we identified two limitations: non-orthogonal CVs
and inability to accommodate more than two assays for supervised analysis. We provide
method extensions, SMCCA-GS and SSMCCA, to address the two limitations. Applying
SMCCA-GS to real data in MESA and JHS, we found that CVs are consistent and
transferable across cohorts, suggesting that CVs capture constitutive biological relationships
shared across cohorts, and are not driven primarily by assay-specific technical variation.
This cross-cohort consistency, to our knowledge, has not been well explored in the literature
and has important implications for making method choices (e.g., CCA vs PCA) for
multi-omics data with or without extensive assay-specific batch effects.

Importantly, our CCA-based analyses reveal that blood cell indices are substantially
associated with multiple omics assays including methylomics and proteomics. The former
association has been widely appreciated and exerted paradigm-shifting impact on analysis:
in methylation association studies,white blood cell composition is adjusted for in methylation
analyses in standard practice. The latter association, where CVs from proteomics data
showed even more pronounced association with blood cell indices, has been
under-appreciated [21,33–35]. Our findings indicate that blood cell composition should be
accounted for in protein association studies, similar to what is standard practice for
methylation studies.

As demonstrated in Fig 5, our SMCCA-GS is in some cases more useful than PCA in
explaining variability in phenotypes, using an identical number of PCs/CVs. However, there
are also many cases where the methods are nearly equivalent. We hypothesize that our
SMCCA-GS demonstrates more consistent advantages in explaining trait variability in JHS
versus MESA due to the presence of more substantial JHS batch effects. Due to funding
limitations, JHS proteomics and metabolomics data was generated in multiple batches
across several years, while the MESA data used here was generated concurrently, funded
by NHLBI’s TOPMed program. Thus, for proteomics in particular, more batch effects are
anticipated in JHS; our SMCCA-GS is particularly advantageous in cases where there is
increased assay-specific technical variation.

We note that CCA-based methods as implemented in our analyses still have several
key limitations. Notably, we had to considerably reduce the dimensionality of methylation
array and sequencing data in order for our CCA-based method to be computationally
feasible. We thus are not capturing anywhere close to the maximal information potential from
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these assays. Further innovation can make our SMCCA-GS more computationally feasible
for large-scale datasets. Recently developed methods allow for efficient calculation of
generalized CCA solutions across reduced dimensions of each distinct assay, which
alleviates some of the computational issues that arise, though sparse identification of
individual omics features from the original assay data may still be desired [36].

Methods

Cohorts

All participants included in this analysis provided written, informed consent for use of genetic
and multi-omics data, and all study protocols conform to the 1975 Declaration of Helsinki
guidelines. The JHS and MESA studies were approved by the Institutional Review Boards of
all participating institutions.

JHS

JHS recruited 5,306 African American participants from the Jackson, Mississippi,
metropolitan tri-county area (Hinds, Madison, and Rankin) into a prospective,
community-based cohort designed to investigate risk factors for cardiovascular disease
among African Americans [37–39]. Demographics of JHS individuals involved in the analysis
is in S1 Table A.

Multi-omics data utilized in JHS analyses including methylomics (n = 1,750, Illumina
MethylationEPIC BeadChip array) [40] and proteomics (n = 2,144, SOMAscan 1.3k array)
[21], both from the baseline visit, and whole genome sequencing (WGS) data as described
below. Traits examined include age, sex, BMI, and hematological traits (WBC, RBC, and
PLT). We limited our analyses in JHS to individuals with complete data for proteomics,
methylomics, and traits examined (total n = 881, S1 Fig A).

MESA

The MESA study was initiated in July 2000 to investigate the prevalence, correlates, and
progression of subclinical cardiovascular disease (CVD) in a population-based sample of
6,814 men and women aged 45–84 years. The cohort was selected from six US field
centers. Based on self-reported race/ethnicity, approximately 38% of the cohort are White,
28% African-American, 23% Hispanic, and 11% Chinese American. More demographic
information of MESA individuals involved in the analysis is in S1 Table B.

Longitudinal multi-omics data was generated in MESA through a pilot program from
NHLBI’s Trans-Omics for Precision Medicine Initiative (TOPMed) at exam 1 (2000-2002) and
exam 5 (2010-2011), including ~ 1,000 participants for each exam with methylomics data
(Illumina MethylationEPIC BeadChip array) [41] and proteomics (SOMAscan 1.3k array)
[21,22]. WGS data are described below. Basic covariates examined include age, sex, BMI,
recruitment site, self-reported race/ethnicity, and the same hematological traits as in JHS.
We limited our analyses in MESA to individuals with complete data for proteomics,
methylomics, and phenotypes examined (total n = 777, S1 Fig B). Use of the same
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platforms for multi-omics assessment as in JHS allowed comparison analyses for CVs
derived by SMCCA-GS or SSMCCA across cohorts.

Whole Genome Sequencing (WGS) Data

Genotypes are derived from TOPMed WGS data (freeze 8). Data harmonization, variant
discovery, and genotype calling were previously described [24,42]. In our analysis, to reduce
data dimensionality, SNPs associated with blood cell traits from Chen et al. (2020) [43] were
extracted, and highly correlated (linkage disequilibrium > 0.8 where is estimated by the
squared Pearson correlation between genotype vectors) variants within JHS or MESA were
removed. Population principal components calculated by PC-AiR [44] were adjusted for as
covariates. In addition, for WBC, we additionally adjusted for the Duffy null polymorphism
(SNP rs2814778 at chromosome 1q23.2) [45].

Initial quality control (QC) and transformation of multi-omics
data

In both cohorts, we applied QC on each assay including sample outlier removal and feature
filtering. For each protein in the proteomics data, we first applied log transformation, followed
by inverse normal transformation. After QC, we had 1,317 proteins measured in both
cohorts, which made validation across cohorts straightforward.

Methylomics of JHS [40] was normalized using the “noob” normalization method
implemented in minfi R package [58,59]. We further removed batch, plate, row, and column
effects using the   ChAMP R package [46]. For MESA methylation data, we excluded samples
with (1) call rate < 95%; (2) sex mismatches; and (3) concordance between SNP probes and
genotypes < 0.8. Methylation levels were marked as missing when the detection p-value was
> 0.01, and we imputed these missing values using ChAMP R package [46], as our CCA-like
methods cannot accommodate missing data. For both JHS and MESA, CpG sites whose
probes overlap any SNP with minor allele frequency (MAF) > 1% were also excluded [47].
After QC, we had 754,767 and 741,727 CpG sites for MESA and JHS respectively. For
building validation across cohorts, we only kept the 721,334 CpG sites which passed QC in
both cohorts.

Finally, we only kept samples with complete data including proteomics, methylomics,
and phenotypes (age, BMI, WBC, RBC, PLT, site, race, sex for MESA; age, BMI, WBC,
RBC, PLT, sex for JHS), which led to 881 samples for JHS and 777 samples for MESA. We
further identified sample outliers by PCA-IQR plot (S2 Fig). Four outliers in JHS – one
sample with the largest proteomics IQR (wedge pointed on S2 Fig A) and three samples
with largest methylomics IQR (wedges pointed on S2 Fig B) – were removed; and three
outliers in MESA were removed – all three with largest methylomics IQR (wedges pointed on
S2 Fig D).

For each assay, we removed the sex chromosome related proteins and CpG sites. We
further removed features that are highly correlated [48], at a squared Pearson correlation 0.8
threshold. For methylomics, we calculated Pearson correlation using the Python package
Deep Graph [48] and after removing highly correlated, further kept 10k CpG sites with the
highest variance for the computational efficiency. Our CCA-based methods are
computationally intensive. For example, even with these 10k CpG sites (~1.3% of all
available CpG sites), on a single core of E5-2680 v3 @ 2.50GHz, the wall time of calculating
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50 CVs with our SMCCA-GS on proteomics and methylomics is about 8 ~ 14 hours for
MESA (774 samples) and about 8 ~ 20 hours for JHS (877 samples); with 20k CpG, the wall
time is about 14 ~ 36 hours for MESA and 16 ~ 47 hours for JHS. For validating our
variance-based feature selection strategy, we also performed the same analysis as Fig 4, 5
on proteomics and all ~700k CpG sites. The results (S3 & S4 Fig) show similar patterns as
those from top 10k CpG sites (Fig 4, 5).

Modified Gram-Schmidt Strategy
With PMA implementation, we observed that with our real data where features have complex
correlation structure, the weight vectors are sometimes correlated. To mitigate this
non-orthogonality issue, we adopt a strategy inspired by Woojoo et al., (2011) [15]. In our
implementation, we infer CVs sequentially and remove the effects of the former CVs from
the input matrix before calculating weights for the next CVs. In particular, we first follow the
PMA approach to generate weights for CV1’s of all assays, update input matrices following
Eq (2) as the new inputs for calculating weights for CV2’s, and sequentially update until we
obtain pre-specified numbers of CVs. Eq (1) and Eq (2) show the procedures for inferring the
(j+1)’s CVs with input matrices .

(1)
(2)

Specifically, are original input matrices for assay i = 1,.., S where S is the total
number of assays, from which ’s and ’s, the first weights and CV1’s, are inferred by
SMCCA implemented in the PMA R package.

Pathway Enrichment Analysis (add more info about the
functions and settings)
For each CCA-prioritized feature of each assay, we first mapped them to genes, and then
performed pathway enrichment analysis on these genes utilizing three databases –
DisGeNET [22–24] (enrichDGN function in DOSE R package, with default settings), Gene
Ontology (GO) [25,26] (enrichGO function in clusterProfiler R package, with default settings)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) [27–29] (enrichKEGG function in
clusterProfiler R package, with default settings). For methylomics, we mapped CpG sites to
the nearest genes using annotations released by Illumina. For proteomics, we mapped
proteins to genes using annotations released by SomaScan. For background genes in the
enrichment analysis, we included genes annotated from features that are associated with
outcome, identified in the feature selection step of our SSMCCA (detailed in Section
“Extending Supervised Sparse CCA to Supervised Sparse Multiple CCA” above).

Code Availibility
Our modified SMCCA-GS and SSMCCA functions are available at
https://github.com/zjgbz/SMCCA-GS_SSMCCA.
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