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Abstract
Human females undergo X-inactivation (Xi), whereby one copy of X is randomly
inactivated early in development, then propagated through cell division.  Because Xi
state is inherited, its measurement in populations of cells encodes information about the
phylogeny that created them and their relationships to other cells.  We present a method,
inactiveXX, to determine the Xi state of single cell transcriptomes, and demonstrate its
accuracy using cancer and gold standard reference data.  We apply inactiveXX to single
cell transcriptomes from 190 human females, revealing that Xi in humans likely occurs
around the 16 cell blastocyst stage and affects both embryonic and extra-embryonic
tissues.   We further find significant cell type specific variability in Xi skew, only
detectable with cell type specific resolution, with certain cell types exhibiting strong
population bottlenecks across tissues and disease state.

Introduction
To ensure consistent dosage of X chromosome genes, most mammalian females inactivate one
copy of their two X chromosomes.  In humans, this X-inactivation (Xi) is established early in
embryo development, with the inactivated copy of X randomly determined in each cell1.  Once
established, the inactivation status of the maternally or paternally derived X chromosome is
stably inherited through subsequent rounds of cell division.  Consequently, roughly half of
somatic cells will have the maternally derived X inactivated.  However, the precise ratio of
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maternal and paternal X-inactivation observed in any cells will depend on the relative
contributions of the initially inactivated cells to that particular group of cells.

In extreme cases, where the contribution from a small number of the initially inactivated cells
dominates, populations of somatic cells may exhibit strong X-inactivation skew.  Pioneering
studies used methylation status of the human androgen receptor gene (AR), which has variable
CAG repeats and is widely heterozygous, to detect the average Xi status of different tissues2.
This work gave early insights into the clonal nature of cancer3, the size of progenitor
populations4, and the identity of genes that escape Xi5.  Despite these successes, measurement
of Xi status using AR can only be used on a limited population, has an error profile that is
difficult to remove6, and cannot easily be extended to measure specific cell types.

Single cell transcriptomics provides cell level readouts of gene expression on the X
chromosome.  The Xi status of a cell is encoded in this data via the specific alleles expressed at
heterozygous single nucleotide polymorphisms (SNPs) on X.  In this paper, we exploit this
observation to develop a method, incativeXX, to determine the Xi status of individual cells from
single cell transcriptomic data.  We then demonstrate how these data can be used to
understand phylogenies, population bottlenecks, and clonality of cells in a range of tissues from
190 human females, generating insights into the clonality of cells, cell type relationships, and
the details of X-inactivation in humans.

Evaluation of the method
To measure X-inactivation in single transcriptomes we developed a method, inactiveXX, which
can infer the X-inactivation status of individual cells using single cell transcriptomic data alone.
To achieve this, we consider 1,000 genomes7 SNPs with population frequency > 0.05 on X with
evidence of both alleles across all cells, excluding regions known to escape X-inactivation5.  We
then count the number of reads supporting each allele in each single transcriptome.  Using
expectation maximisation we iteratively estimate the X-inactivation status of each cell (i.e.,
which copy of X is inactivated, the E-step) and the X chromosome genotype (i.e., phase the
SNPs, the M-step) until convergence is reached.  We repeat the EM fit 1,000 times using
randomly chosen initial states, and use a deterministic annealing strategy to prevent local
maxima8 (Figure 1A).

To evaluate the accuracy of this approach we first consider single cell transcriptomes of human
females, for which individual and parental genomes are available9,10.  Using the individual
genomes we identify all heterozygous SNPs on X, phase them using parental genomes, and in
each cell define the copy with the fewest supporting transcriptomic reads as inactivated.
Applying our method and using a 95% confidence threshold, we determined the X-inactivation
status of 90% of gold standard cells (range 86%-96%, Figure 1B), with 98% accuracy (range
95%-100%, Figure 1B), and correctly genotyped nearly all SNPs with >10 reads coverage
(Figure 1C).   We found our method could recover X-inactivation states of as few as 100 cells
(90% accuracy, Figure 1D) and in populations with skews as extreme as 95-5 (Figure 1E).
Importantly, we were able to identify when the true skew was more extreme than that detected
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by our method, but not recoverable with the data available (Figure 1F), preventing erroneous
inference of X-inactivation status in extreme cases (e.g. skew of 100-0).

Next, we consider single cell transcriptomes from 5 cancers, where the cancer cell
transcriptomes have been previously identified9–12. As cancers are derived from a single cell,
cancer cells must have the same X-inactivation status.  Across 5 samples, we found non-cancer
cells have a range of X-inactivation skews, but cancer cells had on average 99% of cells in the
same X-inactivation state (range 97.5-100%) (Figure 1G).  Taken together, our method can
accurately identify the X-inactivation status of individual cells from single cell transcriptomic data
alone, even in cases of extreme X-inactivation skew or low cell number.

Population dynamics and timing of X-inactivation
As Xi state is maintained through cell division, a group of cells X-inactivation pattern is
determined by the Xi state of the founder cells (the cells present when Xi is determined) and the
phylogeny that connects the observed cells to the founders (Figure 2A).  Focusing first on a
single individual, we inferred Xi states for 82,827 single cell transcriptomics from 6 fetal tissues13

(Figure 2B).  Reasoning that cell type specific skew would be unbiased with respect to
maternal/paternal X, we estimated the founder Xi skew as the median Xi skew across cell types
(~80%).  We then used a graph-based algorithm14 to identify groups of cells whose Xi skew
significantly deviated from this value (Figure 2C). The local Xi skew matched the founder skew
for almost all cell groups (96%, FDR 0.05), regardless of tissue or germ layer (endoderm,
ectoderm, and mesoderm), consistent with all founder cells contributing roughly equally to all
germ layers (Figure 2D).  Only at the level of individual cell types did we see a significant shift in
Xi skew for an appreciable fraction of cells (>10%), specifically in myelocytes, natural killer cells,
erythroid cells, fibroblasts, and cycling epithelium (Figure 2E).  Significant deviation from the
founder Xi skew is evidence for a population bottleneck in these cells' history.  These cell types
are enriched for those that are reactive or plausibly generated from locally seeded proliferation,
which may be driving the observed Xi skew.

Xi skew may represent an individual specific event, or the result of a consistent biological
process limiting the number of founder cells that contribute to a particular group of cells.  To
differentiate between the two, we inferred the Xi status from 6 tissue types, from 185 individuals,
both with and without disease (Table S1).  We reasoned that the spread of the cell or tissue Xi
skew distribution across individuals is determined by the effective number of founder cells that
give rise to that cell type of tissue4 (Figure 2F). This “effective number of contributing founder
cells”, is a measure of the smallest population bottleneck that the observed cells are subject to,
subsequent to the specification of random Xi.  As such, it can never be larger than the number
of cells present when Xi is determined, but can be smaller if founder cells are pre-specified to
particular lineages, or a cell type/tissue undergoes a population bottleneck later in development.

Applying this analysis at the tissue level, to 5 tissues with at least 17 individuals (lung15,16,
kidney10,11,17, oral mucosa18, vagina19, and peripheral blood20), we found a consistent value of
~10 founder cells (range 9-13) contributing to these tissues (Figure 2G).  The consistency of
this value across tissue types and disease states, and its consistency with previous estimates of
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founder population size4, suggest that when X-inactivation is determined in humans,
approximately 10 cells exist that give rise to embryonic tissues.  By contrast, we found the
extra-embryonic placenta21,22 was derived from ~3 founder cells (95% confidence interval 2-7,
Figure 2G).  This finding is consistent with previous studies which found more extreme Xi skew
in the placenta23.  Furthermore, the ratio of embryonic to extra-embryonic founders (~3:10),
matches the observation that roughly ⅔ of somatic cells are derived from just one of the cells
following the first cell division24–26.  Taken together, our data suggest that unlike in mice, where
extra-embryonic tissue are not subject to random Xi, random Xi in humans is determined prior to
the specification of extra-embryonic lineages, when the embryo is approximately 16 cells in size.

Next we estimated the effective number of contributing founder cells at the cell type level in
each tissue (Figure 2H).  In contrast to the tissue level analysis, we found considerable
variation in effective founder number by cell type (Figure 2H).  Unlike the
embryonic/extra-embryonic tissue split, this difference cannot be driven by lineage segregation
early in development, as a range of effective founder population sizes is evident across cell
types known to be phylogenetically related (e.g. PBMCs Figure 2H).  Instead, smaller effective
founder number must be driven by later population bottlenecks, such as spatial lineage
restriction (e.g. the calico cat effect at a cell type level) or local expansion of a limited pool of
cells (e.g. tissue resident macrophages, vasculature derived from angiogenic expansion from a
limited pool of tip cells).  Of the cell types present across multiple tissues, we found consistently
low effective founder numbers (i.e., small population bottlenecks) for erythroid, plasma, NK, and
endothelial (vascular and lymphatic) cells, and bottlenecks in only certain contexts for
fibroblasts, T cells, and macrophages.  Overall, our data reveals that there is considerably more
variability in Xi skew at the cell type level than tissue level, likely driven by cell specific
phylogenies that are averaged out at the tissue level.

As the events that drive skewed X-inactivation are shared across cells with similar ancestry, we
reasoned that correlation of Xi skew informs on cell type relatedness.  Calculating the
correlation of Xi skew between cell types revealed that the vast majority of cell types were
positively correlated, a trend that held true across tissues and germ layers (Figure 2I).  This is
consistent with our pan-tissue analysis of a single individual (Figure 2B-E) and with all
primordial cells contributing roughly equally to all three germ layers.  However, we did find a
lower correlation of cell types derived from different germ layers, compared to cell types from
the same germ layer within the same tissue (Figure 2I).  At the level of individual cell types, we
found that the cell types with the strongest correlation within a tissue were those with a shared
ancestry (e.g. tubular cells of the kidney Supplementary Figure 1).

Discussion
We have presented inactiveXX, a new method to determine the X-inactivation status of
individual cells from single cell transcriptomic data alone.  Using cancer samples as positive
controls and parental trios to define ground truth, we demonstrate that our method can
accurately determine the X-inactivation status at single cell resolution in a wide range of
conditions with very high accuracy.
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Applying our method to a range of tissues and individuals suggested that X-inactivation in
humans likely takes place prior to the specification of cells into embryonic and extra-embryonic,
at the ~16 cell blastocyst stage.  Furthermore, the inferred population size giving rise to
embryonic and extra-embryonic tissues implies that ~¼-⅓ of cells of the blastocyst are
restricted to extra-embryonic lineages, with the remaining cells giving rise to the embryo proper.
This consistent picture at the tissue level hides significant variability at the level of individual
cells, reflecting the ancestral relationships and clonal expansions of individual cell types.
Correlating these cell level fluctuations across many individuals reveals the relatedness of
individual cell lineages and that all cells of the early embryo contribute roughly equally to each
germ layer.  While the greatest power comes from cohorts of individuals, measuring the
X-inactivation status of cells from the same individual can inform on the clonality and
relatedness of individual groups of cells.  We anticipate that the application of our method to
large numbers of cells from the same individual and the same cell type across multiple
individuals will deliver new insights into the clonality and developmental history of a wide range
of cell types and tissues.
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Figure 1 - Method evaluation
A - Overview of method: Schematic overview of method to determine X-inactivation status.
B - Cell state accuracy on gold standard data: Number of cells (y-axis) uncalled (light grey),
called inaccurately (medium grey), and called accurately (dark grey) as a function of
X-inactivation state probability (x-axis, decreasing to the right), for three individuals where
parental and individual genomes define the ground truth.  The 95% cut-off threshold is shown by
a red line.
C - SNP accuracy on gold standard data: Fraction of SNPs correctly phased (y-axis, colours
as in B) as a function of total coverage across all cells (x-axis), for three individuals where
parental and individual genomes define the ground truth.
D - Detection accuracy at different cell numbers: Number of SNPs genotype (y-axis, bottom
panel) and accuracy of X-inactivation status (y-axis ,top panel) as a function of total cell number
per individual (x-axis), where individuals are randomly generated 5 times for each cell number
from gold standard data (B,C).  Horizontal lines indicate median across random samples.
E - Detection accuracy at different X-inactivation skew: X-inactivation skew detected across
all cells (y-axis) compared to ground truth skew (x-axis), where individual data is generated by
random sampling of gold standard data (B,C, dots). Dot shape indicates if the method believes
it has (filled circles) or cannot (crosses) reach the global optimal solution.  Dotted line indicates
perfect correlation.
F - Example solution distributions for converged and non-converged fit: Distribution of
overall likelihood of solution (y-axis) as a function of total X-inactivation skew (x-axis) across all
1,000 random initialisations of method.  The top plot shows an example where there is
insufficient data to reach the global optimum solution, while the bottom plot shows an example
where the global optimum has been reached.  Note that solutions don’t cluster around any
values in the non-converged plot, but instead lie on a continuum of ever increasing likelihood
with more extreme X-inactivation skew values.
G - X-inactivation skew by cell types in cancer samples: Fraction of cells in X-inactivation
state (red/blue colour) for 5 different individual cancers (y-axis), by cell type (x-axis).

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 13, 2022. ; https://doi.org/10.1101/2022.11.10.515645doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.10.515645
http://creativecommons.org/licenses/by-nd/4.0/


.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 13, 2022. ; https://doi.org/10.1101/2022.11.10.515645doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.10.515645
http://creativecommons.org/licenses/by-nd/4.0/


Figure 2 - Population dynamics and timing of X-inactivation
A - Illustration of connection between development, Xi, and observed cells: Phylogeny
showing key stages in X-inactivation.  Cells preceding Xi are shown in grey.  The 8 founder cells
shown when Xi is determined are illustrative only, the true founder population size is not known.
Once established the Xi status is inherited, with the Xi skew of the observed cells determined by
the Xi status of the founder cells and how the observed cells are related to those founder cells
(i.e., which founder cells contribute more or less).
B - UMAP showing tissue type of origin: Reduced dimensional representation (UMAP) of
fetal tissues from the same individual, with colour indicating tissue of origin.
C - UMAP showing significant regions: UMAP showing neighbourhoods of cells from B,
showing connectedness (line widths) and Xi state skew relative to the global average.
Non-significant regions are shaded in grey, while significant ones are shaded by their Xi skew as
given by the green-purple colour bar.
D - Significantly skewed neighbourhoods of cells by tissue: Xi skew of neighbourhoods of
cells from B (dots, x-axis), grouped by the dominant tissue type for that neighbourhood (y-axis).
Neighbourhoods not significantly different from the global average are shown in grey, while
significant regions are coloured as per the colour scheme in C, at three times the size.
E - Significantly skewed neighbourhoods of cells by cell type: Xi skew of neighbourhoods
of cells from B (dots, x-axis), grouped by the dominant cell type for that neighbourhood (y-axis),
split across three panels to aid visibility.  Neighbourhoods not significantly different from the
global average are shown in grey, while significant regions are coloured as per the colour
scheme in C, at three times the size.  Cell type labels on the y-axis are shown for all cell types
where >10% of neighbourhoods show significant Xi skew.
F - Connection between population size and X-inactivation skew distribution: Illustration of
how different primordial population sizes (rows) can give rise to different shaped Xi skew
distributions (right) when measured across multiple individuals (columns)
G - Inferred founder population size by tissue: Population size (y-axis) inferred from
X-inactivation skew across multiple individuals in various tissues (x-axis).  Points show point
estimates, while error bars show the uncertainty due to cell and patient number.  Horizontal lines
show the overall median for embryonic (solid line) and extra-embryonic (dashed line) tissues.
H - Inferred founder population size at cell type resolution: Population size (y-axis) inferred
from X-inactivation skew across multiple individuals for various cell types (x-axis).  Points show
point estimates, while error bars capture uncertainty due to cell and patient number.  Grey
shaded regions show the tissue confidence intervals and horizontal line the tissue level mean,
with tissues as labeled at the bottom of the x-axis.
I - Correlation of X-inactivation skew between cell types: Pearson correlation coefficient
(y-axis) between pairs of cell types (dots) within each tissue (x-axis labels), with 90% confidence
intervals (vertical grey lines) quantifying uncertainty from cell and patient number.  Horizontal
lines show the population median, the dashed line shows no correlation, with values below 0
shown in grey.  Comparisons are split by those within and between germ layers (top labels), with
correlation coefficients for pairs of cell types from different (the same) germ layers shown in
black (grey).
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Methods

inactiveXX method
The inactiveXX method consists of four key steps:

1. Identify heterozygous SNPs on the X chromosome.
2. Generating allele specific counts for each cell at heterozygous SNPs.
3. Filter out low information SNPs (e.g. likely to escape Xi)
4. Fit EM model to estimate Xi state and genotype

Usually, the only data available are the single cell transcriptomes for which the Xi state is to be
estimated.  In this case steps 1 and 2 are performed simultaneously.  However, when additional
information is available, such as DNA sequencing from which heterozygous SNPs can be
independently identified, each step may need to be performed separately.

Identification of heterozygous single nucleotide polymorphisms (SNPs)
Ideally, additional information, such as whole genome or exome sequencing would be used to
identify heterozygous SNPs on the X chromosome.  However, when this was not possible, we
identified these from the single cell transcriptomic data.

To do this, we treated the single cell transcriptomic data as if it were derived from a single cell,
and got the number of reads mapping to the reference and alternate alleles at sites of known
variability on the X chromosome (1,000 genomes SNPs with population allele frequencies of 5%
or more).  Allele specific counts were generated using alleleCount
(https://github.com/cancerit/alleleCount).  At each site, we performed a binomial test against a
null hypothesis of homozygosity of the other allele, with an error rate of 5%.  We marked as
heterozygous any site with p<0.05 for both alleles.  That is, a site was considered heterozygous
when there was a significant number of reads detected from both alleles, more than would be
expected given an error rate of 5%.

Generation of allele specific counts
For each heterozygous SNP, we used alleleCount (https://github.com/cancerit/alleleCount) run
in single cell mode using the -x flag, to generate counts at each site identified as heterozygous.

Filtering counts and SNPs
Before performing inference, we filtered counts on X to exclude those unlikely to be informative.
By default, we excluded any SNP not lying in a known gene body (i.e., inter-genic), in a
pseudo-autosomal region, or in evolutionary strata 1, 2, or 3, which have a high rate of Xi
escape5.

We further filtered out any SNP that had evidence of expression of both alleles within a single
cell, using a binomial test against a null hypothesis of only one allele being expressed and an
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error rate of 2%.  We rejected any SNP with a p-value less than 0.1 as likely escaping Xi and so
not informative for the inference step.

Inference of Xi state and X chromosome genotype
The input to the Xi inference step was cell specific counts for reference and alternate alleles,
generated as described above.  The inference step aims to simultaneously estimate which copy
of X is inactive in each cell and which allele for each SNP (ref or alt) is on the maternally derived
X chromosome using an expectation maximization approach.  Note that “maternal” is used here
just for convenience, it is only possible to infer which cells have the same X inactivated and
which alleles belong to the same copy of X, not whether that copy of X is maternal or paternal
(unless additional information such as parental DNA is available).

The inference followed the following steps:
1. Randomly set the Xi state for each cell and the X chromosome phasing for each SNP.
2. Set the deterministic annealing likelihood smoothing parameter, , to 0.01.β
3. In the E-step, estimate the Xi state probability from the current phasing as:

𝑝
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4. We then perform the M-step, where we estimate the SNP genotyping from the Xi states:
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5. We iterate the E and M steps (steps 3. and 4.), until the difference in is less than𝑄
tolerance (we use 1e-6) or 1000 iterations have passed.

6. We set and repeat the EM fit (return to step 3.) until .β = min (1, 1. 3 β) β = 1

7. The final Xi states and X chromosome phasing ( and ) are stored and the totalλ
𝑖 

𝑠
𝑗

likelihood ( ) is stored.𝑄
8. This fitting procedure is repeated 1,000 times (steps 1. -7.) and the results stored.
9. The best fit from the 1,000 random initialisations (fit with lowest ) is taken as the𝑄

accepted solution.

When there is sufficient data to accurately estimate the Xi state, the best fitting of the 1,000 fits
will cluster around the same value in - space (up to reflection around ).  However,𝑄 τ τ = 0. 5
when the true value of is extreme, huge amounts of data (large cell numbers) are needed toτ
accurately estimate it and there is no clear convergence amongst the 1,000 random starts.

We detected these globally non-converged solutions by requiring that the fractional difference
between the best fitting value of and the next 100 best solutions not exceed 5%.  Samplesτ
where this was not the case were excluded from the analysis.

Those cells with state probabilities greater than 95% and non-significant number of counts that
clash with the Xi state allocation (binomial test, 10% error rate and p-value cut-off 0.2) are
declared to be “high-confidence”.

Processing single cell data

Mapping data
For all single cell samples, raw nucleotide data was downloaded from the data provider and
converted to fastq format using samtools27 v1.12 ‘collate’/’fastq’ commands where necessary.
Following this, single cell RNA-sequencing experiments were aligned and quantified using the
STARsolo pipeline28, according to the exact data type (3’/5’ 10x Chromium, inDrops, or
Drop-seq). Wrapper scripts used for different technologies are available in the
https://github.com/cellgeni/STARsolo repository. STAR aligner version 2.7.9a was used for all
data processing.

Human reference genome and annotation exactly matching Cell Ranger 2020-A was prepared
as described by 10x Genomics:
https://support.10xgenomics.com/single-cell-gene-expression/software/release-notes/build#hea
der. For 10x samples, the STARsolo command was optimized to generate the results maximally
similar to Cell Ranger v6. Namely, “--soloUMIdedup 1MM_CR --soloCBmatchWLtype
1MM_multi_Nbase_pseudocounts --soloUMIfiltering MultiGeneUMI_CR --clipAdapterType
CellRanger4 --outFilterScoreMin 30” were used to specify UMI collapsing, barcode collapsing,
and read clipping algorithms. For paired-end 5’ 10x samples, options “--soloBarcodeMate 1
--clip5pNbases 39 0” were used to clip the adapter and perform paired-end alignment.
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For inDrops samples, “--soloType CB_UMI_Complex --soloAdapterSequence
GAGTGATTGCTTGTGACGCCTT --soloAdapterMismatchesNmax 3 --soloCBmatchWLtype
1MM --soloCBposition 0_0_2_-1 3_1_3_8 --soloUMIposition 3_9_3_14” options were specified;
adapter sequence and whitelists varied between different versions of the protocol and were
inferred directly from the fastq files.

For Drop-seq samples, “--soloType CB_UMI_Simple --soloCBwhitelist None --soloCBstart 1
--soloCBlen 12 --soloUMIstart 13 --soloUMIlen 8 --soloBarcodeReadLength 0” options were
used for processing.

For cell filtering, the EmptyDrops algorithm employed in Cell Ranger v4 and above was invoked
using “--soloCellFilter EmptyDrops_CR” options. Options “--soloFeatures Gene GeneFull
Velocyto” were used to generate both exon-only and full length (pre-mRNA) gene counts, as
well as RNA velocity output matrices. Coordinate-sorted BAM files were generated by STAR
and indexed using samtools v1.12.

Demultiplexing mixed samples
A subset of samples contained multiple individuals mixed together in the same single cell
sequencing run, necessitating computational separation of cells into individual specific groups.
For fetal samples, we used the demultiplexing information provided13, and kept only those cells
that were definitively fetal in origin (i.e., we excluded maternally derived cells).  For other
multiplexed samples, we used souporcell29, with k parameter equal to the number of expected
multiplexed individuals to separate cells based on genotype, discarding those cells that could
not be unambiguously genotyped.

Cell clustering and annotation
We took all barcodes identified by STARsolo28 as containing cell and produced log-normalised
counts using the Seurat package30.  Next we identified the top 2,000 most variable genes, which
we used for principal component analysis.  We retained the top 50 principal components and
generated a two dimensional representation of the data using UMAP and clustered using a
graph based clustering algorithm with a resolution parameter of 1.

Where mapping between barcodes and cell annotation were provided, we excluded all
non-annotated cells and used the annotation provided.  Where this was not the case, we
annotated cells based on marker genes in the associated publication.  For the two data-sets
where neither published markers or pre-existing annotation were available (some kidney
samples and PBMCs), we performed label prediction using previously trained models with
CellTypist31, followed by manual inspection by experts in the relevant tissue.

Validation of inactiveXX method
To validate the inactiveXX method, we used three samples with single cell transcriptomics, bulk
DNA, and parental DNA to define a gold standard.  To do this, we identified heterozygous SNPs
in the bulk DNA, then phased them using the DNA from the parents, using the alleleIntegrator
package12.  This defined phased heterozygous SNPs on the X chromosome.  We then used
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alleleCount to get the total number of reads mapping to the maternal and paternal copies of X in
each cell (excluding standard low confidence regions such as the pseudo autosomal region)
and defined the probability of each cell’s Xi state using the E-step equations (see above), with

and .  For testing the accuracy of inactiveXX, we used only those cells whose Xiτ = 0. 5 β = 1
state could be allocated with high confidence (using the same definition as above) using the
combined whole genome and transcriptomic data.

To measure the accuracy of inactiveXX as a function of individual level Xi skew and total
number of cells, we repeatedly sub-sampled from the gold standard individual with the largest
number of cells (GOSH025).  To assess the effect of cell number, we sampled 100, 200, 500,
and 1000 cells at random from this sample and re-calculated the accuracy with which
transcriptomic data alone could recover the ground truth.  For each number of cells, we
repeated the random sampling 5 times.

To measure the accuracy with respect to the individual level Xi skew, we split cells into maternal
and paternal Xi based on the ground truth data, then sub-sampled either the larger or smaller
group (depending on the target individual level Xi fraction) to the number of cells necessary to
create the desired individual level Xi skew.  Once again, this random sampling was repeated 5
times.

Xi skew in a single sample
To make inferences from Xi skew in a single sample, we first aimed to estimate the Xi skew in
the founder cells.  We assumed that while individual cell types may deviate from the founder Xi
skew, there would be no systematic bias in the deviation.  Provided this is true, then the founder
Xi skew should agree closely with the mean (or median) of cell type specific Xi skews.

Having established an estimate of the founder Xi skew, we then aimed to test for statistically
significant deviations from this value.  We first generated overlapping, local neighborhoods of
cells around representative cells in our data, from which the local Xi skew could be calculated,
using the k nearest neighbour graph with miloR14. We sought to use the milo framework to test
for shifts in Xi skew away from the provided founder skew.  However, the milo framework uses a
negative binomial model that requires multiple biological replicates to estimate the
over-dispersion parameter for the model, which was not possible in the context of Xi skew.
Instead, we used a binomial model (equivalent to setting the over-dispersion to zero) to
calculate p-values, then used the graph based false discovery correction to correct for multiple
hypothesis testing.  We reasoned that this approach would err on the side of being permissive in
identifying statistically significant deviations from the founder Xi skew.  Finally, we marked any
neighbourhood with FDR < 0.1 as significant.

Effective founder population size analysis
To infer population size from Xi skew from the same cell or tissue type from multiple individuals,
we assumed that the Xi skew variance across individuals would be given by a binomial
distribution, with success probability 0.5, normalised by the number of cells.  That is, a binomial
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distribution for n cells with , has variance .  Normalising this by produces a𝑝 = 0. 5 σ2 = 𝑛/4 𝑛

frequency distribution between 0 and 1, with .σ2 =  (𝑛/4)/𝑛2 =  4/𝑛

To account for the uncertainty in the estimate of Xi skew within each individual, we drew 1,000
samples from the posterior distribution of Xi skews for each individual, formed assuming a flat
beta distribution prior.  For each random sample across individuals, we then calculated the𝑛

effective population size as , where represents a random sample from the𝑛 =  4/σ2 σ2

sampling distribution of the variance across individuals. The quantiles of the resulting 1,000𝑛
values for then define the uncertainty in our estimate of the population size, accounting for𝑛
both the uncertainty due to the number of cells used to estimate the Xi skew in each individual,
and the uncertainty due to the number of individuals used to estimate the variance in Xi skew
across individuals.

When applying this analysis to the placenta, we considered only those cells that were
definitively of extra-embryonic origins (trophoblasts).

Correlation of cell types
To estimate the correlation of Xi skew between cell types, we calculated the Xi skew of each cell
type and its uncertainty as described above.  Given two vectors of Xi skews, one per cell type,
of length , representing individuals, we then calculated a pearson correlation coefficient.  To𝑛 𝑛
quantify the uncertainty in this estimate, we again drew random samples from the sampling
distribution of the correlation and took quantiles of 1,000 random samples to define the
uncertainty.  We took samples from the exact distribution in this paper, but also provide a
computationally faster implementation based on the Fisher transformation as part of the
inactiveXX package.

Data availability
Data were downloaded from the HCA data portal (https://data.humancellatlas.org/), using the
links specified in Table S1, or for non-HCA samples, from the reference provided in the
associated publication listed in Table S1.  Additionally, we provide the Xi state probabilities,
annotation, and Xi state calls for all cells processed in this sample in Table S2.

Code availability
The inactiveXX method, along with documentation, is available as an R package
(https://github.com/constantAmateur/inactiveXX). The code used to process the samples in this
paper and produce the resulting plots is also made available
(https://github.com/constantAmateur/XiPaperCode).
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Supplementary Figures

Figure S1 - Correlation of Xi skew amongst cell types of the kidney
Correlation of Xi skew across multiple individuals, relative to the within individual cell type
average (i.e., the founder Xi skew), for cell types of the kidney (bottom and right labels),
grouped into cell type categories (left and top labels).  For each comparison, the average
correlation coefficient (colour value), posterior probability distribution for the correlation
coefficient (histogram), and 0 correlation value (vertical dashed line) are shown for each square.
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Supplementary Tables
Table S1 - Meta-data relating to individuals present in this study
For each individual with data present in this study, this table provides information about the data
type, tissue, individual age, disease status, and data source.

Table S2 - Meta-data relating to individual cells present in this study
For each cell used in this study, this table provides information about where it was derived from,
which cell type it was annotated as, its inferred Xi state, and the gold standard Xi state (where
available).
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