

1 **SARS-CoV-2 ORF8 limits expression levels of Spike antigen**
2
3

4 **Ik-Jung Kim^{1,*}, Yong-ho Lee^{1,2}, Mir M. Khalid^{3,4}, Yini Zhang¹, Melanie Ott^{3,4,5}, and**
5 **Eric Verdin^{1,*}**
6
7
8

9 ¹ Buck Institute for Research on Aging, Novato, California, United States.
10

11 ² Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.
12

13 ³ Gladstone Institutes, San Francisco, CA, United States.
14

15 ⁴ Department of Medicine, University of California, San Francisco, San Francisco, CA,
16 United States.
17

18 ⁵ Chan Zuckerberg Biohub, San Francisco, CA, United States.
19

20 *Corresponding authors:
21 ikim@buckinstitute.org
22 everdin@buckinstitute.org
23
24

25 **Summary**

26
27 Survival from COVID-19 depends on the ability of the host to effectively neutralize
28 virions and infected cells, a process largely driven by antibody-mediated immunity.
29 However, with the newly emerging variants that evade Spike-targeting antibodies, re-
30 infections and breakthrough infections are increasingly common. A full characterization
31 of SARS-CoV-2 mechanisms counteracting antibody-mediated immunity is needed.
32 Here, we report that ORF8 is a SARS-CoV-2 factor that controls cellular Spike antigen
33 levels. ORF8 limits the availability of mature Spike by inhibiting host protein synthesis
34 and retaining Spike at the endoplasmic reticulum, reducing cell-surface Spike levels and
35 recognition by anti-SARS-CoV-2 antibodies. With limited Spike availability, ORF8
36 restricts Spike incorporation during viral assembly, reducing Spike levels in virions. Cell
37 entry of these virions leaves fewer Spike molecules at the cell surface, limiting antibody
38 recognition of infected cells. Our studies propose an ORF8-dependent SARS-CoV-2
39 strategy that allows immune evasion of infected cells for extended viral production.
40

41
42 **Keywords**

43 SARS-CoV-2, COVID-19, ORF8, Spike, Omicron, protein synthesis, covalent bond,
44 antibody-mediated immunity, breakthrough infection, vaccination

45 **Introduction**

46
47 Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent
48 of COVID-19, a major worldwide pandemic resulting in 6 million confirmed deaths.
49 Several genetic and environmental factors contribute to the survival from COVID-19,
50 with many of them involved in the host capacity to effectively detect and neutralize the
51 virions and the infected cells [1]. Upon entry of SARS-CoV-2 into the host cell, the first
52 line of host defense is innate immunity, sensing the viruses and recruiting immune cells
53 to the initial site of infection in a timely manner [2].

54 After the first several days in contact with SARS-CoV-2 virions, the immune system
55 develops antibody-mediated humoral immunity, which allows targeted detection of viral
56 antigens on the virions or infected cells [3]. The importance of antibody-mediated
57 immunity against SARS-CoV-2 infection is evident with the high effectiveness of the
58 approved COVID-19 vaccines, which boost production of antibodies against SARS-
59 CoV-2. Specifically, these vaccines were designed to target conserved regions of the
60 Spike protein, a key structural component of SARS-CoV-2 that mediates host cell entry.
61 Upon SARS-CoV-2 infection, a high titer of anti-Spike antibodies develops [4], and the
62 antibody binding to the virions limits the mobility of virions and blocks the host cell entry
63 [5]. These anti-Spike antibodies may also react to Spike molecules on the surface of
64 SARS-CoV-2-infected cells [3], attracting immune cells for phagocytosis or cytotoxicity
65 actions. Targeting both virions and infected cells is important for the maximal antibody
66 activity to antagonize the SARS-CoV-2 dissemination [3].

67 However, despite a high anti-Spike antibody titer in COVID-19 convalescent or
68 vaccinated individuals, infections in these individuals are increasingly becoming
69 common, suggesting the possibility that several SARS-CoV-2 mechanisms exist to
70 manipulate or evade antibody-mediated immunity. In support of this idea, the superior
71 fitness of new variants of concern (VOCs) that are now dominant worldwide largely
72 derives from mutations on Spike that limits antibody affinity [6]. To respond effectively to
73 the continued emergence of increasingly evasive VOCs, further investigations are
74 required to fully characterize the SARS-CoV-2 mechanisms for limiting antibody-
75 mediated immunity.

76 Here, we report that ORF8, a SARS-CoV-2 protein that is largely uncharacterized,
77 has a potential pro-viral role by controlling the availability of Spike antigens during
78 infection. We found that ORF8 is a luminal protein of the endoplasmic reticulum (ER)
79 that strongly interacts with Spike. With ORF8, Spike protein levels were diminished
80 (similarly by the VOC genotype ORF8 S84L) by two independent mechanisms: 1)
81 ORF8 limits the host capacity to synthesize proteins, and 2) covalent interactions with
82 Spike inhibit translocation of Spike to the Golgi. With the limited availability of mature
83 Spike, ORF8 also limited the abundance of cell-surface Spike, a trigger for fragment
84 crystallization (Fc) receptor functions that can be initiated by anti-SARS-CoV-2 human
85 sera. Viral particles produced in cells co-expressing ORF8 incorporate less Spike and
86 exhibit lower infectivity. However, infection with these viral particles results in much
87 lower levels of virus-derived Spike molecules at the cell surface, limiting the reactivity of
88 the anti-SARS-CoV-2 human sera. Our studies provide evidence that supports the
89 model that ORF8 contributes to extended viral production by tightly controlling the

90 availability of Spike antigens in infected cells or virions, evading immune detection of
91 infected cells.

92

93

94 **Results**

95

96 **SARS-CoV-2 ORF8 is an ER luminal protein**

97 ORF8 interacts with an array of ER chaperone proteins [7], suggesting that ORF8 is
98 subcellularly localized to the ER. Computational analysis (Protter) of the amino acid
99 sequence of ORF8 predicts that the first 16 N-terminal amino acids are an ER signal
100 peptide (Fig 1A), suggesting that, upon *de novo* synthesis, ORF8 is translocated into
101 the ER. To test this possibility, A549, a human lung epithelia-derived cell line,
102 transfected with a plasmid encoding C-terminal double Strep-tagged ORF8 (ORF8-
103 Strep), was fixed, permeabilized and immunostained for Strep, and disulfide isomerase
104 (PDI) (ER-specific organelle marker). ORF8 (green signals) visually colocalized with
105 protein PDI (red signals) (Fig 1B), as manifested by a high degree of similarity between
106 the two signal intensities (Fig 1C) along the cross-sectional arrow (Fig 1B). The
107 possibility that ORF8 is an ER protein was further evaluated by biochemical studies.
108 HEK293T cells transfected with a plasmid encoding C-terminal Flag-tagged ORF8
109 (ORF8-Flag) were subcellularly fractionated by differential centrifugation, yielding major
110 cellular compartment fractions (e.g., ER, mitochondria, and cytosol) (Fig 1D), and those
111 fractions were evaluated by immunoblot analyses for ORF8-Flag signals. The ORF8
112 signal was observed only in the ER fractions (characterized by Calnexin), but not in
113 mitochondria (COX4) or cytosol (β -actin), indicating that ORF8 is predominantly
114 localized to ER within cells.

115 Lacking a transmembrane domain (Fig 1A), we predicted that ORF8 is a luminal
116 protein after translocating to the ER. To test the prediction, the ORF8-containing ER
117 fractions collected previously (Fig 1D) were incubated with two concentrations of
118 digitonin. With the lower concentration (0.035%), Calreticulin (ER luminal marker) was
119 solubilized and remained in the supernatant after high-speed centrifugation. With the
120 higher concentration (0.2%), both Calreticulin and Calnexin (ER membrane marker)
121 remained in the supernatant (Fig 1E). After a 45-min incubation with the indicated
122 concentrations of digitonin, the fractions were centrifuged, and the proteins in the
123 supernatant were examined by immunoblot analysis. The ORF8-Flag signals were
124 noted at the lower digitonin concentration (0.035%), consistent with the hypothesis that
125 ORF8 is an ER luminal protein.

126

127 **ORF8 modulates Spike protein levels**

128 Three SARS-CoV-2 proteins (i.e., Spike, ORF7a, ORF8) contain an ER signal peptide,
129 and Spike is a key viral component highly implicated in the viral infectivity. With ORF8
130 and Spike existing in the same subcellular space of the ER, as manifested by the
131 colocalization of ORF8 and Spike signals (Fig 2A), we investigated the possibility that
132 ORF8 alters Spike levels. HEK293T cells co-transfected with plasmids encoding C-
133 terminal Flag-tagged Spike (Spike-Flag), and ORF8-Strep or eGFP-Strep (negative
134 control) were lysed for immunoblot analyses (Fig 2B and 2C) with an antibody targeting
135 the Spike S2 or S1 region (Fig 2D). Two immunoblot bands were detected for Spike (Fig

136 2B), corresponding to uncleaved nascent Spike (220 kDa), and the Spike that is cleaved
137 (90 kDa in α S2 blot, and 130 kDa in α S1 blot) at the furin-cleavage site, a reaction
138 thought to occur at the ER-Golgi intermediate complex (ERGIC) or Golgi [8], resulting in
139 S1 and S2 fragments (Fig 2B and 2D). The total Spike levels (calculated by combining
140 uncleaved and S2 signals) decreased (> 50%) in an ORF8-dependent manner (Fig 2C).
141 Moreover, the band intensities corresponding to S2 or S1 fragments decreased to a
142 greater extent (> 95% decrease) in an ORF8-dependent manner (Fig 2C). No other
143 immunoblot bands were detected under our experimental conditions (Fig S1A),
144 validating our quantitative measurement of Spike protein levels. The ORF8-dependent
145 modification of Spike protein levels was reproduced using non-tagged Spike and ORF8
146 (Fig S1B), validating the use of the C-terminal tagged constructs for our investigation.

147 Next, we determined if our findings could be extended to the recent emergence of
148 VOCs. The amino acid sequence of ORF8 is highly conserved across different sub-
149 strains, except for the S84L mutation [9] that is commonly found in the major VOCs,
150 including Delta and Omicron sub-variants. ORF8-Strep with S84L mutation (ORF8-
151 Strep S84L) also altered Spike protein levels similarly (Fig 2E and 2F), suggesting that
152 the ORF8 actions on Spike are conserved in the VOC ORF8 genotypes. Finally, the
153 ORF8 alternation of Spike protein levels was not observed with the ORF8s derived from
154 SARS-CoV (ORF8ab) (Fig 2G) or ORF8a and ORF8b, which later emerged by
155 truncation of 29 amino acids [10], and minor reduction by ORF8ab when paired with
156 their own SARS-CoV Spike (Fig D). These findings suggest that the ORF8 modulation
157 of cellular Spike levels is a SARS-CoV-2-specific mechanism.

158

159 **ORF8 covalently interacts with Spike at the ER and impedes Spike translocation 160 to the Golgi**

161 Next, we investigated whether ORF8 and Spike in the ER interact by creating an ORF8-
162 Flag construct with an I9P mutation (ORF-Flag I9P) that disrupts the α -helix structure of
163 the ER signal peptide by introducing a proline kink. Loss of ability to translocate to the
164 ER was validated by immunofluorescence microscopy analysis, as manifested by the
165 cytosolic distribution of ORF8-Flag I9P or ORF8-Flag lacking the entire ER signal
166 peptide (ORF8-Flag Δ 1-17) (green signals) (Fig S2A), as well as the loss of ER (red
167 signals) colocalization with ORF8-Flag I9P or ORF8-Flag Δ 1-17 (Fig S2A). Furthermore,
168 immunoblot analysis under non-reducing conditions (to preserve disulfide bonds)
169 showed the non-mutated ORF8-Flag as multiple bands (Fig S2B), which is attributed to
170 intermolecular disulfide bonds that form within the oxidizing ER lumen environment [11],
171 whereas ORF8-Flag I9P and ORF8-Flag Δ 1-17 were observed as a single band.

172 To evaluate the importance of the ORF8 localization to the ER for its effect on Spike
173 protein levels, cells were co-transfected with a plasmid encoding non-tagged Spike, and
174 a plasmid encoding GFP-Flag (negative control), ORF8-Flag, or ORF-Flag I9P. The
175 cells were lysed, the lysates were incubated with anti-Flag magnetic beads, and the
176 immunoprecipitated proteins were analyzed by western blotting. We observed a loss of
177 cleaved S2 fragment of Spike in cells co-expressing ORF8-Flag (Fig 3A, input), but not
178 in cells co-expressing GFP-Flag control or ORF8-Flag I9P. Moreover, Spike was
179 detected in the immunoprecipitated samples collected from cells co-expressing ORF8-
180 Flag, but not GFP-Flag control or ORF8-Flag I9P (Fig 3A), indicating that Spike co-
181 immunoprecipitated with ORF8-Flag but not with ORF-Flag I9P. These studies support

182 the model that ORF8 interacts with Spike at the ER, and that ORF8 translocation to the
183 ER is required for the ORF8-Spike interaction and for altering Spike protein levels.

184 More cleaved Spike-Flag was lost (> 95%) than total Spike (> 50%) (Fig 2B and 2C),
185 and the Spike cleavage rate was lower (Fig 2B and 2C) in cells co-expressing ORF8-
186 Strep, suggesting that furin cleavage of Spike is inhibited by ORF8. The furin-dependent
187 Spike cleavage (Fig 2D) is a post-ER event that occurs at the ERGIC or Golgi. Thus, we
188 hypothesized that ORF8 interaction with Spike at the ER inhibits Spike translocation to
189 Golgi, preventing furin-cleavage. In support of this model, the Spike species that
190 interacts with ORF8 is uncleaved (Fig 3A). To further investigate whether Spike
191 translocation to the Golgi is altered by ORF8, A549 or HEK293T cells co-transfected
192 with plasmids encoding Spike-Flag and a bicistronic plasmid encoding both ORF8-Strep
193 and eGFP separated by internal ribosomal entry site (IRES) (ORF8-Strep_{IRES}-eGFP)
194 were fixed, permeabilized, immunostained for Spike S2 and trans-Golgi network protein
195 46 (TGN46) (used as a Golgi marker), and examined by confocal microscopy. Spike
196 (red signals) colocalization to the Golgi (green signals) decreased visually (Fig 3B) and
197 quantitatively (Fig 3C) (calculated by Pearson's coefficient) in cells co-expressing
198 ORF8-Strep (detectable by eGFP signal (pseudo-colored to white)). These studies
199 support the model that Spike interaction with ORF8 retains itself at the ER and impedes
200 its translocation to Golgi.

201 Interestingly, Spike protein expression is largely detected as high-molecular-mass
202 smear under non-reducing conditions (bracket, Fig 3D). This was not the case under
203 reducing conditions (Fig 3D) (suggesting the smear is Spike species aggregated
204 through disulfide bonds), or when immunoblotted with an antibody that detects cleaved
205 S2 Spike only (Fig 3D) (suggesting the smear is uncleaved Spike), or with the fully
206 mature Spike molecules incorporated into viral particles (Fig 3D) (suggesting the smear
207 is Spike still undergoing maturation). These observations suggest that the smear
208 represents the uncleaved Spike molecules undergoing protein folding at the ER. We
209 hypothesized that Spike retention at the ER (Fig 3B and 3C) within ORF8-coexpressing
210 cells resulted from interaction with the cysteine-rich ORF8 (5.8% ,7/121 residues), and
211 we first tested whether ORF8-Spike interaction involves covalent bonds. Cells co-
212 transfected with plasmids encoding ORF8-Flag and Spike-Strep were lysed and
213 evaluated by immunoblot under non-reducing conditions for the molecular mass
214 distribution of ORF8-Spike complexes (Fig 3E). Both Spike-Strep (lane #: 6) and ORF8-
215 Flag (lane #: 16) signals were generally upshifted towards the higher molecular mass
216 species (bracket, lane #: 7, 15) than cells singly expressing Spike-Strep only or ORF8-
217 Flag only, indicating formation of higher molecular mass, disulfide bond-based protein
218 aggregates. Notably, the two non-intermolecular Spike-Strep bands (cleaved/uncleaved,
219 lane #: 6) in cells singly expressing Spike-Strep were barely detected in cells co-
220 expressing Spike-Strep and ORF8-Flag (lane #: 7), suggesting that most cellular Spike
221 molecules remain aggregated through disulfide bonds in cells co-expressing ORF8.

222 To directly test whether the ORF8-Spike interaction is mostly associated with
223 disulfide bonds, cells co-transfected with plasmids encoding Spike or ORF8-Flag were
224 lysed and the cell lysates were pre-incubated at 95°C for 5 min in 2% SDS (to break up
225 non-covalent protein-protein interactions) and in the absence or presence of 0.2% β-ME
226 (to break up intra- and inter-molecular disulfide bonds). After the pre-incubation, the
227 lysates were immunoprecipitated with anti-Flag magnetic beads and analyzed by

228 immunoblotting under non-reducing or reducing conditions (Fig 3F and 3G). We
229 observed co-immunoprecipitation of Spike even after the denaturation (lane # 9), at a
230 level that is not significantly different from the same lysates that were not pre-incubated
231 (lane #: 8). The Spike co-immunoprecipitation was completely abolished under reducing
232 conditions (lane #: 10), suggesting that ORF8-Spike interaction is predominantly
233 established through disulfide bonds. Furthermore, the co-immunoprecipitated Spike
234 under non-reducing conditions was entirely detected as high-molecular-mass smears
235 (lane #: 12) that were retained even under denaturing conditions (lane #: 13). These
236 studies support the model that Spike and ORF8 form protein aggregates through
237 disulfide bonds at the ER, and Spike translocation to Golgi is impeded.
238

239 **Host protein synthesis is inhibited within cells expressing ORF8**

240 We further tested this proposed mechanism with decanoyl-RVKR-CMK (or simply
241 CMK), a furin inhibitor (Fig 4A). However, the decrease in total Spike-Flag levels
242 (uncleaved + cleaved S2) in cells co-expressing ORF8-Strep was not clearly manifested
243 in cells incubated with CMK. Moreover, total levels of a modified Spike-Flag insensitive
244 to furin cleavage (the furin cleavage site was deleted) (Spike-Flag FKO) [12] decreased
245 similarly (> 50%) in cells co-expressing ORF8-Strep (Fig 4B and 4C), suggesting an
246 additional ORF8 mechanism responsible for the total Spike decrease. We first
247 evaluated whether Spike expression is modulated by ORF8 at the transcription levels,
248 but no decrease in the transcript levels of Spike-Flag was detected by RT-qPCR in cells
249 co-expressing ORF8-Strep (Fig 4D). Interestingly, flow cytometry analysis of cells
250 transfected with a bicistronic plasmid encoding ORF8-Strep-_{IRES}-eGFP showed
251 significantly lower eGFP expression (Fig 4E). ORF8 inhibition of eGFP expression
252 suggested the possibility that ORF8 might limit the host capacity for protein synthesis.
253 To investigate this possibility, cells transfected with a bicistronic plasmid encoding no
254 ORF8 (empty-_{IRES}-eGFP) or ORF8-Strep genotypes (ORF8-Strep-_{IRES}-eGFP or ORF8-
255 Strep S84L-_{IRES}-eGFP) were incubated with L-homopropargylglycine (HPG), a Click-
256 modified methionine analog that is incorporated into newly synthesized proteins. After
257 30 min, cells were harvested, fixed, and permeabilized, and the incorporated cellular
258 HPG was fluorescently labeled for detection by flow cytometry. HPG incorporation (<
259 15%) in cells expressing ORF8-Strep or ORF8-Strep S84L (eGFP-positive) was much
260 less than in cells not expressing ORF8 (eGFP-positive) (Fig 4F and 4G), supporting the
261 hypothesis that ORF8 inhibits global host protein synthesis. Lastly, no significant
262 reduction in HPG incorporation was observed with SARS-CoV ORF8a-Strep or ORF8b-
263 Strep, and only a minor reduction in cells expressing ORF8ab-Strep (33 %) (Fig 4H),
264 suggesting the ORF8-dependent host protein synthesis inhibition is a unique feature of
265 SARS-CoV-2.
266

267 **ORF8 limits cell-surface Spike levels**

268 Once Spike molecules arrive at Golgi after full maturation (as the cleaved form), they
269 are utilized for viral assembly (Fig 3D) or translocated to the host cell surface [13]. With
270 our previous finding that cellular levels of mature Spike decrease in an ORF8-
271 dependent manner (Fig 2B and 2C), we hypothesized that ORF8 might decrease Spike
272 abundance at the cell surface. We first evaluated syncytia (cell-cell fusion) formation,
273 which occurs during SARS-CoV-2 infection [14] by interaction of cell-surface Spike with

274 the ACE2 receptors in neighboring cells. HEK293T cells that stably express ACE2 and
275 TMPRSS2 (HEK293T A/T) [15] were co-transfected with plasmids encoding Spike-Flag
276 or ORF8-Strep. After 18 h, cells were fixed, permeabilized, and immunostained for Flag
277 (Spike) and Strep (ORF8) (Fig 5A). Clear syncytia were formed in cells expressing
278 Spike-Flag, as manifested by collapsed cellular boundaries and multinuclear
279 arrangement (inset). In contrast, cells co-expressing Spike-Flag and ORF8-Strep
280 remained well separated (inset). The inhibition of syncytia formation in cells co-
281 expressing ORF8 suggests reduction in cell-surface Spike levels.

282 To directly evaluate cell-surface Spike levels, HEK293T cells co-transfected with a
283 plasmid encoding Spike-Flag and a bicistronic plasmid encoding ORF8-Strep genotypes
284 (ORF8-Strep_{-IRES}-eGFP, ORF8-Strep S84L_{-IRES}-eGFP) were harvested and
285 immunostained using an antibody against Spike S2, followed by incubation with a
286 fluorophore-conjugated secondary antibody as well as a LIVE/DEAD cell viability dye
287 that selectively stains non-viable cells. The viable (LIVE/DEAD-negative) and
288 transfection-positive cells (eGFP-positive) that express no ORF8 or ORF8-Strep, were
289 evaluated by flow cytometry for the abundance of cell surface Spike. Cell-surface Spike
290 signals were greatly reduced (> 80%) in cells co-expressing ORF8-Strep or ORF8-Strep
291 S84L, compared to cells co-expressing no ORF8-Strep (Fig 5B and 5C).

292 These findings were further validated using a N- and C-terminal-tagged Spike
293 construct (Flag-Spike-Flag) [12], which similarly decreased at the cell surface in an
294 ORF8-dependent manner (Fig 5D). The same experiment, using Flag-Spike-Flag and
295 an anti-Flag antibody that has no access to the cytosolic C-terminal Flag of cell-surface
296 Spike in viable cells, showed no significant signals in cells expressing Spike-Flag,
297 compared to cells expressing Flag-Spike-Flag (Fig 5E). These results indicated that our
298 signal detection is specific to cell-surface-exposed Spike, validating our measurement of
299 cell-surface Spike levels. Moreover, the Flag signals in cells expressing Flag-Spike-
300 Flag, which was thereby corresponding to the N-terminal Flag of cell-surface Spike,
301 significantly decreased (> 90%) by ORF8 co-expression (Fig 5E). These studies
302 demonstrated that levels of N-terminal S1 fragment of cell-surface Spike also decreases
303 in an ORF8-dependent manner.

304 Lastly, the SARS-CoV Spike, which was expressed to a similar level as SARS-CoV-2
305 Spike (Fig 5F), was detected in much lower levels at the cell surface (normalized by the
306 total Spike levels) (Fig 5G), and no significant reduction of cell-surface SARS-CoV
307 Spike levels was detected in cells co-expressing the SARS-CoV-derived ORF8
308 genotypes (Fig 5H), demonstrating that reduction of cell-surface Spike levels is a
309 SARS-CoV-2 ORF8-specific phenomenon.

310
311 **ORF8 limits the reactivity of anti-SARS-CoV-2 human sera towards Spike-
312 producing cells**

313 To understand the biological consequence of altered cell-surface Spike levels, we
314 determined if the ORF8 reduction of cell-surface Spike levels interferes with antibody-
315 mediated immune detection of infected cells, a reaction triggered by binding of humoral
316 anti-SARS-CoV-2 antibodies to cell-surface antigens. We next sought to evaluate
317 ORF8's effect on the ability of anti-SARS-CoV-2 human sera to trigger Fc receptor
318 functions. Cells were co-transfected with a plasmid encoding Spike and a bicistronic
319 plasmid encoding ORF8-Strep_{-IRES}-eGFP and harvested and incubated with sera

320 collected from three COVID-19 convalescent (Fig 6A and 6B) or three COVID-19
321 negative (Fig 6A) human donors. This was followed by incubation with a LIVE/DEAD
322 cell viability dye and a fluorophore-conjugated secondary antibody that specifically
323 detects the Fc region of human immunoglobulin G (IgG) molecules. Flow cytometry
324 showed strong reactivity of the convalescent sera towards Spike-expressing cells:
325 human IgG Fc signals were up to 55-fold greater in cells (LIVE/DEAD-negative, eGFP-
326 positive) incubated with the convalescent sera (Fig 6A) than cells incubated with the
327 COVID-19 negative sera. The signals were significantly lower in cells co-expressing
328 Spike-Flag and ORF8-Strep (< 80 %) (Fig 6B), supporting the model that the reactivity
329 of the convalescent sera to the cell-surface Spike is limited by ORF8.

330 Next, we determined if our findings can be extended to vaccinated individuals. The
331 same experiment was completed with sera from six vaccinated (three Pfizer- and three
332 Moderna-vaccinated, pre-vaccination (collected before the 1st shot) and post-
333 vaccination (collected after the 2nd shot) human donors. Human IgG Fc signals in cells
334 incubated with the post-vaccination sera were dramatically greater (up to 400-fold) than
335 cells incubated with pre-vaccination sera, regardless of the vaccine brands (Fig 6C),
336 and the signals were decreased in cells co-expressing Spike-Flag and ORF-Strep (>
337 80%) (Fig 6C). These results indicate that the anti-SARS-CoV-2 human sera, both
338 convalescent and vaccinated, reacts less to the cells co-expressing Spike and ORF8,
339 and their capacity to trigger Fc receptor functions is limited, supporting the model that
340 ORF8 contributes to the survival of SARS-CoV-2-infected cells from the antibody-
341 mediated immunity.

342

343 **ORF8 restricts Spike incorporation during viral assembly and reduces viral
344 infectivity, but limits the reactivity of anti-SARS-CoV-2 human sera towards the
345 infected cells**

346 Next, we examined the effect of ORF8 on mature Spike molecules utilized for viral
347 assembly (Fig 7A). First, we evaluated Spike incorporation into viral particles in a single
348 replication cycle, using a replication-incompetent (VSV-G gene was replaced with the
349 GFP gene), vesicular stomatitis virus (VSV) model (VSVΔG-GFP, or simply VSV
350 hereafter) that has been widely used for SARS-CoV-2 research [16,17]. Cells co-
351 transfected with plasmids encoding Spike or ORF8-Strep were infected with VSV, and
352 the supernatant containing VSV virions that incorporated Spike (referred to as S-VSV
353 hereafter) was evaluated by immunoblot analysis. Significantly decreased Spike signals
354 were detected in the S-VSV particles (normalized by VSV-M (VSV membrane protein))
355 produced in cells co-expressing Spike and ORF8-Strep (S(+ORF8)-VSV) than the S-
356 VSV produced in cells expressing Spike only (Fig 7B).

357 Next, we evaluated the infectivity of the S-VSV virions, which can be assessed by the
358 measuring the percentage of GFP-positive cells after infection (S-VSV encodes GFP).
359 HEK293T A/T cells incubated with the supernatant samples that contain the equal
360 levels of S-VSV particles (confirmed by VSV-M levels) for 16 h (infection causes no cell
361 death within this time frame) were harvested and evaluated for the percentage of the
362 sub-populations of infected (GFP-positive) cells. We observed a significantly lower
363 infectious unit (IU) (< 90 % decrease) in cells incubated with S(+ORF8)-VSV than cells
364 incubated with S-VSV (Fig 7C), indicating a lower infectivity of S(+ORF8)-VSV.

365 Fully infectious SARS-CoV-2 particles harbor up to several dozens of Spike
366 molecules [18]. Theoretically, only a single Spike trimer is required for cell entry [8], and
367 we speculated that the other unreacted Spike molecules upon cellular entry remain at
368 the cell surface. HEK293T A/T cells infected with S-VSV or S(+ORF8)-VSV (GFP-
369 positive) in previous studies were harvested and incubated with an antibody against
370 Spike S2. Cells were further incubated with a fluorophore-conjugated secondary
371 antibody and a LIVE/DEAD viability dye, followed by flow cytometry analysis for the cell-
372 surface Spike levels. Cell-surface Spike signals were easily detected in cells infected
373 with S-VSV (Fig 7D), but reduced in cells infected with S(+ORF8)-VSV (Fig 7D). These
374 results indicated that virus-derived cell-surface Spike is present upon infection and was
375 lower with the viruses produced in the presence of ORF8.

376 Next, we examined the reaction of anti-SARS-CoV-2 sera with infected cells
377 presenting virus-derived cell-surface Spike. The same experiment with anti-SARS-CoV-
378 2 sera (Fig 6) (instead of anti-Spike S2 antibody) showed significantly lower (< 90%)
379 human IgG signals in cells infected with S-VSV than cells infected with S(+ORF8)-VSV
380 (Fig 7E: convalescent) (Fig 7F: vaccinated). These results indicated that anti-SARS-
381 CoV-2 human sera react to the S-VSV-infected cells through virus-derived cell-surface
382 Spike, and that the reaction was limited in cells infected with S(+ORF8)-VSV. These
383 studies support the model that cell entry of virions produced in the presence of ORF8
384 leaves less cell-surface Spike, limiting reaction of anti-SARS-CoV-2 sera to infected
385 cells.

386

387

388 Discussion

389

390 The unprecedented infectivity and transmissibility of SARS-CoV-2 resulted in over 6
391 million deaths, in comparison to hundreds caused by SARS-CoV or Middle east
392 respiratory syndrome. This difference suggests that SARS-CoV-2 has unique virulence
393 mechanisms. Since ORF8 is the SARS-CoV-2 gene that is the least homologous to
394 other coronaviruses [7], we determined if those mechanisms are mediated by ORF8
395 and found that ORF8 controls Spike antigen levels in virions and infected cells.
396 Specifically, ORF8 limits production and maturation of Spike by inhibiting protein
397 synthesis and retaining Spike at the ER. Furthermore, limited Spike levels in virions or
398 infected cells restrict recognition by anti-SARS-CoV-2 antibodies in convalescent or
399 vaccinated individuals, revealing a unique SARS-CoV-2 mechanism that can help
400 evade or delay host sensing of infection.

401 VOCs largely emerged from rapid accumulation of pro-viral mutations, a common
402 trait of RNA-genomic viruses [19]. Interestingly, the amino acid sequence of ORF8 is
403 exceptionally conserved in the VOCs [9], and an ORF8-deficient variant (Δ 382) from the
404 early pandemic existed only transiently [20]. Several studies investigated the possibility
405 that ORF8 has an indispensable pro-viral role in SARS-CoV-2 infection, but reported
406 otherwise. The Δ 382 strain replicates faster *in vitro* [20], but there is no significant
407 change in the transcriptome of lung organoids infected with Δ 382 [21]. ORF8 inhibits
408 production of a viral component [22]. Consistently, we found that ORF8 restricts Spike
409 incorporation into viral particles (Fig 7B), and in turn, the virions were less infectious
410 (Fig 7C). However, our studies also revealed the ancestral ORF8 and VOC-derived

411 ORF8 limit reactivity of anti-SARS-CoV-2 human sera to infected cells. Therefore, our
412 studies represent a SARS-CoV-2 strategy to control Spike antigen levels, retained
413 through the course of evolution.

414 Limiting the capacity for host protein synthesis is a common viral strategy [23],
415 hijacking building blocks and energy for synthesis of viral proteins and crippling cellular
416 immune responses by blocking biosynthesis of immunity signaling factors [23]. Inhibition
417 of host protein synthesis was consistently reported in SARS-CoV-2 infection [24],
418 although the detailed molecular mechanism remains unexplored. Our studies revealed
419 that ORF8 is the corresponding SARS-CoV-2 factor and sufficient to induce inhibition of
420 host protein synthesis (> 90%) (Fig 4F, 4G) without requiring other SARS-CoV-2
421 factors. Since total Spike levels did not decrease with the non-ER ORF8 mutant (Fig
422 3A), we speculate that protein synthesis inhibition is linked to ORF8 cellular actions at
423 the ER.

424 Cell-surface Spike and syncytia formation are evident in COVID-19 patients [14] and
425 may allow viral spread in a manner obviating the full viral replication cycle. However,
426 syncytia formation in SARS-CoV-2 infection induces innate immune responses through
427 the cGAS-STING pathway [25]. Our finding that ORF8 limits syncytia formation
428 suggests that ORF8 limits the syncytia-mediated viral spread, but prevents syncytia-
429 dependent induction of innate immune responses. That is consistent with our model that
430 ORF8 creates a more secured viral replication environment at the expense of infectivity.

431 In addition to triggering Fc receptor functions, cell-surface Spike antigens may
432 contribute to activation of immune cells [26]. In particular, natural killer (NK) cells, key
433 players of host immune responses to SARS-CoV-2 infection [27], are activated by
434 integration of various activating and inhibitory receptor signals [26], including IgG Fc-
435 specific CD16 receptor that activate NK cells upon interaction with Spike-bound IgG
436 molecules [3,26]. On the other hand, NK cell activation can be regulated by the levels of
437 cell-surface MHC-I molecules of infected cells. Suppressing MHC-I presentation of viral
438 antigens, as demonstrated with SARS-CoV-2 ORF8 [28], is a powerful immune evasion
439 strategy of several viruses [29] that, however, is programmed to be counteracted
440 through activation of NK cells [30]. Specifically, the MHC-I-specific, killer-cell
441 immunoglobulin-like receptor (KIR) relays inhibitory signals upon interaction with MHC-I
442 [30]. Therefore, lack of cell-surface MHC-I molecules restricts the KIR inhibitory inputs,
443 unleashing NK cells to activation. We speculate that limited Spike antigen levels
444 suppress the CD16 activating signals that can, in part, counter-balance against the KIR-
445 dependent activation, therefore, maintaining the NK cell-activating stimulations below
446 the threshold.

447 Our studies revealed that ORF8 controls Spike antigen levels by inhibiting global
448 protein synthesis and interfering with ER-Golgi process. We speculate that these
449 cellular actions can be extended to a large number of host proteins. Especially, major
450 immune signaling factors and receptors that are translocated into the ER for processing
451 [31]. Therefore, ORF8 may interrupt cellular communications regulating host immune
452 responses. In addition, while ORF8 inhibition of global protein synthesis could limit
453 production of immune factors, and it may also reserve cellular resources for viral
454 production. Lastly, ORF8 cellular actions reduce Spike levels in virions and infected
455 cells, limiting cell-surface Spike antigen levels at a moment as early as viral cell entry
456 and throughout the viral replication cycle. We speculate that this can help infected cells

457 evade antibody-mediated phagocytosis and cytotoxicity actions for extended viral
458 production.

459 In summary, our studies suggest a new SARS-CoV-2 model limiting antibody-
460 mediated immunity. We highlight our finding that limiting levels of Spike, a key viral
461 factor, could be pro-viral, which had been previously explored but not experimentally
462 demonstrated [22]. Our unexpected finding of the ORF8 inhibition of the global host
463 protein synthesis suggests additional pro-viral roles of ORF8. Future studies are
464 required to characterize the mechanism underlying protein synthesis inhibition and
465 ORF8's effects on biosynthesis of host factors and metabolism. Lastly, our speculative
466 model that ORF8 promotes immune evasion could be further explored in animal model.
467 These future studies may lead to new therapeutics to neutralize the pro-viral ORF8
468 effect, which can complement ongoing countermeasures against the VOCs and help
469 prevent re-infections or breakthrough infections.
470
471

472 **Materials and Methods**

473

474 **Computational prediction of ORF8 subcellular localization**

475 The whole ORF8 amino acid sequence (WA1/2020) [7] was analyzed using Protter
476 (ETH, Zürich).

477

478 **Plasmid source and construction**

479 Several plasmids were a kind gift from Nevan Krogan [7] (ORF8-Strep (Addgene #: 141390),
480 Spike-Strep, eGFP-Strep (Addgene #: 141395)), Hyeran Choe [12] (Spike-
481 Flag (Addgene #: 156420), Spike-Flag FKO (Addgene #: 159364), Flag-Spike-Flag
482 (Addgene #: 156418), and David Nemanzee [32] (SARS-CoV Spike ΔC28 (Addgene #: 170447),
483 Spike ΔC18 (Addgene #: 170442)). ORF8-Flag was constructed by replacing
484 the double-Strep tags of ORF8-Strep with a nucleotide sequence
485 (GACTATAAAGATGATGATGATAAA) encoding the Flag epitope (DYKDDDDK). SARS-
486 CoV ORF8-Strep plasmids (ORF8ab-Strep, ORF8a-Strep, ORF8b-Strep) were
487 constructed by replacing the ORF8 of ORF8-Strep with the corresponding genomic
488 nucleotide sequence originated from GZ02 (ORF8ab) or BJ01(ORF8a, ORF8b). ORF8-
489 Strep S84L was constructed by replacing TCC with CTG at S84 of ORF8-Strep. The
490 non-tagged Spike was constructed by introducing the C-terminal cytoplasmic tail (C18)
491 to Spike ΔC18. The non-tagged ORF8 was constructed by deleting the double Strep
492 tags from ORF8-Strep. The GFP-Flag was constructed by replacing the ORF8-Strep of
493 ORF8-Strep with the GFP-Flag open reading frame sequence (Sino Biological). ORF8-
494 Flag I9P was constructed by replacing ATT with CCT at I9 of ORF8-Flag. The ORF8-
495 Flag Δ1-17 was constructed by eliminating the first 17 N-terminal amino acids from
496 ORF8-Flag. The fluorescence transfection reporter plasmids were constructed by
497 replacing the ORF encoding Puro^R in the ORF8-Strep derived plasmids with a
498 nucleotide sequence encoding eGFP or mCherry (SnapGene).

499

500 **Mammalian cell lines and culture condition**

501 Human lung epithelia-derived A549 (ATCC, CCL-185) or human embryonic kidney-
502 derived HEK293T (ATCC, CRL-3216) cells were maintained by incubating in Dulbecco's

503 Modification of Eagle's Medium (DMEM) supplemented with 10% fetal bovine serum
504 (Sigma-Aldrich) or Serum Plus II (Sigma-Aldrich), 1% penicillin/streptomycin (Sigma-
505 Aldrich), in a humidified environment at 37 °C with 5% CO₂. Cells were detached by
506 incubating with trypsin-EDTA (0.05%) (Thermo Fisher) and seeded in well plates at an
507 appropriate cell density not exceeding 90%. When firm cellular attachment is required
508 with HEK293T cells, plates were pre-coated with rat-tail purified collagen (Gibco) as
509 described by the manufacturer.

510

511 **Transfection for ectopic gene expression**

512 Cellular transfection followed a standard forward-transfection method, which was
513 validated in our studies to be experimentally similar with the reverse-transfection
514 method. Briefly, transfection mixtures were prepared by mixing plasmids (1 µg total)
515 with 1 µL of P3000 reagent (Thermo Fisher), and then with 1 µL of Lipofectamine 3000
516 reagent (all pre-diluted in Opti-MEM, (Thermo Fisher)) per well in 24-well plates. After a
517 10-min incubation at room temperature, the mixture was added to cell suspensions
518 while seeding onto well plates. For co-transfection, the ORF8-encoding plasmids and
519 the Spike-encoding plasmids were mixed at a ratio of 1:1 or 4:1 (for Spike-Flag
520 derivatives, to tune down the expression level to other Spike constructs), which is in line
521 with the studies that demonstrated higher ORF8 expression levels than Spike
522 expression levels within SARS-CoV-2-infected cells [33].

523

524 **Fluorescence microscopy analysis**

525 Mammalian cells that were seeded onto eight-well chamber slides (Thermo Fisher,
526 Nunc LabTek II CC2) were fixed in PBS-buffered 4% paraformaldehyde (Electron
527 Microscopy Sciences) at room temperature for 15 min, and then permeabilized in the
528 blocking buffer (1% BSA and 0.1% Triton X-100 in PBS) at room temperature. After 10
529 min, the cells were washed twice with the blocking buffer and incubated at 4 °C with
530 primary antibodies (mouse anti-Strep, Qiagen, Cat #: 34850, 1: 150 dilution) (rabbit anti-
531 PDI, Cell Signaling, Cat #: 3501, 1: 200 dilution) (rabbit anti-Flag, Cell Signaling, Cat #:
532 14793, 1:250 dilution) (mouse anti-PDI, Thermo Fisher, Cat #: MA3-019, 1:200 dilution)
533 (mouse anti-Spike S2, Thermo Fisher, Cat #: MA5-35946, 1: 500 dilution) (rabbit anti-
534 TGN46, Proteintech, Cat #: 13573-1-AP, 1:200 dilution). After overnight incubation, the
535 cells were washed three times with the blocking buffer and incubated at room
536 temperature with fluorophore-conjugated secondary antibodies (goat anti-mouse IgG
537 Alexa 488, Thermo Fisher, Cat #: A11001, 1:500 dilution) (goat anti-rabbit IgG Alexa
538 555, Thermo Fisher, Cat #: A21428, 1:500 dilution) with counterstaining dyes (DAPI
539 (Sigma): 100 ng/mL, CytoPainter Phalloidin-iFluor 647 (Abcam): 1:1000 dilution). After
540 30 min, the cells were washed three times with the blocking buffer and mounted using
541 Prolong Glass Antifade (Thermo Fisher). The slides were imaged using a fluorescence
542 confocal microscope (Carl Zeiss, LSM700) with a 63 X or 40X objective (Carl Zeiss) and
543 analyzed using ZEN Black edition (ver. 2.3) Software.

544

545 **Subcellular fractionation**

546 Cells were subcellularly fractionated using the ER isolation kit (Sigma, ER0100) as
547 instructed by the manufacturer's protocol. Briefly, cells plated on two 15-cm plates were
548 suspended in 1 X hypotonic extraction buffer, and incubated at 4 °C for swelling. After

549 20 min, the cells were centrifuged at 600 x g for 5 min and resuspended in 1 X isotonic
550 extraction buffer. The cells were mechanically homogenized using a 7-mL Dounce
551 homogenizer (10 strokes), and the lysate was centrifuged at 1,000 x g 10 min at 4 °C for
552 removal of nuclear fractions. The supernatants were further centrifuged at 12,000 x g for
553 15 min at 4 °C, resulting in mitochondria-enriched pellet (washed two times with PBS
554 before analysis). For isolation of the ER, the supernatant was ultracentrifuged at
555 100,000 x g at 4 °C for 60 min, and the ER-enriched pellet were resuspended in 100 µL
556 of isotonic extraction buffer (ER fraction), which was analyzed by immunoblot, or further
557 incubated in the presence of freshly prepared 0.035 or 0.2% digitonin (Sigma) for 45
558 min at 4 °C for evaluation of the differential solubility.
559

560 **Immunoblot analysis**

561 Cell lysates were prepared by directly lysing monolayers of cells with western blot (WB)
562 lysis buffer (2% SDS; 50 mM Tris, pH 6.8; 0.1% bromophenol blue; 10% glycerol; 10%
563 β-mercaptoethanol (β-ME), all purchased from Sigma-Aldrich) or non-reducing WB lysis
564 buffer (20 mM N-ethylmaleimide (NEM); 2% SDS; 50 mM Tris, pH 6.8; 0.1%
565 bromophenol blue; 10% glycerol; all purchased from Sigma-Aldrich). After 10 min, the
566 lysates were heat-denatured by incubating at 95 °C for 10 min. The proteins in the
567 lysates were separated by SDS-polyacrylamide gel electrophoresis (SDS-PAGE)
568 electrophoresis using gradient (4–20 %) PAGE gels (Bio-Rad, Mini-PROTEAN TGX),
569 with a molecular mass marker (Bio-Rad) (Precision Plus Protein, Kaleidoscope, Cat #:
570 1610375). The proteins were electro-transferred to a polyvinylidene fluoride membrane
571 (Millipore) using Turbo-Blot Turbo transfer system (settings: mixed MW) (Bio-Rad). After
572 transfer, the blot was incubated at 4 °C with primary antibodies (rabbit anti-Flag, Cell
573 Signaling, Cat #: 14793, 1:3,000 dilution) (rabbit anti-Calnexin, Cell Signaling, Cat #:
574 4691, 1:2,000 dilution) (rabbit anti-COX4, Cell Signaling, Cat #: 4850, 1:2,000 dilution)
575 (rabbit anti-β-actin, Cell Signaling, Cat #: 5057, 1:5,000 dilution) (rabbit anti-Calreticulin,
576 Cell Signaling, Cat #: 12238, 1:2,000 dilution) (mouse anti-Spike S2 or SARS-CoV
577 Spike, Thermo Fisher, Cat #: MA5-35946, 1:2,000 dilution) (rabbit anti-anti-Spike S2,
578 Cell Signaling, Cat #: 27620, 1:2,000 dilution) (rabbit anti-Spike S1, Cell Signaling, Cat
579 #: 99423, 1:2,000 dilution) (mouse anti-Strep, Qiagen, Cat #: 34850, 1:2,000 dilution)
580 (rabbit anti-ORF8, GeneTex, Cat #: GTX135591, 1:1,000 dilution) (mouse anti-VSV-M,
581 Kerafast, Cat #: EB0011, 1:100,000 dilution), prepared in WB blocking buffer (5% skim
582 milk (Bio-Rad) in Tris-buffered (pH 7.4) saline supplemented with 0.1% Tween 20
583 (Sigma-Aldrich) (TBS-T)). After overnight incubation, the blot was washed with gentle
584 shaking with TBS-T twice (3 min each), and then incubated at room temperature with
585 HRP-conjugated secondary antibodies ((goat anti-rabbit HRP conjugated, Cell
586 Signaling, Cat #: 7074, 1:5,000 dilution) (goat anti-mouse HRP conjugated, Cell
587 Signaling, Cat #: 7076, 1:5,000 dilution) prepared in the WB blocking buffer. After 1 h,
588 the blot was washed with TBS-T with gentle shaking in TBS-T five times (5 min each).
589 The proteins are visualized by using luminescence HRP substrates (Thermo Fisher)
590 (SuperSignal West, Pico and Femto mixed at 1:1 ratio), which were captured using
591 ChemiDoc XRS+ imaging system (Bio-Rad), imaged and quantified using ImageLab
592 (Bio-Rad) (ver. 6.1.0.).
593

594 **Immunoprecipitation of Flag-tagged proteins**

595 Monolayers of mammalian cells were briefly washed with phosphate-buffered saline
596 (PBS) (Corning) and then lysed by incubating at 4 °C with IP lysis buffer (20 mM NEM,
597 1% NP-40 alternative (Millipore) in IP buffer base (50mM Tris-HCl (pH 7.4), 150 mM
598 NaCl), supplemented with 1 X Halt™ Protease and Phosphatase Inhibitor Cocktail
599 (Thermo Fisher). After 5 min, the lysates were collected and the cell debris were
600 removed by centrifuging at 300 x g for 3 min. The clear supernatants were collected and
601 prepared for immunoblot by mixing with the equivalent volume of 2 X WB lysis buffer (or
602 2 X non-reducing WB lysis buffer), or, further incubated with anti-Flag magnetic beads
603 (Sigma-Aldrich, Cat #: M8823) at room temperature. For pre-treatment, the lysates were
604 incubated with 2 % SDS (for denaturation) at 95 °C for 5 min, in the absence or
605 presence of 0.2 % β-ME (for reduction). After 1 h, the mixture was separated using a
606 magnetic separator and the beads were washed with IP wash buffer (0.05 % NP-40
607 substitute in IP buffer base) three times, and incubated in the WB lysis buffer (or the
608 non-reducing WB lysis buffer) at 95 °C. After 5 min, the proteins eluted from the beads
609 were analyzed by immunoblot.

610
611 **Blocking furin cleavage of Spike**
612 HEK293T cell suspension were seeded onto well plates in the presence of 50 μM CMK
613 (Tocris). After 18 h upon confirming no signs of morphological change, the cells were
614 lysed for immunoblot analysis.

615
616 **Measurement of mRNA levels**
617 Total cellular RNA samples were prepared using a Quick-RNA Mini-Prep (ZYMO
618 research, Cat #: R1055). RNAs were then reverse-transcribed into cDNAs using
619 iScript™ Reverse Transcription Supermix (BioRad, Cat #: 1708841). The relative
620 abundance of Spike transcripts was quantified by quantitative real-time PCR (qPCR)
621 using CFX384 machine (BioRad) with a fluorescence reporter (Thermo Fisher, Maxima
622 SYBR Green/ROX, Cat #: K0223) and a pair of Spike-Flag specific primers (forward:
623 GGTGCTGACTGAGAGCAATAA, reverse: CACATTAGAGGCCGGTTGAGTAG,
624 designed by using PrimerQuest (IDT)), which was quantified by calculating the $2^{-\Delta Ct}$
625 (normalized by the relative signals corresponding to β-actin in a separate qPCR). A
626 robust ORF8-Strep transcription was confirmed by RT-qPCR in cells transfected for co-
627 expressing Spike-Flag and ORF8-Strep.

628
629 **Flow cytometry analysis**
630 Mammalian cells were briefly washed with PBS and incubated with Accutase (Gibco) at
631 37 °C. After 3 min, detachment of cells was aided by gentle pipetting after addition of 2
632 times the volume of ice-cold FC buffer (1% BSA in ice-cold PBS). The cells were
633 transferred to a V-bottomed 96-well plate and centrifuged using a bucket rotor at 150 x
634 g at 4 °C for 1 min. The cells were resuspended in 150 μL of FC buffer by gentle
635 pipetting. The fluorescent signals from individual cells were detected using a
636 multichannel flow cytometer (Cytek, Aurora), and measured using SpectroFlo (Cytek,
637 version 3.0.1). The raw flow cytometry data was rendered using FlowJo (ver. 10.8.1.)
638 (BD) and GraphPad Prism (ver. 9.0) (GraphPad Software).

639
640 **Measurement of protein synthesis activity**

641 Cells were pre-incubated in the absence or presence of 10 µg/mL of puromycin
642 (Sigma). After 5 min, the culture medium was removed, and the cells were incubated in
643 DMEM lacking glutamine, methionine, and cysteine (Thermo Fisher), supplemented
644 with 4 mM L-glutamine, 200 µM L-cysteine, and 50 µM HPG (Jena Bioscience) in the
645 absence or presence of 10 µg/mL of puromycin at 37 °C with 5% CO₂ in a humidified
646 environment. After 30 min, the cells were collected as described under the “Flow
647 cytometry analysis”. The cells were fixed by incubating in PBS-buffered 4%
648 paraformaldehyde (Electron Microscopy Sciences) at room temperature for 15 min, and
649 then permeabilized in 1 X Saponin-based permeabilization buffer (Thermo Fisher). After
650 10 min, the cells were centrifuged at 150 x g for 1 min, and then resuspended in the
651 labeling buffer (prepared using components in the Click-iT Plus EdU Alexa Fluor 594
652 imaging kit (Thermo Fisher)). After 30 min, the cells were centrifuged at 150 x g for 1
653 min and resuspended in 150 µL of FC buffer for flow cytometry analysis. The
654 subpopulation of cells that are singular (by gating FCS-A/SSC-A, then FCS-A/FCS-W),
655 and transfection-positive (eGFP positive) were evaluated for the fluorescence signals
656 corresponding to the cellular incorporated HPG.
657

658 **Evaluation of syncytia formation**

659 Suspension of HEK293T A/T cells were seeded onto eight-well chamber slides with a
660 transfection mixture. After 16 h, the cells were prepared and evaluated as described
661 under the “Fluorescence microscopy analysis”.

662 **Measurement of the cell-surface Spike levels or reactivity of anti-SARS-CoV-2 663 human sera**

664 Cell pellets in a V-bottomed 96 plate, prepared as described under the “Flow cytometry
665 analysis”, were resuspended in 100 µL of FC buffer containing primary antibodies
666 (mouse anti-Spike S2, Thermo Fisher, Cat #: MA5-35946, 1:500 dilution) (mouse anti-
667 Flag M2, Sigma, Cat #: F1804, 1: 500 dilution), or anti-SARS-CoV-2 human sera (1:100
668 dilution) (COVID-19 negative, RayBiotech, Cat #:CoV-VP1-S-100) (COVID-19
669 convalescent, Innovative Research, Cat #: ISERSCOV2P100UL) (Vaccinated,
670 RayBiotech, Cat #: CoV-VP1-S-100, CoV-VM1-S-100) (Supplementary Table 1). After a
671 1-h incubation at 4 °C with occasional shaking, the cells were washed two times by
672 centrifuging at 150 x g for 1 min and then resuspending in 100 µL of FC buffer. After
673 washing, the cell pellets were resuspended in 100 µL of FC buffer containing
674 LIVE/DEAD violet dye (Thermo Fisher, 1:1,000 dilution) and secondary antibodies (goat
675 anti-mouse IgG Alexa 647 conjugated, Thermo Fisher, Cat #: A28181, 1:500 dilution)
676 (goat anti-human IgG Fc Alexa 488 conjugated, Thermo Fisher, Cat #: H10120) (goat
677 anti-human IgG (H + L) Alexa 647 conjugated, Thermo Fisher, Cat #: A21445, 1:500
678 dilution). After 30 min, the cells were washed once by centrifuging at 150 x g for 1 min
679 and then resuspending in 150 µL of FC buffer by gentle pipetting. The samples were
680 then analyzed by flow cytometry with a gating strategy to specifically evaluate the sub-
681 populations of singular (by gating FCS-A/SSC-A, then FCS-A/FCS-W), viable
682 (LIVE/DEAD staining-negative), and transfection-positive (eGFP- or mCherry-positive)
683 cells for the fluorescence signals corresponding to cell-surface Spike or cell-surface-
684 bound IgGs derived from the anti-SARS-CoV-2 sera.
685

687 **Measurement of relative levels of Spike translocation to cell surface**
688 Relative cell-surface Spike levels were evaluated as described under the “Measurement
689 of the cell-surface Spike levels or reactivity of anti-SARS-CoV-2 human sera”. Cells for
690 evaluating total cellular Spike levels were prepared by using the intracellular fixation and
691 permeabilization buffer set (eBioScience), followed by the same immunostaining
692 procedure for the cell-surface Spike levels.

693

694 **Experiments using S-VSV**

695 The workflow scheme (Fig 7A) was created with BioRender.com. HEK299T cells were
696 incubated with VSV-G-complemented VSVΔG-GFP (G*-VSVΔG-GFP) (Kerafast, Cat #:
697 EH1019-PM) at the infectious unit (IU) of 3. After 20 h, the supernatant was collected,
698 and cell debris were removed by centrifuging at 300 x g for 1 min at room temperature.
699 The clear supernatant containing S-VSV was either concentrated using 100 MWCO
700 Amicon Ultra-centrifugal units for immunoblot analysis, or kept at -80 °C until further
701 infection experiment. For infection, the culture medium containing S-VSV were pre-
702 treated to neutralize any residual G*-VSVΔG-GFP by incubating with anti-VSV-G
703 antibody (Millipore, Cat #: MABF2337, 1:1,000 dilution) for 15 min at room temperature.
704 HEK293T A/T cells that were plated no higher than 90% density were incubated with S-
705 VSV with the targeted IU of 0.1–0.15. After 16 h, the cells were collected and prepared
706 as described under the “Measurement of the cell-surface Spike levels or reactivity of
707 anti-SARS-CoV-2 human sera”. The infectivity was measured by evaluating the
708 percentage of GFP-positive cells, which were also evaluated for the cell-surface Spike
709 levels or reactivity of anti-SARS-CoV-2 human sera. The studies resulted in the IU
710 (infectious unit) less than 0.12 ± 0.01 (s.d.), where, based on a normal Poisson
711 distribution, the probability of cells infected by a single particle is at least 94.1% (by two
712 particles = 5.7%, by three particles = 0.2%), validating a strong linear correlation of the
713 percentage of GFP-positive cells with the infectivity of the viral particles.

714

715 **Quantification and statistical analysis**

716 All experimental data presented in our studies are representative of, or combined from,
717 at least three biologically independent experiments. Immunoblot bands were quantified
718 by densitometry analysis using ImageLab. Pearson’s coefficient between Spike and
719 Golgi was measured within the circular area immediately encompassing the Golgi area,
720 using ZEN Black edition. A total of 30 cells per condition (10 each from experimental
721 replicate) were randomly selected and were subject to analysis. For flow cytometry,
722 signals from > 10,000 corresponding cells after gating were measured to calculate the
723 mean fluorescence intensity (MFI) per cell in each experimental replicate (For S-VSV
724 infected cells, > 1,000 corresponding cells after gating were measured). Statistical
725 analyses were performed using GraphPad Prism, with error bars indicating standard
726 deviations. P values were calculated using either the Students’ *t* test with paired, two-
727 tailed distribution, or, one-way or two-way ANOVA, corrected using either the Dunnett’s
728 or the Tukey’s test. P values smaller than 0.05 were considered statistically significant
729 ($\alpha = 0.05$)

730

731

732 **Acknowledgments**

733 We thank Frank Soveg, Irene Chen and Jennifer Hayashi in Ott lab for discussion,
734 James Hurley at UC Berkeley for intellectual insights, David Gordon at UCSF-Gladstone
735 for the plasmid resources, and Marius Walter and Nicolas Andrews and Rebeccah Riley
736 in Verdin lab for assisting the project. We thank scientists who participated in the QCRG
737 COVID-19 consortium for scientific communications. We thank the morphology core and
738 the flow cytometry core at the Buck Institute for Research on Aging for technical
739 support. This project was financially supported by the internal research funds at the
740 Buck Institute for Research on Aging. M.O. graciously received support from the James
741 B. Pendleton Charitable Trust, Roddenberry Foundation, and P. and E. Taft.

742

743 **Author contributions**

744 I-J.K. and E.V. conceived the project and designed the experiments. I-J.K., Y.L.,
745 M.M.K., and Y.Z. performed experiments. I-J.K. analyzed and rendered the data. M.O.
746 and E.V. provided guidance and funded the project. I-J.K. and E.V. wrote the
747 manuscript.

748

749 **Competing interest**

750 The authors declare no competing interests.

751

752

753 **References**

- 754 1. Carsetti R, Zaffina S, Piano Mortari E, Terreri S, Corrente F, Capponi C, et al. Different Innate and
755 Adaptive Immune Responses to SARS-CoV-2 Infection of Asymptomatic, Mild, and Severe Cases.
756 *Front Immunol.* 2020;11. doi:10.3389/fimmu.2020.610300
- 757 2. Diamond MS, Kanneganti TD. Innate immunity: the first line of defense against SARS-CoV-2.
758 *Nature Immunology.* Nature Research; 2022. pp. 165–176. doi:10.1038/s41590-021-01091-0
- 759 3. Ullah I, Prévost J, Ladinsky MS, Stone H, Lu M, Anand SP, et al. Live imaging of SARS-CoV-2
760 infection in mice reveals that neutralizing antibodies require Fc function for optimal efficacy.
761 *Immunity.* 2021;54: 2143-2158.e15. doi:10.1016/j.jimmuni.2021.08.015
- 762 4. Wang Z, Muecksch F, Schaefer-Babajew D, Finkin S, Viant C, Gaebler C, et al. Naturally enhanced
763 neutralizing breadth against SARS-CoV-2 one year after infection. *Nature.* 2021;595: 426–431.
764 doi:10.1038/s41586-021-03696-9
- 765 5. Zohar T, Alter G. Dissecting antibody-mediated protection against SARS-CoV-2. *Nat Rev Immunol.*
766 2020;20: 392–394. doi:10.1038/s41591-020-0897-1
- 767 6. Wang Q, Guo Y, Iketani S, Nair MS, Li Z, Mohri H, et al. Antibody evasion by SARS-CoV-2 Omicron
768 subvariants BA.2.12.1, BA.4 and BA.5. 2022. doi:10.1101/2022.04.29.22274477
- 769 7. Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, et al. A SARS-CoV-2 protein
770 interaction map reveals targets for drug repurposing. *Nature.* 2020. doi:10.1038/s41586-020-
771 2286-9
- 772 8. Jackson CB, Farzan M, Chen B, Choe H. Mechanisms of SARS-CoV-2 entry into cells. *Nature*
773 *Reviews Molecular Cell Biology.* Nature Research; 2022. pp. 3–20. doi:10.1038/s41580-021-
774 00418-x
- 775 9. Gangavarapu K, Latif AA, Mullen JL, Alkuzweny M, Hufbauer E, Tsueng G, et al. Outbreak.info
776 genomic reports: scalable and dynamic surveillance of SARS-CoV-2 variants 1 and mutations 2.
777 doi:10.1101/2022.01.27.22269965
- 778 10. Keng CT, Tan YJ. Molecular and biochemical characterization of the SARS-CoV accessory proteins
779 ORF8a, ORF8b and ORF8ab. *Molecular Biology of the SARS-CoV-2 Virus.* Springer Berlin
780 Heidelberg; 2010. pp. 177–191. doi:10.1007/978-3-642-03683-5_12
- 781 11. Flower TG, Buffalo CZ, Hooy RM, Allaire M, Ren X, Hurley JH. Structure of SARS-CoV-2 ORF8, a
782 rapidly evolving immune evasion protein. *Proc Natl Acad Sci U S A.* 2021;118.
783 doi:10.1073/PNAS.2021785118/-/DCSUPPLEMENTAL
- 784 12. Zhang L, Jackson CB, Mou H, Ojha A, Peng H, Quinlan BD, et al. SARS-CoV-2 spike-protein D614G
785 mutation increases virion spike density and infectivity. *Nat Commun.* 2020;11.
786 doi:10.1038/s41467-020-19808-4

787 13. Asarnow D, Wang B, Lee WH, Hu Y, Huang CW, Faust B, et al. Structural insight into SARS-CoV-2
788 neutralizing antibodies and modulation of syncytia. *Cell*. 2021;184: 3192-3204.e16.
789 doi:10.1016/j.cell.2021.04.033

790 14. Braga L, Ali H, Secco I, Chiavacci E, Neves G, Goldhill D, et al. Drugs that inhibit TMEM16 proteins
791 block SARS-CoV-2 spike-induced syncytia. *Nature*. 2021;594: 88–93. doi:10.1038/s41586-021-
792 03491-6

793 15. Syed AM, Ciling A, Taha TY, Chen IP, Khalid MM, Sreekumar B, et al. Omicron mutations enhance
794 infectivity and reduce antibody neutralization of SARS-CoV-2 virus-like particles. 2022.
795 doi:10.1073/pnas

796 16. Condor Capcha JM, Lambert G, Dykxhoorn DM, Salerno AG, Hare JM, Whitt MA, et al. Generation
797 of SARS-CoV-2 Spike Pseudotyped Virus for Viral Entry and Neutralization Assays: A 1-Week
798 Protocol. *Front Cardiovasc Med*. 2021;7. doi:10.3389/fcvm.2020.618651

799 17. Nie J, Li Q, Wu J, Zhao C, Hao H, Liu H, et al. Quantification of SARS-CoV-2 neutralizing antibody
800 by a pseudotyped virus-based assay. *Nat Protoc*. 2020;15: 3699–3715. doi:10.1038/s41596-020-
801 0394-5

802 18. Ke Z, Oton J, Qu K, Cortese M, Zila V, McKeane L, et al. Structures and distributions of SARS-CoV-2
803 spike proteins on intact virions. *Nature*. 2020;588: 498–502. doi:10.1038/s41586-020-2665-2

804 19. Peck KM, Lauring AS. Complexities of Viral Mutation Rates. 2018. doi:10.1128/JVI

805 20. Su YCF, Anderson DE, Young BE, Linster M, Zhu F, Jayakumar J, et al. Discovery and genomic
806 characterization of a 382-nucleotide deletion in ORF7B and orf8 during the early evolution of
807 SARS-CoV-2. *mBio*. 2020;11: 1–9. doi:10.1128/mBio.01610-20

808 21. Gamage AM, Sen K, Chan WOY, Liu J, Tan CW, Ong YK, et al. Infection of human Nasal Epithelial
809 Cells with SARS-CoV-2 and a 382-nt deletion isolate lacking ORF8 reveals similar viral kinetics and
810 host transcriptional profiles. *PLoS Pathog*. 2020;16. doi:10.1371/journal.ppat.1009130

811 22. Chou J-M, Tsai J-L, Hung J-N, Chen I-H, Chen S-T, Tsai M-H. The ORF8 Protein of SARS-CoV-2
812 Modulates the Spike Protein and Its Implications in Viral Transmission. *Front Microbiol*. 2022;13.
813 doi:10.3389/fmicb.2022.883597

814 23. Walsh D, Mohr I. Viral subversion of the host protein synthesis machinery. *Nature Reviews
815 Microbiology*. 2011. pp. 860–875. doi:10.1038/nrmicro2655

816 24. Finkel Y, Gluck A, Nachshon A, Winkler R, Fisher T, Rozman B, et al. SARS-CoV-2 uses a
817 multipronged strategy to impede host protein synthesis. *Nature*. 2021;594: 240–245.
818 doi:10.1038/s41586-021-03610-3

819 25. Liu X, Wei L, Xu F, Zhao F, Huang Y, Fan Z, et al. SARS-CoV-2 spike protein-induced cell fusion
820 activates the cGAS-STING pathway and the interferon response. 2022.

821 26. Björkström NK, Strunz B, Ljunggren HG. Natural killer cells in antiviral immunity. *Nature Reviews Immunology*. Nature Research; 2022. pp. 112–123. doi:10.1038/s41577-021-00558-3

822

823 27. Witkowski M, Tizian C, Ferreira-Gomes M, Niemeyer D, Jones TC, Heinrich F, et al. Untimely TGF β responses in COVID-19 limit antiviral functions of NK cells. *Nature*. 2021;600: 295–301. doi:10.1038/s41586-021-04142-6

824

825

826 28. Zhang Y, Chen Y, Li Y, Huang F, Luo B, Yuan Y, et al. The ORF8 protein of SARS-CoV-2 mediates immune evasion through down-regulating MHC-I. *Proc Natl Acad Sci U S A*. 2021;118. doi:10.1073/PNAS.2024202118/-/DCSUPPLEMENTAL

827

828

829 29. Hansen TH, Bouvier M. MHC class i antigen presentation: Learning from viral evasion strategies. *Nature Reviews Immunology*. 2009. pp. 503–513. doi:10.1038/nri2575

830

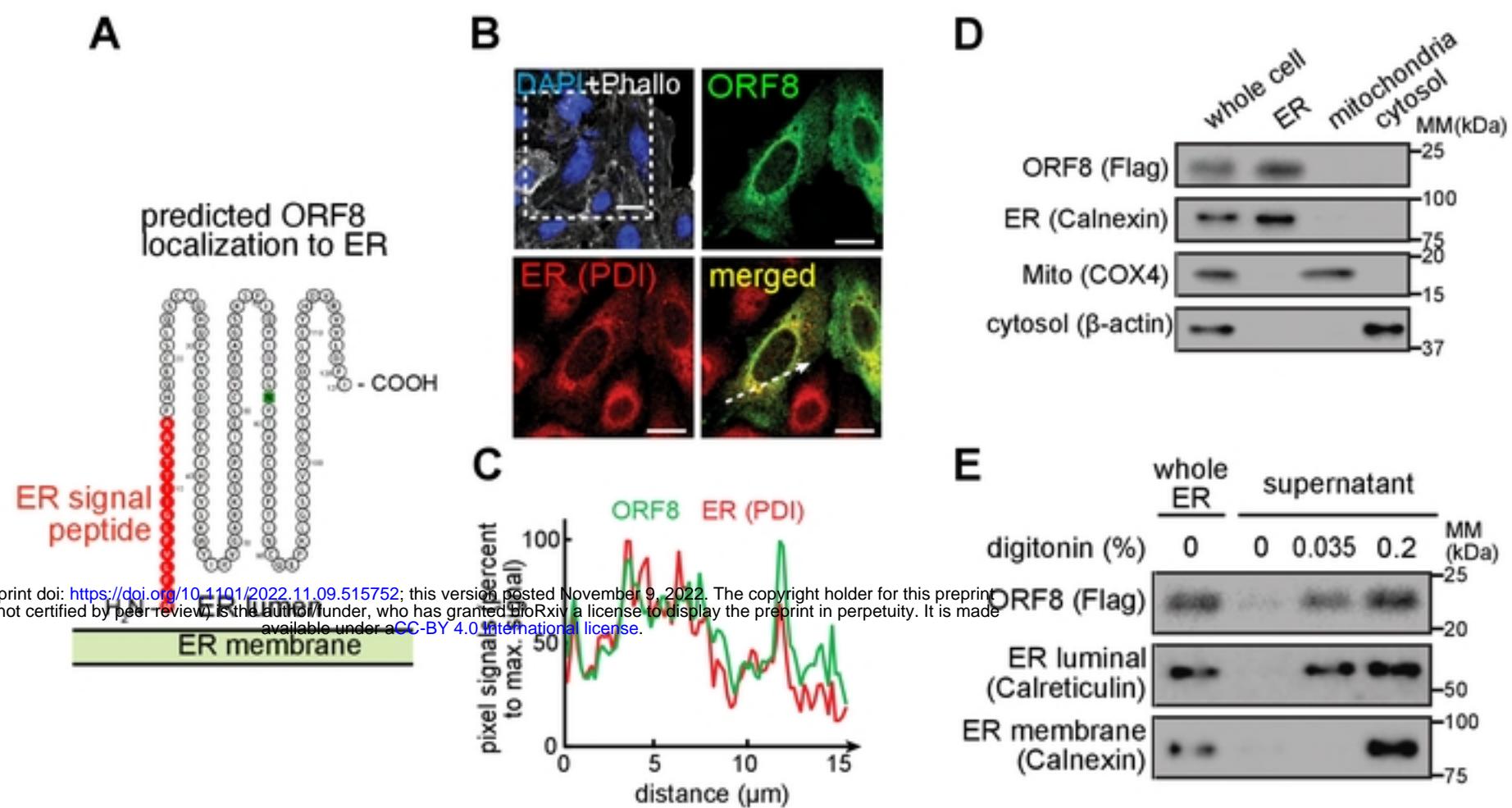
831 30. Vivier E, Ugolini S, Blaise D, Chabannon C, Brossay L. Targeting natural killer cells and natural killer T cells in cancer. *Nature Reviews Immunology*. 2012. pp. 239–252. doi:10.1038/nri3174

832

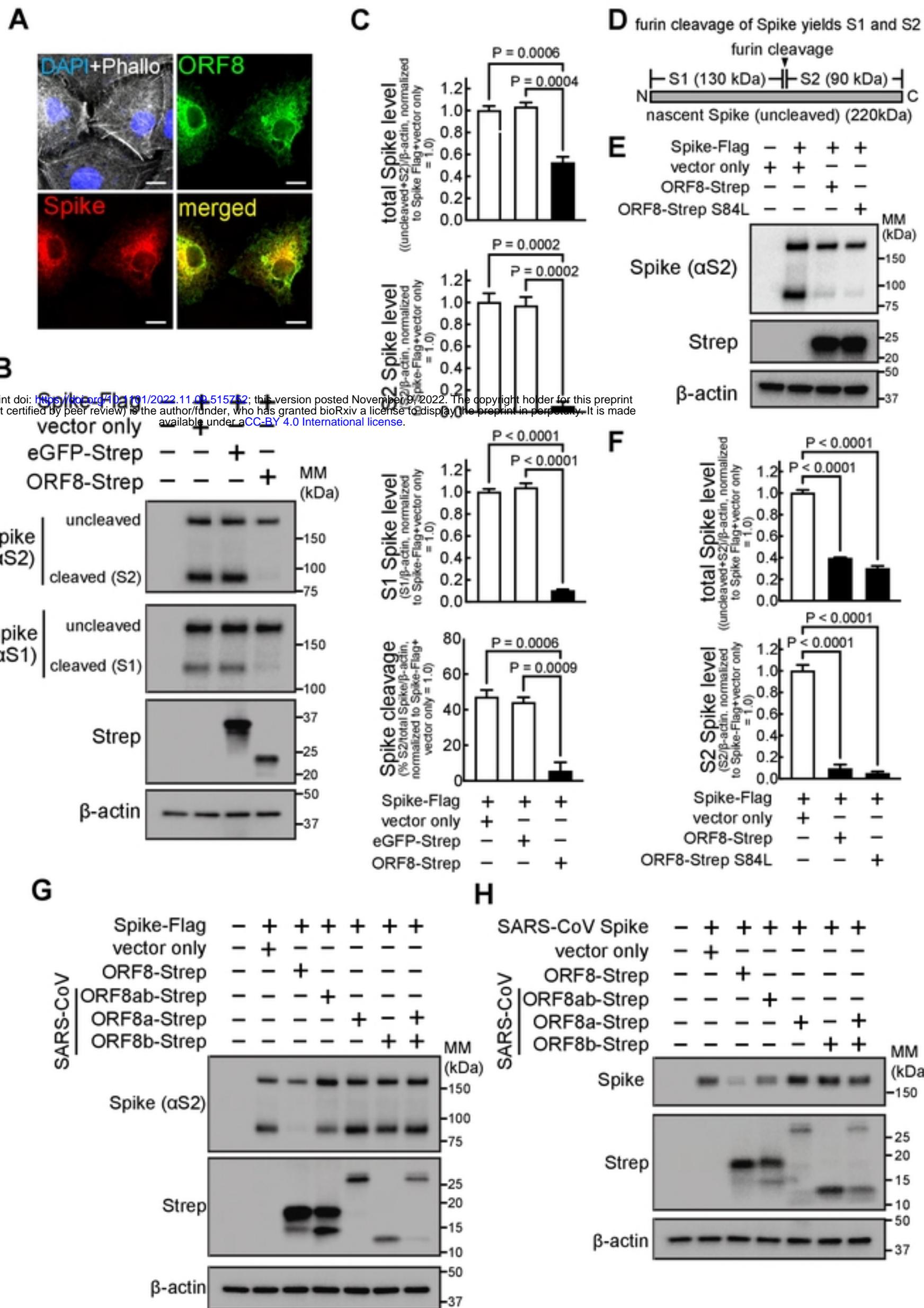
833 31. Lacy P, Stow JL. Cytokine release from innate immune cells: Association with diverse membrane trafficking pathways. *Blood*. 2011. pp. 9–18. doi:10.1182/blood-2010-08-265892

834

835 32. Rogers TF, Zhao F, Huang D, Beutler N, Burns A, He WT, et al. Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model. *Science*. 2020;369: 956. doi:10.1126/SCIENCE.ABC7520


836

837


838 33. Finkel Y, Mizrahi O, Nachshon A, Weingarten-Gabbay S, Morgenstern D, Yahalom-Ronen Y, et al. The coding capacity of SARS-CoV-2. *Nature*. 2021;589: 125–130. doi:10.1038/s41586-020-2739-1

839

840

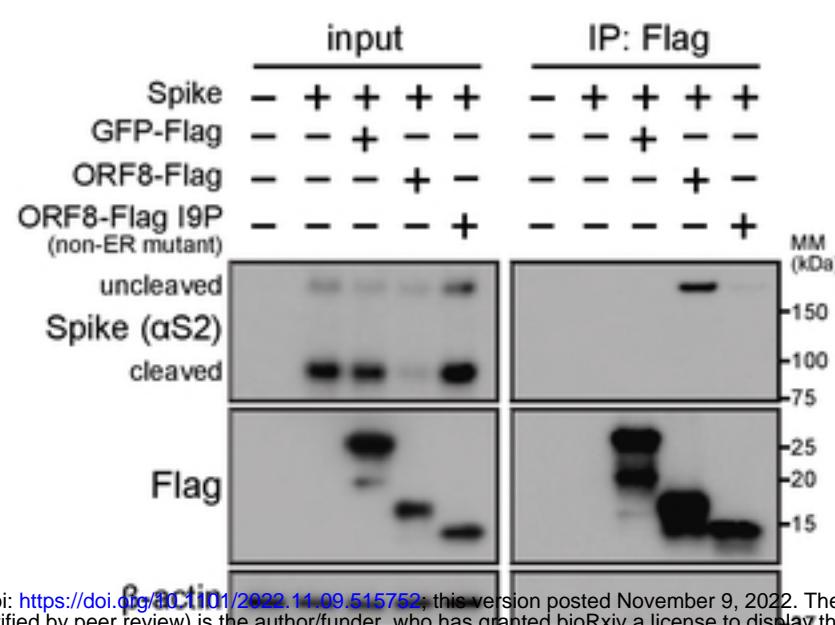
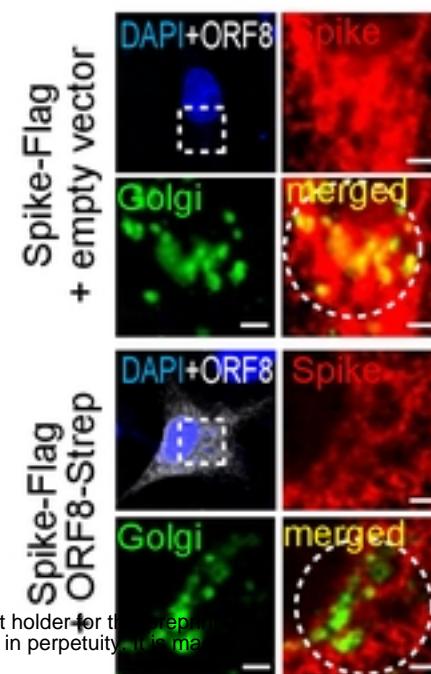
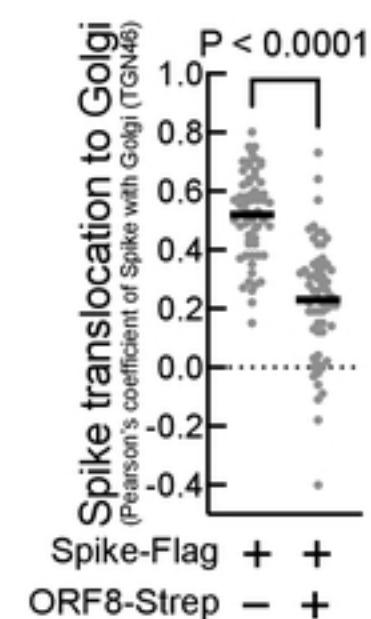
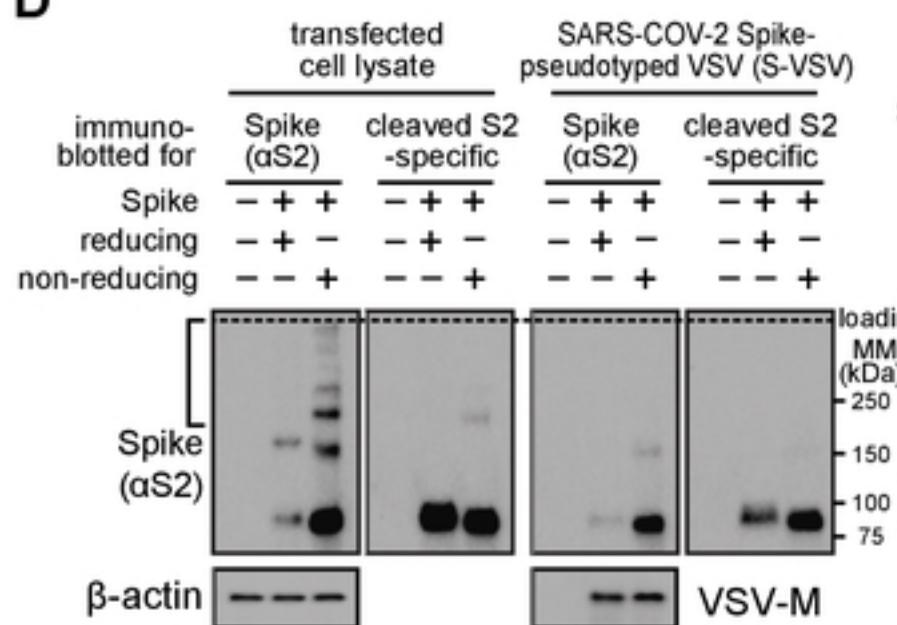
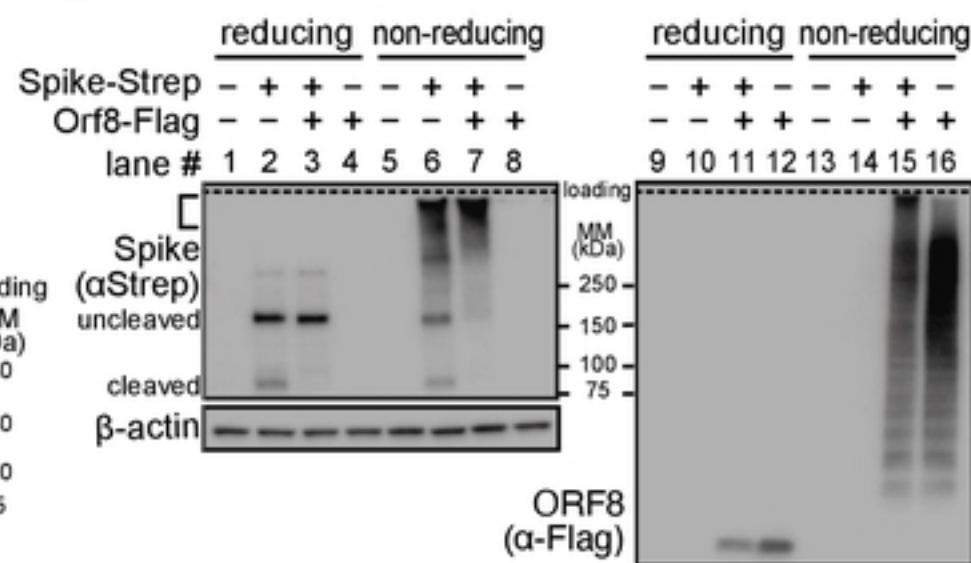
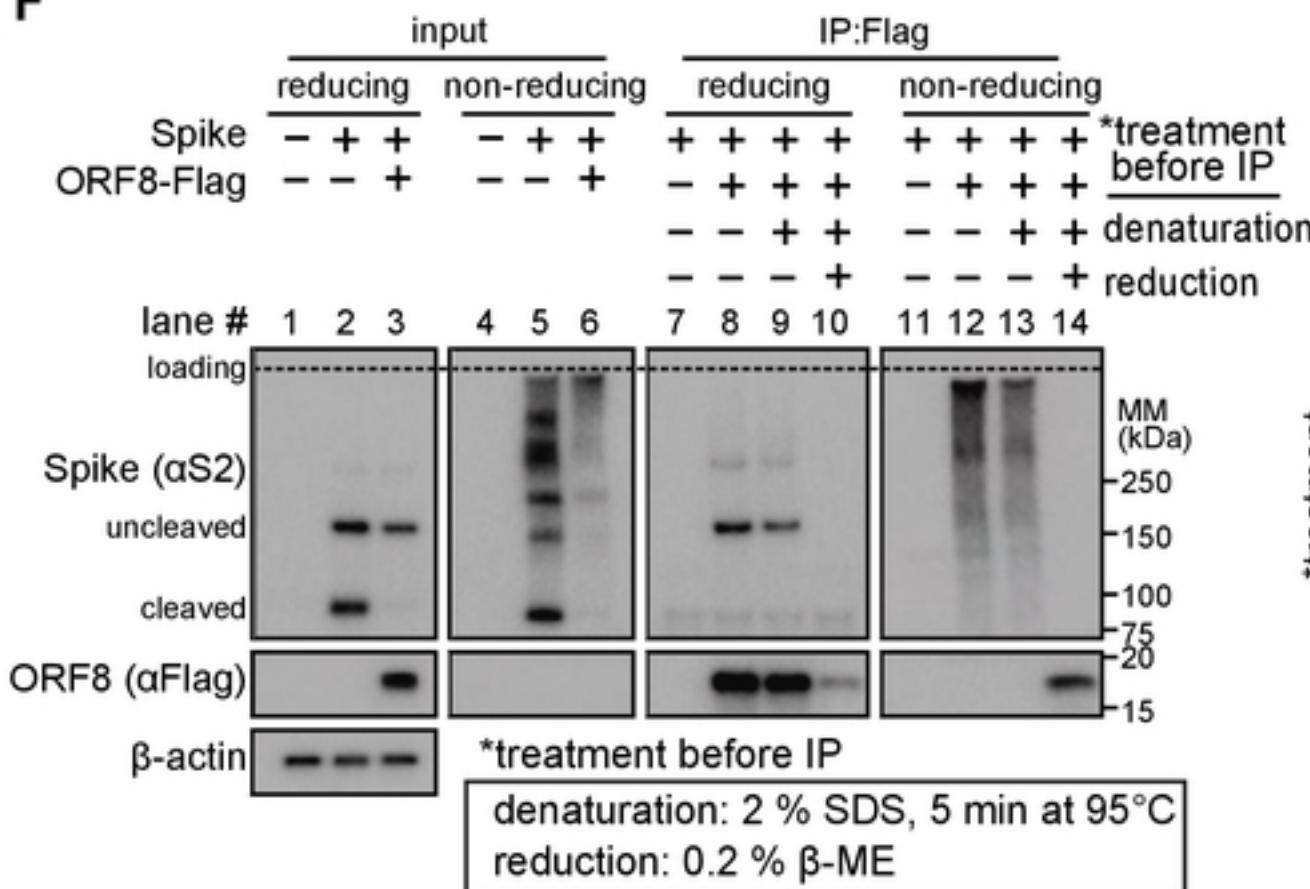
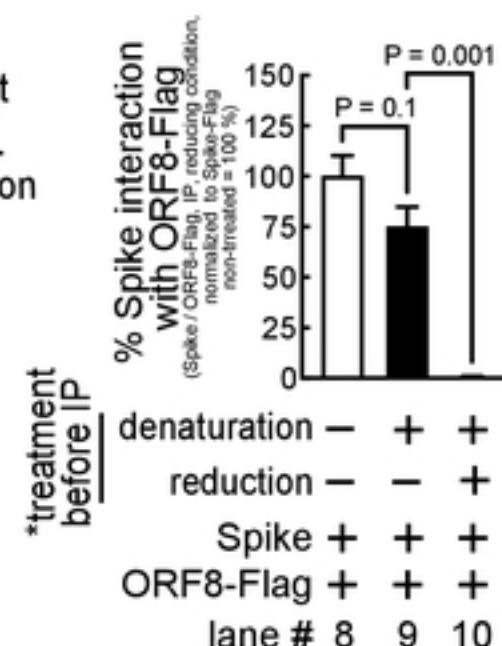
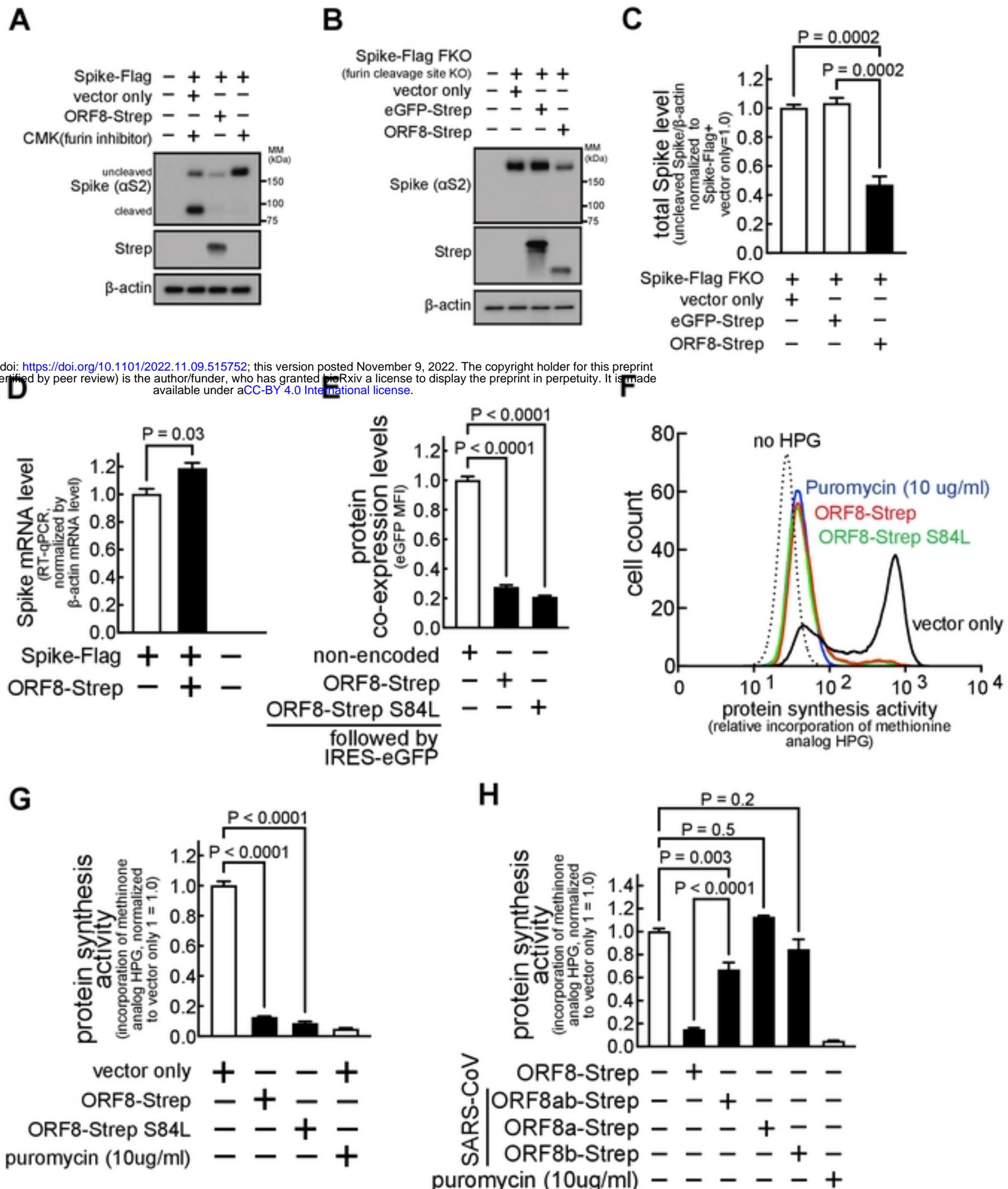








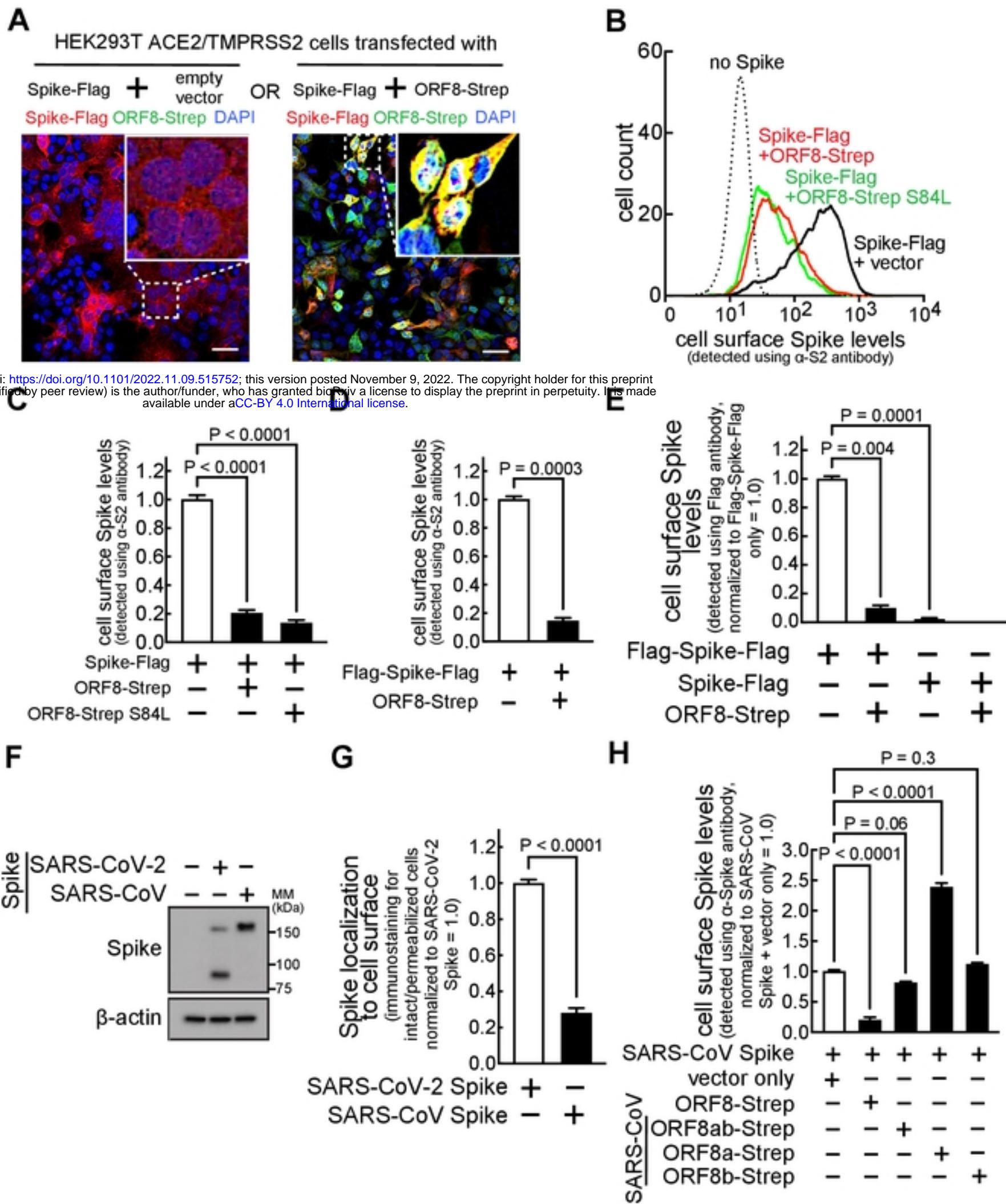
Fig 1. SARS-CoV-2 ORF8 is an ER luminal protein. A. Amino acid sequence analysis (Protter) of ORF8 and prediction as an ER luminal protein (due to the presence of ER signal peptide and the absence of a transmembrane domain). **B.** A549 cells transfected with a plasmid encoding ORF8-Strep were fixed, permeabilized, and immunostained for Strep (ORF8) or PDI (ER marker), which were analyzed by fluorescence confocal microscopy imaging. The cells were counterstained using DAPI and Phalloidin (upper left). The dashed box is digitally enlarged to show colocalization (bottom right) of ORF8 (upper right) and ER (bottom left). White scale bars = 10 μ m. **C.** The pixel intensities of ORF8 and PDI along the dashed arrow in **B** are plotted. **D.** HEK293T cells transfected with a plasmid encoding ORF8-Flag were mechanically lysed and fractionated by differential centrifugation. The indicated subcellular fractions were evaluated by immunoblot analysis for Flag (ORF8), Calnexin (ER marker), COX4 (mitochondrial marker) or β -actin (cytosolic marker). **E.** The ER subcellular fractions in **D** were further incubated with two concentrations of digitonin (0, 0.035, or 0.2%). The fractions were then centrifuged, and the supernatants containing digitonin-solubilized proteins were evaluated by immunoblot analysis as in **D**. **B–E.** The data represent three independent experiments.

Fig 2. ORF8 colocalizes with Spike and modulates Spike protein levels and furin-dependent processing. **A.** A549 cells co-transfected with plasmids encoding Spike-Flag or ORF8-Strep were fixed, permeabilized, and immunostained for Flag (Spike) and Strep (ORF8), which were analyzed by fluorescence confocal microscopy imaging. The cells were counterstained using DAPI and Phalloidin, (upper left), with ORF8 (upper right), Spike (bottom left), or both ORF8 and Spike signals merged (bottom right). White scale bars = 10 μ m. **B, C, E–H.** HEK293T cells co-transfected with plasmids encoding Spike-Flag (**B, C, E–G**) or SARS-CoV-derived Spike (**H**), or, eGFP-Strep (**B, C**), ORF8-Strep (**B, C, E–H**), ORF8-Strep S84L (the B lineage genotype) (**E** and **F**), or SARS-CoV-derived ORF8-Strep genotypes (**ORF8ab, ORF8a, ORF8b, or ORF8a and ORF8b together**) (**G** and **H**) were lysed for immunoblot analysis using antibodies against S2 (detects uncleaved and S2 fragment of Spike, or SARS-CoV Spike) (**B, C, E–H**), S1 fragment (detects uncleaved and S1 fragment of Spike) (**B, C**), Strep (detects eGFP or ORF8s) (**B, C, E–H**), and β -actin (**B, C, E–H**). **D.** Depiction of whole Spike with the site that can be cleaved by furin, yielding S1 and S2 fragments. Apparent immunoblot mass (kDa) is indicated. The data represent or are combined from three independent experiments and are presented as mean \pm s.d.


bioRxiv preprint doi: <https://doi.org/10.1101/2022.11.09.515752>; this version posted November 9, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

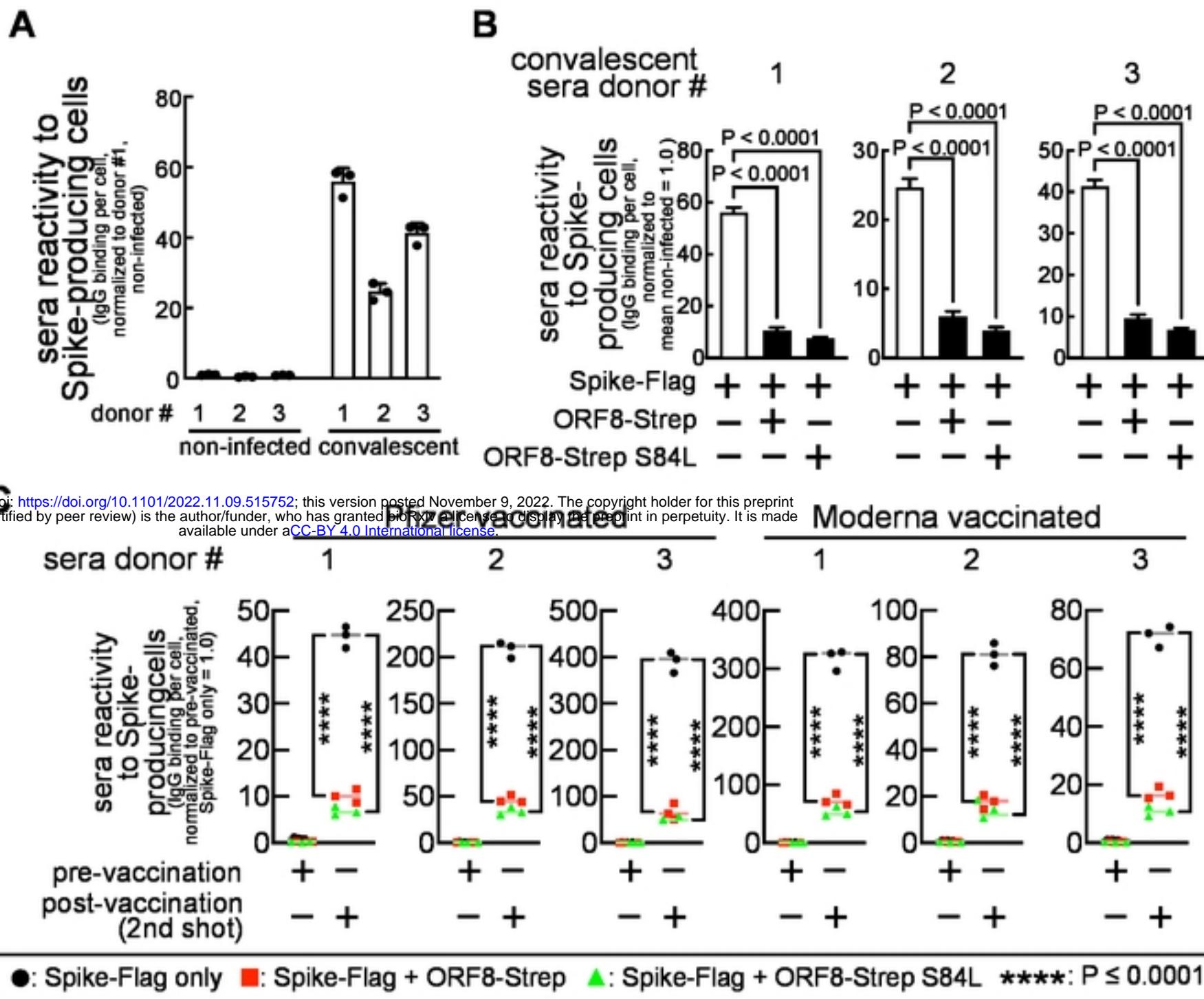
A**B****C****D****E****F****G**

Fig 3. ORF8 covalently interacts with Spike and hampers Spike translocation to the Golgi apparatus. **A, D–G.** HEK293T cells co-transfected with plasmids encoding non-tagged Spike (A, D, F, G), or Spike-Strep (E), and/or GFP-Flag (A), ORF8-Flag (A, E, F, G), ORF8-Flag I9P (non-ER mutant) (A), or ORF8-Flag Δ1-17 (ER signal deletion) (A) were not infected (A, D–G) or infected (D) with VSVΔG-GFP, for production of a hybrid VSVΔG-GFP that incorporated fully mature SARS-CoV-2 Spike (S-VSV). The cells above expressing Spike and/or ORF8 constructs, or, S-VSV collected from the culture medium were lysed and directly analyzed by immunoblots using antibodies against S2 (detects uncleaved and S2 fragment of Spike) (A, D, F), N-terminus of S2 (detects S2 fragment only) (A, D, F), Flag (detects GFP or ORF8) (A, E, F, G), Strep (detects Spike) (E), and β-actin, under reducing or non-reducing (protein interactions through disulfide bonds were preserved) conditions or further incubated with anti-Flag magnetic beads (A, F, and G), without (A, F, and G) or with pre-treatment (F and G) (denaturation: 2% SDS, 5 min at 95 °C, reduction: 0.02% β-ME) of the cell lysates. The proteins that were immunoprecipitated were analyzed by immunoblots under reducing (A, F, G) or non-reducing condition (F and G). **B, C.** A549 (B) or HEK293T (C) cells co-transfected with a plasmid encoding


bioRxiv preprint doi: <https://doi.org/10.1101/2022.11.09.515752>; this version posted November 9, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

ORF8-Flag and a plasmid encoding ORF8 and eGFP (ORF8-Strep-IRES-eGFP) were fixed, permeabilized, and immunostained using antibodies against S2 (detects uncleaved and S2 fragment of Spike) and TGN46 (Golgi marker), which were analyzed by fluorescence confocal microscopy imaging. **B.** The cells that were not expressing or expressing ORF8-Strep (identified by eGFP signals, pseudo-colored to white) were counterstained using DAPI (upper left), with the dashed box that is digitally enlarged to evaluate colocalization (bottom right) of Spike (upper right) and Golgi (TGN46) (bottom left). White scale bars = 2 μm. **C.** Colocalization of Spike and Golgi signals within the circular area encompassing Golgi (dashed circles in B) was analyzed by measuring Pearson's coefficient in 60 cells (combined from three independent experiments, in which 20 cells were randomly selected). The data represent or are combined from three independent experiments and are presented as mean ± s.d. Statistical significance was analyzed using two-tailed Student's t test (C) or one-way ANOVA (Dunnett's test) (G).

Fig 4. Host protein synthesis is inhibited in cells expressing ORF8. A–D. HEK293T cells co-transfected with a plasmid encoding Spike-Flag (A and D) or Spike-Flag FKO (furin cleavage site KO) (B and C), and eGFP-Strep (B and C) or ORF8-Strep (A–D), were lysed after incubation without (B–D) or with (A) CMK (furin inhibitor), and evaluated by immunoblot analysis (A–C) using antibodies against S2 (detects uncleaved and S2 fragment of Spike), Strep (detects GFP or ORF8), or β -actin, or, evaluated by RT-qPCR (D) using primers that are designed against Spike. **E–H.** HEK293T cells transfected with a bicistronic plasmid encoding both eGFP and different ORF8-Strep genotypes (ORF8-Strep, ORF8-Strep S84L, or, SARS-CoV-derived ORF8ab-Strep, ORF8a-Strep, or ORF8b-Strep) were incubated in the absence (E) or presence (F–H) of HPG (methionine analog) without or with puromycin (protein synthesis inhibitor) (F–H). After 30 min, the cells were harvested, fixed, and directly analyzed by flow cytometry for the fluorescence signals of eGFP (E) or permeabilized after fixation and fluorescently labeled for flow cytometry analysis of the incorporated cellular HPG within cells expressing ORF8-Strep (eGFP-positive) (F–H). The data represent or are combined from three independent experiments and are presented as mean \pm s.d. Statistical significance was analyzed using one-way ANOVA (C, E, and G; Dunnett's test, H; Tukey's test) or two-tailed Student's t test (D).


bioRxiv preprint doi: <https://doi.org/10.1101/2022.01.08.515142>; this version posted November 9, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

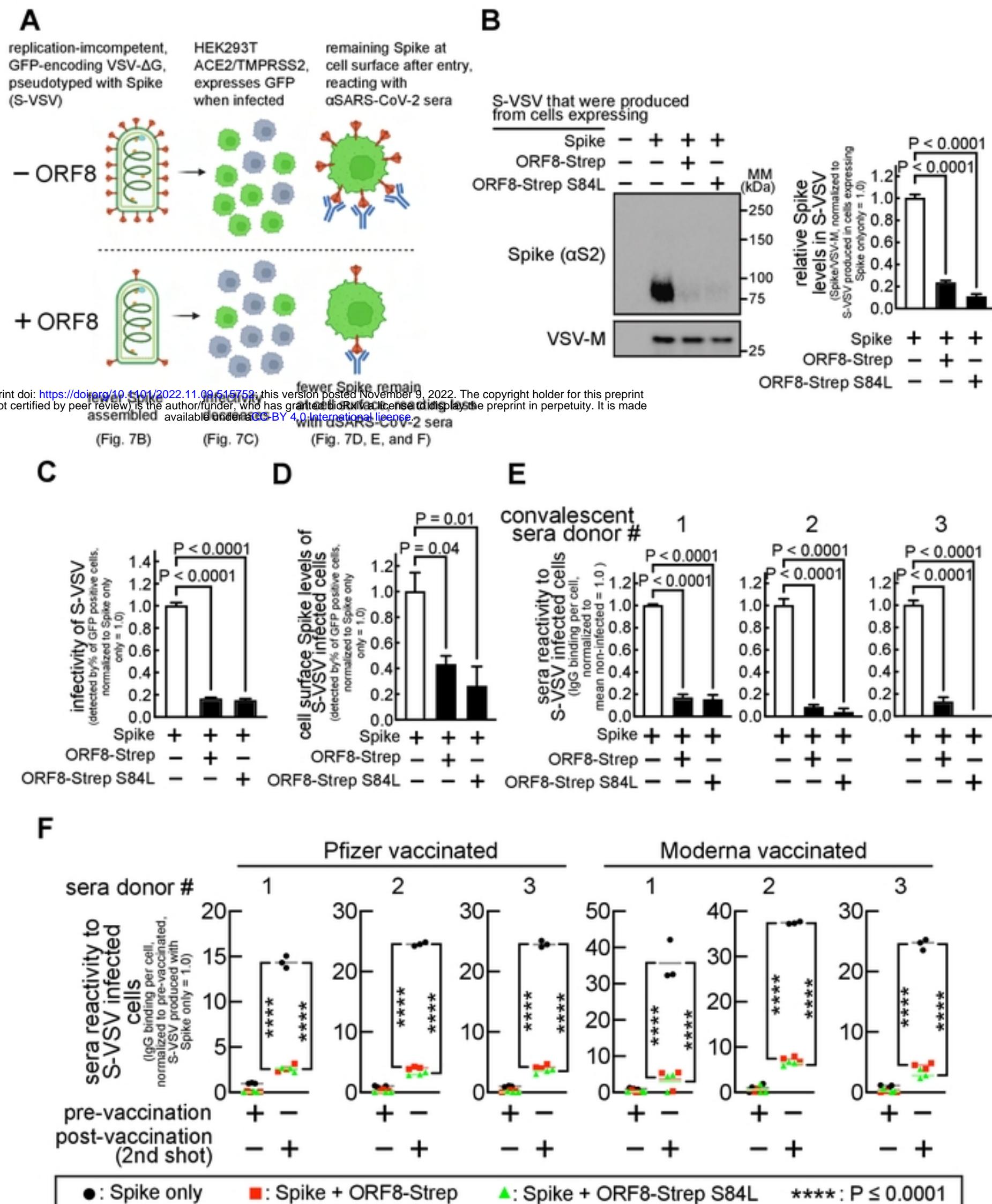

bioRxiv preprint doi: <https://doi.org/10.1101/2022.11.09.515752>; this version posted November 9, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

Fig 5. ORF8 limits the levels of cell-surface Spike. A. A monolayer of HEK293T cells stably expressing ACE2/TMPRSS2 were co-transfected with a plasmid encoding Spike-Flag or ORF8-Strep. The cells were fixed, permeabilized, and immunostained with antibodies against Flag (Spike) and Strep (ORF8). After counterstaining with DAPI, the cells were analyzed using fluorescence confocal microscopy imaging. The dotted boxes were digitally enlarged (upper right inset). The scale bars = 50 μ m. **B–H.** HEK293T cells co-transfected with a plasmid encoding Spike-Flag (C-terminal tagged) (**B**, **C**, **E**), Flag-Spike-Flag (N- and C-terminal tagged) (**D** and **E**), non-tagged Spike (**F** and **G**), or SARS-CoV-derived Spike (**F–H**), and a bicistronic plasmid encoding eGFP and different ORF8-Strep genotypes (ORF8-Strep (**B–E**, **H**), ORF8-Strep S84L (**B** and **C**) or SARS-CoV-derived ORF8ab-Strep, ORF8a-Strep, or ORF8b-Strep (**H**)). The cells were harvested and directly immunostained for cell surface Spike by incubating with antibodies against S2 (**B–D**, **G** and **H**; detects uncleaved Spike, S2 fragment, or SARS-CoV-derived Spike) or Flag (**E**) or fixed, permeabilized and immunostained by incubating with antibodies against S2 (**G**). Cell-surface Spike levels (**B–H**) in viable (LIVE/DEAD-negative) cells expressing ORF8-Strep (eGFP-positive) or total cellular Spike levels (**G**) in cells expressing ORF8-Strep (eGFP-positive) were measured by flow cytometry. Cellular expression levels of SARS-CoV-2 Spike or SARS-CoV Spike were confirmed by immunoblot analysis (**F**). The data represent or are combined from three independent experiments and presented as mean \pm SD. Statistical significance was analyzed using one-way ANOVA (**C**, **E** and **H**; Dunnett's test) or two-tailed Student's t test (**D** and **G**).

bioRxiv preprint doi: <https://doi.org/10.1101/2022.11.09.515752>; this version posted November 9, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

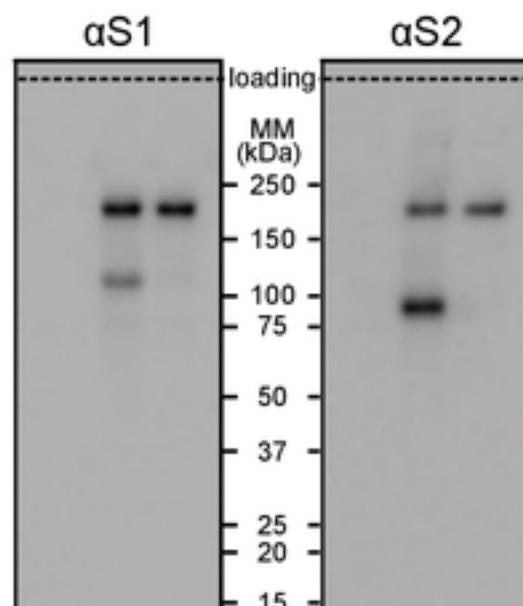
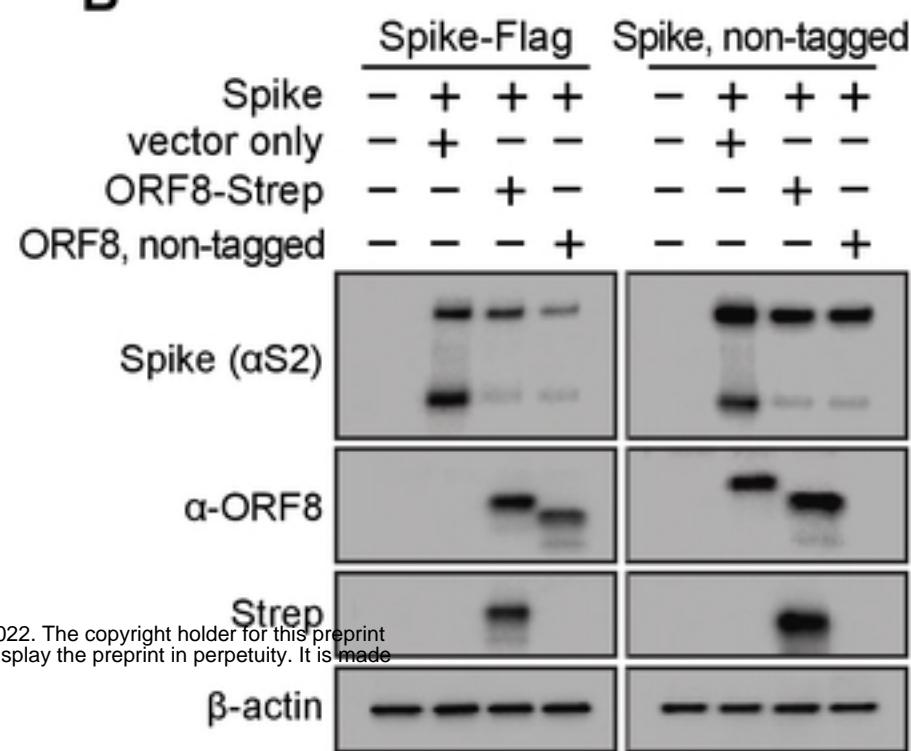
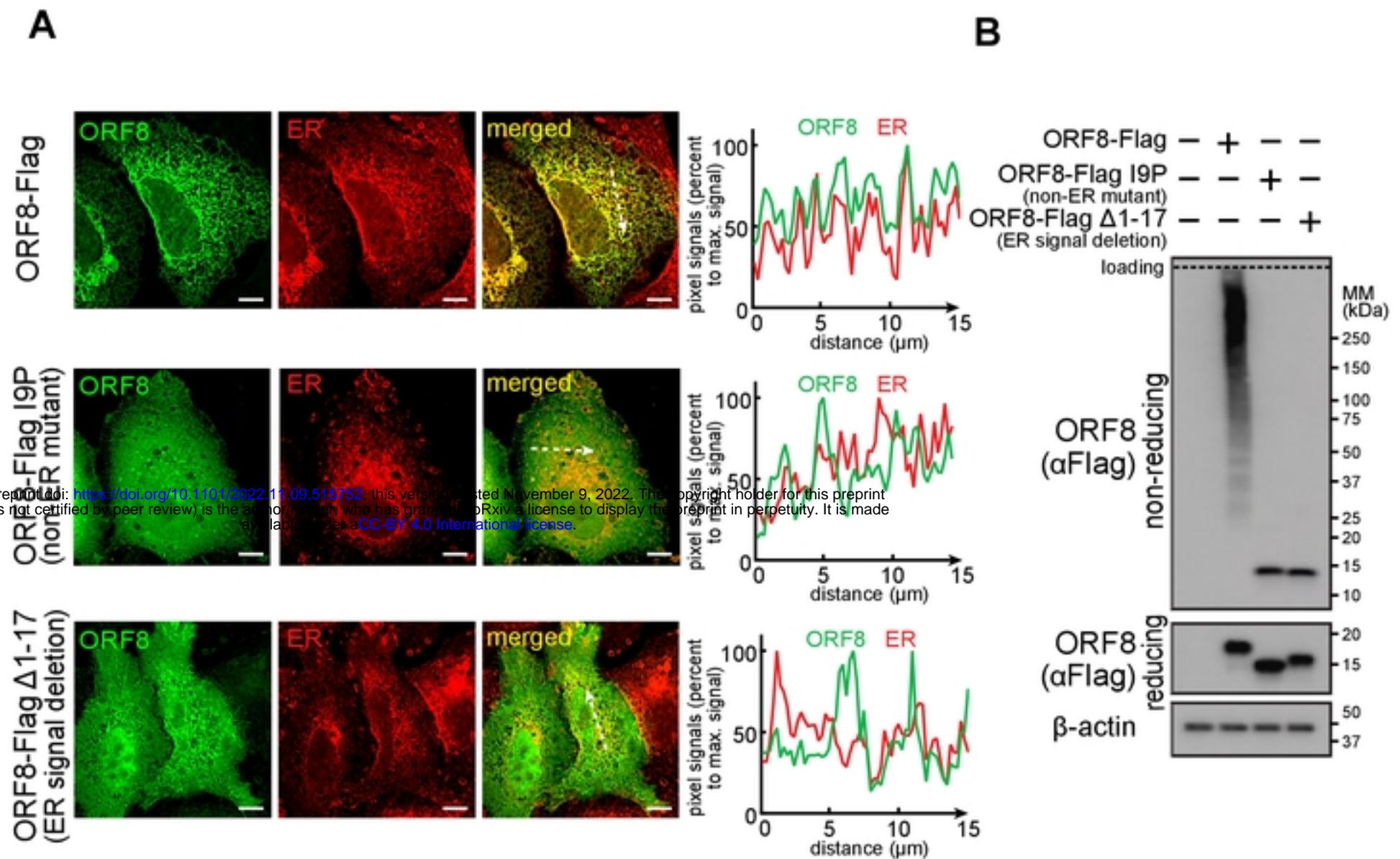



Fig 6. ORF8 limits the reactivity of anti-SARS-CoV-2 (convalescent or vaccinated) human sera towards Spike-producing cells. A–C. HEK293T cells co-transfected with a plasmid encoding Spike-Flag and a bicistronic plasmid encoding mCherry and ORF8-Strep genotypes (ORF8-Strep, ORF8-Strep S84L) were harvested and incubated with anti-SARS-CoV-2 human sera collected from three COVID-19 convalescent (A, B), six vaccinated (C) (three Pfizer and three Moderna, before 1st shot (pre-vaccination) and after 2nd shot (post-vaccination)), or three COVID-19-negative donors (A). The IgG molecules in the sera that reacted to Spike-producing cells were fluorescently labeled using antibodies that specifically recognize the Fc region of human IgG molecules. The human IgG Fc levels in viable (LIVE/DEAD-negative) cells expressing ORF8-Strep (mCherry-positive) were evaluated by flow cytometry. The data are combined from three independent experiments and represented as mean \pm s.d. Statistical significance was analyzed using one-way (B, Dunnett's test) or two-way ANOVA (C, Tukey's test).

Fig 7. ORF8 results in decreased infectivity of Spike-pseudotyped virus (S-VSV), but limits the reactivity of anti-SARS-CoV-2 human sera towards the infected cells. A. Experimental workflow and summary of results. **B.** HEK293T cells co-transfected with plasmids encoding Spike or ORF8-Strep genotypes (ORF8-Strep, or ORF8-Strep S84L) were infected with replication-incompetent GFP-encoding VSV (VSV Δ G-GFP), which resulted in production of Spike incorporated Δ G-GFP (S-VSV). The culture medium containing S-VSV was collected, and Spike levels in S-VSV were evaluated by immunoblot analysis with antibodies against S2 (detects both uncleaved and S2 fragment) and VSV-M (loading control, a VSV structural protein). **C–F.** HEK293T cells stably expressing ACE2/TMPRSS2 were infected with S-VSV produced in the absence or presence of ORF8-Strep or ORF8-Strep S84L. **C.** The infectivity of S-VSVs were evaluated by flow cytometry analysis for the percentage of GFP expressing cells. The cells were further incubated with antibodies against S2 (detects both uncleaved and S2 fragment) (D), or anti-SARS-CoV-2 human sera collected from three COVID-19 convalescent (E), or six vaccinated (F) (three Pfizer and three Moderna, before 1st shot (pre-vaccination) and after 2nd shot (post-vaccination)) donors. The levels of cell-surface Spike in S-VSV infected cells (D) and the reactivity of anti-SARS-CoV-2 human sera (E and F) towards S-VSV-infected cells were evaluated flow cytometry in S-VSV-infected (GFP positive), healthy naïve (ACE2/ΔG negative) cells. The data represent or are combined from three independent experiments and are presented as mean \pm s.d. Statistical significance was analyzed using one-way (B–E; Dunnett's) or two-way (F; Tukey's) ANOVA.


bioRxiv preprint doi: <https://doi.org/10.1101/2022.11.09.515752>; this version posted November 9, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

A**B**

bioRxiv preprint doi: <https://doi.org/10.1101/2022.11.09.515750>; this version posted November 9, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

Spike	-	+	+	+
vector only	-	+	-	-
ORF8-Strep	-	-	+	+

Fig S1. Validation of using C-terminal-tagged Spike or ORF8 constructs. A,B. HEK293T cells co-transfected with plasmids encoding Spike-Flag (A and B) or non-tagged Spike (B) or ORF8-Strep (A and B) or non-tagged ORF8 (B) were lysed and evaluated by immunoblot analysis using antibodies against S2 (detects uncleaved and S2 fragment of Spike) (A and B), S1 (detects uncleaved and S1 fragment of Spike), Strep (detects ORF8-Strep) (B), ORF8 (detects both ORF8-Strep and non-tagged ORF8) (B) and β-actin. The data represent three independent experiments.

Fig S2. I9P mutation incapacitates ORF8 translocation to ER. A. A549 cells transfected with a plasmid encoding ORF8-Flag, ORF8-Flag I9P (non-ER mutant), or ORF8-Flag Δ1-17 (ER signal deletion) were fixed, permeabilized, and immunostained for PDI (ER marker) and Flag (ORF8), and analyzed by fluorescence confocal microscopy imaging. White scale bars = 10 μm. The pixel intensities of ORF8 and PDI along the dashed arrow are plotted. **B.** HEK293T cells transfected with a plasmid encoding ORF8-Flag, ORF8-Flag I9P, or ORF8-Flag Δ1-17 were lysed and evaluated by immunoblot analysis using antibodies against Flag (ORF8) or β-actin under reducing or non-reducing (protein interactions through disulfide bonds are preserved) conditions. The data represent three independent experiments.

A

COVID-19	donor #	age	sex	race	identifier #
negative	1	32	male	Caucasian	V901A
	2	48	male	Asian	V906A
	3	24	female	Caucasian	V911A
positive (collected 06/17/20)	1	26	male	Caucasian	RPGG68
	2	26	female	Hispanic	TGRJLK
	3	26	female	Hispanic	GT4DZ4

B

bioRxiv preprint doi: <https://doi.org/10.1101/2022.11.09.515752>; this version posted November 9, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

brand	donor #	age	sex	race	vaccination and identifier #	
					pre-	post-
Pfizer	1	32	male	Caucasian	V901A	V901C44
	2	48	male	Asian	V906A	V906C11
	3	24	female	Caucasian	V911A	V911C8
Moderna	1	34	male	Caucasian	V902A	V902C22
	2	47	male	Caucasian	V903A	V903C20
	3	46	female	Asian	V909A	V909C22

Table S1 Specifications of anti-SARS-CoV-2 human sera. A. Source of COVID-19-negative or -positive (convalescent) sera. **B.** Source of COVID-19 vaccinated sera, three Pfizer and three Moderna, collected before 1st shot (pre-vaccination) and after 2nd shot (post-vaccination).