

1 **Title**

2 • Endometrial decidualization status modulates endometrial perivascular complexity and
3 trophoblast outgrowth in gelatin hydrogels
4 • Engineered endometrial perivascular niche

5 **Authors**

6 Samantha G. Zambuto¹, Hannah Theriault¹, Ishita Jain¹, Cody O. Crosby^{2,3}, Ioana
7 Pintescu⁴, Noah Chiou¹, Janet Zoldan³, Gregory H. Underhill¹, Kathryn B.H. Clancy^{5,6},
8 Brendan A.C. Harley^{7,8,9*}

9 **Affiliations**

10 ¹Dept. of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801.

11 ²Dept. of Physics, Southwestern University, Georgetown, TX, 78626.

12 ³Dept. of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712.

13 ⁴Dept. of Molecular and Cellular Biology, University of Illinois Urbana-Champaign,
14 Urbana, IL, 61801.

15 ⁵Dept. of Anthropology, University of Illinois Urbana-Champaign, Urbana, IL, 61801.

16 ⁶Beckman Institute for Advanced Science & Technology, University of Illinois Urbana-
17 Champaign, Urbana, IL, 61801.

18 ⁷Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign,
19 Urbana, IL, 61801.

20 ⁸Dept. Chemical and Biomolecular Engineering, University of Illinois Urbana-
21 Champaign, Urbana, IL, 61801.

22 ⁹Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, 61801.

41 *Corresponding Author
42 110 Roger Adams Laboratory
43 600 S. Mathews Ave.
44 Urbana, IL 61801
45 Phone: (217) 244-7112
46 Fax: (217) 333-5052
47 e-mail: bharley@illinois.edu
48

49 **Abstract**

50 The endometrium undergoes rapid cycles of vascular growth, remodeling, and breakdown
51 during the menstrual cycle and pregnancy. Decidualization is an endometrial
52 differentiation process driven by steroid sex hormones that is critical for blastocyst-
53 uterine interfacing and blastocyst implantation. Certain pregnancy disorders may be linked
54 to decidualization processes. However, much remains unknown regarding the role of
55 decidualization and reciprocal trophoblast-endometrial interactions on endometrial
56 angiogenesis and trophoblast invasion. Here, we report an artificial endometrial
57 perivascular niche embedded in gelatin methacrylol hydrogels that displays morphological
58 and functional patterns of decidualization. We show vessel complexity and soluble factor
59 secretion are sensitive to decidualization and affect trophoblast motility. Importantly, we
60 demonstrate the engineered perivascular niche can be combined with epithelial cultures to
61 form a stratified endometrial model. This artificial perivascular niche provides a well-
62 characterized platform to investigate dynamic changes in angiogenesis in response to
63 pathological and physiological endometrial states.

64 **Teaser**

65 We describe an endometrial vessel model to understand endometrial vasculature in the
66 menstrual cycle and pregnancy.

70 **MAIN TEXT**

71 **Introduction**

72 To support tissue regrowth during the menstrual cycle and significant remodeling during
73 pregnancy, the lining of the uterus referred to as the endometrium undergoes rapid cycles
74 of vascular growth, remodeling, and breakdown. The endometrium is one of the only adult
75 human tissues to undergo non-pathological angiogenesis (1): endothelial cell-driven
76 development of new vessels from existing blood vessels via elongation, intussusception,
77 or sprouting (1, 2). During the menstrual cycle, angiogenesis occurs during three distinct
78 phases: the proliferative phase, the secretory phase, and the menstrual phase (1, 3). The
79 proliferative phase is characterized by initiation of vessel growth (1, 3). In the secretory
80 phase, the vessels continue to grow by branching, lengthening, and maturing (1, 3).
81 Menstruation then induces vessel degeneration and endometrial shedding (3). During
82 menstruation, angiogenic processes also work to repair the superficial layer of the basal
83 endometrium in preparation for the subsequent menstrual cycle (1). During pregnancy,
84 rapid angiogenesis also occurs immediately after trophoblast-uterine interfacing and prior
85 to the formation of a placenta during pregnancy due to significant demands to support a
86

88 growing placenta and eventual fetus (3). Coordinated angiogenesis provides essential early
89 support necessary to maintain these structures and their development (3).

90
91 Sex steroid hormones progesterone and estrogen modulate endometrial angiogenesis and
92 remodeling (3). Progesterone controls vessel elongation, growth and coiling of spiral
93 arterioles, and maturation of the subepithelial capillary plexus whereas estrogen plays a
94 key role in concert with the VEGF (vascular endothelial growth factor) family to control
95 vascular remodeling (3). These hormones also orchestrate a differentiation process known
96 as decidualization. Decidualization is the process by which the endometrium prepares for
97 a potential pregnancy by thickening and enhancing the tissue matrix for the incoming
98 blastocyst (3). During decidualization, vessels sprout and lengthen, the surface area of
99 spiral arterioles increases, uterine glands undergo secretory transformation, and
100 specialized uterine natural killer cells increase in number (3). Successful endometrial
101 decidualization enables the endometrium to enter a period of receptivity that occurs during
102 the late secretory phase of the menstrual cycle (3). During this window, the blastocyst can
103 attach to the endometrial epithelium and subsequently invade into the underlying stroma
104 and vasculature (3). Crosstalk between endometrial cells and trophoblast cells from the
105 invading blastocyst are believed to modulate processes of invasion and dynamic vascular
106 remodeling (3). Endometrial decidualization is critical here, with reduced decidualization
107 linked to a variety of pregnancy disorders such as preeclampsia, fetal growth restriction,
108 and infertility (3). For example, in the hypertensive pregnancy disorder preeclampsia,
109 studies have demonstrated that in patients with severe preeclampsia, reduced
110 decidualization subsequently led to impaired trophoblast invasion (4). However, ethical
111 considerations and technical limitations limit the ability to study these processes *in vivo*.
112 As a result, much remains unknown regarding the role of sex steroid hormones on
113 endometrial angiogenesis and vice versa.

114
115 Few models of endometrial vasculature exist. Most models of the endometrial vasculature
116 either cannot recapitulate tissue biophysical properties (stiffness), do not use relevant
117 human cell types in heterogenous cell cultures, or cannot be cultured long term (20+ days)
118 days (5-9). Engineered vasculature models have recently demonstrated promising results
119 for mimicking vasculature *in vitro* for a wide range of applications. For example, Offendu
120 et al. and Haase et al. used perfusable vasculature in microphysiological microfluidic
121 devices for quantifying transport through the endothelium and flow-mediated vessel
122 remodeling (10-12). Such model systems have also been used to study pregnancy-related
123 vascular disorders, including placental vasculopathies (11). Engineered vasculature
124 models can support three-dimensional culture of heterogeneous cell populations in
125 biomaterials that can recapitulate tissue biophysical properties. Gelatin is an attractive
126 platform for these types of studies for a variety of reasons. As a natural polymer derived
127 from collagen, it contains cell adhesion and degradation sites which allow for matrix
128 remodeling by cells. Functionalization of gelatin by adding methacrylate groups to its
129 amine-containing side groups results in the synthesis of gelatin methacrylol, GelMA,
130 which offers enhanced mechanical features that can be tuned to mimic *in vivo* biophysical
131 properties (13). Previous studies from our group and others have demonstrated that vessel
132 networks can be cultured in GelMA hydrogels by encapsulating co-cultures of endothelial
133 and stromal cells (13, 14).

135 Here, we develop and characterize models of an artificial endometrial perivascular niche
136 embedded in GelMA hydrogels that display morphological and functional patterns of
137 decidualization. We quantify shifts in vessel network complexity, analyze soluble factor
138 secretion of perivascular cultures, and assess matrix remodeling via basement membrane
139 protein deposition and tight junction formation. Subsequently, we examine bidirectional
140 communication, notably the role of trophoblast secreted factors on perivascular network
141 remodeling and the role of perivascular secreted factors on trophoblast motility. Finally,
142 we demonstrate a three-dimensional, stratified model of the endometrium consisting of an
143 epithelial culture overlaying an embedded perivascular niche. This artificial perivascular
144 niche replicates aspects of the *in vivo* perivascular environment and can serve as a platform
145 to study endometrial angiogenesis in a variety of endometrial states.
146

147 **Results**

148 ***Human endometrial microvascular endothelial cells (HEMEC) demonstrate angiogenic***

149 ***potential***

150 We first assessed phenotypic markers and the ability to form vessel structures of human
151 endometrial microvascular endothelial cells (HEMECs). HEMEC plated on 2D plates
152 expressed CD31 (Supplemental Fig. 1A) and von Willebrand factor (Supplemental Fig.
153 1B). HEMECs plated on Matrigel transiently formed tubes that fell apart in less than 24
154 hours (Supplemental Fig. 1B). Taken together, these results suggest HEMECs express
155 characteristic endothelial cell markers and they have the potential to form vessel-like
156 structures *in vitro*.

157 ***Endometrial perivascular niche hydrogels can be cultured long term***

158 The longevity and stability of engineered endometrial perivascular niches (PVNs) were
159 tracked for up to 28 days of culture *in vitro*. All PVNs contained a constant number of
160 endothelial cells (500,000 cells/mL) but variable number of stromal cells at ratios of 2:1
161 (250,000 stromal cells/mL), 1:1 (500,000 stromal cells/mL), and 1:2 (1,000,000 stromal
162 cells/mL) endothelial:stromal cells. Notably, the ability to form stable perivascular models
163 was tightly tied to the ratio of perivascular cells. For the 1:1 endothelial:stromal laden
164 hydrogels, total network length, branches, and vessels all increased from days 7 to 14
165 while branch length decreased (Fig. 2B-E); however, by day 21 all 1:1 hydrogels had
166 disintegrated. Increasing the number of stromal cells (1:2 ratio) did not improve
167 perivascular niche stability. Here, total network length, branches, and vessels all increased
168 from days 7 to 14 but then decreased from days 14 to 21 (Fig. 2B-E) while branch length
169 decreased between days 7 and 14 but increased between days 14 and 21. Although the 2:1
170 endothelial:stromal ratio PNV initially contained the least number of stromal cells, it was
171 the most stable over time. The 2:1 endothelial:stromal ratio showed increasing metrics of
172 total network length, branches, and vessels from days 7 to 21 while branch length
173 appeared to remain consistent across all days with only a slight decrease over time (Fig.
174 2B-E). No culture remained stable through 28 days, with hydrogel degradation being the
175 primary limitation of culture stability over long time periods.

176 ***Ratio of endothelial to stromal cells affects vessel complexity more so than addition of***

177 ***VEGF***

178 Soluble VEGF was added to culture media to determine if additional exogenous
179 proangiogenic factors would affect vessel complexity. We observed no significant

180 differences in trends of metrics of perivascular network complexity as a result of VEGF
181 inclusion (Supplemental Fig. 2) and concluded that the endometrial PVNs do not require
182 supplementation with additional proangiogenic factors. Based on these results and the
183 results of the time course experiment, the 2:1 endothelial:stromal cell ratio PVN was used
184 for all subsequent experiments because this condition resulted in the most consistent,
185 stable networks over time.

186 ***PVN cultures deposit laminin and express tight junction marker ZO-1***

187 Metrics of basement membrane protein deposition and expression of tight junction
188 proteins were subsequently assessed for engineered endometrial PVNs.
189 Immunofluorescent staining demonstrated laminin, a common basement membrane
190 protein, deposition by both cell types (Supplemental Fig. 3B). Additionally, ZO-1
191 expression was observed by day 7 of culture, suggesting formation of tight junction in our
192 PVNs (Supplemental Fig. 3C). We deployed a spatial analysis tool to quantify the degree
193 of overlap between endometrial vessels (CD31+) and laminin/ZO-1 (Supplemental Fig.
194 3D-E). We calculated the average pixel intensity for both stains and calculated the degree
195 of overlap by multiplying the binarized matrix of vessels by the binarized matrix of the
196 proteins. Laminin/CD31 and ZO-1/CD31 both displayed approximately 30% signal
197 overlap, suggesting that not only are laminin and ZO-1 expressed in engineered
198 endometrial PVNs but also they are expressed in close proximity to the endometrial
199 perivascular networks formed within gelatin hydrogels.

200 ***Endometrial stromal cell decidualization status modulates endometrial PVN complexity***

201 Decidualization of the engineered endometrial perivascular networks was assessed in
202 response to two decidualization protocols previously reported for two-dimensional cell
203 culture (15-20): exogenous addition of 1 μ M synthetic progesterin medroxyprogesterone
204 acetate (MPA), 0.5 mM 8-bromoadenosine 3',5'-cyclic monophosphate (8-Br-cAMP) or
205 0.5 mM dibutyryl cyclic AMP (dcAMP) + 10 nM estradiol (E2) + 100 nM progesterone
206 (P4). Morphological changes to the perivascular networks were first compared to a control
207 condition (no decidualization hormones). Total network length, branches, and vessels
208 increased in response to MPA decidualization condition compared to control (Fig. 3B-E).
209 Branch length was reduced for the MPA and P4 groups in comparison to control (Fig.
210 3D). Total number of vessels increased for both decidualization conditions, with the MPA
211 decidualization condition having the largest total number of vessels (Fig. 3E). Total
212 network length and branches were not different between control and P4 decidualization
213 conditions (Fig. 3B-C). Total network length and average branch length were not different
214 between MPA and P4 groups but total branches were increased in the MPA group
215 compared to the P4 group (Fig. 3B-E). Taken together, these results suggest
216 decidualization status as well as choice of decidualization hormone cocktail strongly
217 influence vessel network complexity in gelatin hydrogels, with decidualization broadly
218 resulting in a denser network of smaller endothelial cell networks (increased number of
219 shorter branches) and the strongest effect seen for decidualization with synthetic
220 progesterone.

221 ***Decidualization status strongly influences endometrial PVN secretome***

222 We subsequently examined biomolecular consequences of decidualization (control,
223 decidualized-MPA, decidualized-P4) of perivascular networks via a cytokine array

(quantifying mean pixel density of cytokine spots normalized to a positive control, Fig. 4B). We first compared secretion of characteristic markers of decidualization prolactin and IGFBP-1 (insulin-like growth factor binding protein 1) (Fig. 4C). Prolactin and IGFBP-1 secretion increased for decidualized conditions compared to control, strongly indicating that stromal cells were decidualized in the presence of decidualization hormones. Subsequently, we performed statistical analysis across 55 human angiogenesis associated proteins (statistical tests and p-values: Supplemental Figures 4-5). We identified 14 proteins whose expression was significantly altered by PVN decidualization: activin A, angiogenin, angiopoietin-1, amphiregulin, endoglin, endostatin/collagen XVIII, endothelin-1, FGF-1 (FGF acidic), IGFBP-2, Pentraxin 3 (PTX3), PDGF-AA, Platelet Factor 4 (PF4), Prolactin, and Serpin F1 (Fig. 4D; Table 1). We then used STRING to generate a network summary of predicted protein associations between the 14 proteins (Fig. 4E). The STRING network contained 14 nodes, 25 edges, 3.57 average node degree with an average local clustering coefficient of 0.495 and PPI enrichment p-value $< 1.0 \times 10^{-16}$, and identified interactions between these factors, except for PF4, Prolactin, and Amphiregulin. Gene ontology analysis suggests these cytokines play critical roles in blood vessel development and branching, regulating endothelial cell proliferation, and epithelium branch elongation, with many of these cytokines associated with the basement membrane, ECM, extracellular space, and cytoplasmic vesicles.

Perivascular niche secreted factors influence trophoblast invasion, but trophoblast secreted factors do not affect vessel network complexity

We then examined reciprocal crosstalk between endometrial perivascular cells and trophoblast cells. We first examined how perivascular niche secreted factors affect trophoblast motility. We quantified Swan71 trophoblast outgrowth area for 3 days in response to conditioned media collected from control or decidualized perivascular niche hydrogel cultures using a previously described cell spheroid assay that quantifies total outgrowth area of spheroid (Fig. 5). We collected conditioned media from non-decidualized (CM non-decidualized) or decidualized (CM MPA or CM P4) perivascular niches and compared trophoblast invasion against two unique media controls (control or media control). We defined the control condition as conventional trophoblast growth medium. The media control condition was a 1:1 mixture of trophoblast and PVN growth medium. This second control was used to replicate the media composition of the experimental groups, which contained a 1:1 mixture of trophoblast media and conditioned media collected from PVN cultures.

By day 3, we observed significant ($p=3.8 \times 10^{-5}$) differences in outgrowth area and fold change in outgrowth area (outgrowth at day 3 normalized to the same spheroid at day 0; Fig. 5C). Dunn's post hoc analysis revealed four significant differences between outgrowth area groups: conditioned media (control-not decidualized) and conditioned media (MPA-decidualized) ($p=4.35 \times 10^{-5}$), conditioned media (control-not decidualized) and control ($p=0.016$), conditioned media (MPA-decidualized) and conditioned media (P4-decidualized) ($p=0.036$), and conditioned media (MPA-decidualized) and media control ($p=0.011$). Fold change was then calculated by normalizing initial spheroid outgrowth area to outgrowth area on day 3. The same trend observed in outgrowth area was also observed in fold change in outgrowth area, with $p=3.69 \times 10^{-5}$, $p=0.016$, $p=0.046$, and $p=0.011$, respectively. These findings suggest that soluble factors from perivascular cultures increase trophoblast outgrowth for non-decidualized and decidualized conditions with P4 compared to the control condition. However, trophoblast outgrowth was

decreased in decidualized conditions with MPA compared to the control condition. These findings demonstrate that not only perivascular decidualization status but also mode of decidualization affect trophoblast outgrowth.

We then assessed whether and how trophoblast secreted factors influenced perivascular niche complexity. We quantified metrics of vessel network complexity in the presence and absence of conditioned medium from Swan71 trophoblast cells (Fig. 6). The control condition contained PVN growth medium, and the media control condition was a mixture of trophoblast and PVN growth medium consistent with the conditioned medium conditions. We observed no differences in total network length/mm³, total number of branches, and total number of vessels in the presence of conditioned media from Swan71 trophoblast cells (Fig. 6B,C,E). Although we did observe branch length decreased between the media control (50:50 media ratio) and control (Swan71 invasion media) conditions (Fig. 6D), this was likely due to increased serum content not depleted by cells.

Stratified endometrial epithelial culture overlaying a perivascular niche

Finally, we fabricated an endometrial triculture to replicate features of the stratified endometrium *in vivo* by seeding primary endometrial epithelial cells on top of the 3D hydrogel perivascular culture (Fig. 7). We observed two stratified components: an epithelial layer overlying an embedded perivascular culture (Fig. 7B). We subsequently examined epithelial cell morphology and phenotype via immunohistochemistry for CK18, a marker of epithelial cell attachment (Fig. 7C). We observed regions of epithelial monolayers that positively express CK18, suggesting the epithelial monolayer is attached to the underlying perivascular hydrogel.

Discussion

Angiogenesis and vessel remodeling in the endometrium occurs during the menstrual cycle as the tissue is rebuilt and differentiates to prepare for potential pregnancy. Extensive remodeling of the existing vasculature occurs in response to infiltration of trophoblast cells from the blastocyst in order to provide blood flow to the growing fetus and placenta. Here, we report creation of a three-dimensional artificial endometrial perivascular niche embedded in a gelatin methacrylol hydrogel. 3D perivascular niche cultures demonstrate the capacity to exhibit morphological and biomolecular signatures of decidualization in response to exogenous hormones. These endometrial perivascular cultures provide a platform to examine reciprocal crosstalk between the perivascular niche and trophoblast cells. Further, the engineered endometrial perivascular niche hydrogel can be combined with our recently reported methods for endometrial epithelial cell culture to establish a stratified endometrial model consisting of primary endometrial epithelial cells overlaying the perivascular niche (21). Combined, these elements of a stratified endometrial model offers significant potential to gain mechanistic insight into endometrial remodeling and changes in endometrial vascular networks in response to decidualization.

Most existing *in vitro* models of vasculature utilize human umbilical vein endothelial cells (HUVECs) as their endothelial cell source due to their wide availability, capacity to be passaged numerous times, and excellent ability to form vessels *in vitro* (22). However, HUVECs are derived from umbilical cords and are not tissue-specific which calls into question the use of such cells for the development of tissue-specific vasculature models. Here, we utilize HEMECs as an endothelial cell source to create an endometrial-specific

316 model of the endometrial perivascular niche. We also used human endometrial stromal
317 cells (HESCs) as an endometrial stromal cell source. The addition of a stromal population
318 to endothelial cells encourages and supports formation of endothelial networks for long-
319 term culture (23-25). Without stromal cells, endothelial cells form endothelial structures
320 that last only transiently and fall apart over time, consistent with our results from our tube
321 formation assay. We identified 2:1 ratio of endothelial to stromal cells allowed for 20+
322 days of culture. Our studies suggest that reduced initial stromal cell density may be more
323 conducive to perivascular stability, likely due to the contractile nature of stromal cells
324 which can cause the hydrogel cultures to contract and disintegrate over time, a result
325 consistent with other reports in the literature (26, 27).

326
327 We then demonstrate that endometrial perivascular cultures do not require exogenous pro-
328 angiogenic factors (VEGF) to promote network formation. Endometrial cultures also
329 express markers of vessel network maturity such as basement membrane protein
330 deposition and tight junction markers. Our artificial perivascular cultures demonstrate
331 similarities to the native endometrium. The average vessel length per branch point was
332 determined to be approximately 100-200 μm across the menstrual cycle and this value
333 varies depending on cycle phase (28). Although our average branch values were less than
334 these *in vivo* values, we observed significant differences in network complexity with the
335 addition of hormones. This indicates that perivascular cultures formed *in vitro* from
336 endometrial derived endothelial and stromal cells are hormone responsive. Given
337 emerging literature seeking to better define population variation in hormone concentration
338 across the menstrual cycle, an engineered endometrial perivascular network may provide
339 the opportunity to quantify shifts in vessel complexity in response to exogenous hormone
340 signals representative of discrete menstrual cycle phases. Future work to assess lumen
341 formation and patent vessels would allow for the creation of perfusable networks to assess
342 molecule transport and vessel perfusion in the context of pregnancy.

343
344 We subsequently sought to determine how decidualization status of stromal cells affects
345 the perivascular niche. Decidualization is necessary and critical to prepare the
346 endometrium for a potential pregnancy (3). Recapitulating such processes may be
347 important for an endometrial model system used to study implantation events. For these
348 studies, we chose two decidualization protocols commonly used in the literature (15-20).
349 One employs the synthetic progestin medroxyprogesterone acetate (MPA) and the other
350 uses progesterone (P4). Across our studies, we observed differences in the effects of these
351 two protocols in our perivascular cultures, notably the effects of the P4-decidualized
352 condition did not seem to increase total network length/mm³, total vessels, and total
353 branches as much as the MPA-decidualized condition. Analysis of our perivascular
354 cultures in the absence and presence of decidualization hormones revealed an increasing
355 trend for total network length/mm³, total number of branches, and total number of vessels
356 with the addition of hormones. Interestingly, branch length significantly decreased with
357 the addition of hormones. Observations from human specimens demonstrate that the
358 endometrial spiral arterioles grow, lengthen, and coil during the secretory phase of the
359 menstrual cycle (phase when decidualization occurs) (1). These data are consistent with
360 our observations, further demonstrating that this model system captures endometrial
361 physiologic responses *in vitro*.

363 Next, we analyzed shifts in the perivascular secretome in response to decidualization. Our
364 analysis of the perivascular secreted factors detected 14 cytokines with statistically
365 significant differences between the conditions: Activin A (Gene ID 3624), Amphiregulin
366 (AR; Gene ID 374), Angiogenin (ANG; Gene ID 283), Angiopoietin-1 (Ang-1; Gene ID
367 284), Endoglin (ENG; CD105; Gene ID 2022), Endostatin/Collagen XVIII (Gene ID
368 80781), Endothelin-1 (ET-1; Gene ID 1906), FGF acidic (FGF-1; Gene ID 2246), IGFBP-
369 2 (Gene ID 3485), PDGF-AA (Gene ID 5154), Pentraxin 3 (PTX3; TSG-14; Gene ID
370 5806), Platelet Factor 4 (PF4; CXCL4; Gene ID 5196), Prolactin (Gene ID 5617), and
371 Serpin F1 (PEDF; Gene ID 5176). These 14 proteins can be broadly characterized into
372 proteins associated with angiogenesis, vessel stabilization, and vessel maturation
373 (Angiogenin, Angiopoietin-1, Endostatin/Collagen XVIII, FGF-1, PDGF, PTX3, Serpin
374 F1), proteins relevant to endometrial function and receptivity (Amphiregulin, Endoglin,
375 Endothelin-1, IGFBP-2, PF4); and, proteins relevant to decidualization and stromal cells
376 (Activin A, Angiogenin, PDGF, Prolactin).

377
378 Angiogenin, Angiopoietin-1, Endostatin/Collagen XVIII, FGF-1, PDGF, PTX3, and
379 Serpin F1 are related to angiogenesis, vessel stabilization, and vessel maturation. The
380 overall presence and corresponding changes in these factors in non-decidualized vs.
381 decidualized conditions indicate that the perivascular cultures mature and stabilize over
382 time and decidualization hormones directly impact endometrial angiogenesis. For
383 example, low levels of Ang-1 are found in endometrial stromal fibroblasts and this
384 decreases over the menstrual cycle (29). We observed a significant decrease in Ang-1 in
385 one of the decidualization conditions compared to control. Although the second condition
386 did not show a significant decrease, it did appear to be slightly lower than the control
387 values. We also observed increases in endostatin and FGF-1 in decidualized conditions
388 which could indicate vessel maturation, stabilization, and angiogenesis (29, 30)(31).
389 Additionally, decidualization may induce proliferation or motility of cells because these
390 conditions demonstrated increased expression of PDGF-AA, a growth factor shown to
391 have roles in cell proliferation, angiogenesis, inflammation, and tissue repair (32).
392

393 Amphiregulin, Endoglin, Endothelin-1, IGFBP-2, PF4 are proteins relevant to endometrial
394 function and receptivity. The secretion of these factors suggests our perivascular cultures
395 demonstrate relevant endometrial cell behavior. For example, amphiregulin and CXCL4
396 were both shown to have increased secretion in decidualized samples. Amphiregulin is a
397 member of the epidermal growth factor (EGF) family and has a role in uterine receptivity
398 and blastocyst attachment (33). Amphiregulin has been found in the luminal epithelium at
399 the site of blastocyst apposition and its expression is correlated with an increase in
400 progesterone levels and blastocyst attachment (33). Our data also demonstrate this trend,
401 with significantly increased levels of Amphiregulin in decidualized cultures containing
402 increased progesterone. CXCL4 is also regulated by progesterone withdrawal which
403 suggests it likely has a role in endometrial repair following menses (34). Our results were
404 consistent with these data: CXCL4 secretion was increased in decidualized samples.

405
406 Activin A, Angiogenin, PDGF, Prolactin are proteins relevant to decidualization and
407 stromal cells. Activin A is produced in high concentrations by decidualized stromal cells
408 and interacts with matrix metalloproteinases (MMPs) to promote matrix remodeling in the
409 decidual response (35, 36). Our data were consistent with these previous observations: we

410 observed significantly increased levels of Activin A in decidualized perivascular
411 hydrogels compared to control.

412
413 Although much of our data are consistent with the literature, differences could be due to
414 donor variability or the use of cell lines instead of primary cells (37-39). For example,
415 previous data using endometrial epithelial cells noted donor to donor differences in
416 epithelial cell behavior so we would suspect to see potential differences in the use of
417 donor-derived HEMECs as well (37). This could be further explored using additional cells
418 from more donors. Furthermore, signaling from other cells in the endometrium (e.g.,
419 epithelial cells, natural killer cells, immune cells, etc.) could alter the secretome of stromal
420 and endothelial cells which could account for some of these differences (2, 40-42).
421 Expanded studies using additional endometrial cell types could begin to probe these
422 differences and glean additional insights into the secretome of other endometrial cells.

423
424 We subsequently assessed crosstalk between the endometrial perivascular niche and Swan
425 71 trophoblast cells. The conditioned media from non-decidualized perivascular cultures
426 increased trophoblast motility compared to the other tested conditions. Interestingly,
427 conditioned media taken from the two decidualization cultures (MPA- and P4-
428 decidualized) induced differential responses regarding trophoblast motility. Conditioned
429 media from the P4-decidualized perivascular cultures increased trophoblast motility
430 compared to the non-decidualized control (Swan71 invasion medium); however, the
431 MPA-decidualized conditioned media induced less outgrowth compared to the non-
432 decidualized control. Critically, these data show that endometrial perivascular niche
433 decidualization status influences the activity of trophoblast cells via secreted factors.
434 Although conditioned media (MPA- and P4-decidualized) from decidualized perivascular
435 networks only induced a moderate increase in trophoblast motility, this only represents a
436 single condition of hormone stimulation targeting initial decidualization events. There is a
437 significant opportunity for future efforts to examine how trophoblast motility changes in
438 response to a dynamic secretome based on hormone concentrations representative of
439 greater shifts across the menstrual cycle. Notably, treatment of perivascular cultures with
440 Swan71 trophoblast conditioned medium did not change the majority of markers used to
441 assess vessel complexity; however, we did observe decreased branch length in the media
442 control condition (50:50 ratio Swan71 invasion medium and endothelial growth medium)
443 compared to the control condition (Swan71 invasion medium). This could be because the
444 Swan71 unconditioned growth medium contains less proangiogenic factors compared to
445 endothelial growth media. Interestingly, the signaling was not bi-directional. Although
446 endometrial perivascular niche decidualization status influences the activity of trophoblast
447 cells, trophoblast cells do not appear to influence structural changes in the endometrial
448 perivascular niche cultures. This finding has interesting implications as to the control of
449 early stages of trophoblast motility from the maternal endometrium but no marked early
450 changes in the maternal perivascular architecture in response to initial trophoblast
451 implantation. These findings suggest that the endometrium may have biological agency in
452 the uterine-trophoblast interfacing process during implantation; this is a fascinating topic
453 that is worthy of more in depth studies.

454
455 Finally, we demonstrate the creation of an endometrial triculture consisting of an
456 endometrial epithelial layer overlaying the embedded perivascular system. Our work
457 herein demonstrates an endometrial model of increased complexity compared to existing

458 models that incorporates three endometrial cell types in one model system. We chose
459 collagen I and collagen III as the basement membrane layer as our prior work
460 demonstrated this combination of ECM biomolecules resulted in the best epithelial cell
461 attachment (43). Our model expands upon existing stratified endometrial model systems
462 because we have added additional complexity by not only including stromal cells but also
463 endothelial cells to create an embedded vascular niche rather than only an embedded
464 stroma (37).

465
466 Future work will focus on quantification of vessel network metrics for the triculture as
467 well as on the hormonal work to determine how decidualization affects not only the
468 perivascular compartment but also the epithelial layer. Additional opportunities for these
469 studies include development an endometrial perivascular niche using primary endometrial
470 stromal cells. HESCs are the most widely used cell line for endometrial stromal cells;
471 however, as hTERT-immortalized cells, they may not mimic endometrial stromal cells as
472 closely as primary cells could. The use of patient-derived cells could ameliorate this
473 challenge and provide additional insights into endometrial perivascular function.
474 Additionally, this work considers sex steroid hormone profiles from one point in the
475 menstrual cycle. Ongoing work is looking to quantify metrics of network formation across
476 the entire menstrual cycle to assess cyclic vessel formation and remodeling. As studies in
477 humans have shown variation in menstrual cycle length and hormone profiles (44, 45),
478 there is significant opportunity to use this platform as a route to explore patient variation
479 via incorporation of different hormone profiles.

480
481 In conclusion, we describe the creation of an artificial endometrial perivascular niche
482 embedded in GelMA hydrogels. Engineered endometrial perivascular cultures display
483 hormone-responsiveness in our cultures, including variation in network complexity and
484 secretion of soluble factors. We show a model of unidirectional signaling; although
485 perivascular network conditioned medium increased trophoblast motility in spheroid
486 motility assays, trophoblast conditioned medium showed limited effect on perivascular
487 niche complexity. Finally, we describe a stratified endometrial model consisting of an
488 endometrial epithelium overlaying an embedded perivascular niche. Tissue engineering
489 models such as these not only provide novel platforms for assessing endometrial function
490 but also allow us to probe questions regarding implantation that are currently impossible
491 to answer in humans due to ethical constraints, challenging time points, and lack of
492 imaging modalities. With the creation of these platforms, we hope to provide researchers
493 with novel technologies that can further the field of uterine health.

494
495 **Materials and Methods**

496 **Experimental Design**

497 The objective of this study was to design, characterize, and implement an artificial tissue
498 engineered model of endometrial vasculature. Using gelatin methacrylol hydrogels, we
499 create a co-culture system of endometrial endothelial and stromal cells and subsequently
500 assess response to sex steroid hormones and trophoblast secreted factors.

501
502 **Cell Culture and Maintenance**

503 ***Human Endometrial Microvascular Endothelial Cell Culture***

504 Human endometrial microvascular endothelial cells (HEMEC; ScienCell #7010) were
505 maintained as per the manufacturer's instructions in phenol red-free Endothelial Cell
506 Medium (ECM; ScienCell #1001-prf) supplemented with an endothelial cell growth
507 supplement (ScienCell #1052), 5% charcoal-stripped fetal bovine serum (Sigma-Aldrich
508 F6765), and 1% penicillin/streptomycin (ThermoFisher 15140122). Charcoal-stripped
509 fetal bovine serum was used to reduce the steroid hormone concentrations in the cell
510 medium. HEMECs were cultured on bovine plasma fibronectin (ScienCell #8248) coated
511 vessels. HEMECs were used experimentally no more than 5 passages from purchase.
512 HEMECs were cultured in 5% CO₂ incubators at 37°C. Routine mycoplasma testing was
513 performed using a MycoAlert™ Mycoplasma Detection Kit (Lonza). Cell ancestry
514 information (e.g., racial and ethnic background, age, gender identity) was not provided by
515 the vendor although the cell ancestry may affect cellular behavior and response (38, 39).

516

517 ***Human Endometrial Stromal Cell Culture***

518 Human endometrial stromal cells (HESC; ATCC® CRL-4003) were maintained as per the
519 manufacturer's instructions in custom phenol red-free DMEM/F-12 (based on Sigma #D
520 2906) supplemented with 1% ITS+ Premix (Corning 354352), 500 ng/mL puromycin
521 (Millipore Sigma P8833), 10% charcoal stripped fetal bovine serum (Sigma-Aldrich
522 F6765), and 1% penicillin/streptomycin. HESC were used experimentally no more than 5
523 passages from purchase. HESC were cultured in 5% CO₂ incubators at 37°C. Routine
524 mycoplasma testing was performed using a MycoAlert™ Mycoplasma Detection Kit
525 (Lonza). Cell ancestry information (e.g., racial and ethnic background, age, gender
526 identity) was not provided by the vendor although the cell ancestry may affect cellular
527 behavior and response (38, 39).

528

529 ***Primary Human Endometrial Epithelial Cell Culture***

530 We cultured primary human endometrial epithelial cells (EECs; LifeLine Cell Technology
531 FC- 0078; Lot 03839; Caucasian Female Donor, 33 y.o., uterine prolapse) as per the
532 manufacturer's instructions in phenol red-free medium (LifeLine Cell Technology) and in
533 5% CO₂ incubators at 37°C. EECs were used experimentally at two passages from receipt.
534 Cells were routinely tested for mycoplasma contamination using the MycoAlert™
535 Mycoplasma Detection Kit (Lonza).

536

537 ***2D Culture of Human Endometrial Microvascular Endothelial Cells***

538 HEMEC cells were seeded into individual wells of a 6 well plate and cultured until
539 confluent. Cells were then fixed in formalin (Sigma-Aldrich), permeabilized for 15
540 minutes in 0.5% Tween20 (Fisher Scientific BP337), washed 3x5 minutes with 0.1%
541 Tween20 solution (PBST), blocked with 2% Abdil (2% bovine serum albumin; Sigma
542 Aldrich A4503 + 0.1% Tween20) for 1 hour, and stained with primary antibodies (1:200
543 CD31; Dako IS610 or 2.5 µg/mL von Willebrand Factor viii; Invitrogen MA5-14029)
544 overnight at 4°C. 5x5 minute PBST washes were performed followed by staining with
545 secondary antibody (1:500 Alexafluor 488 goat anti-mouse; Thermo Fisher A-11001)
546 overnight at 4°C. 5x5 minute PBST washes were performed followed by staining with
547 Hoechst (1:2000; Thermo Fisher H3570) for 10 minutes at room temperature. One final
548 PBST wash was performed and cells were stored in PBST until imaged. Wells were
549 imaged using a Leica DMI 4000 B Microscope (Leica Microsystems).

550

551 ***Matrigel Tube Formation Assay***

552 100 μ L of phenol red-free Matrigel (1.35 mg protein/well; Corning 356237) was pipetted
553 into each well of a 96 well plate and polymerized in the incubator. 10,000 HEMECs were
554 added per well (n=8 wells). Each well was imaged at 6 hours and 12 hours after seeding
555 using a Leica DMI 4000 B Microscope (Leica Microsystems).

556

557 **Synthesis and Fabrication of Methacrylamide-Functionalized Gelatin (GelMA)** 558 **Hydrogels**

559 GelMA was synthesized, dialyzed, lyophilized, and was found to have a degree of
560 functionalization of 57%, determined via 1 H-NMR (46-48). Prior to cell culture
561 experiments, lyophilized GelMA was sterilized for 30 minutes under UV light. Hydrogels
562 were fabricated using a solution consisting of lyophilized GelMA (5 wt%) dissolved at
563 37°C in phosphate buffered saline (PBS; Lonza 17-516F) and combined with 0.1% w/v
564 lithium acylphosphinate (LAP) as a photoinitiator. Hydrogels were polymerized under UV
565 light (λ =365 nm, 7.14 mW cm^{-2} ; AccuCure Spot System ULM-3-365) for 30 s.

566

567 **Endometrial Perivascular Niche Hydrogel Co-Cultures**

568 ***Co-culture Fabrication and Maintenance***

569 HEMEC and HESC were passaged and encapsulated in GelMA hydrogels at 1:1, 1:2, and
570 2:1 endothelial:stromal cell ratios. The concentration of endothelial cells was kept
571 consistent with each ratio at 500,000 HEMEC/mL and the concentration of stromal cells
572 was calculated from this value and the ratios. Hydrogels were cultured in 48 well plates
573 for 7 days and maintained in ECM with or without additional growth factors (\pm 100 ng/mL
574 recombinant human VEGF₁₆₅; PeproTech 100-20) and hormones. The medium for
575 hydrogel samples was replaced every 3 days (800 μ L/well). The endogenous VEGF
576 concentration in ECM was reported to be 2 ng/mL by the vendor (ScienCell). All
577 experiments except those in Fig. 2, 3, and 4 used charcoal-stripped fetal bovine serum
578 (Sigma-Aldrich F6765) instead of regular fetal bovine serum to decrease endogenous
579 hormones in the base medium.

580

581 ***Co-culture Decidualization***

582 Decidualization of endometrial stromal cells was induced by culturing hydrogels in the
583 presence of the following decidualization hormone cocktails: (i) based on synthetic
584 progesterone, 1 μ M medroxyprogesterone acetate (MPA; Sigma-Aldrich M1629) + 0.5
585 mM 8-bromoadenosine 3',5'-cyclic monophosphate (8-Br-cAMP; Sigma-Aldrich B5386)
586 or (ii) progesterone based, 0.5 mM dibutyryl cyclic AMP (dcAMP; Millipore Sigma
587 28745) + 10 nM estradiol (E2; Sigma-Aldrich E2758) + 100 nM progesterone (P4; Sigma-
588 Aldrich P8783). Control samples had no hormones added to the medium. Medium was
589 replaced every 3 days, collected at days 3 and 6, and stored at -80°C.

590

591 **Characterization of Perivascular Niche Cultures**

592 ***Immunofluorescent Staining***

593 On day 7 of culture, hydrogel samples were fixed with formalin (Sigma-Aldrich) and
594 washed three times with PBS. Hydrogels were permeabilized for 15 minutes in a 0.5%
595 Tween20 (Fisher Scientific BP337) solution and washed 3x5 minutes in 0.1% Tween20
596 solution (PBST). Samples were blocked for 1 hour at room temperature in a 2% Abdil
597 solution (2% bovine serum albumin; Sigma Aldrich A4503 + 0.1% Tween20) and
598 subsequently incubated in primary antibody solution (1:200 CD31 Dako IS610 + 1:200
599 CD10 Invitrogen PA5-85875 or 1:200 anti-laminin Abcam ab11575 or 5 µg/mL ZO-1
600 Invitrogen #61-7300) overnight at 4°C. 4x20 minutes washes with PBST were performed
601 and then cultured in secondary antibody (1:500 Alexafluor 555 goat anti-rabbit Thermo
602 Fisher A-21428 and/or 1:500 Alexafluor 488 goat anti-mouse Thermo Fisher A-11001)
603 overnight at 4°C. Hydrogels were washed 4x20 minutes with PBST and then incubated for
604 30 minutes in Hoechst (1:2000; Thermo Fisher H3570). Samples were washed a final time
605 in PBST and were stored in PBST until imaged.

606

607 **Microscopy Techniques**

608 Hydrogels were imaged using glass bottom confocal (In Vitro Scientific, D29-20-1-N)
609 dishes on a DMi8 Yokogawa W1 spinning disc confocal microscope outfitted with a
610 Hamamatsu EM-CCD digital camera (Leica Microsystems). Three 100 µm z-stacks with a
611 5 µm step size were taken for each hydrogel for 3 regions of interest (ROI) except for time
612 course experiments and laminin/ZO-1 stained hydrogels (n=2-3 hydrogels; n=2 ROI per
613 hydrogel). For day 14 and day 21 hydrogels, 1 ROI was imaged which captured roughly
614 80-100% of the entire gel area. Fluorescent images were artificially brightened for figures
615 but not for analysis.

616

617 **Image Analysis**

618 Images were analyzed using a computational pipeline consisting of a FIJI macro and
619 custom MATLAB algorithm (49, 50). This pipeline allows for 3D quantification of vessel
620 networks across image z-stacks. Briefly, individual images of each z-stack were blurred,
621 filtered, and binarized using a FIJI macro. Then, the binarized images were analyzed using
622 a custom MATLAB algorithm that quantified total branches + endpoints, branch points,
623 number of vessels, and total network length from skeletonized images. Using Microsoft
624 Excel, we then calculated the total network length / mm³, average branch length (network
625 length / number of vessels), number of branches, and number of vessels for each sample.

626

627 To compute the degree of overlap between CD31 signal and laminin/ZO-1 signal, CD31
628 and laminin/ZO-1 Z-stacks were binarized using the same FIJI macro listed above.
629 Compressed copies of the Z-stacks were also created to match the size of the binarized
630 images. Average pixel intensity was generated for both stains and the degree of overlap
631 was then calculated by multiplying the binarized matrix of vessels by the binarized matrix
632 of the proteins (Unpublished method from Victoria Barnhouse et al. *in preparation*).

633

634 **Cytokine Array**

635 A Proteome Profiler Human Angiogenesis Array (R&D Systems ARY007) was used to
636 determine relative levels of 55 angiogenesis-related proteins. Medium was collected at
637 days 3 and 6 of culture, stored at -80°C until use, and pooled for analysis. 500 µL of
638 medium was used for each day (1 mL total per cytokine array; n=3 samples per condition).

639 The array was run as per the manufacturer's instructions and imaged (4 minute exposure)
640 using an Amersham ImageQuant 800 Fluor system (Cytiva). Pixel density of each array
641 spot was quantified using FIJI. The negative control spot averages were subtracted from
642 the pixel density of each sample and then pixel density of each sample was normalized to
643 the pixel density of positive control spots.

644

645 **STRING Analysis**

646 Statistical analysis was performed to determine which of the 55 angiogenesis-related
647 proteins were statistically significantly different between groups. The resultant analysis
648 revealed 14 significant proteins. These 14 proteins were entered into the STRING (Search
649 Tool for the Retrieval of Interacting Genes/Proteins) Database to determine known and
650 predicted protein-protein interactions (51-53). A network summary view was created
651 using a medium confidence minimum required interaction score (0.400).

652

653 **Trophoblast and Perivascular Niche Interactions**

654 ***Perivascular Hydrogel Conditioned Media Effects on Trophoblast Motility***

655 Control and decidualized perivascular hydrogels were cultured as described above. Media
656 were collected during media changes on days 3 and 6 of culture, filtered, and stored at -
657 20°C until use. Unconditioned ECM was also collected for use as a control. Conditioned
658 media from days 3 and 6 were pooled prior to adding to spheroid cultures. Spheroid
659 motility assays were performed as described previously by our group (47, 48, 54). For
660 these studies, we used Swan 71 cells derived from a 7-week first trimester placenta;
661 however, no additional donor information was provided (55). Swan71 at passage one from
662 receipt were cultured in growth medium consisting of phenol red-free DMEM (SCS Cell
663 Media Facility, UIUC) supplemented with 10% charcoal-stripped fetal bovine serum, 1%
664 penicillin/streptomycin, and 500 ng/mL puromycin. Once passaged for experiments, the
665 cells were cultured in phenol red-free DMEM, 2% charcoal-stripped fetal bovine serum,
666 and 1% penicillin/streptomycin (Swan71 motility medium). Cells were cultured in flasks
667 until 80-90% confluence and added to round bottom plates (Corning 4515; 4,000
668 cells/well) for at least 48 hours on a shaker (60 rpm) in the incubator until spheroids
669 formed. Individual spheroids were encapsulated in GelMA hydrogels and maintained in
670 800 µL of medium (Swan71 motility medium, 50:50 Swan71 motility medium:ECM, or
671 50:50 Swan71 motility medium:PVN-conditioned medium) for 3 days. Each encapsulated
672 spheroid was imaged daily on a Leica DMI 4000 B microscope (Leica Microsystems).
673 Total outgrowth area was calculated using the measure tool in FIJI by averaging three
674 traced measurements of the outgrowth area. Fold change was calculated by normalizing
675 outgrowth area to initial spheroid area (day 0).

676

677 ***Trophoblast Conditioned Media Effects on Perivascular Hydrogels***

678 Swan71 at passage one from receipt were cultured in growth medium consisting of phenol
679 red-free DMEM (SCS Cell Media Facility, UIUC) supplemented with 10% charcoal-
680 stripped fetal bovine serum, 1% penicillin/streptomycin, and 500 ng/mL puromycin.
681 Swan71 cells were cultured in a T75 culture flask and medium was collected at
682 confluence, syringe filtered, and stored at -20°C until use. Unconditioned growth medium
683 was also collected for use as a control. Co-culture hydrogels were fabricated and cultured
684 as described above in ECM (control), a 50:50 ratio of ECM to unconditioned Swan71

685 growth medium (media control), or 50:50 ratio ECM to Swan71 conditioned medium.
686 Hydrogels were stained, imaged, and analyzed as described above.

687

688 **Triculture of Endometrial Endothelial, Stromal, and Epithelial Cells.**

689 Perivascular hydrogel cultures were prepared as described above and cast into Ibidi μ -
690 Slides Angiogenesis (10 μ L prepolymer solution; Ibidi 81506). Polymerized gels were
691 then coated with Collagen 1 (EMD Millipore 08-115MI) and Collagen 3 (EMD Millipore
692 CC054) using microbial transglutaminase (mTg; Zedira T001) (43, 56, 57). A 1:1 ratio of
693 0.5 mg/mL mTg and 10 μ g/mL ECM protein (1:1 ratio Collagen 1 and Collagen 3) were
694 combined and 20 μ L of this solution was pipetted onto hydrogels. Coated hydrogels were
695 incubated for 1 hour in 5% CO₂ incubators at 37°C. A quick wash was performed using
696 20 μ L of PBS. After the wash step, we seeded 200,000 EEC/cm² onto hydrogels. We
697 cultured tricultures for 7 days and subsequently stained them with CD31 and phalloidin (7
698 μ L per 1000 μ L solution) or cytokeratin 18 (CK18; 1:250, Cell Signaling 24E10) using the
699 protocol described above. We then took Z-stack images of each gel from the top of the gel
700 as far down as we could visualize. We took 1 Z-stack per gel (n=2 gels per condition).

701

702 **Statistical Analysis**

703 OriginLab 2021b and RStudio were used for statistical analyses. Normality was
704 determined via Shapiro-Wilkes and homoscedasticity was determined via Levene's test.
705 Data were analyzed using a one-way analysis of variance (ANOVA) and Tukey post hoc
706 test (normal, homoscedastic), Welch's ANOVA and Games-Howell post hoc test (normal,
707 heteroscedastic), Kruskall-Wallis ANOVA and Dunn's post hoc test (non-normal,
708 homoscedastic), or Welch's Heteroscedastic F Test with Trimmed Means and Winsorized
709 Variances and Games-Howell post hoc test (non-normal, heteroscedastic). Significance
710 was set as $p < 0.05$ and data are presented as mean \pm standard deviation unless otherwise
711 described. Each quantitative experiment used n=3-6 hydrogels unless otherwise noted.
712 Plots were generated using OriginLab.

731 **References**

- 732 1. R. Demir, A. Yaba, B. Huppertz, Vasculogenesis and angiogenesis in the endometrium
733 during menstrual cycle and implantation. *Acta Histochem* **112**, 203-214 (2010).
- 734 2. M. Plaisier, Decidualisation and angiogenesis. *Best Pract Res Clin Obstet Gynaecol* **25**,
735 259-271 (2011).
- 736 3. S. B. Fournier, J. N. D'Errico, P. A. Stapleton, Uterine Vascular Control Preconception
737 and During Pregnancy. *Compr Physiol* **11**, 1871-1893 (2021).
- 738 4. T. Garrido-Gomez *et al.*, Defective decidualization during and after severe preeclampsia
739 reveals a possible maternal contribution to the etiology. *Proc Natl Acad Sci U S A* **114**,
740 E8468-E8477 (2017).
- 741 5. E. D. Albrecht, Effect of estrogen on angiogenesis in co-cultures of human endometrial
742 cells and microvascular endothelial cells. *Human Reproduction* **18**, 2039-2047 (2003).
- 743 6. J. E. Cartwright *et al.*, Trophoblast invasion of spiral arteries: a novel in vitro model.
744 *Placenta* **23**, 232-235 (2002).
- 745 7. K. Kapiteijn *et al.*, Human embryo-conditioned medium stimulates in vitro endometrial
746 angiogenesis. *Fertil Steril* **85 Suppl 1**, 1232-1239 (2006).
- 747 8. N. Govindasamy *et al.*, 3D biomimetic platform reveals the first interactions of the
748 embryo and the maternal blood vessels. *Dev Cell* **56**, 3276-3287 e3278 (2021).
- 749 9. B. Lv *et al.*, Activation of Blood Vessel Development in Endometrial Stromal Cells In
750 Vitro Cocultured with Human Peri-Implantation Embryos Revealed by Single-Cell RNA-
751 Seq. *Life (Basel)* **11**, (2021).
- 752 10. G. S. Offeddu *et al.*, Application of Transmural Flow Across In Vitro Microvasculature
753 Enables Direct Sampling of Interstitial Therapeutic Molecule Distribution. *Small* **15**,
754 e1902393 (2019).
- 755 11. K. Haase, M. R. Gillrie, C. Hajal, R. D. Kamm, Pericytes Contribute to Dysfunction in a
756 Human 3D Model of Placental Microvasculature through VEGF-Ang-Tie2 Signaling. *Adv
757 Sci (Weinh)* **6**, 1900878 (2019).
- 758 12. K. Haase *et al.*, Physiologic flow-conditioning limits vascular dysfunction in engineered
759 human capillaries. *biorxiv*, (2021).
- 760 13. Y. C. Chen *et al.*, Functional Human Vascular Network Generated in Photocrosslinkable
761 Gelatin Methacrylate Hydrogels. *Adv Funct Mater* **22**, 2027-2039 (2012).
- 762 14. M. T. Ngo, B. A. Harley, The Influence of Hyaluronic Acid and Glioblastoma Cell
763 Coculture on the Formation of Endothelial Cell Networks in Gelatin Hydrogels. *Advanced
764 Healthcare Materials*, 1700687 (2017).
- 765 15. L. Saleh, G. R. Otti, C. Fiala, J. Polheimer, M. Knofler, Evaluation of human first
766 trimester decidual and telomerase-transformed endometrial stromal cells as model systems
767 of in vitro decidualization. *Reprod Biol Endocrinol* **9**, 1-15 (2011).
- 768 16. J. Y. Huang, P. H. Yu, Y. C. Li, P. L. Kuo, NLRP7 contributes to in vitro decidualization
769 of endometrial stromal cells. *Reprod Biol Endocrinol* **15**, 66 (2017).
- 770 17. J. H. Ahn, H. R. Park, C. W. Park, D. W. Park, J. Kwak-Kim, Expression of TWIST in the
771 first-trimester trophoblast and decidual tissue of women with recurrent pregnancy losses.
772 *Am J Reprod Immunol* **78**, (2017).
- 773 18. S. C. Schutte, C. O. James, N. Sidell, R. N. Taylor, Tissue-engineered endometrial model
774 for the study of cell-cell interactions. *Reprod Sci* **22**, 308-315 (2015).
- 775 19. S. C. Schutte, R. N. Taylor, A tissue-engineered human endometrial stroma that responds
776 to cues for secretory differentiation, decidualization, and menstruation. *Fertil Steril* **97**,
777 997-1003 (2012).
- 778 20. J. Yu *et al.*, Endometrial Stromal Decidualization Responds Reversibly to Hormone
779 Stimulation and Withdrawal. *Endocrinology* **157**, 2432-2446 (2016).

780 21. S. G. Zambuto, I. Jain, K. B. H. Clancy, G. H. Underhill, B. A. C. Harley, Role of
781 Extracellular Matrix Biomolecules on Endometrial Epithelial Cell Attachment and
782 Cytokeratin 18 Expression on Gelatin Hydrogels. *ACS Biomater Sci Eng* **8**, 3819-3830
783 (2022).

784 22. D. Bouïs, G. A. P. Hospers, C. Meijer, G. Molema, N. H. Mulder, Endothelium in vitro: a
785 review of human vascular endothelial cell lines for blood vessel-related research.
786 *Angiogenesis* **4**, 91-102 (2001).

787 23. S. M. Ehsan, S. C. George, Vessel network formation in response to intermittent hypoxia
788 is frequency dependent. *J Biosci Bioeng* **120**, 347-350 (2015).

789 24. F. Del Bufalo *et al.*, 3D modeling of human cancer: A PEG-fibrin hydrogel system to
790 study the role of tumor microenvironment and recapitulate the in vivo effect of oncolytic
791 adenovirus. *Biomaterials* **84**, 76-85 (2016).

792 25. A. Nyga, M. Loizidou, M. Emberton, U. Cheema, A novel tissue engineered three-
793 dimensional in vitro colorectal cancer model. *Acta Biomater* **9**, 7917-7926 (2013).

794 26. F. Grinnell, Fibroblast-collagen-matrix: growth-factor signalling and mechanical loading.
795 *trends in cell biology* **10**, 362-365 (2000).

796 27. T. M. Freyman, I. V. Yannas, R. Yokoo, L. J. Gibson, Fibroblast contraction of a
797 collagen-GAG matrix. *Biomaterials* **22**, 2883-2891 (2001).

798 28. L. S. Gambino *et al.*, Angiogenesis occurs by vessel elongation in proliferative phase
799 human endometrium. *Human Reproduction* **17**, 1199-1206 (2002).

800 29. S. K. Smith, Regulation of angiogenesis in the endometrium. *Trends in Endocrinology &*
801 *Metabolism* **12**, 147-151 (2001).

802 30. S. Hayrabedian, S. Kyurkchiev, I. Kehayov, FGF-1 and S100A13 possibly contribute to
803 angiogenesis in endometriosis. *J Reprod Immunol* **67**, 87-101 (2005).

804 31. S. Ergün *et al.*, Endostatin inhibits angiogenesis by stabilization of newly formed
805 endothelial tubes. *Angiogenesis* **4**, 193-206 (2001).

806 32. H. Matsumoto *et al.*, Regulation of proliferation, motility, and contractility of human
807 endometrial stromal cells by platelet-derived growth factor. *J Clin Endocrinol Metab* **90**,
808 3560-3567 (2005).

809 33. M. Massimiani *et al.*, Molecular Signaling Regulating Endometrium-Blastocyst Crosstalk.
810 *Int J Mol Sci* **21**, (2019).

811 34. J. A. Maybin, U. Thiruchelvam, M. Madhra, P. T. K. Saunders, H. O. D. Critchley,
812 Steroids Regulate CXCL4 in the Human Endometrium During Menstruation to Enable
813 Efficient Endometrial Repair. *J Clin Endocrinol Metab* **102**, 1851-1860 (2017).

814 35. R. L. Jones, L. A. Salamonsen, J. K. Findlay, Activin A Promotes Human Endometrial
815 Stromal Cell Decidualization In Vitro. *J Clin Endocrinol Metab* **87**, 4001-4004 (2002).

816 36. R. L. Jones, J. K. Findlay, L. A. Salamonsen, The role of activins during decidualisation
817 of human endometrium. *Aust N Z J Obstet Gynaecol* **46**, 245-249 (2006).

818 37. C. D. Cook *et al.*, Local remodeling of synthetic extracellular matrix microenvironments
819 by co-cultured endometrial epithelial and stromal cells enables long-term dynamic
820 physiological function. *Integr Biol (Camb)* **9**, 271-289 (2017).

821 38. E. Moore, J. B. Allen, C. J. Mulligan, E. C. Wayne, Ancestry of cells must be considered
822 in bioengineering. *Nature Reviews Materials* **7**, 2-4 (2021).

823 39. S. Guerrero *et al.*, Analysis of Racial/Ethnic Representation in Select Basic and Applied
824 Cancer Research Studies. *Sci Rep* **8**, 13978 (2018).

825 40. L. A. Salamonsen, J. C. Hutchison, C. E. Gargett, Cyclical endometrial repair and
826 regeneration. *Development* **148**, (2021).

827 41. A. P. Hess *et al.*, Decidual stromal cell response to paracrine signals from the trophoblast:
828 amplification of immune and angiogenic modulators. *Biol Reprod* **76**, 102-117 (2007).

829 42. K. Murakami *et al.*, Decidualization induces a secretome switch in perivascular niche cells
830 of the human endometrium. *Endocrinology* **155**, 4542-4553 (2014).

831 43. S. G. Zambuto, I. Jain, K. B. H. Clancy, G. H. Underhill, B. A. C. Harley, The role of
832 extracellular matrix biomolecules on endometrial epithelial cell attachment and
833 cytokeratin 18 expression on gelatin hydrogels. *bioRxiv*, 2021.2010.2024.465574 (2021).

834 44. K. B. H. Clancy, P. T. Ellison, G. Jasienska, R. G. Bribiescas, Endometrial thickness is not
835 independent of luteal phase day in a rural Polish population. *Anthropological Science* **117**,
836 157-163 (2009).

837 45. K. B. H. Clancy, Reproductive ecology and the endometrium: physiology, variation, and
838 new directions. *Yearbook of Physical Anthropology* **52**, 137-154 (2009).

839 46. S. Pedron, B. A. Harley, Impact of the biophysical features of a 3D gelatin
840 microenvironment on glioblastoma malignancy. *J Biomed Mater Res A* **101**, 3404-3415
841 (2013).

842 47. S. G. Zambuto, K. B. H. Clancy, B. A. C. Harley, Tuning Trophoblast Motility in a
843 Gelatin Hydrogel via Soluble Cues from the Maternal-Fetal Interface. *Tissue Eng Part A*
844 **27**, 1064-1073 (2020).

845 48. S. G. Zambuto, S. Rattila, G. Dveksler, B. A. C. Harley, Effects of Pregnancy-Specific
846 Glycoproteins on Trophoblast Motility in Three-Dimensional Gelatin Hydrogels. *Cellular
847 and Molecular Bioengineering*, (2022).

848 49. C. O. Crosby *et al.*, Quantifying the vasculogenic potential of iPSC-derived endothelial
849 progenitors in collagen hydrogels. *Tissue Eng Part A*, (2019).

850 50. M. Kerschnitzki *et al.*, Architecture of the osteocyte network correlates with bone material
851 quality. *J Bone Miner Res* **28**, 1837-1845 (2013).

852 51. D. Szklarczyk *et al.*, The STRING database in 2021: customizable protein-protein
853 networks, and functional characterization of user-uploaded gene/measurement sets.
854 *Nucleic Acids Res* **49**, D605-D612 (2021).

855 52. C. von Mering *et al.*, STRING: a database of predicted functional associations between
856 proteins. *Nucleic Acids Res* **31**, 258-261 (2003).

857 53. C. von Mering *et al.*, STRING: known and predicted protein-protein associations,
858 integrated and transferred across organisms. *Nucleic Acids Res* **33**, D433-437 (2005).

859 54. S. G. Zambuto, K. B. H. Clancy, B. A. C. Harley, A gelatin hydrogel to study endometrial
860 angiogenesis and trophoblast invasion. *Interface Focus* **9**, (2019).

861 55. S. L. Straszewski-Chavez *et al.*, The isolation and characterization of a novel telomerase
862 immortalized first trimester trophoblast cell line, Swan 71. *Placenta* **30**, 939-948 (2009).

863 56. M. De Colli *et al.*, A biomimetic porous hydrogel of gelatin and glycosaminoglycans
864 cross-linked with transglutaminase and its application in the culture of hepatocytes.
865 *Biomed Mater* **7**, 055005 (2012).

866 57. G. Damodaran, R. Colligan, M. Griffin, A. Pandit, Tethering a laminin peptide to a
867 crosslinked collagen scaffold for biofunctionality. *J Biomed Mater Res A* **89**, 1001-1010
868 (2009).

869 58. A. Brand, L. Allen, M. Altman, M. Hlava, J. Scott, Beyond authorship: attribution,
870 contribution, collaboration, and credit. *Learned Publishing* **28**, 151-155 (2015).

871 59. L. Allen, J. Scott, A. Brand, M. Hlava, M. Altman, Publishing: Credit where credit is due.
872 *Nature* **508**, 312-313 (2014).

873 60. K. Koga *et al.*, Demonstration of Angiogenin in Human Endometrium and Its Enhanced
874 Expression in Endometrial Tissues in the Secretory Phase and the Decidua. *J Clin
875 Endocrinol Metab* **86**, 5609 (2001).

876 61. S. B. Chadchan, V. Kumar, V. K. Maurya, U. K. Soni, R. K. Jha, Endoglin (CD105)
877 coordinates the process of endometrial receptivity for embryo implantation. *Mol Cell
878 Endocrinol* **425**, 69-83 (2016).

879 62. I. T. Cameron, C. R. Bacon, G. P. Collett, A. P. Davenport, Endothelin Expression in the
880 Uterus. *J Steroid Biochem Mol Biol* **53**, 209-214 (1995).

881 63. L. C. Giudice, G. Lamson, R. G. Rosenfeld, J. C. Irwin, Insulin-like Growth Factor-II
882 (IGF-II) and IGF Binding Proteins in Human Endometrium. *Annals New York Academy of*
883 *Sciences*, 295-307 (1991).

884 64. J. Zhou, B. A. Dsupin, L. C. Giudice, C. A. Bondy, Insulin-Like Growth Factor System
885 Gene Expression in Human Endometrium during the Menstrual Cycle. *Journal of Clinical*
886 *Endocrinology and Metabolism* **79**, 1723-1734 (1994).

887 65. C. Garlanda, V. Maina, A. Cotena, F. Moalli, The soluble pattern recognition receptor
888 pentraxin-3 in innate immunity, inflammation and fertility. *J Reprod Immunol* **83**, 128-133
889 (2009).

890 66. B. Gellersen, J. J. Brosens, Cyclic decidualization of the human endometrium in
891 reproductive health and failure. *Endocr Rev* **35**, 851-905 (2014).

892 67. J. Daubriac *et al.*, Hormonal and Growth Regulation of Epithelial and Stromal Cells From
893 the Normal and Malignant Endometrium by Pigment Epithelium-Derived Factor.
894 *Endocrinology* **158**, 2754-2773 (2017).

895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928

929 **Acknowledgments**

930 The content herein is solely the responsibility of the authors and does not necessarily
931 represent the official views of the National Institutes of Health. The authors also gratefully
932 acknowledge additional funding provided by the Department of Chemical & Biomolecular
933 Engineering and the Carl R. Woese Institute for Genomic Biology at the University of
934 Illinois at Urbana-Champaign. The authors thank Drs. Gil More (Yale University School
935 of Medicine, New Haven, CT) and Gabriela Dveksler (Uniformed Services University of
936 Health Sciences, Bethesda, MD) for providing the Swan71 cells. The authors also thank
937 the Institute for Genomic Biology Core Facilities (Dr. Austin Cyphersmith) at the
938 University of Illinois Urbana-Champaign for assistance with imaging. The authors would
939 like to also thank Dr. Sara Pedron Haba, Dr. Victoria Barnhouse, and Vasiliki
940 Kolliopoulos for excellent technical assistance.

941
942 **Funding:** Research reported was supported by:

943
944 National Institutes of Diabetes and Digestive and Kidney Diseases of the National
945 Institutes of Health R01 DK0099528 (BACH)

946
947 National Cancer Institute of the National Institutes of Health R01 CA256481 (BACH)

948
949 National Institute of Biomedical Imaging and Bioengineering of the National Institutes of
950 Health T32 EB019944 (SGZ)

951
952 Department of Chemical & Biomolecular Engineering University of Illinois Urbana-
953 Champaign

954
955 Carl R. Woese Institute for Genomic Biology University of Illinois Urbana-Champaign.

956
957 **Author contributions:** We describe contributions to the manuscript using the Contributor
958 Roles Taxonomy (CRediT) (58, 59):

959
960 *Writing – Original Draft:* SGZ

961 *Writing – Review & Editing:* SGZ, HT, IJ, CC, JZ, NC, IP, KC, BACH

962 *Conceptualization:* SGZ and BACH

963 *Investigation:* SGZ

964 *Methodology:* SGZ

965 *Formal Analysis:* SGZ

966 *Data Curation:* SGZ

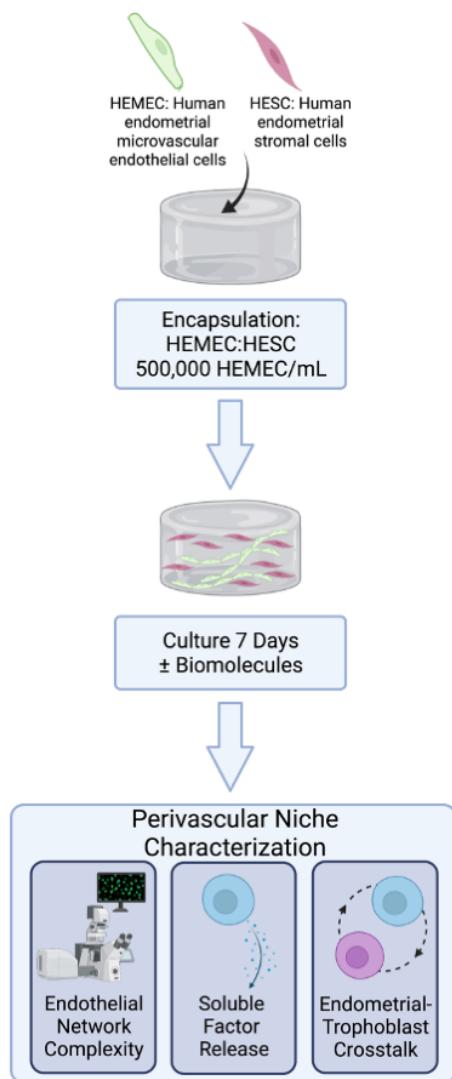
967 *Visualization:* SGZ

968 *Project Administration:* BACH

969 *Resources:* BACH; *Funding Acquisition:* BACH

970 *Supervision:* BACH

971 *Miscellaneous:* HT and IP assisted with experimentation. IJ assisted with R Code. NC and
972 IP assisted with literature review. CC and JZ provided the image analysis pipeline.

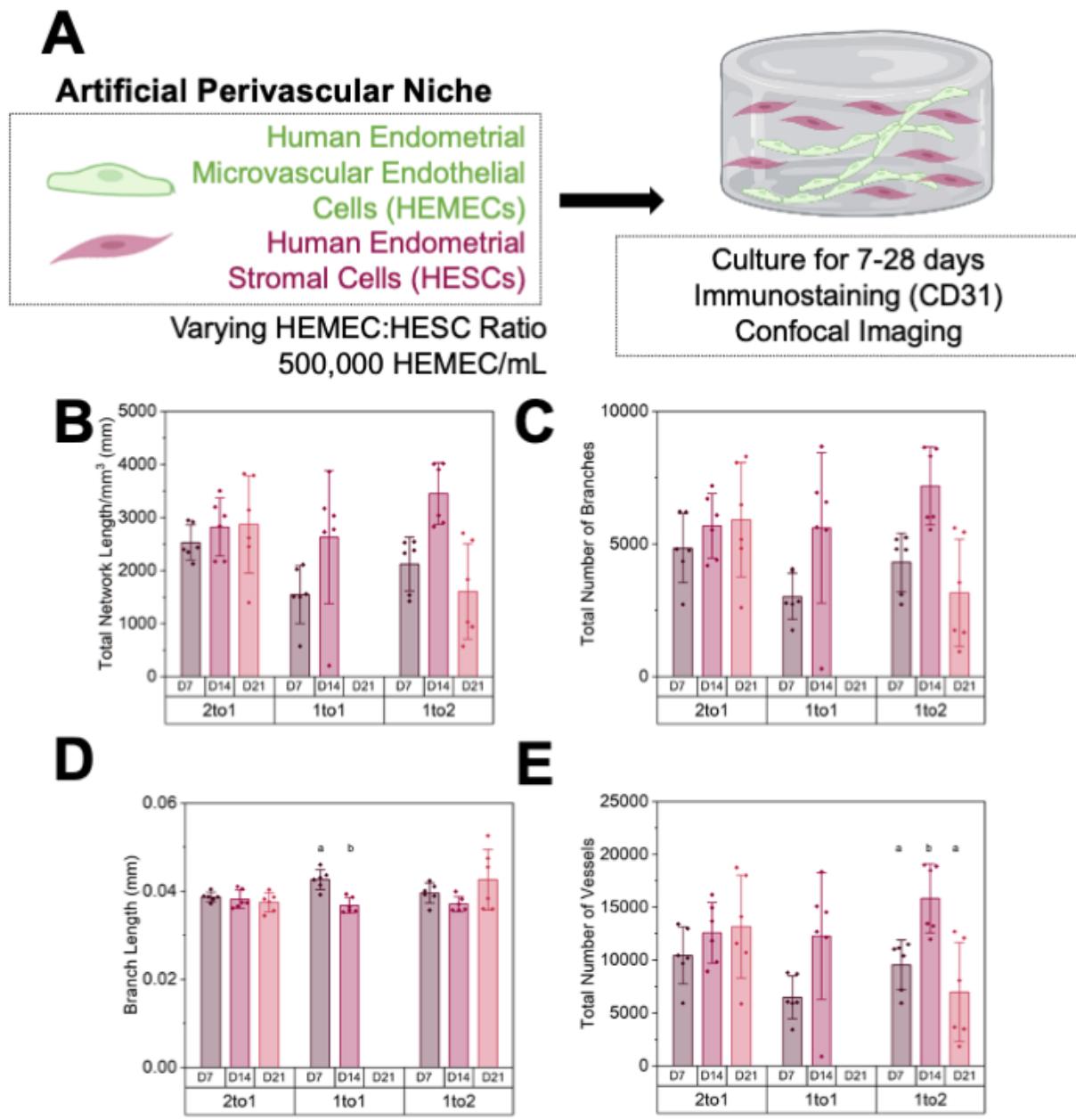

973
974 **Competing interests:** Authors declare that they have no competing interests.

975
976 **Data and materials availability:** The raw data required to reproduce these findings are
977 available per request by contacting the corresponding author. The processed data required

978 to reproduce these findings are available per request by contacting the corresponding
979 author.
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027

028

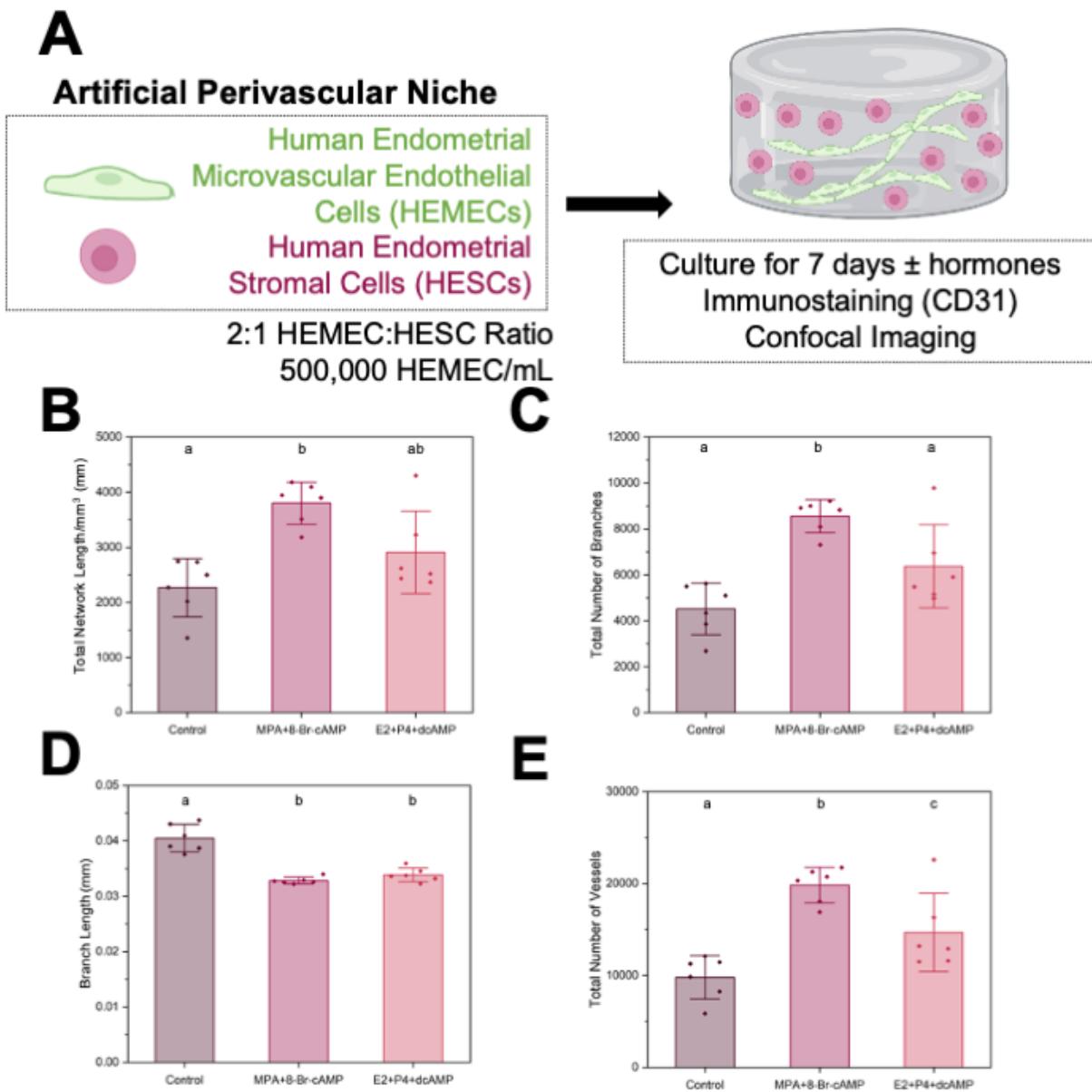
Figures and Tables


029

030 **Fig. 1. Development and characterization of an artificial endometrial perivascular**
031 **niche model.** Encapsulated endometrial endothelial and stromal cells are co-
032 cultured in methacrylamide-functionalized gelatin hydrogels for 7 days and are
033 subsequently analyzed for vessel network complexity, soluble factor secretion, and
034 matrix remodeling. Created with Biorender.com.

035

036


037

038
039
040 **Fig. 2. 28-day culture of an artificial endometrial perivascular niche. (A)**

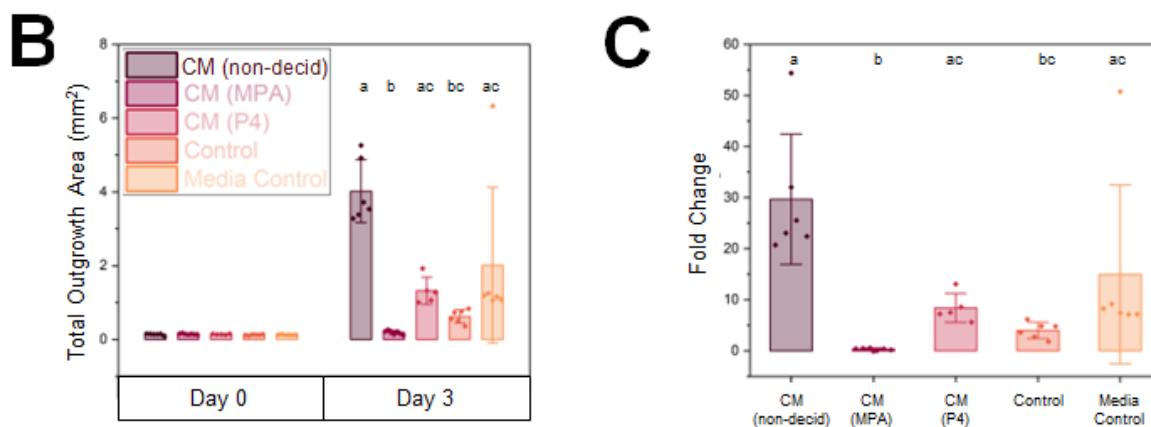
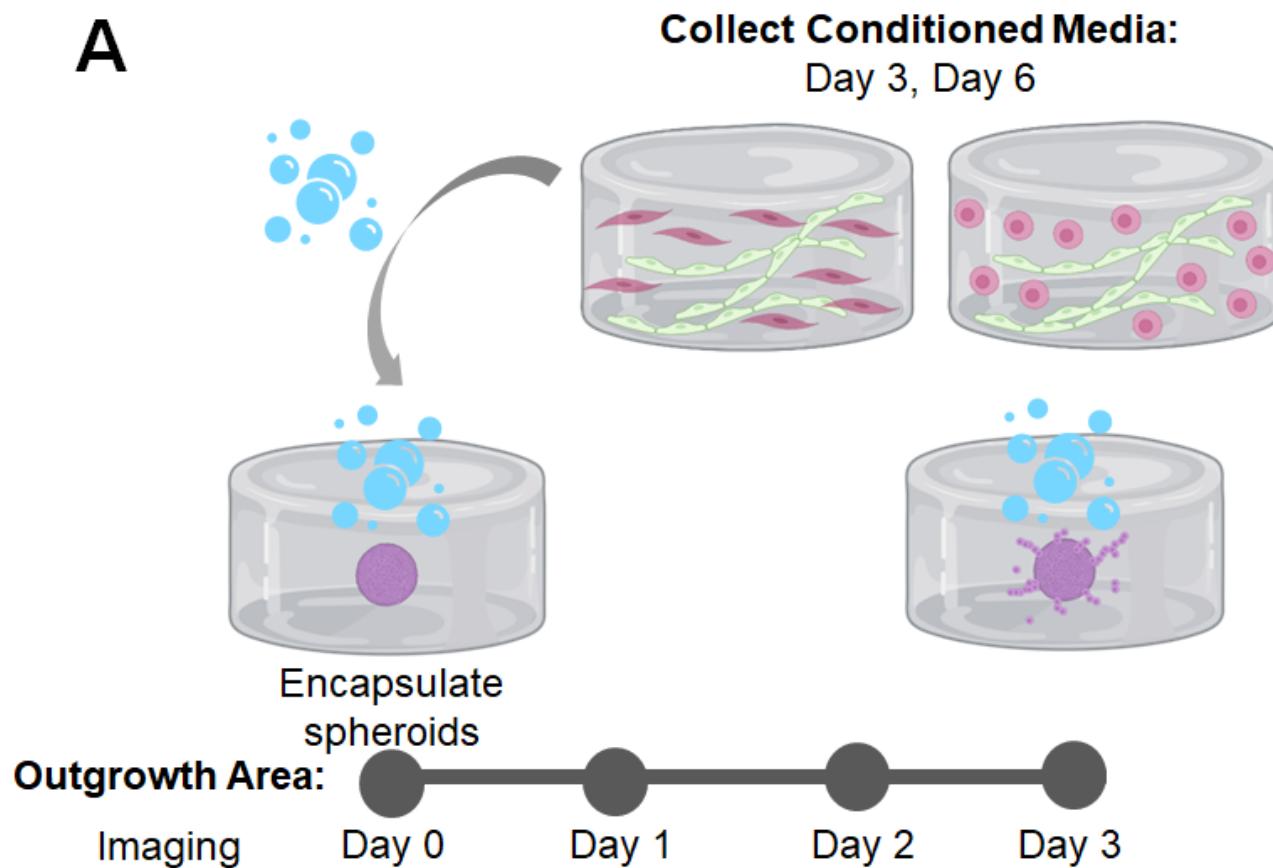
041 Experimental summary. (B) Quantification of total vessel length per mm³, (C)
042 total number of branches, (D) average branch length, and (E) total number of
043 vessels at days 7, 14, and 21 (n=6 hydrogels per condition; 3 ROI imaged per gel
044 and averaged) of varying endothelial to stromal cell ratios. Groups with different
045 letters are statistically significantly different from each other. Data presented as
046 mean \pm standard deviation. Created with Biorender.com.


047
048
049
050
051
052
053

054
055 **Figure 3. Stromal cell decidualization in an artificial endometrial perivascular niche.**

056 (A) Experimental summary. (B) Quantification of total vessel length per mm³, (C)
057 total number of branches, (D) average branch length, and (E) total number of
058 vessels for control and decidualized samples (n=6 hydrogels per condition; 3 ROI
059 imaged per gel and averaged). Two decidualization conditions were tested. Control
060 condition contained no added decidualization hormones. Groups with different
061 letters are statistically significantly different from each other. Data presented as
062 mean \pm standard deviation. MPA: medroxyprogesterone acetate, Br-cAMP:
063 bromoadenosine cyclic AMP, E2: estradiol, P4: progesterone, dcAMP: dibutyryl
064 cyclic AMP. Created with Biorender.com.

065
066
067
068
069
070
071

072
073
074
075
076
077
078

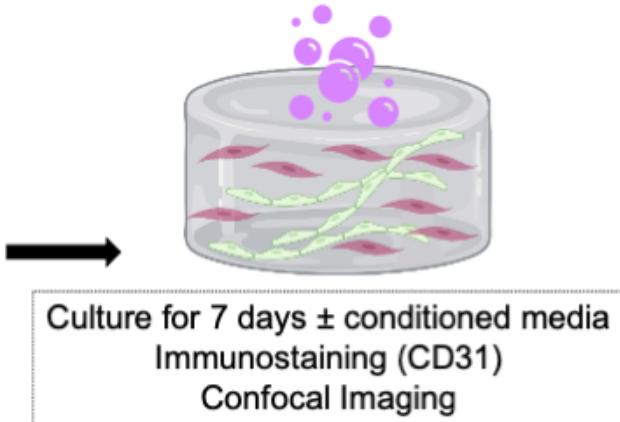
Figure 4. Cytokine secretion across control and decidualized artificial perivascular niche samples. (A) Experimental summary. (B) Cytokine array normalized mean pixel density results. (C) Normalized mean pixel density for characteristic decidual proteins Prolactin and IGFBP-1 across groups. (D) Normalized mean pixel density for statistically significantly different cytokines across groups. Groups with different letters are statistically different from each other. Data

079 presented as mean \pm standard deviation. MPA: medroxyprogesterone acetate, Br-
080 cAMP: bromoadenosine cyclic AMP, E2: estradiol, P4: progesterone, dcAMP:
081 dibutyryl cyclic AMP. N=3 hydrogels per condition. (E) STRING analysis of
082 statistically significantly different cytokines in homo sapiens. Red line-fusion
083 evidence. Green line-neighborhood evidence. Blue line-concurrence evidence.
084 Purple line-experimental evidence. Yellow line-textmining evidence. Light blue
085 line-database evidence. Black line-coexpression evidence. COL18A1-Collagen
086 alpha-1 (XVIII). ANGPT1-Angiopoetin-1. FGF1-Fibroblast growth factor 1.
087 AREG-Amphiregulin. PTX3-Pentaxin-related protein 3. EDN1-Endothelin-1.
088 ENG-Endoglin. ANG-Angiogenin. PRL-Prolactin. ACVR2B-Activin receptor
089 type-2B. PF4V1-Platelet factor 4 variant. IGFBP-2-Insulin-like growth factor
090 binding protein 2. FGF1-Fibroblast growth factor 1. SERPINF1-Pigment
091 epithelium derived factor. Created with Biorender.com.
092
093

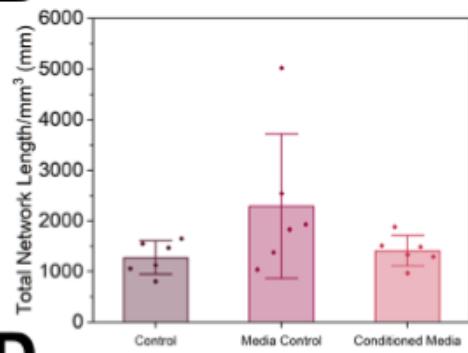
094

097 **Figure 5. The effects of perivascular conditioned media on trophoblast motility. (A)**
098 Experimental summary. **(B)** Quantification of total outgrowth area (mm²) and **(C)**
099 fold change in outgrowth area at Day 3 compared to Day 0 (encapsulation).
100 Groups with different letters are statistically significantly different from each
101 other. Data presented as mean \pm standard deviation. CM: Conditioned Media, Non-
102 decid: not decidualized (no hormones), MPA: medroxyprogesterone acetate, P4:
103 progesterone. Created with Biorender.com.

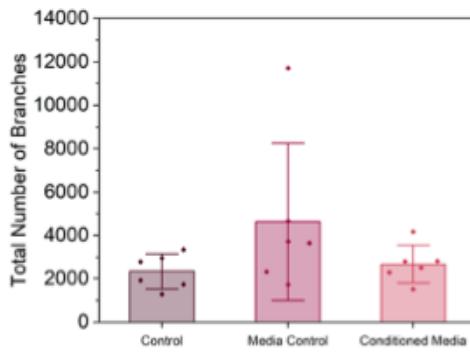
104
105
106

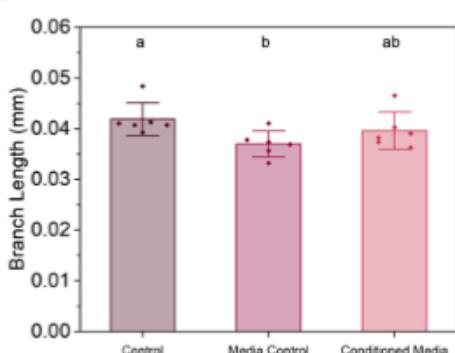

107
108
109
110

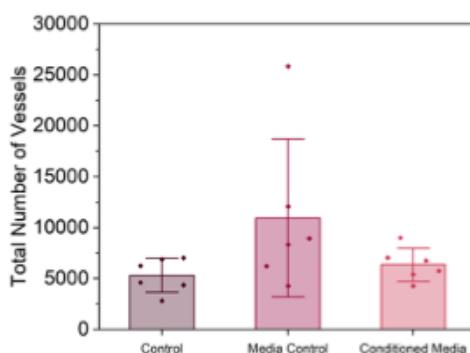
A


Artificial Perivascular Niche

Human Endometrial
Microvascular Endothelial
Cells (HEMECs)
Human Endometrial
Stromal Cells (HESCs)

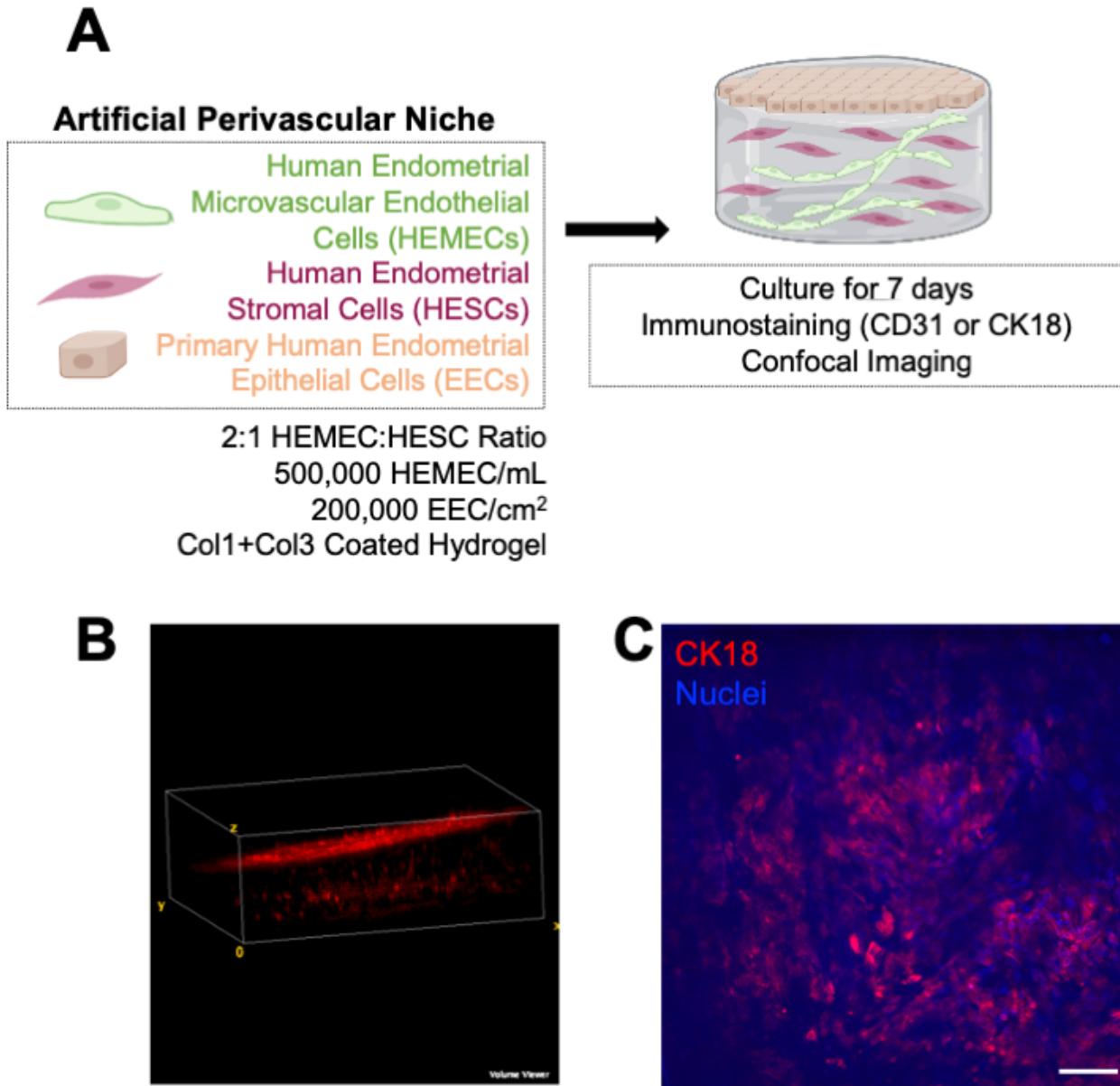

2:1 HEMEC:HESC Ratio
500,000 HEMEC/mL


B


C

D

E



111
112

Figure 6. Effects of Swan71 trophoblast conditioned medium on endometrial perivascular niche complexity. (A) Experimental summary. (B) Quantification of total vessel length per mm^3 , (C) total number of branches, (D) average branch length, and (E) total number of vessels for control, media control, and conditioned media samples ($n=6$ hydrogels per condition; 3 ROI imaged per gel and averaged). Groups with different letters are statistically significantly different from each other. Data presented as mean \pm standard deviation. Created with Biorender.com.

113
114
115
116
117
118
119
120
121
122
123

124
125
126
127

128
129 **Figure 7. Fabrication of a stratified endometrial model. (A)** Experimental summary.
130 **(B)** FIJI Volume Viewer maximum intensity projection showing phalloidin-stained
131 cells with EEC layer overlaying perivascular compartment. **(C)** Maximum
132 intensity projections of Z-stacks of triculture hydrogel cultures stained for
133 cytokeratin 18 (CK18). Scale bars: 100 μ m. Created with Biorender.com.
134

135
136
137

Table 1. Relevance of cytokines to endometrial function.

Protein	Relevance	References
Activin A	Expressed in decidualized stromal cells	(35, 36)
Amphiregulin	Role in receptivity and blastocyst attachment	(33)
Angiogenin	Angiogenesis; Decidualization	(60)
Angiopoetin-1	Maintains vessel integrity and vascular remodeling	(2, 29)
Endoglin	Endometrial receptivity	(61)
Endostatin/Collagen XVIII	Maturation and stabilization of vessels	(31)
Endothelin-1	Vasoconstriction; Myometrial contraction	(3, 62)
FGF-1	Angiogenesis	(29, 30)
IGFBP-2	Found in stroma; Abundant in secretory phase	(63, 64)
PDGF	Angiogenesis; Stromal cell motility and proliferation	(32)
Pentraxin 3	Angiogenesis; Matrix Remodeling; Inflammation; Decidualization	(65)
Platelet Factor 4	Repair following menses	(34)
Prolactin	Decidualization	(66)
Serpin F1	Regulation of angiogenesis	(67)

138
139
140
141

Supplementary Materials

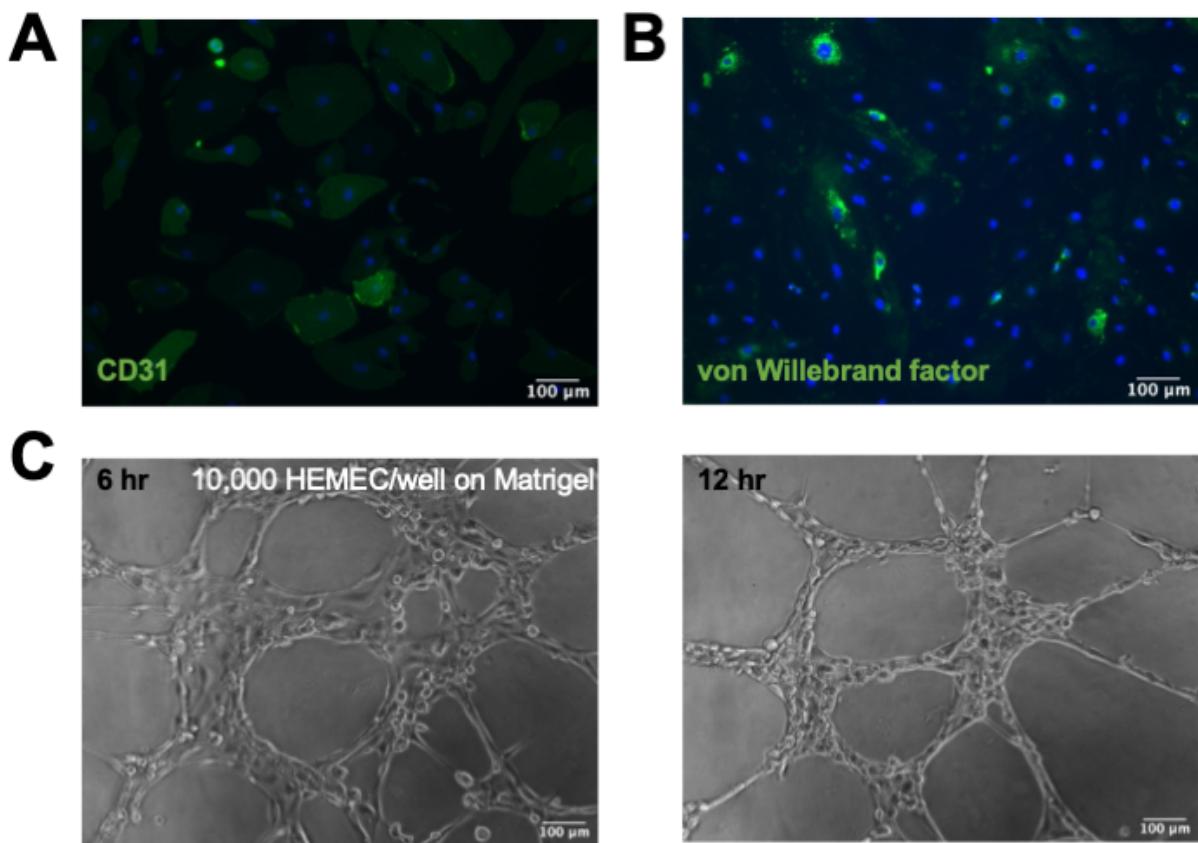
Supplemental information can be found in the Supplementary Materials.

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

Supplementary Materials for

Endometrial decidualization status modulates endometrial perivascular niche complexity and trophoblast outgrowth area in gelatin hydrogels

Samantha G. Zambuto, Hannah Theriault, Ishita Jain, Cody Crosby, Ioana Pintescu, Noah Chiou, Janet Zoldan, Gregory H. Underhill, Kathryn B.H. Clancy, Brendan A.C. Harley*

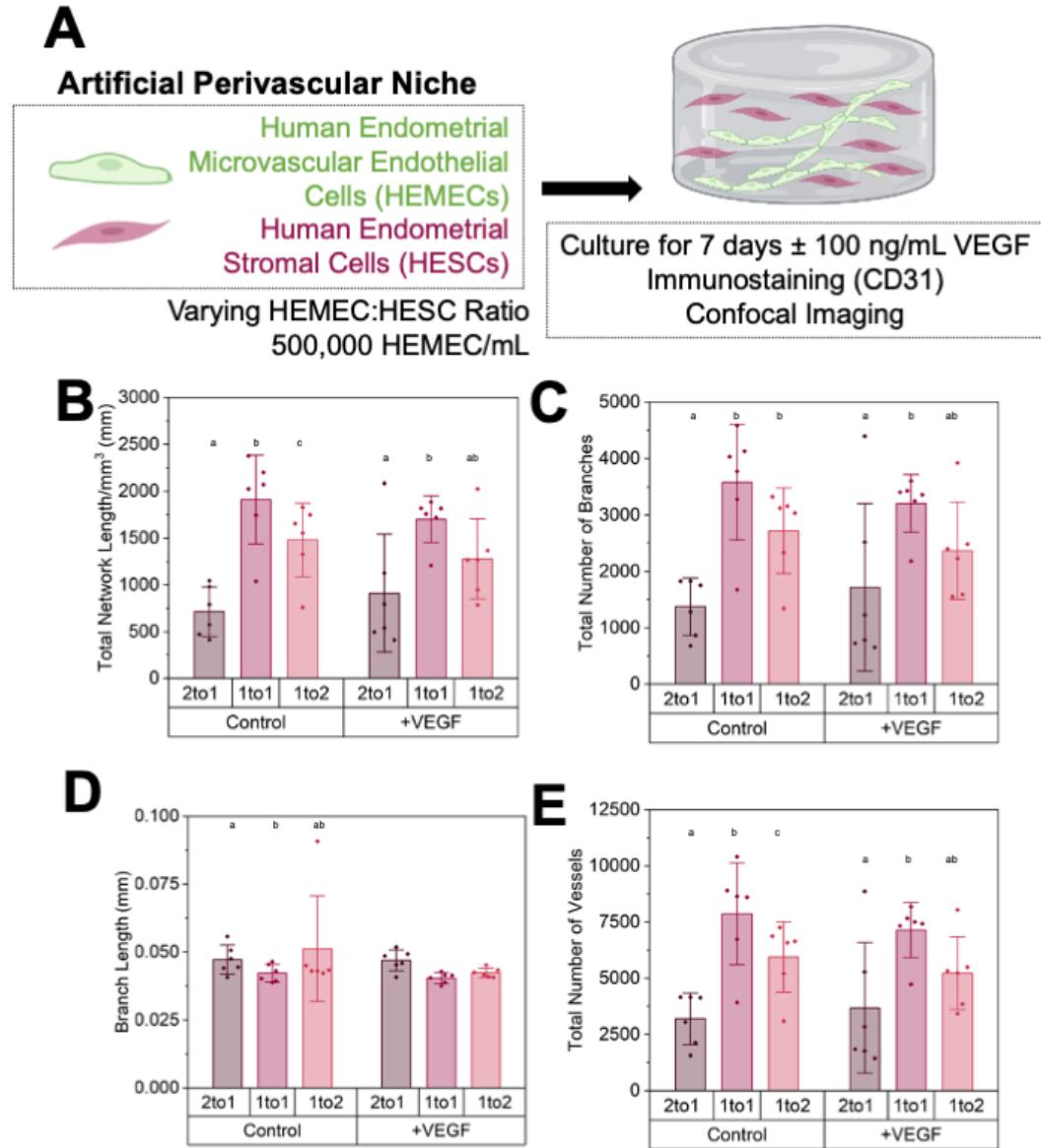

*Corresponding author. Email: bharley@illinois.edu

This PDF file includes:

Supplementary Text Figs. S1 to S5

182

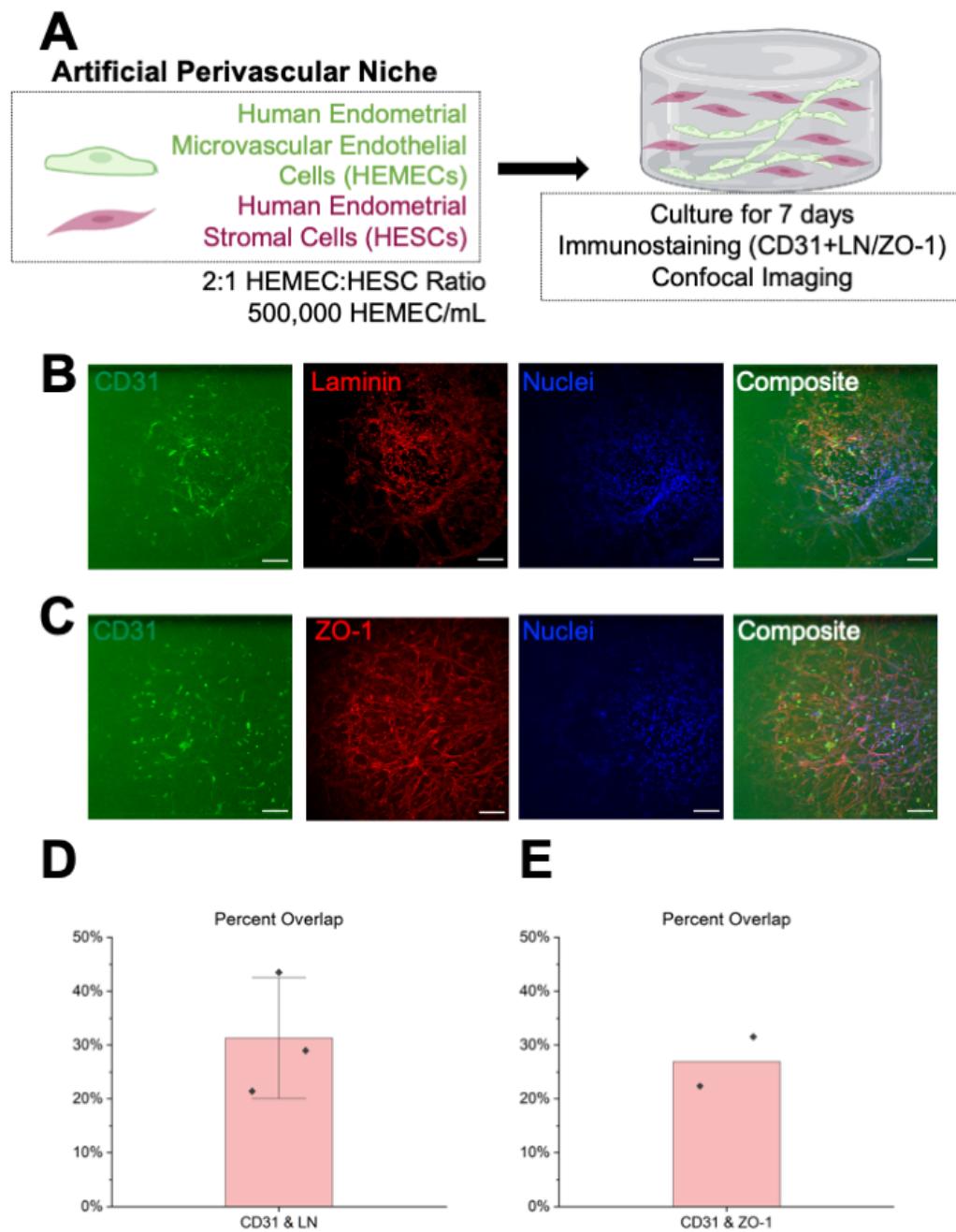
183 **Supplementary Text**


184

185

Fig. S1.

186 Angiogenic potential of human endometrial microvascular endothelial cells (HEMEC). HEMEC
187 cultured on well plates express characteristic endothelial cell markers such as (A) CD31 (cluster
188 of differentiation 31) and (B) von Willebrand factor. (C) HEMEC demonstrate the ability to form
189 tubes on Matrigel that form transiently and fall apart in less than 24 hours. Scale bar: 100 μm.
190


191
192

193

194

Fig. S2.
Optimization of an artificial endometrial perivascular niche. (A) Experimental summary. (B) Quantification of total vessel length per mm³, (C) total number of branches, (D) average branch length, and (E) total number of vessels for control and vascular endothelial growth factor (VEGF) samples (n=6 hydrogels per condition; 3 ROI imaged per gel and averaged) of varying endothelial to stromal cell ratios. Groups with different letters are statistically significantly different from each other. Data presented as mean \pm standard deviation. Created with Biorender.com.

201

202 **Fig. S3.**

203 Characterization of extracellular matrix deposition and tight junction expression in perivascular
204 cultures. (A) Experimental summary. Maximum intensity projections of Z-stacks of artificial
205 endometrial perivascular niche hydrogel cultures stained for CD31 (HEMEC-endothelial cells)
206 and (B) laminin (C) and ZO-1. Green-CD31; Red-Laminin or ZO-1; Blue-Nuclei. Percent overlap
207 was calculated between CD31 signal and (D) laminin and (E) ZO-1. n=2-3 hydrogels per
208 condition. Data presented as mean \pm standard deviation. 2 ROI imaged per gel. Scale bars: 100
209 μ m. Images artificially brightened for visualization using FIJI. Created with Biorender.com.

210 A

B

Mean Pixel Density	Control	MPA+8-Br-cAMP	E2+P4+dcAMP	Normalized Mean Pixel Density	Control	MPA+8-Br-cAMP	E2+P4+dcAMP
Activin A	246	4452	2859	Activin A	0.0041	0.0725	0.0459
ADAMTS-1	70	283	374	ADAMTS-1	0.0012	0.0046	0.0059
Angiogenin	1312	664	1489	Angiogenin	0.0221	0.0108	0.0237
Angiopoietin-1	4807	842	4011	Angiopoietin-1	0.0812	0.0138	0.0640
Angiopoietin-2	22471	33062	35244	Angiopoietin-2	0.3808	0.5448	0.5662
Angiostatin/Plasminogen	82	276	276	Angiostatin/Plasminogen	0.0014	0.0045	0.0043
Amphiregulin	1025	10883	16458	Amphiregulin	0.0172	0.1788	0.2642
Artemin	299	354	753	Artemin	0.0050	0.0057	0.0120
Coagulation Factor III	667	811	1437	Coagulation Factor III	0.0111	0.0133	0.0229
CXCL16	879	542	690	CXCL16	0.0147	0.0088	0.0108
DPPIV	2008	2989	1489	DPPIV	0.0339	0.0488	0.0237
EGF	65343	67106	68178	EGF	1.1055	1.0983	1.0906
EG-VEGF	416	489	603	EG-VEGF	0.0070	0.0080	0.0096
Endoglin	377	434	875	Endoglin	0.0063	0.0072	0.0140
Endostatin/Collagen XVIII	1334	1565	4021	Endostatin/Collagen XVIII	0.0224	0.0255	0.0645
Endothelin-1	1266	4229	8369	Endothelin-1	0.0214	0.0706	0.1353
FGF acidic	741	3015	2646	FGF acidic	0.0127	0.0491	0.0423
FGF basic	11155	14635	13477	FGF basic	0.1878	0.2390	0.2145
FGF-4	106	173	207	FGF-4	0.0018	0.0028	0.0033
FGF-7	237	214	465	FGF-7	0.0040	0.0035	0.0074
GDNF	143	311	937	GDNF	0.0024	0.0051	0.0146
GM-CSF	710	206	519	GM-CSF	0.0119	0.0034	0.0081
HB-EGF	506	475	1045	HB-EGF	0.0085	0.0078	0.0163
HGF	33197	8326	28412	HGF	0.5625	0.1360	0.4443
IGFBP-1	595	1783	1266	IGFBP-1	0.0100	0.0293	0.0204
IGFBP-2	50118	2654	12800	IGFBP-2	0.8496	0.0435	0.2092
IGFBP-3	323	1284	2415	IGFBP-3	0.0054	0.0209	0.0380
IL-1B	339	335	2770	IL-1B	0.0057	0.0054	0.0430
IL-8	68128	70560	47970	IL-8	1.1524	1.1563	0.7807
LAP (TGFB1)	221	535	5659	LAP (TGFB1)	0.0037	0.0088	0.0877
Leptin	146	180	189	Leptin	0.0024	0.0030	0.0030
MCP-1	4899	119	313	MCP-1	0.0822	0.0019	0.0049
MIP-1a	248	387	454	MIP-1a	0.0041	0.0063	0.0072
MMP-8	367	777	592	MMP-8	0.0061	0.0131	0.0094
MMP-9	680	612	747	MMP-9	0.0114	0.0101	0.0118
NRG1-B1	335	895	720	NRG1-B1	0.0057	0.0150	0.0116
Pentraxin 3 (PTX3)	21859	3627	7978	Pentraxin 3 (PTX3)	0.3704	0.0597	0.1291
PD-ECGF	479	572	845	PD-ECGF	0.0081	0.0095	0.0135
PDGF-AA	748	1095	1797	PDGF-AA	0.0126	0.0180	0.0287
PDGF-AB/PDGF-BB	181	1167	2397	PDGF-AB/PDGF-BB	0.0030	0.0196	0.0386
Persephin	975	886	1152	Persephin	0.0164	0.0142	0.0184
Platelet Factor 4 (PF4)	135	640	921	Platelet Factor 4 (PF4)	0.0023	0.0107	0.0148
PIGF	325	918	920	PIGF	0.0054	0.0150	0.0145
Prolactin	124	296	568	Prolactin	0.0021	0.0048	0.0090
Serpin B5	261	455	414	Serpin B5	0.0044	0.0075	0.0065
Serpin E1	42192	53811	48065	Serpin E1	0.7154	0.8826	0.7707
Serpin F1	31364	1790	11788	Serpin F1	0.5310	0.0293	0.1892
TIMP-1	52847	62420	61022	TIMP-1	0.8937	1.0247	0.9757
TIMP-4	596	414	697	TIMP-4	0.0101	0.0069	0.0111
Thrombospondin-1	59355	48578	61095	Thrombospondin-1	1.0040	0.7992	0.9791
Thrombospondin-2	482	1027	1138	Thrombospondin-2	0.0081	0.0168	0.0180
uPA	49561	64154	68833	uPA	0.8398	1.0517	1.1016
Vasohibin	479	458	315	Vasohibin	0.0080	0.0076	0.0050
VEGF	40786	55978	45471	VEGF	0.6904	0.9192	0.7278
VEGF-C	142	207	280	VEGF-C	0.0024	0.0034	0.0045
Maximum	70560			Maximum	1.1563		
Median	879			Median	0.0123		
Minimum	70			Minimum	0.0012		

Fig. S4. Cytokine array data. **A.** Raw mean pixel density values. **B.** Mean pixel density values normalized to positive control spots.

211
212
213
214
215

Proteins	Normal	Homoscedastic	Statistical Test	Significance	P-Value	PostHoc
Activin A			One Way ANOVA		0.00032216	MPA-B, P4-C, Control-A
ADAMTS-1			One Way ANOVA		0.13928088	-
Angiogenin			One Way ANOVA		0.02877175	P4-B, Control-AB, MPA-A
Angiopoietin-1			One Way ANOVA		0.00011577	Control-A, P4-A, MPA-B
Angiopoietin-2			One Way ANOVA		0.15683049	-
Angiostatin/Plasminogen			One Way ANOVA		0.15094149	-
Amphiregulin			One Way ANOVA		0.00092357	P4-B, MPA-B, Control-A
Artemin			One Way ANOVA		0.08793302	-
Coagulation Factor III			One Way ANOVA		0.39112243	-
CXCL16			One Way ANOVA		0.59122583	-
DPPIV			One Way ANOVA		0.17167048	-
EGF			Kruskal-Wallis		0.875170	-
EG-VEGF			One Way ANOVA		0.52736328	-
Endoglin			One Way ANOVA		0.04611137	All-A
Endostatin/Collagen XVIII			One Way ANOVA		0.01733964	P4-B, MPA-A, Control-A
Endothelin-1			Kruskal-Wallis		0.03899022	Control-A, P4-B, MPA-AB
FGF Acidic			One Way ANOVA		0.00170789	MPA-B, P4-B Control-A
FGF Basic			Kruskal-Wallis		0.73263247	-
FGF-4			One Way ANOVA		0.32356892	-
FGF-7			One Way ANOVA		0.21461955	-
GDNF			One Way ANOVA		0.42457538	-
GM-CSF			One Way ANOVA		0.3643465	-
HB-EGF			One Way ANOVA		0.60389266	-
HGF			One Way ANOVA		0.27355501	-
IGFBP-1			Kruskal-Wallis		0.05090583	-
IGFBP-2			One Way ANOVA		0.00041646	Control-A, P4-B, MPA-B
IGFBP-3			Kruskal-Wallis		0.05090583	-
IL-1B			Kruskal-Wallis		0.73263247	-
IL-8			One Way ANOVA		0.417633	-
LAP (TGFB1)			Kruskal-Wallis		0.09915102	-
Leptin			One Way ANOVA		0.87586041	-
MCP-1			One Way ANOVA		0.09033782	-
MIP-1a			One Way ANOVA		0.5876582	-
MMP-8			One Way ANOVA		0.54288516	-
MMP-9			One Way ANOVA		0.92173073	-
NRG1-B1			Kruskal-Wallis		0.06646292	-
Pentraxin 3 (PTX3)			One Way ANOVA		0.00017908	Control-A, P4-B, MPA-B
PD-ECGF			One Way ANOVA		0.1810274	-
PDGF-AA			One Way ANOVA		0.04183885	P4-B, MPA-AB, Control-A
PDGF-AB/PDGF-BB			Kruskal-Wallis		0.05090583	-
Persephin			One Way ANOVA		0.85485408	-
Platelet Factor 4 (PF4)			One Way ANOVA		0.02629441	P4-B, MPA-AB, Control-A
PIGF			One Way ANOVA		0.06548898	-
Prolactin			One Way ANOVA		0.03153584	P4-B, MPA-AB, Control-A
Serpin B5			One Way ANOVA		0.43676163	-
Serpin E1			Kruskal-Wallis		0.17669445	-
Serpin F1			One Way ANOVA		6.28E-06	Control-A, P4-B, MPA-C
TIMP-1			One Way ANOVA		0.10180256	-
TIMP-4			One Way ANOVA		0.31298174	-
Thrombospondin-1			One Way ANOVA		0.11408469	-
Thrombospondin-2			One Way ANOVA		0.14951137	-
uPA			One Way ANOVA		0.05267839	-
Vasohibin			One Way ANOVA		0.64923927	-
VEGF			Kruskal-Wallis		0.06081006	-
VEGF-C			One Way ANOVA		0.30144158	-

216

217 Fig. S5. Statistical analysis of 55 cytokines. Green: Yes. Red: No.

218

219