

1 **Multi-trait ensemble genomic prediction and simulations of**
2 **recurrent selection highlight importance of complex trait genetic**
3 **architecture in long-term genetic gains in wheat**

4
5 Nick Fradgley^{1*}, Keith A. Gardner^{1†}, Alison R. Bentley^{1†}, Phil Howell¹, Ian J. Mackay^{1‡}, Michael F. Scott^{2§},
6 Richard Mott², James Cockram¹

7
8 ¹NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, United Kingdom

9
10 ²University College London (UCL) Genetics Institute, Gower St, London, WC1E 6BT, United Kingdom

11
12 [†]Current address: International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz,
13 México

14
15 [‡]Current address: Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG,
16 United Kingdom

17
18 [§]Current address: School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich,
19 NR4 7TJ, United Kingdom

20
21 *Corresponding author: nick.fradgley@niab.com

22
23
24 **Key words**

25 *Triticum aestivum* L., recurrent selection, simulation, genomic prediction, multiparent advanced generation inter-
26 cross (MAGIC) population.

27

Abstract

28 Cereal crop breeders have achieved considerable genetic gain in genetically complex traits, such as grain yield,
29 while maintaining genetic diversity. However, focus on selection for yield has negatively impacted other
30 important traits. To better understand selection within a breeding context, and how it might be optimised, we
31 analysed genotypic and phenotypic data from a diverse, 16-founder wheat multi-parent advanced generation inter-
32 cross (MAGIC) population.

33 Compared to single-trait models, multi-trait ensemble genomic prediction models increased prediction
34 accuracy for almost 90% of traits, improving grain yield prediction accuracy by 3-52%. For complex traits, non-
35 parametric models (Random Forest) also outperformed simplified, additive models (LASSO), increasing grain
36 yield prediction accuracy by 10-36%. Simulations of recurrent genomic selection then showed that sustained
37 greater forward prediction accuracy optimised long-term genetic gains.

38 Simulations of selection on grain yield found indirect responses in related traits, which involved
39 optimisation of antagonistic trait relationships. We found multi-trait selection indices could be used to optimise
40 undesirable relationships, such as the trade-off between grain yield and protein content, or combine traits of
41 interest, such as yield and weed competitive ability.

42 Simulations of phenotypic selection found that including Random Forest rather than LASSO genetic
43 models, and multi-trait rather than single-trait models as the true genetic model, accelerated and extended long-
44 term genetic gain whilst maintaining genetic diversity. These results suggest important roles of pleiotropy and
45 epistasis in the wider context of wheat breeding programmes and provide insights into mechanisms for continued
46 genetic gain in a limited genepool and optimisation of multiple traits for crop improvement.

47 1. Introduction

48 Classical plant breeding aims to achieve continuous genetic gain by recurrent selection of important traits over
49 many generations. However, the biological and genetic processes that allow continued genetic gain within a finite
50 genepool are still unclear. For example, the Illinois maize long-term selection experiment achieved continuous
51 increases in seed oil and protein concentration in a closed population for more than 100 generations without
52 apparent loss of genetic variation (Dudley, 2007). Long-term trends in wheat (*Triticum aestivum* L.) breeding also
53 reflect this, where significant genetic gain in traits such as yield has been achieved in the last century (Mackay et
54 al., 2011; McCraig et al., 1995; Tadesse et al., 2019), whilst molecular studies have not found the expected
55 reductions in genetic diversity over the same period of modern plant breeding (Fu, 2015; van de Wouw et al.,
56 2010; White et al., 2008).

57 Selection on one trait can have positive or negative pleiotropic effects on other traits. For example, the
58 Illinois long-term selection experiment found correlated responses to selection for oil and protein content and
59 indirect effects on other traits, such as starch content. Wheat breeding requires selection for multiple traits of
60 economic importance, including grain yield and quality traits, as well as other agronomically important or
61 physiologically adaptive traits, such as developmental stage, plant architecture and disease resistance. In many
62 cases, positive correlated responses in combinations of desirable traits can be achieved, but there are often
63 complex trade-offs between antagonistically related traits. Considerable work has succeeded in identifying
64 underlying quantitative trait loci (QTL) controlling individual yield components, such as grain size (e.g. Brinton
65 et al., 2017) and spikelet number (e.g. Kuzay et al., 2019; Muqaddasi et al., 2019). However, the effects of such
66 yield component loci rarely have consistent positive effects on yield in broader genetic backgrounds due to
67 compensatory effects which trade-off against other yield components. For example, increased grain number per
68 inflorescence in wheat is commonly associated with reductions in other yield components such as thousand grain
69 weight, or tiller number (Corsi et al., 2021; Quintero et al., 2018; Xie and Sparkes, 2021).

70 In general, long-term increases in wheat yields have been achieved phenotypically by optimisation of
71 harvest index (the ratio of grain to total shoot dry matter) to reduce intra-crop competition (Fischer and Kertesz,
72 1976), as well as through increased grain filling with starch carbohydrates (Lovegrove et al., 2020; Shewry et al.,
73 2020). However, these have led to negative trade-offs in other valuable traits. Decreased competitive ability of
74 modern wheat varieties with weeds (Murphy et al., 2008; Vandeleur and Gill, 2004) necessitates increased reliance
75 on herbicides as well as potentially poorer uptake of soil nutrients (Ruisi et al., 2015). Yield loss from weed
76 competition has become even more problematic in intensified cropping systems (Storkey et al., 2021).
77 Additionally, increased yield and starch grain filling has been subject to the long-standing trade-off between yield
78 and grain protein content (Simmonds, 1995; White et al., 2021), and has led to dilution of wheat grain protein
79 content (Austin et al., 1980; Fufa et al., 2005) and mineral nutrient density (Davis, 2009; Shrewry et al., 2016).
80 This has also led to higher optimum nitrogen fertiliser application rates to meet milling wheat grain protein
81 requirements with diminishing increases in yield, and thus poorer nitrogen use efficiency (Hawkesford, 2014).
82 Trade-offs between grain yield and both protein content and weed competitive ability seem not to have been
83 generally addressed by commercial breeding due to yield being considered the highest economically important
84 trait. Recent analysis by Raherison et al. (2020) suggested that negative pleiotropic genetic effects in wheat have
85 rarely been compensated for and optimised by breeding, and Yang et al. (2022) showed that breeders' selections

86 have almost always been in favour of yield at the expense of protein. Changing economic, legislative,
87 environmental and societal factors mean that breeding focus will increasingly need to consider how to deliver
88 sustainable intensification of food supply, ensuring yield stability of our future crops in the face of such pressures.
89 Plant breeding will play a role in delivering these goals, and will likely require the application of new breeding
90 approaches and methodologies.

91 Genomic selection models aim to predict as large a proportion of heritable phenotypic variation as
92 possible using genome-wide marker data to allocate estimated breeding values to untested individuals (Jannink et
93 al., 2010; Meuwissen et al., 2001), and are likely to be a major source of improvement in plant breeding in the
94 coming decades (Mackay et al., 2021). Genomic prediction models include genetic effects that don't necessarily
95 reach genome-wide significance in QTL mapping, which only detects large additive genetic effects and often fails
96 to account for a large proportion of heritable trait variation in traits with complex genetic architectures, despite
97 extensive genomic and phenotypic characterisation (Goddard et al., 2016). However, the role of non-additive
98 epistatic effects in complex trait genetic architectures (i.e the interactions between genes) remains understudied,
99 and is often overlooked (Carlborg and Haley, 2004) – likely due to the high computational requirements to model
100 high order interactions (Jiang and Reif, 2015). Genomic prediction models that take epistatic effects into account
101 have recently been developed, including the extension of the genomic best linear unbiased prediction (GBLUP)
102 (Jiang and Reif, 2015) and machine/ensemble learning methods such as Random Forest (Schmalohr et al., 2018;
103 Wright et al., 2016), which are often able to improve prediction accuracies in real datasets (Charmet et al., 2020).

104 The NIAB Diverse MAGIC (Multi-parent Advanced Generation Inter-Cross) wheat population (NDM)
105 was recently developed to investigate the genetic architecture of a range of traits in wheat (Scott et al., 2021). It
106 consists of 16 founders genotyped via exon and promoter capture sequencing and 504 recombinant inbred lines
107 genotyped via whole-genome sequencing and imputation, resulting in ~1.1M single nucleotide polymorphisms
108 (SNPs) between genotypes, or 55k SNPs after filtering for linkage disequilibrium (LD) (Scott et al., 2021). The
109 16 founders are wheat varieties that span 70 years of breeding and capture a large proportion of the northwest
110 European genetic diversity. The genetic diversity present in the NDM is efficiently recombined through multiple
111 generations of inter-crossing, eroding LD accumulated in the founders over long-term selective breeding. For this
112 reason, traditional genomic prediction models, such as GBLUP, that make use of kinship relationships (Clark et
113 al., 2011) may perform poorly in MAGIC where causal variants can be considered more independently (Scott et
114 al., 2021). The NDM is ideal for investigating trait relationships, due to intensive phenotyping and the lack of the
115 confounding effects of age and origin that are present in panels of selectively bred varieties (Scott et al., 2020).
116 Furthermore, this population provides a good test for multi-trait selection indices, such as grain yield protein
117 deviation (GYPD; Michel et al., 2019), that have been proposed to help minimise trade-offs between traits.

118 Here we use NDM resources as a microcosm of long-term selection in wider wheat breeding programmes
119 to test differing approaches to selection and genetic models. Within the overall context of understanding the
120 phenotypic and genetic mechanisms that may enable enhanced genetic gain in the future, we (i) investigate
121 complex trait relationships relating to yield in the observed population of lines. We then (ii) develop multi-trait
122 genomic prediction models that increase prediction accuracy by exploiting pleiotropic effects among traits, and
123 (iii) investigate how increased prediction accuracy translates to greater genetic gain in simulation of long term-
124 recurrent genomic selection within the NDM. We also (iv) simulated both phenotypic and genotypic effects of
125 recurrent phenotypic selection within the population comparing different true genetic models based on genomic

126 prediction models trained on the observed population. Our results reveal correlated responses in a wide range of
127 traits when selection is purely on yield, as well as the potential to achieve genetic gain in several traits of interest
128 that trade-off by using use multi-trait selection indices. Comparison of response to selection under differing
129 genomic prediction models (simplified models with a minimal number of additive effects versus more complex
130 polygenic models that take higher order epistatic interaction effects into account) also highlights the important
131 role of both pleiotropy and epistasis as potential mechanisms for continued genetic gain in crop breeding.
132

133 2. Methods

134 2.1 Germplasm, phenotypic and genotypic datasets

135 Genotypic and phenotypic data for the NDM wheat population was sourced from Scott et al. (2021). Briefly, the
136 population of 504 NDM recombinant inbred lines derived from the 16 founders was phenotyped for a wide range
137 of traits over two successive seasons (2016-2017 and 2017-2018) in the United Kingdom (UK). All but one of the
138 73 traits described by Scott et al. (2021) (**Table 1**) were used, the exception being seed germination rate (GR) due
139 to a large proportion of missing data. Traits measured in each year were considered separately. Missing data for
140 all remaining traits (at <1.2%) were imputed with the median trait value. Line genotypes were previously
141 characterised by skim sequencing and imputed using the founder haplotypes (Scott et al., 2021). Of 1.1M SNPs
142 identified from founder exome and promoter sequencing, we use the subset of ~55k SNPs after pruning for LD
143 for our analyses. Missing marker data (~1%) were imputed using the ‘missForest’ package (Buhlman, 2011) in R
144 (R Core Team, 2020), which uses non-parametric Random Forest prediction models to iteratively predict and
145 impute missing data on a marker-by-marker basis.

146

147 **Table 1.** Abbreviations of traits phenotyped in the NDM, as described by Scott et al. (2021). All data are from
148 field trials, except where noted. Nursery = data collected from 1×1m unreplicated plots. Field = data collected
149 from 2×6m replicated plots. Trait groups indicate groups of strongly positively or negatively correlated traits that
150 grouped together through hierarchical clustering as shown in **Figure 1**. Some traits were phenotyped at multiple
151 time points (GLA) and in both trial years so that a total of 72 traits were included.

Abbreviation	Trait	Trait group	Abbreviation	Trait	Trait group
PHS	Pre-harvest sprouting	1	GW	Grain width	6
PIG	General pigmentation	1	HET	Height to ear tip	6
SW	Specific weight	1	HFLB	Height to flag leaf base	6
FLS	Flag leaf senescence	2	LOD	Lodging	6
GS39	Flag leaf emergence date	2	TGW	Thousand grain weight	6
GS55	Ear emergence date	2	TIS	Tip infertile spikelets	6
GS65	Anthesis date	2	AWN	Presence of awns	7
JGH	Juvenile growth habit (Nursery)	2	EL	Ear length	7
SH	Spring habit	2	ETA	Ear taper	7
FLA	Flag leaf angle	3	GLAU	Glaucosity	7
FLF	Flag leaf floppiness	3	SPIG	Stem pigmentation	7
FLL	Flag leaf length	3	BIS	Basal infertile spikelets	8
GLA#	Green leaf area (10 time points)	4	EW	Ear weight	8
GPC	Grain protein content	5	FLW	Flag leaf width	8
GY	Yield	5	GPE	Grains per ear	8
FLED	Flag leaf to ear distance	6	GPS	Grains per spikelet	8
GA	Grain area	6	TS	Total spikelets	8
GL	Grain length	6	YR	Yellow rust infection (Field and Nursery)	8

152

153 **2.2 Statistical analysis**

154 All analyses were conducted using R statistical analysis software. Pearson's correlation coefficients among all
155 investigated traits were calculated. Hierarchical clustering of traits was performed using the 'hclust' R function
156 and 'complete' method, where the distance matrix (d) was derived from the equation:

157
$$d = 2(1 - \sqrt{c^2})$$

158 where c represents the trait correlation matrix. Traits were then assigned to eight groups using the 'cutree' R
159 function.

160 **2.2.1 Genomic prediction models**

161 Two contrasting genomic prediction models were compared for both single-trait (ST) and multi-trait (MT) models.
162 These included generalised linear models including the Lasso penalty (LASSO) implemented in the 'glmnet' R
163 package (Friedman et al., 2010) where the majority of SNP effects are shrunk to zero. For comparison, a non-
164 linear, statistical learning approach was also used which generally included much larger numbers of SNPs with
165 non-additive effects in each model: Random Forest (RF), implemented in the 'randomForest' R package
166 (Breiman, 2001). For LASSO models, the value of lambda (a shrinkage penalty) used for each prediction was
167 optimised using 8-fold cross validation. For RF models, 300 trees were run per model and default parameters of
168 one third of variables randomly sampled at each split, and a minimum of five observations in terminal leaf nodes
169 were used. Previous work by Scott et al. (2021) found that ridge regression models that include all marker effects
170 with a small, but non-zero effect, did not have as high prediction accuracy as LASSO in the MAGIC population,
171 and so were not further tested here.

172 Two types of MT models were implemented. Firstly, by performing single value decomposition (SVD)
173 of the matrix of all phenotypes, as proposed by Montesinos-López et al. (2019a), whereby each of the decomposed
174 and uncorrelated vectors from all the traits were predicted as traits themselves using the same genomic models as
175 for ST predictions. The predictions of vectors were then back-transformed to the original trait scales to derive the
176 MT predictions per-trait. Secondly, a multi-trait stacked ensemble method was also used which employs an
177 approach often used in machine learning (Spyromitros-Xioufis et al., 2016) and has previously been applied for
178 Bayesian multi-output regression of multi-trait predictions (Montesinos-López et al., 2019b; Sapkota et al., 2020).
179 For this, a two-step model was used where each trait was first predicted from genomic data with the same genomic
180 models as for ST predictions, and then all trait predictions were used as explanatory variables (features) in a
181 second multi-trait ensemble model to again predict each response trait. Both first and second stage predictions
182 were fitted only on data from the training fraction and predictions were independently made for test lines with
183 only genetic marker data. Either LASSO or RF models were used to fit first stage ST models, but only RF models
184 were used to flexibly include non-linear multi-trait relationships for the second stage ensemble models.
185 Information from related traits is therefore used in a model, trained only on the training fraction to adjust single-
186 trait predictions made directly from genomic data. Unlike trait-assisted genomic prediction, such as used by
187 Fernandes et al. (2018), no observed trait data are used in the tested cross-validation fraction. As both MT
188 prediction approaches can be applied with any genomic prediction model for each ST prediction or for SVD
189 vectors, we were able to compare LASSO and RF genomic models for both ST and MT approaches.

190 Prediction accuracies were determined by performing three rounds of 10-fold random cross-validation
191 among all lines in the dataset and averaging the three Pearson's correlation coefficients between observed and
192 predicted trait values across all cross-validation folds. Valid comparisons of prediction accuracy were ensured by
193 testing all prediction models using the same cross-validation fold assignments. After model cross-validation, full
194 prediction models were fitted using the entire dataset for combinations of both ST and MT models with both
195 LASSO and RF genomic models. Variable importance scores for each SNP marker in RF genomic prediction
196 models and for each trait covariate in MT ensemble models were derived from the full models as the mean
197 decrease in mean square error using the 'importance' function in the 'randomForest' R package. Effect sizes for
198 each SNP marker were also derived from full LASSO models where the majority of SNP effects were shrunk to
199 zero.

200 2.2.2 Simulations of recurrent genomic selection

201 We first simulated a recurrent genomic selection programme within the NDM to assess the performance of
202 different prediction models to achieve long-term genetic gain in grain yield. This was done within a framework
203 of assuming a true inherited genetic model based on the MT ensemble RF genetic model as outlined above and
204 trained on the observed genetic and phenotype data. True phenotypes were derived from predictions from this
205 model for genotypes at each cycle of simulations and the different genomic prediction models outlined above
206 were trained on the individuals in the first cycle. New cycles of genotypes derived from crossing selected fractions
207 of lines were simulated using a genetic map of ~55,000 SNPs.

208 The genetic map (Supplementary Table S1 and Supplementary Figure S1) was constructed using the
209 'qtl2' R package (Broman et al., 2019) with the marker data ordered by physical map position (RefSeq v1.0,
210 IWGSC, 2018). The genetic map distance was then re-estimated using the 'est_map' function with 1,000
211 maximum iterations and an assumed genotyping error probability of 0.001. The cross object was considered as a
212 16-way multi-parent recombinant inbred line population, so the differing local recombination effects for each
213 founder haplotypes were preserved for subsequent simulations. 23 markers were removed from the full set which
214 caused genetic map distortion.

215 Selection of lines at each generation were made based on predicted phenotypes from the genomic
216 prediction model. To reduce excessive inbreeding and loss of genetic variance, 15 lines from different 16-way or
217 bi-parental families with the highest selection index values were selected. 30 offspring inbred line genotypes were
218 then simulated for each of 105 possible pairwise cross combinations among the selected lines so that the following
219 generation comprised of 3,150 lines from 105 biparental families. The phenotypes of these were again predicted
220 from the genomic prediction models trained on the true phenotypes of the first generation and the process repeated
221 for 20 cycles of recurrent selection. 20 iteration repeats of the simulations were run for each genomic prediction
222 model. Genomic prediction models were fitted as detailed above for ST and MT, LASSO and RF models, but
223 additionally RF models were run that were restricted to a tree depth of one (RF1) to completely limit the degree
224 of marker interaction effects. 2,000 trees were used for RF1 models.

225 Genetic gain for each trait over the selection simulations were determined by comparing the mean true
226 trait value of all lines at each generation to the mean true trait value in the first generation. The divergence from
227 this mean among different traits was standardised to the standard deviation of trait values in the first generation.

228 The accuracy of genomic prediction models was also determined as the Pearson's correlation coefficient between
229 the true and predicted trait values among genotypes at each simulation cycle.

230 **2.2.3 Simulations of recurrent phenotypic selection**

231 In addition to simulations of different genomic selection procedures within a simulated true genetic model, we
232 also compared simulations with different true genetic models to assess both phenotypic and genomic response to
233 selection with different genetic model assumptions of trait genetic architecture. Simulations were run as above
234 but selections of individuals were based on the true phenotypes derived from different genetic models so that it
235 was assumed that the simulated breeder could make perfect estimates of trait values from phenotypic selection.
236 Different simulations were run for ST and MT as well as RF and LASSO models as outlined above and for
237 different selection indices as outlined below. Genetic response to selection was also characterised as the change
238 in allele frequency for all ~55,000 SNPs at each generation, and the genetic diversity was calculated as the number
239 of polymorphic SNPs at each generation. For each set of simulations, traits or SNP markers were considered under
240 selection rather than drift if their response to selection was significantly different to 0 considering all 20 simulation
241 repeats using a t-test.

242 **2.2.4 Selection indices**

243 Indices for simulated selection were defined as follows:

244 1. Grain yield measured in each trial year.
245 2. Multi-trait index including grain yield and traits known to be associated with weed competitiveness. The weed
246 competitive ability selection index (Weeds_ESIM) was based on the restricted eigenvector selection index method
247 (RESIM) (Cerón-Rojas et al., 2008). For this, principal component analysis was performed on a selection of
248 desirable traits based on the literature, which included yield measured in both years as well as traits previously
249 identified as valuable for weed competitive ability. These included high early vigour, measured as green leaf area
250 (GLA) over the development phase before flowering time, and planophile (horizontal) flag leaf angle (FLA)
251 (Andrew et al., 2015; Kissing Kucek et al., 2021; Korres and Froud-Williams, 2002; Mwendwa et al., 2020). To
252 mitigate risk of lodging (i.e. the permanent displacement of a stem from vertical), mean crop height (HET)
253 between both years was also then restricted to values between 60-65 cm. The vector weightings on the first
254 principal component with mean HET values between this range therefore represented the Weeds_ESIM. Most
255 traits involved in this selection index were positively correlated so the first principal component could be assumed
256 to provide a desirable combined index for selection.

257
258 3. Grain yield protein deviation (GYPD). The GYPD selection index was calculated as the sum of the scaled and
259 centred mean yield and protein across both years using the equation:

$$260 GYPD = \frac{Y - \bar{Y}}{\sqrt{\frac{\sum(Y - \bar{Y})^2}{n - 1}}} + \frac{P - \bar{P}}{\sqrt{\frac{\sum(P - \bar{P})^2}{n - 1}}}$$

261 where Y and P is the mean line yield and protein across years, respectively.

262

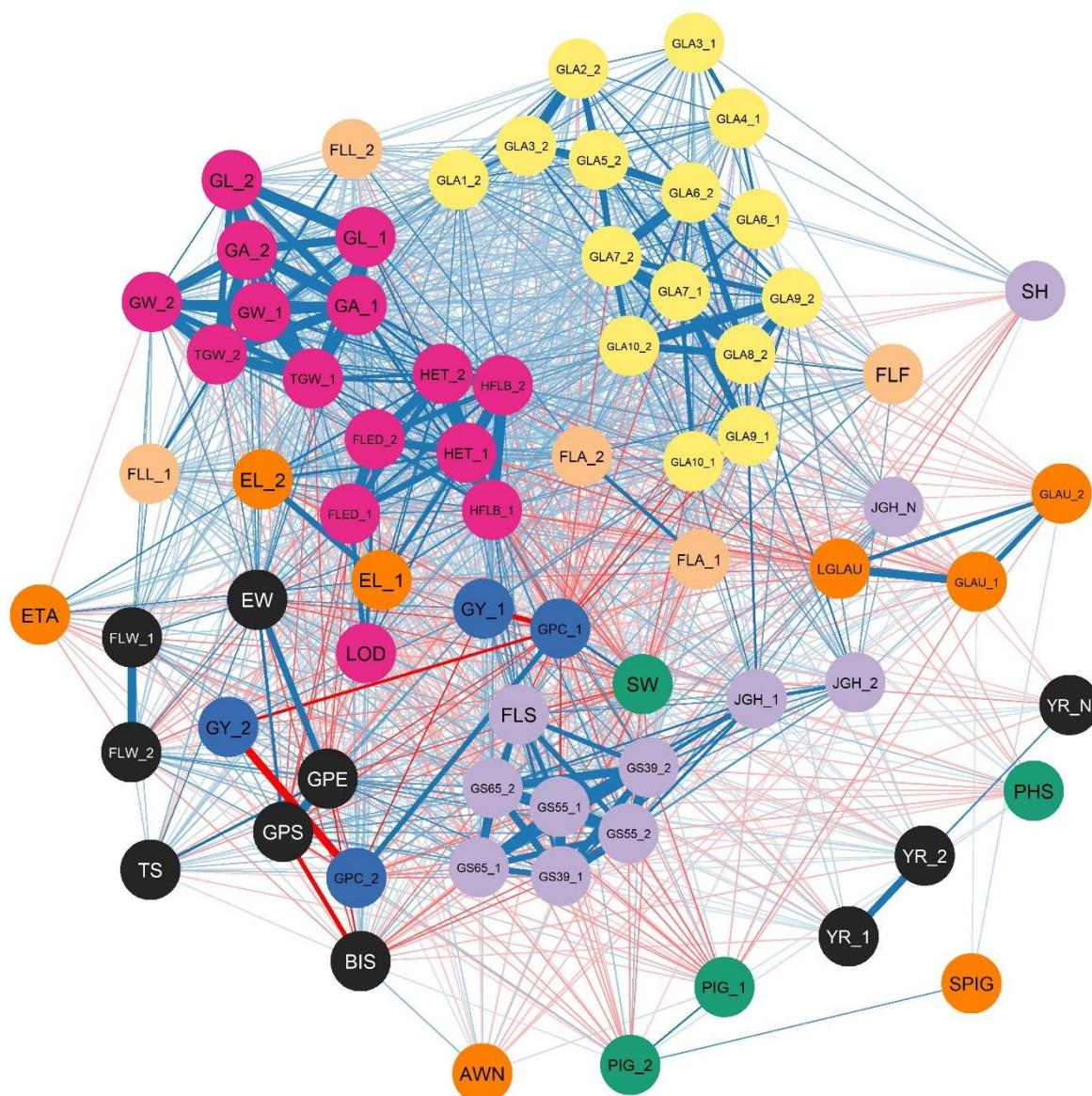
263 3. Results

264 **3.1 Grain yield is correlated with multiple traits in the observed population**

265 We analysed data from a genetically diverse and highly recombined 16-founder wheat MAGIC population for a
266 wide range of agronomically important traits over multiple trial years (72 trait – year combinations) to investigate
267 complex trait-trait relationships and their implications for breeding. Correlation analysis across all traits and years
268 revealed complex trait relationships and substantial differences in patterns between the two trial years (**Figure 1**
269 and Supplementary Table S2). Considering grain yield (GY) as the primary trait of interest, many other secondary
270 traits were found to be correlated (**Figure 1**). The strong negative trade-off between yield and grain protein content
271 (GPC) was mediated by yield component traits. For example, grain size traits (such as thousand grain weight;
272 TGW), grains per spikelet (GPS) and total spikelets per ear (TS), were all positively correlated with GY, but
273 negatively correlated with protein content and with each other. Therefore, potential benefits of selecting for any
274 one of the yield component traits in isolation are buffered by problematic trade-offs with other yield component
275 traits and likely have negative effects on protein content.

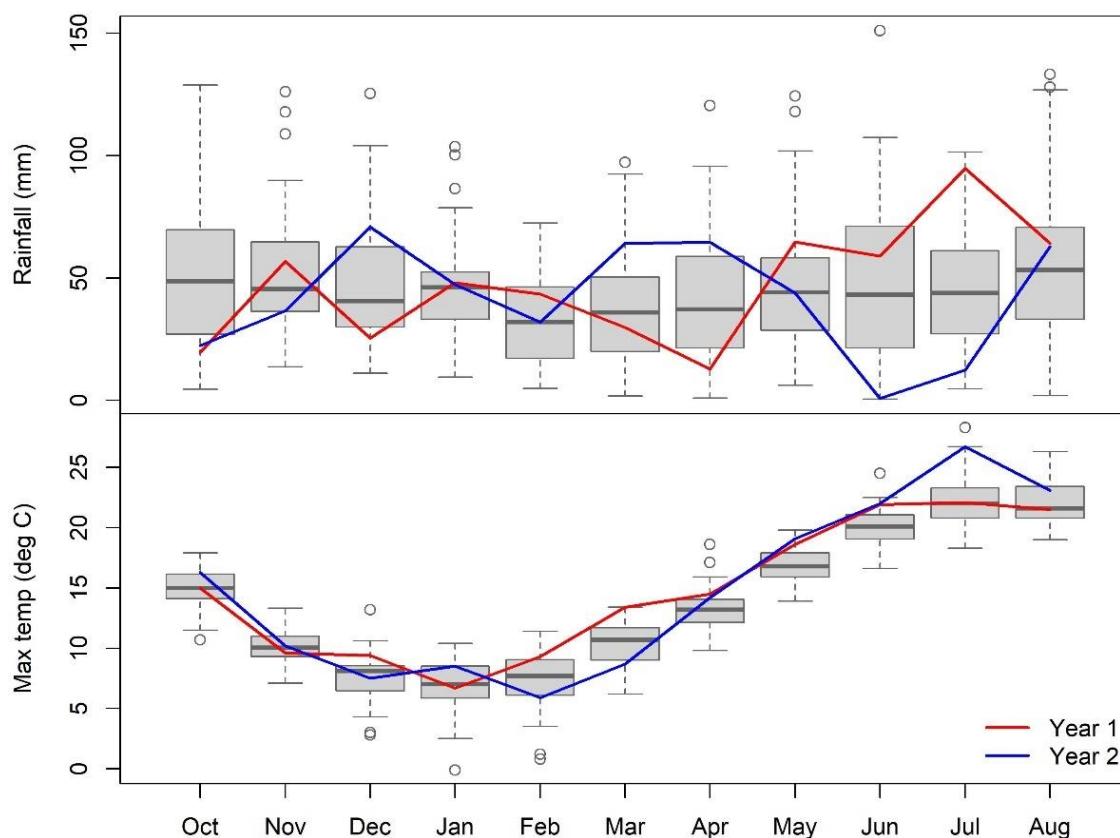
276 Differential relationships between yield and other developmental stage and plant architecture traits
277 between the two trial years were also found. In year 1, taller and later flowering genotypes were generally higher
278 yielding (yield – height to ear tip correlation = 0.20; yield – heading date correlation = 0.32), whereas in year 2,
279 the correlation between height and yield was negative (correlation = -0.11) and between yield and heading date
280 was non-significant. Therefore, strong genotype-by-environment interaction (G×E) effects on yield means that
281 selection for yield, or related adaptive traits, in any single environment may have limited potential to increase
282 yield in another environment. However, contrasting patterns of rainfall and temperature between the two yield
283 trial years (**Figure 2**Figure 5), in which year 1 was characterised by high temperatures and drought before anthesis
284 (March and April) whilst year 2 was characterised by extreme terminal heat and drought after anthesis (June and
285 July), may explain the differences in relationships between adaptive traits and yield in this study. Both of the two
286 trial years experienced different extremes of monthly climate variables compared to the distributions of the last
287 56 years, so were considered separately in these analyses.

288



289

Figure 1. Correlation network for 72 traits measured in two trial years among 504 NIAB Diverse MAGIC lines. Grain yield = GY. Abbreviations for all additional trait names are given in Table 1. Trait node colours indicate the eight groups of related traits as identified using hierarchical clustering. The _1 and _2 designations used after trait abbreviations refer to trial year 1 and trial year 2, respectively. Blue and red connecting lines indicate positive and negative correlations, respectively, while line thickness is relative to correlation *p*-value significance.



296

297 **Figure 2. Contrasting patterns of monthly rainfall and maximum temperature over the growing season for**
298 **the two trial years.** Boxplots indicate historic variation in data for each month from 1960 to 2016 (horizontal line
299 = median, boxes = interquartile range, whiskers = 1.5 times the interquartile range and points = values outside 1.5
300 times the interquartile range).

301

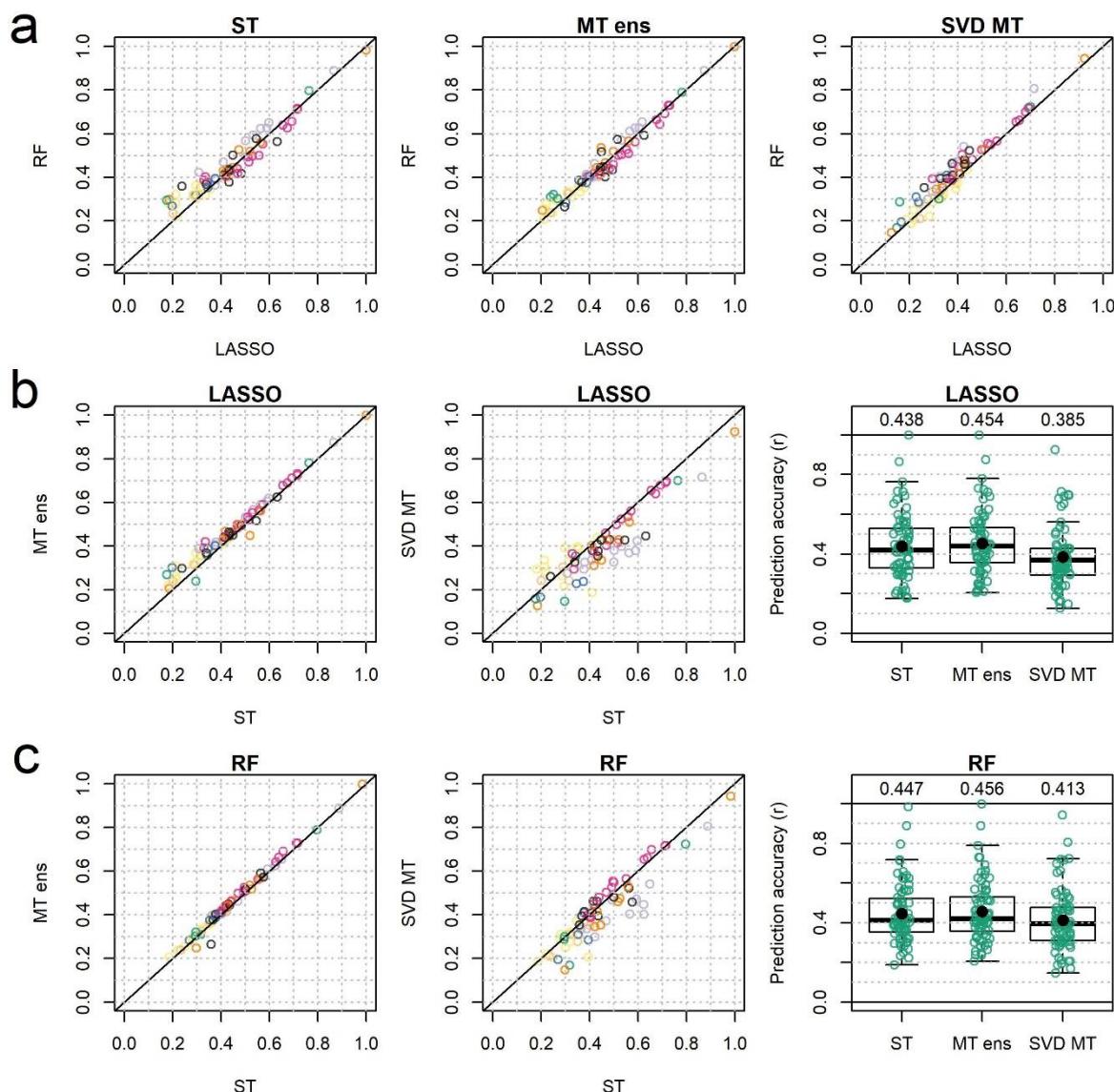
302 Other plant architecture traits, such as green leaf area (GLA) in the development phase, juvenile growth
303 habit and flag leaf morphology had weak but positive correlations with yield, suggesting potential relevance of
304 these traits as mechanisms to increase yield, or as valuable traits themselves to select for in combination with yield
305 to increase crop competitive ability with weeds. However, the strong positive correlations between GLA traits
306 and plant height traits mean that increasing these traits without increasing lodging risk may be problematic.
307 Optimising combinations of important traits therefore requires consideration of correlated responses due to
308 pleiotropy and linkage.

309 **3.2 Genomic prediction of complex traits**

310 We tested the accuracy of several genomic prediction approaches to determine the genetic architecture of the
311 multiple related traits, using both single-trait (ST) and multi-trait (MT) models that take into account relationships
312 among correlated traits. LASSO represents models including trait genetic architecture controlled by a minimal
313 number of additive genetic effects across the genome, while Random Forest (RF) represents models including a
314 much greater number of interacting genetic effects. RF outperformed LASSO for most traits in ST models and
315 was particularly advantageous for traits with generally low genomic prediction accuracy, such as GLA and grain
316 yield in both years (Figure 3a). Prediction accuracy was increased from 0.34 and 0.20 in ST LASSO models to

317 0.38 and 0.27 in ST RF models for grain yield measured in each year respectively. In contrast, traits with greater
318 prediction accuracy, such as plant height or grain dimension traits, were better predicted by LASSO. This suggests
319 that RF can successfully predict genetic effects in traits with more complex genetic architecture, potentially using
320 non-additive and epistatic effects.

321 Multi-trait ensemble (MT ens) models consistently produced more accurate predictions for almost all
322 traits for both RF (86% of traits) and particularly for LASSO (90% of traits) models (**Figure 3b-c**). On the other
323 hand, single vector decomposition (SVD) MT models were less reliable and generally resulted in lower prediction
324 accuracies (**Figure 3b-c**), although RF notably outperformed LASSO in SVD MT models. Therefore, including
325 information from predictions of other related traits in a multi-trait ensemble model was advantageous over
326 attempting to predict pleiotropic effects directly in a decomposed trait matrix. Traits that were poorly predicted
327 by LASSO compared to RF for ST models (**Figure 3a**, left panel) had particularly increased prediction accuracies
328 via the MT ensemble predictions for LASSO (**Figure 3b**, left panel). This suggests traits that were predicted better
329 by either of the multi-trait models have few direct or large genetic effects and are rather the culmination of many
330 other component traits. These indirect genetic effects may be picked up in complex RF prediction models, but are
331 best captured by the use of MT models that can directly model pleiotropic trait trade-offs



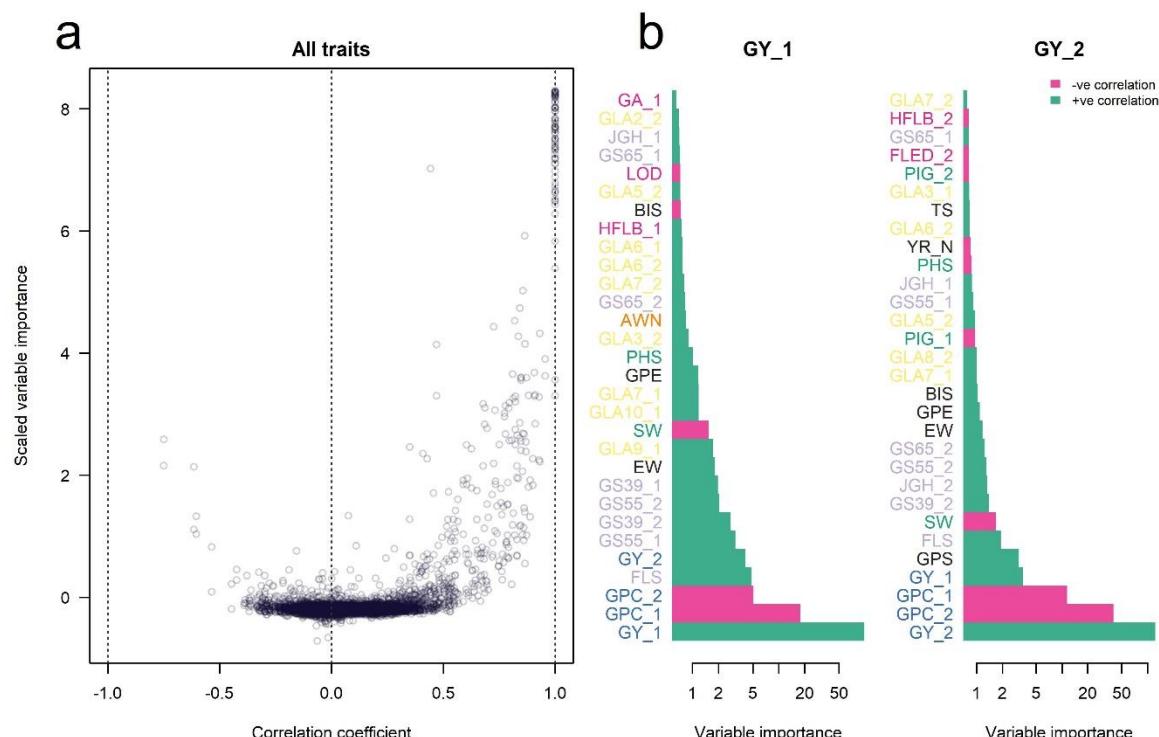
332

333 **Figure 3. Comparison of genomic prediction accuracies for all traits.** Each circle represents a trait-year
 334 combination, with circles colour coded according to trait group, as in **Figure 1**) between LASSO and Random
 335 Forest (RF) models using single-trait (ST), multi-trait ensemble (MT ens) and Single Vector Decomposition
 336 (SVD) approaches. Row (a) compares LASSO and RF prediction models, row (b) compares ST with both MT
 337 approaches for LASSO prediction models, and row (c) compares ST with both MT approaches for RF prediction
 338 models. Horizontal lines in boxplots represent the median and black dots represent the mean prediction accuracy
 339 across all traits, which is also shown above each boxplot.
 340

341 MT ensemble models increased genomic prediction accuracy of grain yield from an average of 0.27 to
 342 0.33 for LASSO models and from 0.32 to 0.34 for RF models on average across both years and cross-validations.
 343 Variable importance of trait covariates in the Random Forests used in the MT ensemble models indicates the
 344 influence of these traits in the model. Across all traits, most highly influential traits had strong positive or negative
 345 correlations in each year among the observed lines (**Figure 4a**). Considering grain yield in each year as the primary
 346 trait of interest, highly correlated traits such as GPC and grain yield measured in the other year, were highly
 347 important in MT ensemble models for grain yield, suggesting that pleiotropic effects mediating the grain yield

348 and protein content trade-off are useful for predicting grain yield itself (**Figure 4b**). Base model predictions of
 349 yield in the other year as the focal yield trait were also included in models with high importance suggesting that
 350 the ensemble model effectively takes yield G×E effects into account. Developmental stage traits including dates
 351 of growth stages GS39 (flag leaf blade all visible), GS55 (ear half emerged) and GS65 (flowering half-way
 352 complete) and flag leaf senescence (FLS) were particularly important covariate traits and were positively
 353 correlated with yield in year 1 to a greater extent than in year 2 (**Figure 1**). These traits also featured with greater
 354 importance in MT ensemble models when grain yield in year 1, compared to year 2, was predicted (**Figure 4b**).
 355 This indicates that later-developing lines were predicted to be higher yielding in the year without terminal drought
 356 stress. Other yield component traits including grains per spikelet (GPS) and grains per ear (GPE), but not grain
 357 size traits, were found to be of high importance (**Figure 4b**). Many GLA traits, particularly when measured in the
 358 spring, were also included with fairly high importance in MT ensemble models (**Figure 4b**), suggesting a role of
 359 the crop development phase in resource acquisition for final grain yield. These results not only identify important
 360 traits for inclusion in multi-trait prediction models, but also physiological mechanisms for grain yield
 361 improvement.

362



363

364 **Figure 4. The Influence of related traits in multi-trait ensemble prediction models.** (a) The relationship
 365 between pairwise correlation coefficients among all traits and years and the variable importance score in Random
 366 Forest multi-trait ensemble models for all target traits. (b) The 30 most important trait variables used in Random
 367 Forest multi-trait ensemble models for prediction of grain yield in each year (GY_1 and GY_2). All trait
 368 abbreviations are as listed in **Table 1** and colour coded according to trait group, as in **Figure 1**. The _1 and _2
 369 designations used after trait abbreviations refer to trial year 1 and trial year 2, respectively.

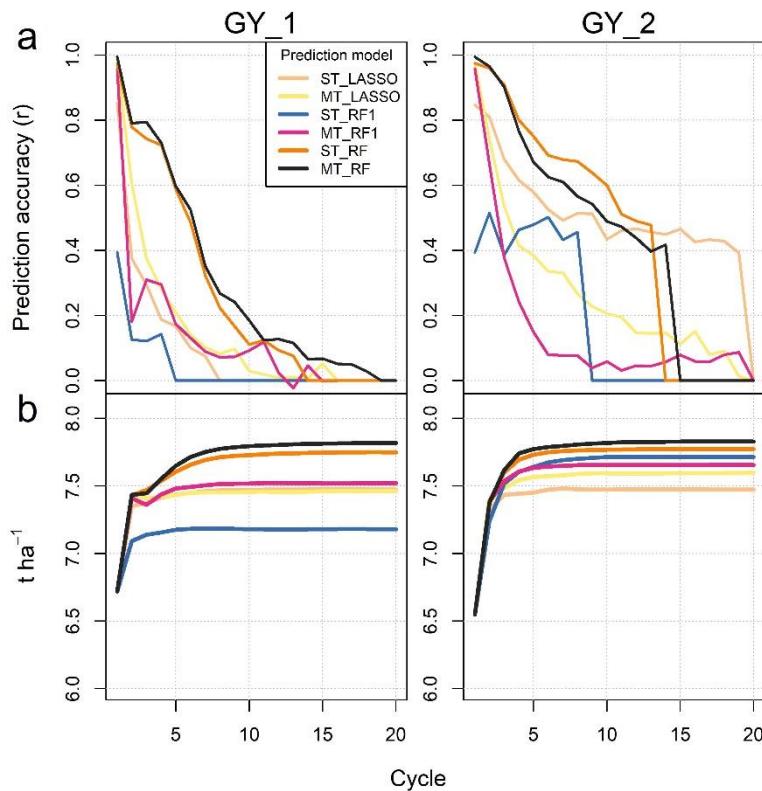
370

371 **3.3 Accurate genomic prediction models increase long-term genetic gain in**
372 **simulation of recurrent genomic selection**

373 We then investigated the potential for different genomic prediction models to achieve genetic gain in yield through
374 simulation of a recurrent genomic selection programme within the NDM. MT ensemble RF models were found
375 to be the most accurate model from cross validation within the observed population (**Figure 3**) and so were used
376 as the true genetic model to define the true phenotypes of simulated lines. The genomic prediction models were
377 then trained on the simulated true phenotype data of lines in the first generation and genomic predictions of
378 phenotypes were used to make selections for subsequent cycles of lines.

379 The accuracy of genomic prediction models over the course of the selection simulations generally
380 reflected those in cross validated of the observed data. Prediction accuracy of all models decreased in later cycles
381 of the simulations, but models that were more accurate in the observed data and maintained accuracy for longer,
382 such as MT RF and ST RF (**Figure 5a**), achieved greater long-term genetic gain in yield (**Figure 5b**). RF models
383 that included restricted trees with an interaction depth of one so that genetic marker interaction effects could not
384 be included were much less accurate and led to less genetic gain, particularly for grain yield in year 1 (**Figure 5**).
385 This suggests an important role for prediction of non-additive genetic effects in RF models for continued accuracy
386 of genomic prediction models, particularly as breeding cycles become more distantly related to the training set.

387



388

389 **Figure 5. Trends in accuracy of (a) genomic prediction models and (b) resulting genetic gain over a**
390 **simulated recurrent genomic selection programme for grain yield (GY) measured in two years trial years.**
391 Genomic prediction models include single- (ST) and multi-trait (MT) ensembles models for LASSO and Random
392 Forest (RF). RF1 indicates Random Forest models with a restricted interaction depth of one. Lines represent the
393 averages across 20 simulation repeats.

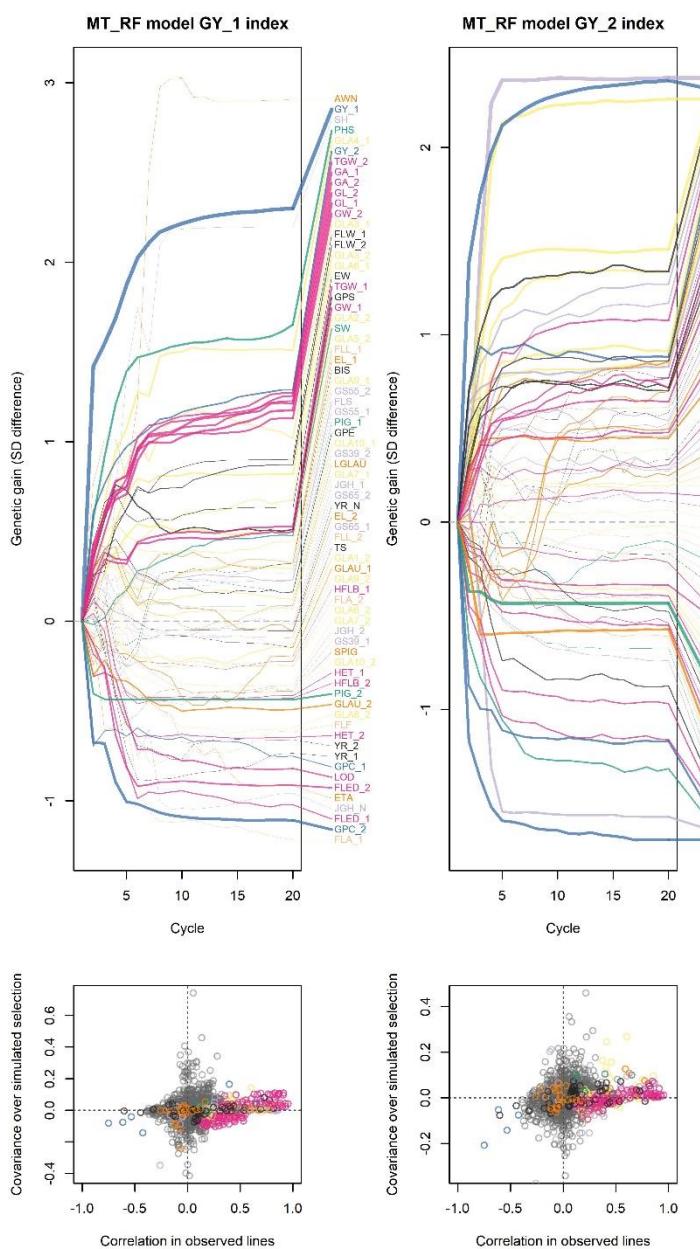
394 **3.4 Simulation of recurrent phenotypic selection for grain yield reveals**
395 **indirect effects on multiple traits**

396 Phenotypic correlations identified traits that may be under similar genetic control through either pleiotropy or
397 linkage, so we investigated the potential for recurrent selection to achieve genetic gains in traits directly under
398 selection as well as indirect effects on other traits. Simulations of a phenotypic recurrent selection programme
399 were run that compared different selection indices and true genetic models. For these, selections were made based
400 on the true phenotypic values rather than the predicted phenotypes as for simulation of recurrent genomic
401 selection.

402 Firstly, we simulated selection based purely on grain yield measured in each trial year. Considering the
403 MT ensemble RF as the true genetic model, which achieved the greatest prediction accuracy across traits (**Figure**
404 **3**), selection on grain yield *per se* resulted in rapid genetic gain in the yield trait under direct selection as well as
405 indirect effects on other related traits (**Figure 6**). These included selection for combinations of related traits that
406 were complementary to, as well as those that were antagonistic to, their correlation in the unselected population.
407 As an example of complementary trait selection, grain protein content (GPC) was shown to be strongly negatively
408 correlated with grain yield in the original population (**Figure 1**) and therefore rapidly decreased as grain yield was
409 selected for. Although both grain yield and GPC are both positively valued traits, here we define these as under
410 complementary selection were their trait correlations and selection covariance are in the same direction. In
411 contrast, antagonistic trait selection could be demonstrated by plant height traits and grain dimension traits that
412 were all positively correlated with each other in the original population (**Figure 1**), but covaried negatively over
413 time in the simulated population under selection for yield measured in each trial year; large grain size traits
414 increased over time (GA, GL, GW, TGW), whereas plant height traits (HET, HFLB) decreased (**Figure 6**).
415 Similarly, green leaf area (GLA) traits over the foundation development stage were generally positively correlated
416 with plant height traits but increased over time as grain yield was selected for, while plant height traits decreased
417 (**Figure 6**). Although the majority of trait relationships had complementary rather than antagonistic trait
418 correlations in the original population and covariances in the simulated population (55.4 and 57.8% of pairwise
419 relationship when grain yield selected in each year respectively had both positive or both negative correlations
420 and covariances under selection; **Figure 6**), the significant remaining proportion did not. This indicates that
421 antagonistic trait trade-offs were required to be optimised to achieve the genetic gains in yield simulated in the
422 population and highlights the benefit of the multi-trait prediction approach.

423 As suggested by the low correlation between yields in each year, selection for yield in either year had
424 only limited effects on yield in the other year where approximately half the genetic gain in yield in the alternate
425 year was achieved in simulated selection for yield in either year. This G×E effect for yield was reflected by how
426 the yield component traits were co-selected with yield between the two years. Grains per ear (GPE) and grains
427 per spikelet (GPS) were increased when selection was for grain yield in year 2 but remained mostly neutral for
428 grain yield in year 1 (**Figure 6**). Further to the differential importance of traits in the multi-trait ensemble models
429 outlined above, differential selection responses of yield component traits according to yield in differing
430 environments highlights the capacity for G×E interactions to buffer response to selection for grain yield. However,
431 when G×E is predictable, in certain target environments, contrasting yield component strategies could be used to
432 adapt the crop to the environment. For example, it may be supposed that a genotype that can be high yielding by

433 producing many grain sites per ear throughout an extended development phase due to being later flowering would
 434 be better adapted to environments without terminal drought stress.
 435

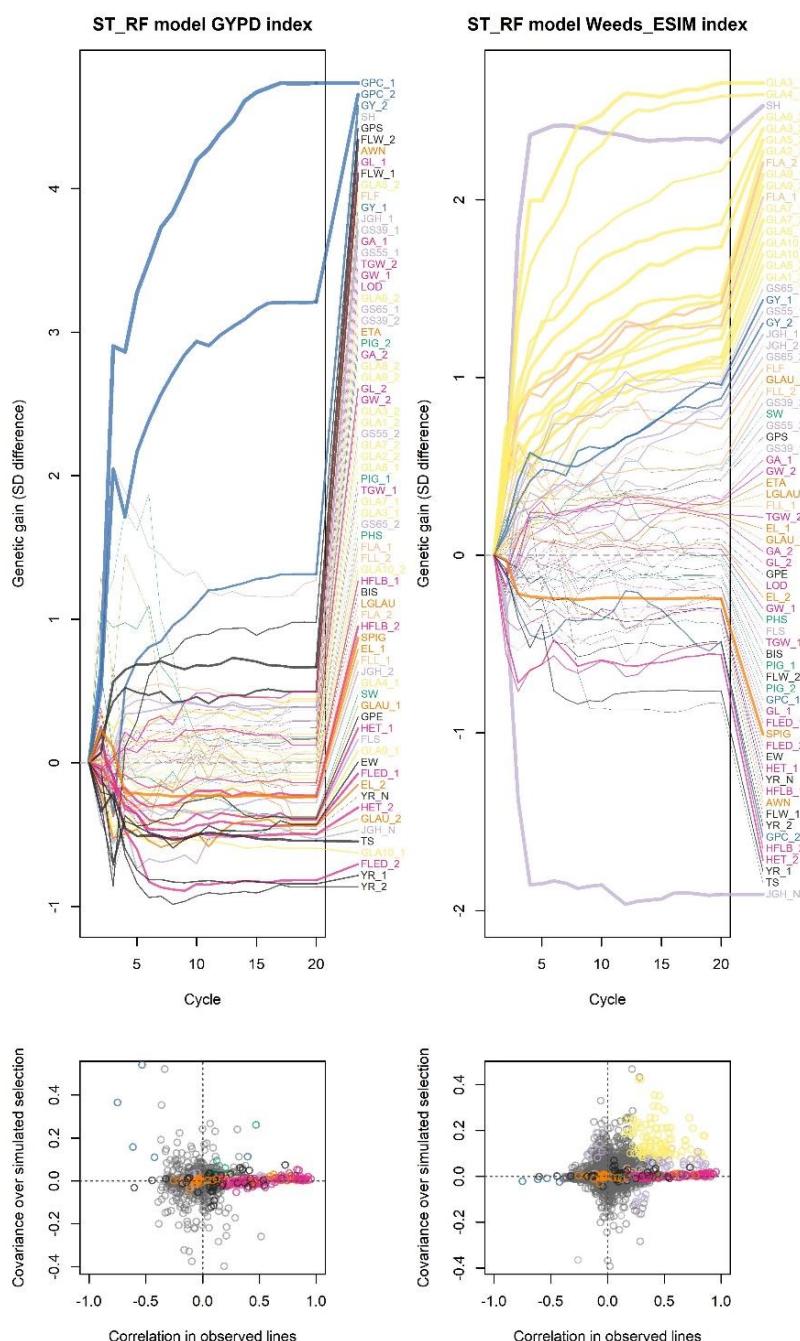


436
 437 **Figure 6. Simulated phenotypic response to selection on grain yield measured in two years.** Upper plots
 438 indicate response of all 72 traits under simulated recurrent selection for grain yield in each of the two trial years
 439 based on multi-trait Random Forest (MT RF) genomic prediction models. Genetic gain was calculated as
 440 difference in population mean trait values to generation one and scaled to the standard deviation of the trait values
 441 in generation one. Line colours relate to trait groups identified by hierarchical clustering shown in **Figure 1**. The
 442 _1 and _2 designations used after trait abbreviations refer to trial year 1 and trial year 2, respectively. Line widths
 443 are relative to the t-test significance of each trait genetic gain from cycle 0 to 20 across all 20 simulation repeats.
 444 Lower plots compare the correlations between all pairs of traits in the original population and the covariance
 445 between trait pairs over time in the simulated population under selection. Points in upper right or lower left
 446 quadrants indicate both positive or negative correlation and covariance which demonstrates complementary trait
 447 selection. Points in the lower right or upper left quadrants represent differing positive or negative correlation and
 448 covariance, suggesting antagonistic trait selection. Point colours indicate pairs of traits that are both in the same
 449 trait group following the colour scheme in **Figure 1**, while grey points indicate trait pairs from different groups.

450 **3.5 Selection indices enable optimisation of trait trade-offs**

451 We next tested whether multi-trait selection indices could be employed to simultaneously optimise selection for
452 yield and other traits of interest, such as grain protein content (GPC) or crop architecture traits that aid competition
453 with weeds. As outlined by the observed trait correlations, early season green leaf area (GLA) traits and grain
454 yield were found to be slightly positively correlated, so could be co-selected, but the additional association
455 between GLA and plant height would need to be restricted to limit risk of lodging. We therefore simulated effects
456 of a phenotypic selection strategy based on selection index to increase important traits for crop competitive ability
457 with weeds in combination with grain yield, whilst restricting changes in plant height as well as an index for high
458 grain yield protein deviation to combine both negatively correlated traits.

459 Considering the ST RF as the true genetic model, the combined grain yield + weed competition selection
460 index succeeded in increasing desirable competitive traits including GLA, flag leaf area (FLA) as well as grain
461 yield in both years, whilst maintaining plant height at an acceptable level (**Figure 7**). Indirect effects on other
462 traits included rapid early selection for spring-type growth habit (SH) up to the fifth breeding cycle, but which
463 then remained at around 90% frequency in the population without fixation in any of the of the simulation
464 repetitions. The GYPD selection index also achieved genetic gain in desirable traits (grain yield and protein
465 content in both years) and had some indirect effects on related traits (**Figure 7**). As an example of one trait that
466 was co-selected with GYPD, flag leaf width (FLW) increased in all simulation repeats, increasing by 3% and
467 4.2% for the trait when measured in year 1 and year 2, respectively. Whilst most of the trait relationships selected
468 for in the weed competition index were positively correlated and complementary traits, such as all of the GLA
469 traits and grain yield, the GYPD selection index included more antagonistic trait relationships (positive correlation
470 and negative covariance or negative correlation and positive covariance) that were required to be optimised in
471 addition to yield and protein trade off (**Figure 7**). For example, under GYPD selection, grains per spikelet (GPS)
472 correlated negatively with GPC in each year (correlation = -0.33 and -0.36 in each year respectively), but covaried
473 positively over simulated selection (covariance = 0.52 and 0.35 in each year respectively), where GPS increased
474 by an average of 0.23 over the course of simulated selection while GPC measured in each year also increased by
475 2.48% and 1.57% respectively. Furthermore, the flag leaf to ear distance (FLED) and GPC measured in year 2
476 correlated positively (correlation = 0.21), but covaried negatively over the simulated selection (covariance = -
477 0.25), where FLED decreased by 2.73cm while GPC increased by 1.57% over the course of simulated selection.
478 These provide examples of trait mechanisms by which yield and GPC could be simultaneously selected.

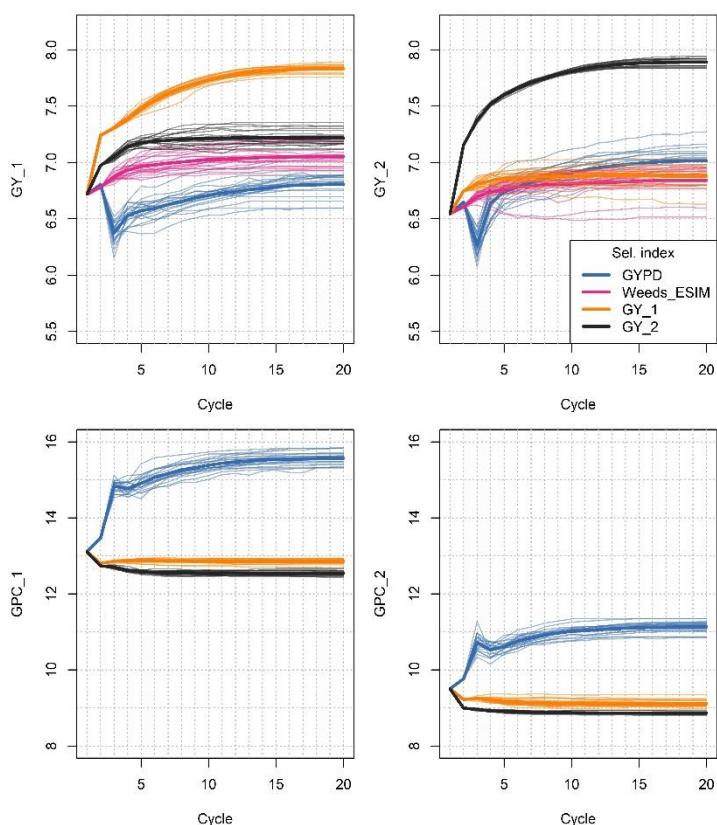


479
480
481
482
483
484
485
486
487
488
489
490
491
492
493

Figure 7. Simulated phenotypic response to selection on two selection indices. Upper plots indicate response of all traits under simulated recurrent selection for two multi-trait selection indices based on single-trait Random Forest (ST RF) genomic prediction models. GYPD = selection to increase both grain yield and protein (grain yield protein deviation); Weeds_ESIM = selection to increase yield as well as weed competitive traits whilst limiting change in plant height. Line colours relate to trait groups identified by hierarchical clustering and correlations shown in Figure 1. Line widths are relative to the t-test significance of each trait genetic gain from cycle generation 0 to 20 across all 20 simulation repeats. Lower plots compare the correlations between all pairs of traits in the original population and the covariance between trait pairs over time in the simulated population under selection. Points in upper right or lower left quadrants indicate both positive or negative correlation and covariance which demonstrates, suggesting complementary trait selection. Points in the lower right or upper left quadrants represent differing positive or negative correlation and covariance which demonstrates, suggesting antagonistic trait selection. Point colours indicate pairs of traits that are both in the same trait group following the colour scheme in Figure 1, while grey points indicate trait pairs from different groups.

494 Selection on multiple traits, which requires optimisation of multiple trait trade-offs, slowed the rate of
495 genetic gain in grain yield for each of the selection indices: mean grain yield across both trial years increased
496 when using both selection indices, but at a slower rate, particularly for grain yield in year 1 under GYPD selection,
497 compared to when grain yield was selected for *per se* (Figure 8). However, in comparison to gain in grain yield
498 in either one of the two years when selection was for grain yield in the other year, both GYPD and the yield +
499 weed competition selection indices achieved generally comparable gains for yield whilst also increasing other
500 favourable traits (Figure 8). These results show that antagonistic trait relationships are generally possible to
501 optimise through appropriate selection. However, while this may slow genetic gain to some extent in the primary
502 traits of interest, such as grain yield, this more realistically represents the balance of selection for multiple traits
503 that occurs in breeding programmes.

504



505
506 **Figure 8. Simulated response to selection in grain yield (GY) measured in two trial years (_1 = year1, _2 =**
507 **year2) under different selection indices based on single-trait Random Forest (ST RF) genomic prediction**
508 **models.** Narrow lines represent each of 20 simulation repeats while thicker lines represent the mean across all
509 simulation repeats. GYPD = selection to increase both grain yield and protein (grain yield protein deviation);
510 Weeds_ESIM = selection to increase yield as well as weed competitive traits whilst limiting change in plant
511 height.

512

513 **3.6 Different true genetic models affect long-term response to simulated**
514 **selection**

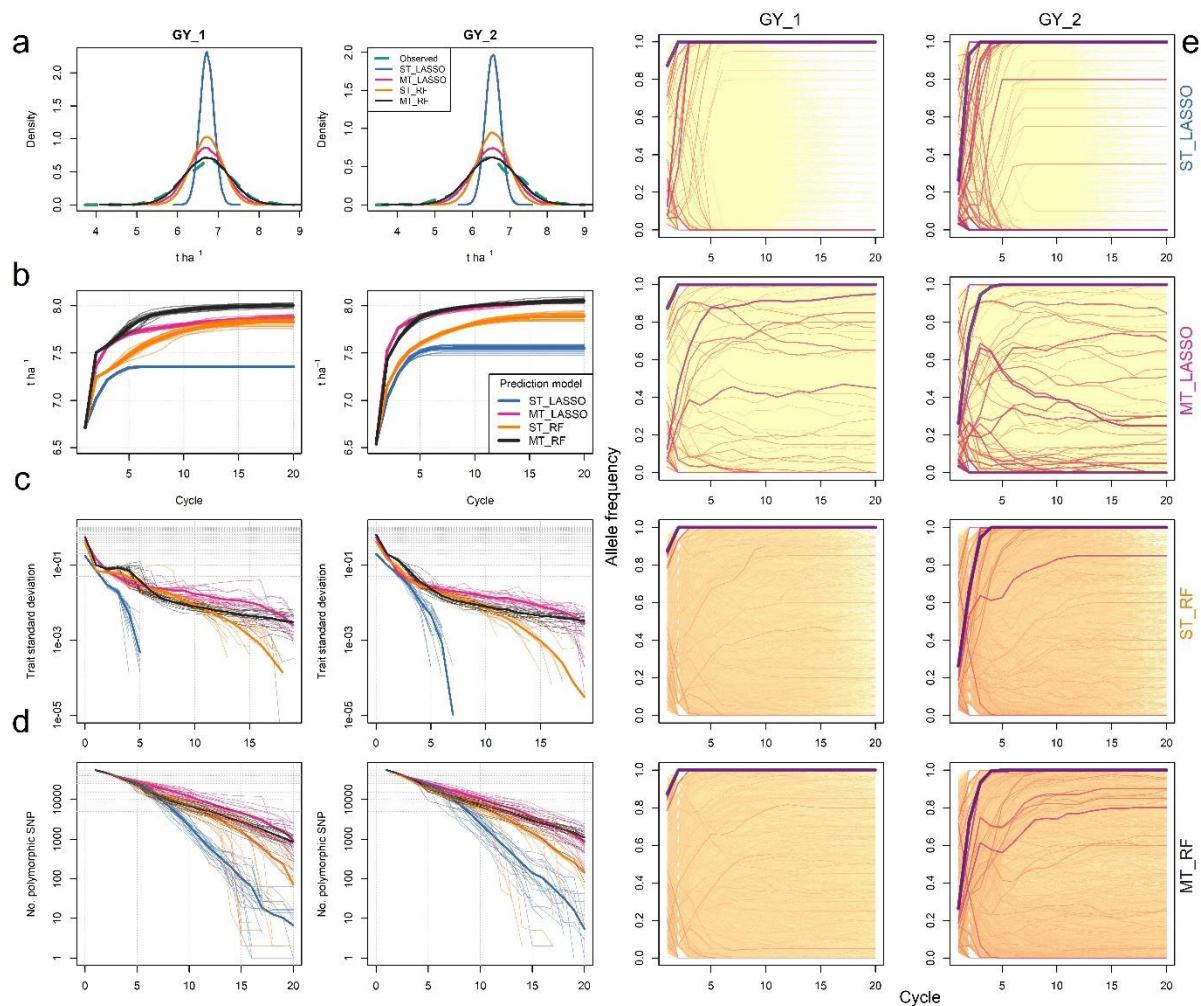
515 After comparing simulated response to different selection indices, we then tested how using different true genetic
516 models that are based on the different genomic prediction models trained on the observed NDM population
517 (LASSO versus RF; using either ST or MT approaches) affect phenotypic and genomic response to selection.
518 Both RF and MT ensemble models were shown above to generally increase the prediction accuracy across traits
519 (**Figure 3**), and here we show these predictions had a lower degree of shrinkage towards the mean of predicted
520 trait values in comparison to the grain yield trait values of observed lines (**Figure 9a**). The MT RF models in fact
521 had comparable variances in prediction values to the observed grain yield data, indicating their realistic prediction
522 of phenotypic variation. While this would be expected from an overfitting model, cross validation with the
523 observed data showed an increased accuracy of these models.

524 Simulations with MT RF true genetic models tended to have the largest and longest increase of genetic
525 gain over the course of simulated selection of grain yield (**Figure 9b**). Genetic gain in grain yield plateaued, at a
526 relatively low level, after only around six cycles of selection using ST LASSO genetic model simulations but both
527 cycle time to plateaux and plateaux height (maximum genetic gain) were both extended by either using a RF or
528 MT model. This pattern of faster and higher genetic gain in RF or MT models was accompanied by the retention
529 of higher phenotypic (**Figure 9c**) and genetic (**Figure 9d**) variance, particularly over long-term selection in the
530 MT models. Almost all non-zero LASSO SNP effects were fixed after 8 cycles of selection in any simulation
531 repeat for selection for grain yield in either year, limiting further genetic gain (**Figure 9**). Continued loss of genetic
532 diversity once all genetic effects that affect phenotypic variance were fixed was down to genetic drift. Many of
533 the SNP with highest variable importance in RF models were in common with the largest LASSO SNP effect
534 coefficients, and the largest of these were fixed in the first few cycles of selection at a similar rate for both ST RF
535 and ST LASSO (**Figure 9e**), where almost all of the ten SNPs with the largest LASSO effect or RF variable
536 importance were fixed after five cycles of selection for both models. However, RF models included many more
537 SNPs with non-zero importance (~20,000) than non-zero LASSO effects (61 and 87 for grain yield in years 1 and
538 2, respectively) and many more of these small or non-additive genetic effects in RF models remained polymorphic
539 for longer (**Figure 9e**). For example, a significant proportion of these (14.3 and 13.8% for grain yield in years 1
540 and 2, respectively) remained polymorphic after 10 cycles of selection while genetic gain in yield still continued
541 to increase (**Figure 9b**). This suggests that accumulation of the SNP effects, that were too small to be included in
542 LASSO, or complex non-additive SNP by SNP epistatic genetic effects, made a large contribution to continued
543 long-term genetic gain in RF models even after large effect QTL are fixed.

544 Furthermore, simply adding a MT second step to LASSO models to include indirect pleiotropic effects
545 also increased and extended long-term genetic gain to a similar or greater extent to ST or MT RF models (**Figure**
546 **9b**). Using MT models, LASSO SNP effects were fixed at a much slower rate (**Figure 9e**) and phenotypic and
547 genetic variance was maintained for much longer (**Figure 9c-d**), where on average 12% of the ten largest LASSO
548 SNP effects for each single trait were polymorphic after 10 cycles of selection for across all simulation repeats
549 with selection for grain yield in both years. This also suggests that the greater degree of pleiotropy present in MT
550 models, which increased prediction accuracy for low accuracy LASSO models in particular (**Figure 3**), meant
551 that the number of small effect loci involved in each trait was greatly increased. However, the number of indirect

552 pleiotropic LASSO SNP effects across non-additive ensemble models could not be quantified. Selection could
553 therefore act on more complex trait relationships driven by pleiotropy and/or linkage.

554 Linkage among antagonistic genetic effects could be shown to partly limit genetic gain. On average, only
555 0.8 and 5% of non-zero ST LASSO model SNP coefficients were negatively fixed resulting in an average of 0.28
556 and 2.15% loss of the maximum yield after 20 cycles of selection for yield in each year respectively. However,
557 this was exacerbated in MT LASSO genetic models where 16.4 and 28.7% of ST LASSO SNP effects with
558 negative effects on the trait under selection, were incorrectly fixed resulting in 14.1 and 23.5% loss of genetic
559 gain. This further indicates insufficient recombination to completely decouple antagonistic linked QTL that were
560 not directly involved in ST LASSO models for grain yield directly but pleiotropically linked through MT models.



561

562 **Figure 9. Simulated phenotypic and genetic response to selection with different genetic models.** (a) 563 Comparisons among distributions of observed and predicted trait values for two grain yield (GY) scenarios for 564 different prediction models. LASSO and Random Forest (RF) genomic prediction models in conjunction with 565 single- (ST) or multi-trait (MT) ensemble models are compared. (b) Rates of genetic gain in GY in each GY 566 scenario when GY is directly selected under 20 cycles of simulated recurrent selection comparing different 567 genomic prediction models. Comparisons in the rate of reductions in (c) phenotypic and (d) genetic variation in 568 the NIAB Diverse MAGIC (NDM) population under recurrent selection comparing the same prediction models 569 as above, and colour coded in the same way. Narrow lines represent each of 20 simulation repeats while thicker 570 lines represent the mean across all simulation repeats. (e) Changes in mean allele frequency for all ~55,000 SNP 571 markers across 20 simulation repeats for the NDM population under simulated selection for grain yield in two 572 yield scenarios using the four models (ST LASSO, ST RF, MT LASSO, MT RF). Line widths and colour are 573 proportional to SNP effect size in LASSO models and variable importance score for RF models.

574

575 4. Discussion

576 A complex structure of trait relationships that interact with environmental conditions were found to be involved
577 in prediction of grain yield. Through simulation of recurrent selection within a genetically diverse highly
578 recombined multi-founder wheat population, and based on observed genomic and phenotypic data, we tested
579 several contrasting genetic models and quantitative genetic approaches to recurrent selection. We found that, in
580 comparison to a simplifying LASSO genetic model where each trait was predicted directly from a minimal subset
581 of markers with additive effects, prediction accuracies were increased both by using a multi-trait ensemble
582 approach and Random Forest prediction models, which potentially incorporate pleiotropy and epistatic effects
583 respectively. This was particularly so for complex traits with low prediction accuracy, and in simulations of
584 recurrent selection these models also increased the rate and extent of long-term genetic gain, whilst maintaining
585 phenotypic and genetic variance. Thus, genomic prediction models that include more complex genetic effects
586 such as epistasis, and pleiotropy may better reflect how continued genetic gain is achieved through breeding.

587 4.1 *The value of multi-trait models*

588 We showed that modelling relationships among traits is valuable for increasing genomic prediction accuracy.
589 Traditional multi-trait genomic prediction models consider the covariance structure of related traits across
590 multiple environments and replicates and increase genomic prediction accuracy for cross-validation schemes
591 when test fractions include partially phenotyped individuals in the test environment (Jia and Jannink, 2012).
592 However, other studies often do not find an advantage to multi-trait models for untested genotypes in real datasets
593 (Bhatta et al., 2020; Ward et al., 2019). We present results from multi-trait ensembles that integrate predictions of
594 multiple traits into the same model (Van der Laan et al., 2007; He et al., 2016). These ensemble models
595 consistently outperformed single trait models, while a contrasting approach using single vector decomposition of
596 the multi-trait matrix performed poorly and more variably across traits. Although the increase in prediction
597 accuracy was small for most traits, the advantage of multi-trait ensemble models was particularly great for traits
598 that were poorly predicted by LASSO models, suggesting that ensemble methods efficiently incorporate additional
599 information from large numbers of small pleiotropic genetic effects among related traits, which ST LASSO
600 models would otherwise overlook when each trait is considered independently. Traits such as grain yield are
601 polygenic and few genetic markers with large and consistent effects have been identified and applied in breeding
602 (Bernardo, 2016). However, predictions of component traits of yield, many of which have simpler genetic
603 architectures (Scott et al., 2021), can improve the ensemble prediction model for yield. We found that many highly
604 correlated traits were used as covariates with high importance in multi-trait models. Furthermore, the covariate
605 importance scores of traits in the ensemble models highlight physiological mechanisms for trait improvement and
606 enable optimisation of antagonistic trait relationships (**Figure 4**). Where yield components correlate negatively
607 with each other, the multi-trait ensemble model is able to optimise the interplay among these traits to increase the
608 prediction accuracy of yield as the primary trait of interest. Similar to the approach taken by Powell et al. (2022)
609 who modelled multiple systems biology development processes to bridge the gap between genotype to complex
610 phenotype, we used multiple physiological traits in more agnostic models without defined crop growth parameters
611 to aid prediction of the complex processes behind grain yield.

612 Inter-year environmental variation can modulate relationships between traits. We noted strongly
613 contrasting weather conditions between the two trial years in which phenotypic data was collected (**Figure 2**).
614 The covariate importances of traits for predicting yield changed with the year scenario being predicted, revealing
615 some mechanisms controlling GxE for yield (**Figure 4**). For example, growth stage phenotypes were more
616 important covariates in year 1. Similarly, trade-offs in plant size and earliness likely maintain polygenic trait
617 variation due to varying environmental pressures in the wild plant *Mimulus guttatus* (Troth et al., 2018). In
618 breeding, any single strategy to achieve high yield may be hampered by unpredictable year-to-year environmental
619 variation, and thus limit response to selection and reduction in genetic variance. While our simulations of future
620 genetic gain cannot account for unmeasured environments in the future, commercial wheat breeders often take
621 this into account and make selections of promising lines with a diversity of phenological or plant height traits to
622 ensure adaptive potential.

623 **4.2 The potential to optimise trait trade-offs that conventional breeding has
624 neglected**

625 Using multi-trait data from a MAGIC population that controls for confounding effects of population structure
626 (Scott et al., 2020), we found that pleiotropy and/or tight genetic linkage are significant causes of correlated trait
627 responses to selection. These data also shed light on the combination of traits that would be required to be co-
628 selected or optimised to achieve continuous gains in grain yield as a primary trait under selection. Furthermore,
629 we find antagonistic trade-offs among traits that have been problematic for wheat crop improvement. We suggest
630 that historic enhancement of grain yield by breeders at the cost of key traits such as weed competitive ability, or
631 grain protein content, has been due to the over-riding value placed on grain yield as a primary selection criterion
632 during variety testing, as well as market pressures, leaving little scope for compromise with other traits. Integration
633 of novel trait variation to optimise these trade-offs within an elite wheat gene pool, which has been under such
634 strong directional selection, would therefore be difficult. However, simulations presented here show that with
635 appropriate selection indices, genetic gain in both yield and other valuable but negatively correlated traits was
636 possible to some extent.

637 **4.3 The value of complex genomic prediction models for continued genetic
638 gain**

639 Simulating selection using prediction models with contrasting genetic architectures (i.e., in terms of additive or
640 epistatic and direct or pleiotropic genetic effects) had major impacts on the outcomes of recurrent selection. The
641 greater complexity of these models both increased cross-validated prediction accuracy of complex traits in the
642 observed population and extended the accuracy of genomic predictions in simulations of recurrent genomic
643 selection. Furthermore, simulations of phenotypic selection assuming a complex genetic model demonstrated
644 accelerated and extended potential for genetic gain while maintaining genetic and phenotypic variance. The role
645 of non-additive genetic effects has been demonstrated elsewhere to preserve genetic variance over long-term
646 selection in simulated populations (Wientjes et al., 2021). Wang et al. (2004) used simulations of selection within

647 the CIMMYT wheat breeding programme to compare genetic models, finding that inclusion of epistasis in genetic
648 models greatly reduced the rate that additive genetic variance is lost due to selection. Although the role of epistasis
649 is thought to contribute little to overall genetic variance, at least in outbred populations (Hill and Mäki-Tanila,
650 2015), evolutionary theory supports these observations in crop breeding; selection can enable conversion of
651 epistatic to additive genetic effects, allowing hidden or cryptic genetic variation to then be unlocked (Carlborg et
652 al., 2006; Hill, 2017). The limits to trait variation in our study are likely underestimates because as allele
653 frequencies shift and trait genetic architectures evolve under selection new additive genetic effects would be
654 unlocked for selection which cannot be modelled or predicted in the observed population. Supporting this, we
655 found that prediction models soon become out of date and suffer loss of prediction accuracy, particularly for
656 simple additive prediction models (LASSO), when target genotypes become more distantly related to the training
657 set (Edwards et al., 2019). However, in realistic scenarios of a wheat breeding programme practicing genomic
658 selection, the training model is continually updated with data from advanced breeding line testing which would
659 enable more linear continued genetic gain. Continuous novel mutations may also play an important role in
660 regenerating genetic variation and extending limits to long-term selection in large populations (Hill, 1982) but
661 were not considered in simulations reported here. Pre-breeding programmes can also introduce novel genetic
662 diversity from the primary, secondary and tertiary wheat gene pool (Balfourier et al., 2019). Nevertheless, the
663 population we study is representative of diverse north-west European wheats across 70 years. We found that
664 additive variation included in minimal LASSO prediction models was quickly depleted during simulated selection.
665 We propose that pleiotropic and epistatic genetic effects and G×E interactions have played a major role in
666 maintaining wheat genetic diversity despite strong selection and will be particularly important for applied genomic
667 selection of elite varieties in already highly selected breeding populations.

668 **4.4 Potential for applied crop breeding**

669 MAGIC populations have proven valuable resources for direct generation of commercial varieties of some less
670 intensively bred crops than wheat (Scott et al., 2020). In simulated breeding programmes, Bernardo (2021)
671 suggested that multi-parent crossing schemes may be valuable for maintaining genetic diversity. However, the
672 diverse MAGIC wheat population described here is unlikely to generate commercially competitive varieties due
673 to the broad genetic basis and historic founders. Instead, this MAGIC population samples and recombines genetic
674 diversity across 70 years and can therefore be considered a microcosm of past and future selective breeding. In
675 this context, our simulations rerun alternate histories to test different selection models and approaches and reveal
676 physiological and genetic mechanisms for future breeding. We suggest that this approach, including multi-trait
677 ensembles, could be further integrated with environmental information to inform crop models (Cooper et al., 2021;
678 Stöckle and Kemanian, 2020). Considering that traditional wheat breeding programme cycles generally extend
679 over at least five years, our simulations of twenty cycles of recurrent selection represent an equivalent of over one
680 hundred years of traditional wheat breeding (albeit it with no further input from genotypes outside of the 16
681 founders from which the MAGIC population was constructed). Current wheat breeding programmes are also
682 likely to be at a point towards the later stages of selection simulations presented here where the majority of large
683 effect QTL are either fixed or well accounted for. Further genetic gain in current breeding programmes will
684 therefore likely be achieved through optimisation of small and complex genetic effects (Gorjanc et al., 2018).

685 Through selection, breeders appear to often maintain linkage disequilibrium across unexpectedly large
686 genomic regions because they contain several beneficial alleles (Brinton et al., 2020; Fradgley et al., 2019), which
687 could also interact epistatically. Therefore, prediction models that capture relevant haplotype blocks and the most
688 recently unlocked epistatic effects will be increasingly important for forward prediction of high performing
689 breeding lines. Comparisons between patterns of linkage disequilibrium in commercial selected varieties and in
690 simulations presented here would validate this process and uncover valuable sites for further marker assisted
691 selection. Our simulations suggest that beneficial variation is often lost during breeding. This diverse MAGIC
692 population is a reservoir for such this genetic diversity and the phenotypic and genomic data allow beneficial
693 alleles to be identified. Through targeted rapid recurrent selection and breeding technologies that reduce
694 generation time (Watson et al., 2018; Cha et al., 2021), this population could therefore be used to provide useful
695 pre-breeding material for commercial breeding programmes to deliver accelerated and continued genetic gain.
696 Optimum contribution selection can also be applied to maximise long-term genetic gain by maintaining genetic
697 variance for selection at later generations.

698 **4.5 Conclusions**

699 In summary, we demonstrated the value of multi-trait ensemble models for genomic prediction of complex traits
700 and simulated recurrent selection using these genetic models based empirically on an extensively genotyped and
701 phenotyped NDM population. We consider this a microcosm of wider wheat breeding programmes working with
702 the wider pool of wheat germplasm so that our results provide insights into the trends and mechanisms by which
703 the considerable progress and genetic gain has been made in modern wheat breeding without apparent genetic
704 diversity loss. These findings highlight the importance of models and approaches that take into account these
705 mechanisms to maximize further genetic gain in the future.

706 **5. Acknowledgements**

707 This work was funded by Biotechnology and Biological Sciences Research Council (BBSRC) grants
708 BB/M011666/1 awarded to JC, BB/M011585/1 to RM and BB/M011194/1 as part of the PhD research of NF. We
709 also thank Dr Stephanie Swarbreck for useful comments on the manuscript.

710

711 **6. Author contributions**

712 NF conceived of and undertook the analyses. JC and RM were awarded project funding. NF wrote the first draft
713 of the manuscript and all authors reviewed, edited, and approved the final manuscript.

714

715 **7. Data availability**

716 Phenotypic and genotypic data used in this study were as presented by Scott et al. (2021) and can be freely
717 accessed at <http://mtweb.cs.ucl.ac.uk/mus/www/MAGICdiverse/>.

718 8. References

719 Andrew, I.K.S., Storkey, J. and Sparkes, D.L., 2015. A review of the potential for competitive cereal cultivars as
720 a tool in integrated weed management. *Weed Research*, 55(3), pp.239-248.

721 Austin, R.B., Bingham, J., Blackwell, R.D., Evans, L.T., Ford, M.A., Morgan, C.L. and Taylor, M., 1980. Genetic
722 improvements in winter wheat yields since 1900 and associated physiological changes. *The Journal of*
723 *Agricultural Science*, 94(3), pp.675-689.

724 Balfourier, F., Bouchet, S., Robert, S., De Oliveira, R., Rimbert, H., Kitt, J., Choulet, F., International Wheat
725 Genome Sequencing Consortium, BreedWheat Consortium and Paux, E., 2019. Worldwide
726 phylogeography and history of wheat genetic diversity. *Science advances*, 5(5), p.eaav0536.

727 Bernardo, R., 2016. Bandwagons I, too, have known. *Theoretical and Applied Genetics*, 129(12), pp.2323-2332.

728 Bernardo, R., 2021. Multiparental populations in line development: Genetic gain, diversity, and practical
729 limitations. *Crop Science*, 61(6), pp.4139-4150.

730 Bhatta, M., Gutierrez, L., Cammarota, L., Cardozo, F., Germán, S., Gómez-Guerrero, B., Pardo, M.F., Lanaro,
731 V., Sayas, M. and Castro, A.J., 2020. Multi-trait genomic prediction model increased the predictive ability
732 for agronomic and malting quality traits in barley (*Hordeum vulgare* L.). *G3: Genes, Genomes, Genetics*,
733 10(3), pp.1113-1124.

734 Bogard, M., Allard, V., Brancourt-Hulmel, M., Heumez, E., Machet, J.M., Jeuffroy, M.H., Gate, P., Martre, P.
735 and Le Gouis, J., 2010. Deviation from the grain protein concentration–grain yield negative relationship is
736 highly correlated to post-anthesis N uptake in winter wheat. *Journal of Experimental Botany*, 61(15),
737 pp.4303-4312.

738 Breiman, L., 2001. Random Forests. *Machine Learning*, 45(1), pp.5-32.

739 Brinton, J., Simmonds, J., Minter, F., Leverington-Waite, M., Snape, J. and Uauy, C., 2017. Increased pericarp
740 cell length underlies a major quantitative trait locus for grain weight in hexaploid wheat. *New Phytologist*,
741 215(3), pp.1026-1038.

742 Brinton, J., Ramirez-Gonzalez, R.H., Simmonds, J., Wingen, L., Orford, S., Griffiths, S., Haberer, G., Spannagl,
743 M., Walkowiak, S., Pozniak, C. and Uauy, C., 2020. A haplotype-led approach to increase the precision of
744 wheat breeding. *Communications Biology*, 3(1), pp.1-11.

745 Broman, K.W., Gatti, D.M., Simecek, P., Furlotte, N.A., Prins, P., Sen, Š., Yandell, B.S. and Churchill, G.A.,
746 2019. R/qtL2: software for mapping quantitative trait loci with high-dimensional data and multiparent
747 populations. *Genetics*, 211(2), pp.495-502.

748 Buhmann, D.J.S.P., 2011. MissForest-nonparametric missing value imputation for mixed-type data.
749 *Bioinformatics*, 28, pp.113-118.

750 Carlborg, Ö. and Haley, C.S., 2004. Epistasis: too often neglected in complex trait studies? *Nature Reviews*
751 *Genetics*, 5(8), pp.618-625.

752 Carlborg, Ö., Jacobsson, L., Åhgren, P., Siegel, P. and Andersson, L., 2006. Epistasis and the release of genetic
753 variation during long-term selection. *Nature Genetics*, 38(4), pp.418-420.

754 Cha, J.K., O'Connor, K., Alahmad, S., Lee, J.H., Dinglasan, E., Park, H., Lee, S.M., Hirsz, D., Kwon, S.W.,
755 Kwon, Y. and Kim, K.M., 2022. Speed vernalization to accelerate generation advance in winter cereal
756 crops. *Molecular Plant*, 15(8), pp.1300-1309.

757 Cerón-Rojas, J.J., Sahagún-Castellanos, J., Castillo-González, F., Santacruz-Varela, A. and Crossa, J., 2008. A
758 restricted selection index method based on eigenanalysis. *Journal of Agricultural, Biological, and*
759 *Environmental Statistics*, 13(4), pp.440-457.

760 Charmet, G., Tran, L.G., Auzanneau, J., Rincent, R. and Bouchet, S., 2020. BWGS: AR package for genomic
761 selection and its application to a wheat breeding programme. *PloS One*, 15(4), p.e0222733.

762 Clark, S.A., Hickey, J.M. and Van der Werf, J.H., 2011. Different models of genetic variation and their effect on
763 genomic evaluation. *Genetics Selection Evolution*, 43(1), pp.1-9.

764 Cooper, M., Powell, O., Voss-Fels, K.P., Messina, C.D., Gho, C., Podlich, D.W., Technow, F., Chapman, S.C.,
765 Beveridge, C.A., Ortiz-Barrientos, D. and Hammer, G.L., 2021. Modelling selection response in plant-
766 breeding programs using crop models as mechanistic gene-to-phenotype (CGM-G2P) multi-trait link
767 functions. *in silico Plants*, 3(1), p.diaa016.

768 Corsi, B., Obinu, L., Zanella, C.M., Cutrupi, S., Day, R., et al., 2021. Analysis of a German multi-parental
769 population identifies eight genetic loci controlling two or more yield components in wheat, including the
770 genetic loci *Rht24*, *WAPO-A1* and *WAPO-B1* and multi-trait QTL on chromosomes 5A and 6A.
771 *Theoretical and Applied Genetics*, 134, pp.1435-1454.

772 Davis, D.R., 2009. Declining fruit and vegetable nutrient composition: What is the evidence? *Horticultural*
773 *Science*, 44(1):15-19. <https://doi.org/10.21273/HORTSCI.44.1.15>

774 Dudley, J.W., 2007. From means to QTL: The Illinois long-term selection experiment as a case study in
775 quantitative genetics. *Crop Science*, 47, pp.S20-S31.

776 Edwards, S.M., Buntjer, J.B., Jackson, R., Bentley, A.R., Lage, J., Byrne, E., Burt, C., Jack, P., Berry, S., Flatman,
777 E. and Poupard, B., 2019. The effects of training population design on genomic prediction accuracy in
778 wheat. *Theoretical and Applied Genetics*, 132(7), pp.1943-1952.

779 Fernandes, S.B., Dias, K.O., Ferreira, D.F. and Brown, P.J., 2018. Efficiency of multi-trait, indirect, and trait-
780 assisted genomic selection for improvement of biomass sorghum. *Theoretical and Applied Genetics*,
781 131(3), pp.747-755.

782 Fradley, N., Gardner, K.A., Cockram, J., Elderfield, J., Hickey, J.M., Howell, P., Jackson, R. and Mackay, I.J.,
783 2019. A large-scale pedigree resource of wheat reveals evidence for adaptation and selection by breeders.
784 *PLoS Biology*, 17(2), p.e3000071.

785 Friedman, J., Hastie, T. and Tibshirani, R., 2010. Regularization paths for generalized linear models via coordinate
786 descent. *Journal of Statistical Software*, 33(1), p.1.

787 Fischer, R.A. and Kertesz, Z., 1976. Harvest index in spaced populations and grain weight in microplots as
788 indicators of yielding ability in spring wheat 1. *Crop Science*, 16(1), pp.55-59.

789 Fu, Y.B., 2015. Understanding crop genetic diversity under modern plant breeding. *Theoretical and Applied*
790 *Genetics*, 128(11), pp.2131-2142.

791 Fufa, H., Baenziger, P.S., Beecher, B.S., Graybosch, R.A., Eskridge, K.M. and Nelson, L.A., 2005. Genetic
792 improvement trends in agronomic performances and end-use quality characteristics among hard red winter
793 wheat cultivars in Nebraska. *Euphytica*, 144(1), pp.187-198.

794 Goddard, M.E., Kemper, K.E., MacLeod, I.M., Chamberlain, A.J. and Hayes, B.J., 2016. Genetics of complex
795 traits: prediction of phenotype, identification of causal polymorphisms and genetic architecture.
796 *Proceedings of the Royal Society B: Biological Sciences*, 283(1835), p.20160569.

797 Gorjanc, G., Gaynor, R.C. and Hickey, J.M., 2018. Optimal cross selection for long-term genetic gain in two-part
798 programs with rapid recurrent genomic selection. *Theoretical and applied genetics*, 131(9), pp.1953-1966.

799 Guttieri, M.J., Baenziger, P.S., Frels, K., Carver, B., Arnall, B. and Waters, B.M., 2015. Variation for grain
800 mineral concentration in a diversity panel of current and historical Great Plains hard winter wheat
801 germplasm. *Crop Science*, 55(3), pp.1035-1052.

802 Hawkesford, M.J., 2014. Reducing the reliance on nitrogen fertilizer for wheat production. *Journal of Cereal
803 Science*, 59(3), pp.276-283.

804 He, D., Kuhn, D. and Parida, L., 2016. Novel applications of multitask learning and multiple output regression to
805 multiple genetic trait prediction. *Bioinformatics*, 32(12), pp.i37-i43.

806 Hill, W.G., 1982. Predictions of response to artificial selection from new mutations. *Genetics Research*, 40(3),
807 pp.255-278.

808 Hill, W.G., 2017. "Conversion" of epistatic into additive genetic variance in finite populations and possible impact
809 on long-term selection response. *Journal of Animal Breeding and Genetics*, 134(3), pp.196-201.

810 Hill, W.G. and Mäki-Tanila, A., 2015. Expected influence of linkage disequilibrium on genetic variance caused
811 by dominance and epistasis on quantitative traits. *Journal of animal breeding and genetics*, 132(2), pp.176-
812 186.

813 International Wheat Genome Sequencing Consortium (IWGSC), Appels, R., Eversole, K., Stein, N., Feuillet, C.,
814 Keller, B., Rogers, J., Pozniak, C.J., Choulet, F., Distelfeld, A. and Poland, J., 2018. Shifting the limits in
815 wheat research and breeding using a fully annotated reference genome. *Science*, 361(6403), p.eaar7191.

816 Jannink, J.L., Lorenz, A. and Iwata, H., 2010. Genomic selection in plant breeding: from theory to practice.
817 *Briefings in Functional Genomics*, 9, pp.166-177.

818 Jia, Y. and Jannink, J.L., 2012. Multiple-trait genomic selection methods increase genetic value prediction
819 accuracy. *Genetics*, 192(4), pp.1513-1522.

820 Jiang, Y. and Reif, J.C., 2015. Modeling epistasis in genomic selection. *Genetics*, 201(2), pp.759-768.

821 Kissing Kucek, L., Mallory, E.B., Darby, H.M., Dawson, J.C. and Sorrells, M.E., 2021. Breeding wheat for weed-
822 competitive ability: I. Correlated traits. *Euphytica*, 217(11), pp.1-15.

823 Korres, N. E., and Froud-Williams, R. J. 2002. Effects of winter wheat cultivars and seed rate on the biological
824 characteristics of naturally occurring weed flora. *Weed Research*, 42(6), pp.417-428.

825 Kuzay, S., Xu, Y., Zhang, J., Katz, A., Pearce, S., Su, Z., Fraser, M., Anderson, J.A., Brown-Guedira, G., DeWitt,
826 N. and Haugrud, A.P., 2019. Identification of a candidate gene for a QTL for spikelet number per spike on
827 wheat chromosome arm 7AL by high-resolution genetic mapping. *Theoretical and Applied Genetics*,
828 132(9), pp.2689-2705.

829 Lovegrove, A., Pellny, T.K., Hassall, K.L., Plummer, A., Wood, A., Bellisai, A., Przewieslik-Allen, A., Burridge,
830 A.J., Ward, J.L. and Shewry, P.R., 2020. Historical changes in the contents and compositions of fibre
831 components and polar metabolites in white wheat flour. *Scientific Reports*, 10(1), pp.1-9.

832 Mackay, I.J., Cockram, J., Howell, P., Powell, W. 2021. Understanding the classics: the unifying concepts of
833 transgressive segregation, inbreeding depression and heterosis and their central relevance for crop
834 breeding. *Plant Biotechnology Journal*, 19, pp.26-34.

835 Mackay, I., Horwell, A., Garner, J., White, J., McKee, J., Philpott, H., 2011. Reanalysis of the historical series of
836 UK variety trials to quantify the contributions of genetic and environmental factors to trends and variability
837 in yield over time. *Theoretical and Applied Genetics*, 122(1), pp.225-238.

838 McCaig, T.N. and DePauw, R.M., 1995. Breeding hard red spring wheat in western Canada: Historical trends in
839 yield and related variables. *Canadian Journal of Plant Science*, 75(2), pp.387-393.

840 Meuwissen, T., Hayes, B.J. and Goddard, M.E., 2001. Prediction of total genetic value using genome-wide dense
841 marker maps. *Genetics*, 157, pp.1819–1829.

842 Michel, S., Löschenberger, F., Ametz, C., Pachler, B., Sparry, E. and Bürstmayr, H., 2019. Simultaneous selection
843 for grain yield and protein content in genomics-assisted wheat breeding. *Theoretical and Applied Genetics*,
844 132(6), pp.1745-1760.

845 Montesinos-López, O.A., Montesinos-López, A., Crossa, J., Ramírez-Alcaraz, J.M., Singh, R., Mondal, S. and
846 Juliana, P., 2019a. A singular value decomposition Bayesian multiple-trait and multiple-environment
847 genomic model. *Heredity*, 122(4), pp.381-401.

848 Montesinos-López, O.A., Montesinos-López, A., Luna-Vázquez, F.J., Toledo, F.H., Pérez-Rodríguez, P.,
849 Lillemo, M. and Crossa, J., 2019b. An R package for Bayesian analysis of multi-environment and multi-
850 trait multi-environment data for genome-based prediction. *G3: Genes, Genomes, Genetics*, 9(5), pp.1355-
851 1369.

852 Muqaddasi, Q.H., Brassac, J., Koppolu, R., Plieske, J., Ganal, M.W. and Röder, M.S., 2019. *TaAPO-A1*, an
853 ortholog of rice *ABERRANT PANICLE ORGANIZATION 1*, is associated with total spikelet number per
854 spike in elite European hexaploid winter wheat (*Triticum aestivum* L.) varieties. *Scientific Reports*, 9(1),
855 pp.1-12.

856 Murphy, K.M., Dawson, J.C. and Jones, S.S., 2008. Relationship among phenotypic growth traits, yield and weed
857 suppression in spring wheat landraces and modern cultivars. *Field Crops Research*, 105(1-2), pp.107-115.

858 Mwendwa, J.M., Brown, W.B., Weidenhamer, J.D., Weston, P.A., Quinn, J.C., Wu, H. and Weston, L.A., 2020.
859 Evaluation of commercial wheat cultivars for canopy architecture, early vigour, weed suppression, and
860 yield. *Agronomy*, 10(7), p.983.

861 Powell, O.M., Barbier, F., Voss-Fels, K.P., Beveridge, C. and Cooper, M., 2022. Investigations into the emergent
862 properties of gene-to-phenotype networks across cycles of selection: A case study of shoot branching in
863 plants. *in silico Plants*, 4(1), p.diac006.

864 Quintero, A., Molero, G., Reynolds, M.P. and Calderini, D.F., 2018. Trade-off between grain weight and grain
865 number in wheat depends on G×E interaction: a case study of an elite CIMMYT panel (CIMCOG).
866 *European Journal of Agronomy*, 92, pp.17-29.

867 R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical
868 Computing, Vienna.

869 Raherison, E., Majidi, M.M., Goessen, R., Hughes, N., Cuthbert, R., Knox, R. and Lukens, L., 2020. Evidence
870 for the accumulation of nonsynonymous mutations and favorable pleiotropic alleles during wheat breeding.
871 *G3: Genes, Genomes, Genetics*, 10(11), pp.4001-4011.

872 Ruisi, P., Frangipane, B., Amato, G., Frenda, A.S., Plaia, A., Giambalvo, D. and Saia, S., 2015. Nitrogen uptake
873 and nitrogen fertilizer recovery in old and modern wheat genotypes grown in the presence or absence of
874 interspecific competition. *Frontiers in Plant Science*, 6, p.185.

875 Sapkota, S., Boatwright, J.L., Jordan, K., Boyles, R. and Kresovich, S., 2020. Multi-trait regressor stacking
876 increased genomic prediction accuracy of sorghum grain composition. *Agronomy*, 10(9), p.1221.

877 Scott, M.F., Fradgley, N.S., Bentley, A., Brabbs, T., Corke, F., Gardner, K., Horsnell, R., Howell, P., Ladejobi,
878 O., Mackay, I.S., Mott, R. and Cockram, J. 2021. Limited haplotype diversity underlies polygenic trait
879 architecture across 70 years of wheat breeding. *Genome Biology*, 22, p137.

880 Scott, M.F., Ladejobi, O., Amer, S., Bentley, A.R., Biernaskie, J., Boden, S.A., Clark, M., Dell'Acqua, M., Dixon,
881 L.E., Filippi, C.V., Fradgley, N., Gardner, K.A., Mackay, I.J., O'Sullivan, D., Percival-Alywn, L.,
882 Roorkiwal, M., Singh, R.K., Thudi, M., Varshney, R.K., Venturini, L., Whan, A., Cockram, J. and Mott,
883 R. 2020. Multi-parent populations in crops: a toolbox integrating genomics and genetic mapping with
884 breeding. *Heredity*, 125(6), pp.396-416.

885 Schmalohr, C.L., Grossbach, J., Clément-Ziza, M. and Beyer, A., 2018. Detection of epistatic interactions with
886 Random Forest. *bioRxiv*, p.353193.

887 Shewry, P.R., Pellny, T.K., and Lovegrove, A., 2016. Is modern wheat bad for health? *Nature Plants*, 2, p.16097.
888 <https://doi.org/10.1038/nplants.2016.97>

889 Shewry, P.R., Hassall, K.L., Grausgruber, H., Andersson, A.M., Lampi, A.M., Piironen, V., Rakszegi, M., Ward,
890 J.L. and Lovegrove, A., 2020. Do modern types of wheat have lower quality for human health? *Nutrition
891 Bulletin*, 45(4), pp.362-373.

892 Simmonds, N.W., 1995. The relation between yield and protein in cereal grain. *Journal of the Science of Food
893 and Agriculture*, 67(3), pp.309-315.

894 Spyromitros-Xioufis, E., Tsoumacas, G., Groves, W. and Vlahavas, I., 2016. Multi-target regression via input
895 space expansion: treating targets as inputs. *Machine Learning*, 104(1), pp.55-98.

896 Stöckle, C.O. and Kemanian, A.R., 2020. Can crop models identify critical gaps in genetics, environment, and
897 management interactions? *Frontiers in Plant Science*, 11, p.737.

898 Storkey, J., Mead, A., Addy, J. and MacDonald, A.J., 2021. Agricultural intensification and climate change have
899 increased the threat from weeds. *Global Change Biology*, 27(11), pp.2416-2425.

900 Tadesse, W., Sanchez-Garcia, M., Assefa S.G., Amri, A., Bishaw, Z., Ogbonnaya, F.C., Baum, M., 2019. Genetic
901 gains in wheat breeding and its role in feeding the world. *Crop Breeding, Genetics and Genomics*, 1,
902 e190005.

903 Troth, A., Puzey, J.R., Kim, R.S., Willis, J.H., Kelly, J.K. 2018. Selective trade-offs maintain alleles underpinning
904 complex trait variation in plants. *Science*, 361(6401), pp.475-478.

905 Vandeleur, R.K. and Gill, G.S., 2004. The impact of plant breeding on the grain yield and competitive ability of
906 wheat in Australia. *Australian Journal of Agricultural Research*, 55(8), pp.855-861.

907 van de Wouw, M., van Hintum, T., Kik, C., van Treuren, R. and Visser, B., 2010. Genetic diversity trends in
908 twentieth century crop cultivars: a meta analysis. *Theoretical and Applied Genetics*, 120(6), pp.1241-1252.

909 Van der Laan, M.J., Polley, E.C. and Hubbard, A.E., 2007. Super learner. *Statistical Applications in Genetics and
910 Molecular Biology*, 6(1), 25.

911 Wang, J., van Ginkel, M., Trethowan, R., Ye, G., DeLacy, I., Podlich, D. and Cooper, M., 2004. Simulating the
912 effects of dominance and epistasis on selection response in the CIMMYT Wheat Breeding Program using
913 QuCim. *Crop Science*, 44(6), pp.2006-2018.

914 Ward, B.P., Brown-Guedira, G., Tyagi, P., Kolb, F.L., Van Sanford, D.A., Sneller, C.H. and Griffey, C.A., 2019.
915 Multienvironment and multitrait genomic selection models in unbalanced early-generation wheat yield
916 trials. *Crop Science*, 59(2), pp.491-507.

917 Watson, A., Ghosh, S., Williams, M.J., Cuddy, W.S., Simmonds, J., Rey, M.D., Hatta, M.A.M., Hinchliffe, A.,
918 Steed, A., Reynolds, D., Adamski, N.M., et al., 2018. Speed breeding is a powerful tool to accelerate crop
919 research and breeding. *Nature Plants*, 4(1), pp.23-29.

920 Wientjes, Y.C., Bijma, P., Calus, M.P., Zwaan, B.J., Vitezica, Z.G. and van den Heuvel, J., 2022. The long-term
921 effects of genomic selection: 1. Response to selection, additive genetic variance, and genetic architecture.
922 *Genetics Selection Evolution*, 54(1), pp.1-21.

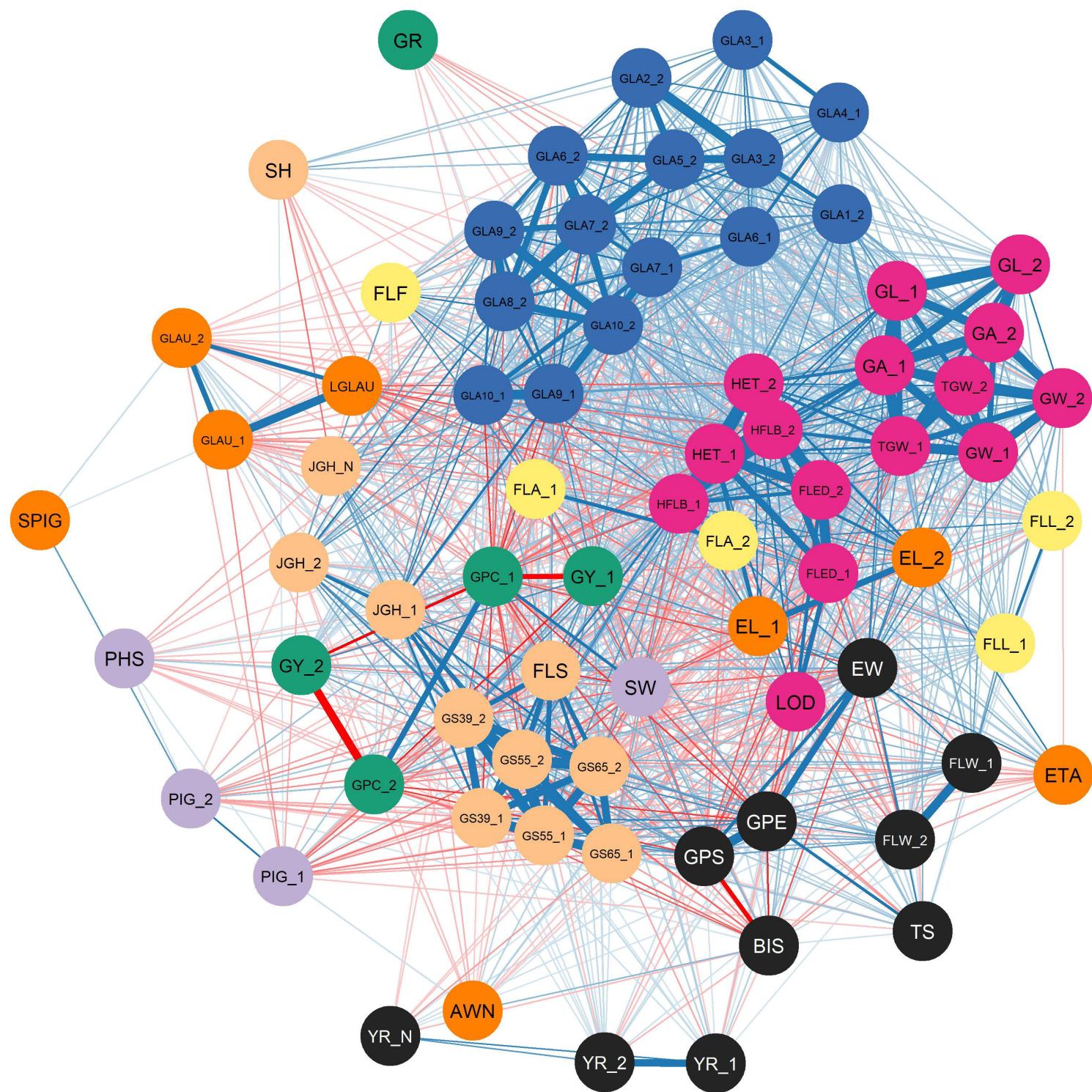
923 White, J., Law, J.R., MacKay, I., Chalmers, K.J., Smith, J.S.C., Kilian, A. and Powell, W., 2008. The genetic
924 diversity of UK, US and Australian cultivars of *Triticum aestivum* measured by DArT markers and
925 considered by genome. *Theoretical and Applied Genetics*, 116(3), pp.439-453.

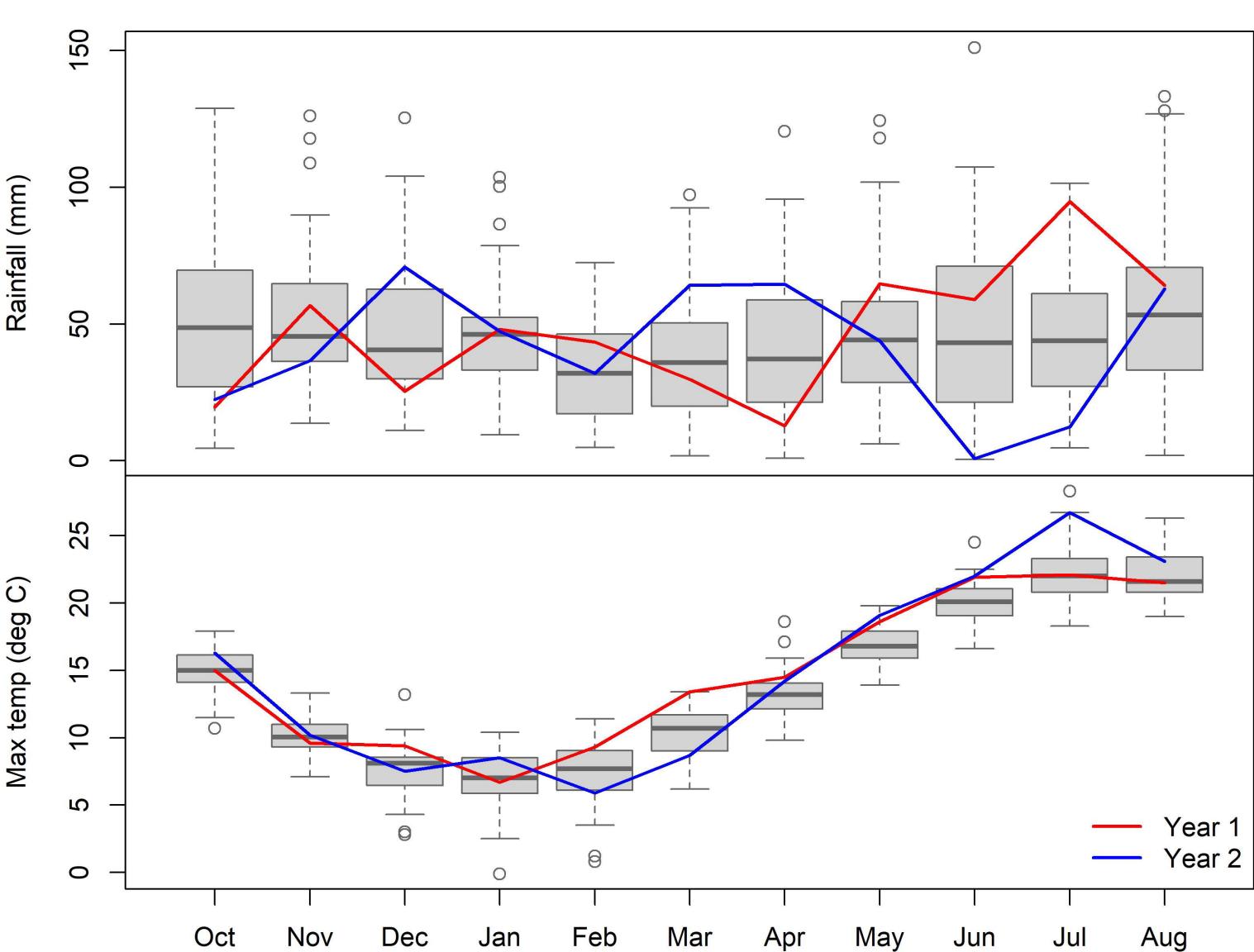
926 White, J., Sharma, R., Balding, D., Cockram, J. and Mackay, I.J., 2021. Genome-wide association mapping of
927 Hagberg falling number, protein content, test weight, and grain yield in U.K. wheat. *Crop Science*, 62,
928 pp.965-981,

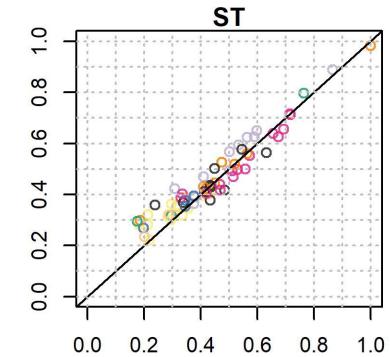
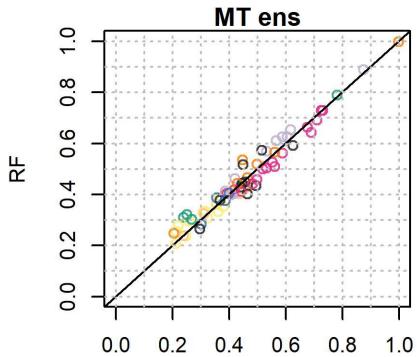
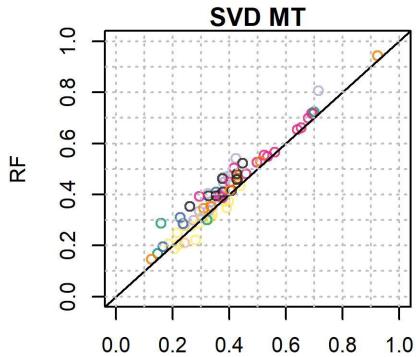
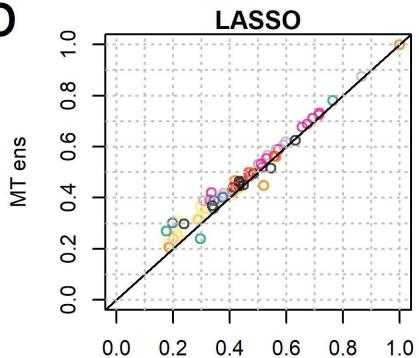
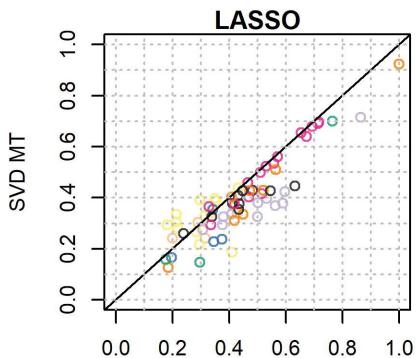
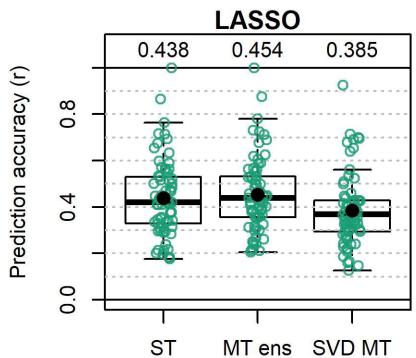
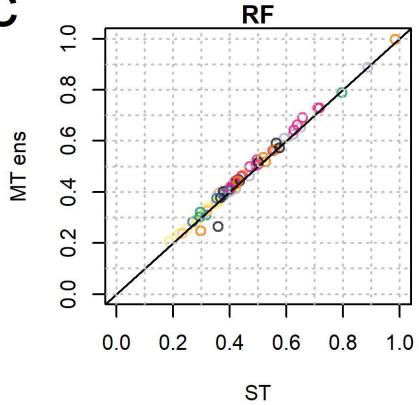
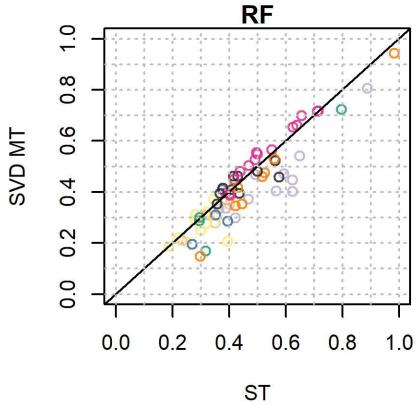
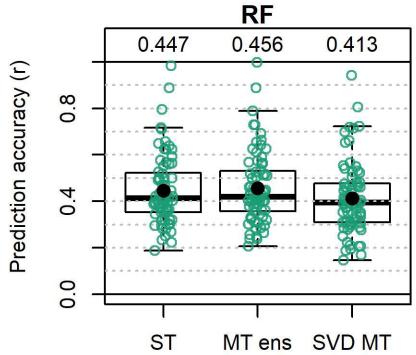
929 Wright, M.N., Ziegler, A. and König, I.R., 2016. Do little interactions get lost in dark random forests? *BMC*
930 *Bioinformatics*, 17(1), pp.1-10.

931 Xie, Q. and Sparkes, D.L., 2021. Dissecting the trade-off of grain number and size in wheat. *Planta*, 254(1), pp.1-
932 16.

933 Yang, C.J., Ladejobi, O., Mott, R., Powell, W. and Mackay, I., 2022. Analysis of historical selection in winter
934 wheat. *Theoretical and Applied Genetics*, 135, pp.3005-3023.



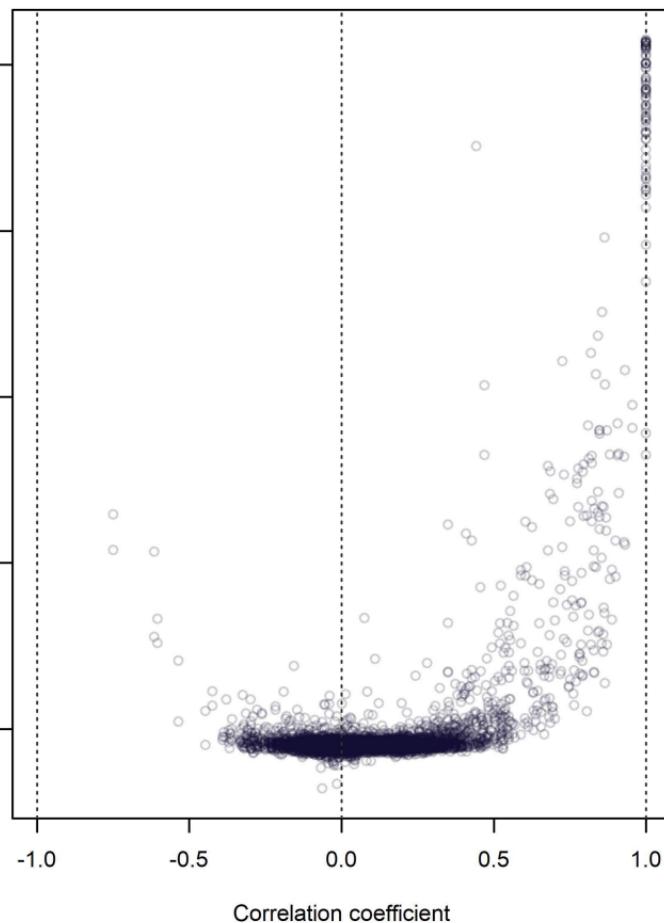


a**b****c**

a

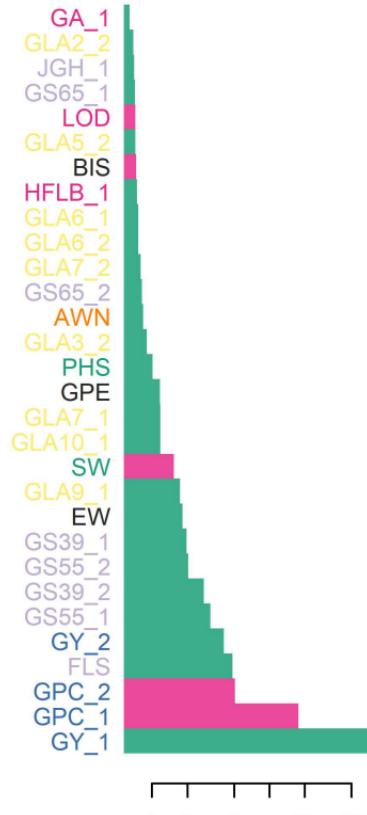
All traits

Scaled variable importance

**b**

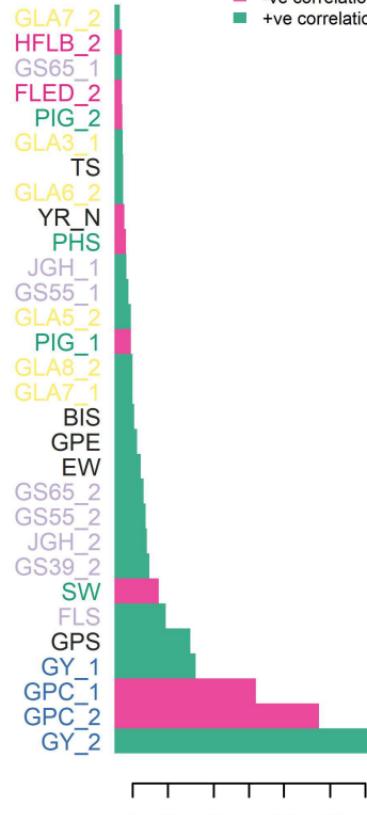
GY_1

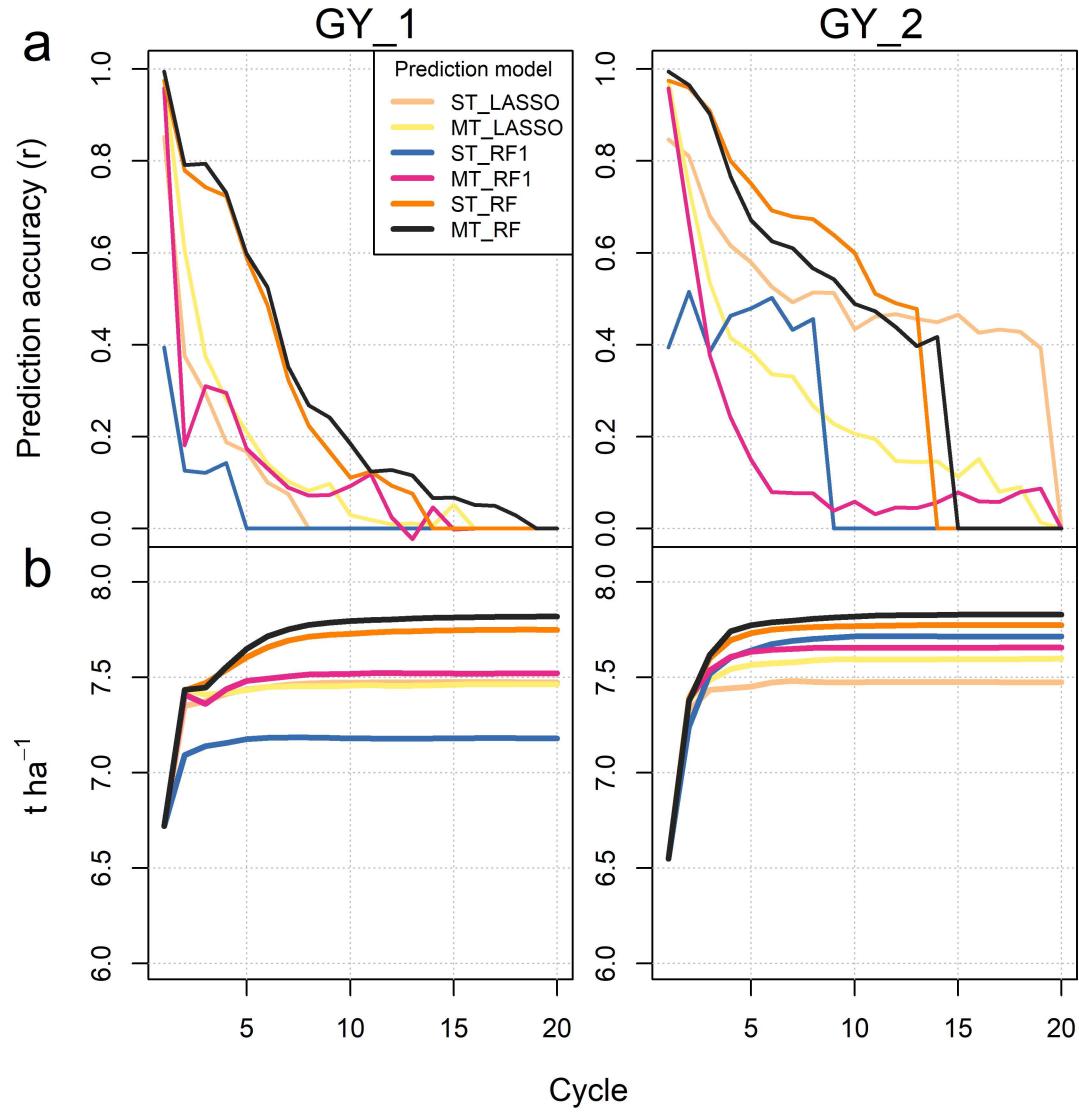
Variable importance

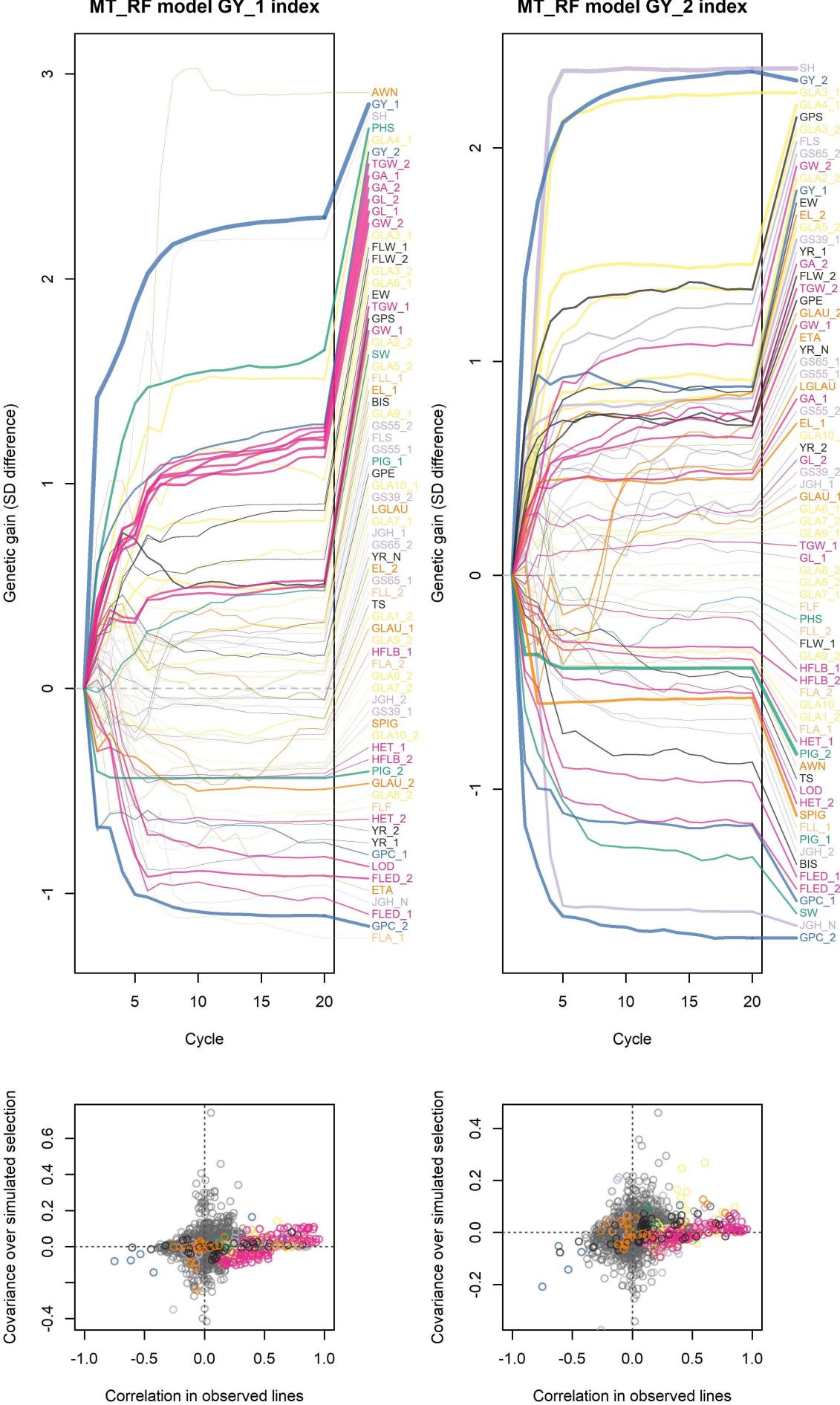


GY_2

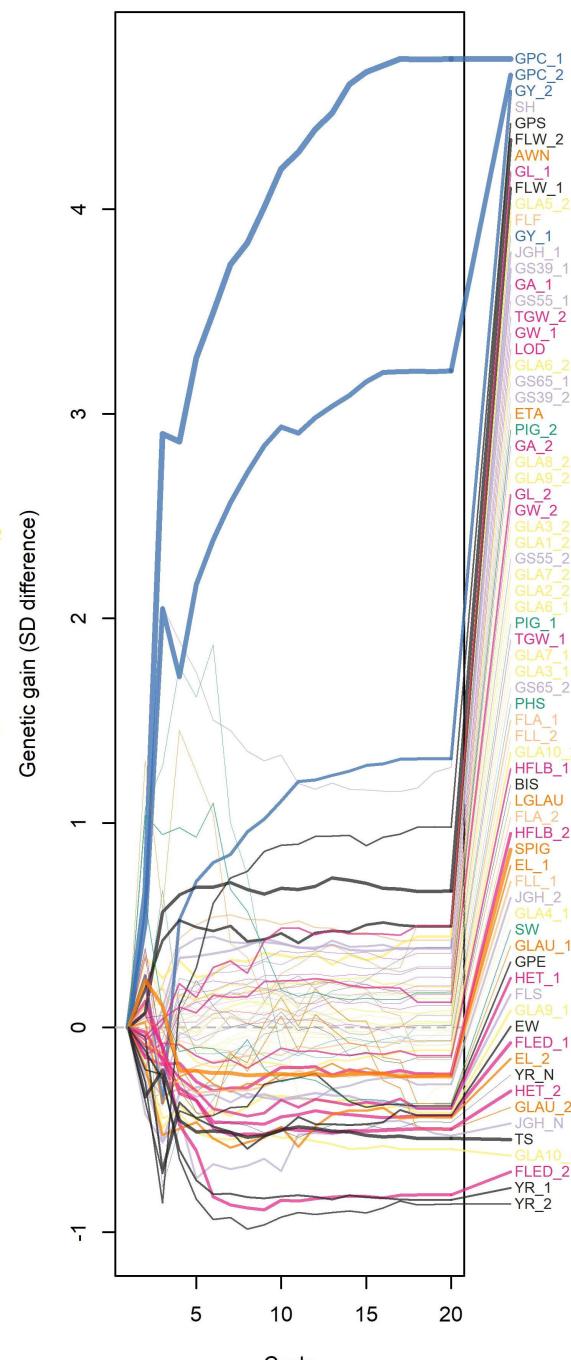
Variable importance







ST_RF model GYPD index



ST_RF model Weeds_ESIM index

