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Abstract 27 

Cereal crop breeders have achieved considerable genetic gain in genetically complex traits, such as grain yield, 28 

while maintaining genetic diversity. However, focus on selection for yield has negatively impacted other 29 

important traits. To better understand selection within a breeding context, and how it might be optimised, we 30 

analysed genotypic and phenotypic data from a diverse, 16-founder wheat multi-parent advanced generation inter-31 

cross (MAGIC) population. 32 

 Compared to single-trait models, multi-trait ensemble genomic prediction models increased prediction 33 

accuracy for almost 90% of traits, improving grain yield prediction accuracy by 3-52%. For complex traits, non-34 

parametric models (Random Forest) also outperformed simplified, additive models (LASSO), increasing grain 35 

yield prediction accuracy by 10-36%. Simulations of recurrent genomic selection then showed that sustained 36 

greater forward prediction accuracy optimised long-term genetic gains. 37 

Simulations of selection on grain yield found indirect responses in related traits, which involved 38 

optimisation of antagonistic trait relationships. We found multi-trait selection indices could be used to optimise 39 

undesirable relationships, such as the trade-off between grain yield and protein content, or combine traits of 40 

interest, such as yield and weed competitive ability. 41 

Simulations of phenotypic selection found that including Random Forest rather than LASSO genetic 42 

models, and multi-trait rather than single-trait models as the true genetic model, accelerated and extended long-43 

term genetic gain whilst maintaining genetic diversity. These results suggest important roles of pleiotropy and 44 

epistasis in the wider context of wheat breeding programmes and provide insights into mechanisms for continued 45 

genetic gain in a limited genepool and optimisation of multiple traits for crop improvement.  46 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 9, 2022. ; https://doi.org/10.1101/2022.11.08.515457doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.08.515457
http://creativecommons.org/licenses/by/4.0/


 

3 

 

1. Introduction 47 

Classical plant breeding aims to achieve continuous genetic gain by recurrent selection of important traits over 48 

many generations. However, the biological and genetic processes that allow continued genetic gain within a finite 49 

genepool are still unclear. For example, the Illinois maize long‐term selection experiment achieved continuous 50 

increases in seed oil and protein concentration in a closed population for more than 100 generations without 51 

apparent loss of genetic variation (Dudley, 2007). Long-term trends in wheat (Triticum aestivum L.) breeding also 52 

reflect this, where significant genetic gain in traits such as yield has been achieved in the last century (Mackay et 53 

al., 2011; McCraig et al., 1995; Tadesse et al., 2019), whilst molecular studies have not found the expected 54 

reductions in genetic diversity over the same period of modern plant breeding (Fu, 2015; van de Wouw et al., 55 

2010; White et al., 2008).  56 

Selection on one trait can have positive or negative pleiotropic effects on other traits. For example, the 57 

Illinois long‐term selection experiment found correlated responses to selection for oil and protein content and 58 

indirect effects on other traits, such as starch content. Wheat breeding requires selection for multiple traits of 59 

economic importance, including grain yield and quality traits, as well as other agronomically important or 60 

physiologically adaptive traits, such as developmental stage, plant architecture and disease resistance. In many 61 

cases, positive correlated responses in combinations of desirable traits can be achieved, but there are often 62 

complex trade-offs between antagonistically related traits. Considerable work has succeeded in identifying 63 

underlying quantitative trait loci (QTL) controlling individual yield components, such as grain size (e.g. Brinton 64 

et al., 2017) and spikelet number (e.g. Kuzay et al., 2019; Muqaddasi et al., 2019). However, the effects of such 65 

yield component loci rarely have consistent positive effects on yield in broader genetic backgrounds due to 66 

compensatory effects which trade-off against other yield components. For example, increased grain number per 67 

inflorescence in wheat is commonly associated with reductions in other yield components such as thousand grain 68 

weight, or tiller number (Corsi et al., 2021; Quintero et al., 2018; Xie and Sparkes, 2021). 69 

 In general, long-term increases in wheat yields have been achieved phenotypically by optimisation of 70 

harvest index (the ratio of grain to total shoot dry matter) to reduce intra-crop competition (Fischer and Kertesz, 71 

1976), as well as through increased grain filling with starch carbohydrates (Lovegrove et al., 2020; Shewry et al., 72 

2020). However, these have led to negative trade-offs in other valuable traits. Decreased competitive ability of 73 

modern wheat varieties with weeds (Murphy et al., 2008; Vandeleur and Gill, 2004) necessitates increased reliance 74 

on herbicides as well as potentially poorer uptake of soil nutrients (Ruisi et al., 2015). Yield loss from weed 75 

competition has become even more problematic in intensified cropping systems (Storkey et al., 2021). 76 

Additionally, increased yield and starch grain filling has been subject to the long-standing trade-off between yield 77 

and grain protein content (Simmonds, 1995; White et al., 2021), and has led to dilution of wheat grain protein 78 

content (Austin et al., 1980; Fufa et al., 2005) and mineral nutrient density (Davis, 2009; Shrewry et al., 2016). 79 

This has also led to higher optimum nitrogen fertiliser application rates to meet milling wheat grain protein 80 

requirements with diminishing increases in yield, and thus poorer nitrogen use efficiency (Hawkesford, 2014). 81 

Trade-offs between grain yield and both protein content and weed competitive ability seem not to have been 82 

generally addressed by commercial breeding due to yield being considered the highest economically important 83 

trait. Recent analysis by Raherison et al. (2020) suggested that negative pleiotropic genetic effects in wheat have 84 

rarely been compensated for and optimised by breeding, and Yang et al. (2022) showed that breeders’ selections 85 
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have almost always been in favour of yield at the expense of protein. Changing economic, legislational, 86 

environmental and societal factors mean that breeding focus will increasingly need to consider how to deliver 87 

sustainable intensification of food supply, ensuring yield stability of our future crops in the face of such pressures. 88 

Plant breeding will play a role in delivering these goals, and will likely require the application of new breeding 89 

approaches and methodologies.  90 

 Genomic selection models aim to predict as large a proportion of heritable phenotypic variation as 91 

possible using genome-wide marker data to allocate estimated breeding values to untested individuals (Jannink et 92 

al., 2010; Meuwissen et al., 2001), and are likely to be a major source of improvement in plant breeding in the 93 

coming decades (Mackay et al., 2021). Genomic prediction models include genetic effects that don’t necessarily 94 

reach genome-wide significance in QTL mapping, which only detects large additive genetic effects and often fails 95 

to account for a large proportion of heritable trait variation in traits with complex genetic architectures, despite 96 

extensive genomic and phenotypic characterisation (Goddard et al., 2016). However, the role of non-additive 97 

epistatic effects in complex trait genetic architectures (i.e the interactions between genes) remains understudied, 98 

and is often overlooked (Carlborg and Haley, 2004) – likely due to the high computational requirements to model 99 

high order interactions (Jiang and Reif, 2015). Genomic prediction models that take epistatic effects into account 100 

have recently been developed, including the extension of the genomic best linear unbiased prediction (GBLUP) 101 

(Jiang and Reif, 2015) and machine/ensemble learning methods such as Random Forest (Schmalohr et al., 2018; 102 

Wright et al., 2016), which are often able to improve prediction accuracies in real datasets (Charmet et al., 2020). 103 

The NIAB Diverse MAGIC (Multi-parent Advanced Generation Inter-Cross) wheat population (NDM) 104 

was recently developed to investigate the genetic architecture of a range of traits in wheat (Scott et al., 2021). It 105 

consists of 16 founders genotyped via exon and promotor capture sequencing and 504 recombinant inbred lines 106 

genotyped via whole-genome sequencing and imputation, resulting in ~1.1M single nucleotide polymorphisms 107 

(SNPs) between genotypes, or 55k SNPs after filtering for linkage disequilibrium (LD) (Scott et al., 2021). The 108 

16 founders are wheat varieties that span 70 years of breeding and capture a large proportion of the northwest 109 

European genetic diversity. The genetic diversity present in the NDM is efficiently recombined through multiple 110 

generations of inter-crossing, eroding LD accumulated in the founders over long-term selective breeding. For this 111 

reason, traditional genomic prediction models, such as GBLUP, that make use of kinship relationships (Clark et 112 

al., 2011) may perform poorly in MAGIC where causal variants can be considered more independently (Scott et 113 

al., 2021). The NDM is ideal for investigating trait relationships, due to intensive phenotyping and the lack of the 114 

confounding effects of age and origin that are present in panels of selectively bred varieties (Scott et al., 2020). 115 

Furthermore, this population provides a good test for multi-trait selection indices, such as grain yield protein 116 

deviation (GYPD; Michel et al., 2019), that have been proposed to help minimise trade-offs between traits.  117 

Here we use NDM resources as a microcosm of long-term selection in wider wheat breeding programmes 118 

to test differing approaches to selection and genetic models. Within the overall context of understanding the 119 

phenotypic and genetic mechanisms that may enable enhanced genetic gain in the future, we (i) investigate 120 

complex trait relationships relating to yield in the observed population of lines. We then (ii) develop multi-trait 121 

genomic prediction models that increase prediction accuracy by exploiting pleiotropic effects among traits, and 122 

(iii) investigate how increased prediction accuracy translates to greater genetic gain in simulation of long term-123 

recurrent genomic selection within the NDM. We also (iv) simulated both phenotypic and genotypic effects of 124 

recurrent phenotypic selection within the population comparing different true genetic models based on genomic 125 
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prediction models trained on the observed population. Our results reveal correlated responses in a wide range of 126 

traits when selection is purely on yield, as well as the potential to achieve genetic gain in several traits of interest 127 

that trade-off by using use multi-trait selection indices. Comparison of response to selection under differing 128 

genomic prediction models (simplified models with a minimal number of additive effects versus more complex 129 

polygenic models that take higher order epistatic interaction effects into account) also highlights the important 130 

role of both pleiotropy and epistasis as potential mechanisms for continued genetic gain in crop breeding. 131 

  132 
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2. Methods 133 

2.1 Germplasm, phenotypic and genotypic datasets 134 

Genotypic and phenotypic data for the NDM wheat population was sourced from Scott et al. (2021). Briefly, the 135 

population of 504 NDM recombinant inbred lines derived from the 16 founders was phenotyped for a wide range 136 

of traits over two successive seasons (2016-2017 and 2017-2018) in the United Kingdom (UK). All but one of the 137 

73 traits described by Scott et al. (2021) (Table 1) were used, the exception being seed germination rate (GR) due 138 

to a large proportion of missing data. Traits measured in each year were considered separately. Missing data for 139 

all remaining traits (at <1.2%) were imputed with the median trait value. Line genotypes were previously 140 

characterised by skim sequencing and imputed using the founder haplotypes (Scott et al., 2021). Of 1.1M SNPs 141 

identified from founder exome and promoter sequencing, we use the subset of ~55k SNPs after pruning for LD 142 

for our analyses. Missing marker data (~1%) were imputed using the ‘missForest’ package (Buhlman, 2011) in R 143 

(R Core Team, 2020), which uses non-parametric Random Forest prediction models to iteratively predict and 144 

impute missing data on a marker-by-marker basis. 145 

 146 

Table 1. Abbreviations of traits phenotyped in the NDM, as described by Scott et al. (2021). All data are from 147 

field trials, except where noted. Nursery = data collected from 1×1m unreplicated plots. Field = data collected 148 

from 2×6m replicated plots. Trait groups indicate groups of strongly positively or negatively correlated traits that 149 

grouped together through hierarchical clustering as shown in Figure 1. Some traits were phenotyped at multiple 150 

time points (GLA) and in both trail years so that a total of 72 traits were included. 151 

Abbreviation Trait 
Trait 

group 
Abbreviation Trait 

Trait 

group 

PHS Pre-harvest sprouting 1 GW Grain width 6 

PIG General pigmentation 1 HET Height to ear tip 6 

SW Specific weight 1 HFLB Height to flag leaf base 6 

FLS Flag leaf senescence 2 LOD Lodging 6 

GS39 Flag leaf emergence date 2 TGW Thousand grain weight 6 

GS55 Ear emergence date 2 TIS Tip infertile spikelets 6 

GS65 Anthesis date 2 AWN Presence of awns 7 

JGH 
Juvenile growth habit 

(Nursery) 
2 EL Ear length 7 

SH Spring habit 2 ETA Ear taper 7 

FLA Flag leaf angle 3 GLAU Glaucosity 7 

FLF Flag leaf floppiness 3 SPIG Stem pigmentation 7 

FLL Flag leaf length 3 BIS Basal infertile spikelets 8 

GLA# 
Green leaf area (10 time 

points) 
4 EW Ear weight 8 

GPC Grain protein content 5 FLW Flag leaf width 8 

GY Yield 5 GPE Grains per ear 8 

FLED Flag leaf to ear distance 6 GPS Grains per spikelet 8 

GA Grain area 6 TS Total spikelets 8 

GL Grain length 6 YR 
Yellow rust infection (Field 

and Nursery) 
8 

 152 
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2.2 Statistical analysis 153 

All analyses were conducted using R statistical analysis software. Pearson’s correlation coefficients among all 154 

investigated traits were calculated. Hierarchical clustering of traits was performed using the ‘hclust’ R function 155 

and ‘complete’ method, where the distance matrix (𝑑) was derived from the equation: 156 

𝑑 = 2(1 − √𝑐2) 157 

where c represents the trait correlation matrix. Traits were then assigned to eight groups using the ‘cutree’ R 158 

function. 159 

2.2.1 Genomic prediction models 160 

Two contrasting genomic prediction models were compared for both single-trait (ST) and multi-trait (MT) models. 161 

These included generalised linear models including the Lasso penalty (LASSO) implemented in the ‘glmnet’ R 162 

package (Friedman et al., 2010) where the majority of SNP effects are shrunk to zero. For comparison, a non-163 

linear, statistical learning approach was also used which generally included much larger numbers of SNPs with 164 

non-additive effects in each model: Random Forest (RF), implemented in the ‘randomForest’ R package 165 

(Breiman, 2001). For LASSO models, the value of lambda (a shrinkage penalty) used for each prediction was 166 

optimised using 8-fold cross validation. For RF models, 300 trees were run per model and default parameters of 167 

one third of variables randomly sampled at each split, and a minimum of five observations in terminal leaf nodes 168 

were used. Previous work by Scott et al. (2021) found that ridge regression models that include all marker effects 169 

with a small, but non-zero effect, did not have as high prediction accuracy as LASSO in the MAGIC population, 170 

and so were not further tested here. 171 

 Two types of MT models were implemented. Firstly, by performing single value decomposition (SVD) 172 

of the matrix of all phenotypes, as proposed by Montesinos-López et al. (2019a), whereby each of the decomposed 173 

and uncorrelated vectors from all the traits were predicted as traits themselves using the same genomic models as 174 

for ST predictions. The predictions of vectors were then back-transformed to the original trait scales to derive the 175 

MT predictions per-trait. Secondly, a multi-trait stacked ensemble method was also used which employs an 176 

approach often used in machine learning (Spyromitros-Xioufis et al., 2016) and has previously been applied for 177 

Bayesian multi-output regression of multi-trait predictions (Montesinos-López et al., 2019b; Sapkota et al., 2020). 178 

For this, a two-step model was used where each trait was first predicted from genomic data with the same genomic 179 

models as for ST predictions, and then all trait predictions were used as explanatory variables (features) in a 180 

second multi-trait ensemble model to again predict each response trait. Both first and second stage predictions 181 

were fitted only on data from the training fraction and predictions were independently made for test lines with 182 

only genetic marker data. Either LASSO or RF models were used to fit first stage ST models, but only RF models 183 

were used to flexibly include non-linear multi-trait relationships for the second stage ensemble models. 184 

Information from related traits is therefore used in a model, trained only on the training fraction to adjust single-185 

trait predictions made directly from genomic data. Unlike trait-assisted genomic prediction, such as used by 186 

Fernandes et al. (2018), no observed trait data are used in the tested cross-validation fraction. As both MT 187 

prediction approaches can be applied with any genomic prediction model for each ST prediction or for SVD 188 

vectors, we were able to compare LASSO and RF genomic models for both ST and MT approaches. 189 
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Prediction accuracies were determined by performing three rounds of 10-fold random cross-validation 190 

among all lines in the dataset and averaging the three Pearson’s correlation coefficients between observed and 191 

predicted trait values across all cross-validation folds. Valid comparisons of prediction accuracy were ensured by 192 

testing all prediction models using the same cross-validation fold assignments. After model cross-validation, full 193 

prediction models were fitted using the entire dataset for combinations of both ST and MT models with both 194 

LASSO and RF genomic models. Variable importance scores for each SNP marker in RF genomic prediction 195 

models and for each trait covariate in MT ensemble models were derived from the full models as the mean 196 

decrease in mean square error using the ‘importance’ function in the ‘randomForest’ R package. Effect sizes for 197 

each SNP marker were also derived from full LASSO models where the majority of SNP effects were shrunk to 198 

zero.  199 

2.2.2 Simulations of recurrent genomic selection 200 

We first simulated a recurrent genomic selection programme within the NDM to assess the performance of 201 

different prediction models to achieve long-term genetic gain in grain yield. This was done within a framework 202 

of assuming a true inherited genetic model based on the MT ensemble RF genetic model as outlined above and 203 

trained on the observed genetic and phenotype data. True phenotypes were derived from predictions from this 204 

model for genotypes at each cycle of simulations and the different genomic prediction models outlined above 205 

were trained on the individuals in the first cycle. New cycles of genotypes derived from crossing selected fractions 206 

of lines were simulated using a genetic map of ~55,000 SNPs.  207 

The genetic map (Supplementary Table S1 and Supplementary Figure S1) was constructed using the 208 

‘qtl2’ R package (Broman et al., 2019) with the marker data ordered by physical map position (RefSeq v1,0, 209 

IWGSC, 2018). The genetic map distance was then re-estimated using the ‘est_map’ function with 1,000 210 

maximum iterations and an assumed genotyping error probability of 0.001. The cross object was considered as a 211 

16-way multi-parent recombinant inbred line population, so the differing local recombination effects for each 212 

founder haplotypes were preserved for subsequent simulations. 23 markers were removed from the full set which 213 

caused genetic map distortion.  214 

Selection of lines at each generation were made based on predicted phenotypes from the genomic 215 

prediction model. To reduce excessive inbreeding and loss of genetic variance, 15 lines from different 16-way or 216 

bi-parental families with the highest selection index values were selected. 30 offspring inbred line genotypes were 217 

then simulated for each of 105 possible pairwise cross combinations among the selected lines so that the following 218 

generation comprised of 3,150 lines from 105 biparental families. The phenotypes of these were again predicted 219 

from the genomic prediction models trained on the true phenotypes of the first generation and the process repeated 220 

for 20 cycles of recurrent selection. 20 iteration repeats of the simulations were run for each genomic prediction 221 

model. Genomic prediction models were fitted as detailed above for ST and MT, LASSO and RF models, but 222 

additionally RF models were run that were restricted to a tree depth of one (RF1) to completely limit the degree 223 

of marker interaction effects. 2,000 trees were used for RF1 models. 224 

Genetic gain for each trait over the selection simulations were determined by comparing the mean true 225 

trait value of all lines at each generation to the mean true trait value in the first generation. The divergence from 226 

this mean among different traits was standardised to the standard deviation of trait values in the first generation. 227 
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The accuracy of genomic prediction models was also determined as the Pearson’s correlation coefficient between 228 

the true and predicted trait values among genotypes at each simulation cycle.  229 

2.2.3 Simulations of recurrent phenotypic selection 230 

In addition to simulations of different genomic selection procedures within a simulated true genetic model, we 231 

also compared simulations with different true genetic models to assess both phenotypic and genomic response to 232 

selection with different genetic model assumptions of trait genetic architecture. Simulations were run as above 233 

but selections of individuals were based on the true phenotypes derived from different genetic models so that it 234 

was assumed that the simulated breeder could make perfect estimates of trait values from phenotypic selection. 235 

Different simulations were run for ST and MT as well as RF and LASSO models as outlined above and for 236 

different selection indices as outlined below. Genetic response to selection was also characterised as the change 237 

in allele frequency for all ~55,000 SNPs at each generation, and the genetic diversity was calculated as the number 238 

of polymorphic SNPs at each generation. For each set of simulations, traits or SNP markers were considered under 239 

selection rather than drift if their response to selection was significantly different to 0 considering all 20 simulation 240 

repeats using a t-test. 241 

2.2.4 Selection indices  242 

Indices for simulated selection were defined as follows: 243 

1. Grain yield measured in each trial year. 244 

2. Multi-trait index including grain yield and traits known to be associated with weed competitiveness. The weed 245 

competitive ability selection index (Weeds_ESIM) was based on the restricted eigenvector selection index method 246 

(RESIM) (Cerón‐Rojas et al., 2008). For this, principal component analysis was performed on a selection of 247 

desirable traits based on the literature, which included yield measured in both years as well as traits previously 248 

identified as valuable for weed competitive ability. These included high early vigour, measured as green leaf area 249 

(GLA) over the development phase before flowering time, and planophile (horizontal) flag leaf angle (FLA) 250 

(Andrew et al., 2015; Kissing Kucek et al., 2021; Korres and Froud-Williams, 2002; Mwendwa et al., 2020). To 251 

mitigate risk of lodging (i.e. the permanent displacement of a stem from vertical), mean crop height (HET) 252 

between both years was also then restricted to values between 60-65 cm. The vector weightings on the first 253 

principal component with mean HET values between this range therefore represented the Weeds_ESIM. Most 254 

traits involved in this selection index were positively correlated so the first principal component could be assumed 255 

to provide a desirable combined index for selection.  256 

 257 

3.  Grain yield protein deviation (GYPD). The GYPD selection index was calculated as the sum of the scaled and 258 

centred mean yield and protein across both years using the equation: 259 

𝐺𝑌𝑃𝐷 =
𝑌 − 𝑌̅

√∑(𝑌 − 𝑌̅)2

𝑛 − 1

+
𝑃 − 𝑃̅

√∑(𝑃 − 𝑃̅)2

𝑛 − 1

 260 

where 𝑌 and 𝑃 is the mean line yield and protein across years, respectively.  261 

  262 
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3. Results 263 

3.1 Grain yield is correlated with multiple traits in the observed population 264 

We analysed data from a genetically diverse and highly recombined 16-founder wheat MAGIC population for a 265 

wide range of agronomically important traits over multiple trial years (72 trait – year combinations) to investigate 266 

complex trait-trait relationships and their implications for breeding. Correlation analysis across all traits and years 267 

revealed complex trait relationships and substantial differences in patterns between the two trial years (Figure 1 268 

and Supplementary Table S2). Considering grain yield (GY) as the primary trait of interest, many other secondary 269 

traits were found to be correlated (Figure 1). The strong negative trade-off between yield and grain protein content 270 

(GPC) was mediated by yield component traits. For example, grain size traits (such as thousand grain weight; 271 

TGW), grains per spikelet (GPS) and total spikelets per ear (TS), were all positively correlated with GY, but 272 

negatively correlated with protein content and with each other. Therefore, potential benefits of selecting for any 273 

one of the yield component traits in isolation are buffered by problematic trade-offs with other yield component 274 

traits and likely have negative effects on protein content.  275 

 Differential relationships between yield and other developmental stage and plant architecture traits 276 

between the two trial years were also found. In year 1, taller and later flowering genotypes were generally higher 277 

yielding (yield – height to ear tip correlation = 0.20; yield – heading date correlation = 0.32), whereas in year 2, 278 

the correlation between height and yield was negative (correlation = -0.11) and between yield and heading date 279 

was non-significant. Therefore, strong genotype-by-environment interaction (G×E) effects on yield means that 280 

selection for yield, or related adaptive traits, in any single environment may have limited potential to increase 281 

yield in another environment. However, contrasting patterns of rainfall and temperature between the two yield 282 

trial years (Figure 2Figure 5), in which year 1 was characterised by high temperatures and drought before anthesis 283 

(March and April) whilst year 2 was characterised by extreme terminal heat and drought after anthesis (June and 284 

July), may explain the differences in relationships between adaptive traits and yield in this study. Both of the two 285 

trial years experienced different extremes of monthly climate variables compared to the distributions of the last 286 

56 years, so were considered separately in these analyses. 287 
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 288 

 289 

Figure 1. Correlation network for 72 traits measured in two trial years among 504 NIAB Diverse MAGIC 290 

lines. Grain yield = GY. Abbreviations for all additional trait names are given in Table 1. Trait node colours 291 

indicate the eight groups of related traits as identified using hierarchical clustering. The _1 and _2 designations 292 

used after trait abbreviations refer to trial year 1 and trial year 2, respectively.  Blue and red connecting lines 293 

indicate positive and negative correlations, respectively, while line thickness is relative to correlation p-value 294 

significance.  295 
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 296 

Figure 2. Contrasting patterns of monthly rainfall and maximum temperature over the growing season for 297 

the two trial years. Boxplots indicate historic variation in data for each month from 1960 to 2016 (horizontal line 298 

= median, boxes = interquartile range, whiskers = 1.5 times the interquartile range and points = values outside 1.5 299 

times the interquartile range). 300 

 301 

Other plant architecture traits, such as green leaf area (GLA) in the development phase, juvenile growth 302 

habit and flag leaf morphology had weak but positive correlations with yield, suggesting potential relevance of 303 

these traits as mechanisms to increase yield, or as valuable traits themselves to select for in combination with yield 304 

to increase crop competitive ability with weeds. However, the strong positive correlations between GLA traits 305 

and plant height traits mean that increasing these traits without increasing lodging risk may be problematic. 306 

Optimising combinations of important traits therefore requires consideration of correlated responses due to 307 

pleiotropy and linkage.  308 

3.2 Genomic prediction of complex traits 309 

We tested the accuracy of several genomic prediction approaches to determine the genetic architecture of the 310 

multiple related traits, using both single-trait (ST) and multi-trait (MT) models that take into account relationships 311 

among correlated traits. LASSO represents models including trait genetic architecture controlled by a minimal 312 

number of additive genetic effects across the genome, while Random Forest (RF) represents models including a 313 

much greater number of interacting genetic effects. RF outperformed LASSO for most traits in ST models and 314 

was particularly advantageous for traits with generally low genomic prediction accuracy, such as GLA and grain 315 

yield in both years (Figure 3a). Prediction accuracy was increased from 0.34 and 0.20 in ST LASSO models to 316 
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0.38 and 0.27 in ST RF models for grain yield measured in each year respectively. In contrast, traits with greater 317 

prediction accuracy, such as plant height or grain dimension traits, were better predicted by LASSO. This suggests 318 

that RF can successfully predict genetic effects in traits with more complex genetic architecture, potentially using 319 

non-additive and epistatic effects. 320 

Multi-trait ensemble (MT ens) models consistently produced more accurate predictions for almost all 321 

traits for both RF (86% of traits) and particularly for LASSO (90% of traits) models (Figure 3b-c). On the other 322 

hand, single vector decomposition (SVD) MT models were less reliable and generally resulted in lower prediction 323 

accuracies (Figure 3b-c), although RF notably outperformed LASSO in SVD MT models. Therefore, including 324 

information from predictions of other related traits in a multi-trait ensemble model was advantageous over 325 

attempting to predict pleiotropic effects directly in a decomposed trait matrix. Traits that were poorly predicted 326 

by LASSO compared to RF for ST models (Figure 3a, left panel) had particularly increased prediction accuracies 327 

via the MT ensemble predictions for LASSO (Figure 3b, left panel). This suggests traits that were predicted better 328 

by either of the multi-trait models have few direct or large genetic effects and are rather the culmination of many 329 

other component traits. These indirect genetic effects may be picked up in complex RF prediction models, but are 330 

best captured by the use of MT models that can directly model pleiotropic trait trade-offs 331 
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 332 

Figure 3. Comparison of genomic prediction accuracies for all traits. Each circle represents a trait-year 333 

combination, with circles colour coded according to trait group, as in Figure 1) between LASSO and Random 334 

Forest (RF) models using single-trait (ST), multi-trait ensemble (MT ens) and Single Vector Decomposition 335 

(SVD) approaches. Row (a) compares LASSO and RF prediction models, row (b) compares ST with both MT 336 

approaches for LASSO prediction models, and row (c) compares ST with both MT approaches for RF prediction 337 

models. Horizontal lines in boxplots represent the median and black dots represent the mean prediction accuracy 338 

across all traits, which is also shown above each boxplot.  339 

 340 

MT ensemble models increased genomic prediction accuracy of grain yield from an average of 0.27 to 341 

0.33 for LASSO models and from 0.32 to 0.34 for RF models on average across both years and cross-validations. 342 

Variable importance of trait covariates in the Random Forests used in the MT ensemble models indicates the 343 

influence of these traits in the model. Across all traits, most highly influential traits had strong positive or negative 344 

correlations in each year among the observed lines (Figure 4a). Considering grain yield in each year as the primary 345 

trait of interest, highly correlated traits such as GPC and grain yield measured in the other year, were highly 346 

important in MT ensemble models for grain yield, suggesting that pleiotropic effects mediating the grain yield 347 
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and protein content trade-off are useful for predicting grain yield itself (Figure 4b). Base model predictions of 348 

yield in the other year as the focal yield trait were also included in models with high importance suggesting that 349 

the ensemble model effectively takes yield G×E effects into account. Developmental stage traits including dates 350 

of growth stages GS39 (flag leaf blade all visible), GS55 (ear half emerged) and GS65 (flowering half-way 351 

complete) and flag leaf senescence (FLS) were particularly important covariate traits and were positively 352 

correlated with yield in year 1 to a greater extent than in year 2 (Figure 1). These traits also featured with greater 353 

importance in MT ensemble models when grain yield in year 1, compared to year 2, was predicted (Figure 4b). 354 

This indicates that later-developing lines were predicted to be higher yielding in the year without terminal drought 355 

stress. Other yield component traits including grains per spikelet (GPS) and grains per ear (GPE), but not grain 356 

size traits, were found to be of high importance (Figure 4b). Many GLA traits, particularly when measured in the 357 

spring, were also included with fairly high importance in MT ensemble models (Figure 4b), suggesting a role of 358 

the crop development phase in resource acquisition for final grain yield. These results not only identify important 359 

traits for inclusion in multi-trait prediction models, but also physiological mechanisms for grain yield 360 

improvement.  361 

 362 

 363 

Figure 4. The Influence of related traits in multi-trait ensemble prediction models. (a) The relationship 364 

between pairwise correlation coefficients among all traits and years and the variable importance score in Random 365 

Forest multi-trait ensemble models for all target traits. (b) The 30 most important trait variables used in Random 366 

Forest multi-trait ensemble models for prediction of grain yield in each year (GY_1 and GY_2). All trait 367 

abbreviations are as listed in Table 1 and colour coded according to trait group, as in Figure 1. The _1 and _2 368 

designations used after trait abbreviations refer to trial year 1 and trial year 2, respectively. 369 

 370 
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3.3 Accurate genomic prediction models increase long-term genetic gain in 371 

simulation of recurrent genomic selection 372 

We then investigated the potential for different genomic prediction models to achieve genetic gain in yield through 373 

simulation of a recurrent genomic selection programme within the NDM. MT ensemble RF models were found 374 

to be the most accurate model from cross validation within the observed population (Figure 3) and so were used 375 

as the true genetic model to define the true phenotypes of simulated lines. The genomic prediction models were 376 

then trained on the simulated true phenotype data of lines in the first generation and genomic predictions of 377 

phenotypes were used to make selections for subsequent cycles of lines. 378 

The accuracy of genomic prediction models over the course of the selection simulations generally 379 

reflected those in cross validated of the observed data. Prediction accuracy of all models decreased in later cycles 380 

of the simulations, but models that were more accurate in the observed data and maintained accuracy for longer, 381 

such as MT RF and ST RF (Figure 5a), achieved greater long-term genetic gain in yield (Figure 5b). RF models 382 

that included restricted trees with an interaction depth of one so that genetic marker interaction effects could not 383 

be included were much less accurate and led to less genetic gain, particularly for grain yield in year 1 (Figure 5). 384 

This suggests an important role for prediction of non-additive genetic effects in RF models for continued accuracy 385 

of genomic prediction models, particularly as breeding cycles become more distantly related to the training set. 386 

 387 

 388 

Figure 5. Trends in accuracy of (a) genomic prediction models and (b) resulting genetic gain over a 389 

simulated recurrent genomic selection programme for grain yield (GY) measured in two years trial years. 390 

Genomic prediction models include single- (ST) and multi-trait (MT) ensembles models for LASSO and Random 391 

Forest (RF). RF1 indicates Random Forest models with a restricted interaction depth of one. Lines represent the 392 

averages across 20 simulation repeats. 393 
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3.4 Simulation of recurrent phenotypic selection for grain yield reveals 394 

indirect effects on multiple traits  395 

Phenotypic correlations identified traits that may be under similar genetic control through either pleiotropy or 396 

linkage, so we investigated the potential for recurrent selection to achieve genetic gains in traits directly under 397 

selection as well as indirect effects on other traits. Simulations of a phenotypic recurrent selection programme 398 

were run that compared different selection indices and true genetic models. For these, selections were made based 399 

on the true phenotypic values rather than the predicted phenotypes as for simulation of recurrent genomic 400 

selection. 401 

Firstly, we simulated selection based purely on grain yield measured in each trial year. Considering the 402 

MT ensemble RF as the true genetic model, which achieved the greatest prediction accuracy across traits (Figure 403 

3), selection on grain yield per se resulted in rapid genetic gain in the yield trait under direct selection as well as 404 

indirect effects on other related traits (Figure 6). These included selection for combinations of related traits that 405 

were complementary to, as well as those that were antagonistic to, their correlation in the unselected population. 406 

As an example of complementary trait selection, grain protein content (GPC) was shown to be strongly negatively 407 

correlated with grain yield in the original population (Figure 1) and therefore rapidly decreased as grain yield was 408 

selected for. Although both grain yield and GPC are both positively valued traits, here we define these as under 409 

complementary selection were their trait correlations and selection covariance are in the same direction. In 410 

contrast, antagonistic trait selection could be demonstrated by plant height traits and grain dimension traits that 411 

were all positively correlated with each other in the original population (Figure 1), but covaried negatively over 412 

time in the simulated population under selection for yield measured in each trial year; large grain size traits 413 

increased over time (GA, GL, GW, TGW), whereas plant height traits (HET, HFLB) decreased (Figure 6). 414 

Similarly, green leaf area (GLA) traits over the foundation development stage were generally positively correlated 415 

with plant height traits but increased over time as grain yield was selected for, while plant height traits decreased 416 

(Figure 6). Although the majority of trait relationships had complementary rather than antagonistic trait 417 

correlations in the original population and covariances in the simulated population (55.4 and 57.8% of pairwise 418 

relationship when grain yield selected in each year respectively had both positive or both negative correlations 419 

and covariances under selection; Figure 6), the significant remaining proportion did not. This indicates that 420 

antagonistic trait trade-offs were required to be optimised to achieve the genetic gains in yield simulated in the 421 

population and highlights the benefit of the multi-trait prediction approach. 422 

As suggested by the low correlation between yields in each year, selection for yield in either year had 423 

only limited effects on yield in the other year where approximately half the genetic gain in yield in the alternate 424 

year was achieved in simulated selection for yield in either year. This G×E effect for yield was reflected by how 425 

the yield component traits were co-selected with yield between the two years. Grains per ear (GPE) and grains 426 

per spikelet (GPS) were increased when selection was for grain yield in year 2 but remained mostly neutral for 427 

grain yield in year 1 (Figure 6). Further to the differential importance of traits in the multi-trait ensemble models 428 

outlined above, differential selection responses of yield component traits according to yield in differing 429 

environments highlights the capacity for G×E interactions to buffer response to selection for grain yield. However, 430 

when G×E is predictable, in certain target environments, contrasting yield component strategies could be used to 431 

adapt the crop to the environment. For example, it may be supposed that a genotype that can be high yielding by 432 
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producing many grain sites per ear throughout an extended development phase due to being later flowering would 433 

be better adapted to environments without terminal drought stress. 434 

 435 

 436 

Figure 6. Simulated phenotypic response to selection on grain yield measured in two years. Upper plots 437 

indicate response of all 72 traits under simulated recurrent selection for grain yield in each of the two trial years 438 

based on multi-trait Random Forest (MT RF) genomic prediction models. Genetic gain was calculated as 439 

difference in population mean trait values to generation one and scaled to the standard deviation of the trait values 440 

in generation one. Line colours relate to trait groups identified by hierarchical clustering shown in Figure 1. The 441 

_1 and _2 designations used after trait abbreviations refer to trial year 1 and trial year 2, respectively. Line widths 442 

are relative to the t-test significance of each trait genetic gain from cycle 0 to 20 across all 20 simulation repeats. 443 

Lower plots compare the correlations between all pairs of traits in the original population and the covariance 444 

between trait pairs over time in the simulated population under selection. Points in upper right or lower left 445 

quadrants indicate both positive or negative correlation and covariance which demonstrates complementary trait 446 

selection. Points in the lower right or upper left quadrants represent differing positive or negative correlation and 447 

covariance, suggesting antagonistic trait selection. Point colours indicate pairs of traits that are both in the same 448 

trait group following the colour scheme in Figure 1, while grey points indicate trait pairs from different groups.     449 
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3.5 Selection indices enable optimisation of trait trade-offs 450 

We next tested whether multi-trait selection indices could be employed to simultaneously optimise selection for 451 

yield and other traits of interest, such as grain protein content (GPC) or crop architecture traits that aid competition 452 

with weeds. As outlined by the observed trait correlations, early season green leaf area (GLA) traits and grain 453 

yield were found to be slightly positively correlated, so could be co-selected, but the additional association 454 

between GLA and plant height would need to be restricted to limit risk of lodging. We therefore simulated effects 455 

of a phenotypic selection strategy based on selection index to increase important traits for crop competitive ability 456 

with weeds in combination with grain yield, whilst restricting changes in plant height as well as an index for high 457 

grain yield protein deviation to combine both negatively correlated traits.  458 

Considering the ST RF as the true genetic model, the combined grain yield + weed competition selection 459 

index succeeded in increasing desirable competitive traits including GLA, flag leaf area (FLA) as well as grain 460 

yield in both years, whilst maintaining plant height at an acceptable level (Figure 7). Indirect effects on other 461 

traits included rapid early selection for spring-type growth habit (SH) up to the fifth breeding cycle, but which 462 

then remained at around 90% frequency in the population without fixation in any of the of the simulation 463 

repetitions. The GYPD selection index also achieved genetic gain in desirable traits (grain yield and protein 464 

content in both years) and had some indirect effects on related traits (Figure 7). As an example of one trait that 465 

was co-selected with GYPD, flag leaf width (FLW) increased in all simulation repeats, increasing by 3% and 466 

4.2% for the trait when measured in year 1 and year 2, respectively. Whilst most of the trait relationships selected 467 

for in the weed competition index were positively correlated and complementary traits, such as all of the GLA 468 

traits and grain yield, the GYPD selection index included more antagonistic trait relationships (positive correlation 469 

and negative covariance or negative correlation and positive covariance) that were required to be optimised in 470 

addition to yield and protein trade off (Figure 7). For example, under GYPD selection, grains per spikelet (GPS) 471 

correlated negatively with GPC in each year (correlation = -0.33 and -0.36 in each year respectively), but covaried 472 

positively over simulated selection (covariance = 0.52 and 0.35 in each year respectively), where GPS increased 473 

by an average of 0.23 over the course of simulated selection while GPC measured in each year also increased by 474 

2.48% and 1.57% respectively. Furthermore, the flag leaf to ear distance (FLED) and GPC measured in year 2 475 

correlated positively (correlation = 0.21), but covaried negatively over the simulated selection (covariance = -476 

0.25), where FLED decreased by 2.73cm while GPC increased by 1.57% over the course of simulated selection. 477 

These provide examples of trait mechanisms by which yield and GPC could be simultaneously selected. 478 
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 479 

Figure 7. Simulated phenotypic response to selection on two selection indices. Upper plots indicate response 480 

of all traits under simulated recurrent selection for two multi-trait selection indices based on single-trait Random 481 

Forest (ST RF) genomic prediction models. GYPD = selection to increase both grain yield and protein (grain yield 482 

protein deviation); Weeds_ESIM = selection to increase yield as well as weed competitive traits whilst limiting 483 

change in plant height. Line colours relate to trait groups identified by hierarchical clustering and correlations 484 

shown in Figure 1. Line widths are relative to the t-test significance of each trait genetic gain from cycle generation 485 

0 to 20 across all 20 simulation repeats. Lower plots compare the correlations between all pairs of traits in the 486 

original population and the covariance between trait pairs over time in the simulated population under selection. 487 

Points in upper right or lower left quadrants indicate both positive or negative correlation and covariance which 488 

demonstrates, suggesting complementary trait selection. Points in the lower right or upper left quadrants represent 489 

differing positive or negative correlation and covariance which demonstrates, suggesting antagonistic trait 490 

selection. Point colours indicate pairs of traits that are both in the same trait group following the colour scheme 491 

in Figure 1, while grey points indicate trait pairs from different groups. 492 

 493 
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Selection on multiple traits, which requires optimisation of multiple trait trade-offs, slowed the rate of 494 

genetic gain in grain yield for each of the selection indices: mean grain yield across both trial years increased 495 

when using both selection indices, but at a slower rate, particularly for grain yield in year 1 under GYPD selection, 496 

compared to when grain yield was selected for per se (Figure 8). However, in comparison to gain in grain yield 497 

in either one of the two years when selection was for grain yield in the other year, both GYPD and the yield + 498 

weed competition selection indices achieved generally comparable gains for yield whilst also increasing other 499 

favourable traits (Figure 8). These results show that antagonistic trait relationships are generally possible to 500 

optimise through appropriate selection. However, while this may slow genetic gain to some extent in the primary 501 

traits of interest, such as grain yield, this more realistically represents the balance of selection for multiple traits 502 

that occurs in breeding programmes.   503 

 504 

 505 

Figure 8. Simulated response to selection in grain yield (GY) measured in two trial years (_1 = year1, _2 = 506 

year2) under different selection indices based on single-trait Random Forest (ST RF) genomic prediction 507 

models. Narrow lines represent each of 20 simulation repeats while thicker lines represent the mean across all 508 

simulation repeats. GYPD = selection to increase both grain yield and protein (grain yield protein deviation); 509 

Weeds_ESIM = selection to increase yield as well as weed competitive traits whilst limiting change in plant 510 

height. 511 

 512 
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3.6 Different true genetic models affect long-term response to simulated 513 

selection 514 

After comparing simulated response to different selection indices, we then tested how using different true genetic 515 

models that are based on the different genomic prediction models trained on the observed NDM population 516 

(LASSO versus RF; using either ST or MT approaches) affect phenotypic and genomic response to selection. 517 

Both RF and MT ensemble models were shown above to generally increase the prediction accuracy across traits 518 

(Figure 3), and here we show these predictions had a lower degree of shrinkage towards the mean of predicted 519 

trait values in comparison to the grain yield trait values of observed lines (Figure 9a). The MT RF models in fact 520 

had comparable variances in prediction values to the observed grain yield data, indicating their realistic prediction 521 

of phenotypic variation. While this would be expected from an overfitting model, cross validation with the 522 

observed data showed an increased accuracy of these models.  523 

Simulations with MT RF true genetic models tended to have the largest and longest increase of genetic 524 

gain over the course of simulated selection of grain yield (Figure 9b). Genetic gain in grain yield plateaued, at a 525 

relatively low level, after only around six cycles of selection using ST LASSO genetic model simulations but both 526 

cycle time to plateaux and plateaux height (maximum genetic gain) were both extended by either using a RF or 527 

MT model. This pattern of faster and higher genetic gain in RF or MT models was accompanied by the retention 528 

of higher phenotypic (Figure 9c) and genetic (Figure 9d) variance, particularly over long-term selection in the 529 

MT models. Almost all non-zero LASSO SNP effects were fixed after 8 cycles of selection in any simulation 530 

repeat for selection for grain yield in either year, limiting further genetic gain (Figure 9). Continued loss of genetic 531 

diversity once all genetic effects that affect phenotypic variance were fixed was down to genetic drift. Many of 532 

the SNP with highest variable importance in RF models were in common with the largest LASSO SNP effect 533 

coefficients, and the largest of these were fixed in the first few cycles of selection at a similar rate for both ST RF 534 

and ST LASSO (Figure 9e), where almost all of the ten SNPs with the largest LASSO effect or RF variable 535 

importance were fixed after five cycles of selection for both models. However, RF models included many more 536 

SNPs with non-zero importance (~20,000) than non-zero LASSO effects (61 and 87 for grain yield in years 1 and 537 

2, respectively) and many more of these small or non-additive genetic effects in RF models remained polymorphic 538 

for longer (Figure 9e). For example, a significant proportion of these (14.3 and 13.8% for grain yield in years 1 539 

and 2, respectively) remained polymorphic after 10 cycles of selection while genetic gain in yield still continued 540 

to increase (Figure 9b). This suggests that accumulation of the SNP effects, that were too small to be included in 541 

LASSO, or complex non-additive SNP by SNP epistatic genetic effects, made a large contribution to continued 542 

long-term genetic gain in RF models even after large effect QTL are fixed.  543 

Furthermore, simply adding a MT second step to LASSO models to include indirect pleiotropic effects 544 

also increased and extended long-term genetic gain to a similar or greater extent to ST or MT RF models (Figure 545 

9b). Using MT models, LASSO SNP effects were fixed at a much slower rate (Figure 9e) and phenotypic and 546 

genetic variance was maintained for much longer (Figure 9c-d), where on average 12% of the ten largest LASSO 547 

SNP effects for each single trait were polymorphic after 10 cycles of selection for across all simulation repeats 548 

with selection for grain yield in both years. This also suggests that the greater degree of pleiotropy present in MT 549 

models, which increased prediction accuracy for low accuracy LASSO models in particular (Figure 3), meant 550 

that the number of small effect loci involved in each trait was greatly increased. However, the number of indirect 551 
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pleiotropic LASSO SNP effects across non-additive ensemble models could not be quantified. Selection could 552 

therefore act on more complex trait relationships driven by pleiotropy and/or linkage. 553 

Linkage among antagonistic genetic effects could be shown to partly limit genetic gain. On average, only 554 

0.8 and 5% of non-zero ST LASSO model SNP coefficients were negatively fixed resulting in an average of 0.28 555 

and 2.15% loss of the maximum yield after 20 cycles of selection for yield in each year respectively. However, 556 

this was exacerbated in MT LASSO genetic models where 16.4 and 28.7% of ST LASSO SNP effects with 557 

negative effects on the trait under selection, were incorrectly fixed resulting in 14.1 and 23.5% loss of genetic 558 

gain. This further indicates insufficient recombination to completely decouple antagonistic linked QTL that were 559 

not directly involved in ST LASSO models for grain yield directly but pleiotropically linked through MT models.  560 
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 561 

Figure 9. Simulated phenotypic and genetic response to selection with different genetic models. (a) 562 

Comparisons among distributions of observed and predicted trait values for two grain yield (GY) scenarios for 563 

different prediction models. LASSO and Random Forest (RF) genomic prediction models in conjunction with 564 

single- (ST) or multi-trait (MT) ensemble models are compared. (b) Rates of genetic gain in GY in each GY 565 

scenario when GY is directly selected under 20 cycles of simulated recurrent selection comparing different 566 

genomic prediction models. Comparisons in the rate of reductions in (c) phenotypic and (d) genetic variation in 567 

the NIAB Diverse MAGIC (NDM) population under recurrent selection comparing the same prediction models 568 

as above, and colour coded in the same way. Narrow lines represent each of 20 simulation repeats while thicker 569 

lines represent the mean across all simulation repeats. (e) Changes in mean allele frequency for all ~55,000 SNP 570 

markers across 20 simulation repeats for the NDM population under simulated selection for grain yield in two 571 

yield scenarios using the four models (ST LASSO, ST RF, MT LASSO, MT RF). Line widths and colour are 572 

proportional to SNP effect size in LASSO models and variable importance score for RF models.   573 

574 
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4. Discussion 575 

A complex structure of trait relationships that interact with environmental conditions were found to be involved 576 

in prediction of grain yield. Through simulation of recurrent selection within a genetically diverse highly 577 

recombined multi-founder wheat population, and based on observed genomic and phenotypic data, we tested 578 

several contrasting genetic models and quantitative genetic approaches to recurrent selection. We found that, in 579 

comparison to a simplifying LASSO genetic model where each trait was predicted directly from a minimal subset 580 

of markers with additive effects, prediction accuracies were increased both by using a multi-trait ensemble 581 

approach and Random Forest prediction models, which potentially incorporate pleiotropy and epistatic effects 582 

respectively. This was particularly so for complex traits with low prediction accuracy, and in simulations of 583 

recurrent selection these models also increased the rate and extent of long-term genetic gain, whilst maintaining 584 

phenotypic and genetic variance. Thus, genomic prediction models that include more complex genetic effects 585 

such as epistasis, and pleiotropy may better reflect how continued genetic gain is achieved through breeding.  586 

4.1 The value of multi-trait models 587 

We showed that modelling relationships among traits is valuable for increasing genomic prediction accuracy. 588 

Traditional multi-trait genomic prediction models consider the covariance structure of related traits across 589 

multiple environments and replicates and increase genomic prediction accuracy for cross-validation schemes 590 

when test fractions include partially phenotyped individuals in the test environment (Jia and Jannink, 2012). 591 

However, other studies often do not find an advantage to multi-trait models for untested genotypes in real datasets 592 

(Bhatta et al., 2020; Ward et al., 2019). We present results from multi-trait ensembles that integrate predictions of 593 

multiple traits into the same model (Van der Laan et al., 2007; He et al., 2016). These ensemble models 594 

consistently outperformed single trait models, while a contrasting approach using single vector decomposition of 595 

the multi-trait matrix performed poorly and more variably across traits. Although the increase in prediction 596 

accuracy was small for most traits, the advantage of multi-trait ensemble models was particularly great for traits 597 

that were poorly predicted by LASSO models, suggesting that ensemble methods efficiently incorporate additional 598 

information from large numbers of small pleiotropic genetic effects among related traits, which ST LASSO 599 

models would otherwise overlook when each trait is considered independently. Traits such as grain yield are 600 

polygenic and few genetic markers with large and consistent effects have been identified and applied in breeding 601 

(Bernardo, 2016). However, predictions of component traits of yield, many of which have simpler genetic 602 

architectures (Scott et al., 2021), can improve the ensemble prediction model for yield. We found that many highly 603 

correlated traits were used as covariates with high importance in multi-trait models. Furthermore, the covariate 604 

importance scores of traits in the ensemble models highlight physiological mechanisms for trait improvement and 605 

enable optimisation of antagonistic trait relationships (Figure 4). Where yield components correlate negatively 606 

with each other, the multi-trait ensemble model is able to optimise the interplay among these traits to increase the 607 

prediction accuracy of yield as the primary trait of interest. Similar to the approach taken by Powell et al. (2022) 608 

who modelled multiple systems biology development processes to bridge the gap between genotype to complex 609 

phenotype, we used multiple physiological traits in more agnostic models without defined crop growth parameters 610 

to aid prediction of the complex processes behind grain yield. 611 
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Inter-year environmental variation can modulate relationships between traits. We noted strongly 612 

contrasting weather conditions between the two trial years in which phenotypic data was collected (Figure 2). 613 

The covariate importances of traits for predicting yield changed with the year scenario being predicted, revealing 614 

some mechanisms controlling G×E for yield (Figure 4). For example, growth stage phenotypes were more 615 

important covariates in year 1. Similarly, trade-offs in plant size and earliness likely maintain polygenic trait 616 

variation due to varying environmental pressures in the wild plant Mimulus guttatus (Troth et al., 2018). In 617 

breeding, any single strategy to achieve high yield may be hampered by unpredictable year-to-year environmental 618 

variation, and thus limit response to selection and reduction in genetic variance. While our simulations of future 619 

genetic gain cannot account for unmeasured environments in the future, commercial wheat breeders often take 620 

this into account and make selections of promising lines with a diversity of phenological or plant height traits to 621 

ensure adaptive potential.  622 

4.2 The potential to optimise trait trade-offs that conventional breeding has 623 

neglected 624 

Using multi-trait data from a MAGIC population that controls for confounding effects of population structure 625 

(Scott et al., 2020), we found that pleiotropy and/or tight genetic linkage are significant causes of correlated trait 626 

responses to selection. These data also shed light on the combination of traits that would be required to be co-627 

selected or optimised to achieve continuous gains in grain yield as a primary trait under selection. Furthermore, 628 

we find antagonistic trade-offs among traits that have been problematic for wheat crop improvement. We suggest 629 

that historic enhancement of grain yield by breeders at the cost of key traits such as weed competitive ability, or 630 

grain protein content, has been due to the over-riding value placed on grain yield as a primary selection criterion 631 

during variety testing, as well as market pressures, leaving little scope for compromise with other traits. Integration 632 

of novel trait variation to optimise these trade-offs within an elite wheat genepool, which has been under such 633 

strong directional selection, would therefore be difficult. However, simulations presented here show that with 634 

appropriate selection indices, genetic gain in both yield and other valuable but negatively correlated traits was 635 

possible to some extent.  636 

4.3 The value of complex genomic prediction models for continued genetic 637 

gain 638 

Simulating selection using prediction models with contrasting genetic architectures (i.e., in terms of additive or 639 

epistatic and direct or pleiotropic genetic effects) had major impacts on the outcomes of recurrent selection. The 640 

greater complexity of these models both increased cross-validated prediction accuracy of complex traits in the 641 

observed population and extended the accuracy of genomic predictions in simulations of recurrent genomic 642 

selection. Furthermore, simulations of phenotypic selection assuming a complex genetic model demonstrated 643 

accelerated and extended potential for genetic gain while maintaining genetic and phenotypic variance. The role 644 

of non-additive genetic effects has been demonstrated elsewhere to preserve genetic variance over long-term 645 

selection in simulated populations (Wientjes et al., 2021). Wang et al. (2004) used simulations of selection within 646 
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the CIMMYT wheat breeding programme to compare genetic models, finding that inclusion of epistasis in genetic 647 

models greatly reduced the rate that additive genetic variance is lost due to selection. Although the role of epistasis 648 

is thought to contribute little to overall genetic variance, at least in outbred populations (Hill and Mäki‐Tanila, 649 

2015), evolutionary theory supports these observations in crop breeding; selection can enable conversion of 650 

epistatic to additive genetic effects, allowing hidden or cryptic genetic variation to then be unlocked (Carlborg et 651 

al., 2006; Hill, 2017). The limits to trait variation in our study are likely underestimates because as allele 652 

frequencies shift and trait genetic architectures evolve under selection new additive genetic effects would be 653 

unlocked for selection which cannot be modelled or predicted in the observed population. Supporting this, we 654 

found that prediction models soon become out of date and suffer loss of prediction accuracy, particularly for 655 

simple additive prediction models (LASSO), when target genotypes become more distantly related to the training 656 

set (Edwards et al., 2019).  However, in realistic scenarios of a wheat breeding programme practicing genomic 657 

selection, the training model is continually updated with data from advanced breeding line testing which would 658 

enable more linear continued genetic gain. Continuous novel mutations may also play an important role in 659 

regenerating genetic variation and extending limits to long-term selection in large populations (Hill, 1982) but 660 

were not considered in simulations reported here. Pre-breeding programmes can also introduce novel genetic 661 

diversity from the primary, secondary and tertiary wheat genepool (Balfourier et al., 2019). Nevertheless, the 662 

population we study is representative of diverse north-west European wheats across 70 years. We found that 663 

additive variation included in minimal LASSO prediction models was quickly depleted during simulated selection. 664 

We propose that pleiotropic and epistatic genetic effects and G×E interactions have played a major role in 665 

maintaining wheat genetic diversity despite strong selection and will be particularly important for applied genomic 666 

selection of elite varieties in already highly selected breeding populations.   667 

4.4 Potential for applied crop breeding 668 

MAGIC populations have proven valuable resources for direct generation of commercial varieties of some less 669 

intensively bred crops than wheat (Scott et al., 2020). In simulated breeding programmes, Bernardo (2021) 670 

suggested that multi-parent crossing schemes may be valuable for maintaining genetic diversity. However, the 671 

diverse MAGIC wheat population described here is unlikely to generate commercially competitive varieties due 672 

to the broad genetic basis and historic founders. Instead, this MAGIC population samples and recombines genetic 673 

diversity across 70 years and can therefore be considered a microcosm of past and future selective breeding. In 674 

this context, our simulations rerun alternate histories to test different selection models and approaches and reveal 675 

physiological and genetic mechanisms for future breeding. We suggest that this approach, including multi-trait 676 

ensembles, could be further integrated with environmental information to inform crop models (Cooper et al., 2021; 677 

Stöckle and Kemanian, 2020). Considering that traditional wheat breeding programme cycles generally extend 678 

over at least five years, our simulations of twenty cycles of recurrent selection represent an equivalent of over one 679 

hundred years of traditional wheat breeding (albeit it with no further input from genotypes outside of the 16 680 

founders from which the MAGIC population was constructed). Current wheat breeding programmes are also 681 

likely to be at a point towards the later stages of selection simulations presented here where the majority of large 682 

effect QTL are either fixed or well accounted for. Further genetic gain in current breeding programmes will 683 

therefore likely be achieved through optimisation of small and complex genetic effects (Gorjanc et al., 2018). 684 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 9, 2022. ; https://doi.org/10.1101/2022.11.08.515457doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.08.515457
http://creativecommons.org/licenses/by/4.0/


 

28 

 

Through selection, breeders appear to often maintain linkage disequilibrium across unexpectedly large 685 

genomic regions because they contain several beneficial alleles (Brinton et al., 2020; Fradgley et al., 2019), which 686 

could also interact epistatically. Therefore, prediction models that capture relevant haplotype blocks and the most 687 

recently unlocked epistatic effects will be increasingly important for forward prediction of high performing 688 

breeding lines. Comparisons between patterns of linkage disequilibrium in commercial selected varieties and in 689 

simulations presented here would validate this process and uncover valuable sites for further marker assisted 690 

selection. Our simulations suggest that beneficial variation is often lost during breeding. This diverse MAGIC 691 

population is a reservoir for such this genetic diversity and the phenotypic and genomic data allow beneficial 692 

alleles to be identified. Through targeted rapid recurrent selection and breeding technologies that reduce 693 

generation time (Watson et al., 2018; Cha et al., 2021), this population could therefore be used to provide useful 694 

pre-breeding material for commercial breeding programmes to deliver accelerated and continued genetic gain. 695 

Optimum contribution selection can also be applied to maximise long-term genetic gain by maintaining genetic 696 

variance for selection at later generations. 697 

4.5 Conclusions 698 

In summary, we demonstrated the value of multi-trait ensemble models for genomic prediction of complex traits 699 

and simulated recurrent selection using these genetic models based empirically on an extensively genotyped and 700 

phenotyped NDM population. We consider this a microcosm of wider wheat breeding programmes working with 701 

the wider pool of wheat germplasm so that our results provide insights into the trends and mechanisms by which 702 

the considerable progress and genetic gain has been made in modern wheat breeding without apparent genetic 703 

diversity loss. These findings highlight the importance of models and approaches that take into account these 704 

mechanisms to maximize further genetic gain in the future.  705 
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