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ABSTRACT

The brain tumor immune microenvironment (TIME) continuously evolves during glioma
progression, but only a limited view of a highly complex glioma associated immune contexture
across isocitrate dehydrogenase mutation (IDH) classified gliomas is known. Herein, we present
an unprecedentedly comprehensive view of myeloid and lymphoid cell type diversity based on
our single cell RNA sequencing and spectral cytometry-based interrogation of tumor-associated
leukocytes from fifty-five IDH stratified primary and recurrent human gliomas and three non-
glioma brains. Our analyses revealed twenty-two myeloid and lymphoid cell types within and
across glioma subtypes. Glioma severity correlated with microglial attrition concomitant with a
continuum of invading monocyte-derived microglia-like and macrophages amongst other
infiltrating conventional T and NK lymphocytes and unconventional mucosa associated invariant
T (MAIT) cells. Specifically, certain microglial and monocyte-derived subpopulations were
associated with antigen presentation gene modules, akin to cross-presenting dendritic cells
(DCs). Furthermore, we identified phagocytosis and antigen presentation gene modules
enriched in Triggering receptor expressed on myeloid (TREM)-2* cells as a putative anti-glioma
axis. Accelerated glioma growth was observed in Trem2 deficient mice implanted with CT2A
glioma cells affirming the anti-glioma role of TREM2* myeloid cells. In addition to providing a
comprehensive landscape of glioma-specific immune contexture, our investigations discover

TREM2 as a novel immunotherapy target for brain malignancies.
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INTRODUCTION

The discovery of meningeal and parenchymal access of immune cells' and the presence of
meningeal®* and dural lymphatics® in the central nervous system (CNS) has led to redefinition
of the brain being immunologically distinct rather than immune privileged; a notion held for
several decades®. In brain pathologies such as traumatic injury or neurodegenerative disorders,
phagocytic cells comprising brain resident microglia and CNS associated
monocytes/macrophages are the first responders to resolve associated inflammation. For
instance, in Alzheimer’s disease the protective role of microglia in clearing amyloid plaques has
been established to prevent disease progression’. In contrast, tumor associated macrophages
have been linked to poor prognosis in brain neoplasms such as gliomas that arise from
transformed neural progenitor cells®®. Although primarily phagocytic in nature, myeloid cells are
plastic and can undergo functional diversification under the influence of dysregulated cytokine
and chemokine milieu contributed by both infiltrating bone marrow derived leukocytes as well as
tumor cells'®'3. Myeloid cell functions can also be differentially influenced by tumor necrosis and
inflammation, a defining feature of IDH-wt when compared to IDH-mut gliomas'. Standard of
care treatments such as surgical resection followed by temozolamide and ionizing radiation can
unintendedly cause disruption of anatomical barriers, immunomodulation and necrosis, all of
which can skew the properties of myeloid cells and other leukocytes'5-16.

Studies pertaining to immune cell heterogeneity of gliomas at single cell resolution are
emerging, however these studies are either restricted to myeloid cells'>'7-?! or lack in-depth
characterization of low grade in comparison to high grade gliomas'”-18.22-24 Furthermore, given
that most immunotherapy clinical trials are prioritized in relapsed patients?®, understanding the
treatment induced changes of brain TIME with unbiased approaches in recurrent tumors of all
glioma subtypes are imperative. Glioma specific TIME studies are broadly focused on microglia
/macrophages collectively referred as glioma-associated macrophages (GAMs), myeloid-
derived suppressor cells (MDSCs), and tumor infiltrating lymphocytes (TILs)?>2?6. However,
oversimplified myeloid cell diversity and M1/M2 functional dichotomization ignores the
phenotypic heterogeneity and plasticity in these cell types?’-2°. Recent cytometry studies have
captured the leukocyte diversity of the brain TIME in primary gliomas and brain metastasis3%-3'
to a certain extent albeit based on a priori markers.

To address these knowledge gaps and delineate the glioma associated leukocyte
diversity in the TIME, we performed single cell (sc)- and bulk RNA Sequencing (RNA-seq) and
spectral cytometry analyses on tumor-associated leukocytes from fifty-five IDH-stratified primary
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(treatment naive) and standard of care treated recurrent glioma subtypes to define their immune
landscape. In addition to corroborating established myeloid dominant glioma characteristics, we
redefine glioma TIME by superimposing our advanced findings across glioma subtypes with
largely IDH-wt glioma restrictive studies’”'®2224_ Qur major findings include the following: i) We
observed significant attrition of microglia (MG) accompanied by increased infiltration of classical
monocytes (c-Mo), monocyte-derived-microglia-like (Mo-MG or MG-like), -macrophages (MDM)
and conventional dendritic cells (cDC)-2 in recurrent IDH-wild type gliomas relative to other
glioma subtypes; ii) We demonstrate eleven transcriptionally distinct glioma associated MG
states inclusive of tumoricidal, inflammatory and metabolic phenotypes; ii) Infiltration of Tregs,
NK cells and mucosa associated invariant T (MAIT) were significantly abundant in recurrent IDH-
wild type gliomas; and iv) We identified glioma associated myeloid cells with triggering receptor
expressed on myeloid (TREM)-2 cells enriched for phagocytosis and antigen-presentation gene
modules as putative anti-glioma axis and demonstrate their anti-glioma functions using a
xenograft mouse model. In summary, our reverse translational glioma immunophenotyping
investigations reveal an unprecedently advanced landscape of glioma TIME that can be
exploited for future immunotherapy applications. We further uncover TREM2 as a novel glioma

specific immunomodulatory target with likely implications in other brain malignancies.

RESULTS
Transcriptionally defined immune cell diversity in IDH-mutation stratified human gliomas
To discern glioma associated immune cell diversity, we performed single cell RNA sequencing
(scRNA-seq) on flow sorted CD45" leukocytes obtained from tumors of eighteen IDH-mutation
classified patients comprising IDH-mutant primary (IMP; n=4), IDH-mutant recurrent (IMR; n=6),
IDH-wild type primary (IWP; n=4), or IDH-wild type recurrent (IWR; n=4) gliomas (hereafter
referred as glioma subtypes). Three quasi-normal, non-glioma brains (NGBs) either from a grade
| meningioma patient or refractory epileptic non-neoplastic patients were used as controls (Fig.
1A and Supplementary Table S1). Using a previously described immune cell enrichment
protocol®? and CD45* sorting strategy, we consistently obtained highly pure CD45"/CD45'"°
leukocyte subpopulations in gliomas and NGBs (Fig. 1A and Supplementary Fig. S1A-C). This
is in contrast to previous studies using human glioma specimens that were not able to resolve
these two distinct CD45M"/CD45'° subpopulations33-3.

Overall scRNA-seq dataset was batch corrected with Harmony using COMBAT software

(Supplementary Fig. S1D-G). A low rejection rate in K-BET indicated homogeneous mixing of
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samples after batch correction (Supplementary Fig. S1H) as detailed in methods. Furthermore,
we removed the likely doublets/multiplets, cell debris, and low-quality cells using a multistep
approach (see Methods). Unsupervised clustering followed by Uniform Manifold Approximation
and Projection (UMAP) analyses resolved 144,678 cells into two major immune compartments
predominated by myeloid (n=100,587) and lymphoid cells (n=44,091) within and across glioma
subtypes in line with previous reports30-31.36.16,17.21-23 wjjth the exception of IWR gliomas, which
had similar proportions of myeloid and lymphoid cell populations (Fig. 1B). Glioma associated
myeloid cells exhibited a continuum of overlapping gene features (SPP1, APOE, C1QC) with
MG and macrophage (MAC) subsets yet resolved by core MG gene set including CX3CR1,
GPR34, P2RY12, P2RY13, SALL1, TAL1, and TMEM119 amongst others (Fig. 1C,
Supplementary Fig. S1J). Dendritic cells (DC), monocytes (Mo), and neutrophils were clearly
identified based on expression of canonical gene signatures (Fig. 1C, Supplementary Fig. S1l
and J).

Brain resident MG represented the largest myeloid cell type in NGB and IMP (Fig. 1C).
In contrast, in response to MG attrition, invading MG-like cells co-expressing MG- (SORLT,
SAMDIL, GPR34) and MAC- (GLDN, MSR1, CD163) signature genes, VCAN*FCN1" classical
monocytes (c-Mo), TCF7L2*FCGR3A" non-classical monocytes (nc-Mo), CD163*MARCO*FN1*
MAC, TMEM176A*SELENOP* MDM proportionately increased in IMR, IWP and IWR glioma
subtype (Fig. 1C, Supplementary Fig. S1J). Increased trends with professional antigen
presenting cells (APC) such as CLEC9A* cDC1, CD1C* cDC2 and IL3RA™ plasmacytoid DC
(pDC) were observed in IWR gliomas compared to other glioma subtypes. Other notable glioma
associated myeloid cells included indistinguishable cell type with enriched interferon (IFN)
stimulated gene signatures (IFI44L, IFI6, ISG15) defined as MAC/MG_IFNs, and proliferative
genes (MKI67, PCLAF) expressing Myeloid_Proliferative (Myeloid_prolif) cells and JMJD1C*
Neutrophils (Fig. 1C, Supplementary Fig. S1J). We speculate that the influx of non-MG myeloid
cells is a consequence of depleting niches of MG akin to observations in inflammation associated
conditions where tissue resident macrophage attrition has been reported®’.

Inter- and intratumoral glioma associated lymphoid cell types resolved into T
lymphocytes, TRDC" y5-T cells, SLC4A10" Mucosa associated invariant T (MAIT) cells, NKG7*
KLRF1* Natural Killer (NK) cells, CD3D*NKG7* Natural Killer T (NKT) cells, CD79A*MS4A1*B
lymphocytes and MZB1*IGHG1" plasma cells (Fig. 1D, Supplementary Fig. S1K and 1L).
Notably, amongst lymphoid lineage cells, we identified rare infiltrating populations of MAIT
(0.18%- 4.14%) and NKT (0.35% - 26.4%) in human glioma TIME, which have not been
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previously reported®. We observed glioma subtype specific enrichment patterns, such as
apparently reduced MG and abundance of T-cell and monocyte-derived cells in all patients in
the IWR group (Supplementary Fig. S1M). Overall, we report twelve myeloid and ten lymphoid
cell types with transcriptionally defined phylogenic cellular relationships in the TIME of IDH
stratified primary and recurrent human gliomas (Supplementary Fig. S1N).

Glioma associated transcriptional immune cell phenotypes validated by spectral
cytometry

In view of transcriptionally redefined immune cell diversity across glioma subtypes, we validated
scRNA-seq inferred cell types with correlative protein markers. A 40-parameter protein marker
panel was designed (Supplementary Table S2) to corroborate majority of inferred cell types
(Supplementary Fig. 1N). A comprehensive spectral cytometry-based phenotyping
immunoassay was performed across fifty-five patients covering all glioma subtypes and three
refractory epileptic non-neoplastic patients (detailed in Supplementary Table S1). We
confirmed P2RY12*CX3CR1*MG as the most abundant cells across glioma subtypes with
highest proportions evident in NGB and IMP (Fig. 2A). Total P2RY12*CX3CR1*MG and even
reactive CD11c*MG were dramatically reduced with glioma recurrence in IMR and IWR
compared to IMP and IWP glioma subtype respectively. A concomitant significant increase in
CD11¢*CCR2*Mo-MG, CD14*CD16c-Mo, CD68"CCR2*MDM and CD1c*cDC2 was observed
in IWR relative to IMP glioma subtype while other myeloid cell types such as CD16:CD14*nc-
Mo, CD68*CCR2*MDM, Clec9A*cDC1 (Fig. 2 B-E) and CD66b* neutrophils (not shown).
Amongst lymphoid lineage cells Foxp3*Tregs, CD56"NK, CD56°NK cells and
TCRVa7.2"'mucosa associated invariant T (MAIT) were significantly abundant in IWR gliomas
with co-presence of CD4, CD8 T, NKT, and y5-T cells across glioma subtypes (Fig 2F-H).
Altogether, we confirmed all major cell types and their enrichment patterns across glioma

subtypes.

Transcriptional heterogeneity and inferred functional states of microglial cells in human
gliomas

In humans, the CNS associated microglial states have been defined in Alzheimer’'s®®, multiple
sclerosis*® and to a limited extent in primary IDH-wt and IDH-mut gliomas using single cell
transcriptomics'”-182341 We sub-clustered and delineated MG into eleven distinct states
distributed across glioma subtypes (Fig. 3A, Supplementary Fig. S2B-E). These MG clusters
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were distinguished from the rest of the myeloid cells based on the core MG gene sets inclusive
of MG specific transcription factors; TAL71 and SALLT (Fig. S1J).

To evaluate functional features, we performed gene ontology (GO) analysis which identified MG
expressing unique markers with subtype specific clustering. This included glioma restricted
antigen presentation associated gene modules (e.g., CSTD, MS4A4A) in MG_APC-Like 1 and
MG_APC-like 2 clusters and a lipid metabolism associated LPL* MG_Lipid Metab. Cluster (Fig.
3B, Supplementary Fig. S2C). We also observed IDH-mut glioma restricted MG clusters that
included BAG3*"MG_hsp and ATF expressing metabolically enriched MG_OxPhos (Fig. 3B,
Supplementary Fig. S2C). MG that was predominantly seen in NGB were P2RY12*
MG_homeostatic and CCL4L2 expressing inflammatory MG_Inflam 1 cluster associated with
response to tumor necrosis factor, Interleukin-1 and lipopolysaccharide GO term (Fig. 3B,
Supplementary Fig. S2C). Tissue macrophages exhibit multifaceted polarization in response
to microenvironmental cues, hence we evaluated the polarization spectrum of MG with nine
distinct macrophage activation programs as previously described?’. We assessed polarization
states of MG clusters with a spectral polarization view rather than dichotomous M1/M2
polarization model and identified palmitic acid responsive gene module associated with
MG _Inflam1 along with IL-4 responsive polarization states in MG_APC-like 2 and MG_OxPhos
clusters (Fig. 3C). A GNLY*TNF" cluster defined as MG_Tumoricidal was also noted across
glioma subtypes. Furthermore, we subclustered the unidentifiable MAC/MG_IFNs cluster, which
enabled resolution of this cluster into MAC and MG phenotypes. These IFN gene associated
clusters were CD163*LYZ*MAC_IFN, GNLY*TMIGD3*MG_IFN GNLY*IL1A*MG Inflam 2 (Fig.
3C, Supplementary Fig. S2D-E) and associated gene signatures are suggestive of their
contribution to inflammation in gliomas. Overall, we identified transcriptionally heterogeneous

MG with their inherent functional likelihoods across glioma subtypes.

Spectrum of invading non-MG myeloid cells in human gliomas

In order to understand non-MG myeloid cell diversity, which have been a subject of intense
investigation in IDH-wt gliomas'?13.18.2021.33 " we performed a comprehensive analyses of
invading non-MG myeloid subpopulations across IDH-classified gliomas and identified sixteen
non-myeloid cell states (Fig. 3D). We uncovered six MAC and two MDM clusters. Based on DEG
and GO analysis we annotated glioma associated macrophages as IL10"MAC_Anti-Inflam,
multiple metabolic phenotypes such as clusters enriched with hypoxia genes (e.g., SDS,
HMOX1) MAC_Metab/Hypoxia 1, MAC_Metab/Hypoxia 2 and LIPA*MAC_Lipid Metab
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subpopulations. A cluster of LYVE1 expressing MAC associated with vasculature defined as
MAC_Perivascular was observed across glioma subtypes (Fig. 3E, Supplementary Fig. S2F-
G). Amongst the MDMs, C1QA*MDM_Phagocytic 1 was associated with receptor mediated
endocytic process and JUN*SELENOP*MDM _Inflam subset correlated with positive regulation
of inflammation GO term (Fig. 3E, Supplementary Fig. S1M, S2F-G). Although MDMs showed
marked increase in IWR glioma subtype, abundance of MAC was proportionately similar across
IMP, IMR and IWP gliomas (Fig. 2D). Monocytic infiltrates in glioma TIME included significantly
abundant FCN1*CD14*c-Mo in IWR compared to IMP gliomas whereas FCGR3A*TCF7L2" nc-
Mo did not show any noticeable differences across other glioma subtypes (Fig. 3D, 2C,
Supplementary Fig. S1M, S2F). Glioma associated inflammation led to DC infiltration in
contrast to negligible DCs in NGB CD71C*cDC2 was significantly abundant in IWR glioma
subtypes, while a proportionally similar levels of infiltration of CLEC9A*cDC1 and IL3RA*pDC
were observed across other glioma subtypes (Fig. 3D, 2E, Supplementary Fig. S1M, S2F-G).
Taken together, our data provides advanced insight of infiltrating myeloid cell subsets in the
glioma TIME and highlights their similarities and differences with MG.

Identification of Trem2 as an anti-glioma modulator

To gain a deeper understanding of pathways altered in MG, we inspected genes that regulate
phagocytosis and antigen presentation in myeloid cells, especially MG_APC-Like 1 and
MG_APC-like 2 clusters (Fig. 4A). These clusters were enriched for HLA-DR (Fig. 4A), a major
histocompatibility complex (MHC) class Il gene. In addition, we found higher expression of
TREMZ2 and its regulator MS4A6A (Fig. 4B), both of which play crucial roles in microglial
functions and gene risk loci for Alzheimer’s disease, where MG play a protective role. Recent
studies have also demonstrated a role for Trem2 in immunosuppression of cancer 4243, To
examine the influence of TREMZ2 on glioma growth, we implanted CT-2A glioma cells in C57BL/6
WT mice and compared survival differences with Trem2”’ mice. Genetic ablation of Trem2
promoted tumor growth in mice (bioluminescence data not shown) and showed significantly
reduced survival compared to syngeneic WT mice with intracranial gliomas (Fig. 4C). These
data demonstrate that in contrast to previous studies on systemic cancers*44°, TREM2* myeloid
cells play an anti-tumor role in GBM.

DISCUSSION
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Using single cell transcriptomic profiling, our study uncovers the cellular and molecular
landscape of brain-specific glioma immunity. We observed that both myeloid and lymphoid
subpopulations exhibit remarkable cellular diversity depending on IDH status and disease
severity. Recent high throughput studies have elegantly demonstrated the spatio-temporal
distribution of microglial subsets in humans and mice*6. These studies established the plasticity
of microglial cell states and reveal mechanisms by which MG contribute to limiting or promoting
neurodegenerative diseases*®. We observed attrition of tissue-resident microglial cells with a
concomitant increased infiltration of non-MG myeloid cells as a distinct feature in IDH-wt
gliomas, which is consistent with recent reports3®3'. In our investigation, we even report
reduction in MG in relapsed IDH-mutant gliomas and the highest MG attrition evident in IWR
gliomas. Acute inflammation induces transient loss of embryonically derived tissue-resident
macrophages as a result of necroptosis and concomitant replenishment either through self-
renewal or monocytic input as has been described in murine spleen, liver and lungs®'. In line
with this, we speculate migration of bone marrow derived myeloid cells as a compensatory
mechanism of homeostatic myelopoiesis to fill depleting brain macrophage niches. Our results
showing increased proportion of Mo-MG like cells in response to dramatic reduced MG in IWR
gliomas provides a likely clue for such replenishment patterns in human gliomas. Our findings
with MG provide evidence for multifaceted inflammatory phenotypes characterized by IL1A,
TNF, IL6, IL10 and GNLY expression on various MG subsets. Although recent bulk mRNA-seq
analysis pointed to cumulative spectral nature of glioma associated MG3', we clarify
heterogeneity of polarization states and identify an unreported palmitic acid (PA) responsive and
widely acknowledged IL-4 responsive gene modules in distinct clusters of MG. A Glucocorticoid
induced signature has been reported with SEPP1"9" Mo-TAMS'3, Together our findings suggest
distinct polarization states amongst the multispectral polarization background in glioma
associated MG rather than M1/M2 dichotomy.

We observed that certain MG subsets abundantly expressed genes involved in both MHC
class | (B2M) and class Il (HLA-DRB1) molecules suggestive of their APC-like characteristics.
With virtues of antigen presenting molecules, APC-like MG can potentially direct proliferation
and secretion of cytokines in CD4 and CD8 T cells, a hypothesis that is worthy of further
investigation. Interestingly we found that while MG express both MHC class | and class Il gene
modules; MAC or MDM are largely restricted to MHC class Il. Although MG can orchestrate APC
like functions, their reduced numbers may likely contribute to tumor immune escape. Recent

studies have shown that MG localization is confined to the tumor border compared to
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macrophages which are enriched in the tumor core, implying that MG may have distinct spatio-
phenotypic features compared to peripheral myeloid cells??. Our study also identified novel
clusters of mo-DCs and MDMs that can also possess APC-like properties. Therefore, the dogma
of DCs as bona fide immune sentinels and microglia and GAMs as being mainly tumor supportive
needs to be revisited.

Despite the evidence of lymphopenia in glioma patients*” and minimal responsiveness or
treatment refractoriness to checkpoint blockade interventions (e.g., nivolumab)*®, GBM
immunotherapy clinical trials are T cell centric. In this study, we report paucity of lymphocytes in
primary gliomas, and therefore exclusive T cell-based therapies, may not be effective for such
patient cohorts. In contrast, myeloid cells represented 50-80% of leukocytes compared to
lymphocytes across gliomas. Recent studies have shown that targeting the innate immunity
using either depletion strategies or inducing tumor phagocytosis as alternative
immunomodulatory therapies in GBM*°. Here, we show that TREM2 as a putative target with
anti-glioma properties. Although TREM2 was shown to be immunosuppressive in other cancers,
TREM2 genetic ablation induced glioma growth in mice indicating differential functions of
TREM2 in brain tumors. Further investigation of TREM2 expression in brain resident and
infiltrating immune cells is warranted.

In summary, our unbiased high dimensional studies have paved the way for an advanced
understanding of immune landscape across gliomas that can be exploited for novel

immunotherapy strategies for these cancer types.
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METHODS

Human brain tumor and tissue collection

The brain tumor/tissue samples were collected from seventeen- patients post appropriate
informed consent during neurosurgery with detailed information pertaining to gender, age,
glioma grade, subtype and, brain site of tumor extraction etc. mentioned in Supplementary
Table S1. The brain tumor/tissue samples were collected as per MD Anderson internal review
board (IRB)-approved protocol numbers LAB03-0687, LAB04-0001 and 2012-0441. Non-tumor
brain tissue sample was collected from patient undergoing neurosurgery for epilepsy as per
Baylor College of Medicine IRB-approved protocol number H-13798. All experiments were
compliant with the review board of MD Anderson Cancer Center, USA.

Preparation of leukocyte single cell suspensions from brain tumor and tissue.

The resected brain tumors and, tissues were either freshly processed or transiently stored
overnight MACS Tissue Storage solution (Cat. #130-100-008, Miltenyi Biotec) at 4 degree
Celsius (in case of delayed surgeries) and processed immediately next morning. The brain
tumor/tissue were finely minced and, enzymatic dissociation was performed in prewarmed
digestion medium containing 100 pg/ml Collagenase D (Cat. #11088866001, Sigma-Aldrich)
and, 2U/ml DNase (Cat. #D9905K/ NC0893386, Fisher Scientific) for 45 minutes at 37 degree
Celsius. The enzymatic reaction was neutralized using 2% serum (Cat. #16140-071, gibco) in
IMDM. The enzyme-digested tissues were homogenized by passing through an 18.5G gauge
needle (Cat. #305196, BD) five times followed by further homogenization using syringe piston
on a 100-y cell strainer (Cat. #0877119/ Corning 352360) placed on a 50ml Falcon. The residual
tissue on the strainer were mechanically dissociated using the piston of a 3ml syringe (Cat.
#309657, BD). The single cells thus obtained were washed in 2% PBS and, centrifuged at 350g
for 5 minutes at 4 degree Celsius. The resulting pellet was further subjected to 33%
Percoll™ (Cat. #17-0891-01, Sigma-Aldrich) gradient and centrifuged at 800g without brakes for
12 minutes at 4 degree Celsius. The resulting pellet was subjected to the RBC lysis reaction
(Cat. #R7757-100ML, Sigma-Aldrich) for 10 minutes at room temperature (R.T.) and reaction
was stopped with 1X PBS (Cat. #21-040-CV, Corning) and resulting cell pellet obtained by
centrifugation (500g, 5min, 4 degree Celsius). The single cells were filtered and cryopreserved
in 10% DMSO (Cat. #D8418, Sigma-Aldrich) in FBS (Cat. #F4135, Sigma-Aldrich) in liquid
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nitrogen (-196 degree Celsius) after a transient storage at -80 degree Celsius until further

processing.

CD45 staining and FACS sorting

The cryopreserved leukocytic cells were briefly thawed at 37 degree Celsius and washed with
complete RPMI 1640 (Cat. #10-040-CV, Corning) containing 10% FBS (Cat. #16140-071,
gibco), 1% PSG (Cat. #P4333, Sigma), 10mM HEPES (Cat. #R5158, Sigma) and, incubated at
37 degree Celsius for 30 min. Post incubation, cells were washed with 2% FBS containing PBS
and incubated with 1:20 FcR blocking reagent (Cat. #130-059-901, Miltenyi Biotec) in 2% PBS
for 10 min at RT. The Fc blocked cells were stained with 1:200 diluted anti-human CD45-APC
(Cat. #130-113-114, Miltenyi Biotec) for 20 min at 4 degree Celsius in dark. The CD45-stained
cells were mixed with lived dead Sytox-Green stain (Cat. #57020, ThermoFisher Scientific) and
CD45" cells were sorted with BD FACS Aria™Ill.

Single Cell RNA Sequencing (scRNA-seq) Library Preparation

scRNA-seq was performed using 10x Genomics Chromium Single Cell Controller. Sorted cells
were washed with 1X PBS and suspended in PBS/0.04% BSA. Cells were double-checked for
viability and cell number by using the countess Il FL and microscope. All cells were diluted to a
concentration of 500-1000 cell/ul in PBS/0.04% BSA before being used for single cell 10X 3'v3.
Single cells were captured using the 10X genomic controller according to the beads types and
chip used for the experiments. The 10X genomic Chromium Single cell 3' GEM, library and Gel
bead Kit 'v3 (cat. #1000075) and chromium chip B single cell kit (pat. #1000073) were used to
capture cells on the controller; cell recovery targeted was in a range of 5000 - 10000 cells.
Captured cells then undergo a GEM-RT, cDNA amplification, and all purification in accordance
to the 10X protocol. Cleanup cDNA was checked via a tape station (Agilent 42000) HSD5000
(cat# part # 5067-5593) for cDNA traces. 25% of the cDNA was used to generate the library,
and the Chromium i7 multiplex kit (part #120262) was used to identify each sample. Library
cleanup was performed using AMPure beads and QC was done again with tape station D1000
tapes (Part# 5067-5583). Ten libraries of equal amount were pooled to give a final concentration
of 10nM and submitted for sequencing with the NovaSeq6000 S2 sequencer, 28 cycles for
read1, 8 cycles for i7 index, and 91 cycles for read 2 through the ATGC core at MD Anderson.
Sequence data was then put through the 10X genomic cell ranger 3.0 pipeline. QC and Fastq
files were obtained and checked for data quality, and Fastq files were used to do further analysis.
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RNA Isolation

RNeasy Mini Kit (Cat. #74104, Qiagen) was used to extract sorted cells and achieve efficient
purification of total RNA from small amounts of starting material. The technology simplifies total
RNA isolation by combining the stringency of guanidine-isothiocyanate lysis with the speed and
purity of silica-membrane purification to ensure highest-quality RNA with minimum copurification
of DNA. With the RNeasy Mini Kit, total RNA can be purified from 10 to 1 x 10” animal or human
cells, 0.5-30 mg human tissues. Briefly, samples are first lysed and then homogenized. Ethanol
is added to the lysate to provide ideal binding conditions. The lysate is then loaded onto the
RNeasy silica membrane. RNA binds (up to 100 ug capacity), and all contaminants are efficiently
washed away. For certain RNA applications that are sensitive to very small amounts of DNA,
the residual amounts of DNA remaining can be removed using a convenient on-column DNase

treatment. Pure, concentrated RNA is eluted in 20—-100 ul water.

Low input mRNA sequencing

lllumina Compatible low input MRNA libraries were prepared using the Smart-Seq V4 Ultra Low
Input RNA kit (Takara Bio, USA) and KAPA HyperPlus Library Preparation kit (Roche). Briefly,
full length, double-stranded cDNA was generated from 8ng of total RNA using Takara’s SMART
(Switching Mechanism at 5" end of RNA Template) technology. The ds cDNA was amplified by
nine cycles of LD-PCR, then purified using Ampure Beads (Agencort). Following bead elution,
the cDNA was evaluated for size distribution and quantity using the Fragment Analyzer High
Sensitivity NGS Fragment Analysis Kit (Agilent Technologies) and the Qubit dsDNA HS Assay
Kit (ThermoFisher) respectively. The cDNA was enzymatically fragmented, and 20ng of the
fragmented cDNA was used to generate lllumina compatible libraries using the KAPA HyperPlus
Library Preparation kit. The KAPA libraries were purified and enriched with 2 cycles of PCR to
create the final cDNA library. The libraries were quantified using the Qubit™ dsDNA HS Assay
(ThermoFisher), then multiplexed 7 libraries per pool. The pooled libraries were quantified by
gPCR using the KAPA Library Quantification Kit (KAPA Biosystems), and assessed for size
distribution using the TapeStation 4200 (Agilent Technologies). The libraries were then
sequenced, one pool per lane, on the Illumina HiSeq4000 sequencer using the 76bp paired end

format.

scRNA-seq Data Analysis
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Raw sequencing data processing, quality check, data filtering, doublets removal,
batch effect evaluation and data normalization. The raw scRNA-seq data were pre-
processed (demultiplex cellular barcodes, read alignment, and generation of gene count matrix)
using Cell Ranger Single Cell Software Suite provided by 10x Genomics. Detailed QC metrics
were generated and evaluated. Cells with low complexity libraries or likely cellular debris (in
which detected transcripts are aligned to less than 200 genes) were filtered out and excluded
from subsequent analyses. Low-quality cells where >20% of transcripts derived from the
mitochondria were considered apoptotic and also excluded. Following the initial clustering, likely
cell doublets were removed from all clusters. Doublets were identified using a multi-step
approach: 1) library complexity: cells with high complexity libraries (in which detected transcripts
are aligned to more than 6500 genes) were removed; 2) Cluster distribution: doublets or
multiplets likely form distinct clusters with hybrid expression features and exhibit an aberrantly
high gene count; 3) cluster marker gene expression: cells of a cluster express markers from
distinct lineages (e.g., cells in the T-cell cluster showed expression of myeloid cell markers and
vice versa); 4) doublet detection algorithm: DoubletFinder®®, an algorithm to predict doublets in
scRNA-seq data, was applied to further identify and clean doublets that could have been missed
by steps 1-3. We carefully reviewed canonical marker genes expression on UMAP plots and
repeated the above steps multiple times to ensure elimination of most barcodes associated with
cell doublets.

Following removal of poor-quality cells and doublets, a total of 144,678 cells were retained for
downstream analysis. Library size normalization was performed in Seurat v3 (version 3.1.1)%'
on the filtered gene-cell matrix to obtain the normalized UMI count as previously described®2.

Statistical assessment of possible batch effects was performed using the R package k-BET (a
robust and sensitive k-nearest neighbor batch-effect test) (PMID: 30573817). k-BET was run on
cells from all samples, and on major cell types including microglia cells and CD8 T cells
separately with default parameters. Each cell type was down sampled to 500 cells. We chose
the k input value from 1% to 100% of the sample size. In each run, the number of tested
neighborhoods was 10% of the sample size. The mean and maximal rejection rates were then
calculated based on a total of 100 repeated k-BET runs. Following estimation of sample
processing- or sequencing-related batch effects using k-BET, we employed Harmony for actual
batch effect correction®3. Harmony was run with default parameters to remove batch effects in
the PCA space when clustering of major cell lineages before any clustering analysis or cell type
identification/annotation was performed. We carefully evaluated the performance of Harmony in


https://doi.org/10.1101/2022.11.08.514794
http://creativecommons.org/licenses/by-nc-nd/4.0/

453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.08.514794; this version posted November 9, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

terms of its ability to integrate batches while maintaining cell type separation. Harmony was run
on all cells to firstly identify major cell types. It was also run on each of the major cell types for
subclustering analysis to further identify different cell states. To quantify the performance of
Harmony, we further used k-BET and compared the rejection rate (reflecting batch effect) before
and after Harmony. The data after Harmony showed a low rejection rate, indicating an excellent
performance of batch effect correction in this study.

Moreover, we also applied the local inverse Simpson’s Index (LISI) to assess the performance
of Harmony. As described previously®®, the ‘integration LISI’ (iLISI) measures the degree of
mixing among datasets (batches), ranging from 1 in an unmixed space to the number of datasets
(batches) in a well-mixed space. And the ‘cell-type LISI’ (cLISI) measures integration accuracy
using the same formulation but computed on cell-type labels instead. An accurate embedding
has a cLISI close to 1 for every neighborhood, reflecting separation of different cell types. Before
batch correction with Harmony, cells were mainly grouped by dataset (iLISI is around 1) and
cells from different cell types were mixed (cLISI is far from 1). After batch correction with
Harmony, iLISI and cLIS| were re-computed in the Harmony embedding. iLISI is around 3.5,
indicating a high degree of mixing among different datasets, and cLISI is very close to 1,
reflecting excellent separation of different cell types while remain the well-mixed space.

Unsupervised cell clustering and dimensionality reduction: Seurat v3 (version
3.1.1)%" was applied to the normalized gene-cell matrix to identify highly variable genes (HVGs)
for unsupervised cell clustering. To identify HVGs, the vst method in the Seurat package®' was
used with default parameters. Principal component analysis (PCA) was performed on the top
2000 HVGs. The elbow plot was generated with the ElbowPlot function of Seurat®' and based
on which, the number of significant principal components (PCs) were determined. The
FindNeighbors function of Seurat was used to construct the Shared Nearest Neighbor (SNN)
Graph, based on which the unsupervised clustering was done with Seurat function FindClusters.
Different resolution parameters for unsupervised clustering were then examined in order to
determine the optimal number of clusters. For visualization, the dimensionality was further
reduced using Uniform Manifold Approximation and Projection (UMAP)%* method with Seurat
function RunUMAP. The PCs used to calculate the embedding were as the same as those used
for clustering. Two rounds of clustering were performed to identify major cell types (MG, non-
MG myeloid cell, NK and T cells) and cell transcriptomic states within each major cell type. In
the first round, 30-nearest neighbors of each cell were determined based on 30PCs to construct
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SNN graph. The clustering was performed with resolution 0.8 and each cluster was annotated
by known markers (see Determination of major cell types and cell states). Two major cell
families comprising lymphoid- and, myeloid- cells, as well as negligible number of neural-like
contamination were identified. The second-round clustering was performed on myeloid- and,
lymphoid- cells respectively to identify cell states within each major cell types. For myeloid cell
clustering, 40-nearest neighbors of each cell were determined based on 40 PCs to construct
SNN graph. The clustering was performed with resolution 2, which resulted the identification of
34-cell states. For lymphoid cell clustering, the SNN graph was constructed based on 20-nearest
neighbors of each cell that were determined by 30 PCs. The clustering was performed with
resolution 2, which resulted the identification of 28-cell states.

Determination of major cell types and cell states: To define the major cell type of each
single cell, differentially expressed genes (DEGs) were identified for each cell cluster using the
FindAlIMarkers analysis in the Seurat package®' and the top 50 most significant DEGs were
carefully reviewed. The top 50 most significant differentially expressed transcription factors were
also identified and reviewed by performing FindAlIMarkers only on an aggregated TF list®. In
parallel, feature plots were generated for top 20 DEGs and a suggested set of canonical
lymphoid and myeloid cell markers, a similar approach as previously described®>’ followed by
a careful manual review and annotation. The two approaches are combined to infer major cell
types for each cell cluster according to the enrichment of marker genes and top-ranked DEGs
in each cell cluster, and the global cluster distributions as previously described®’. We sub-
clustered the major myeloid and lymphoid populations iteratively and rigorously annotated the
resulting cell-clusters using a combination of a) top 50 DEGs, b) top 50 differentially expressed
lineage defining transcription factors and c) canonical immune signature genes.

Hierarchical relationship analysis: To study the hierarchical relationships among cell
types identified in this study, unsupervised cluster analysis was performed. Pairwise Spearman
correlations were calculated from average expression level (Seurat function
AverageExpression) of each cell type, based on which Euclidean distances between cell types
were calculated. Hierarchical cluster analysis was performed by R function hclust and the
dendrogram was drawn using R package ggtree®®.

Gene Ontology Enrichment Analysis: Top 100 DEGs from each cluster (MG and non-
MG myeloid cells) were used for Gene Ontology enrichment analysis using Bioconductor
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package ClusterProfiler®®. Significantly enriched GO-BP (Gene Ontology-Biological processes)
terms were retrieved by setting the threshold of FDR<0.05 and minimum overlapping gene set
size=3. Enriched terms having >=3 queried genes were manually selected using immunological

keywords. Bubble plots were made using ggplot2 R package.

Macrophage Polarization Gene Set Enrichment Analysis: Top 100 DEGs from each
cluster (MG, MAC and MDMs) were used for gene module enrichment analysis with reference
gene signatures previously defined?” using Bioconductor package ClusterProfiler>® and plotted

as circos plots3' using ggplot2 R package.

Flow Cytometry staining

The cryopreserved cells were thawed at 37 degree Celsius and washed with10% FBS
(Catalogue No. F4135, Sigma) in Iscove’s DMEM (1X, Catalogue No. 10-016-CV, Corning). The
washed cells were pelleted by centrifugation at 500g for 5 mins. Cells were incubated with the
10% FBS containing Iscove’s DMEM media at 37°C for 30 mins before staining. PBS washed
cells were stained with a fixable Live Dead Blue Dead cell stain dye (Catalogue No. L34962,
Invitrogen) for 15 mins at 4°C. The Stained cells were washed with 1X PBS. Fc block was
performed with a combination of Fc block -Human Tru Stain Fc block (Catalogue No. 422301,
Biolegend), Nova Block Solution, (Catalogue No. M071437, Phitonex, Cell Blox Blocking Buffer,
Catalogue No. BOO1TO3F01) for 10 mins at 4°C. After Fc block, cell surface staining was
performed with antibody cocktail (mentioned in Supplementary Table S2) diluted in BD Horizon
Brilliant Stain buffer (Catalogue No. 566385, Becton Dickinson) and FACS buffer. For cell
surface staining incubate was done for 30 mis at 4°C in dark. The stained cells after staining
were washed with FACS buffer fixed with 200ul True Nuclear fixation buffer (True Nuclear 4X
Fix Concentrate, Catalogue No. 73158, Biolegend and True Nuclear Fix Diluent, Catalogue No.
73160, Biolegend) overnight at 4°C. Overnight fixed cells were permeabilized with 1X
Permeabilization buffer (True Nuclear 10X Perm, Catalogue No. 73162, Biolegend) for
intracellular staining. Permeabilized cells were stained with the intracellular antibody cocktail
(refer to Supplementary Table S2) for 20 mins at 4°C.The stained cells were resuspended in
FACS buffer and data was acquired on Cytek Aurora 5 laser spectral flow cytometer.

Cytometry Analyses
The acquired data was analyzed by Cytek SpectroFlo and Becton Dickinson FlowJo 10.8.1.


https://doi.org/10.1101/2022.11.08.514794
http://creativecommons.org/licenses/by-nc-nd/4.0/

552
553
554
555
556
557

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.08.514794; this version posted November 9, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Mouse experiments and survival analysis

Six-week-old WT and TREM2”- mice were obtained from Jackson laboratories. One week after
guide screw implantation, 10,000 CT-2A cells were injected intracranially. Animals were
monitored for tumor growth using bioluminescence imaging. For survival analysis, we used the
log-rank test to calculate P values between groups, and the Kaplan-Meier method to plot survival

curves using GraphPad Prism9 version 9.2.0 software.
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Figure Legend

Fig. 1 | The single cell transcriptional landscape of glioma TIME.

A) A schema depicting the experimental workflow from sample preparation (see Methods) of
resected brain tissues/tumors to scRNA-seq data generation and spectral flow cytometry
validation and computational analysis. Patients were stratified as non-glioma brain (NGB; n = 3)
and IDH-mutant primary (IMP; n = 4), IDH-mutant recurrent (IMR; n = 6), IDH-wild type primary
(IWP; n = 4), IDH-wild type recurrent (IWR; n = 6) groups; hereafter collectively referred as
glioma subtypes (see details in Supplementary Table 1). The dissociated CD45-APC-stained
cells were FACS sorted to obtain pure CD45" glioma associated leukocytes. Subsequently
matched sc-RNAseq and bulk RNA-Seq was performed followed by computational analysis. sc-
RNA seq inferred cell types were validated by spectral cytometry. B-D), Uniform manifold
approximation and projection (UMAP) visualization of unsupervised clustering analysis of (B) all
immune cells (n = 144,678) that passed quality filtering (see Methods), (C) myeloid lineage
clusters (n = 100,587), and (D) lymphoid lineage clusters (n = 44,091). Cells are color coded for

their inferred cell types (left) and the glioma subtypes of their corresponding tumors (middle).
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Fig. 2 | Glioma associated leukocyte diversity corroborated with spectral flow cytometric
analyses.

Scatter bar plots represent the proportion of indicated immune cell type (of total CD45*
leukocytes) across glioma subtypes; NGB (n = 3), IMP (n = 16), IMR (n = 11), IWP (n = 14) and
IWR (n =14) as shown in (A) CX3CR1*P2RY12* Microglial cells (MG); (B) Microglial subsets
(gated on MG): CD11c'CCR2Resting MG (left), CD11c*CCR2- Reactive Microglia (middle), and
CD11c*CCR2* Monocyte-derived MG-like (Mo-MG); (C) Monocyte subsets (gated on CD3"
CD56%): CD14*CD16" Classical Monocytes (c-Mo), and CD14*CD16* Intermediate monocytes
(Int-Mo) and CD14-CD16" Non-classical monocytes; (D) Macrophages (Gated on CD3-CD56"):
CD68*CCR2 Macrophages (MAC), and CD68*CCR2* Monocyte-derived Macrophages (MDM)
(E) Conventional Dendritic cell (cDC) subsets (gated on CD11b*CD11c*HLADR®):
Clec9A*CD1c ¢cDC1, and ClecOACD1c* cDC2; (F) T cell subsets (Gated on CD3*); CD8*CD4-
T cells, CD4*Foxp3 T cells and CD4*Foxp3- T regulatory (Tregs) cells; (G) Natural Killer cell
subsets (gated on CD56"); CD56"CD16' Activated NK cells, and CD56'°CD16" Cytotoxic NK
cells; (H) Unconventional T cell subsets: CD3*CD56" Natural Killer T (NKT) cells, TCRyd" (yo'T)
cells TCRVa7.2* Mucosal associated invariant T (MAIT) cells. Statistical significance was
determined using by Kruskal Wallis test at p*<0.05, p**<0.01, p***<0.001.
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Fig. 3 | Glioma associated myeloid cell diversity and their inferred functional states.

(A) UMAP visualization of unsupervised clustering analysis of Microglia (MG, n = 63,332),
displaying nine distinct cell states (top). Cells are color coded for their inferred cell types (top)
and the glioma subtypes of their corresponding tumors (bottom). (B) Bubble plot depicting gene
ontology (GO) analysis of glioma associated MG states. (C) Bubble plot showing
overrepresented stimulus-specific Palmitic acid and Interleukin-4 (IL-4) polarization gene
expression modules as multispectral polarization (see Methods). (D) UMAP visualization of
unsupervised clustering analysis of non-MG myeloid cells (n = 37,255), displaying sixteen
distinct cell states (top). Cells are color coded for their inferred cell types (top) and the glioma
subtypes of their corresponding tumors (bottom). (E) Bubble plot depicting gene GO analysis of
glioma associated non-MG myeloid cell states. (B, C, E) In B and E, each bubble represents a
GO Term and in C, each bubble represents a polarization module. Bubble size corresponds to
gene ratio and the color of the bubble indicates statistical significance. Only polarization modules
with 5 or more overlapping genes and an adjusted p value of <0.05 are shown in C.
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Fig. 4 | Identification of anti-glioma role of Triggering receptor expressed on myeloid
(TREM)-2* myeloid cells

(A) UMAP visualization of (top) inferred MG states, expression of HLADR (bottom); (B) TREMZ;
(C) MS4A6A across MG clusters as shown in (A). (D) Representative percentage survival
analyses of CT-2A glioma bearing mice TREM2” (n=20) versus WT mice (n=19) in C57BL/6
genetic background. Statistical significance of survival was determined using Mantel-Cox log-
rank test at p*=0.038.
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Supplementary Fig. S1 | (A): Flow cytometry pseudo color dot plots showing in (A) gating
strategy with SYTOX-G-stained dead cells and CD45 expression on stained tumor associated
leukocytes, in (B) differential CD45 expression (CD45'° and CD45") on leukocytes obtained from
NGB controls and glioma subtypes as shown and in (C) representative pseudo color plots for
purity of sorted CD45 cells. (D) iLISI (local inverse Simpson’s Index) computed for every cell's
neighborhood and summarized with density plots before batch correction. The UMAP were color
coded by batch, patient and pathology. (E) cLISI computed for every cell’s neighborhood and
summarized with density plots before batch correction. The UMAP were color coded by major
cell types. (F) and (G), same as (D) and (E) but after batch correction. (H) Batch effects
evaluation using the k-nearest neighbor batch-effect test (k-BET, see Methods). K-BET was run
on 500 cells randomly selected from 1 myeloid cell type (MG) and 1 lymphoid cell type (CD8T)
separately before and after batch correction. Shaded areas represent the 95th percentile of n =
100 repeated k-BET runs. (I) UMAP visualization of unsupervised clustering analysis of glioma
associated myeloid cells. (J) Bubble plot showing the scaled expression (shown by the color of
the circle) and percentage of expression (shown by the size of the circle) of different myeloid cell
type specific genes. (K) Workflow showing the identification of major lymphoid cell types by
multi-steps of sub-clustering. (L) Bubble plot showing the scaled expression (shown by the color
of the circle) and percentage of expression (shown by the size of the circle) of different lymphoid
cell type specific genes. (M) The stacked bar plot showing relative distribution of glioma
associated myeloid and lymphoid cell types across sc-RNAseq sampled patients. (N) Phylogenic
relationship between myeloid and lymphoid cell types revealed by hierarchical clustering
analysis based on Euclidean distance between cell types (see Methods).
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Supplementary Fig. S2 | (A): UMAP visualization of unsupervised clustering analysis of glioma
associated MG, MG-like (colored) and non-MG myeloid (grey). (B) Four different community
detection algorithms in Seurat were used to find the best clustering of MG cells. In each
algorithm, resolution was tuned from 0.1 to 2 with step 0.1, under which the averaged silhouette
width value and ROGUE value were calculated to evaluate the inter-cluster dissimilarity and
cluster purity. Shaded region indicated the best trade-off between averaged silhouette width
value and ROGUE value. (C) Bubble plot showing the scaled expression (shown by the color of
the circle) and percentage of expression (shown by the size of the circle) of different lymphoid
cell type specific genes. (D) UMAP visualization of unsupervised clustering analysis of glioma
associated Myeloid interferons (Myeloid_IFN). Cells are color coded for their inferred cell types
(left) and the glioma subtypes of their corresponding tumors (right). (E-F) Bubble plot showing
the scaled expression (shown by the color of the circle) and percentage of expression (shown
by the size of the circle) of different Myeloid interferon clusters and their specific genes in (E)
and non-MG myeloid cells in (F). (G) Stacked bar plots showing corresponding %myeloid cell
type composition across each glioma subtype.
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