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Abstract  24 
 25 
The specialised regional functionality of the mature human cortex partly emerges through 26 
experience-dependent specialisation during early development. Our existing understanding of 27 
this process is based on evidence from unitary imaging modalities and has thus focused on 28 
isolated changes in spatial or temporal precision of neural or haemodynamic activation alone, 29 
giving an incomplete picture of the process.  We speculate that neural specialisation of 30 
function will be underpinned by better coordinated haemodynamic and metabolic changes in 31 
a broader orchestrated physiological response. Thus, we present a harmonised framework in 32 
which specialisation is indexed by the emergence of coupling between neuronal activity and 33 
vascular supply of oxygen and energy. Here, we combine simultaneous measures of 34 
coordinated neural activity (EEG), metabolic rate and oxygenated blood supply (broadband 35 
near-infrared spectroscopy) to measure emerging specialisation in the infant brain. In 4-to-7-36 
month-old infants, we show that social processing is accompanied by spatially and 37 
temporally specific increases in coupled activation in the temporal-parietal junction, a core 38 
hub region of the adult social brain. During non-social processing coupled activation 39 
decreased in the same region, indicating specificity to social processing. Coupling was 40 
strongest with high frequency brain activity (beta and gamma), consistent with the greater 41 
energetic requirements and more localised action of high frequency brain activity. We 42 
conclude that functional specialisation of the brain is a coordinated activity across neural, 43 
haemodynamic, and metabolic changes, and our ability to measure these simultaneously 44 
opens new vistas in understanding how the brain is shaped by its environment. 45 
 46 
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Introduction 48 
 49 

The adult brain is highly specialised, with core networks coordinating to subserve complex 50 
behaviours. This specialised functioning emerges across development through a combination 51 
of genetically influenced brain architecture and experience-dependent and experience-52 
expectant learning processes (1). This interaction between predisposition and change with 53 
experience has been closely studied in the domain of social interaction, where neonates 54 
attended preferentially to faces (2) but expertise in recognition, communication, and initiation 55 
emerge gradually over time (1, 3). Social communication is core to human interaction, and 56 
our ability to live in extended-family groups has been linked to the evolution of advanced 57 
cognitive abilities (4). Thus, understanding the processes that shape social brain development 58 
is critical to understanding the ontogeny and phylogeny of our species.  59 
 60 
In adulthood, social interaction is partially subserved by a network of specialised regions that 61 
include the amygdala, fusiform gyrus, superior temporal sulcus, and medial prefrontal cortex 62 
(5). However, the mechanisms through which this network becomes specialised for social 63 
processing remains unclear, in part because studies have typically used single modalities 64 
sensitive to distinct aspects of brain function. For example, the N170 event-related 65 
electroencephalographic brain response indexes expertise with faces and can be sourced to 66 
the fusiform gyrus (6). This response can be detected by 4 months (7), but its sensitivity to 67 
configural processing develops over the first year of life (8). Functional magnetic resonance 68 
imaging (fMRI) indicates that core regions of the social brain (particular the fusiform face 69 
area) show increases in oxygenated haemoglobin delivery in response to faces by 4-9 months 70 
(9). Functional near-infrared spectroscopy (fNIRS) studies show that oxygenated 71 
haemoglobin delivery in response to naturalistic social videos in a broad region of temporal 72 
cortex emerges over the first hours of life (10). Thus, work with single modalities indicates 73 
experience-dependent changes in specialised brain activity across the first year of life but 74 
does not yield insights into the underpinning mechanisms. 75 
 76 
Interactive specialisation is a theory of brain development that posits that competition 77 
between brain regions for acquiring function drives specialisation (3). This can be indexed 78 
through a reduction in the spatial extent of neural (and vascular) responses to a particular 79 
stimulus category and a concomitant increase in selectivity in responsive regions (11). One 80 
mechanism that could underpin this competition is the limited energetic resources available to 81 
the infant brain. The brain is an energetically costly organ, consuming 20-25% of the body’s 82 
energy in adulthood while representing only 2% of the body’s mass (12, 13). There are also 83 
substantial developmental changes in the brain’s energy consumption; in the first year of life, 84 
up to 60% of available energy is used by the brain (14). When brain regions become 85 
functionally active (for example during stimulus processing) neurons fire more rapidly, 86 
requiring greater supplies of adenosine triphosphate or ATP (energy stores). Producing ATP 87 
requires oxygen, and this is supplied through a localised increase in oxygenated haemoglobin 88 
in the blood. Increases in oxygenated haemoglobin do not happen concurrently in all brain 89 
areas, and there are spatial dependencies between activated and deactivated regions in the 90 
adult brain (15). Energy supplies are important to synaptic plasticity, memory and learning 91 
(16), and the mechanism through which energy supplies are coupled to activation 92 
(neurovascular coupling) also develops through experience-dependent specialisation in the 93 
infant brain (17). Thus, we propose that examining the coupling between neuronal activity 94 
and energy supply will provide the most sensitive measure of the emergence of specialised 95 
brain function in the infant brain.   96 
 97 
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Broadband near-infrared spectroscopy (or bNIRS) is a new technique that can be used to 98 
quantify the relationship between the neuronal, hemodynamic, and metabolic activity in the 99 
infants’ brain as it allows the simultaneous and non-invasive acquisition of haemodynamic 100 
and metabolic activity concurrently with EEG during functional activation. This technology 101 
uses a broad range of optical wavelengths which allows the measurement of the oxidation 102 
state of mitochondrial respiratory chain enzyme cytochrome-c-oxidase (CCO), thereby 103 
providing a direct measure of cellular energy metabolism (18). CCO is located in the inner 104 
mitochondrial membrane and serves as the terminal electron acceptor in the electron transport 105 
chain (ETC). It therefore accounts for 95% of cellular oxygen metabolism. In this way, 106 
bNIRS allows non-invasive measurement of cellular energy metabolism alongside 107 
haemodynamics/oxygenation in awake infants. We recently showed the feasibility of using 108 
bNIRS in 4-to-7-month-old typically developing infants (19) and demonstrated the presence 109 
of unique task-relevant, regionally specific functional networks where high levels of 110 
haemodynamic and metabolic coupling were observed. Here, we integrate this methodology 111 
with EEG to identify markers of early brain specialisation with coordinated energetic 112 
coupling and neural activity. We develop a novel analysis pipeline to identify localised 113 
coupling responses that are modulated by naturalistic social content. We predicted that 114 
coupling would be most pronounced in the high-frequency beta and gamma band (20–25) 115 
(26), and we hypothesised that we would identify core localised social brain regions with 116 
coordinated increases in coupled neural activity, metabolic changes and neurovascular 117 
response in the infant brain.    118 
 119 

Results 120 
 121 
Naturalistic social stimuli elicit expected increases in broadband EEG activity: 5-month-122 
old infants n=42) viewed naturalistic social and non-social stimuli (Fig 1a) while we 123 
concurrently measured EEG and broadband NIRS. Fourier-transform of continuously 124 
recorded EEG data from 32 channels (n=35) in one-second segments across the time course 125 
of stimulus presentation confirmed robust broadband increases in neural activity in response 126 
to social versus non-social stimuli (Fig 1b, replicating (11)).  127 
 128 

 129 
 130 
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 131 

Figure 1: a) Illustration of the paradigm; b) Scalp topographies of the grand average RMS power for theta, alpha, beta, and 132 
gamma frequency bands (averaged across participants, averaged across the stimulus period) for the social minus non-social 133 
condition. The orange stars indicate statistically significant EEG electrodes where an increase in activity was observed 134 
(e.g., increase in response to the social condition compared to the non-social condition) while the grey stars indicate 135 
statistically significant EEG electrodes where a decrease in activity was observed; a double line indicates significance after 136 
FDR correction.  137 

 138 
Haemodynamic and metabolic coupling and oscillatory activity spatially overlap: A 139 
validated method Fig 2f (27) applied to the bNIRS data (n=25) identified regions with 140 
coupled increases in metabolic function and oxygenated blood flow (19). This revealed 141 
distinct locations sensitive to social (Fig 2b) and non-social (Fig 2d) processing; the 142 
topography of these locations is strikingly similar to the topography of differentiated 143 
broadband EEG activity (Fig 2a, c, e).  144 
 145 
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 147 
 148 
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 150 
Figure 2: Scalp topographies of the grand average RMS power for theta, alpha, beta, and gamma frequency bands 151 
(averaged across participants, averaged across the stimulus period for (a) social and (c) non-social conditions. Locations of 152 
high haemodynamic and metabolic coupling for (b) social and (d) non-social condition obtained using (f) the relative power 153 
and cost method described in(27, 28).   154 

Coupled signals highlight specialised activation in the temporal parietal junction: We 155 
then convolved the time-course of the within-hemisphere EEG responses with an infant-156 
specific haemodynamic response function (n=17; Fig 3a). A general linear model (GLM) 157 
approach was then used to identify FDR-corrected associations between EEG channels and 158 
bNIRS channels that showed significant coupling between metabolic response and 159 
oxygenated haemoglobin delivery (Fig 2 b, d). We were looking for bNIRS channels showing 160 
the expected patterns of positive associations between EEG and oxCCO and HbO2 and 161 
negative associations with HHb. Figure 3 shows that these associations were primarily 162 
concentrated in the beta and gamma bands as predicted (Fig 2 in the supplementary material 163 
shows the associations for the theta and alpha bands). Coupled activity was localised to a 164 
bNIRS channel (channel 14) positioned over the superior temporal sulcus - temporo-parietal 165 
junction region. At this channel,  a coupled increase for the social condition and a coupled 166 
decrease for the non-social condition was observed (Fig 3 b, c).  167 
 168 
 169 

170 
 171 
 172 

 173 
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174 
 175 
Figure 3: (a) Summary of the procedure for obtaining the associations between bNIRS signals and EEG RMS power at each 176 
bNIRS channel combination, for each frequency band. FDR-corrected significant connections between bNIRS channels and 177 
EEG electrodes for the beta and gamma bands for the social condition (b-c) and the non-social condition (d-e) for HbO2, 178 
HHb, and oxCCO. The colour bar represents the t-values from the GLM analysis with a positive t-value representing a 179 
significant, positive connection between the bNIRS channel and EEG electrode while a negative t-value represents a 180 
negative connection.   181 

 182 
Using image reconstruction on the bNIRS data, the spatial sensitivity of the bNIRS location 183 
of interest (channel 14) is shown in Figure 4. The method for image reconstruction has been 184 
described in detail in the methods section. This indicates that coupled activity was most 185 
consistent with the spatial extent of changes in metabolic activity (CCO) and was 186 
differentially modulated in the social and non-social conditions.  187 
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 188 
Figure 4: Grand-average image reconstruction at 18 s post-stimulus onset for the social condition (a – c) and the non-social 189 
condition (d – f) at a single time point of 18 s post-stimulus onset. The concentration changes for HbO2 and HHb were 190 
normalised to the maximum concentration change of HbO2 while ΔoxCCO was normalised to its own maximum change in 191 
concentration. Channel 14 has been indicated.  192 

 193 
Discussion 194 

 195 
We conducted a multimodal imaging analysis of coordinated neural activation, metabolic 196 
demand, and oxygenated haemoglobin delivery in the infant brain. Confirming previous 197 
work, naturalistic social and non-social stimuli produce broad haemodynamic changes that 198 
can be refined through examining locations with coupled haemodynamic and metabolic 199 
activity (19). We and others have also observed broadband differences in EEG responses to 200 
social and non-social stimuli (11) that were also observed in the present datasets. However, 201 
examining coupling between these two phenomena uncovered a precise pattern in which a 202 
specific location at the temporal-parietal junction that differentially responds to both social 203 
and non-social stimuli was also coupled with beta and gamma band activity across 204 
chromophores in the expected pattern. We contend that this approach allows precision 205 
identification of neural specialisation through the coordination of neural, haemodynamic, and 206 
metabolic activity. Widespread use of this technique will accelerate our understanding of 207 
both the typically and atypically developing brain.  208 
 209 
Our work is consistent with previous studies in identifying increased gamma band activity 210 
over temporal and parieto-occipital brain regions during face processing (29–38) (39–42). 211 
High-frequency neural firing is associated with localised processing (43) whilst lower-212 
frequency activity is associated with larger-scale network changes and transfer of information 213 
across systems (44). The increase in lower-frequency activity during social attention also 214 
observed here and in other work (11, 45) may support larger-scale connectivity and 215 
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communication of information through cross-frequency coupling (45). Our work further 216 
indicates that measures of metabolic load are a critical nexus in understanding localisation of 217 
brain function. Localised high-frequency activity exerts strong metabolic demand (46, 47) 218 
and subsequent increases in oxygenated haemoglobin (24, 48, 49). These increases in 219 
metabolic rate are supported by increased activity in the mitochondrial electron transport 220 
chain, resulting in the changes in cytochrome-c-oxidase we detected with broadband NIRS. 221 
Nitric oxide (which competes with oxygen to bind to cytochrome-c-oxidase) and carbon 222 
dioxide (produced as a by-product in the ETC) are key signalling molecule in controlling 223 
neurovascular coupling and thus subsequent oxygen delivery (50, 51). Finally, reactive 224 
oxygen species produced by the ETC are a key signal in inducing synaptic plasticity (52). 225 
Thus, our work is consistent with a model in which social attention induces localised high 226 
frequency brain activity in the temporal parietal junction, which increases local metabolic 227 
rates, triggering synaptic plasticity and subsequent oxygen delivery to a broader region.  228 
 229 
Our work specifically pinpoints the importance of the temporal-parietal junction in early 230 
social brain function. Previous studies measuring haemodynamic activity have identified 231 
early sensitivity of this region to social stimuli from at least 4 months (53), alongside a 232 
broader network of other regions.  Here, we pinpoint this specific location as having coupled 233 
neuronal, metabolic, and haemodynamic activity that is modulated in opposite directions by 234 
complex social and non-social content. In the adult brain, the temporal-parietal junction has 235 
received considerable attention and there are several competing models of its function. It has 236 
been linked to mentalising (54, 55) and reorienting attention to behaviourally relevant stimuli 237 
(56); it can be viewed as a nexus area where the convergence of attention, language, memory 238 
and social processing supports a social context for behaviour ((57) or as a region that is active 239 
when awareness of a prediction permits attentional control (58).  Intriguingly, recent 240 
formulations within the predictive coding framework link the right temporal-parietal junction 241 
to a domain-general role in prediction, perhaps representing the precision of priors (59). 242 
Predictability has been linked to energy-efficiency, with some computational models showing 243 
that energy limitations are the only requirement for driving the emergence of predictive 244 
coding (60). Increases in beta/gamma have also been linked to unexpected reward processing 245 
(61). Taken together, our results may indicate the early presence of priors for social 246 
interaction that are being actively updated (in contrast to the dynamic toys, which may 247 
already be more predictable). 248 
 249 
The methods we developed have extensive application in both neurotypical and atypical brain 250 
function. Assessing coupling over developmental time will indicate the mechanisms 251 
underpinning neural specialisation and constrain theoretical frameworks seeking to explain 252 
specialisation in the adult brain. The mechanisms of neurovascular coupling remain unclear 253 
in the adult brain (50), and are developing in infancy (17), and novel multimodal and non-254 
invasive approaches to their identification could yield significant progress.  Computational 255 
models could test the role of constraints in energy supply on developing localisation of 256 
function. Further, the region identified here also shows atypical haemodynamic 257 
responsiveness in infants with later symptoms of autism (62); since mitochondrial 258 
dysfunction has become an increasing focus in autism (63) the possibility that atypical 259 
coupling may impact specialisation in autism is an important hypothesis to test. Further, our 260 
methods have applicability in determining the impacts of early brain injury. Recent work (64) 261 
measured both cerebral oxygenation and energy metabolism in neonates with brain injury 262 
(hypoxic-ischaemic encephalopathy) and demonstrated that the relationship between 263 
metabolism and oxygenation was able to predict injury severity. This therefore provided a 264 
clinical, non-invasive biomarker of neonatal brain injury. Indicating applicability across the 265 
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lifespan (65) simultaneous measurements of cerebral oxygenation, metabolism and neural 266 
activity in epilepsy revealed unique metabolic profiles for healthy brain regions in 267 
comparison to those with the regions of the epileptic focus. This work demonstrates the 268 
strength of combining measurements from multiple modalities to investigate brain states, 269 
particularly in clinical populations.  270 
 271 
Our work has several limitations. We used naturalistic stimuli to maximise ecological 272 
validity; however, this reduces our ability to probe the function of the temporal-parietal 273 
junction across specific stimulus dimensions and this is an important target for future work. 274 
Limitations of current technology meant we recorded from the right hemisphere only and 275 
thus cannot determine the specificity of our findings to left temporal-parietal junction; 276 
engineering advances are required to produce whole-head bNIRS devices.   277 
 278 
Conclusion: Energy metabolism and neural activity are known to be tightly coupled in order 279 
to meet the high energetic demands of the brain, both during a task (66, 67) and at rest (68). It 280 
has been hypothesised that the level of correspondence between energy metabolism and 281 
neuronal activity may be an indicator for brain specialisation (28, 66, 69). Here, we 282 
developed a system to simultaneously measure multichannel broadband NIRS with EEG in 4-283 
to-7-month-old infants to investigate the neurovascular and neurometabolic coupling. We 284 
presented a novel study combining bNIRS and EEG and show stimulus-dependent coupling 285 
between haemodynamic, metabolic, and neural activity in the temporal-parietal junction. The 286 
results highlight the importance of investigating the energetic basis of brain functional 287 
specialisation and opens a new avenue of research which may show high utility for studying 288 
neurodevelopmental disorders and in clinical populations where these basic mechanisms are 289 
altered. 290 
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Data availability statement 325 
 326 
The data contains human subject data from minors and guardians provided informed consent 327 
to having data shared only with researchers involved in the project, in anonymised form. A 328 
Patient and Public Involvement (PPI) initiative at the Centre for Brain and Cognitive 329 
Development aimed to actively work in partnership with parents and guardians participating 330 
in research studies to help design and manage future research. A comprehensive public 331 
survey was conducted as part of this initiative which aimed to evaluate parent attitudes to 332 
data sharing in developmental science. This survey revealed that majority of parents do not 333 
want their data to be shared openly but are open to the data being shared with other 334 
researchers related to the project. Therefore, in order to adhere to participant 335 
preference/choice, a curated data sharing approach must be followed wherein the data can 336 
only be made available upon reasonable request through a formal data sharing and project 337 
affiliation agreement. The researcher will have to contact MFS and complete a project 338 
affiliation form providing their study aims, a detailed study proposal, plan for the analysis 339 
protocol, ethics, and plans for data storage and protection. Successful proposals will have 340 
aims aligned with the aims of the original study. Raw NIRS data, EEG data and integrated 341 
NIRS-EEG data can be made available in anonymised form. ID numbers linking the NIRS 342 
and EEG data, however, cannot be provided as parents/guardians have consented only to data 343 
being shared in anonymised form. All code used to analyse the NIRS data and the integration 344 
of the NIRS and EEG data is available on GitHub 345 
(https://github.com/maheensiddiqui91/NIRS-EEG). EEG data was processed using EEGlab 346 
which is a publicly available toolbox.     347 
 348 
Methods  349 
 350 
Participants: The study protocol was approved by the Birkbeck Ethics Committee. 351 
Participants were forty-two 4-to-7-month-old infants (mean age: 179± 16 days; 22 males and 352 
20 females); parents provided written informed consent to participate in the study, for the 353 
publication of the research and additionally for the publication and use of any photographs 354 
taken during the study of the infant wearing the NIRS-EEG headgear. Inclusion criteria 355 
included term birth (37 – 40 weeks); exclusion criteria included known presence or family 356 
history of developmental disorders. The sample size was determined by performing a power 357 
analysis of existing data using G*Power.  358 
 359 
Experimental Procedure: The experimental stimuli were designed using Psychtoolbox in 360 
Matlab (Mathworks, USA) and consisted of social and non-social videos. The social videos 361 
consisted of a variety of full-colour video clips of actors performing nursery rhymes such as 362 
“pat-a-cake” and “wheels on the bus”. The non-social videos consisted of dynamic video 363 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 9, 2022. ; https://doi.org/10.1101/2022.11.08.514512doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.08.514512
http://creativecommons.org/licenses/by/4.0/


clips of moving mechanical toys. The visual and auditory components of both social and non-364 
social videos was matched. These videos have been used extensively in prior infant studies in 365 
both EEG studies (11) and NIRS studies (70, 71). Both social and non-social experimental 366 
conditions were presented alternatingly for a varying duration between 8-12 s. The baseline 367 
condition consisted of static transport images, for example cars and helicopters, which were 368 
presented for a pseudorandom duration of 1 – 3 s each for a total of 8 s. Following the 369 
presentation of the baseline condition, a fixation cross in the shape of a ball or a flower 370 
appeared in the centre of the screen to draw the infant’s attention back to the screen in case 371 
the infant had become bored during the baseline period. The following experimental 372 
condition was then presented once the infant’s attention was on the fixation cross. Error! 373 
Reference source not found.a depicts the order of stimulus presentation. All infants sat in 374 
their parent’s lap at an approximate distance of 65 cm from a 35-in screen which was used to 375 
display the experimental stimuli. The study began with a minimum 10 s rest period to draw 376 
the infant’s attention towards the screen during which the infant was presented with various 377 
shapes in the four corners of the screen. Following this, the baseline and experimental stimuli 378 
were presented alternatingly until the infant became bored or fussy.  379 
 380 
Data acquisition and array placement: bNIRS and EEG data was acquired simultaneously 381 
and the bNIRS optodes and EEG electrodes were positioned on the head using custom-built, 382 
3-D printed arrays which were embedded within a soft neoprene cap (Neuroelectrics, Spain). 383 
Figures 5a and 5b show the locations of bNIRS optodes and EEG electrodes on the head. 384 
Figure 1b shows the combined bNIRS-EEG headgear positioned on an infant. The array was 385 
designed to allow measurement from several cortical regions which included occipital, 386 
parietal, temporal, and central regions to allow investigation of neurovascular coupling in 387 
different cortical regions that are expected to be activated by dynamic stimuli.  388 
 389 

 390 
Figure 5: Schematic representation of bNIRS and EEG channel locations. (a) Locations of bNIRS channels (grey circles) 391 

over the occipital cortex and the right hemisphere and locations of the bNIRS sources (orange circles) and detectors (green 392 
circles) relative to EEG 10/20 locations. Channels shown in blue (3, 6, 8 and 10) were excluded from the analysis (b) 393 

Locations of the 32 EEG electrodes. 394 
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 395 
Broadband NIRS: Brain haemodynamic (Δ[HbO2], Δ[HHb]) and metabolic changes 396 
(Δ[oxCCO]) were measured using an in-house broadband NIRS system developed at 397 
University College London (72). The bNIRS system consisted of two light sources that 398 
consisting of halogen light bulbs (Phillips) that emitted light in the near-infrared range (504 – 399 
1068 nm). The light was directed to the infant’s head through customised bifurcated optical 400 
fibres (Loptek, Germany), allowing each light source to split into two pairs of light sources. 401 
This formed a total of four light sources at the participant-end and each pair of light sources 402 
were controlled by a time multiplexing mechanism whereby one pair of light sources was on 403 
every 1.4 s. The system also consisted of fourteen detector fibres at the participant-end which 404 
were connected to two spectrometers, seven for each spectrometer (in-house developed lens 405 
spectrographs and PIXIS512f CCD cameras (Princeton Instruments). The configuration of 406 
four light sources and fourteen detectors formed a total of nineteen measurement channels. 407 
These were positioned over the occipital cortex and the right hemisphere as shown in Figure 408 
5a. The source-detector separation was 2.5 cm.  409 
 410 
Data were analysed in Matlab (Mathworks, USA) using in-house scripts. First, for each 411 
participant, across all wavelengths, wavelet-based motion correction (73) was applied to the 412 
attenuation change signal to correct for motion artifacts. The tuning parameter α�=�0.8 was 413 
used. Following this, the UCLn algorithm (18) was used with a wavelength-dependent, age-414 
appropriate fixed differential path-length factor (DPF) value of 5.13 (74). Changes in 415 
concentration of HbO2, HHb and oxCCO were calculated using 120 wavelengths between 416 
780 – 900 nm. A 4th-order bandpass Butterworth filter from 0.01 – 0.4 Hz was used to filter 417 
the data. For each infant, channels were assessed for signal quality and any channels with 418 
poor signal quality were rejected. Following this, the HbO2, HHb and oxCCO time-series 419 
were entered into a General Linear Model (GLM) to correlate bNIRS and EEG data.  420 
 421 
For each infant, intensity counts (or photon counts) from each of the fourteen detectors were 422 
used to assess the signal-to-noise (SNR) ratio at each channel and the channels with intensity 423 
counts lower than 2000 or higher than 40,000 were excluded (72). If an infant had more than 424 
60% of channels excluded, they were excluded from the study. At the group level, five 425 
channels over the occipital cortex were excluded due to poor SNR in majority of infants 426 
(Channel 3 excluded in 64% of infants, Channel 6 excluded in 83% of infants, Channel 7 427 
excluded in 64% of infants, Channel 8 excluded in 79% of infants) and one channel over the 428 
right hemisphere was excluded in 100% of infants due to a damaged optical fibre.  429 
 430 
EEG: EEG was used to measure neural activity simultaneously to haemodynamic and 431 
metabolic activity using the Enobio EEG system (Neuroelectrics, Spain) which is a wireless 432 
gel-based system. The system consisted of 32 electrodes, the locations of which are shown in 433 
Figure 5b. The sampling rate of the system was 500 Hz. The experimental protocol in 434 
Psychtoolbox sent event markers to both bNIRS and EEG systems using serial port 435 
communication which was then used to synchronise the bNIRS and EEG.  436 
 437 
All data were analysed using the EEGlab Toolbox (Schwartz Centre for Computation 438 
Neuroscience, UC San Diego, USA) and in-house scripts in Matlab (Mathworks, USA). The 439 
raw EEG signal was band-pass filtered between 0.1 – 100 Hz and a notch filter (48 – 52 Hz) 440 
was applied to remove artifacts due to line noise. Following this, blocks of the data were 441 
created such that they consisted of the baseline period prior to the stimulus presentation and 442 
the entire following stimulus period. These blocks were then segmented into 1 s segments 443 
such that for both the baseline and the stimulus, each 8 – 12 s presentation of the baseline 444 
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condition or the stimulus condition yielded 8 – 12 x 1 s segments. These 1 s segments 445 
consisted of 200 ms of the previous 1 s segment and 800 ms of the current segment and the 446 
200 ms was used for baseline correction of each 1 s segment.  Segments where the infants 447 
were not visually attending to the stimulus were removed. Artifacts were detected using 448 
automatic artifact-detection in EEGlab and through manual identification. EEG segments 449 
were rejected if the signal amplitude exceeded 200 μV, or if electro-ocular, movement, or 450 
muscular artifacts occurred. Channels with noisy data were interpolated by an algorithm 451 
incorporated within EEGlab. Data were then re-referenced to the average reference.  452 
 453 
Within each block (consisting of the baseline period and the stimulus period), each artifact-454 
free 1 s segment was subjected to a power analysis to calculate the average root mean square 455 
(RMS) power for both low and high frequency bands – theta (3 – 6 Hz), alpha (8 – 12 Hz), 456 
beta (13 – 30 Hz) and gamma (20 – 60 Hz), within each 1 s segment. This then yielded the 457 
average RMS power across the block (baseline period + following stimulus period). Baseline 458 
correction was performed by subtracting the average of the 2 s of the baseline period from the 459 
entire block.  RMS power was chosen as the metric to correlate bNIRS and EEG data as 460 
previous studies have demonstrated that task-related BOLD changes are best explained by 461 
RMS (75, 76). The blocks were then averaged across trials to obtain an averaged RMS 462 
response per participant. A portion of the averaged RMS power was then entered into a GLM 463 
analysis described below – this consisted of two seconds of the baseline period and 8 seconds 464 
of the stimulus period. Figure 6a provides a visual depiction of how the RMS power was 465 
derived from the pre-processed EEG data. For each participant, the RMS power was also 466 
averaged across the stimulus period for statistical analysis of the EEG data. For each 467 
frequency band, statistical t-tests were performed on this averaged RMS power comparing 468 
the social condition versus the baseline (RMS power was averaged during the baseline 469 
period), the non-social condition versus the baseline and social versus non-social. The false 470 
discovery rate (FDR) procedure using the Benjamin Hochberg method (77) was performed  471 
to correct for multiple comparisons.  472 
 473 
Data Analysis: Figure 6b outlines the data analysis pipelines for both bNIRS and EEG data, 474 
as well as the procedure for the combined bNIRS-EEG analysis.  475 
 476 
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480 
Figure 6: (a) Summary of the signalling pathways that mediate neurovascular coupling. High-frequency neural activity 481 
causes the release the excitatory neurotransmitter glutamate which binds to N-methyl-D-aspartate (NMDA) receptors in 482 
interneurons. This causes an influx of calcium (Ca2+) which in turn leads to an increase in ATP production through the 483 
mitochondrial electron transport chain (ETC). As a by-product, nitric oxide (NO) and reactive oxygen species (ROS) are 484 
produced. NO dilates arterioles to increase blood flow leading to increased oxygen delivery in surrounding brain regions. 485 
ROS influence synaptic plasticity. (b) Procedure for deriving the EEG RMS power from the pre-processed EEG data. The 486 
task-averaged RMS power shown here is average theta power across all infants from a single channel for the purposes of 487 
outlining the procedure (c) Flow chart for the data analysis pipelines for bNIRS (left), EEG (middle) and combined bNIRS-488 
EEG (right). 489 
 490 
Combined NIRS-EEG analysis: A GLM (78) approach was employed to investigate the 491 
relationship between the bNIRS hemodynamic and metabolic data with the EEG neural data. 492 
The canonical GLM typically uses a model of the expected haemodynamic response, i.e. the 493 
hemodynamic response function (HRF), to predict the hemodynamic signal. However, given 494 
the differences in the haemodynamic response in adults and infants, the standard adult HRF 495 
model cannot be assumed for infant data. For example, infants display a delay in their 496 
haemodynamic responses (79–81). In addition, the analogous of the HRF is not established 497 
for the metabolic response (i.e. the metabolic response function or MRF). Therefore, the first 498 
step of this analysis involved reconstructing the HRF for HbO2 and HHb and the MRF for 499 
oxCCO before combing bNIRS and EEG data.    500 
 501 
The reconstruction of the infant HRF and MRF started with block-averaging the HbO2, HHb, 502 
and oxCCO signals for social and non-social conditions within each baby. Based on our 503 
previous study (19), we selected only the channels that displayed statistically significant 504 
responses to the contrast task versus baseline. The single subjects block-averaged responses 505 
were averaged across the social and non-social conditions and then across the significant 506 
channels. The resulting block-averaged responses were then averaged across the group to 507 
obtain a “grand average” HbO2, HHb and oxCCO response.  508 
 509 
The grand average was then used in an iterative approach to estimate the HRF and MRF that 510 
best fit the HbO2, HHb and oxCCO responses. This involved fitting the grand averaged 511 
signals with different HRF/MRF models starting from the canonical HRF made of two 512 
gamma functions and varying the following parameters: 1) delay of response, 2) delay of the 513 
undershoot and 3) ratio of response to undershoot to identify the combination of parameters 514 
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that best reconstructed the infant HRF/MRF for the social/non-social stimuli. The parameters 515 
were varied in increments of 1 s such that the delay of the response was varied from 5 s to 15 516 
s from the stimulus onset, the delay of the undershoot was varied from 5 to 20 s and the ratio 517 
of the response to the undershoot was varied from 2 to 6 s. All possible combinations of 518 
parameters were tested. The grand average responses were fitted with each HRF/MRF in 519 
GLM approach, and β-values were obtained for each combination of the HRF/MRF 520 
parameters. The β-values were entered into a statistical test and the parameter combinations 521 
that yielded the highest, statistically significant β-values (i.e. the model best fitting the data) 522 
were selected to reconstruct the infant HRF/MRF. This is approach is similar to those used 523 
previously to reconstruct the infant HRF (81) and identified the best fit to be with a 2-s delay 524 
of response for HbO2 and HHb and a 3-s delay of response for oxCCO in comparison to the 525 
adult HRF (i.e. 6 s). Moreover, the delay of the undershoot was 9-s earlier for all 526 
chromophores and the ratio of the response to the undershoot was 2 for HbO2 and HHb and 3 527 
for oxCCO, in comparison to 6 for the adult HRF. The new reconstructed HRF was then used 528 
for the GLM approach to correlate bNIRS and EEG data. The process for estimating the HRF 529 
and MRF has been depicted in Figure 7.  530 
 531 

 532 
Figure 7: Procedure for obtaining the reconstructed haemodynamic response function (HRF) and the metabolic response 533 

function (MRF). 534 

To constrain the analysis, we chose to investigate coupling of haemodynamic and metabolic 535 
with neural activity at specific channels. For this, we used the results from an analysis we 536 
described previously that combined bNIRS haemodynamic and metabolic signals (19, 27). 537 
The results from this identified task-relevant cortical regions that displayed high levels of 538 
haemodynamic and metabolic coupling. The bNIRS channels that displayed significant 539 
haemodynamic and metabolic coupling for social and non-social conditions were used here. 540 
All EEG channels were used as EEG is not as spatially specific as bNIRS. For each infant, 541 
for each chromophore, for each channel and each EEG frequency band, the new infant 542 
HRF/MRF that was reconstructed in the previous step was convolved with the events to 543 
obtain the “predicted” bNIRS signal. The “predicted” bNIRS signal was then convolved with 544 
the EEG RMS power block (consisting only of the data from the stimulus period) at each 545 
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frequency band to obtain the neural regressor for the bNIRS data, considering both social and 546 
non-social conditions together. The design matrix thus included the neural regressor 547 
reflecting the increased in EEG activity to the social and non-social stimuli and used to fit the 548 
bNIRS data. This was performed for HbO2, HHb, and oxCCO individually for all the 549 
channels. β-values were estimated for each channel and t-tests against 0 were conducted to 550 
test whether there was a statistically significant association between bNIRS signals and EEG 551 
frequency bands. The false discovery rate (FDR) procedure using the Benjamin Hochberg 552 
method (77) was performed  to correct for multiple comparisons. The FDR-corrected 553 
significant t-values were plotted. This method has been used in numerous studies previously 554 
in correlating fMRI BOLD – EEG (20). For each frequency band, FDR-corrected, significant, 555 
β-values were also averaged (1) for bNIRS and EEG channels over the right hemisphere and 556 
(2) between bNIRS channels in the right hemisphere and EEG channels in the left hemisphere 557 
to obtain an estimate of the frequency band where bNIRS and EEG activity associated most 558 
strongly within hemispheres and across hemispheres. Only bNIRS channels that displayed 559 
significant (prior to FDR correction) haemodynamic and metabolic coupling were used for 560 
this analysis (as indicated in Figure  and Error! Reference source not found.). For the 561 
social condition, these were channels 4, 12, 13 and 14 for HbO2, channels 11, 12, 14 and 18 562 
for HHb and channels 4, 11, 12, 13, 14 and 18 for oxCCO. For the non-social condition, these 563 
were channels 5, 12 and 14 for HbO2, channels 5, 12, 14 and 16 for HHb and channels 5, 12, 564 
14 and 16 for oxCCO.  565 
 566 
For the bNIRS analysis, data from 25 infants was included while for the EEG analysis, data 567 
from 35 infants were included. For the joint bNIRS-EEG analysis, only infants that had both 568 
valid bNIRS and EEG data for social and non-social conditions were included and therefore 569 
17 infants were included in this analysis.  570 
 571 
Image reconstruction: Image reconstruction was performed on the bNIRS data, at the 572 
individual subject level and then averaged across infants to produce a grand average that is 573 
shown in Figure 4. For this analysis, three additional long-distance channels were created 574 
over the right hemisphere (in addition to the 19 bNIRS channels) that had a source/detector 575 
separation of 4.3cm.  576 
 577 
For this analysis, the block averaged attenuation changes at 13 discrete wavelengths (from 578 
780 – 900 nm at 10 nm intervals) for each infant were selected from the bNIRS data. This 579 
was done to reduce the computational burden of the reconstruction (82). A four-layer infant 580 
head-model (consisting of the grey matter (GM), white matter (WM), cerebrospinal fluid 581 
(CSF) and extra cerebral tissue) was built using averaged MRI data from a cohort of 12-582 
month-old infants presented in Shi et al. (83). The Betsurf segmentation procedure (84) was 583 
then used to define an outer scalp boundary from the average head MRI template. The 584 
voxelised four-layer model was converted to a high-resolution tetrahedral mesh (∼7.8 × 585 
105 nodes and ∼4.7 × 106 elements) using the iso2mesh software (Fang & Boas, 2009). The 586 
same software was used to create the GM surface mesh (∼5.8 × 104 nodes and ∼1.2 × 105 587 
faces), used to visualise the reconstructed images.   588 
 589 
The reconstruction of images of HbO2, HHb and ΔoxCCO are described elsewhere (85), 590 
using a multispectral approach (86). Wavelength-specific Jacobians were computed with the 591 
Toast++ software (87) on the tetrahedral head mesh and projected onto a 50 × 60 × 50 voxel 592 
regular grid for reconstruction, using an intermediate finer grid of 100 × 120 × 100 voxels to 593 
optimize the mapping between mesh and voxel space. Optical properties were assigned to 594 
each tissue type and for each wavelength by fitting all published values for these tissue types 595 
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(88–90). Diffuse boundary sources and detectors were simulated as a Gaussian profile with a 596 
2-mm standard deviation, and Neumann boundary conditions were applied. The inverse 597 
problem was solved employing the LSQR method to solve the matrix equations resulting 598 
from the minimization and using first-order Tikhonov regularization, with the parameter 599 
covariance matrix containing the diagonal square matrices with the background concentration 600 
values of the three chromophores (23.7 for HbO2, 16 for HHb and 6 for ΔoxCCO) (91, 92) 601 
and the noise covariance matrix set as the identity matrix. The maximum number of iterations 602 
allowed to the LSQR method was set to 50, and with a tolerance of 10-5. The regularization 603 
hyperparameter λ was set to 10-2.   604 
 605 
The reconstructed images, defined on the same regular grid of the Jacobian, were remapped 606 
to the tetrahedral head mesh and then projected to the GM surface mesh, by assigning a value 607 
to each node on the GM boundary surface that was equal to the mean value of all the 608 
tetrahedral mesh node values within a 3-mm radius. The concentration changes for HbO2 and 609 
HHb were normalised to the maximum concentration change of HbO2 while ΔoxCCO was 610 
normalised to its own maximum change in concentration.   611 
 612 
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