

1 **Title: Mapping human social brain specialisation beyond the neuron using multimodal
2 imaging in human infants**

3

4

5 **Authors: Maheen Siddiqui^{1*}, Paola Pinti¹, Sabrina Brigadói^{2,3}, Sarah Lloyd-Fox⁴, Clare
6 E. Elwell⁵, Mark H. Johnson⁴, Ilias Tachtsidis^{5†}, Emily J.H. Jones^{1*†}**

7

8

Affiliations:

9 ¹Centre for Brain and Cognitive Development, Birkbeck College, University of London, UK

10 ²Department of Development and Social Psychology, University of Padova, Italy

11 ³Department of Information Engineering, University of Padova, Italy

12 ⁴Department of Psychology, University of Cambridge, UK

13 ⁵Department of Medical Physics and Biomedical Engineering, University College London,
14 UK

15

16

***Correspondence:**

17 Joint corresponding authors

18 m.siddiqui@bbk.ac.uk

19 e.jones@bbk.ac.uk

20

21

†Joint last authorship

22

23

24

Abstract

25

26

The specialised regional functionality of the mature human cortex partly emerges through
27 experience-dependent specialisation during early development. Our existing understanding of
28 this process is based on evidence from unitary imaging modalities and has thus focused on
29 isolated changes in spatial or temporal precision of neural or haemodynamic activation alone,
30 giving an incomplete picture of the process. We speculate that neural specialisation of
31 function will be underpinned by better coordinated haemodynamic and metabolic changes in
32 a broader orchestrated physiological response. Thus, we present a harmonised framework in
33 which specialisation is indexed by the emergence of coupling between neuronal activity and
34 vascular supply of oxygen and energy. Here, we combine simultaneous measures of
35 coordinated neural activity (EEG), metabolic rate and oxygenated blood supply (broadband
36 near-infrared spectroscopy) to measure emerging specialisation in the infant brain. In 4-to-7-
37 month-old infants, we show that social processing is accompanied by spatially and
38 temporally specific increases in coupled activation in the temporal-parietal junction, a core
39 hub region of the adult social brain. During non-social processing coupled activation
40 decreased in the same region, indicating specificity to social processing. Coupling was
41 strongest with high frequency brain activity (beta and gamma), consistent with the greater
42 energetic requirements and more localised action of high frequency brain activity. We
43 conclude that functional specialisation of the brain is a coordinated activity across neural,
44 haemodynamic, and metabolic changes, and our ability to measure these simultaneously
45 opens new vistas in understanding how the brain is shaped by its environment.

46

47

48

Introduction

49

50 The adult brain is highly specialised, with core networks coordinating to subserve complex
51 behaviours. This specialised functioning emerges across development through a combination
52 of genetically influenced brain architecture and experience-dependent and experience-
53 expectant learning processes (1). This interaction between predisposition and change with
54 experience has been closely studied in the domain of social interaction, where neonates
55 attended preferentially to faces (2) but expertise in recognition, communication, and initiation
56 emerge gradually over time (1, 3). Social communication is core to human interaction, and
57 our ability to live in extended-family groups has been linked to the evolution of advanced
58 cognitive abilities (4). Thus, understanding the processes that shape social brain development
59 is critical to understanding the ontogeny and phylogeny of our species.

60

61 In adulthood, social interaction is partially subserved by a network of specialised regions that
62 include the amygdala, fusiform gyrus, superior temporal sulcus, and medial prefrontal cortex
63 (5). However, the mechanisms through which this network becomes specialised for social
64 processing remains unclear, in part because studies have typically used single modalities
65 sensitive to distinct aspects of brain function. For example, the N170 event-related
66 electroencephalographic brain response indexes expertise with faces and can be sourced to
67 the fusiform gyrus (6). This response can be detected by 4 months (7), but its sensitivity to
68 configural processing develops over the first year of life (8). Functional magnetic resonance
69 imaging (fMRI) indicates that core regions of the social brain (particular the fusiform face
70 area) show increases in oxygenated haemoglobin delivery in response to faces by 4-9 months
71 (9). Functional near-infrared spectroscopy (fNIRS) studies show that oxygenated
72 haemoglobin delivery in response to naturalistic social videos in a broad region of temporal
73 cortex emerges over the first hours of life (10). Thus, work with single modalities indicates
74 experience-dependent changes in specialised brain activity across the first year of life but
75 does not yield insights into the underpinning mechanisms.

76

77 Interactive specialisation is a theory of brain development that posits that competition
78 between brain regions for acquiring function drives specialisation (3). This can be indexed
79 through a reduction in the spatial extent of neural (and vascular) responses to a particular
80 stimulus category and a concomitant increase in selectivity in responsive regions (11). One
81 mechanism that could underpin this competition is the limited energetic resources available to
82 the infant brain. The brain is an energetically costly organ, consuming 20-25% of the body's
83 energy in adulthood while representing only 2% of the body's mass (12, 13). There are also
84 substantial developmental changes in the brain's energy consumption; in the first year of life,
85 up to 60% of available energy is used by the brain (14). When brain regions become
86 functionally active (for example during stimulus processing) neurons fire more rapidly,
87 requiring greater supplies of adenosine triphosphate or ATP (energy stores). Producing ATP
88 requires oxygen, and this is supplied through a localised increase in oxygenated haemoglobin
89 in the blood. Increases in oxygenated haemoglobin do not happen concurrently in all brain
90 areas, and there are spatial dependencies between activated and deactivated regions in the
91 adult brain (15). Energy supplies are important to synaptic plasticity, memory and learning
92 (16), and the mechanism through which energy supplies are coupled to activation
93 (neurovascular coupling) also develops through experience-dependent specialisation in the
94 infant brain (17). Thus, we propose that examining the coupling between neuronal activity
95 and energy supply will provide the most sensitive measure of the emergence of specialised
96 brain function in the infant brain.

97

98 Broadband near-infrared spectroscopy (or bNIRS) is a new technique that can be used to
99 quantify the relationship between the neuronal, hemodynamic, and metabolic activity in the
100 infants' brain as it allows the simultaneous and non-invasive acquisition of haemodynamic
101 and metabolic activity concurrently with EEG during functional activation. This technology
102 uses a broad range of optical wavelengths which allows the measurement of the oxidation
103 state of mitochondrial respiratory chain enzyme cytochrome-c-oxidase (CCO), thereby
104 providing a direct measure of cellular energy metabolism (18). CCO is located in the inner
105 mitochondrial membrane and serves as the terminal electron acceptor in the electron transport
106 chain (ETC). It therefore accounts for 95% of cellular oxygen metabolism. In this way,
107 bNIRS allows non-invasive measurement of cellular energy metabolism alongside
108 haemodynamics/oxygenation in awake infants. We recently showed the feasibility of using
109 bNIRS in 4-to-7-month-old typically developing infants (19) and demonstrated the presence
110 of unique task-relevant, regionally specific functional networks where high levels of
111 haemodynamic and metabolic coupling were observed. Here, we integrate this methodology
112 with EEG to identify markers of early brain specialisation with coordinated energetic
113 coupling and neural activity. We develop a novel analysis pipeline to identify localised
114 coupling responses that are modulated by naturalistic social content. We predicted that
115 coupling would be most pronounced in the high-frequency beta and gamma band (20–25)
116 (26), and we hypothesised that we would identify core localised social brain regions with
117 coordinated increases in coupled neural activity, metabolic changes and neurovascular
118 response in the infant brain.

119

120 Results

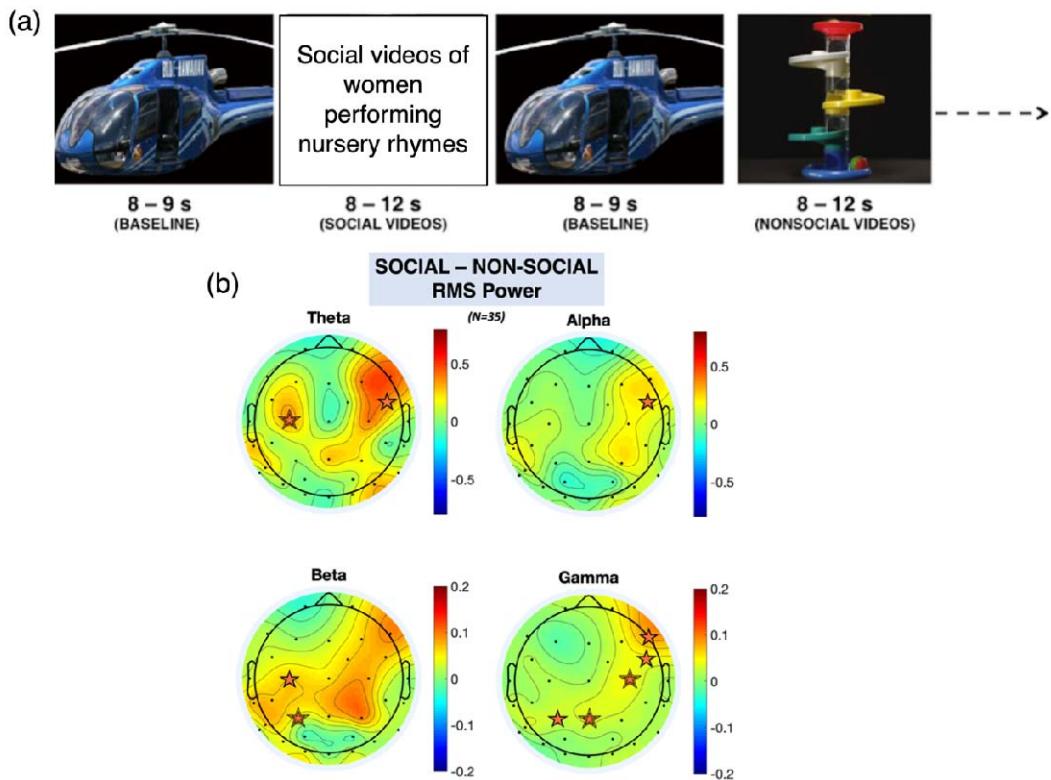
121

122 **Naturalistic social stimuli elicit expected increases in broadband EEG activity:** 5-month-
123 old infants n=42) viewed naturalistic social and non-social stimuli (Fig 1a) while we
124 concurrently measured EEG and broadband NIRS. Fourier-transform of continuously
125 recorded EEG data from 32 channels (n=35) in one-second segments across the time course
126 of stimulus presentation confirmed robust broadband increases in neural activity in response
127 to social versus non-social stimuli (Fig 1b, replicating (11)).

128

129

130



131

132
133
134
135
136
137

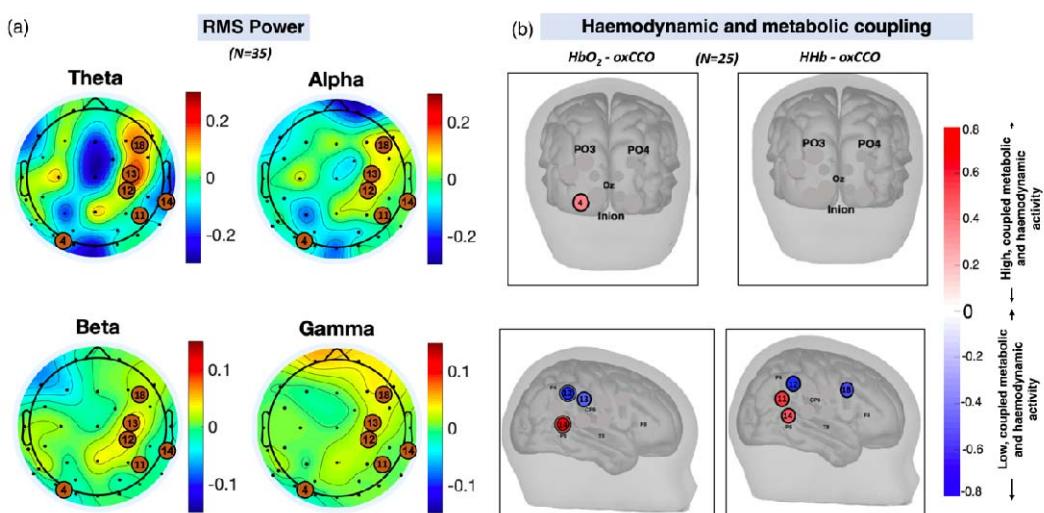
Figure 1: a) Illustration of the paradigm; b) Scalp topographies of the grand average RMS power for theta, alpha, beta, and gamma frequency bands (averaged across participants, averaged across the stimulus period) for the social minus non-social condition. The orange stars indicate statistically significant EEG electrodes where an increase in activity was observed (e.g., increase in response to the social condition compared to the non-social condition) while the grey stars indicate statistically significant EEG electrodes where a decrease in activity was observed; a double line indicates significance after FDR correction.

138

139
140
141
142
143
144
145

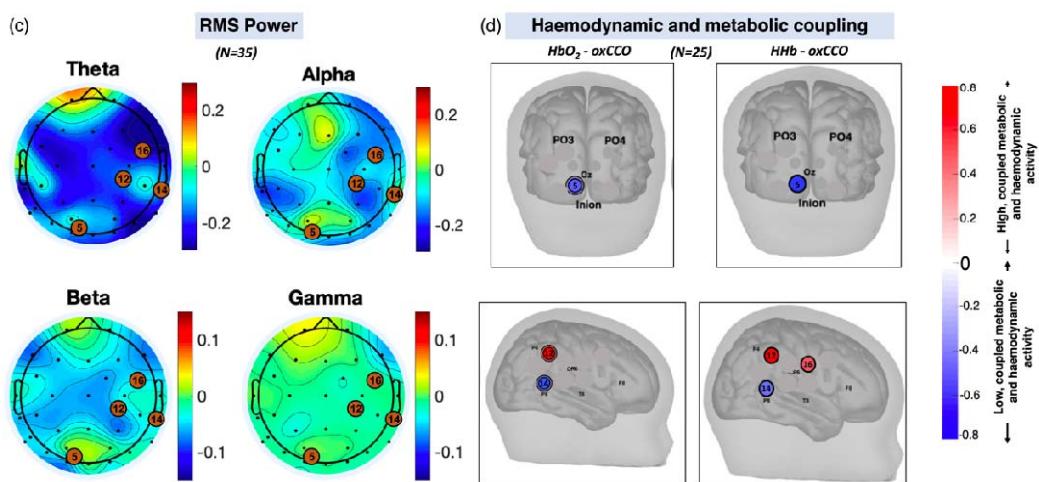
Haemodynamic and metabolic coupling and oscillatory activity spatially overlap: A validated method Fig 2f (27) applied to the bNIRS data (n=25) identified regions with coupled increases in metabolic function and oxygenated blood flow (19). This revealed distinct locations sensitive to social (Fig 2b) and non-social (Fig 2d) processing; the topography of these locations is strikingly similar to the topography of differentiated broadband EEG activity (Fig 2a, c, e).

SOCIAL

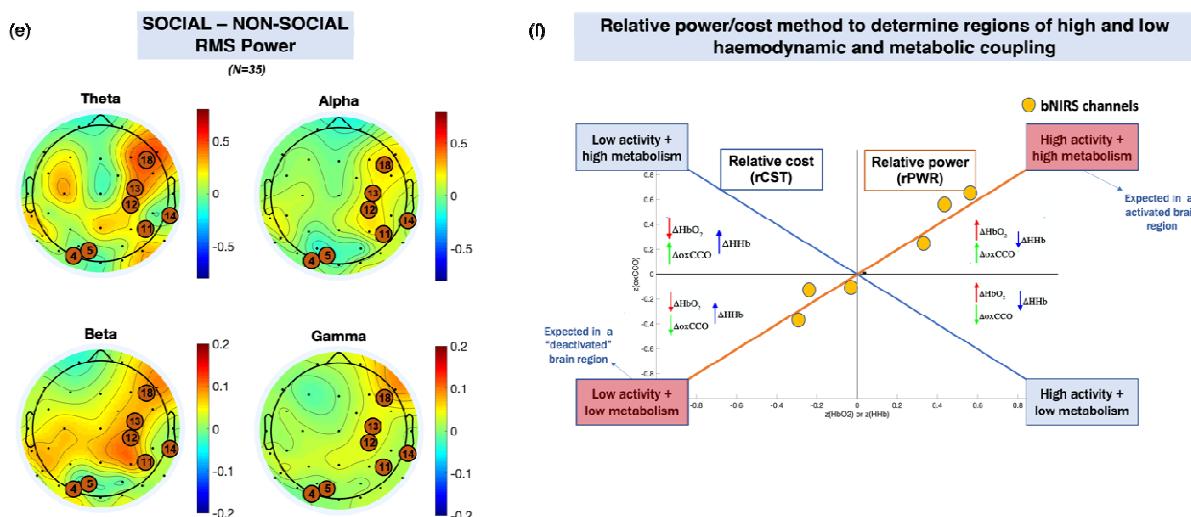


146

NON-SOCIAL



147
148



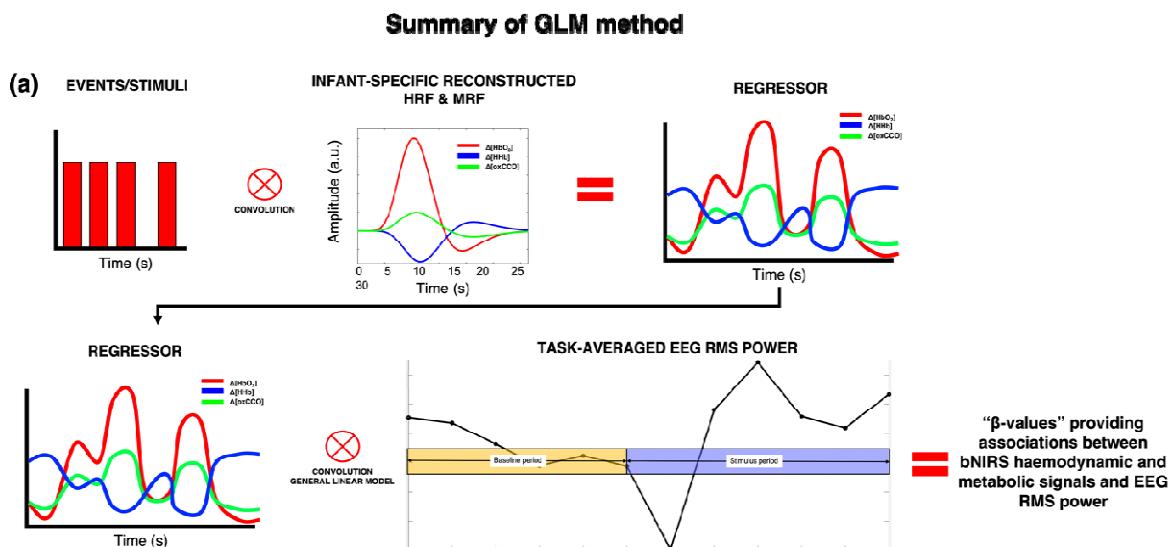
149

150

151 *Figure 2: Scalp topographies of the grand average RMS power for theta, alpha, beta, and gamma frequency bands*
152 *(averaged across participants, averaged across the stimulus period for (a) social and (c) non-social conditions. Locations of*
153 *high haemodynamic and metabolic coupling for (b) social and (d) non-social condition obtained using (f) the relative power*
154 *and cost method described in(27, 28).*

155

156 **Coupled signals highlight specialised activation in the temporal parietal junction:** We
157 then convolved the time-course of the within-hemisphere EEG responses with an infant-
158 specific haemodynamic response function (n=17; Fig 3a). A general linear model (GLM)
159 approach was then used to identify FDR-corrected associations between EEG channels and
160 bNIRS channels that showed significant coupling between metabolic response and
161 oxygenated haemoglobin delivery (Fig 2 b, d). We were looking for bNIRS channels showing
162 the expected patterns of positive associations between EEG and oxCCO and HbO₂ and
163 negative associations with HHb. Figure 3 shows that these associations were primarily
164 concentrated in the beta and gamma bands as predicted (Fig 2 in the supplementary material
165 shows the associations for the theta and alpha bands). Coupled activity was localised to a
166 bNIRS channel (channel 14) positioned over the superior temporal sulcus - temporo-parietal
167 junction region. At this channel, a coupled increase for the social condition and a coupled
168 decrease for the non-social condition was observed (Fig 3 b, c).
169



170

171

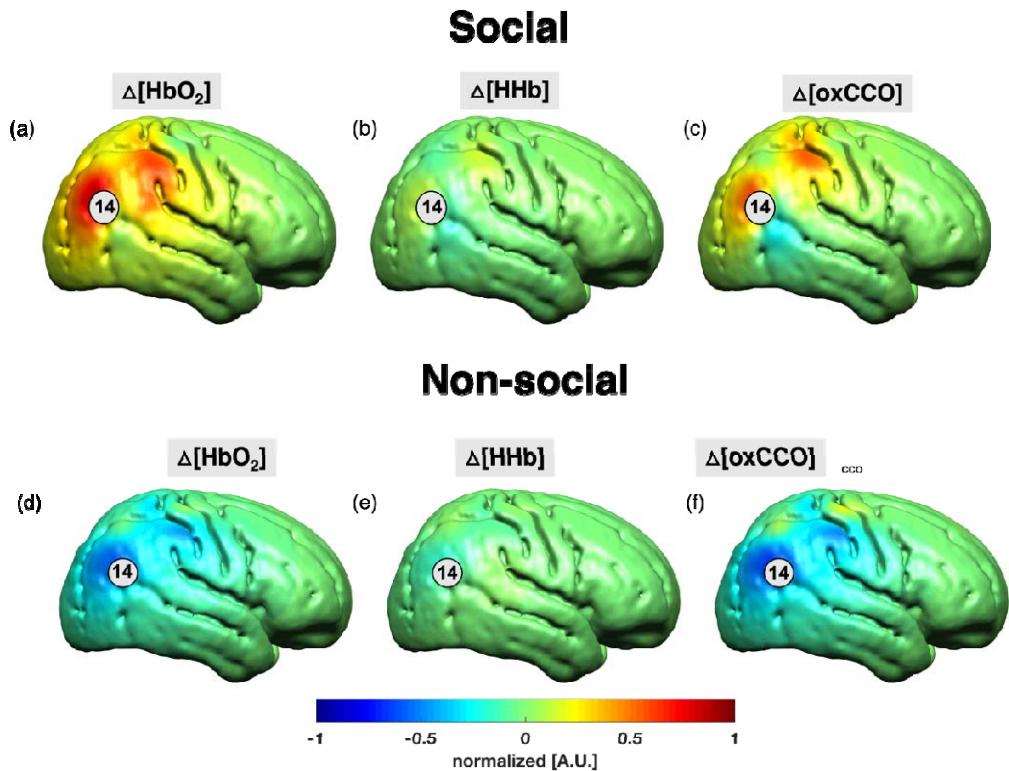
172

173



174
175
176 *Figure 3: (a) Summary of the procedure for obtaining the associations between bNIRS signals and EEG RMS power at each*
177 *bNIRS channel combination, for each frequency band. FDR-corrected significant connections between bNIRS channels and*
178 *EEG electrodes for the beta and gamma bands for the social condition (b-c) and the non-social condition (d-e) for HbO₂,*
179 *HHb, and oxCCO. The colour bar represents the t-values from the GLM analysis with a positive t-value representing a*
180 *significant, positive connection between the bNIRS channel and EEG electrode while a negative t-value represents a*
181 *negative connection.*

182
183 Using image reconstruction on the bNIRS data, the spatial sensitivity of the bNIRS location
184 of interest (channel 14) is shown in Figure 4. The method for image reconstruction has been
185 described in detail in the methods section. This indicates that coupled activity was most
186 consistent with the spatial extent of changes in metabolic activity (CCO) and was
187 differentially modulated in the social and non-social conditions.



188
189 *Figure 4: Grand-average image reconstruction at 18 s post-stimulus onset for the social condition (a – c) and the non-social*
190 *condition (d – f) at a single time point of 18 s post-stimulus onset. The concentration changes for HbO_2 and HHb were*
191 *normalised to the maximum concentration change of HbO_2 while $\Delta oxCCO$ was normalised to its own maximum change in*
192 *concentration. Channel 14 has been indicated.*

193 Discussion

194
195 We conducted a multimodal imaging analysis of coordinated neural activation, metabolic
196 demand, and oxygenated haemoglobin delivery in the infant brain. Confirming previous
197 work, naturalistic social and non-social stimuli produce broad haemodynamic changes that
198 can be refined through examining locations with coupled haemodynamic and metabolic
199 activity (19). We and others have also observed broadband differences in EEG responses to
200 social and non-social stimuli (11) that were also observed in the present datasets. However,
201 examining coupling between these two phenomena uncovered a precise pattern in which a
202 specific location at the temporal-parietal junction that differentially responds to both social
203 and non-social stimuli was also coupled with beta and gamma band activity across
204 chromophores in the expected pattern. We contend that this approach allows precision
205 identification of neural specialisation through the coordination of neural, haemodynamic, and
206 metabolic activity. Widespread use of this technique will accelerate our understanding of
207 both the typically and atypically developing brain.

208
209 Our work is consistent with previous studies in identifying increased gamma band activity
210 over temporal and parieto-occipital brain regions during face processing (29–38) (39–42).
211 High-frequency neural firing is associated with localised processing (43) whilst lower-
212 frequency activity is associated with larger-scale network changes and transfer of information
213 across systems (44). The increase in lower-frequency activity during social attention also
214 observed here and in other work (11, 45) may support larger-scale connectivity and

216 communication of information through cross-frequency coupling (45). Our work further
217 indicates that measures of metabolic load are a critical nexus in understanding localisation of
218 brain function. Localised high-frequency activity exerts strong metabolic demand (46, 47)
219 and subsequent increases in oxygenated haemoglobin (24, 48, 49). These increases in
220 metabolic rate are supported by increased activity in the mitochondrial electron transport
221 chain, resulting in the changes in cytochrome-c-oxidase we detected with broadband NIRS.
222 Nitric oxide (which competes with oxygen to bind to cytochrome-c-oxidase) and carbon
223 dioxide (produced as a by-product in the ETC) are key signalling molecule in controlling
224 neurovascular coupling and thus subsequent oxygen delivery (50, 51). Finally, reactive
225 oxygen species produced by the ETC are a key signal in inducing synaptic plasticity (52).
226 Thus, our work is consistent with a model in which social attention induces localised high
227 frequency brain activity in the temporal parietal junction, which increases local metabolic
228 rates, triggering synaptic plasticity and subsequent oxygen delivery to a broader region.
229

230 Our work specifically pinpoints the importance of the temporal-parietal junction in early
231 social brain function. Previous studies measuring haemodynamic activity have identified
232 early sensitivity of this region to social stimuli from at least 4 months (53), alongside a
233 broader network of other regions. Here, we pinpoint this specific location as having coupled
234 neuronal, metabolic, and haemodynamic activity that is modulated in opposite directions by
235 complex social and non-social content. In the adult brain, the temporal-parietal junction has
236 received considerable attention and there are several competing models of its function. It has
237 been linked to mentalising (54, 55) and reorienting attention to behaviourally relevant stimuli
238 (56); it can be viewed as a nexus area where the convergence of attention, language, memory
239 and social processing supports a social context for behaviour ((57) or as a region that is active
240 when awareness of a prediction permits attentional control (58). Intriguingly, recent
241 formulations within the predictive coding framework link the right temporal-parietal junction
242 to a domain-general role in prediction, perhaps representing the precision of priors (59).
243 Predictability has been linked to energy-efficiency, with some computational models showing
244 that energy limitations are the only requirement for driving the emergence of predictive
245 coding (60). Increases in beta/gamma have also been linked to unexpected reward processing
246 (61). Taken together, our results may indicate the early presence of priors for social
247 interaction that are being actively updated (in contrast to the dynamic toys, which may
248 already be more predictable).
249

250 The methods we developed have extensive application in both neurotypical and atypical brain
251 function. Assessing coupling over developmental time will indicate the mechanisms
252 underpinning neural specialisation and constrain theoretical frameworks seeking to explain
253 specialisation in the adult brain. The mechanisms of neurovascular coupling remain unclear
254 in the adult brain (50), and are developing in infancy (17), and novel multimodal and non-
255 invasive approaches to their identification could yield significant progress. Computational
256 models could test the role of constraints in energy supply on developing localisation of
257 function. Further, the region identified here also shows atypical haemodynamic
258 responsiveness in infants with later symptoms of autism (62); since mitochondrial
259 dysfunction has become an increasing focus in autism (63) the possibility that atypical
260 coupling may impact specialisation in autism is an important hypothesis to test. Further, our
261 methods have applicability in determining the impacts of early brain injury. Recent work (64)
262 measured both cerebral oxygenation and energy metabolism in neonates with brain injury
263 (hypoxic-ischaemic encephalopathy) and demonstrated that the relationship between
264 metabolism and oxygenation was able to predict injury severity. This therefore provided a
265 clinical, non-invasive biomarker of neonatal brain injury. Indicating applicability across the

266 lifespan (65) simultaneous measurements of cerebral oxygenation, metabolism and neural
267 activity in epilepsy revealed unique metabolic profiles for healthy brain regions in
268 comparison to those with the regions of the epileptic focus. This work demonstrates the
269 strength of combining measurements from multiple modalities to investigate brain states,
270 particularly in clinical populations.

271

272 Our work has several limitations. We used naturalistic stimuli to maximise ecological
273 validity; however, this reduces our ability to probe the function of the temporal-parietal
274 junction across specific stimulus dimensions and this is an important target for future work.
275 Limitations of current technology meant we recorded from the right hemisphere only and
276 thus cannot determine the specificity of our findings to left temporal-parietal junction;
277 engineering advances are required to produce whole-head bNIRS devices.

278

279 **Conclusion:** Energy metabolism and neural activity are known to be tightly coupled in order
280 to meet the high energetic demands of the brain, both during a task (66, 67) and at rest (68). It
281 has been hypothesised that the level of correspondence between energy metabolism and
282 neuronal activity may be an indicator for brain specialisation (28, 66, 69). Here, we
283 developed a system to simultaneously measure multichannel broadband NIRS with EEG in 4-
284 to-7-month-old infants to investigate the neurovascular and neurometabolic coupling. We
285 presented a novel study combining bNIRS and EEG and show stimulus-dependent coupling
286 between haemodynamic, metabolic, and neural activity in the temporal-parietal junction. The
287 results highlight the importance of investigating the energetic basis of brain functional
288 specialisation and opens a new avenue of research which may show high utility for studying
289 neurodevelopmental disorders and in clinical populations where these basic mechanisms are
290 altered.

291

292 Acknowledgements

293 M.F.S was funded by the BBSRC [BB/J014567/1], the Birkbeck Institutional Strategic
294 Support Fund (ISSF) and the ESRC (ES/V012436/1). E.J.H.J was supported by the ESRC
295 (ES/R009368/1). E.J.H.J, M.H.J. and M.F.S. were also supported by the AIMS-2-TRIALS
296 programmes funded by the Innovative Medicines Initiative (IMI) Joint Undertaking Grant
297 No. 777394. This Joint Undertaking receives support from the European Union's Horizon
298 2020 research and innovation programme, with in-kind contributions from the European
299 Federation of Pharmaceutical Industries and Associations (EFPIA) companies and funding
300 from Autism Speaks, Autistica and SFARI. I.T. was supported by the Wellcome Trust
301 (104580/Z/14/Z). S.L.F was supported by a UKRI Future Leaders Fellowship
302 (MR/S018425/1) and S.L.F and C.E.E received support from the Bill and Melinda Gates
303 Foundation (OPP1127625). M.H.J received support from the UK Medical Research Council
304 (MR/K021389/1 & MR/T003057/1). S.B. was supported by the Progetto STARS Grants
305 2017 (C96C18001930005) from the University of Padova.

306 The work presented herein was conducted at the Centre for Brain and Cognitive
307 Development, Birkbeck College, University of London. We are grateful to all the families
308 who participated in this research and all the undergraduate students who assisted with data
309 collection.

310

311

312 Author Contributions

313

314 M.F.S. conducted the study. M.F.S., S.L.F., E.J.H.J, C.E.E. and M.H.J. developed the
315 protocols for the study. I.T. provided the NIRS system and support with data acquisition.
316 M.F.S and S.B. analysed the data with support from P.P., S.L.F., I.T., E.J.H.J. C.E.E. and
317 M.H.J. M.F.S. and E.J.H.J. wrote the manuscript with support from P.P., I.T., S.L.F. and
318 M.H.J.

319

320 **Declaration of Interests**

321

322 The authors declare that the research was conducted in the absence of any commercial or
323 financial relationships that could be construed as a potential conflict of interest.

324

325 **Data availability statement**

326

327 The data contains human subject data from minors and guardians provided informed consent
328 to having data shared only with researchers involved in the project, in anonymised form. A
329 Patient and Public Involvement (PPI) initiative at the Centre for Brain and Cognitive
330 Development aimed to actively work in partnership with parents and guardians participating
331 in research studies to help design and manage future research. A comprehensive public
332 survey was conducted as part of this initiative which aimed to evaluate parent attitudes to
333 data sharing in developmental science. This survey revealed that majority of parents do not
334 want their data to be shared openly but are open to the data being shared with other
335 researchers related to the project. Therefore, in order to adhere to participant
336 preference/choice, a curated data sharing approach must be followed wherein the data can
337 only be made available upon reasonable request through a formal data sharing and project
338 affiliation agreement. The researcher will have to contact MFS and complete a project
339 affiliation form providing their study aims, a detailed study proposal, plan for the analysis
340 protocol, ethics, and plans for data storage and protection. Successful proposals will have
341 aims aligned with the aims of the original study. Raw NIRS data, EEG data and integrated
342 NIRS-EEG data can be made available in anonymised form. ID numbers linking the NIRS
343 and EEG data, however, cannot be provided as parents/guardians have consented only to data
344 being shared in anonymised form. All code used to analyse the NIRS data and the integration
345 of the NIRS and EEG data is available on GitHub
346 (<https://github.com/maheensiddiqui91/NIRS-EEG>). EEG data was processed using EEGlab
347 which is a publicly available toolbox.

348

349 **Methods**

350

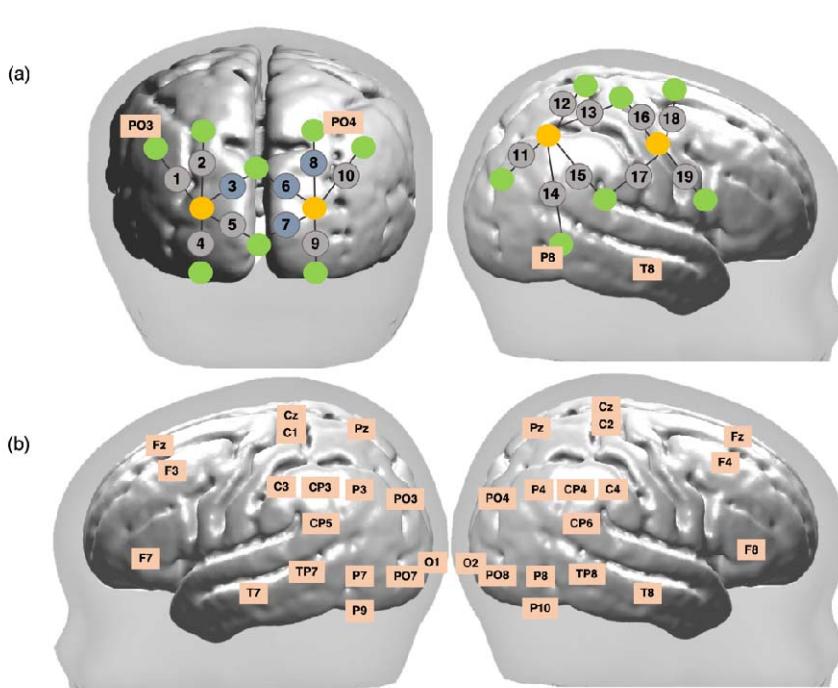
351 *Participants:* The study protocol was approved by the Birkbeck Ethics Committee.
352 Participants were forty-two 4-to-7-month-old infants (mean age: 179 ± 16 days; 22 males and
353 20 females); parents provided written informed consent to participate in the study, for the
354 publication of the research and additionally for the publication and use of any photographs
355 taken during the study of the infant wearing the NIRS-EEG headgear. Inclusion criteria
356 included term birth (37 – 40 weeks); exclusion criteria included known presence or family
357 history of developmental disorders. The sample size was determined by performing a power
358 analysis of existing data using G*Power.

359

360 *Experimental Procedure:* The experimental stimuli were designed using Psychtoolbox in
361 Matlab (Mathworks, USA) and consisted of social and non-social videos. The social videos
362 consisted of a variety of full-colour video clips of actors performing nursery rhymes such as
363 “pat-a-cake” and “wheels on the bus”. The non-social videos consisted of dynamic video

364 clips of moving mechanical toys. The visual and auditory components of both social and non-
365 social videos was matched. These videos have been used extensively in prior infant studies in
366 both EEG studies (11) and NIRS studies (70, 71). Both social and non-social experimental
367 conditions were presented alternately for a varying duration between 8-12 s. The baseline
368 condition consisted of static transport images, for example cars and helicopters, which were
369 presented for a pseudorandom duration of 1 – 3 s each for a total of 8 s. Following the
370 presentation of the baseline condition, a fixation cross in the shape of a ball or a flower
371 appeared in the centre of the screen to draw the infant’s attention back to the screen in case
372 the infant had become bored during the baseline period. The following experimental
373 condition was then presented once the infant’s attention was on the fixation cross. **Error!**
374 **Reference source not found.**a depicts the order of stimulus presentation. All infants sat in
375 their parent’s lap at an approximate distance of 65 cm from a 35-in screen which was used to
376 display the experimental stimuli. The study began with a minimum 10 s rest period to draw
377 the infant’s attention towards the screen during which the infant was presented with various
378 shapes in the four corners of the screen. Following this, the baseline and experimental stimuli
379 were presented alternately until the infant became bored or fussy.
380

381 *Data acquisition and array placement:* bNIRS and EEG data was acquired simultaneously
382 and the bNIRS optodes and EEG electrodes were positioned on the head using custom-built,
383 3-D printed arrays which were embedded within a soft neoprene cap (Neuroelectrics, Spain).
384 Figures 5a and 5b show the locations of bNIRS optodes and EEG electrodes on the head.
385 Figure 1b shows the combined bNIRS-EEG headgear positioned on an infant. The array was
386 designed to allow measurement from several cortical regions which included occipital,
387 parietal, temporal, and central regions to allow investigation of neurovascular coupling in
388 different cortical regions that are expected to be activated by dynamic stimuli.
389



390
391 *Figure 5: Schematic representation of bNIRS and EEG channel locations. (a) Locations of bNIRS channels (grey circles)*
392 *over the occipital cortex and the right hemisphere and locations of the bNIRS sources (orange circles) and detectors (green*
393 *circles) relative to EEG 10/20 locations. Channels shown in blue (3, 6, 8 and 10) were excluded from the analysis (b)*
394 *Locations of the 32 EEG electrodes.*

395

396 *Broadband NIRS:* Brain haemodynamic ($\Delta[\text{HbO}_2]$, $\Delta[\text{HHb}]$) and metabolic changes
397 ($\Delta[\text{oxCCO}]$) were measured using an in-house broadband NIRS system developed at
398 University College London (72). The bNIRS system consisted of two light sources that
399 consisting of halogen light bulbs (Phillips) that emitted light in the near-infrared range (504 –
400 1068 nm). The light was directed to the infant's head through customised bifurcated optical
401 fibres (Loptek, Germany), allowing each light source to split into two pairs of light sources.
402 This formed a total of four light sources at the participant-end and each pair of light sources
403 were controlled by a time multiplexing mechanism whereby one pair of light sources was on
404 every 1.4 s. The system also consisted of fourteen detector fibres at the participant-end which
405 were connected to two spectrometers, seven for each spectrometer (in-house developed lens
406 spectrographs and PIXIS512f CCD cameras (Princeton Instruments). The configuration of
407 four light sources and fourteen detectors formed a total of nineteen measurement channels.
408 These were positioned over the occipital cortex and the right hemisphere as shown in Figure
409 5a. The source-detector separation was 2.5 cm.

410

411 Data were analysed in Matlab (Mathworks, USA) using in-house scripts. First, for each
412 participant, across all wavelengths, wavelet-based motion correction (73) was applied to the
413 attenuation change signal to correct for motion artifacts. The tuning parameter $\alpha = 0.8$ was
414 used. Following this, the UCLn algorithm (18) was used with a wavelength-dependent, age-
415 appropriate fixed differential path-length factor (DPF) value of 5.13 (74). Changes in
416 concentration of HbO_2 , HHb and oxCCO were calculated using 120 wavelengths between
417 780 – 900 nm. A 4th-order bandpass Butterworth filter from 0.01 – 0.4 Hz was used to filter
418 the data. For each infant, channels were assessed for signal quality and any channels with
419 poor signal quality were rejected. Following this, the HbO_2 , HHb and oxCCO time-series
420 were entered into a General Linear Model (GLM) to correlate bNIRS and EEG data.

421

422 For each infant, intensity counts (or photon counts) from each of the fourteen detectors were
423 used to assess the signal-to-noise (SNR) ratio at each channel and the channels with intensity
424 counts lower than 2000 or higher than 40,000 were excluded (72). If an infant had more than
425 60% of channels excluded, they were excluded from the study. At the group level, five
426 channels over the occipital cortex were excluded due to poor SNR in majority of infants
427 (Channel 3 excluded in 64% of infants, Channel 6 excluded in 83% of infants, Channel 7
428 excluded in 64% of infants, Channel 8 excluded in 79% of infants) and one channel over the
429 right hemisphere was excluded in 100% of infants due to a damaged optical fibre.

430

431 *EEG:* EEG was used to measure neural activity simultaneously to haemodynamic and
432 metabolic activity using the Enobio EEG system (Neuroelectrics, Spain) which is a wireless
433 gel-based system. The system consisted of 32 electrodes, the locations of which are shown in
434 Figure 5b. The sampling rate of the system was 500 Hz. The experimental protocol in
435 Psychtoolbox sent event markers to both bNIRS and EEG systems using serial port
436 communication which was then used to synchronise the bNIRS and EEG.

437

438 All data were analysed using the EEGLab Toolbox (Schwartz Centre for Computation
439 Neuroscience, UC San Diego, USA) and in-house scripts in Matlab (Mathworks, USA). The
440 raw EEG signal was band-pass filtered between 0.1 – 100 Hz and a notch filter (48 – 52 Hz)
441 was applied to remove artifacts due to line noise. Following this, blocks of the data were
442 created such that they consisted of the baseline period prior to the stimulus presentation and
443 the entire following stimulus period. These blocks were then segmented into 1 s segments
444 such that for both the baseline and the stimulus, each 8 – 12 s presentation of the baseline

445 condition or the stimulus condition yielded 8 – 12 x 1 s segments. These 1 s segments
446 consisted of 200 ms of the previous 1 s segment and 800 ms of the current segment and the
447 200 ms was used for baseline correction of each 1 s segment. Segments where the infants
448 were not visually attending to the stimulus were removed. Artifacts were detected using
449 automatic artifact-detection in EEGLab and through manual identification. EEG segments
450 were rejected if the signal amplitude exceeded 200 μ V, or if electro-ocular, movement, or
451 muscular artifacts occurred. Channels with noisy data were interpolated by an algorithm
452 incorporated within EEGLab. Data were then re-referenced to the average reference.

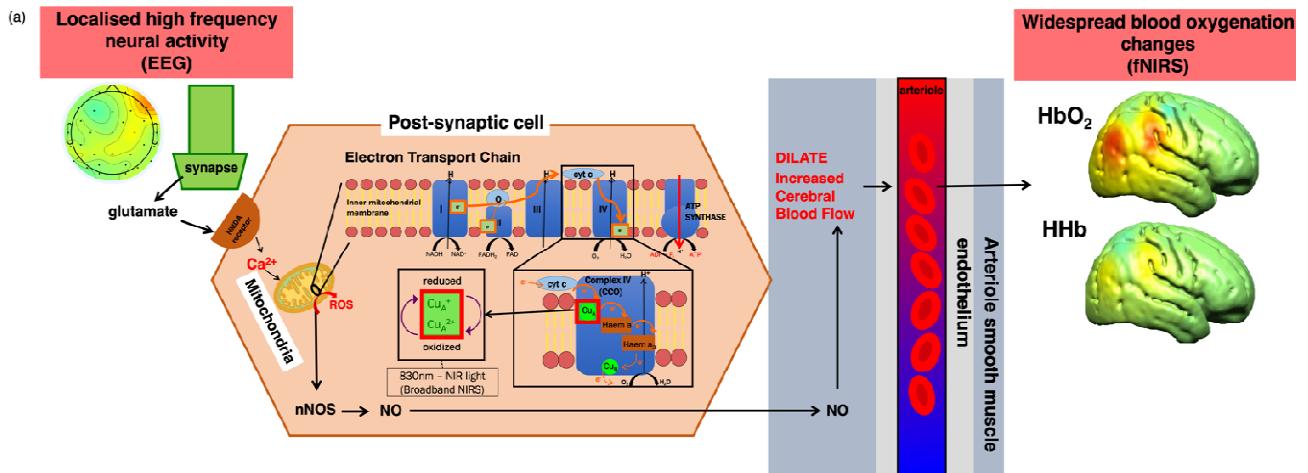
453

454 Within each block (consisting of the baseline period and the stimulus period), each artifact-
455 free 1 s segment was subjected to a power analysis to calculate the average root mean square
456 (RMS) power for both low and high frequency bands – theta (3 – 6 Hz), alpha (8 – 12 Hz),
457 beta (13 – 30 Hz) and gamma (20 – 60 Hz), within each 1 s segment. This then yielded the
458 average RMS power across the block (baseline period + following stimulus period). Baseline
459 correction was performed by subtracting the average of the 2 s of the baseline period from the
460 entire block. RMS power was chosen as the metric to correlate bNIRS and EEG data as
461 previous studies have demonstrated that task-related BOLD changes are best explained by
462 RMS (75, 76). The blocks were then averaged across trials to obtain an averaged RMS
463 response per participant. A portion of the averaged RMS power was then entered into a GLM
464 analysis described below – this consisted of two seconds of the baseline period and 8 seconds
465 of the stimulus period. Figure 6a provides a visual depiction of how the RMS power was
466 derived from the pre-processed EEG data. For each participant, the RMS power was also
467 averaged across the stimulus period for statistical analysis of the EEG data. For each
468 frequency band, statistical t-tests were performed on this averaged RMS power comparing
469 the social condition versus the baseline (RMS power was averaged during the baseline
470 period), the non-social condition versus the baseline and social versus non-social. The false
471 discovery rate (FDR) procedure using the Benjamin Hochberg method (77) was performed
472 to correct for multiple comparisons.

473

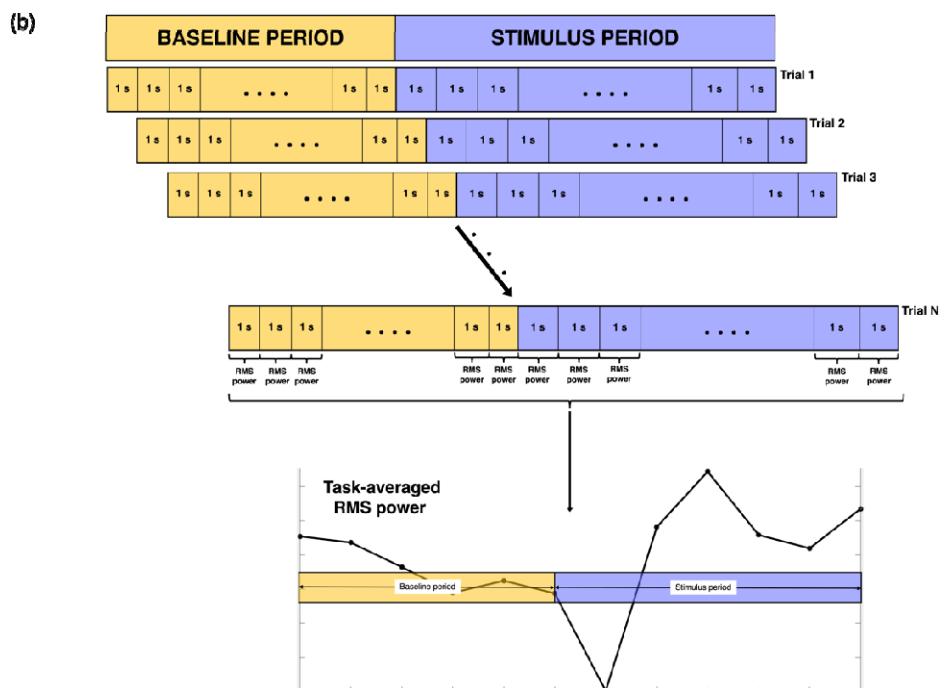
474 *Data Analysis:* Figure 6b outlines the data analysis pipelines for both bNIRS and EEG data,
475 as well as the procedure for the combined bNIRS-EEG analysis.

476



477

478



479

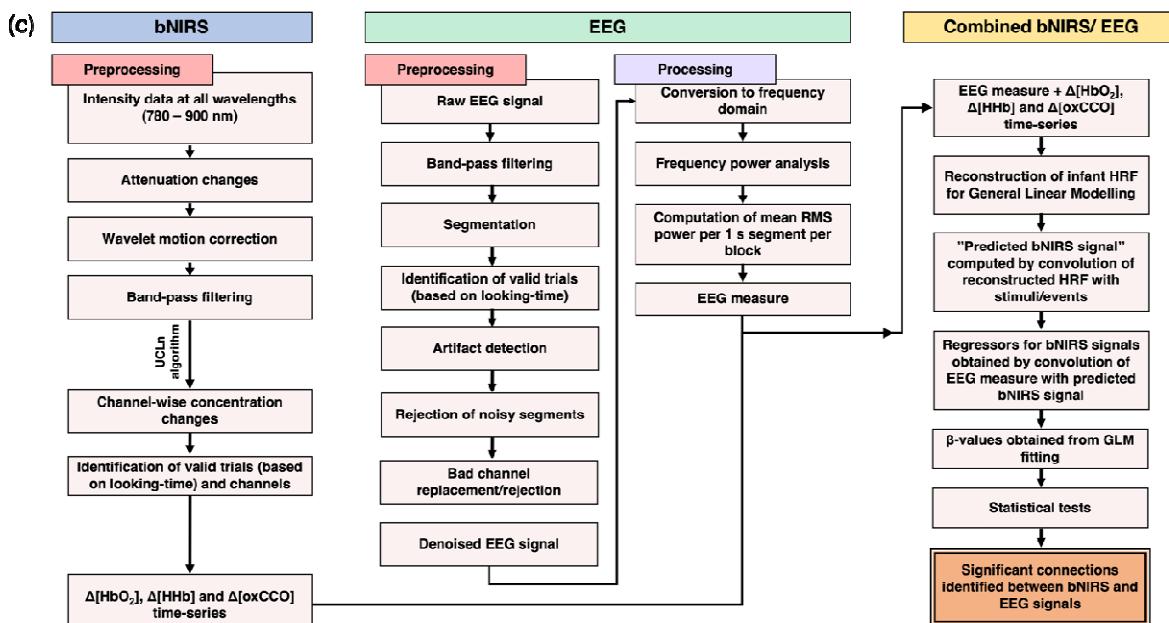


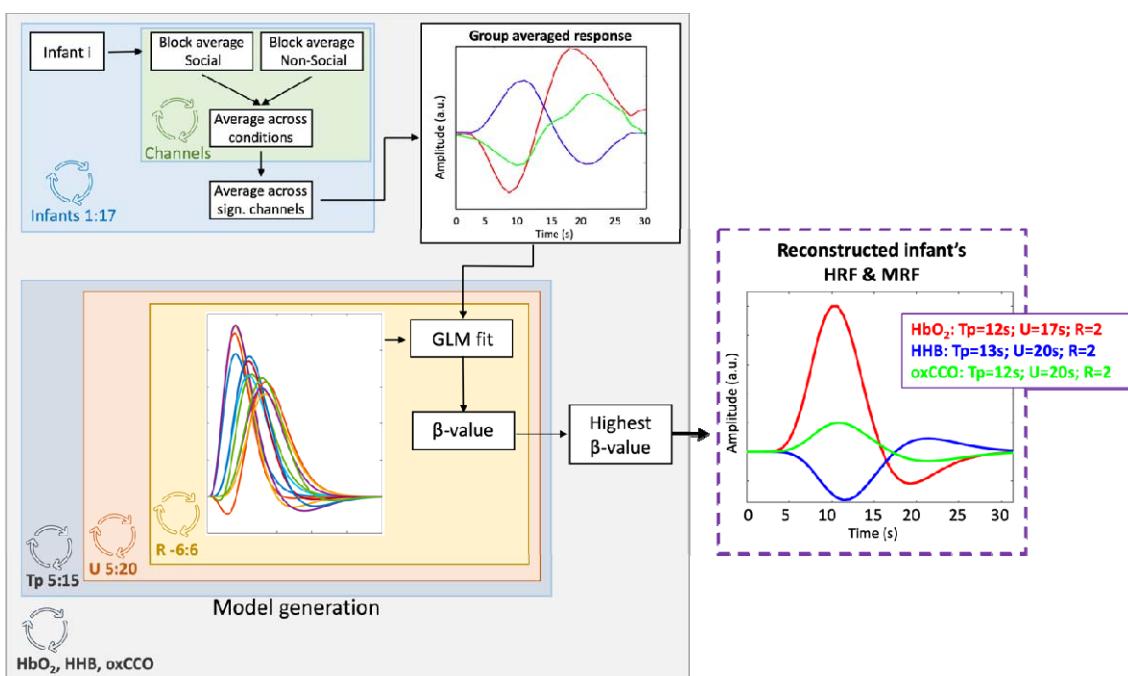
Figure 6: (a) Summary of the signalling pathways that mediate neurovascular coupling. High-frequency neural activity causes the release the excitatory neurotransmitter glutamate which binds to N-methyl-D-aspartate (NMDA) receptors in interneurons. This causes an influx of calcium (Ca^{2+}) which in turn leads to an increase in ATP production through the mitochondrial electron transport chain (ETC). As a by-product, nitric oxide (NO) and reactive oxygen species (ROS) are produced. NO dilates arterioles to increase blood flow leading to increased oxygen delivery in surrounding brain regions. ROS influence synaptic plasticity. (b) Procedure for deriving the EEG RMS power from the pre-processed EEG data. The task-averaged RMS power shown here is average theta power across all infants from a single channel for the purposes of outlining the procedure (c) Flow chart for the data analysis pipelines for bNIRS (left), EEG (middle) and combined bNIRS-EEG (right).

Combined NIRS-EEG analysis: A GLM (78) approach was employed to investigate the relationship between the bNIRS hemodynamic and metabolic data with the EEG neural data. The canonical GLM typically uses a model of the expected haemodynamic response, i.e. the hemodynamic response function (HRF), to predict the hemodynamic signal. However, given the differences in the haemodynamic response in adults and infants, the standard adult HRF model cannot be assumed for infant data. For example, infants display a delay in their haemodynamic responses (79–81). In addition, the analogous of the HRF is not established for the metabolic response (i.e. the metabolic response function or MRF). Therefore, the first step of this analysis involved reconstructing the HRF for HbO₂ and HHb and the MRF for oxCCO before combining bNIRS and EEG data.

The reconstruction of the infant HRF and MRF started with block-averaging the HbO₂, HHb, and oxCCO signals for social and non-social conditions within each baby. Based on our previous study (19), we selected only the channels that displayed statistically significant responses to the contrast task versus baseline. The single subjects block-averaged responses were averaged across the social and non-social conditions and then across the significant channels. The resulting block-averaged responses were then averaged across the group to obtain a “grand average” HbO₂, HHb and oxCCO response.

The grand average was then used in an iterative approach to estimate the HRF and MRF that best fit the HbO₂, HHb and oxCCO responses. This involved fitting the grand averaged signals with different HRF/MRF models starting from the canonical HRF made of two gamma functions and varying the following parameters: 1) delay of response, 2) delay of the undershoot and 3) ratio of response to undershoot to identify the combination of parameters

515 that best reconstructed the infant HRF/MRF for the social/non-social stimuli. The parameters
516 were varied in increments of 1 s such that the delay of the response was varied from 5 s to 15
517 s from the stimulus onset, the delay of the undershoot was varied from 5 to 20 s and the ratio
518 of the response to the undershoot was varied from 2 to 6 s. All possible combinations of
519 parameters were tested. The grand average responses were fitted with each HRF/MRF in
520 GLM approach, and β -values were obtained for each combination of the HRF/MRF
521 parameters. The β -values were entered into a statistical test and the parameter combinations
522 that yielded the highest, statistically significant β -values (i.e. the model best fitting the data)
523 were selected to reconstruct the infant HRF (81) and identified the best fit to be with a 2-s delay
524 of response for HbO_2 and HHb and a 3-s delay of response for oxCCO in comparison to the
525 adult HRF (i.e. 6 s). Moreover, the delay of the undershoot was 9-s earlier for all
526 chromophores and the ratio of the response to the undershoot was 2 for HbO_2 and HHb and 3
527 for oxCCO , in comparison to 6 for the adult HRF. The new reconstructed HRF was then used
528 for the GLM approach to correlate bNIRS and EEG data. The process for estimating the HRF
529 and MRF has been depicted in Figure 7.
530



531
532
533 *Figure 7: Procedure for obtaining the reconstructed haemodynamic response function (HRF) and the metabolic response*
534 *function (MRF).*

535 To constrain the analysis, we chose to investigate coupling of haemodynamic and metabolic
536 with neural activity at specific channels. For this, we used the results from an analysis we
537 described previously that combined bNIRS haemodynamic and metabolic signals (19, 27).
538 The results from this identified task-relevant cortical regions that displayed high levels of
539 haemodynamic and metabolic coupling. The bNIRS channels that displayed significant
540 haemodynamic and metabolic coupling for social and non-social conditions were used here.
541 All EEG channels were used as EEG is not as spatially specific as bNIRS. For each infant,
542 for each chromophore, for each channel and each EEG frequency band, the new infant
543 HRF/MRF that was reconstructed in the previous step was convolved with the events to
544 obtain the “predicted” bNIRS signal. The “predicted” bNIRS signal was then convolved with
545 the EEG RMS power block (consisting only of the data from the stimulus period) at each

546 frequency band to obtain the neural regressor for the bNIRS data, considering both social and
547 non-social conditions together. The design matrix thus included the neural regressor
548 reflecting the increased in EEG activity to the social and non-social stimuli and used to fit the
549 bNIRS data. This was performed for HbO₂, HHb, and oxCCO individually for all the
550 channels. β -values were estimated for each channel and t-tests against 0 were conducted to
551 test whether there was a statistically significant association between bNIRS signals and EEG
552 frequency bands. The false discovery rate (FDR) procedure using the Benjamin Hochberg
553 method (77) was performed to correct for multiple comparisons. The FDR-corrected
554 significant t-values were plotted. This method has been used in numerous studies previously
555 in correlating fMRI BOLD – EEG (20). For each frequency band, FDR-corrected, significant,
556 β -values were also averaged (1) for bNIRS and EEG channels over the right hemisphere and
557 (2) between bNIRS channels in the right hemisphere and EEG channels in the left hemisphere
558 to obtain an estimate of the frequency band where bNIRS and EEG activity associated most
559 strongly within hemispheres and across hemispheres. Only bNIRS channels that displayed
560 significant (prior to FDR correction) haemodynamic and metabolic coupling were used for
561 this analysis (as indicated in Figure and **Error! Reference source not found.**). For the
562 social condition, these were channels 4, 12, 13 and 14 for HbO₂, channels 11, 12, 14 and 18
563 for HHb and channels 4, 11, 12, 13, 14 and 18 for oxCCO. For the non-social condition, these
564 were channels 5, 12 and 14 for HbO₂, channels 5, 12, 14 and 16 for HHb and channels 5, 12,
565 14 and 16 for oxCCO.

566

567 For the bNIRS analysis, data from 25 infants was included while for the EEG analysis, data
568 from 35 infants were included. For the joint bNIRS-EEG analysis, only infants that had both
569 valid bNIRS and EEG data for social and non-social conditions were included and therefore
570 17 infants were included in this analysis.

571

572 *Image reconstruction:* Image reconstruction was performed on the bNIRS data, at the
573 individual subject level and then averaged across infants to produce a grand average that is
574 shown in Figure 4. For this analysis, three additional long-distance channels were created
575 over the right hemisphere (in addition to the 19 bNIRS channels) that had a source/detector
576 separation of 4.3cm.

577

578 For this analysis, the block averaged attenuation changes at 13 discrete wavelengths (from
579 780 – 900 nm at 10 nm intervals) for each infant were selected from the bNIRS data. This
580 was done to reduce the computational burden of the reconstruction (82). A four-layer infant
581 head-model (consisting of the grey matter (GM), white matter (WM), cerebrospinal fluid
582 (CSF) and extra cerebral tissue) was built using averaged MRI data from a cohort of 12-
583 month-old infants presented in Shi et al. (83). The Betsurf segmentation procedure (84) was
584 then used to define an outer scalp boundary from the average head MRI template. The
585 voxelised four-layer model was converted to a high-resolution tetrahedral mesh ($\sim 7.8 \times 10^5$ nodes and $\sim 4.7 \times 10^6$ elements) using the iso2mesh software (Fang & Boas, 2009). The
586 same software was used to create the GM surface mesh ($\sim 5.8 \times 10^4$ nodes and $\sim 1.2 \times 10^5$
587 faces), used to visualise the reconstructed images.

588

589 The reconstruction of images of HbO₂, HHb and Δ oxCCO are described elsewhere (85),
590 using a multispectral approach (86). Wavelength-specific Jacobians were computed with the
591 Toast++ software (87) on the tetrahedral head mesh and projected onto a $50 \times 60 \times 50$ voxel
592 regular grid for reconstruction, using an intermediate finer grid of $100 \times 120 \times 100$ voxels to
593 optimize the mapping between mesh and voxel space. Optical properties were assigned to
594 each tissue type and for each wavelength by fitting all published values for these tissue types
595

596 (88–90). Diffuse boundary sources and detectors were simulated as a Gaussian profile with a
597 2-mm standard deviation, and Neumann boundary conditions were applied. The inverse
598 problem was solved employing the LSQR method to solve the matrix equations resulting
599 from the minimization and using first-order Tikhonov regularization, with the parameter
600 covariance matrix containing the diagonal square matrices with the background concentration
601 values of the three chromophores (23.7 for HbO₂, 16 for HHb and 6 for ΔoxCCO) (91, 92)
602 and the noise covariance matrix set as the identity matrix. The maximum number of iterations
603 allowed to the LSQR method was set to 50, and with a tolerance of 10⁻⁵. The regularization
604 hyperparameter λ was set to 10⁻².
605

606 The reconstructed images, defined on the same regular grid of the Jacobian, were remapped
607 to the tetrahedral head mesh and then projected to the GM surface mesh, by assigning a value
608 to each node on the GM boundary surface that was equal to the mean value of all the
609 tetrahedral mesh node values within a 3-mm radius. The concentration changes for HbO₂ and
610 HHb were normalised to the maximum concentration change of HbO₂ while ΔoxCCO was
611 normalised to its own maximum change in concentration.
612

613 References

- 615 1. M. H. Johnson, Functional brain development in humans. *Nat. Rev. Neurosci.* **2**, 475–
616 483 (2001).
- 617 2. C. C. Goren, M. Sarty, P. Y. K. Wu, Visual following and pattern discrimination of face
618 like stimuli by newborn infants. *Pediatrics*. **56**, 544–549 (1975).
- 619 3. M. H. Johnson, Interactive specialization: a domain-general framework for human
620 functional brain development? *Dev. Cogn. Neurosci.* **1**, 7–21 (2011).
- 621 4. N. Uomini, J. Fairlie, R. D. Gray, M. Griesser, Extended parenting and the evolution of
622 cognition. *Philos. Trans. R. Soc. B Biol. Sci.* **375**, 20190495 (2020).
- 623 5. D. P. Kennedy, R. Adolphs, The social brain in psychiatric and neurological disorders.
624 *Trends Cogn. Sci.* **16**, 559–572 (2012).
- 625 6. M. Eimer, The Face-Sensitivity of the N170 Component. *Front. Hum. Neurosci.* **5**
626 (2011), doi:10.3389/fnhum.2011.00119.
- 627 7. S. Conte, J. E. Richards, M. W. Guy, W. Xie, J. E. Roberts, Face-sensitive brain
628 responses in the first year of life. *NeuroImage*. **211**, 116602 (2020).
- 629 8. M. de Haan, M. H. Johnson, H. Halit, Development of face-sensitive event-related
630 potentials during infancy: a review. *Int. J. Psychophysiol. Off. J. Int. Organ.*
631 *Psychophysiol.* **51**, 45–58 (2003).
- 632 9. H. L. Kosakowski, M. A. Cohen, A. Takahashi, B. Keil, N. Kanwisher, R. Saxe,
633 Selective responses to faces, scenes, and bodies in the ventral visual pathway of infants.
634 *Curr. Biol.* **32**, 265–274.e5 (2022).
- 635 10. T. Farroni, A. M. Chiarelli, S. Lloyd-Fox, S. Massaccesi, A. Merla, V. Di Gangi, T.
636 Mattarello, D. Faraguna, M. H. Johnson, Infant cortex responds to other humans from
637 shortly after birth. *Sci. Rep.* **3** (2013), doi:10.1038/srep02851.

638 11. E. J. H. Jones, K. Venema, R. Lowy, R. K. Earl, S. J. Webb, Developmental changes in
639 infant brain activity during naturalistic social experiences. *Dev. Psychobiol.* **57**, 842–
640 853 (2015).

641 12. M. E. Raichle, M. A. Mintun, Brain work and brain imaging. *Annu. Rev. Neurosci.* **29**,
642 449–476 (2006).

643 13. L. Sokoloff, Energetics of functional activation in neural tissues. *Neurochem. Res.* **24**,
644 321–329 (1999).

645 14. P. Steiner, Brain Fuel Utilization in the Developing Brain. *Ann. Nutr. Metab.* **75**, 8–18
646 (2019).

647 15. R. Leech, G. Scott, R. Carhart-Harris, F. Turkheimer, S. D. Taylor-Robinson, D. J.
648 Sharp, Spatial Dependencies between Large-Scale Brain Networks. *PLOS ONE* **9**,
649 e98500 (2014).

650 16. S. Vaynman, Z. Ying, A. Wu, F. Gomez-Pinilla, Coupling energy metabolism with a
651 mechanism to support brain-derived neurotrophic factor-mediated synaptic plasticity.
652 *Neuroscience* **139**, 1221–1234 (2006).

653 17. M. Kozberg, E. Hillman, Neurovascular coupling and energy metabolism in the
654 developing brain. *Prog. Brain Res.* **225**, 213–242 (2016).

655 18. G. Bale, C. E. Elwell, I. Tachtsidis, From Jöbsis to the present day: a review of clinical
656 near-infrared spectroscopy measurements of cerebral cytochrome-c-oxidase. *J. Biomed.
657 Opt.* **21**, 91307 (2016).

658 19. M. F. Siddiqui, P. Pinti, S. Lloyd-Fox, E. J. H. Jones, S. Brigadoi, L. Collins-Jones, I.
659 Tachtsidis, M. H. Johnson, C. E. Elwell, Regional Haemodynamic and Metabolic
660 Coupling in Infants. *Front. Hum. Neurosci.* **15** (2022), doi:10.3389/fnhum.2021.780076.

661 20. R. Scheeringa, P. Fries, K.-M. Petersson, R. Oostenveld, I. Grothe, D. G. Norris, P.
662 Hagoort, M. C. M. Bastiaansen, Neuronal Dynamics Underlying High- and Low-
663 Frequency EEG Oscillations Contribute Independently to the Human BOLD Signal.
664 *Neuron* **69**, 572–583 (2011).

665 21. R. Scheeringa, K. M. Petersson, R. Oostenveld, D. G. Norris, P. Hagoort, M. C. M.
666 Bastiaansen, Trial-by-trial coupling between EEG and BOLD identifies networks
667 related to alpha and theta EEG power increases during working memory maintenance.
668 *NeuroImage* **44**, 1224–1238 (2009).

669 22. Stern, Simultaneous EEG and fMRI of the alpha rhythm. *NeuroReport*, 2487–2492
670 (2002).

671 23. H. Yuan, T. Liu, R. Szarkowski, C. Rios, J. Ashe, B. He, Negative covariation between
672 task-related responses in alpha/beta-band activity and BOLD in human sensorimotor
673 cortex: An EEG and fMRI study of motor imagery and movements. *NeuroImage* **49**,
674 2596–2606 (2010).

675 24. J. Niessing, Hemodynamic Signals Correlate Tightly with Synchronized Gamma
676 Oscillations. *Science* **309**, 948–951 (2005).

677 25. N. K. Logothetis, J. Pauls, M. Augath, T. Trinath, A. Oeltermann, Neurophysiological
678 investigation of the basis of the fMRI signal. *Nature*. **412**, 150–157 (2001).

679 26. S. P. Koch, P. Werner, J. Steinbrink, P. Fries, H. Obrig, *J. Neurosci.*, in press,
680 doi:10.1523/JNEUROSCI.1402-09.2009.

681 27. P. Pinti, M. F. Siddiqui, A. D. Levy, E. J. H. Jones, I. Tachtsidis, An analysis framework
682 for the integration of broadband NIRS and EEG to assess neurovascular and
683 neurometabolic coupling. *Sci. Rep.* **11**, 3977 (2021).

684 28. E. Shokri-Kojori, D. Tomasi, B. Alipanahi, C. E. Wiers, G.-J. Wang, N. D. Volkow,
685 Correspondence between cerebral glucose metabolism and BOLD reveals relative
686 power and cost in human brain. *Nat. Commun.* **10**, 690 (2019).

687 29. S. Uono, W. Sato, T. Kochiyama, Y. Kubota, R. Sawada, S. Yoshimura, M. Toichi,
688 Time course of gamma-band oscillation associated with face processing in the inferior
689 occipital gyrus and fusiform gyrus: A combined fMRI and MEG study. *Hum. Brain
690 Mapp.* **38**, 2067–2079 (2017).

691 30. A. S. Ghuman, N. M. Brunet, Y. Li, R. O. Konecky, J. A. Pyles, S. A. Walls, V.
692 Destefino, W. Wang, R. M. Richardson, Dynamic encoding of face information in the
693 human fusiform gyrus. *Nat. Commun.* **5**, 5672 (2014).

694 31. A. D. Engell, G. McCarthy, The Relationship of Gamma Oscillations and Face-Specific
695 ERPs Recorded Subdurally from Occipitotemporal Cortex. *Cereb. Cortex*. **21**, 1213–
696 1221 (2011).

697 32. F. Bossi, I. Premoli, S. Pizzamiglio, S. Balaban, P. Ricciardelli, D. Rivolta, Theta- and
698 Gamma-Band Activity Discriminates Face, Body and Object Perception. *Front. Hum.
699 Neurosci.* **14**, 74 (2020).

700 33. D. Anaki, E. Zion-Golumbic, S. Bentin, Electrophysiological neural mechanisms for
701 detection, configural analysis and recognition of faces. *NeuroImage*. **37**, 1407–1416
702 (2007).

703 34. A. Ishai, L. Ungerleider, A. Martin, J. Haxby, The Representation of Objects in the
704 Human Occipital and Temporal Cortex. *J. Cogn. Neurosci.* **12 Suppl 2**, 35–51 (2000).

705 35. K. A. Pelpfrey, J. P. Morris, G. McCarthy, Neural basis of eye gaze processing deficits
706 in autism. *Brain*. **128**, 1038–1048 (2005).

707 36. W. Sato, T. Kochiyama, S. Uono, K. Matsuda, K. Usui, Y. Inoue, M. Toichi, Rapid,
708 high-frequency, and theta-coupled gamma oscillations in the inferior occipital gyrus
709 during face processing. *Cortex*. **60**, 52–68 (2014).

710 37. E. Zion-Golumbic, T. Golan, D. Anaki, S. Bentin, Human face preference in gamma-
711 frequency EEG activity. *NeuroImage*. **39**, 1980–1987 (2008).

712 38. Z. Gao, A. Goldstein, Y. Harpaz, M. Hansel, E. Zion-Golumbic, S. Bentin, A
713 magnetoencephalographic study of face processing: M170, gamma-band oscillations
714 and source localization. *Hum. Brain Mapp.* **34**, 1783–1795 (2013).

715 39. M. Bayer, M. T. Rubens, T. Johnstone, Simultaneous EEG-fMRI reveals attention-
716 dependent coupling of early face processing with a distributed cortical network. *Biol.*
717 *Psychol.* **132**, 133–142 (2018).

718 40. M. Müller-Bardorff, M. Bruchmann, M. Mothes-Lasch, P. Zwitserlood, I.
719 Schlossmacher, D. Hofmann, W. Miltner, T. Straube, Early brain responses to affective
720 faces: A simultaneous EEG-fMRI study. *NeuroImage*. **178**, 660–667 (2018).

721 41. V. T. Nguyen, R. Cunnington, The superior temporal sulcus and the N170 during face
722 processing: Single trial analysis of concurrent EEG–fMRI. *NeuroImage*. **86**, 492–502
723 (2014).

724 42. V. T. Nguyen, M. Breakspear, R. Cunnington, Fusing concurrent EEG–fMRI with
725 dynamic causal modeling: Application to effective connectivity during face perception.
726 *NeuroImage*. **102**, 60–70 (2014).

727 43. A. von Stein, J. Sarnthein, Different frequencies for different scales of cortical
728 integration: from local gamma to long range alpha/theta synchronization. *Int. J.*
729 *Psychophysiol.* **38**, 301–313 (2000).

730 44. R. T. Canolty, R. T. Knight, The functional role of cross-frequency coupling. *Trends*
731 *Cogn. Sci.* **14**, 506–515 (2010).

732 45. B. van der Velde, T. White, C. Kemner, The emergence of a theta social brain network
733 during infancy. *NeuroImage*. **240**, 118298 (2021).

734 46. A. J. Smith, H. Blumenfeld, K. L. Behar, D. L. Rothman, R. G. Shulman, F. Hyder,
735 Cerebral energetics and spiking frequency: The neurophysiological basis of fMRI. *Proc.*
736 *Natl. Acad. Sci. U. S. A.* **99**, 10765–10770 (2002).

737 47. O. Kann, The Energy Demand of Fast Neuronal Network Oscillations: Insights from
738 Brain Slice Preparations. *Front. Pharmacol.* **2** (2012) (available at
739 <https://www.frontiersin.org/articles/10.3389/fphar.2011.00090>).

740 48. N. K. Logothetis, J. Pauls, M. Augath, T. Trinath, A. Oeltermann, Neurophysiological
741 investigation of the basis of the fMRI signal. *Nature*. **412**, 150–157 (2001).

742 49. J. B. M. Goense, N. K. Logothetis, Neurophysiology of the BOLD fMRI Signal in
743 Awake Monkeys. *Curr. Biol.* **18**, 631–640 (2008).

744 50. P. S. Hosford, A. V. Gourine, What is the key mediator of the neurovascular coupling
745 response? *Neurosci. Biobehav. Rev.* **96**, 174–181 (2019).

746 51. P. S. Hosford, J. A. Wells, S. Nizari, I. N. Christie, S. M. Theparambil, P. A. Castro, A.
747 Hadjihambi, L. F. Barros, I. Ruminot, M. F. Lythgoe, A. V. Gourine, CO₂ signaling
748 mediates neurovascular coupling in the cerebral cortex. *Nat. Commun.* **13**, 2125 (2022).

749 52. M. C. Oswald, P. S. Brooks, M. F. Zwart, A. Mukherjee, R. J. West, C. N. Giachello, K.
750 Morarach, R. A. Baines, S. T. Sweeney, M. Landgraf, Reactive oxygen species regulate
751 activity-dependent neuronal plasticity in Drosophila. *eLife*. **7**, e39393 (2018).

752 53. S. Lloyd-Fox, K. Begus, D. Halliday, L. Pirazzoli, A. Blasi, M. Papademetriou, M. K.
753 Darboe, A. M. Prentice, M. H. Johnson, S. E. Moore, C. E. Elwell, Cortical
754 specialisation to social stimuli from the first days to the second year of life: A rural
755 Gambian cohort. *Dev. Cogn. Neurosci.* **25**, 92–104 (2017).

756 54. M. Schurz, J. Radua, M. Aichhorn, F. Richlan, J. Perner, Fractionating theory of mind:
757 A meta-analysis of functional brain imaging studies. *Neurosci. Biobehav. Rev.* **42**, 9–34
758 (2014).

759 55. M. Schurz, M. G. Tholen, J. Perner, R. B. Mars, J. Sallet, Specifying the brain anatomy
760 underlying temporo-parietal junction activations for theory of mind: A review using
761 probabilistic atlases from different imaging modalities. *Hum. Brain Mapp.* **38**, 4788–
762 4805 (2017).

763 56. M. Corbetta, G. L. Shulman, Control of goal-directed and stimulus-driven attention in
764 the brain. *Nat. Rev. Neurosci.* **3**, 201–215 (2002).

765 57. R. M. Carter, S. A. Huettel, A nexus model of the temporal-parietal junction. *Trends
766 Cogn. Sci.* **17**, 328–336 (2013).

767 58. A. I. Wilterson, S. A. Nastase, B. J. Bio, A. Guterstam, M. S. A. Graziano, Attention,
768 awareness, and the right temporoparietal junction. *Proc. Natl. Acad. Sci.* **118**,
769 e2026099118 (2021).

770 59. F. Masina, R. Pezzetta, S. Lago, D. Mantini, C. Scarpazza, G. Arcara, Disconnection
771 from prediction: A systematic review on the role of right temporoparietal junction in
772 aberrant predictive processing. *Neurosci. Biobehav. Rev.* **138**, 104713 (2022).

773 60. A. Ali, N. Ahmad, E. de Groot, M. A. J. van Gerven, T. C. Kietzmann, Predictive
774 coding is a consequence of energy efficiency in recurrent neural networks (2021), p.
775 2021.02.16.430904, , doi:10.1101/2021.02.16.430904.

776 61. A. HajiHosseini, A. Rodríguez-Fornells, J. Marco-Pallarés, The role of beta-gamma
777 oscillations in unexpected rewards processing. *NeuroImage*. **60**, 1678–1685 (2012).

778 62. S. Lloyd-Fox, A. Blasi, G. Pasco, T. Gliga, E. J. H. Jones, D. G. M. Murphy, C. E.
779 Elwell, T. Charman, M. H. Johnson, Cortical responses before 6 months of life associate
780 with later autism. *Eur. J. Neurosci.* **47**, 736–749 (2018).

781 63. M. F. Siddiqui, C. Elwell, M. H. Johnson, Mitochondrial Dysfunction in Autism
782 Spectrum Disorders. *Autism-Open Access*. **6**, 1000190 (2016).

783 64. G. Bale, S. Mitra, I. de Roever, M. Sokolska, D. Price, A. Bainbridge, R. Gunny, C.
784 Uria-Avellanal, G. S. Kendall, J. Meek, N. J. Robertson, I. Tachtsidis, Oxygen
785 dependency of mitochondrial metabolism indicates outcome of newborn brain injury. *J.
786 Cereb. Blood Flow Metab.* (2018), p. 0271678X1877792.

787 65. A. Vezyroglou, P. Hebden, I. De Roever, R. Thornton, S. Mitra, A. Worley, M. Alves,
788 E. Dean, J. H. Cross, I. Tachtsidis, Broadband-NIRS System Identifies Epileptic Focus
789 in a Child with Focal Cortical Dysplasia—A Case Study. *Metabolites* . **12** (2022),
790 , doi:10.3390/metabo12030260.

791 66. M. Jeong, M. Tashiro, L. N. Singh, K. Yamaguchi, E. Horikawa, M. Miyake, S.
792 Watanuki, R. Iwata, H. Fukuda, Y. Takahashi, M. Itoh, Functional brain mapping of
793 actual car-driving using [18F]FDG-PET. *Ann. Nucl. Med.* **20**, 623–628 (2006).

794 67. I. Lundgaard, B. Li, L. Xie, H. Kang, S. Sanggaard, J. D. R. Haswell, W. Sun, S.
795 Goldman, S. Blekot, M. Nielsen, T. Takano, R. Deane, M. Nedergaard, Direct neuronal
796 glucose uptake heralds activity-dependent increases in cerebral metabolism. *Nat.*
797 *Commun.* **6**, 6807 (2015).

798 68. A. B. Rocher, F. Chapon, X. Blaizot, J.-C. Baron, C. Chavoix, Resting-state brain
799 glucose utilization as measured by PET is directly related to regional synaptophysin
800 levels: a study in baboons. *NeuroImage* **20**, 1894–1898 (2003).

801 69. S. N. Vaishnavi, A. G. Vlassenko, M. M. Rundle, A. Z. Snyder, M. A. Mintun, M. E.
802 Raichle, Regional aerobic glycolysis in the human brain. *Proc. Natl. Acad. Sci. U. S. A.*
803 (2010), doi:10.1073/pnas.1010459107.

804 70. S. Lloyd-Fox, A. Blasi, A. Volein, S. Lloyd-Fox, A. Blasi, A. Volein, N. Everdell, C. E.
805 Elwell, M. H. Johnson, Social perception in infancy: a near infrared spectroscopy study.
806 *Child Dev.* (2009), doi:10.1111/j.1467-8624.2009.01312.x.

807 71. S. Lloyd-Fox, M. Papademetriou, M. K. Darboe, N. L. Everdell, R. Wegmuller, A. M.
808 Prentice, S. E. Moore, C. E. Elwell, Functional near infrared spectroscopy (fNIRS) to
809 assess cognitive function in infants in rural Africa. *Sci. Rep.* **4**, 4740 (2014).

810 72. P. Phan, D. Highton, J. Lai, M. Smith, C. Elwell, I. Tachtsidis, Multi-channel multi-
811 distance broadband near- infrared spectroscopy system to measure the spatial response
812 of cellular oxygen metabolism and tissue oxygenation. *Biomed. Opt. EXPRESS* **7**
813 (2016), doi:10.1364/BOE.7.004424.

814 73. B. Molavi, G. A. Dumont, Wavelet-based motion artifact removal for functional near-
815 infrared spectroscopy. *Physiol Meas Physiol Meas.* **33**, 259–270 (2012).

816 74. A. Duncan, J. Meek, M. Clemence, C. Elwell, L. Tyszczuk, M. Cope, D. Delpy, Optical
817 pathlength measurements on adult head, calf and forearm and the head of the newborn
818 infant using phase resolved optical spectroscopy. *Phys. Med. Biol.* **40**, 295 (1995).

819 75. J. M. Kilner, J. Mattout, R. Henson, K. J. Friston, Hemodynamic correlates of EEG: A
820 heuristic. *NeuroImage* (2005), doi:10.1016/j.neuroimage.2005.06.008.

821 76. M. J. Rosa, J. Kilner, F. Blankenburg, O. Josephs, W. Penny, Estimating the transfer
822 function from neuronal activity to BOLD using simultaneous EEG-fMRI. *NeuroImage*
823 (2010), doi:10.1016/j.neuroimage.2009.09.011.

824 77. Y. Benjamini, Y. Hochberg, Controlling the false discovery rate: a practical and
825 powerful approach to multiple testing. *J. R. Stat. Soc. B.* **57**, 289–300 (1995).

826 78. K. J. Friston, A. P. Holmes, K. J. Worsley, J.-P. Poline, C. D. Frith, R. S. J. Frackowiak,
827 Statistical parametric maps in functional imaging: A general linear approach. *Hum.*
828 *Brain Mapp.* **2**, 189–210 (1994).

829 79. M. L. Schroeter, M. M. Bücheler, K. Müller, K. Uludağ, H. Obrig, G. Lohmann, M.
830 Tittgemeyer, A. Villringer, D. Y. von Cramon, Towards a standard analysis for
831 functional near-infrared imaging. *NeuroImage*. **21**, 283–290 (2004).

832 80. S. Shimada, K. Hiraki, Infant's brain responses to live and televised action.
833 *NeuroImage*. **32**, 930–939 (2006).

834 81. Y. Minagawa-Kawai, H. van der Lely, F. Ramus, Y. Sato, R. Mazuka, E. Dupoux,
835 Optical Brain Imaging Reveals General Auditory and Language-Specific Processing in
836 Early Infant Development. *Cereb. Cortex*. **21**, 254–261 (2011).

837 82. D. Arifler, T. Zhu, S. Madaan, I. Tachtsidis, Optimal wavelength combinations for near-
838 infrared spectroscopic monitoring of changes in brain tissue hemoglobin and
839 cytochrome c oxidase concentrations. *Biomed. Opt. Express* (2015),
840 doi:10.1364/boe.6.000933.

841 83. F. Shi, P. T. Yap, G. Wu, H. Jia, J. H. Gilmore, W. Lin, D. Shen, Infant brain atlases
842 from neonates to 1- and 2-year-olds. *PLoS ONE* (2011),
843 doi:10.1371/journal.pone.0018746.

844 84. M. Jenkinson, M. Pechaud, S. Smith, "BET2: MR-based estimation of brain, skull and
845 scalp surfaces" in *Eleventh Annual Meeting of the Organization for Human Brain
846 Mapping* (2005).

847 85. S. Brigadoi, P. Phan, D. Highton, S. Powell, R. J. Cooper, J. Hebden, M. Smith, I.
848 Tachtsidis, C. E. Elwell, A. P. Gibson, Image reconstruction of oxidized cerebral
849 cytochrome C oxidase changes from broadband near-infrared spectroscopy data.
850 *Neurophotonics* (2017), doi:10.1111/1.NPh.4.2.021105.

851 86. A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. C.
852 Hillman, A. G. Yodh, Diffuse optical tomography with spectral constraints and
853 wavelength optimization. *Appl. Opt.* (2005), doi:10.1364/AO.44.002082.

854 87. M. Schweiger, S. Arridge, The Toast++ software suite for forward and inverse modeling
855 in optical tomography. *J. Biomed. Opt.* (2014), doi:10.1111/1.jbo.19.4.040801.

856 88. F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, C. Depeursinge, In
857 vivo local determination of tissue optical properties: applications to human brain. *Appl.
858 Opt.* (1999), doi:10.1364/ao.38.004939.

859 89. G. Strangman, J. P. Culver, J. H. Thompson, D. A. Boas, A quantitative comparison of
860 simultaneous BOLD fMRI and NIRS recordings during functional brain activation.
861 *NeuroImage*. **17**, 719–731 (2002).

862 90. A. Custo, W. M. Wells, A. H. Barnett, E. M. C. Hillman, D. A. Boas, Effective
863 scattering coefficient of the cerebral spinal fluid in adult head models for diffuse optical
864 imaging. *Appl. Opt.* (2006), doi:10.1364/AO.45.004747.

865 91. J. Zhao, H. S. Ding, X. L. Hou, C. Le Zhou, B. Chance, In vivo determination of the
866 optical properties of infant brain using frequency-domain near-infrared spectroscopy. *J.
867 Biomed. Opt.* (2005), doi:10.1111/1.1891345.

868 92. M. A. Franceschini, S. Thaker, G. Themelis, K. K. Krishnamoorthy, H. Bortfeld, S. G.
869 Diamond, D. A. Boas, K. Arvin, P. E. Grant, Assessment of Infant Brain Development
870 With Frequency-Domain Near-Infrared Spectroscopy. *Pediatr. Res.* (2007),
871 doi:10.1203/pdr.0b013e318045be99.

872