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24  Abstract

26  The specialised regional functionality of the mature human cortex partly emerges through
27  experience-dependent specialisation during early development. Our existing understanding of
28  this process is based on evidence from unitary imaging modalities and has thus focused on
29 isolated changesin spatial or temporal precision of neural or haemodynamic activation alone,
30 giving an incomplete picture of the process. We speculate that neural specialisation of
31  function will be underpinned by better coordinated haemodynamic and metabolic changes in
32 abroader orchestrated physiological response. Thus, we present a harmonised framework in
33  which specidlisation is indexed by the emergence of coupling between neuronal activity and
34 vascular supply of oxygen and energy. Here, we combine simultaneous measures of
35 coordinated neural activity (EEG), metabolic rate and oxygenated blood supply (broadband
36 near-infrared spectroscopy) to measure emerging specialisation in the infant brain. In 4-to-7-
37 month-old infants, we show that social processing is accompanied by spatially and
38 temporally specific increases in coupled activation in the temporal-parietal junction, a core
39 hub region of the adult social brain. During non-social processing coupled activation
40 decreased in the same region, indicating specificity to social processing. Coupling was
41  strongest with high frequency brain activity (beta and gamma), consistent with the greater
42  energetic requirements and more localised action of high frequency brain activity. We
43  conclude that functional specialisation of the brain is a coordinated activity across neural,
44 haemodynamic, and metabolic changes, and our ability to measure these simultaneously
45  opens new vistas in understanding how the brain is shaped by its environment.
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48 Introduction

49

50 The adult brain is highly specialised, with core networks coordinating to subserve complex
51  behaviours. This specialised functioning emerges across development through a combination
52 of genetically influenced brain architecture and experience-dependent and experience-
53  expectant learning processes (1). This interaction between predisposition and change with
54  experience has been closely studied in the domain of social interaction, where neonates
55  attended preferentially to faces (2) but expertise in recognition, communication, and initiation
56 emerge gradually over time (1, 3). Social communication is core to human interaction, and
57  our ability to live in extended-family groups has been linked to the evolution of advanced
58  cognitive abilities (4). Thus, understanding the processes that shape social brain development
59 iscritical to understanding the ontogeny and phylogeny of our species.

60

61 Inadulthood, social interaction is partially subserved by a network of specialised regions that
62 include the amygdala, fusiform gyrus, superior temporal sulcus, and media prefrontal cortex
63 (5). However, the mechanisms through which this network becomes specialised for social
64 processing remains unclear, in part because studies have typically used single modalities
65 sengtive to distinct aspects of brain function. For example, the N170 event-related
66 electroencephalographic brain response indexes expertise with faces and can be sourced to
67 the fusiform gyrus (6). This response can be detected by 4 months (7), but its sensitivity to
68 configural processing develops over the first year of life (8). Functional magnetic resonance
69 imaging (FMRI) indicates that core regions of the social brain (particular the fusiform face
70  ared) show increases in oxygenated haemoglobin delivery in response to faces by 4-9 months
71  (9). Functional near-infrared spectroscopy (fNIRS) studies show that oxygenated
72 haemoglobin delivery in response to naturalistic social videos in a broad region of temporal
73 cortex emerges over the first hours of life (10). Thus, work with single modalities indicates
74  experience-dependent changes in specialised brain activity across the first year of life but
75  doesnot yield insights into the underpinning mechanisms.

76

77 Interactive specialisation is a theory of brain development that posits that competition
78  between brain regions for acquiring function drives specialisation (3). This can be indexed
79  through a reduction in the spatial extent of neural (and vascular) responses to a particular
80  stimulus category and a concomitant increase in selectivity in responsive regions (11). One
81  mechanism that could underpin this competition is the limited energetic resources available to
82 theinfant brain. The brain is an energetically costly organ, consuming 20-25% of the body’s
83  energy in adulthood while representing only 2% of the body’s mass (12, 13). There are also
84  substantial developmental changes in the brain’s energy consumption; in the first year of life,
85 up to 60% of available energy is used by the brain (14). When brain regions become
86 functionaly active (for example during stimulus processing) neurons fire more rapidly,
87  requiring greater supplies of adenaosine triphosphate or ATP (energy stores). Producing ATP
88  requires oxygen, and this is supplied through a localised increase in oxygenated haemoglobin
89 in the blood. Increases in oxygenated haemoglobin do not happen concurrently in all brain
90 areas, and there are spatia dependencies between activated and deactivated regions in the
91 adult brain (15). Energy supplies are important to synaptic plasticity, memory and learning
92 (16), and the mechanism through which energy supplies are coupled to activation
93 (neurovascular coupling) also develops through experience-dependent specialisation in the
94 infant brain (17). Thus, we propose that examining the coupling between neuronal activity
95 and energy supply will provide the most sensitive measure of the emergence of specialised
96  brain function in the infant brain.
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98 Broadband near-infrared spectroscopy (or bNIRS) is a new technique that can be used to
99  quantify the relationship between the neuronal, hemodynamic, and metabolic activity in the
100 infants' brain as it allows the simultaneous and non-invasive acquisition of haemodynamic
101 and metabolic activity concurrently with EEG during functional activation. This technology
102  uses a broad range of optical wavelengths which allows the measurement of the oxidation
103 sate of mitochondrial respiratory chain enzyme cytochrome-c-oxidase (CCO), thereby
104  providing a direct measure of cellular energy metabolism (18). CCO is located in the inner
105 mitochondrial membrane and serves as the terminal electron acceptor in the electron transport
106 chain (ETC). It therefore accounts for 95% of cellular oxygen metabolism. In this way,
107 bNIRS alows non-invasive measurement of cellular energy metabolism alongside
108  haemodynamics/oxygenation in awake infants. We recently showed the feasibility of using
109  bNIRS in 4-to-7-month-old typically developing infants (19) and demonstrated the presence
110  of unique task-relevant, regionally specific functional networks where high levels of
111  haemodynamic and metabolic coupling were observed. Here, we integrate this methodology
112 with EEG to identify markers of early brain specialisation with coordinated energetic
113  coupling and neural activity. We develop a novel analysis pipeline to identify localised
114 coupling responses that are modulated by naturaistic social content. We predicted that
115  coupling would be most pronounced in the high-frequency beta and gamma band (20-25)
116  (26), and we hypothesised that we would identify core localised social brain regions with
117  coordinated increases in coupled neural activity, metabolic changes and neurovascular
118  responsein theinfant brain.
119
120 Results
121
122 Naturalistic social stimuli €licit expected increases in broadband EEG activity: 5-month-
123 old infants n=42) viewed naturalistic social and non-socia stimuli (Fig 1a) while we
124 concurrently measured EEG and broadband NIRS. Fourier-transform of continuously
125  recorded EEG data from 32 channels (n=35) in one-second segments across the time course
126  of stimulus presentation confirmed robust broadband increases in neural activity in response
127  tosocial versus non-social stimuli (Fig 1b, replicating (11)).
128
129
130
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131

132 Figure 1: a) lllustration of the paradigm; b) Scalp topographies of the grand average RMS power for theta, alpha, beta, and
133 gamma frequency bands (averaged across participants, averaged across the stimulus period) for the social minus non-social
134 condition. The orange stars indicate statistically significant EEG electrodes where an increase in activity was observed
135 (e.g., increase in response to the social condition compared to the non-social condition) while the grey stars indicate
136 statistically significant EEG electrodes where a decrease in activity was observed; a double line indicates significance after
137  FDRcorrection.

138

139 Haemodynamic and metabolic coupling and oscillatory activity spatially overlap: A
140 validated method Fig 2f (27) applied to the bNIRS data (n=25) identified regions with
141  coupled increases in metabolic function and oxygenated blood flow (19). This revealed
142  distinct locations sensitive to social (Fig 2b) and non-social (Fig 2d) processing; the
143  topography of these locations is strikingly similar to the topography of differentiated
144  broadband EEG activity (Fig 2a, c, €).
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150

151  Figure2: Scalp topographies of the grand average RMS power for theta, alpha, beta, and gamma frequency bands

152 (averaged across participants, averaged across the stimulus period for (a) social and (c) non-social conditions. Locations of
153 high haemodynamic and metabolic coupling for (b) social and (d) non-social condition obtained using (f) the relative power
154  and cost method described in(27, 28).

155 Coupled signals highlight specialised activation in the temporal parietal junction: We
156 then convolved the time-course of the within-hemisphere EEG responses with an infant-
157  gpecific haemodynamic response function (n=17; Fig 3a). A genera linear model (GLM)
158  approach was then used to identify FDR-corrected associations between EEG channels and
159 DbNIRS channels that showed significant coupling between metabolic response and
160  oxygenated haemoglobin delivery (Fig 2 b, d). We were looking for bNIRS channels showing
161 the expected patterns of positive associations between EEG and oxCCO and HbO, and
162 negative associations with HHb. Figure 3 shows that these associations were primarily
163  concentrated in the beta and gamma bands as predicted (Fig 2 in the supplementary material
164  shows the associations for the theta and alpha bands). Coupled activity was localised to a
165 DNIRS channel (channel 14) positioned over the superior temporal sulcus - temporo-parietal
166 junction region. At this channel, a coupled increase for the social condition and a coupled
167  decrease for the non-social condition was observed (Fig 3 b, c).
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Figure 3: (a) Summary of the procedure for obtaining the associations between bNIRS signals and EEG RMS power at each
bNIRS channel combination, for each frequency band. FDR-corrected significant connections between bNIRS channels and
EEG electrodes for the beta and gamma bands for the social condition (b-c) and the non-social condition (d-€) for HbO,,
HHb, and oxCCO. The colour bar represents the t-values from the GLM analysis with a positive t-value representing a
significant, positive connection between the bNIRS channel and EEG electrode while a negative t-value represents a
negative connection.

Using image reconstruction on the bNIRS data, the spatial sensitivity of the bNIRS location
of interest (channel 14) is shown in Figure 4. The method for image reconstruction has been
described in detail in the methods section. This indicates that coupled activity was most
consistent with the spatial extent of changes in metabolic activity (CCO) and was
differentially modulated in the social and non-social conditions.
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190 condition (d — f) at a single time point of 18 s post-stimulus onset. The concentration changes for HbO, and HHb were
191 normalised to the maximum concentration change of HbO, while 4/0xCCO was normalised to its own maximum change in
192  concentration. Channel 14 has been indicated.

193

194 Discussion

195

196 We conducted a multimodal imaging analysis of coordinated neural activation, metabolic
197 demand, and oxygenated haemoglobin delivery in the infant brain. Confirming previous
198  work, naturalistic social and non-social stimuli produce broad haemodynamic changes that
199 can be refined through examining locations with coupled haemodynamic and metabolic
200 activity (19). We and others have also observed broadband differences in EEG responses to
201 socia and non-social stimuli (11) that were also observed in the present datasets. However,
202  examining coupling between these two phenomena uncovered a precise pattern in which a
203  gpecific location at the temporal-parietal junction that differentially responds to both social
204  and non-social stimuli was also coupled with beta and gamma band activity across
205 chromophores in the expected pattern. We contend that this approach allows precision
206 identification of neural specialisation through the coordination of neural, haemodynamic, and
207 metabolic activity. Widespread use of this technique will accelerate our understanding of
208  both the typically and atypically developing brain.

209

210 Our work is consistent with previous studies in identifying increased gamma band activity
211 over tempora and parieto-occipital brain regions during face processing (29-38) (39-42).
212  High-frequency neura firing is associated with localised processing (43) whilst lower-
213  frequency activity is associated with larger-scale network changes and transfer of information
214  across systems (44). The increase in lower-frequency activity during social attention also
215 observed here and in other work (11, 45) may support larger-scae connectivity and
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216 communication of information through cross-frequency coupling (45). Our work further
217  indicates that measures of metabolic load are a critical nexus in understanding localisation of
218 brain function. Localised high-frequency activity exerts strong metabolic demand (46, 47)
219 and subseguent increases in oxygenated haemoglobin (24, 48, 49). These increases in
220 metabalic rate are supported by increased activity in the mitochondrial electron transport
221  chain, resulting in the changes in cytochrome-c-oxidase we detected with broadband NIRS.
222  Nitric oxide (which competes with oxygen to bind to cytochrome-c-oxidase) and carbon
223  dioxide (produced as a by-product in the ETC) are key signalling molecule in controlling
224 neurovascular coupling and thus subsequent oxygen delivery (50, 51). Finally, reactive
225  oxygen species produced by the ETC are a key signal in inducing synaptic plasticity (52).
226  Thus, our work is consistent with a model in which socia attention induces localised high
227  frequency brain activity in the temporal parietal junction, which increases local metabolic
228  rates, triggering synaptic plasticity and subsequent oxygen delivery to a broader region.

229

230 Our work specifically pinpoints the importance of the temporal-parietal junction in early
231 socia brain function. Previous studies measuring haemodynamic activity have identified
232  early senditivity of this region to socia stimuli from at least 4 months (53), alongside a
233  broader network of other regions. Here, we pinpoint this specific location as having coupled
234 neuronal, metabolic, and haemodynamic activity that is modulated in opposite directions by
235 complex social and non-social content. In the adult brain, the temporal-parietal junction has
236  received considerable attention and there are several competing models of its function. It has
237  been linked to mentalising (54, 55) and reorienting attention to behaviourally relevant stimuli
238  (56); it can be viewed as a nexus area where the convergence of attention, language, memory
239  and social processing supports asocid context for behaviour ((57) or as aregion that is active
240 when awareness of a prediction permits attentional control (58). Intriguingly, recent
241  formulations within the predictive coding framework link the right temporal-parietal junction
242  to a domain-general role in prediction, perhaps representing the precision of priors (59).
243  Predictability has been linked to energy-efficiency, with some computational models showing
244 that energy limitations are the only requirement for driving the emergence of predictive
245  coding (60). Increases in beta/lgamma have also been linked to unexpected reward processing
246  (61). Taken together, our results may indicate the early presence of priors for social
247  interaction that are being actively updated (in contrast to the dynamic toys, which may
248  already be more predictable).

249

250 The methods we devel oped have extensive application in both neurotypical and atypical brain
251 function. Assessing coupling over developmental time will indicate the mechanisms
252  underpinning neural specialisation and constrain theoretical frameworks seeking to explain
253  gpecidisation in the adult brain. The mechanisms of neurovascular coupling remain unclear
254  in the adult brain (50), and are developing in infancy (17), and novel multimodal and non-
255 invasive approaches to their identification could yield significant progress. Computational
256 models could test the role of constraints in energy supply on developing localisation of
257 function. Further, the region identified here aso shows atypical haemodynamic
258 responsiveness in infants with later symptoms of autism (62); since mitochondrial
259 dysfunction has become an increasing focus in autism (63) the possibility that atypical
260 coupling may impact specialisation in autism is an important hypothesis to test. Further, our
261  methods have applicability in determining the impacts of early brain injury. Recent work (64)
262 measured both cerebral oxygenation and energy metabolism in neonates with brain injury
263  (hypoxic-ischaemic encephalopathy) and demonstrated that the relationship between
264  metabolism and oxygenation was able to predict injury severity. This therefore provided a
265 clinical, non-invasive biomarker of neonatal brain injury. Indicating applicability across the
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266 lifespan (65) simultaneous measurements of cerebral oxygenation, metabolism and neural
267  activity in epilepsy revealed unique metabolic profiles for heathy brain regions in
268 comparison to those with the regions of the epileptic focus. This work demonstrates the
269  strength of combining measurements from multiple modalities to investigate brain states,
270  particularly in clinical populations.

271

272  Our work has severa limitations. We used naturalistic stimuli to maximise ecological
273  validity; however, this reduces our ability to probe the function of the temporal-parietal
274  junction across specific stimulus dimensions and this is an important target for future work.
275 Limitations of current technology meant we recorded from the right hemisphere only and
276  thus cannot determine the specificity of our findings to left temporal-parietal junction;
277  engineering advances are required to produce whole-head bNIRS devices.

278

279  Conclusion: Energy metabolism and neural activity are known to be tightly coupled in order
280  to meet the high energetic demands of the brain, both during atask (66, 67) and at rest (68). It
281 has been hypothesised that the level of correspondence between energy metabolism and
282 neuronal activity may be an indicator for brain specialisation (28, 66, 69). Here, we
283  developed a system to simultaneously measure multichannel broadband NIRS with EEG in 4-
284  to-7-month-old infants to investigate the neurovascular and neurometabolic coupling. We
285  presented a novel study combining bNIRS and EEG and show stimulus-dependent coupling
286  between haemodynamic, metabolic, and neural activity in the temporal-parietal junction. The
287  results highlight the importance of investigating the energetic basis of brain functional
288  gspecidisation and opens a new avenue of research which may show high utility for studying
289  neurodevelopmental disorders and in clinical populations where these basic mechanisms are
290  altered.
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342 NIRS-EEG data can be made available in anonymised form. ID numbers linking the NIRS
343 and EEG data, however, cannot be provided as parents/guardians have consented only to data
344  being shared in anonymised form. All code used to analyse the NIRS data and the integration
345  of the NIRS and EEG data is available on GitHub
346  (https://github.com/maheensiddiqui9L/NIRS-EEG). EEG data was processed using EEGlab
347  whichisapublicly available toolbox.

348

349 Methods

350

351 Participants: The study protocol was approved by the Birkbeck Ethics Committee.
352  Participants were forty-two 4-to-7-month-old infants (mean age: 179+ 16 days; 22 males and
353 20 females); parents provided written informed consent to participate in the study, for the
354  publication of the research and additionally for the publication and use of any photographs
355 taken during the study of the infant wearing the NIRS-EEG headgear. Inclusion criteria
356 included term birth (37 — 40 weeks); exclusion criteria included known presence or family
357 history of developmental disorders. The sample size was determined by performing a power
358 analysis of existing data using G*Power.

359

360 Experimental Procedure: The experimental stimuli were designed using Psychtoolbox in
361 Matlab (Mathworks, USA) and consisted of social and non-socia videos. The socia videos
362 consisted of a variety of full-colour video clips of actors performing nursery rhymes such as
363 “pat-a-cake” and “wheels on the bus’. The non-social videos consisted of dynamic video
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364 clips of moving mechanical toys. The visua and auditory components of both social and non-
365 socia videos was matched. These videos have been used extensively in prior infant studiesin
366 both EEG studies (11) and NIRS studies (70, 71). Both social and non-socia experimental
367 conditions were presented aternatingly for a varying duration between 8-12 s. The baseline
368 condition consisted of static transport images, for example cars and helicopters, which were
369 presented for a pseudorandom duration of 1 — 3 s each for a total of 8 s. Following the
370 presentation of the baseline condition, a fixation cross in the shape of a ball or a flower
371  appeared in the centre of the screen to draw the infant’s attention back to the screen in case
372 the infant had become bored during the baseline period. The following experimental
373  condition was then presented once the infant’s attention was on the fixation cross. Error!
374  Reference source not found.a depicts the order of stimulus presentation. All infants sat in
375 their parent’s lap at an approximate distance of 65 cm from a 35-in screen which was used to
376  display the experimental stimuli. The study began with a minimum 10 s rest period to draw
377 theinfant’s attention towards the screen during which the infant was presented with various
378  shapesin the four corners of the screen. Following this, the baseline and experimental stimuli
379  were presented aternatingly until the infant became bored or fussy.

380

381 Data acquisition and array placement: bNIRS and EEG data was acquired simultaneously
382 and the bNIRS optodes and EEG electrodes were positioned on the head using custom-built,
383  3-D printed arrays which were embedded within a soft neoprene cap (Neuroelectrics, Spain).
384  Figures 5a and 5b show the locations of bNIRS optodes and EEG electrodes on the head.
385  Figure 1b shows the combined bNIRS-EEG headgear positioned on an infant. The array was
386 designed to allow measurement from several cortical regions which included occipital,
387 parietal, temporal, and central regions to alow investigation of neurovascular coupling in
388 different cortical regionsthat are expected to be activated by dynamic stimuli.

389

389 Figure 5: Schematic representation of bNIRSand EEG channel locations. (a) Locations of bNIRS channels (grey circles)
392 over the occipital cortex and the right hemisphere and locations of the bNIRS sources (orange circles) and detectors (green
393 circles) relative to EEG 10/20 locations. Channels shown in blue (3, 6, 8 and 10) were excluded fromthe analysis (b)

394 Locations of the 32 EEG electrodes.
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395

396 Broadband NIRS Brain haemodynamic (A[HbO;], A[HHb]) and metabolic changes
397 (A[oxCCO]) were measured using an in-house broadband NIRS system developed at
398 University College London (72). The bNIRS system consisted of two light sources that
399 consisting of halogen light bulbs (Phillips) that emitted light in the near-infrared range (504 —
400 1068 nm). The light was directed to the infant’s head through customised bifurcated optical
401 fibres (Loptek, Germany), allowing each light source to split into two pairs of light sources.
402 This formed atotal of four light sources at the participant-end and each pair of light sources
403  were controlled by a time multiplexing mechanism whereby one pair of light sources was on
404  every 1.4 s. The system also consisted of fourteen detector fibres at the participant-end which
405  were connected to two spectrometers, seven for each spectrometer (in-house developed lens
406  spectrographs and PIX1S512f CCD cameras (Princeton Instruments). The configuration of
407  four light sources and fourteen detectors formed a total of nineteen measurement channels.
408 These were positioned over the occipital cortex and the right hemisphere as shown in Figure
409 5a. The source-detector separation was 2.5 cm.

410

411 Data were analysed in Matlab (Mathworks, USA) using in-house scripts. First, for each
412  participant, across all wavelengths, wavelet-based motion correction (73) was applied to the
413  attenuation change signal to correct for motion artifacts. The tuning parameter a1=710.8 was
414  used. Following this, the UCLn algorithm (18) was used with a wavel ength-dependent, age-
415 appropriate fixed differential path-length factor (DPF) value of 5.13 (74). Changes in
416  concentration of HbO,, HHb and oxCCO were calculated using 120 wavelengths between
417 780 — 900 nm. A 4™-order bandpass Butterworth filter from 0.01 — 0.4 Hz was used to filter
418 the data. For each infant, channels were assessed for signal quality and any channels with
419 poor signal quality were rejected. Following this, the HbO,, HHb and oxCCO time-series
420 were entered into a General Linear Model (GLM) to correlate bNIRS and EEG data.

421

422  For each infant, intensity counts (or photon counts) from each of the fourteen detectors were
423  used to assess the signal-to-noise (SNR) ratio at each channel and the channels with intensity
424 counts lower than 2000 or higher than 40,000 were excluded (72). If an infant had more than
425 60% of channels excluded, they were excluded from the study. At the group level, five
426 channels over the occipital cortex were excluded due to poor SNR in majority of infants
427  (Channel 3 excluded in 64% of infants, Channel 6 excluded in 83% of infants, Channel 7
428  excluded in 64% of infants, Channel 8 excluded in 79% of infants) and one channel over the
429  right hemisphere was excluded in 100% of infants due to a damaged optical fibre.

430

431 EEG: EEG was used to measure neural activity simultaneously to haemodynamic and
432  metabolic activity using the Enobio EEG system (Neuroelectrics, Spain) which is a wireless
433  gel-based system. The system consisted of 32 electrodes, the locations of which are shown in
434  Figure 5b. The sampling rate of the system was 500 Hz. The experimental protocol in
435 Psychtoolbox sent event markers to both bNIRS and EEG systems using serial port
436  communication which was then used to synchronise the bNIRS and EEG.

437

438 All data were andysed using the EEGlab Toolbox (Schwartz Centre for Computation
439  Neuroscience, UC San Diego, USA) and in-house scripts in Matlab (Mathworks, USA). The
440 raw EEG signal was band-pass filtered between 0.1 — 100 Hz and a notch filter (48 — 52 Hz)
441  was applied to remove artifacts due to line noise. Following this, blocks of the data were
442  created such that they consisted of the baseline period prior to the stimulus presentation and
443  the entire following stimulus period. These blocks were then segmented into 1 s segments
444 such that for both the baseline and the stimulus, each 8 — 12 s presentation of the baseline
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445  condition or the stimulus condition yielded 8 — 12 x 1 s segments. These 1 s segments
446  consisted of 200 ms of the previous 1 s segment and 800 ms of the current segment and the
447 200 ms was used for baseline correction of each 1 s segment. Segments where the infants
448  were not visualy attending to the stimulus were removed. Artifacts were detected using
449  automatic artifact-detection in EEGlab and through manual identification. EEG segments
450 were rejected if the signal amplitude exceeded 200 pV, or if electro-ocular, movement, or
451 muscular artifacts occurred. Channels with noisy data were interpolated by an algorithm
452  incorporated within EEGlab. Data were then re-referenced to the average reference.

453

454 Within each block (consisting of the baseline period and the stimulus period), each artifact-
455  free 1 s segment was subjected to a power analysis to calculate the average root mean square
456 (RMS) power for both low and high frequency bands — theta (3 — 6 Hz), adpha (8 — 12 Hz),
457  beta (13 — 30 Hz) and gamma (20 — 60 Hz), within each 1 s segment. This then yielded the
458 average RMS power across the block (baseline period + following stimulus period). Baseline
459  correction was performed by subtracting the average of the 2 s of the baseline period from the
460 entire block. RMS power was chosen as the metric to correlate bNIRS and EEG data as
461 previous studies have demonstrated that task-related BOLD changes are best explained by
462 RMS (75, 76). The blocks were then averaged across trials to obtain an averaged RMS
463  response per participant. A portion of the averaged RM S power was then entered into a GLM
464  analysis described below — this consisted of two seconds of the baseline period and 8 seconds
465  of the stimulus period. Figure 6a provides a visual depiction of how the RMS power was
466  derived from the pre-processed EEG data. For each participant, the RMS power was also
467 averaged across the stimulus period for statistical analysis of the EEG data. For each
468 frequency band, statistical t-tests were performed on this averaged RMS power comparing
469 the social condition versus the baseline (RMS power was averaged during the baseline
470 period), the non-socia condition versus the baseline and social versus non-social. The false
471  discovery rate (FDR) procedure using the Benjamin Hochberg method (77) was performed
472 to correct for multiple comparisons.

473

474  Data Analysis: Figure 6b outlines the data analysis pipelines for both bNIRS and EEG data,
475  aswell asthe procedure for the combined bNIRS-EEG analysis.

476
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ﬁg? Figure 6: (a) Summary of the signalling pathways that mediate neurovascular coupling. High-frequency neural activity
482 causes the release the excitatory neurotransmitter glutamate which binds to N-methyl-D-aspartate (NMDA) receptors in
483 interneurons. This causes an influx of calcium (Ca?*) which in turn leads to an increase in ATP production through the
484 mitochondrial electron transport chain (ETC). As a by-product, nitric oxide (NO) and reactive oxygen species (ROS) are
485 produced. NO dilates arterioles to increase blood flow leading to increased oxygen delivery in surrounding brain regions.
486 ROS influence synaptic plasticity. (b) Procedure for deriving the EEG RMS power from the pre-processed EEG data. The
487 task-averaged RMS power shown here is average theta power across all infants from a single channel for the purposes of
488 outlining the procedure (c) Flow chart for the data analysis pipelines for bNIRS (left), EEG (middle) and combined bNIRS-
489  EEG (right).

490

491 Combined NIRS-EEG analysis: A GLM (78) approach was employed to investigate the
492  relationship between the bNIRS hemodynamic and metabolic data with the EEG neural data.
493 The canonical GLM typically uses a model of the expected haemodynamic responsg, i.e. the
494  hemodynamic response function (HRF), to predict the hemodynamic signal. However, given
495 the differences in the haemodynamic response in adults and infants, the standard adult HRF
496 model cannot be assumed for infant data. For example, infants display a delay in their
497  haemodynamic responses (79-81). In addition, the analogous of the HRF is not established
498 for the metabolic response (i.e. the metabolic response function or MRF). Therefore, the first
499  step of this analysis involved reconstructing the HRF for HbO, and HHb and the MRF for
500 oxCCO before combing bNIRS and EEG data.

501

502  The reconstruction of the infant HRF and MRF started with block-averaging the HbO,, HHb,
503 and oxCCO signals for social and non-social conditions within each baby. Based on our
504 previous study (19), we selected only the channels that displayed statistically significant
505 responses to the contrast task versus baseline. The single subjects block-averaged responses
506 were averaged across the social and non-social conditions and then across the significant
507 channels. The resulting block-averaged responses were then averaged across the group to
508 obtaina“grand average” HbO,, HHb and oxCCO response.

509

510 The grand average was then used in an iterative approach to estimate the HRF and MRF that
511 best fit the HbO,, HHb and oxCCO responses. This involved fitting the grand averaged
512 signas with different HRF/MRF models starting from the canonical HRF made of two
513 gamma functions and varying the following parameters. 1) delay of response, 2) delay of the
514  undershoot and 3) ratio of response to undershoot to identify the combination of parameters
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515 that best reconstructed the infant HRF/MRF for the social/non-social stimuli. The parameters
516 werevaried in increments of 1 s such that the delay of the response was varied from 5 sto 15
517  sfrom the stimulus onset, the delay of the undershoot was varied from 5 to 20 s and the ratio
518 of the response to the undershoot was varied from 2 to 6 s. All possible combinations of
519 parameters were tested. The grand average responses were fitted with each HRF/MRF in
520 GLM approach, and B-values were obtained for each combination of the HRF/MRF
521 parameters. The B-values were entered into a statistical test and the parameter combinations
522 that yielded the highest, statisticaly significant B-values (i.e. the modd best fitting the data)
523  were selected to reconstruct the infant HRF/MRF. This is approach is similar to those used
524  previously to reconstruct the infant HRF (81) and identified the best fit to be with a 2-s delay
525  of response for HbO, and HHb and a 3-s delay of response for oxCCO in comparison to the
526 adult HRF (i.e. 6 s). Moreover, the delay of the undershoot was 9-s earlier for al
527  chromophores and the ratio of the response to the undershoot was 2 for HbO, and HHb and 3
528 for oxCCO, in comparison to 6 for the adult HRF. The new reconstructed HRF was then used
529 for the GLM approach to correlate bNIRS and EEG data. The process for estimating the HRF
530 and MRF has been depicted in Figure 7.

e A Group averaged response
\ — | | Blodse average ‘ I Block average
ocial Non-Sacial
Average across -g—
R conditions 3
. Channels l g
Al £
Infants 1:17 sign. channels 5 3§ 10 15 20 2% a0
Time [z) r ______________
I Reconstructed infant’s |
I HRF & MRF 1
l I
I 11
. HbO,: Tp=12s; U=175; R=2
—| GLMfit :_ HHB: Tp=13s; U=20s; R=2
1a |
18 :
B-value ,| Highest — :E‘ |
B-value ] o —
1
] I
| " |
J 0 5 10 15 20 25 30 |
2 Time (s) |
) 5 R A
T ;
oy 5:20
— Model generation
-’:\;‘y&
HbO,, HHB, 0xCCO
gg\% Figure 7: Procedure for obtaining the reconstructed haemodynamic response function (HRF) and the metabolic response
534 function (MRF).

535 To constrain the analysis, we chose to investigate coupling of haemodynamic and metabolic
536  with neural activity at specific channels. For this, we used the results from an analysis we
537  described previously that combined bNIRS haemodynamic and metabolic signals (19, 27).
538 The results from this identified task-relevant cortical regions that displayed high levels of
539 haemodynamic and metabolic coupling. The bNIRS channels that displayed significant
540 haemodynamic and metabolic coupling for social and non-socia conditions were used here.
541  All EEG channels were used as EEG is not as spatially specific as bNIRS. For each infant,
542  for each chromophore, for each channel and each EEG frequency band, the new infant
543 HRF/MRF that was reconstructed in the previous step was convolved with the events to
544  obtain the “predicted” bNIRS signal. The “predicted” bNIRS signal was then convolved with
545 the EEG RMS power block (consisting only of the data from the stimulus period) at each
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546  frequency band to obtain the neural regressor for the bNIRS data, considering both social and
547 non-social conditions together. The design matrix thus included the neural regressor
548  reflecting the increased in EEG activity to the social and non-social stimuli and used to fit the
549 DbNIRS data. This was performed for HbO2, HHb, and oxCCO individualy for all the
550 channels. 3-values were estimated for each channel and t-tests against O were conducted to
551  test whether there was a statistically significant association between bNIRS signals and EEG
552  frequency bands. The false discovery rate (FDR) procedure using the Benjamin Hochberg
553 method (77) was performed to correct for multiple comparisons. The FDR-corrected
554  dignificant t-values were plotted. This method has been used in numerous studies previously
555 incorrelating fMRI BOLD — EEG (20). For each frequency band, FDR-corrected, significant,
556  B-values were also averaged (1) for bNIRS and EEG channels over the right hemisphere and
557  (2) between bNIRS channels in the right hemisphere and EEG channelsin the left hemisphere
558 to obtain an estimate of the frequency band where bNIRS and EEG activity associated most
559  strongly within hemispheres and across hemispheres. Only bNIRS channels that displayed
560 significant (prior to FDR correction) haemodynamic and metabolic coupling were used for
561 this analysis (as indicated in Figure and Error! Reference source not found.). For the
562 socia condition, these were channels 4, 12, 13 and 14 for HbO,, channels 11, 12, 14 and 18
563 for HHb and channels 4, 11, 12, 13, 14 and 18 for oxCCO. For the non-social condition, these
564  were channels 5, 12 and 14 for HbO,, channels 5, 12, 14 and 16 for HHb and channels 5, 12,
565 14 and 16 for oxCCO.

566

567  For the bNIRS analysis, data from 25 infants was included while for the EEG analysis, data
568 from 35 infants were included. For the joint bNIRS-EEG analysis, only infants that had both
569 valid bNIRS and EEG data for social and non-social conditions were included and therefore
570 17 infantswereincluded inthis analyss.

571

572 Image reconstruction: Image reconstruction was performed on the bNIRS data, a the
573 individual subject level and then averaged across infants to produce a grand average that is
574  shown in Figure 4. For this analysis, three additional long-distance channels were created
575  over the right hemisphere (in addition to the 19 bNIRS channels) that had a source/detector
576  separation of 4.3cm.

577

578 For this analysis, the block averaged attenuation changes at 13 discrete wavelengths (from
579 780 — 900 nm at 10 nm intervals) for each infant were selected from the bNIRS data. This
580 was done to reduce the computational burden of the reconstruction (82). A four-layer infant
581 head-model (consisting of the grey matter (GM), white matter (WM), cerebrospinal fluid
582 (CSF) and extra cerebral tissue) was built using averaged MRI datafrom a cohort of 12-
583 month-old infants presented in Shi et al. (83). The Betsurf segmentation procedure (84) was
584  then used to define an outer scalp boundary from the average head MRI template. The
585 voxelised four-layer model was converted to a high-resolution tetrahedral mesh (~7.8 x
586  10° nodes and ~4.7 x 10° elements) using the iso2mesh software (Fang & Boas, 2009). The
587  same software was used to create the GM surface mesh (~5.8 x 10* nodes and ~1.2 x 10°
588 faces), used to visualise the reconstructed images.

589

5900 The reconstruction of images of HbO,, HHb and AoxCCO are described elsewhere (85),
591 using a multispectral approach (86). Wavelength-specific Jacobians were computed with the
592  Toast++ software (87) on the tetrahedral head mesh and projected onto a 50 x 60 x 50 voxel
593  regular grid for reconstruction, using an intermediate finer grid of 100 x 120 x 100 voxels to
594  optimize the mapping between mesh and voxel space. Optical properties were assigned to
595  each tissue type and for each wavelength by fitting all published values for these tissue types
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506 (88-90). Diffuse boundary sources and detectors were simulated as a Gaussian profile with a
597 2-mm standard deviation, and Neumann boundary conditions were applied. The inverse
508 problem was solved employing the LSQR method to solve the matrix equations resulting
599 from the minimization and using first-order Tikhonov regularization, with the parameter
600 covariance matrix containing the diagonal square matrices with the background concentration
601 values of the three chromophores (23.7 for HbO,, 16 for HHb and 6 for AoxCCO) (91, 92)
602  and the noise covariance matrix set as the identity matrix. The maximum number of iterations
603  alowed to the LSQR method was set to 50, and with a tolerance of 10°. The regularization
604  hyperparameter 1 was set to 102

605

606  The reconstructed images, defined on the same regular grid of the Jacobian, were remapped
607 to the tetrahedral head mesh and then projected to the GM surface mesh, by assigning a value
608 to each node on the GM boundary surface that was equal to the mean value of all the
609 tetrahedral mesh node values within a 3-mm radius. The concentration changes for HbO, and
610 HHb were normalised to the maximum concentration change of HbO, while AoxCCO was
611 normalised to its own maximum change in concentration.

612
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