

1 **Functional and structural asymmetry suggest a unifying principle for**
2 **catalysis in integral membrane-bound pyrophosphatases**

3 Jannik Strauss^{1,†}, Craig Wilkinson¹, Keni Vidilaseris², Orquidea Ribeiro², Jianing Liu², James
4 Hillier^{1,‡}, Anssi Malinen³, Bernadette Gehl^{2,§}, Lars J.C. Jeuken⁴, Arwen R. Pearson⁵ and Adrian
5 Goldman^{1,2,*}.

6 ¹ Astbury Centre for Structural and Molecular Biology, University of Leeds, LS2 9JT, Leeds, UK.

7 ² Molecular and Integrative Biosciences, Biological and Environmental Sciences, University of Helsinki,
8 00100 Helsinki, Finland.

9 ³ Department of Life Technologies, University of Turku, FIN-20014 Turku, Finland

10 ⁴ Leiden Institute of Chemistry, University Leiden, PO Box 9502, 2300 RA Leiden, Netherlands.

11 ⁵ Institute for Nanostructure and Solid State Physics, Hamburg Centre for Ultrafast Imaging, Universität
12 Hamburg, 22761 Hamburg, Germany

13 [†] Current: Numaferm GmbH, Düsseldorf, Germany

14 [‡] Current: Bio-Rad Laboratories Ltd., Watford, UK.

15 [§] Current: Department of Applied Physics, Aalto University, FI-00076, AALTO, Finland.

16

17 *Corresponding author: adrian.goldman@helsinki.fi

18

19 **Short title**

20 Asymmetry in integral membrane-bound pyrophosphatases.

21

22 **Abstract**

23 Membrane-bound pyrophosphatases (M-PPases) are homodimeric primary ion pumps that
24 couple the transport of Na^+ - and/or H^+ across membranes to the hydrolysis of pyrophosphate.
25 Their role in the virulence of protist pathogens like *Plasmodium falciparum* makes them an
26 intriguing target for structural and functional studies. Here, we show the first structure of a
27 K^+ -independent M-PPase, asymmetric and time-dependent substrate binding in time-resolved
28 structures of a K^+ -dependent M-PPase, and demonstrate pumping-before-hydrolysis by
29 electrometric studies. We suggest how key residues in helix 12, 13, and the exit channel loops
30 affect ion selectivity and K^+ -activation due to a complex interplay of residues that are involved
31 in subunit-subunit communication. Our findings not only explain ion selectivity in M-PPases
32 but also why they display half-of-the-sites reactivity. Based on this we propose, for the first
33 time, a unified and testable model for ion pumping, hydrolysis, and energy-coupling in *all*
34 M-PPases, including those that pump both Na^+ and H^+ .

35

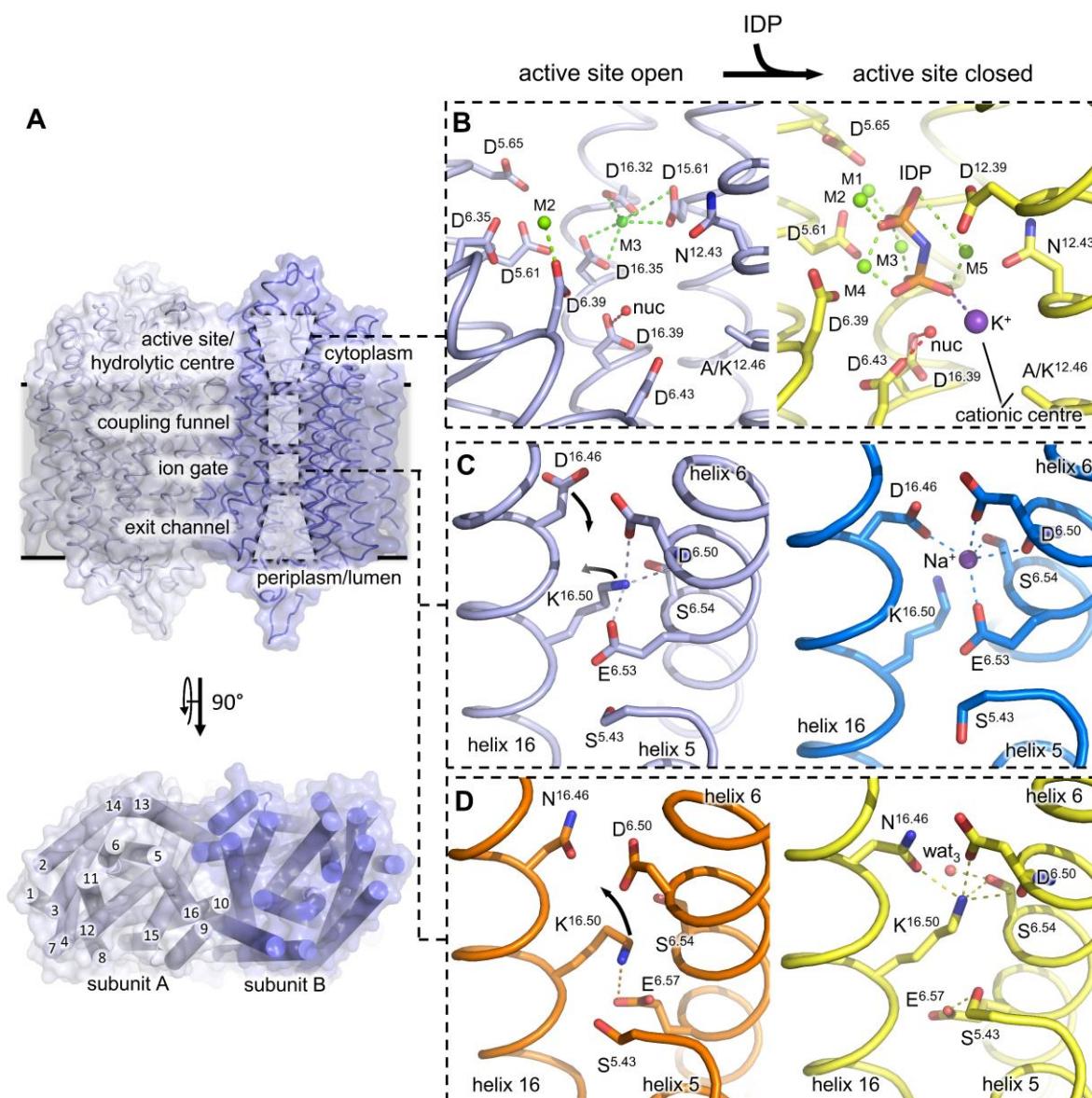
36 **Introduction**

37 Pyrophosphatases (PPases) catalyse the hydrolysis of inorganic pyrophosphate (PP_i), a by-
38 product of nearly 200 biosynthetic reactions across all kingdoms of life (Heinonen, 2001; Lahti,
39 1983). Soluble PPases (S-PPases) are responsible for recycling the intracellular PP_i pool in all
40 types of organisms, whereas the function of membrane-bound PPases (M-PPases) extends
41 beyond mere PP_i hydrolysis (H. Baltscheffsky et al., 1966; Moyle et al., 1972). They utilise the
42 energy stored in the phosphoanhydride bond of PP_i by coupling its hydrolysis to the directed
43 transport of sodium ions (Na⁺) and/or protons (H⁺) across membranes, but are only present in
44 plants, parasitic protists, and certain prokaryotes (M. Baltscheffsky et al., 1999; Luoto, Baykov,
45 et al., 2013; Malinen et al., 2007). They are classified into different subclasses based on their
46 ion pumping selectivity and co-factor dependence. To date, H⁺-pumping (H⁺-PPase), Na⁺-
47 pumping (Na⁺-PPase) and dual-pumping (Na⁺,H⁺-PPase) M-PPases have been found (Luoto,
48 Baykov, et al., 2013; Nordbo et al., 2016), most of which require (K⁺) for maximal catalytic
49 activity. Only in H⁺-PPases has evolution given rise to a subclass of K⁺-independent
50 enzymes (Table 1)(H. Baltscheffsky et al., 1966; Walker & Leigh, 1981).

51 **Table 1: M-PPase classification into different subclasses.**

Cation pumping specificity	Monovalent cation dependence	Residue at		Semi-conserved glutamate	Structural data (PDB)	Example	Reference
Na ⁺	K ⁺ , Na ⁺	A	G	6.53	4AV3, 4AV6, 5LZQ, 5LZR, 6QXA	<i>Thermotoga maritima</i>	(Kelloalo et al., 2012; Li et al., 2016; Vidilaseris et al., 2019)
					4A01, 5GPJ, 6AFS, 6AFT, 6AFU, 6AFV, 6AFW, 6AFX, 6AFY, 6AFZ		
H ⁺	K ⁺	A	T	6.57		<i>Vigna radiata</i>	(Li et al., 2016; Lin et al., 2012; Tsai et al., 2019)
	-	K	G	6.53	This study	<i>Pyrobaculum aerophilum</i>	-
Na ⁺ ,H ⁺ (dual)	K ⁺ , Na ⁺	A	G	6.53	-	<i>Clostridium leptum</i>	-

52


53 **M-PPases in human health and global food security**

54 Plants, certain prokaryotes and parasitic protists utilise the PP_i pool as an additional energy
55 source to survive low-energy and high-stress conditions by establishing electrochemical
56 gradients across membranes (García-Contreras et al., 2004; Lander et al., 2016). This makes
57 M-PPases, which could be of benefit in the fight against existing and emerging challenges to
58 global food security and human health, a valuable target for structural and functional studies.
59 For example, overexpression of M-PPases improves drought tolerance in various transgenic

60 plants (Esmaeili et al., 2019; Gaxiola et al., 2001; Park et al., 2005); this could be of great
61 importance, as global warming induces crop losses of 3.2-7.4 % per degree rise in the global
62 mean temperature (Lesk et al., 2016; Zhao et al., 2017; Ray et al., 2019). Global warming also
63 facilitates the pole-wards spread of insect vectors for parasites such as *Plasmodium*
64 *falciparum*, putting millions of new people at risk of life-threatening diseases in the coming
65 decades (Hertig, 2019; Ryan et al., 2019). Consequently, impairing cellular homoestasis in
66 protozoan parasites that harbor M-PPases, such as *Plasmodium* spp. (malaria), *Leishmania* spp.
67 (leishmaniasis), *Trypanosome* spp. (trypanosomiasis) and *Toxoplasma gondii* (toxoplasmosis)
68 is a promising approach to combating these diseases (Zhang et al., 2018; Lemercier et al., 2002;
69 Liu et al., 2014). Recently, we have developed non-phosphorus M-PPase inhibitors with the
70 potential for further development into therapeutic molecules (Johansson et al., 2020, 2021;
71 Vidilaseris et al., 2019).

72 **Structural features of M-PPases**

73 M-PPases are large (66-89 kDa), single-domain integral membrane proteins comprised of two
74 identical monomers, each with 15-17 transmembrane helices (Luoto et al., 2015). To date, the
75 structures of only two are known, a K⁺-dependent H⁺-PPase from *Vigna radiata* (VrPPase) and
76 a K⁺-dependent Na⁺-PPase from *Thermotoga maritima* (TmPPase), with structures available
77 for both in various catalytic states (Kelloalo et al., 2012; Li et al., 2016; Lin et al., 2012; Tsai et
78 al., 2019; Vidilaseris et al., 2019). In general, the helices of each subunit arrange into an inner
79 ring (helices 5, 6, 11, 12, 15, 16) containing the functional core (active site, coupling funnel,
80 ion gate, exit channel) and an outer ring (helices 1-4, 7-10, 13, 14) of largely unknown
81 function (Figure 1A). In the following, we use the residue numbering scheme X^{Y,Z} in which
82 X represents the amino acid as single-letter code, Y denotes the helix on which it is located
83 and Z defines the offset of a well conserved in the centre of this helix (Ballesteros & Weinstein,
84 1995). This simplifies residue comparison between proteins and highlights conservation. A
85 translation to conventional residue numbering can be found in Supplementary table 1.

86

87 **Figure 1: Structural features of M-PPases.** Protein colouring follows previous publications (Li et al., 2016;
88 Vidilaseris et al., 2019) that used shades of yellow/ orange for *VrPPase* and shades of blue for *TmPPase* structures.
89 (A) Homodimeric M-PPase viewed from the membrane plane (top) with the functional core (active site, coupling
90 funnel, ion gate, exit channel) highlighted by dashed boxes. Concentric ring arrangements of transmembrane
91 helices (bottom) viewed from the cytoplasmic site. Loops were removed for clarity. (B) Close-up view of the
92 *TmPPase* active site (resting-state: left panel, active-state: right panel) with helix 11 removed for clarity. M1-5 is
93 Mg²⁺ (active-state), M3 is inhibitory Ca²⁺ (resting-state). K⁺ (purple sphere) is part of the cationic centre in K⁺-
94 dependent M-PPases (with A^{12.46}). The non-hydrolysable substrate analogue IDP (imidodiphosphate) is shown in
95 orange. (C-D) Close-up view of the ion gate in K⁺-dependent Na⁺-PPases (C) or K⁺-independent H⁺-PPases (D). Left
96 panels show the residue orientation when the active site is open, right panel shows the residue configuration
97 when the active site is fully closed upon IDP-binding to the active site. Na⁺ shown as blue sphere, structural water
98 (wat₃) displayed as red sphere. Dashed lines highlight key interactions.

99

100 *Active site.* The active site in M-PPases protrudes about 20 Å above the membrane plane into
101 the cytoplasm (Figure 1A), containing completely conserved Asp, Asn and Lys residues that
102 provide the basis for PP_i binding and hydrolysis (Kelloalo et al., 2012; Lin et al., 2012). Amino
103 acid substitutions in this region typically lead to inactive protein (Lin et al., 2012; Nakanishi et
104 al., 2001; Schultz & Baltscheffsky, 2003; Hirono et al., 2007; Asaoka et al., 2014). The aspartate
105 and asparagine side chains coordinate up to five Mg²⁺, which capture PP_i in a metal cage,
106 whereas lysine side chains directly stabilise PP_i binding at the active site (Figure 1B). Of the up
107 to five Mg²⁺ present at the active site, two are brought in by the enzymatically active substrate
108 (Mg₂PP_i), two bind to activating high-affinity sites (K_d : ~20-460 μM) and one binds to a
109 putatively inhibitory low-affinity site (K_d : ~100 mM)(Maeshima, 2000; Malinen et al., 2008). A
110 nucleophilic water molecule is poised to attack PP_i for reaction initiation and interacts with
111 either one (D^{6.43}, resting state) or two aspartates (D^{6.43} and D^{16.39}, active state)(Figure 1B).

112 *Coupling funnel* The coupling funnel links the active site to the ion gate in the centre of the
113 membrane (Figure 1A) and couples PP_i hydrolysis to the transport of Na⁺, H⁺ or both across
114 the membrane (Kelloalo et al., 2012; Lin et al., 2012). A set of highly conserved charged
115 residues including R/Q^{5.50}, D^{6.43}, D^{6.50}, D/S^{11.50}, K^{12.50}, K^{16.38} and D^{16.39} are arranged to form a
116 Grotthus chain through the top half of the membrane, allowing ion translocation (Kelloalo et
117 al., 2012; Lin et al., 2012). Of these residues, D^{6.43} and D^{16.39} sit at the interface of the active
118 site (Figure 1B), whereas D^{6.50} connects to the ion gate (Figure 1C).

119 *Ion gate and exit channel.* The ion gate functions as an ion selectivity filter for pumping in the
120 membrane spanning protein region. A set of four residues, E^{6.53/57}, D^{6.50}, S^{6.54} D/N^{16.46}, form a
121 Na⁺/H⁺ binding site. Binding of Mg₂PP_i to the active site requires a downward shift of helix 12
122 and corkscrew motion at helix 6 and 16, which affects the ion gate configuration of
123 K⁺-dependent Na⁺-PPases (*Tm*PPase) and K⁺-dependent H⁺-PPases (*Vr*PPase) differently. In
124 K⁺-dependent Na⁺-PPases, K^{16.50} rotates out of the Na⁺-binding site, making it available for ion
125 binding (Figure 1C). In K⁺-dependent H⁺-PPases, K^{16.50} reorientation unmasks a proton binding
126 site instead. The K^{16.50}-E^{6.57} ion-pair breaks and a D/N^{16.46}-K^{16.50}-D^{6.50}-S^{6.54} interaction forms,
127 which leaves the side chain of E^{6.57} stabilised only by a hydrogen bond to S^{5.43} in a hydrophobic
128 protein environment (Figure 1D). It has been proposed that E^{6.57} is protonated, thus linking
129 structural differences at the ion gate between K⁺-dependent Na⁺-PPases and K⁺-dependent H⁺-
130 PPases to the observed ion pumping selectivity (Li et al., 2016). The exit channel below the ion

131 gate has low sequence conservation but its properties are important in facilitating ion
132 release (Tsai et al., 2019).

133 *Dimer interface.* The interface between monomers is formed by residues of the outer ring
134 helices 10, 13 and inner ring helix 15 (Figure 1A) that interact with the opposing subunit *via*
135 hydrogen bonds and hydrophobic interactions (Kelloalo et al., 2012; Lin et al., 2012). The
136 dimer interface has not typically been considered as key to the function of M-PPases as all of
137 the catalytic machinery seems to be located in a single subunit (Kelloalo et al., 2012; Lin et
138 al., 2012), but a growing body of structural and functional evidence points to (1) that M-PPases
139 are functionally asymmetric, and (2) that the dimer interface mediates key inter-subunit
140 interactions (Anashkin et al., 2021; Artukka et al., 2018; Vidilaseris et al., 2019) through
141 coupled helix motions during the catalytic cycle(Li et al., 2016).

142 **Energy coupling**

143 The chronological order of PP_i hydrolysis and ion pumping is a point of active discussion for
144 M-PPases (Baykov, 2020; Li et al., 2016). The two opposing mechanisms of energy coupling
145 either postulate “pumping-before-hydrolysis” or “pumping-after-hydrolysis”. The “pumping-
146 after-hydrolysis” model, also called “Mitchell-direct”, postulates that PP_i hydrolysis and ion
147 pumping occur simultaneously and that the H⁺ released from the nucleophilic water during PP_i
148 hydrolysis is the one pumped after *n* cycles, where *n* is the number of downstream ion binding
149 sites (Baykov, 2020). This was extended by a “billiard-type” mechanism to explain
150 Na⁺-transport in which the generated H⁺ pushes Na⁺ into the exit channel for pumping (Baykov
151 et al., 2013). In contrast, the “pumping-before-hydrolysis” model, also called “binding-
152 change”, favours a mechanism in which ion pumping precedes hydrolysis and is initiated by
153 the closure of the active site and associated helical rearrangements, explaining both H⁺ and
154 Na⁺ pumping (Li et al., 2016). The transported ion may originate from the medium or preceding
155 hydrolysis events and can explain both H⁺- and Na⁺-pumping. The overall negative charge at
156 the ion gate that results from “pumping-before-hydrolysis” would then promote the
157 abstraction of a H⁺ from nucleophilic water at the active site and thereby drive the hydrolysis
158 of PP_i. The generated H⁺ could enter the Grotthus chain and reset the ion gate (Li et al., 2016).

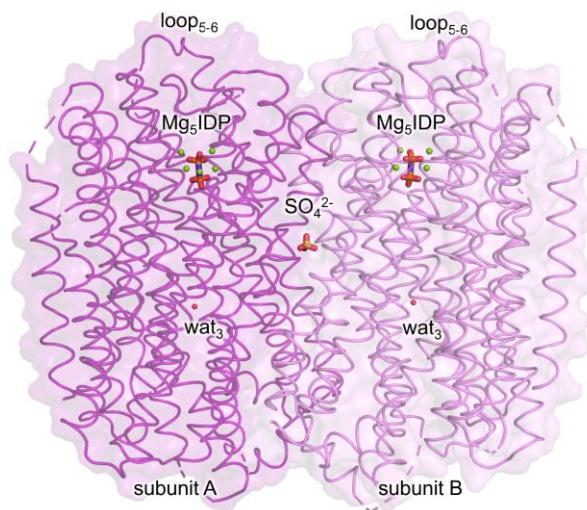
159 **The evolution of K⁺-independence and ion pumping selectivity**

160 Two coupled changes are correlated with the evolution of K⁺-independent H⁺-PPases: A^{12.46}K
161 and G/A^{12.49}T (Belogurov & Lahti, 2002). Of them, the A/K^{12.46} change is the one that defines

162 K^+ -dependence (Artukka et al., 2018): the $\varepsilon\text{-NH}_3^+$ of $\text{K}^{12.46}$ has been postulated to replace K^+ in
163 the cationic centre both functionally and structurally (Figure 1A). However, there has been no
164 structural data available to support this idea. Moreover, although the $\text{A}^{12.46}\text{K}$ and $\text{G/A}^{12.49}\text{T}$
165 changes are tightly coupled evolutionarily, there is no functional role so far ascribed to the
166 residue at position 12.49 (Belogurov & Lahti, 2002). It appears to be involved in K^+ -binding as
167 $\text{A}^{12.49}\text{T}$ single variants of K^+ -dependent H^+ -PPases show a three-fold reduced affinity for K^+ , but
168 it remains unclear how changes at this position affect the cationic centre, which is ~ 10 Å
169 away (Belogurov & Lahti, 2002). Alternatively, $\text{G/A/T}^{12.49}$ may play a crucial role in substrate
170 inhibition as this regulatory mechanism is lost in M-PPases when interfering with the authentic
171 state of the cationic centre, *e.g.* in $\text{A}^{12.49}\text{K}$ single variants of K^+ -dependent H^+ -PPases (Artukka
172 et al., 2018).

173 In contrast to K^+ -dependence, there are no conserved residue patterns that correlate with ion
174 pumping selectivity across *all* M-PPase subclasses, but the C-terminal shift of a key glutamate
175 at the ion gate of K^+ -dependent M-PPases by one helix turn ($\text{E}^{6.53}\rightarrow^{57}$) is coupled to a change in
176 selectivity ($\text{Na}^+\rightarrow\text{H}^+$) (Lin et al., 2012). The transition from Na^+ to H^+ pumping in this model
177 simply requires the repositioning of a single residue without the need of a mechanistic
178 change (Li et al., 2016). When the semi-conserved glutamate is located one helix turn down,
179 $\text{K}^{16.50}$ continues to block the Na^+ -binding site upon substrate binding at the active site, while
180 $\text{E}^{6.57}$ reorientates and can now accommodate a proton (Figure 1C). However, this model fails
181 to explain ion pumping selectivity in K^+ -independent H^+ -PPases or K^+ -dependent
182 Na^+,H^+ -PPases, as both contain $\text{E}^{6.53}$ (Table 1). It might make more sense to consider $\text{E}^{6.53}$ the
183 conserved position, with mutations in K^+ -dependent H^+ -PPases containing $\text{E}^{6.57}$.

184 There are thus clearly unanswered questions: what is the mechanism of energy coupling and
185 of ion pumping selectivity; what is the structure of K^+ -independent M-PPases; and what is the
186 structural/functional basis of catalytic asymmetry. To address these questions, we solved the
187 first structure of a K^+ -independent M-PPase (from the thermophile *Pyrobaculum aerophilum*,
188 *PaPPase*), performed enzymatic assays on native *PaPPase* and three variants ($\text{A}^{12.46}\text{K}$ and
189 $\text{A}^{12.49}\text{T}$, and the double mutant), and conducted electrometric as well as time-resolved
190 crystallographic studies on *TmPPase*, a K^+ -dependent Na^+ -PPase. These data provide a
191 structural mechanism for half-of-the-sites reactivity in M-PPases. By *requiring* a dimer for a
192 complete catalytic cycle, our new model for M-PPase catalysis suggests a resolution to the
193 “binding-change” *versus* “Mitchell-direct” controversy in energy coupling.

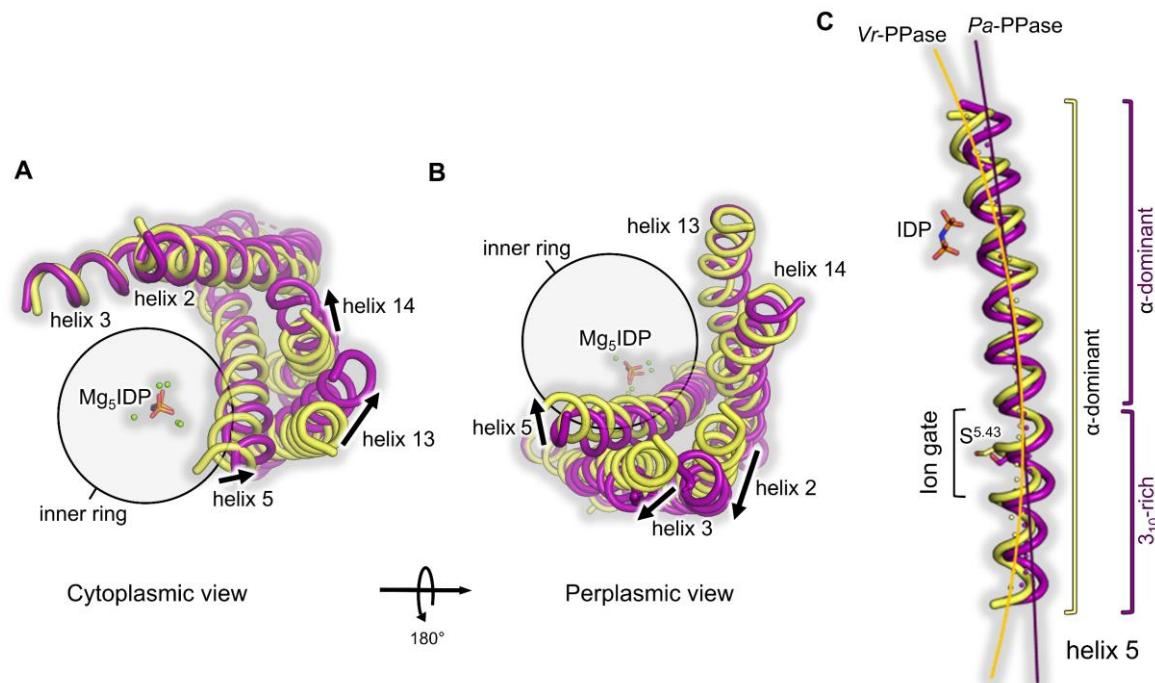

194 **Results**

195 **Structure of PaPPase**

196 Purified wild-type *PaPPase* (Figure 2-figure supplement 1A-B) readily crystallised in vapour-
197 diffusion set-ups, but despite extensive optimisation efforts the diffraction was anisotropic.
198 The data were submitted to the STARANISO webserver and the structure was solved by
199 molecular replacement (MR) using a modified *TmPPase*:Mg₅IDP (PDB: 5LZQ) search model
200 with all loops and hetero atoms removed. This yielded a structure with one *PaPPase*
201 homodimer molecule per asymmetric unit and resolutions of 5.3 Å, 4.1 Å and 3.8 Å along h, k
202 and l, respectively (Supplementary table 2). After initial refinement, positive mF_o-dF_c
203 density was observed at 3 σ in both subunits of the *PaPPase* active site, at the ion gate (Figure
204 2-figure supplement 2A) and in the dimer interface. We built a Mg₅IDP complex into the active
205 site, as seen in other IDP-bound M-PPase structures, and two water molecules in regions with
206 excess positive mF_o-dF_c density that bridge between loop₅₋₆ and the metal cage (Figure 2-figure
207 supplement 2B). A structural water was built into the positive mF_o-dF_c density at the ion gate
208 as in the high resolution *VrPPase* structure and a sulfate molecule (SO₄²⁻) was placed at the
209 dimer interface (Figure 2-figure supplement 2B) .The electron density maps improved
210 throughout refinement and the final R_{work}/R_{free} was 28.9%/31.1% with appropriate
211 stereochemistry for this resolution range (3.8-5.3 Å).

212 **Structural overview and comparison of M-PPase structures**

213 The *PaPPase* structure is in the Mg₅IDP-bound state with loop₅₋₆ closed and a structural water
214 located at the ion gate (Figure 2). In what follows, structural alignments and root mean square
215 deviation (r.m.s.d.) calculations are based on the C_α atom of subunit A (both subunits are
216 nearly identical; r.m.s.d./C_α: 0.27 Å), unless stated otherwise. The overall structure is very
217 similar to other published M-PPase structures with an average r.m.s.d. (r.m.s.d./C_α) of
218 1.37 ± 0.18 Å to IDP-bound structures, 1.41 ± 0.15 Å to product-bound structures, and a
219 r.m.s.d./C_α of 1.67 Å to the resting state structure (Supplementary table 3). In general, outer
220 ring helices display more variability (r.m.s.d./C_α_{OR}: 2.01 ± 0.67 Å) than inner-ring helices
221 (r.m.s.d./C_α_{IR}: 1.27 ± 0.32 Å) when compared to *Tm/VrPPase*:Mg₅IDP.

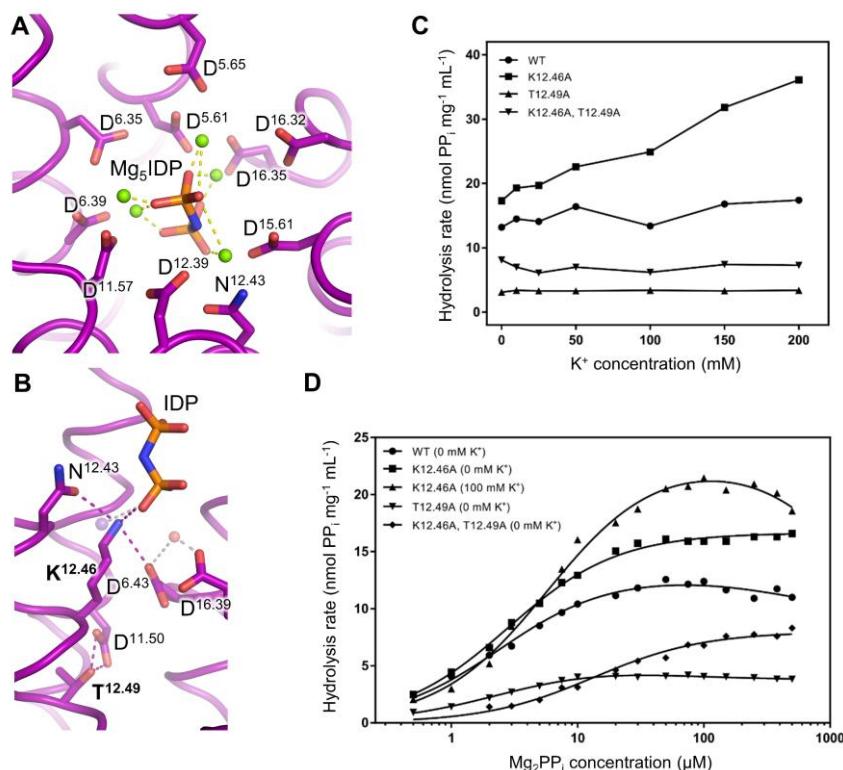

222

223 **Figure 2: Overview of the PaPPase:Mg5IDP structure. Subunits, loop₅₋₆ and ligands/structural water molecules**
224 **are annotated.**

225 Alignment-independent inter atom difference distance matrices (DiDiMa) highlighted outer
226 ring helices 13-14 (and 2-3 in VrPPase but not TmPPase) as regions with major structural
227 differences when comparing identical enzyme states (Figure 3-figure supplement 1A). In
228 previously solved IDP-bound structures, helices 13-14 are consistently bent halfway through
229 the membrane by about 9° to remain near the cytoplasmic regions of helix 5 (Figure 3-figure
230 supplement 1B). This enables propagation of motions from the inner to the outer ring and into
231 the other subunit (indicated by apostrophe) *via* E^{5.71}-R^{13.62}-R/I/K^{10.33'} (position at 10.33 not
232 conserved in Vr/Tm/PaPPase) (Figure 3-figure supplement 2A-B) and was linked to loop₅₋₆ and
233 subsequent helical rearrangements (Li et al., 2016). In our new structure, the
234 E^{5.71}-R^{13.62}-R/I/K^{10.33'} interaction is lost (Figure 3-figure supplement 1C): the cytoplasmic
235 regions of helices 13-14 are straightened (Figure 3-figure supplement 1B), resembling resting-
236 state (Figure 3-figure supplement 1C) and product-bound (Figure 3-figure supplement 1D-E)
237 structures despite having IDP bound. This suggests a different role for helix 13-14 movement
238 in M-PPase function than previously thought (see Discussion).

239 The only inner ring (IR) helix with above-average conformational differences to previously
240 published IDP-bound structures (r.m.s.d./Cα_{h5}: 1.70±0.13 Å *versus* r.m.s.d./Cα_{IR}:
241 1.27±0.32 Å) is helix 5, around which outer ring helices 2-3 and 13-14 cluster. Helix 5 is
242 straighter than in other M-PPases (Figure 3A, Supplementary table 4), which also straightens
243 helices 13-14 (cytoplasmic side, Figure 3B) and 2-3 (periplasmic side, Figure 3C) by pushing
244 them away from the inner ring. Additionally, helix 5 is more tightly wound in PaPPase:Mg5IDP
245 due to the presence of twice as many 3₁₀ hydrogen bonds around S^{5.43} and towards its flanking
246 periplasmic segment (Supplementary table 5). Consequently, the side chain orientations are

247 different in this region compared with *Vr/Tm*PPase:Mg₅IDP. This is particularly interesting, as
248 S^{5.43} is part of the enzymatic core region defining ion selectivity, which, until now, could not
249 be explained for K⁺-independent M-PPases.



250
251 **Figure 3: Comparison of helices 2-3, 5, and 13-14 orientations in PaPPase:Mg₅IDP to VrPPase:Mg₅IDP.**
252 PaPPase:Mg₅IDP is shown in purple and VrPPase:Mg₅IDP is shown in yellow. Major conformational changes are
253 indicated by arrows. (A) Close-up view of helix 5 showing its straightening in PaPPase:Mg₅IDP compared to
254 VrPPase:Mg₅IDP. Helix straightening is highlighted by a curve running through the centre of helix 5, which was
255 manually fitted to the local helix origin points that were obtained from HELANAL-Plus analysis (displayed as
256 spheres in the helix centre). (B) Straightening of helix 5 pushes helices 13-14 away from the inner ring on the
257 cytoplasmic site. (C) Straightening of helix 5 pushes helices 2-3 away from the inner ring on the periplasmic site.

258
259 **Structural and functional characterisation of K⁺ independence in PaPPase**
260 The coordination of the Mg₅IDP complex (Figure 4A) at the active site by acidic residues is
261 almost identical to *Tm/Vr*PPase:Mg₅IDP (r.m.s.d./C_α: 0.81/0.73 Å, alignment of catalytic
262 residues in the active site of subunit A), and the hydrolytic pocket volume is about 1200 Å³ for
263 all three structures. However, there are some interesting structural changes compared with
264 previously solved K⁺-dependent M-PPases with A^{12.46} and A/G^{12.49}:

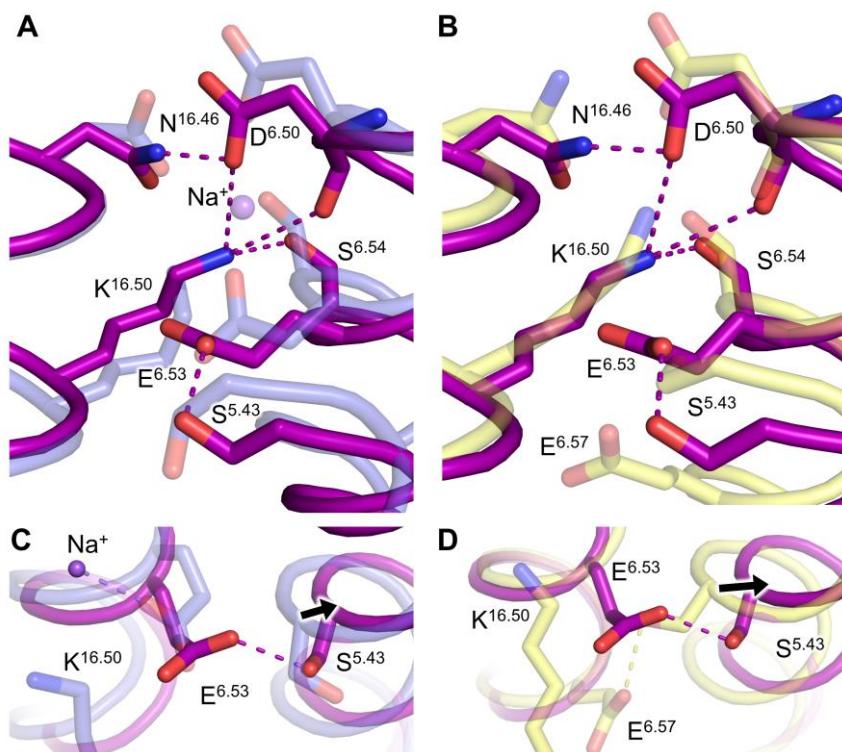
265 First, the side chain of K^{12.46} reaches into the hydrolytic pocket of PaPPase. Residues with
266 flexible side chains, such as the key players of K⁺-(in)dependence (K^{12.46}) and ion selectivity
267 (K^{16.50}) had poor electron density in 2mF₀-dF_c maps (Figure 2-figure supplement 3), so we
268 modelled them by careful analysis of all possible rotamer conformations in the context of the
269 local environment, taking into account hydrogen bonding and potential clashes
270 (Supplementary table 6). The modelled conformation of K^{12.46} shows the smallest van der

271 Waals (vdW) radii overlap to nearby atoms (0.62 Å), good hydrogen bonding ($n_{\text{h-bonds}}$: 3) and
272 avoids severe clashes. It coordinates IDP, replacing the K^+ identified in *VrPPase*: Mg_5IDP (Figure
273 4B) and hydrogen bonds $\text{N}^{12.43}$ and $\text{D}^{6.43}$. $\text{K}^{12.46}$ thus substitutes for K^+ in substrate coordination,
274 explaining why *PaPPase* does not require K^+ for enzymatic activity. The two next best rotamers
275 differ only in C_3 and can also explain K^+ -independence as they remain near the K^+ -binding site
276 and coordinate IDP. Second, $\text{T}^{12.49}$ interacts with $\text{D}^{11.50}$ in *PaPPase* (Figure 4B), a direct result
277 of the coupled $\text{A/G}^{12.49}\text{T}$ change in K^+ -independent M-PPases. This appears to lead to other
278 coupled interactions with helix 6 that are nearby; in particular, the helical geometry around
279 position 6.47 is changed (Supplementary table 5), also affecting the geometry at the
280 catalytically essential general base $\text{D}^{6.50}$.

281
282 **Figure 4: Structural overview and functional characterisation of the cationic centre in the *PaPPase* active site.**
283 (A) Active site with IDP coordinated (dashed lines) in a Mg²⁺ metal cage (green spheres). (B) K⁺/K^{12.46} cationic
284 centre with K⁺ (transparent purple sphere) and nucleophilic water (transparent red sphere) modelled into the
285 structure based on its position in *VrPPase*: Mg_5IDP . Key residues of K⁺-independence are labelled in bold. Their
286 interaction is shown by dashed lines. (C) Potassium dependency of PP_i hydrolysis of wild-type and variant
287 *PaPPase*. (D) Wild-type and variant *PaPPase* kinetics in the absence and presence of 100 mM K⁺. All data were
288 collected in the presence of 5 mM free Mg²⁺. Wild-type (0 mM K⁺), K^{12.46}A (100 mM K⁺), and T^{12.49}A (0 mM K⁺)
289 show the best fit to Equation 1, while K^{12.46}A (0 mM K⁺) and K^{12.46}A, T^{12.49}A (0 mM K⁺) show the best fit to the
290 Michaelis-Menten equation.

291 We then measured the activity of wild-type, K^{12.46}A, T^{12.49}A and double variants. As expected,
292 hydrolysis by wild-type enzyme is not activated by K⁺ (Figure 4C) but is inhibited by
293 substrate (Figure 4D), with binding of the second PP_i very weak (Table 2). The K^{12.46}A variant is

294 weakly activated by K^+ (Figure 4C). Without K^+ , the $K^{12.46}A$ variant displays Michaelis-Menten
295 kinetics; in the presence of 100 mM K^+ , it has similar substrate inhibition as wild-type (Figure
296 4D) except that V_2 is now zero (Table 2). The $T^{12.49}A$ variant is essentially inactive (Figure 4C),
297 while the double mutant no longer shows signs of substrate inhibition (Figure 4D):
298 conventional Michaelis-Menten kinetics provide acceptable fits to the data (Table 2). Taken
299 together, these suggest that helix 12, the site of the largest motion in the active site during
300 catalysis with key residues $K^{12.46}$ and $T^{12.49}$ (Li et al., 2016), may play a crucial role in inter-
301 subunit communication and, furthermore, that the observed half-of-the-sites reactivity
302 (Vidilaseris et al., 2019; Artukka et al., 2018; Anashkin et al., 2021) may be key to
303 understanding the true catalytic cycle (see Discussion).


304 **Table 2: Kinetic parameters for PPi hydrolysis of PaPPase.**

Parameter	Wild-type (0 mM K^+)	$K^{12.46}A$ (0 mM K^+)	Value $K^{12.46}A$ (100 mM K^+)	$T^{12.49}A$ (0 mM K^+)	$K^{12.46}A, T^{12.49}A$ (0 mM K^+)
Equation	Substrate inhibition	Michaelis- Menten	Substrate inhibition	Substrate inhibition	Michaelis- Menten
V_{max} (nmol PPi·mg ⁻¹ ·min ⁻¹)		16.64 ± 0.12			7.98 ± 0.21
V_1 (nmol PPi·mg ⁻¹ ·min ⁻¹)	12.89 ± 0.34		23.34 ± 0.60	4.739 ± 0.12	
V_2 (nmol PPi·mg ⁻¹ ·min ⁻¹)	9.44 ± 3.22		0	3.78 ± 0.094	
K_m (μM)		2.81 ± 0.08			13.48 ± 1.12
K_{m1} (μM)	2.42 ± 0.21		5.86 ± 0.39	2.30 ± 0.15	
K_{m2} (μM)	449.8 ± 828.4		2223 ± 578.4	43.99 ± 23.14	

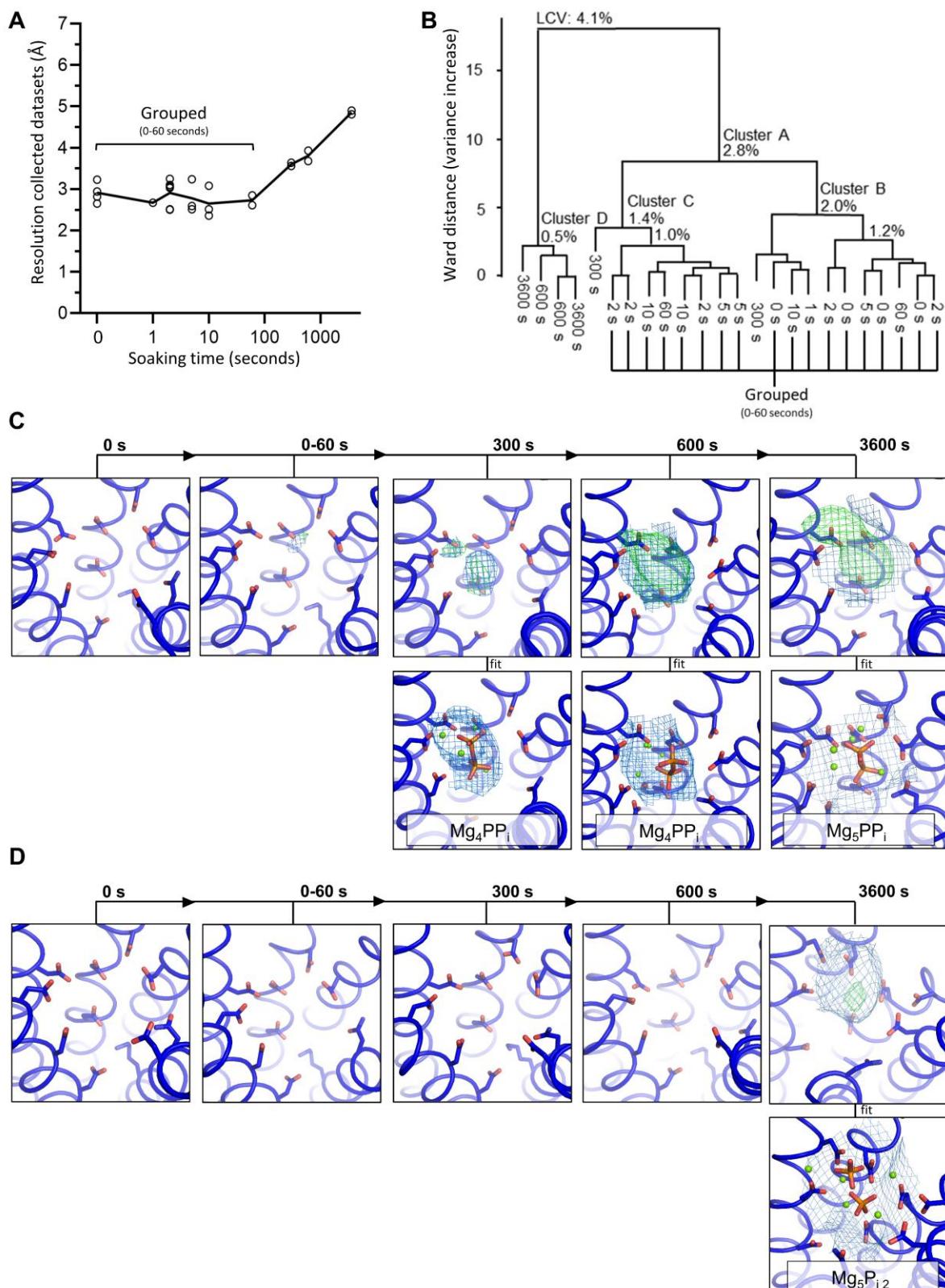
305
306 **Mechanism of ion selectivity in K^+ -independent H^+ -PPases**
307 The structure of the ion gate must hold the explanation to ion selectivity, but the current
308 model, that the position of the semi-conserved glutamate defines ion selectivity (6.53 in Na^+ -
309 PPases; 6.57 in H^+ -PPases, does not hold for K^+ -independent H^+ -PPases (see Introduction). The
310 2mF_o-dF_c map quality at the ion gate of subunit A was good and all residues except for $K^{16.50}$
311 are defined reasonably well, including the semi-conserved glutamate (Figure 2-figure
312 supplement 2B). We evaluated the different orientations of the rotamer library used by Coot
313 for $K^{16.50}$ to place its side chain. The chosen rotamer does not clash and shows the best
314 hydrogen bonding, making it superior to all other options (Supplementary table 7). In this
315 conformation, it is positioned as in VrPPase:Mg₅IDP (Figure 5A-B), coordinated to D^{6.50}, S^{6.54}
316 and N^{16.46}, consistent with PaPPase pumping H^+ . All other side chain orientations and
317 interactions at the ion gate of PaPPase:Mg₅IDP resembled the VrPPase:Mg₅IDP structure,
318 despite the shift of the semi-conserved glutamate (E^{6.53} in PaPPase, E^{6.57} in VrPPase)(Figure
319 5B). This is also consistent with the biology as *both* proteins, PaPPase and VrPPase, are H^+ -

320 PPases – but in this case it is not clear what could reorient E^{6.53} in *PaPPase* so that it forms the
321 same interactions as E^{6.57} in *VrPPase*, not as E^{6.53} in *TmPPase*.

322 In *PaPPase*:Mg₅IDP, helix 5 straightened and moved out of the protein core at the ion gate by
323 about 2 Å compared with other IDP-bound M-PPases (Figure 5C-D). This allows S^{5.43} to
324 hydrogen bond to E^{6.53}, as occurs with E^{6.57} in *VrPPase*:Mg₅IDP (Figure 1D). In *TmPPase*, helix 5
325 is closer to helix 6 and helix 16, forcing position 6.53 to point away from S^{5.43}, thereby
326 contributing to the formation of a Na⁺-binding site (*TmPPase*:Mg₅IDP)(Figure 5C).

327
328 **Figure 5: Structural overview of the ion gate in *PaPPase*:Mg₅IDP.** (A) Comparison of the *PaPPase*:Mg₅IDP
329 (purple) and *TmPPase*:Mg₅IDP (blue) ion gate structures. (B) Comparison of the *PaPPase*:Mg₅IDP (purple)
330 and *VrPPase*:Mg₅IDP (yellow) ion gate structures. (C) Close-up view and comparison of the semi-conserved glutamate
331 (E^{6.53/57}) orientation and helix 5 conformation in *PaPPase*:Mg₅IDP (purple) and *TmPPase*:Mg₅IDP (blue).
332 (D) Close-up view and comparison of the semi-conserved glutamate (E^{6.53/57}) orientation and helix 5 conformation
333 in *PaPPase*:Mg₅IDP (purple) and *VrPPase*:Mg₅IDP (yellow). Dashed lines show the coordination of key residues
334 involved in ion selectivity such as S^{5.43}, E^{6.53} and K^{16.50}. Major structural changes are indicated by black arrows.

335
336 **An ion-binding site at the dimer interface**
337 The dimer interface of *PaPPase* is formed by helices 10, 13 and 15 and somewhat different to
338 other M-PPases (Figure 5-figure supplement 1A). Usually, non-polar amino acids are
339 conserved at position 10.44 (97.6% conserved) and 15.49 (95.2% conserved). In *PaPPase* these
340 are tyrosine and arginine, respectively (Figure 5-figure supplement 1B). The additional
341 hydrogen-bonding potential and positive charge leads to the formation of an anion binding


342 site. We modelled SO_4^{2-} from the crystallisation solution to mediate the inter-subunit
343 communication of $\text{Y}^{10.44}$, $\text{Y}^{13.44}$, and $\text{R}^{15.40}$ in *PaPPase*: Mg_5IDP , but this may be P_i under
344 physiological conditions.

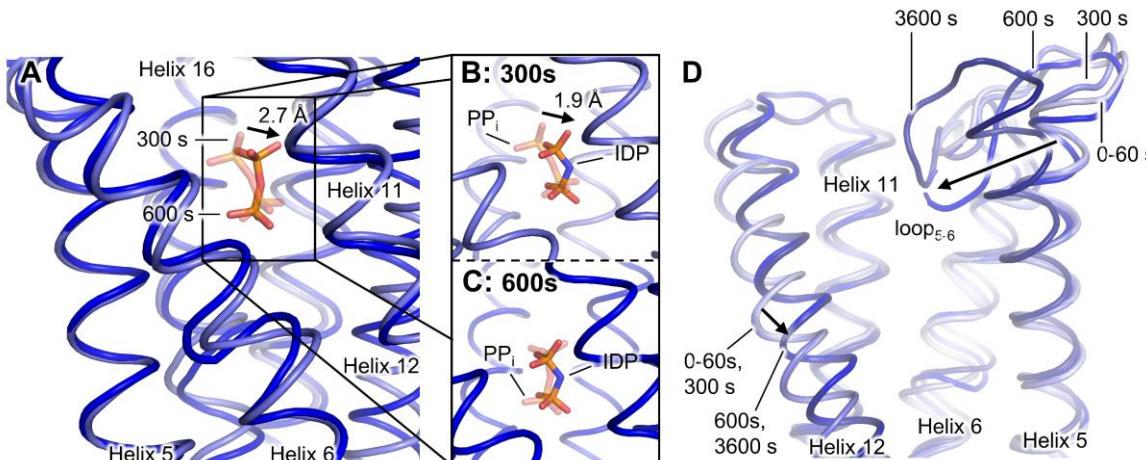
345 **Direct observation of asymmetric PP_i binding in *TmPPase***

346 Structural information about inter-subunit communication and functional asymmetry is
347 essential to resolve unanswered questions about variable ion pumping selectivity and,
348 potentially, energy coupling in M-PPases (see Introduction). Unfortunately, structural data on
349 symmetric, inhibited enzyme can only provide limited insight. We therefore decided to study
350 the K^+ -dependent Na^+ -PPase from *T. maritima* (*TmPPase*) using a time-resolved cryo-trapping
351 approach to be able to map asymmetric enzyme states.

352 The catalytic turnover (k_{cat}) of purified *TmPPase* that was crystallised (Figure 6-figure
353 supplement 1A) in conditions suitable for time-resolved studies (*i.e.* no inhibitors) was
354 282-fold lower ($k_{\text{cat}}: 0.16 \pm 0.05 \text{ s}^{-1}$ at 20°C) compared to ideal reaction conditions
355 ($k_{\text{cat}}: 45.13 \pm 3.59 \text{ s}^{-1}$ at 71°C) (Figure 6-figure supplement 1B, Supplementary table 8), of which
356 about a factor of 32-234 may be ascribed to the change in temperature assuming a Q_{10} of 2-3
357 as for most biological systems (Blehrádek, 1926). The protein was thus active and, importantly,
358 the substrate turnover sufficiently slow for a manual single-crystal time-resolved cryo-
359 trapping approach in which the reaction was initiated by soaking-in activating Na^+ (see
360 Methods).

361 The collected time-resolved *TmPPase* datasets ($t=0$ -3600 seconds) were severely
362 anisotropic (Supplementary table 9). Non-soaked reference crystals ($t=0$ seconds) yielded a
363 structure with a resolution of 2.65 \AA along h , 3.32 \AA along k and 3.79 \AA along l at best
364 (Supplementary table 9). To avoid bias, the *TmPPase* structures were solved by molecular
365 replacement using the *TmPPase*: CaMg resting state structure (PDB: 4AV3) as a search model
366 with hetero atoms removed. The 0-seconds structure has one homodimer molecule per
367 asymmetric unit, refined to an $\text{R}_{\text{work}}/\text{R}_{\text{free}}$ of 23.8/27.4% and was very similar to the inhibited
368 *TmPPase*: CaMg structure (r.m.s.d./ C_α : 0.41 \AA). To check for asymmetry, subunits A and B were
369 refined individually, but remained identical at this resolution, with an r.m.s.d./ C_α of 0.21 \AA .
370 Despite the presence of $0.4 \text{ mM } \text{PP}_i$ in the crystallisation condition, it was not located at the
371 active site, nor did it bind anywhere else.

Figure 6: Characterisation of time-resolved *TmPPase* datasets. (A) Diffraction quality at different time-points. Each collected dataset is represented by a circle with the diffraction in the best direction plotted. The mean resolutions of *each* time point are connected by a black line. (B) Dendrogram of BLEND analysis to identify isomorphous time-resolved datasets. Nodes of the four biggest cluster are labelled with the linear cell variability (LCV). (C-D) *TmPPase* active site of subunit A (C) and subunit B (D) at different time-points with 2mF_o-dF_c density (blue) and mF_o-dF_c density (red/green) for ligand shown. If not stated otherwise, 2mF_o-dF_c density is contoured at 1 σ and the mF_o-dF_c density is contoured at 3 σ .


380 The diffraction quality of crystals that were soaked in Na^+ -trigger solution for up to 60 seconds
381 was similar to non-soaked reference crystals. Interestingly, the diffraction quality declined
382 abruptly in datasets collected at >60 seconds (Figure 6A). The diffraction limits for the 300-,
383 600- and 3600-seconds time-points were 3.77 Å, 3.84 Å and 4.53 Å in the best direction,
384 respectively. By trying different combinations of datasets, it became clear that all of the data
385 from 0-60 seconds could be combined into one, yielding a new structure of *TmPPase* in the
386 resting state (*TmPPase*: Mg_2) that is essentially identical to the *TmPPase*: CaMg
387 (r.m.s.d./ C_α : 0.29 Å) and 0-seconds structure (r.m.s.d./ C_α : 0.33 Å). This led to improved data
388 quality parameters including resolution and completeness, while R_{pim} remained stable and
389 within the generally accepted limit of ~5% (Supplementary table 9). The structure was solved
390 at 2.54 Å along h , 2.95 Å along k and 3.38 Å along l with improved B-factors (108.65 Å² to
391 70.28 Å²) and $R_{\text{work}}/R_{\text{free}}$ values (21.95/23.61%) compared to the 0-seconds structure
392 (23.81/27.40%). The improvement in data quality parameters also translated into better
393 electron density maps, so we could model most side chains and build additional key loop
394 regions, for example loop₅₋₆. The changes in diffraction quality also aligned with BLEND
395 analysis (Aller et al., 2016) of the linear cell variability (Figure 6B) in which the 0-60-seconds
396 datasets cluster well (with linear cell variabilities (LCV) of <2.8%). We excluded the 300-
397 seconds data from the combined data set due to the loss in resolution at >60 seconds even
398 though it clustered with a LCV of <2.8%.

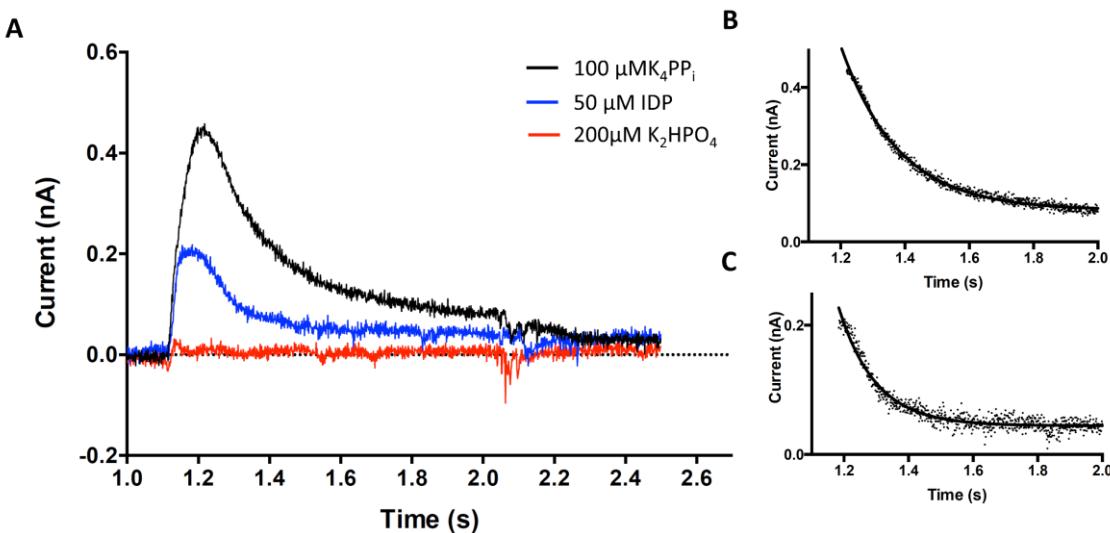
399 Upon calculating difference Fourier maps for the later time points using the 0-60 seconds
400 structure for phases, we were able to observe, for the first time, significant asymmetry in an
401 active M-PPase, corresponding to the first steps in the catalytic cycle. There is positive mF_o-dF_c
402 density at 3 σ in subunit A but none in subunit B at 300 and 600 seconds; and the position of
403 that positive density changes between these two time points (Figure 6C-D).

404 We then combined all datasets obtained at the same time-point, which likewise improved
405 electron density maps and data quality parameters (Supplementary table 9). At 300 seconds,
406 the density of combined datasets is best fit by full-occupancy PP_i in subunit A (Figure 6C).
407 Although placing lower-occupancy PP_i leads to lower B-factors (Supplementary table 10),
408 positive mF_o-dF_c density remains after refinement, and R_{work} and R_{free} are higher. At this time-
409 point, PP_i has not arrived yet in its final binding pose and is tilted when compared to IDP
410 binding (r.m.s.d: 1.5 Å) in *TmPPase*: Mg_5IDP (Figure 7A). The phosphor atom of the leaving
411 group phosphate is displaced by 1.4 Å and oxygen atoms by up to 1.9 Å (Figure 7B). This is

412 consistent with the helix orientations remaining highly symmetrical between both subunits
413 (r.m.s.d./C_α: 0.21 Å), and very similar to the resting-state *TmPPase*:CaMg (r.m.s.d./C_α: 0.35 Å)
414 and the 0-60-seconds structures (r.m.s.d./C_α: 0.13 Å). After 600 seconds, PP_i is bound at the
415 canonical position for hydrolysis (Figure 7C). Consequently, loop₅₋₆ was modelled to seal the
416 active site and helix 12 had shifted downward (Figure 7D) as seen in *TmPPase*:IDP,
417 *PaPPase*:IDP and *VrPPase*:IDP structures, all while subunit B remained in the resting
418 state (r.m.s.d./C_α subunit A vs. B: 0.79 Å).

419 In the 3600-seconds structure, both active sites appear to be occupied (Figure 6C-D), which
420 demonstrates unrestricted access and shows that asymmetric binding is not a crystallographic
421 artefact. The loss of resolution upon binding makes analysis very difficult indeed, but the
422 mF_o-dF_c maps (Figure 6C-D) and B-factor distributions (Supplementary table 10) are not
423 inconsistent with the idea that, at this point, one subunit binds PP_i and the other 2 P_i.
424 Intriguingly, the density is fit best by PP_i still present in subunit A and 2 P_i bound in subunit B.
425 In accordance with this, the main chain electron density is fit best when subunit A is modelled
426 in the closed state as seen in IDP-bound structures (r.m.s.d./C_α to *TmPPase*:Mg₅IDP: 0.49 Å),
427 and subunit B modelled in the open state as seen in resting- or product-bound structures
428 (r.m.s.d./C_α to *TmPPase*:CaMg: 0.45 Å).

430 **Figure 7: Structural comparison of the 0-60-seconds, 300-seconds, 600-seconds and 3600-seconds time-
431 resolved *TmPPase* structures. (A) Comparison of the PP_i binding position in the 300-seconds (light blue)
432 and 600-seconds (blue) structure of *TmPPase*. (B) Comparison of the PP_i (transparent) binding position in the
433 300-seconds structure with the IDP binding position in *TmPPase*:Mg₄P₁₂. (C) Comparison of the PP_i (transparent)
434 binding position in the 600-seconds structure with the IDP binding position in *TmPPase*:Mg₅IDP. (D) Helix
435 reorientation and loop₅₋₆ closure upon substrate binding in the 0-60-seconds, 300-seconds, 600-seconds and
436 3600-seconds structure (labelled and coloured in different shades of blue from light to dark). Black arrows
437 highlight major structural changes.**


438 These structures are completely consistent with the half-of-the-sites reactivity seen in kinetic
439 assays (Anashkin et al., 2021; Artukka et al., 2018; Vidilaseris et al., 2019); they provide
440 snapshots of a structural binding pathway, and support a new comprehensive kinetic model
441 of catalysis (see Discussion).

442 There were no significant changes in other regions of the protein, but the semi-conserved
443 glutamate E^{6.53} appears to be flexible in all the structures as indicated by the absence of
444 2mF_o-dF_c density or negative density when modelled as seen in *TmPPase:CaMg* (Figure 6-
445 figure supplement 2). All other side chain orientations at the ion gate were well defined in the
446 2mF_o-dF_c map up to the 300-seconds time-point. Typically, the semi-conserved glutamate is
447 well ordered and side chain density visible at much lower resolutions (see *PaPPase* structure,
448 Figure 2-figure supplement 2B). Its flexibility in low Na⁺ conditions may have implications for
449 the ion pumping selectivity at sub-physiological Na⁺ concentrations in K⁺-dependent Na⁺-
450 PPases (see Discussion).

451 **Energy coupling in M-PPases**

452 We further used SURFE²R N1 to study energy-coupling of PP_i hydrolysis and Na⁺ pumping in
453 *TmPPase*. Currents were generated when ions crossed the membrane, so the measured
454 current is the sum of the currents from all active proteins on the sensor. A positive signal of
455 0.5±0.05 nA was detected after addition of 100 μM substrate (K₄PPi) and reached its
456 maximum within ~0.1 seconds, in line with the dead time of the machine under the conditions
457 used (Figure 8). This is at least 12-25 times faster than the turnover rates at 20 °C under similar
458 lipidated conditions (Figure 6-figure supplement 1C, Supplementary table 8). We thus propose
459 that electrometric signals correspond to a single pumping event and that the overall turn-over
460 is rate limited by PP_i hydrolysis or phosphate release. Indeed, we observed that to fully recover
461 the signal on the same sensor, a waiting time of several minutes was required, in line with the
462 proposition that hydrolysis or phosphate release is slow. When the substrate was replaced by
463 50 μM of the non-hydrolyzable analogue IDP, the signal was reduced by half (Figure 8). In the
464 presence of 200 μM K₂HPO₄ as a negative control, the current was less 0.02 nA. The signal
465 decayed within about 2 seconds, corresponding to *TmPPase* entering a state that temporarily
466 could no longer pump Na⁺ at a sufficient rate to generate a signal. The current decay curves
467 (Figure 8 B-C) were well fit by a single exponential with similar decay rates (*k*) for PP_i
468 (6.0±0.4 s⁻¹) and IDP (9.6±1.1 s⁻¹) (Table 3). Overall, these measurements are consistent with

469 *TmPPase* pumping Na^+ upon addition of either PP_i or IDP (see Discussion), with PP_i generating
 470 two pumped Na^+ and IDP one.

471
 472 **Figure 8: Transient currents of *TmPPase* Na^+ pumping. (A)** Triggered by 100 μM of K_4PP_i , 50 μM of IDP and
 473 200 μM of K_2HPO_4 . (B) Current exponential decay fit curve of PP_i (1.2 to 2 seconds). (C) Current exponential decay
 474 fit curve of IDP (1.2 to 2 seconds).

475

476 **Table 3: Current decay parameters for Na^+ pumping of *TmPPase*.**

Parameter	Value	
	100 μM PP_i	50 μM IDP
Equation	$Y=(Y_0-\text{Plateau}) * \exp(-k*X) + \text{Plateau}$	$Y=(Y_0-\text{Plateau}) * \exp(-k*X) + \text{Plateau}$
Y_0 (nA)	703 ± 449	23019 ± 24349
Plateau (nA)	0.088 ± 0.005	0.044 ± 0
k (s^{-1})	6 ± 0.04	9.6 ± 1.1
Tau (s)	0.17 ± 0.01	0.11 ± 0.01
Half-time (s)	0.12 ± 0.008	0.073 ± 0.009
Span (nA)	703 ± 449	23019 ± 24349
Degrees of Freedom	787 ± 7	815 ± 2
R squared	0.99 ± 0.001	0.93 ± 0.029
Sum of squares	0.088 ± 0.028	0.105 ± 0.053
Sy.x	0.01 ± 0.002	0.011 ± 0.003

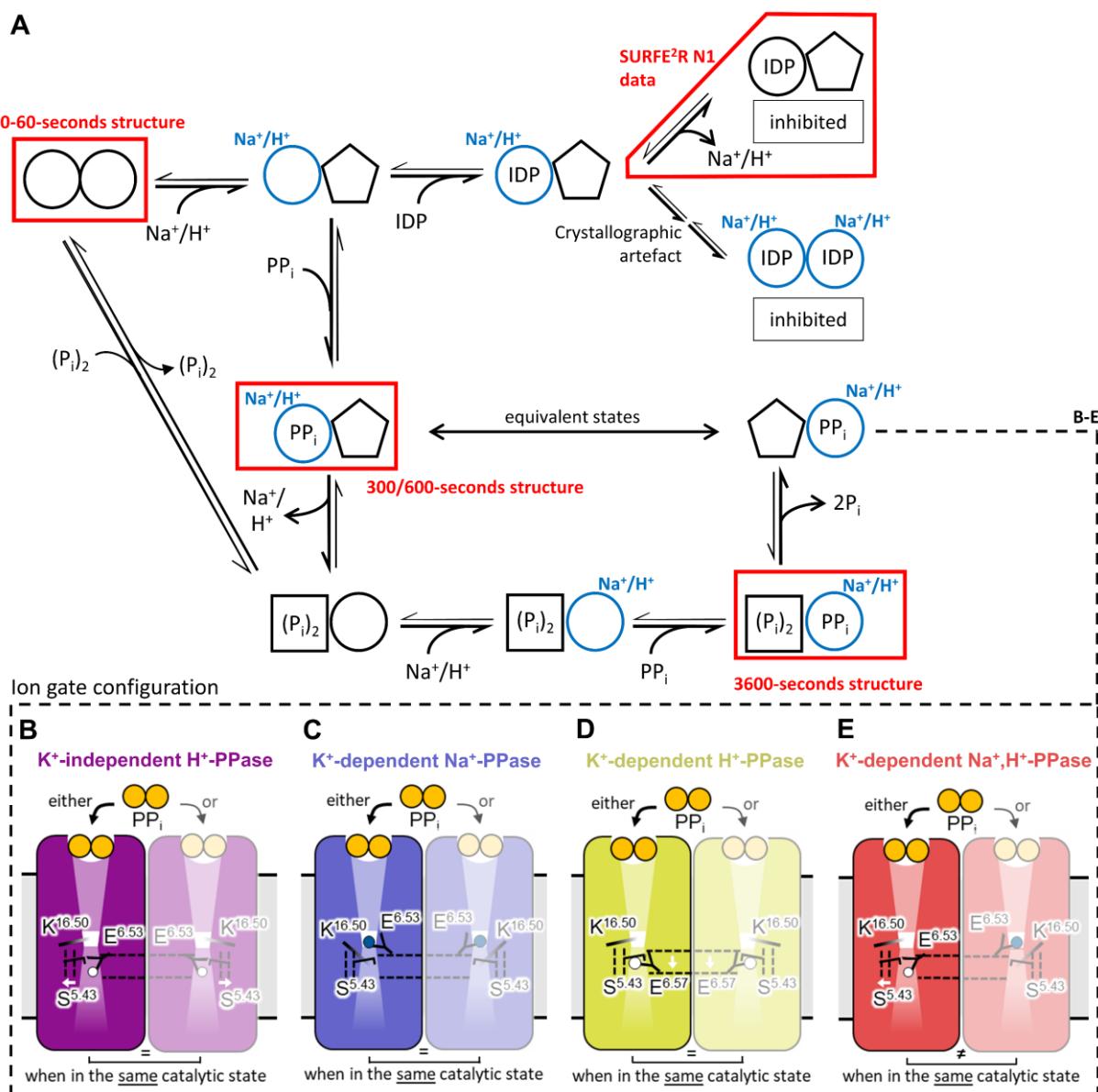
477

478 **Discussion**

479 Our study and recent work has clearly indicated that M-PPases show anti-cooperative
480 behaviour: productive substrate binding cannot happen in both sites at the same time (Table
481 2) (Anashkin et al., 2021; Artukka et al., 2018; Vidilaseris et al., 2019). Artukka and co-workers
482 proposed a model where binding in subunit A converts subunit B into a conformation that
483 prevents substrate binding - even though all published structures of M-PPases with IDP show
484 symmetrical binding to both subunits (Artukka et al., 2018). Vidilaseris *et al.* (Vidilaseris et al.,
485 2019), who identified an allosteric inhibitor of *Tm*PPase, suggest that motions of loops near
486 the exit channel lead to asymmetry and play a role in intra-subunit communication. In their
487 structure, these changes create a binding site for the allosteric inhibitor ATC in subunit A and
488 prevent full motion in subunit B.

489 It is from this background we endeavour to synthesise a comprehensive model of M-PPase
490 catalysis. An ideal model would explain (a) half-of-the-sites reactivity; (b) energy-coupling of
491 hydrolysis and ion pumping; (c) varying ion selectivity; and (d) how certain pumps can pump
492 both Na^+ and H^+ using the same machinery. It is our contention that one, unified model that
493 puts intersubunit communication at the *heart* of the catalytic cycle explains all of these.

494 **Half-of-the-sites reactivity**


495 We start with a structural explanation of half-of-the-sites reactivity in the context of our new
496 data. *Pa*PPase, and K^+ -independent M-PPases in general, have additional hydrogen bonding
497 between helix 11 and 12 through $\text{T}^{12.49}\text{-D}^{11.50}$ (*Plasmodium* spp. $\text{S}^{11.50}$), that when lost in $\text{T}^{12.49}\text{A}$
498 mutants, abolishes activity. Moreover, the $\text{K}^{12.46}\text{A}$ mutation eliminates half-of-the-sites
499 reactivity in *Pa*PPase that can only be restored by addition of K^+ : positive charge around the
500 12.46 sidechain position and the motion of helix 12 is a key part of communication. This is in
501 line with the model of intra-subunit ion gate - ion gate communication *via* exit channel loops,
502 particularly loop_{12-13} , that was proposed by Vidilaseris *et al.* and directly links the inner ring
503 helices such as helix 12 to the dimer interface (Vidilaseris et al., 2019). Intriguingly, the length
504 of the exit channel loops appears to be conserved: if exit channel loop_{8-9} is long (12-18
505 residues), loop_{10-11} is short (3-9 residues) and *vice versa* (Figure 9-figure supplement 1). A
506 second communication network is from helix 5 to helix 13 and propagated through helix 10
507 (Figure 3B-C, Figure 3-figure supplement 2).

508 In our model, binding of the ion in subunit A followed by substrate binding (Figure
509 9A: 300-seconds structure) leads to the downward motion of helix 12 and straightening and
510 tight winding of helix 5, and is propagated into subunit B *via* helices 5,12, 13 and the exit
511 channel loops. Implicit in this is the idea that (ion) binding and pumping in subunit B can only
512 happen once subunit A has reset (Figure 9A).

513 Our evidence for this new model comes from the time-resolved cryo-trapped
514 structures (Figure 6), kinetic data (Table 2) (Anashkin et al., 2021; Artukka et al., 2018;
515 Vidilaseris et al., 2019) and the SURFE²R N1 data (Table 3). First, catalysis as measured by
516 phosphate production has a k_{cat} of 0.2-0.4 s⁻¹ at 20 °C (Supplementary table 8) but maximal
517 signal in the SURFE²R N1 is reached in the dead time of the machine (~0.1 seconds), and the
518 height of the peak for PP_i is about twice that of IDP (Figure 8). Consequently, the rate of
519 pumping as measured by the SURFE²R N1 is at least 12-25 times that of PP_i
520 hydrolysis/phosphate release. The decay constants (protein unable to pump) for the two are
521 similar (6 ± 0.4 s⁻¹ for PP_i and 9.6 ± 1.1 s⁻¹ for IDP), suggesting that they correspond to a similar
522 event. We thus hypothesize that PP_i hydrolysis/phosphate release from the liposomes at 20 °C
523 is rate limiting and extremely slow for the thermophilic *TmPPase*. The logical explanation is
524 that PP_i can bind and pump two Na⁺ (one from each subunit, with a complete catalytic cycle
525 happening at least in subunit A), while IDP only binds to one and pumps one (Figure 9A), as
526 ion and substrate binding to subunit B cannot take place until hydrolysis happens in subunit A.

527 Second, the asymmetric time-resolved *TmPPase* structures indicate a highly-ordered reaction
528 mechanism. Ion binding is the first event, as there is no evidence of PP_i in any of the structures
529 before 60 seconds and the ion gate E^{6.53} is disordered: Na⁺ binding precedes substrate
530 binding (Figure 6). PP_i appears to bind in subunit A in two modes: a distal mode where the
531 electrophilic phosphate is tilted out of its final binding position (t=300 seconds), followed by a
532 hydrolysis-competent mode (t=600 seconds). However, there is no evidence up to
533 600 seconds of reaction initiation of any binding in subunit B, which remains in the resting
534 state. Even though the resolution is poor, the 3600-seconds structure seems to contain a PP_i
535 in subunit A but (P_i)₂ in subunit B, suggesting at least one full turnover (Figure 9A) may have
536 occurred.

537

539 **Figure 9: Unified model of M-PPase catalysis.** (A) Schematic model of functional asymmetry. The active site
 540 status is defined by shape, and binding of the pumped ion at the active side indicated by a label and blue
 541 colouring. PP_i can only bind to one subunit at a time and requires prior binding of the pumped ion at the ion gate.
 542 The thermodynamically favoured reaction pathway is indicated by bold arrows. In single-pumping M-PPases, the
 543 ion gate conformation of subunit A and subunit B are mirror images of each other (equivalent states – see panel
 544 B-D). In dual-pumping M-PPases, the ion gate conformation of subunit A and subunit B are asymmetrical (*i.e.* H⁺-
 545 pumping setup vs. Na⁺-pumping setup – see panel E). Enzyme states mapped by time-resolved crystallography
 546 or investigated in electromagnetic studies are highlighted by red boxes. (B-E) Schematic model of ion selectivity
 547 with the orientation of key residues K^{16.50} (|) E^{6.53/57} (Y) and S^{5.43} (1) shown. The ion gate set up is shown with both
 548 subunits in the same catalytic state for comparison. Under physiological conditions, subunit A and subunit B are
 549 never in the same catalytic state according to the half-of-the-sites reactivity model. The position of helix 5 and
 550 the semi-conserved glutamate are indicated by dashed vertical and horizontal lines, respectively. Conformational
 551 changes or residue repositioning are indicated by a white arrow. (B) E^{6.53} protonation (white sphere) and
 552 interaction with S^{5.43}, made possible by the outward movement of helix 5. K^{16.50} destroys the Na⁺ binding site.
 553 (C) Na⁺ (purple sphere) binding to the ion gate and interaction with E^{6.53}, which faces away from S^{5.43} when helix
 554 5 is close to avoid clashing. (D) E^{6.57} protonation as a result of its shift one helix turn down, which creates
 555 sufficient space for the S^{5.43}-E^{6.53} interaction. (E) Proposed functional asymmetry at the ion gate of in
 556 K⁺-dependent Na⁺,H⁺-PPases, explaining Na⁺ binding and E^{6.53}-S^{5.43} interaction in the respective subunit. Ion
 557 selectivity depends on helix 5 orientation and E^{6.53}-S^{5.43} interaction. Subunit A is similar to the residue and helix
 558 orientation shown in panel B, whereas subunit B is similar to the residue and helix orientations of panel C.

559 **Ion selectivity**

560 We can extend the model presented above to explain ion selectivity. The current model (Li et
561 al., 2016) posits that M-PPases with E^{6.53} are Na⁺-pumps, but ones with E^{6.57} are H⁺-pumps
562 (Nordbo et al., 2016) - but both Na⁺,H⁺-PPases and K⁺-independent H⁺-PPases have E^{6.53} (Table
563 1). However, we propose that ion selectivity depends on the interaction between the semi-
564 conserved glutamate with a highly conserved serine on helix 5, S^{5.43} (pairwise identity: 90.6%).
565 This interaction, propagated through the dimer interface as described above, mediates helix
566 5 orientation and ion selectivity/binding. The ion gate configuration is thus directly linked to
567 the orientation of helix 5, which determines whether E^{6.53} points towards S^{5.43},
568 accommodating a proton, or away from S^{5.43}, forming a Na⁺-binding site with D^{6.50}, S^{6.54} and
569 D/N^{16.46} (Video 1). In what follows, we show that this mechanism is valid for all currently known
570 M-PPase subclasses (Figure 9B-E).

571 In K⁺-independent H⁺-PPases, protonated E^{6.53} is held in place by S^{5.43} (Figure 9B), while in Na⁺-
572 PPases, the bent helix 5 forces E^{6.53} to point away from S^{5.43} to avoid clashing, creating a
573 Na⁺-binding site (Figure 9C). Our *TmPPase* structure obtained in the absence of Na⁺
574 (0-60-seconds structure) suggests that in the absence of Na⁺, E^{6.53} is not bound by K^{16.50},
575 allowing it to interact with S^{5.43}. This could thus explain why K⁺-dependent Na⁺-PPases can
576 pump protons at Na⁺ concentrations <5 mM (Luoto, Nordbo, et al., 2013). In K⁺-dependent H⁺-
577 PPases, E^{6.57} uncouples ion selectivity from the orientation of helix 5 as it can be coordinated
578 by S^{5.43} independent of helix 5 geometry (Figure 9D). The unusual *Flavobacterium johnsoniae*
579 (Luoto et al., 2011) H⁺-PPase, where the semi-conserved glutamate is at position 5.43, is also
580 consistent with our model. The side chain carboxylate of E^{5.43} cannot promote Na⁺-binding
581 about 5 Å away, but can be modelled to occupy a position similar to that of E^{6.57} in
582 VrPPase:Mg₅IDP, allowing protonation and deprotonation of E^{5.43} (Tsai et al., 2014). In all these
583 structures, ion binding in subunit B would not occur before pumping and hydrolysis in subunit
584 A, but the structure of the ion binding site would be the same.

585 Finally, to explain ion pumping selectivity in K⁺-dependent Na⁺,H⁺-PPases, we posit that the
586 ion gate configuration flips between the H⁺-PPase (*PaPPase*:Mg₅IDP) and Na⁺-PPase
587 (*TmPPase*:Mg₅IDP) conformations (this also appears to be possible in K⁺-dependent
588 Na⁺-PPases at low Na⁺ concentrations (Luoto, Nordbo, et al., 2013)). For instance, if subunit A
589 is H⁺-pumping, conformational changes through the helix 5-13 connection are not only

590 required to allow ion binding in subunit B but also to convert it into the Na^+ -binding
591 conformation and *vice versa* (Figure 9E). Seen this way, the K^+ -dependent Na^+, H^+ -PPases use
592 a special class of the standard M-PPase mechanism, rather than being *sui generis*. We also
593 suggest that *all* M-PPases, not just the nine studied so far (Anashkin et al., 2021; Artukka et
594 al., 2018; Vidilaseris et al., 2019), will show half-of-the-sites reactivity.

595 Conversely, two recently-published papers from Baykov and co-workers (Baykov et al., 2022;
596 Malinen et al., 2022) continue to posit their “billiard-type” mechanism, where hydrolysis
597 precedes pumping. By using stopped-flow measurements on *Tm*PPase at 40 °C, they
598 demonstrate that hydrolysis is the most likely rate-determining step, which is consistent with
599 our SURFE²R N1 data on *Tm*PPase at 20 °C. They propose that this means that hydrolysis occurs
600 at the same time or precedes pumping – *i.e.* the chemical proton released from hydrolysis
601 enters a Grotthus chain and forces the pumped Na^+ into the exit channel. However, their pre-
602 steady-state rate at 40 °C is 12 s^{-1} , consistent with the k_{cat} of our steady state kinetics at 20 °C
603 (0.2-0.4 s^{-1}) (Supplementary table 8). The pre-steady-state rate at 20 °C is thus likely to about
604 1-3 s^{-1} (a factor of 2-3 per 10 °C) (Blehrádek, 1926) – *i.e.*, at least 4-10 times slower than the
605 rates observed in the Nion Surfer, where PP_i binding and ion transfer happens within the
606 dead time of the machine (\approx 0.1 seconds) and the decay following the initial pumping event is
607 of a similar speed (8.8 s^{-1}). The simplest explanation, to borrow from Dr. Doolittle (Wikipedia
608 Community, 2022), is thus not a pushmi-pullyu mechanism, but a pullyu-pushmi mechanism:
609 the pumping of the Na^+ increases the negative charge in the closed active site, causing
610 deprotonation along the Grotthus chain and hydrolysis of the PP_i . We concur with Baykov and
611 co-workers that, whatever the mechanism, it must be the same for all M-PPases as the catalytic
612 machinery is so similar. We also agree that the most likely identity of the charged residue, as
613 identified by their steady-state solvent isotope experiments, is indeed E^{6,57} with a pK_a of
614 about 7.8. A glutamate in the membrane that has just lost a counter-ion would suit perfectly.

615 In summary, the only sequence of events that is consistent with all the data presented above,
616 including the pre-steady state experiments by Baykov and co-workers (Malinen et al., 2022),
617 is based on a half-of-the-sites reactivity mechanism, supports a binding-change-type
618 (“pumping-before-hydrolysis”) energy coupling and is as follows (Figure 9A): Binding of ion at
619 the gate in monomer A allows binding of substrate, which prevents binding of ion or substrate
620 at monomer B. Pumping in monomer A leads to hydrolysis in monomer A, which releases
621 monomer B into an ion-binding/substrate binding conformation. Ion-binding in monomer B

622 could then allow release of product in monomer A, followed by substrate binding and pumping
623 in B. The beauty of this mechanism is that it provides a convincing rationale for all of the
624 observed data, in particular explaining half-of-the sites reactivity and dual pumping M-PPases.
625 Other models, positing that two ions can occasionally be pumped in one subunit are, to our
626 mind, not as convincing as no modern experiments on purified proteins have indicated a
627 hydrolysis/transport ratio above 1:1.

628 Our model provides, for the first time, an overall explanation of ion selectivity and catalysis in
629 *all* M-PPases and makes testable predictions: *e.g.* global conformational changes should occur
630 in the first 0.1-0.2 s at 20 °C. These need to be tested through functional and structural studies,
631 in particular the use of time-resolved, single-molecule techniques to capture further details of
632 mechanism, as well as efforts to capture mechanistic details through molecular dynamics –
633 efforts that are already underway (Holmes et al., 2022).

634

635 **Materials and Methods**

636 **Mutagenesis of *Pa*PPase**

637 We used N-terminally RSGH₆-tagged constructs for full-length *Tm*PPase expression from
638 (Kellosalo et al., 2011) and replaced the open reading frame encoding for *Tm*PPase with a
639 section encoding for full-length *Pa*PPase instead. The *Pa*PPase gene was PCR amplified (Q5®
640 Hot Start High-Fidelity 2X Master Mix from NEB, Frankfurt am Main, Germany) with primers
641 introducing a GG-linker along with a 5' Sall (TTT TTT GTC GAC ATG CAT CAC CAT CAC CAC
642 GGT GGA AAT ATG ATA AGC TAT GCC TTA CTA GG) and 3' XbaI (TTT TTT TCT AGA TCA GAA
643 AGG CAA TAG ACC TG) restriction site. The PCR product was inserted into the linearised (Sall,
644 XbaI from NEB) pRS1024 yeast expression vector (Kellosalo et al., 2011). *Pa*PPase variants
645 K^{12.46}A (C AAT ACC ACA gca GCC ACT ACT AAG GG, CC GAC GGA GTC CAG TAC A), T^{12.49}A (A AAA
646 GCC ACT gct AAG GGA TAT GC, GT GGT ATT GCC GAC GGA G) and the combination of both
647 were generated using the Q5® site-directed mutagenesis kit (NEB) (lower case letters highlight
648 the amino acid change). Template DNA was removed by DpnI (NEB) digestion and the
649 constructs were sequenced to confirm the introduction of point mutations.

650 **Protein expression and purification**

651 We expressed and purified *Pa*PPase and *Tm*PPase in *Saccharomyces cerevisiae* as described
652 elsewhere (López-Marqués et al., 2005; Strauss et al., 2018). In brief, yeast expression
653 plasmids carrying N-terminally 6xHis-tagged wild-type or variant *Pa*/*Tm*PPase under control
654 of the constitutively active PMA1 promoter were freshly transformed into the *S. cerevisiae*
655 strain BJ1991 (genotype: *MATα prb1-1122 pep4-3 leu2 trp1 ura3-52 gal2*) and cultivated at 30
656 °C for 12 hours in 250 mL selective synthetic complete dropout starter cultures lacking leucine
657 (SCD-Leu, in-house). 750 mL of 1.5x SCD-Leu (*Pa*PPase) or 1.5x yeast peptone dextrose (YPD,
658 in-house) (*Tm*PPase) expression culture were inoculated with 250 mL of starter culture for
659 protein expression at 30 °C. Cells were harvested after 8-10 hours from 10 L expression
660 batches by centrifugation (4,000 xg, 4 °C, 15 minutes).

661 Cells were lysed using a bead-beater (Biospec products, Bartlesville, Oklahoma) with 0.2-mm
662 glass beads and membranes were collected by ultracentrifugation (100,000 xg, 4 °C, 1 hour).
663 The membrane pellet was resuspended in 50 mM MES pH 6.5, 20% v/v glycerol, 50 mM KCl,
664 5 mM MgCl₂, 2 mM dithiothreitol (DTT), 1 mM phenylmethylsulfonyl fluoride (PMSF) and
665 2 µg/mL pepstatin to a final total protein concentration of ~7 mg/mL, mixed with solubilisation

666 buffer (50 mM MES-NaOH pH 6.5 20% v/v glycerol, 5.34% w/v n-Dodecyl- β -D-Maltoside
667 (DDM), 1 mM K₄PP_i) at a 3:1 ratio and incubated at 75 °C (“hot-solve”) for 1.5 hours. Protein
668 was then purified by IMAC using nickel-NTA resin (Bio-Rad, Hercules, California). Depending
669 on the protein and downstream experiments, different buffers were used for purification as
670 outlined below. For structural studies of *PaPPase*, the solubilised membranes were incubated
671 with nickel-NTA (Cytiva, Marlborough, Massachusetts) resin at 40 °C for 1-2 hours and washed
672 with 2 column volumes (CV) 50 mM MES-NaOH pH 6.5, 20% v/v glycerol, 5 mM MgCl₂, 20 mM
673 imidazole, 1 mM DTT and 0.5% w/v n-Decyl- β -D-Maltoside (DM) or 0.05% w/v DDM prior to
674 elution in 2 CV 50 mM MES-NaOH, pH 6.5, 3.5% v/v glycerol, 5 mM MgCl₂, 400 mM imidazole,
675 1 mM DTT and 0.5% w/v DM or 0.05% DDM w/v. *PaPPase* samples used in functional studies
676 were solubilised in DDM and contained not MES-NaOH but MOPS-TMAOH
677 (Tetramethylammonium hydroxide)(pH 6.5) instead in order to obtain a “Na⁺-free” sample.
678 The purification of *TmPPase* followed a similar protocol and using 0.5% w/v octyl glucose
679 neopentyl glycol (OGNG) with MES-TMAOH (pH 6.5). In addition, the purification buffers
680 contained 50 mM KCl due to the K⁺-dependence of *TmPPase*. After nickel-NTA purification, all
681 purified proteins were exchanged into elution buffer lacking imidazole using a PD10 desalting
682 column (Cytiva) and concentrated to ~10 mg mL⁻¹. SDS-PAGE and size exclusion
683 chromatography (SEC) using a Superose[®] 6 Increase 10/300 GL column (Cytiva) and an NGC
684 Quest 10 Plus System (Bio-Rad) showed that both wild-type and variant proteins were pure
685 and monodisperse (Figure 2-figure supplement 1).

686 **Vapour-diffusion crystallisation of *PaPPase* and *TmPPase***

687 Initial crystallisation trials of wild-type *PaPPase* were carried out with several commercial
688 sparse matrix screens using protein solubilised in DM and DDM. Commercial sparse matrix
689 crystallisation screens were set up with protein at 10 mg mL⁻¹ (1:1 ratio) after pre-incubation
690 with 4 mM Na₄IDP (imidodiphosphate) salt or CaCl₂ (1 hour, 4 °C). Any precipitation that
691 formed within the incubation period was removed by centrifugation at 10,000 xg for
692 10 minutes prior to setting up crystallisation trials. The best crystals were obtained in the
693 presence of 2 mM IDP in 30-33% v/v PEG 400, 0.1 M MES pH 6.5, 0.05 M LiSO₄, and 0.05 M
694 NaCl at 20 °C with protein solubilised in DM. The crystals were manually harvested at 20 °C.
695 X-ray diffraction was improved by keeping the harvested crystal in the loop for 10 seconds
696 prior to flash cooling in liquid nitrogen, which effectively led to crystal dehydration.

697 Initial vapour diffusion crystallisation trials of wild-type *TmPPase* were based on a published
698 crystallisation condition (36% v/v PEG 400, 100 mM Tris-HCl pH 8.5, 100 mM MgCl₂, 100 mM
699 NaCl, 2 mM DTT) (Li et al., 2016) that was further optimised for time-resolved experiments
700 (i.e. to contain no inhibitors). *TmPPase* in OGNG was set up at 10 mg mL⁻¹ after pre-incubation
701 with 0.4-4.0 mM K₄PP_i (1h, 4 °C) (instead of Na₄IDP) and all crystallisation buffers had NaCl
702 replaced with KCl. The best crystals formed in 24-26% v/v PEG 400, 50-60 mM Tris-HCl pH 8.5,
703 2-3 mM MgCl₂, 175 mM KCl, 2 mM DTT and 0.4 mM K₄PP_i (1:1 ratio) at 20 °C.

704 ***PaPPase* data collection, structure solution and refinement**

705 *PaPPase* crystals were sent to several beamlines including I04 and I24 at the Diamond Light
706 Source (DLS) and ID23-1 and MASSIF-1 at the European Synchrotron Radiation Facility (ESRF)
707 for data collection at 100 K. Collected datasets were processed in XDS (Kabsch, 2010) and the
708 structure was solved by molecular replacement in Phaser (McCoy et al., 2007) using a
709 homology search model based on the 3.5 Å structure of *TmPPase*:Mg₅IDP (protein data bank
710 (PDB) ID: 5LZQ) with loop regions removed. The crystals were extremely radiation sensitive,
711 so a complete data set could not be collected on any of them. Consequently, the first few
712 hundred images of eight datasets (3.84-4.35 Å) with positive density for Mg₅IDP in the active
713 site, less than 2% deviation in unit cell parameters and identical spacegroup (P2₁) were
714 combined in XDS using XSCALE (Kabsch, 2010). The combined dataset was submitted to the
715 STARANISO webserver (Tickle et al., 2018) prior to molecular replacement as described above
716 (Tickle et al., 2018). Several rounds of refinement using phenix.refine (Liebschner et al., 2019)
717 and manual modelling in Coot (Emsley et al., 2010) were carried out. After an initial round of
718 rigid-body refinement with grouped B-factors, tight restraints were applied to maintain a
719 realistic geometry (torsion angle non-crystallographic symmetry (NCS), secondary structure,
720 and reference structure (PDB: 4A01) restraints). In the last rounds of refinement and
721 Translation-Libration-Screw-rotation (TLS) was enabled and restraints were released except
722 for torsion angle NCS restraints, which were retained to prevent overfitting.

723 **Time-resolved cryo-trapping X-ray crystallography and structure solution**

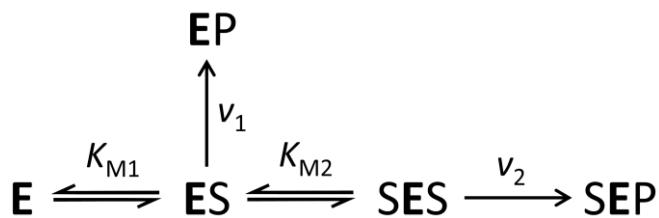
724 Time-resolved cryo-trapping crystallography experiments on *TmPPase* were conducted by
725 manual soaking of vapour diffusion crystals grown in the absence of Na⁺ but in the presence
726 of PP_i in a Na⁺-containing trigger solution (60 mM Tris-HCl pH 8.0, 26% v/v PEG400, 175 mM
727 KCl, 2.4 mM MgCl₂, 2 mM K₄PP_i, 20 mM NaCl) to initiate the enzymatic reaction *in crystallo*.
728 The reaction was stopped by flash cooling in liquid nitrogen after different soaking times (t=0

729 [no Na^+ applied], 1, 2, 5, 10, 60, 300, 600, 3600 seconds) that were selected based on the k_{cat}
730 of *TmPPase* under conditions similar to the crystallisation conditions (Supplementary table 8).
731 Crystallisation wells were re-sealed if the soaking time exceeded 60 seconds to minimise
732 evaporation. Up to five crystals were used for each timepoint.
733 Diffraction data were collected at 100 K at beamline P14-I at the Deutsches Elektronen
734 Synchrotron (DESY) and the data processed in XDS (Kabsch, 2010) or Xia2/DIALS (Winter et al.,
735 2018). This was followed by anisotropy correction using the STARANISO webserver (Tickle et
736 al., 2018) and molecular replacement in Phaser (McCoy et al., 2007) using the *TmPPase*:CaMg
737 (PDB: 4AV3) structure without heteroatoms as a search model. The similarity between unit
738 cells of the collected datasets was analysed in BLEND (Foadi et al., 2013) and datasets of the
739 same or different time-points ($t=0$ -60 s) were combined if the linear cell variation was below
740 3% and the space group and active site status (occupied *versus* not-occupied) were identical.
741 The single best non-activated structure (reference) and the grouped $t=0$ -60 seconds structure
742 (subset of cluster A) were subject to several rounds of refinement using
743 phenix.refine (Liebschner et al., 2019) and manual modelling in Coot (Emsley et al., 2010).
744 After an initial round of rigid-body refinement with grouped B-factors, torsion angle NCS
745 restraints were applied to further reduce the number of parameters in refinement alongside
746 optimised X-ray/B-factor and X-ray/stereochemistry weighting by phenix. In the final
747 refinement rounds, TLS was applied as well. The 0-60-seconds structure of *TmPPase* was then
748 used as a search model for molecular replacement of combined datasets that were collected
749 at longer delays after Na^+ -activation. Refinement of these data followed a similar protocol, but
750 the 300-seconds dataset was limited to a single round of 5 refinement cycles, which was
751 sufficient to check for changes of the overall helix geometry at the active site or ion gate.
752 Additional secondary structure restraints were applied in the refinement of the low-resolution
753 $t=600$ seconds and $t=3600$ seconds *TmPPase* structures to maintain realistic geometry.

754 **Structure analysis**

755 Geneious R11 was used to search the UniProtKB/Swiss-Prot database with blastp (Altschul et
756 al., 1990) for similar sequences to *PaPPase* and the results were aligned using the Geneious
757 global alignment tool with free end gaps to determine residue conservation and sequence
758 identity. Structure alignments and the r.m.s.d. calculations were done in PyMol 2.2.3
759 (Schrödinger, LLC, n.d.). The standard deviation was stated when multiple structures were

760 compared by their r.m.s.d.. The solvent accessible surface areas and volumes were
761 determined using HOLLOW with a 1.4-1.5 Å interior probe size (Ho & Gruswitz, 2008). Inter-
762 atom difference distance matrices (DiDiMa) of C α atoms were generated by the Bio3D R-
763 package for structural bioinformatics (Grant et al., 2006). Hydrogen bonding patterns were
764 analysed in HBplus using default settings (McDonald & Thornton, 1994). The local (residue by
765 residue) helix curvature analysis was done considering blocks of 4 residues using the Bendix
766 plugin of the Visual Molecular Dynamics suite (Dahl et al., 2012), whereas the global (helix by
767 helix) curvature analysis was done using the HELANAL-Plus webserver(Kumar & Bansal, 2012).


768 **Fixed-time P_i-release assay for activity measurements under crystallisation conditions**

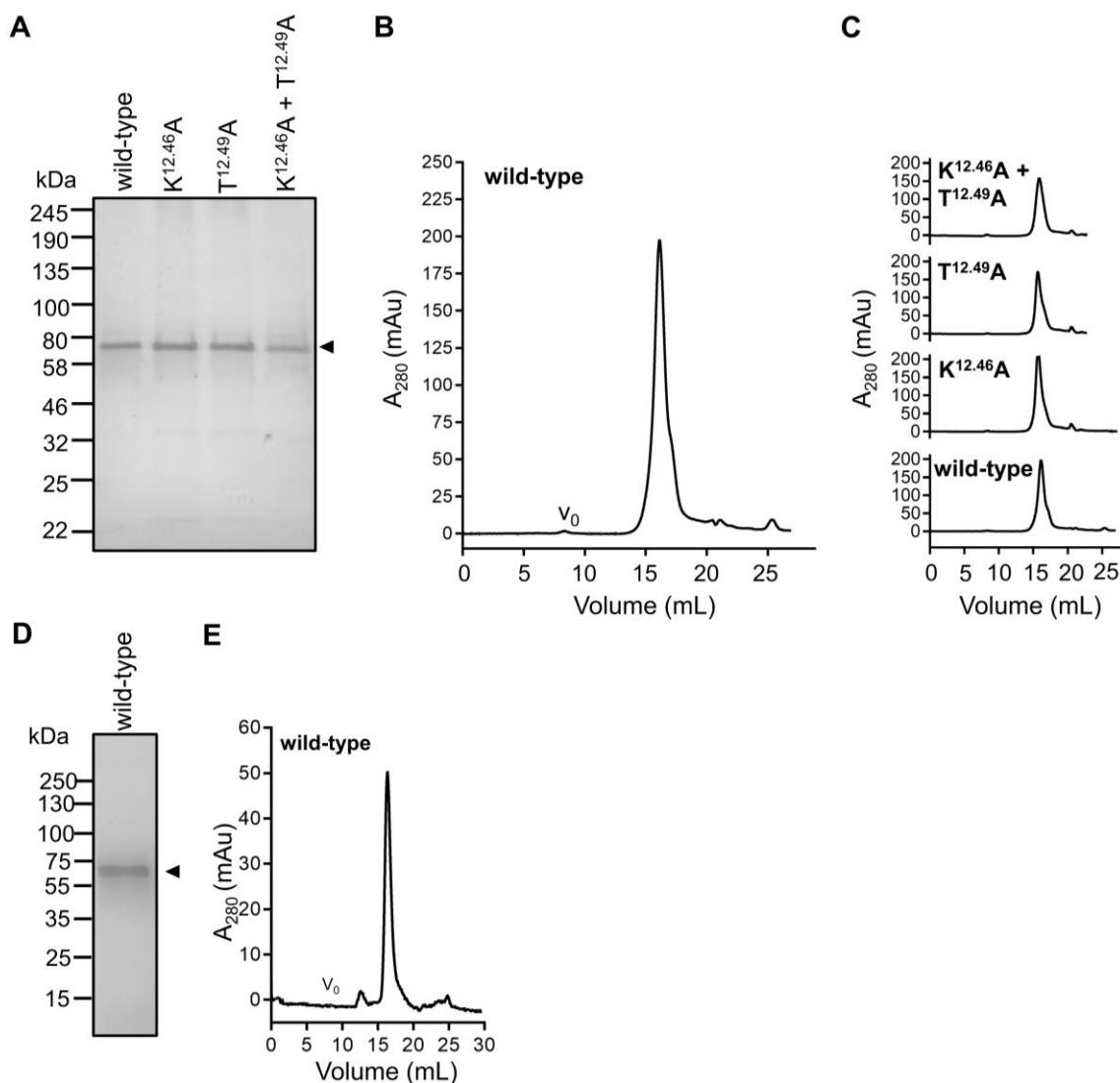
769 The hydrolytic activity of purified *Tm*PPase for time-resolved structural studies was assessed
770 by using the molybdenum blue reaction method with relipidated (12 mg mL⁻¹ L- α -lecithin)
771 protein in DDM:OGNG mixed micelles as previously described (Baykov et al., 2021; Strauss et
772 al., 2018). The reaction buffers were matched to the crystallisation conditions in order to
773 estimate time scales of substrate turnover *in crystallo*. The concentration of MgCl₂ and K₄PP_i
774 required to maintain 5 mM free Mg²⁺ at pH 8.0 was approximated as described by Baykov and
775 co-workers (Baykov et al., 1993). As reference, a routine reaction was done in 60 mM Tris-HCl
776 pH 8.0, 5 mM free Mg²⁺, 100 mM KCl, and 20 mM NaCl at 71 °C for 5 min. Subsequent reactions
777 at 20 °C were incubated for 240 minutes instead as this produces detectable reaction product
778 in a linear range. The activity of protein in the optimised vapour diffusion crystallisation
779 condition (60 mM Tris-HCl pH 8.0, 100 mM KCl, 3 mM MgCl₂, 175 mM KCl, 26% v/v PEG400,
780 400 μ M K₄PP_i) was tested upon reaction initiation with 20 mM NaCl with and without
781 relipidated sample. The standard error of the mean (SEM) was obtained from three technical
782 repeats.

783 **Continuous-flow P_i-release assay**

784 Kinetic experiments for wild-type and variant *Pa*PPase were done using phosphate
785 analyzer (Baykov et al., 2021) with relipidated (12 mg mL⁻¹ L- α -lecithin) protein in DDM
786 micelles. The reaction mixture of 40 mL contained 50 mM MOPS-TMAOH buffer (pH 7.2) and
787 varying concentrations of free Mg²⁺(added as MgCl₂) and TMA₄PP_i in ratios that gave the
788 desired concentration of Mg₂PP_i as substrate (Baykov et al., 1993). Reactions were initiated by
789 protein (at low substrate concentration) or TMA₄PP_i (at high substrate concentration) and the
790 P_i accumulation was continuously recorded for 2–3 min at 40 °C. Reaction rates were
791 calculated from the initial slopes of the P_i liberation and analysed using Prism 6.0 (GraphPad

792 Software) based on a model assuming allosteric substrate binding in dimeric enzyme (Scheme
793 1 and Equation 1)(Anashkin et al., 2021) or a standard Michaelis-Menten type mechanism.

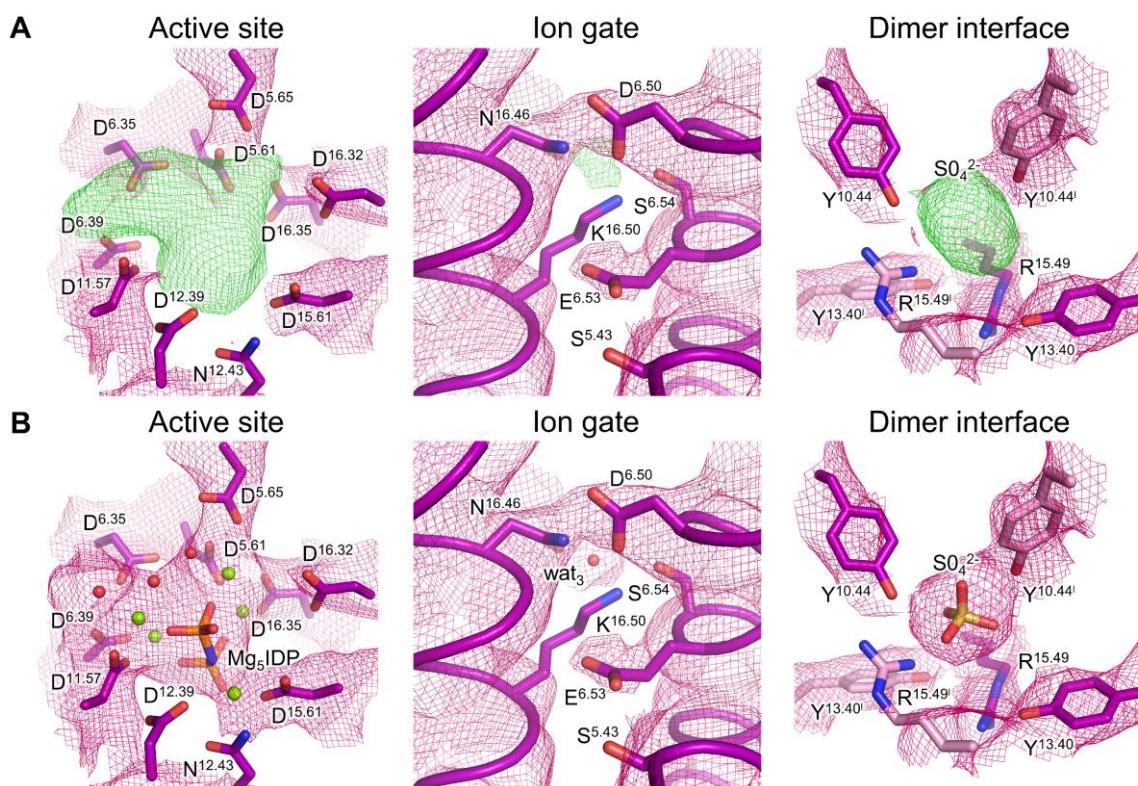
798 **Nanion SURFE2R measurement**


799 For the Nanion SURFE2R experiments, purified *Tm*PPase was reconstituted into liposomes as
800 previously described (Li et al., 2016) with some modifications. Briefly, the purified protein was
801 buffer exchanged into a reconstitution buffer (50mM MOPS-KOH pH 7.2, 50 mM KCl, 5 mM
802 MgCl₂, 2 mM DTT) to remove Na⁺ and glycerol and then diluted to 50 µg mL⁻¹. 120 mg of
803 soybean lectin was dissolved in 1 mL of water and tip sonicated with 60% amplitude, 6 second
804 pulses for 1 minute with 1 minute on ice between sonications until the solution was clear.
805 15 µL liposomes solution (120 mg mL⁻¹ soybean lecithin in 50 mM MOPS-KOH pH 7.2) was
806 mixed with 1 mL of diluted protein sample. SM-2 Bio-beads were added in small increments
807 to a final concentration of 0.25 mg µL⁻¹ and then placed into a mixer at 4 °C for 6 hours to
808 ensure that the beads stayed in suspension. The proteoliposomes were collected and frozen
809 at -80 °C in aliquots. To ensure that the reconstituted protein was still active, the hydrolytic
810 activity was assessed in fixed-time P_i-release assays as described above.

811 Electrometric measurements were performed on the SURFE2R N1 instrument (Nanion
812 Technology). The gold sensors were prepared based on the 'SURFE2R N1 protocol'. This
813 involves thiolating the gold sensor surface and covering it with a lipid layer using sensor prep
814 A2 and B solutions. The resulting solid support membrane-based biosensor can be used to
815 immobilize liposomes containing *Tm*PPase. 15 µl of sonicated proteoliposomes followed by
816 50ul of *Tm*PPase SURFE2R buffer (50 mM MOPS-KOH pH 7.2, 50 mM NaCl, 5 mM MgCl₂) were
817 applied directly to the sensor surface. Sensors were centrifuged for 30 mins at 2500 g and
818 incubated at 4 °C for 3 hours. After mounting the sensors in the SURFE2R N1, the sensors were
819 rinsed twice with 1 mL rinsing buffer (50 mM MOPS-KOH pH 7.2, 50 mM NaCl, 5 mM MgCl₂).
820 Measurements were performed for 3 seconds by consecutively flowing non-activating buffer

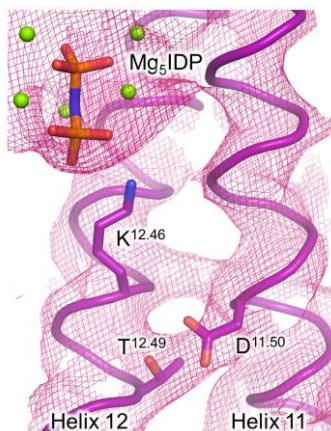
821 B (50 mM MOPS-KOH 7.2, 5 mM MgCl₂, 200 mM K₂HPO₄) and activating buffer A (50 mM
822 MOPS-KOH, 50 mM NaCl, 5 mM MgCl₂, K₄PP_i or IDP) across the sensor for 1 second each in a
823 BAB sequence. Thus, charge transport across the membrane is initiated by K₄PP_i or IDP in
824 buffer A, which is flowed across the sensor during the time period between 1 to 2 seconds.
825 Transport of positively charged ions during this time results in a positive electrical current,
826 which is the signal output of the SURFE2R N1 instrument.

827


828 **Figure supplements**

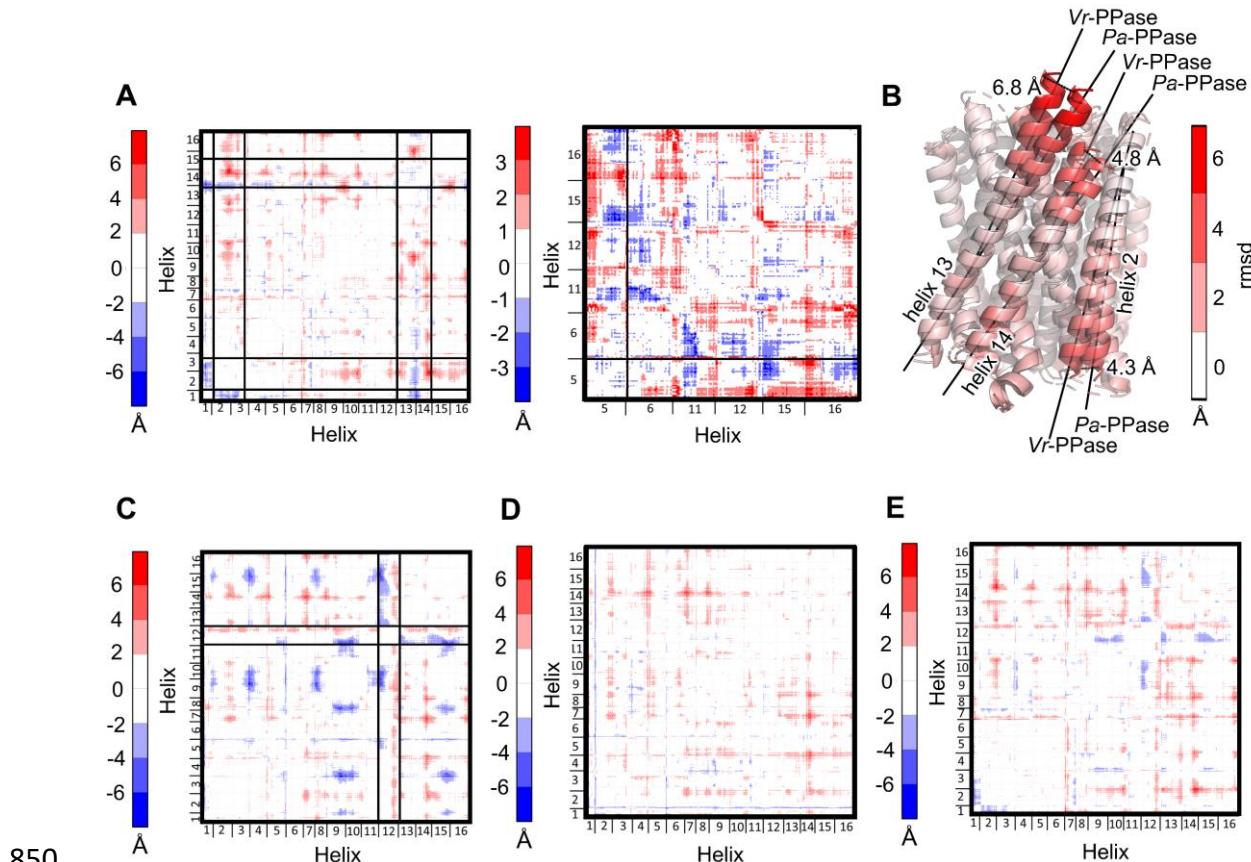
829

830 **Figure 2-figure supplement 1: Hot-solve” purification of and analytical SEC of M-PPases. (A)** SDS-PAGE
831 (Coomassie stain) analysis of purified wild-type and variant *PaPPase*. **(B)** Analytical SEC of wild-type *PaPPase* on
832 Superose 6 Increase 10/300 column. The void volume is indicated by v_0 . **(C)** SEC elution volume comparison of
833 wild-type and variant *PaPPase* on Superose 6 Increase 10/300 column. **(D)** SDS-PAGE (Coomassie stain) analysis
834 of purified wild-type *TmPPase*. **(E)** Analytical SEC of wild-type *TmPPase* on Superose 6 Increase 10/300 column.
835 The void volume is indicated by v_0 .

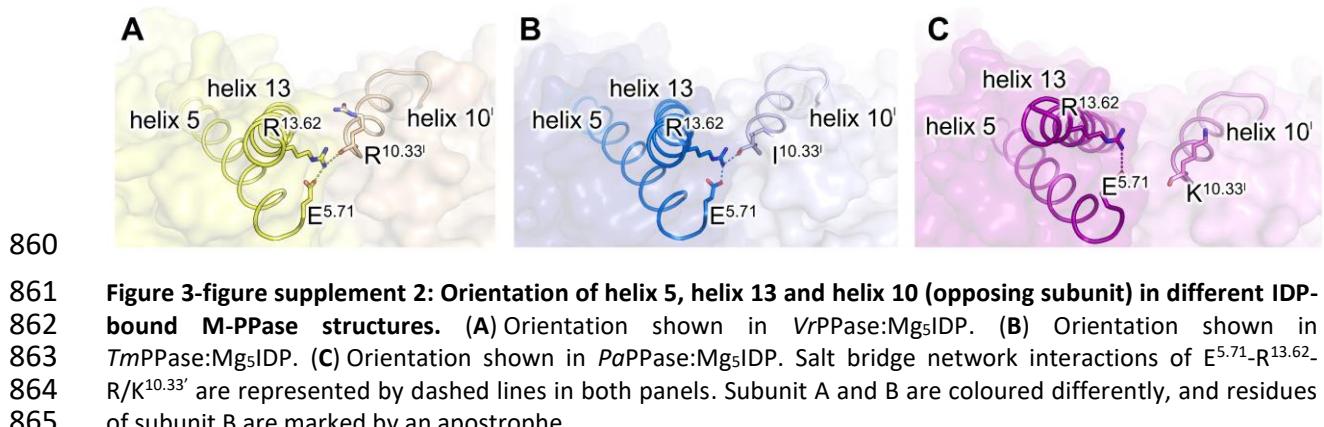

836

837

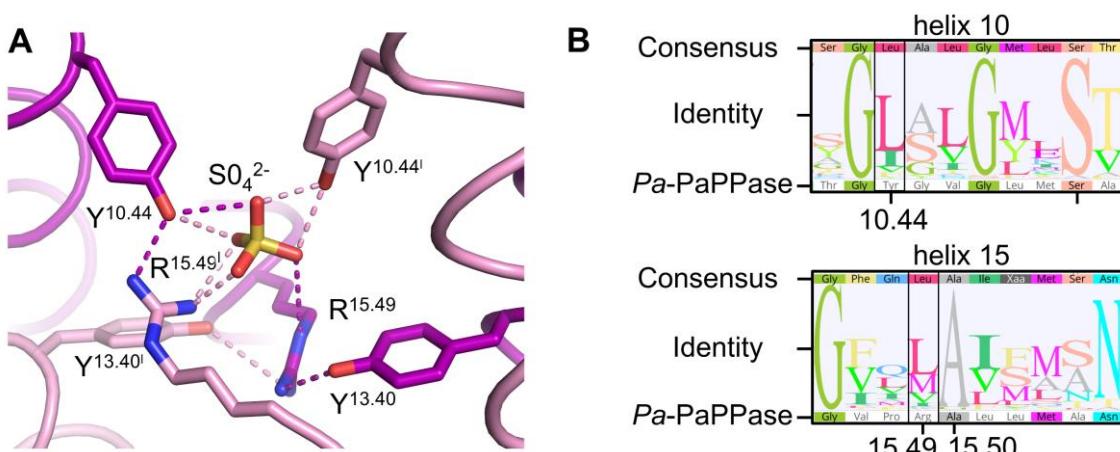
838 **Figure 2-figure supplement 2: Electron density maps of PaPPase:Mg₅IDP key regions. (A)** 2m_{Fo}-d_{Fc} map of active
839 site, ion gate and dimer interface residues and m_{Fo}-d_{Fc} omit map with positive density shown in green and red
840 for ligand or heteroatom binding regions. **(B)** 2m_{Fo}-d_{Fc} map of active site, ion gate and dimer interface residues
841 with ligands and heteroatoms added to the model. Mg²⁺ are shown as green spheres and structural water
842 molecules are shown as red spheres. Residues of subunit A are coloured in purple and residues of subunit B are
843 coloured in pink (additionally marked with apostrophes).


844

845

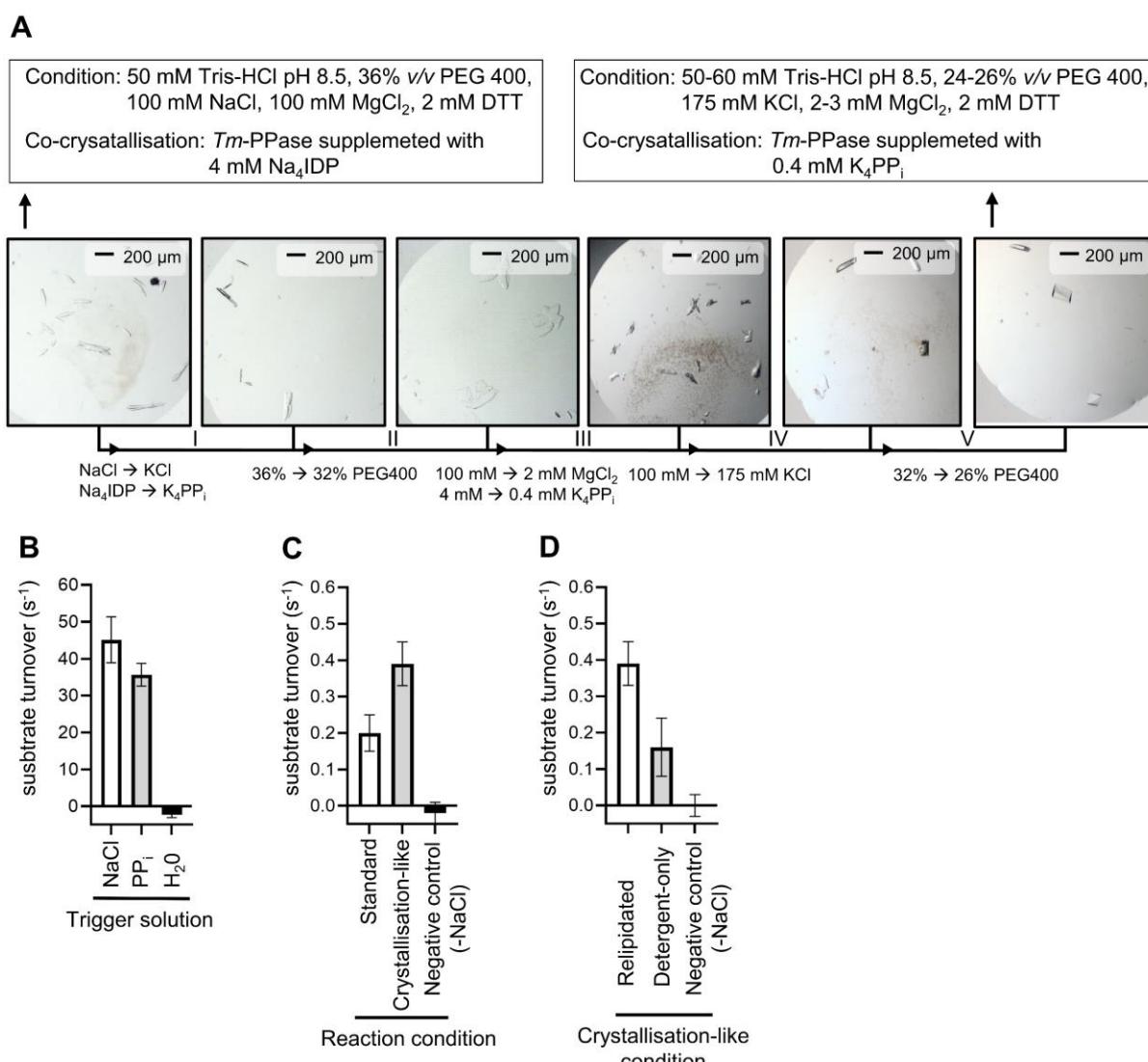

846 **Figure 2-figure supplement 3: 2m_{Fo}-d_{Fc}: electron density map of the K⁺/K^{12.46} cationic centre of**
847 **PaPPase:Mg₅IDP.** 2m_{Fo}-d_{Fc}: electron density of key residue K^{12.46} and nearby residues T^{12.49} and D^{11.50} are shown
848 at 3 σ .

849



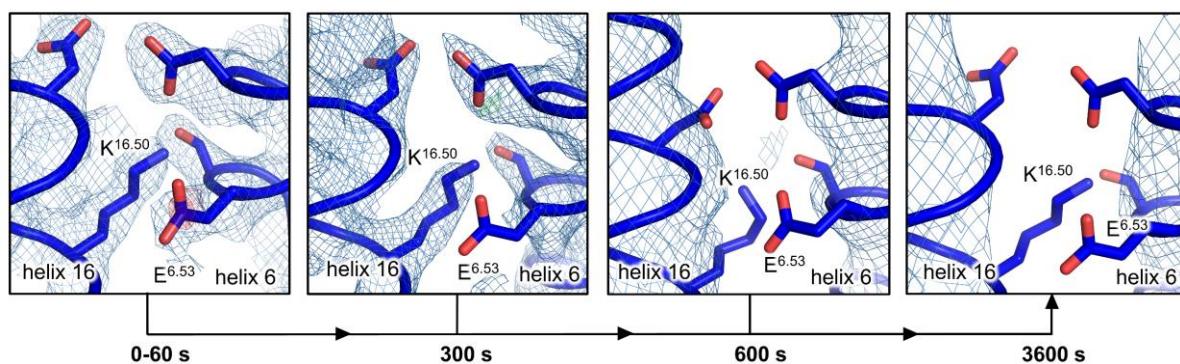
851 **Figure 3-figure supplement 1: Comparison of inter-C α distances between *Pa*PPase:Mg₅IDP and other M-PPase**
852 **structures.** The difference in inter-C α distances is coloured from red (biggest difference) to blue (smallest
853 difference) in each selection and helices with large clusters of changes are highlighted by black boxes.
854 (A) Difference distance matrix (DiDiMa) of *Pa*PPase:Mg₅IDP versus VrPPase:Mg₅IDP. Left panel shows the DiDiMa
855 of all atoms (scale: ± 6 Å); right panel shows inter-atom differences of inner ring helices only (scale: ± 3 Å). (B)
856 Structural alignment of subunit A of the *Pa* and VrPPase Mg₅IDP complexes, with helices coloured by their
857 r.m.s.d./C α . Dashed lines indicate the distances measured at the end of the helices. (C-E) DiDiMa (scale: ± 6 Å) of
858 *Pa*PPase:Mg₅IDP versus (C) TmPPase:CaMg; (D) TmPPase:Mg₄P₁₂ and VrPPase:Mg₂P₁ (E).

859


866

867

868 **Figure 5-figure supplement 1: SO₄²⁻ binding site at the dimer interface of Pa-PaPPase:Mg₅IDP.** (A) Structural
869 overview with subunit A in purple and subunit B in pink (additionally marked with apostrophes). Side chain
870 interactions are shown as dashed lines. (B) Sequence analysis of the SO₄²⁻ binding site. The consensus sequence
871 and sequence identity (sequence logo showing the graphical representation of the residue conservation) are
872 based on an alignment of 45 homologous sequences to *Pa-PaPPase* identified in a blastp search of the UniProt
873 database. Residues of interest are highlighted by a black box and labelled following the B&W convention.


874

875

876 **Figure 6-figure supplement 1: Pre-studies of time-resolved crystallographic experiments with *Tm*PPase.** (A) 877 Crystal optimisation rounds I-V. Arrows indicate the optimisation steps and changes are annotated. . The start 878 and end condition are displayed in black boxes. (B-D) Quantitative Pi-release activity assays of *Tm*PPase in a range 879 of different reaction conditions. (B) Substrate turnover by *Tm*PPase at 71 °C upon reaction initiation with 880 different trigger solutions. (C) Substrate turnover by *Tm*PPase at 20 °C in different reaction conditions. (D) 881 Substrate turnover by *Tm*PPase at 20 °C in crystallisation-like reaction conditions after different sample 882 treatments. Negative controls lack NaCl in the final reaction condition (-NaCl).

883

884
885 **Figure 6-figure supplement 2: Ion gate of time-resolved *TmPPase* structures.** Structures shown for grouped
886 datasets of different time-points (0-60 seconds) and combined datasets of the same time-point (300, 600 and
887 3600 seconds). Structures are shown with 2mFo-dFc density (blue) and mFo-dFc density (red/green) at 1 σ and 3 σ ,
888 respectively.

889

Consensus	Helix 8	Loop ₈₋₉	Helix 9	Helix 10	Loop ₁₀₋₁₁	Helix 11
	AX FFL T Y F L L	-----P D E-----	W G I F V	L V S Y Y L A-----	-----G L Y G I A A V G M L	
Thermotoga maritima	L T A F L T Y F L L	-----K D L Q G L D V L G F R -----I S P W F	-----	L F A D Y F A-----	-----G L Y G V A I A A L G M L	
Vigna radiata	G V A V V S E V A L	-----P T S F T I F N F G -----V Q K D V K S W O L F L	-----	F V S F T L A-----	-----A M Y G I A V A A L G M L	
Arabidopsis thaliana VP1	G I A I V S W V G L	-----P T S F T I F N F G -----T Q K V V K N W Q L F L	-----	F V S F T L A-----	-----A M Y G V A V A A L G M L	
Streptomyces coelicolor	L V A V A V E F V Y L	-----P G K Y A D D L G V T D A A I A -G K S G D P R I L A L F V	-----	Y G A F L L G G T S-----	-----I M L A F V A L A G T G L L	
Flavobacterium johnsoniae	A C F F L V O H M L	-----P E T M Q M S F F G E G S K A I S S M R V F Y	-----	W I S Y A L A-----	-----G F Y G V A L A A S A M M	
Rhodospirillum rubrum	G I I L A T A I V P	-----G F G D I O G A N G V L Y S G -----F D L F L	-----	I T T Y Q L S-----	-----G L F G I A I T V T S M L	
Pyrospadix sp.	T V I I I S Y F L L	-----P S E D I D G C G -----G I P -----A W H A A A L	-----	L V S H I C-----	-----G M G G I A A V G M L	
Plasmodium berghei VP1	A T T A I V Y C L L	-----P D S E D I D G C G -----G I P -----A W H A A A L	-----	G V S V R M C-----	-----D I Y G I A L A A V G M L	
Plasmodium vivax VP1	A I I V I G Y F C L L	-----P I S V K Y N M L K E -----E I P -----N W H I V	-----	G V S V R M C-----	-----S L Y G Y G A L A A L G I L	
Angomonas vivax VP1	V I I I F T E F A L	-----P P T F T I N E V A -----T G R -----W G A L T	-----	G I S Y G L C-----	-----D I Y G I A L A A V G M L	
Plasmodium dianae	A I I A I G Y V C F	-----P S L V K Y N Y L K D I H R -----W K I I V	-----	Y V S V R M C-----	-----G V Y Y G F A L A A L G I L	
Plasmodium falciparum VP1	V I I I F T E V A L	-----P P T F S V G G M E -----S S R -----W G A L I	-----	Y V S V R M C-----	-----S V Y G G A L A A L G I L	
Leishmania donovani	M L I I L T E V A L	-----P P T F S V G G M E -----S S R -----W G A L I	-----	Y L S H I H-----	-----G L Y G Y G A L A A L G I L	
Leishmania mexicana	M L I I L T E V A L	-----P P T F S V G G M E -----S S R -----W G A L I	-----	I L S Y V I W L A S G F-----	-----F A S T R M A-----	
Trypanosoma brucei	T V E V I I T A Y S L	-----P D A F T V G A V E -----T T K -----W R A M V	-----	Y T S V H M A-----	-----D I Y G F A L A A L G I L	
Trypanosoma cruzi	A T F I I L V G A G	-----P D E F T V G A V E -----T T K -----W R A M V	-----	V A S H Y H Y A-----	-----G L Y G I A I A A L G M L	
Trypanosoma rangeli	V I T F L T D L L G	-----P D E F T V G A V E -----T T K -----W R A M V	-----	L A S Y Y L G L A S-----	-----L A S Y Y L G L A S-----	
Chlorobium limicola	L S Y F I I D Y F L	-----P A S W T V D G F T Y T S	-----L N I F F	N V T G D G -----R A I N G L Y G T S V A T M G M L	-----R A I N G L Y G T S V A T M G M L	
Plasmodium vivax VP2	G F F F F C K M L F	-----L S G E D S Q N D Y S -----W I	-----Y L S L	G I S Y M I G Y T-----	-----G I S Y M I G Y T-----	
Pyrobaculum aerophilum	V L F F I I G A F T L	-----G L D S T K A -----L A L A A	-----	-----V P V S G F G E L S K Y L A G I F G T A M A S V G L L	-----V P V S G F G E L S K Y L A G I F G T A M A S V G L L	
Moorella thermoaceta	F L Y P I S R Y M L	-----S G P G V N F -----I Y F Y G	-----	-----L G A Y W L G L K S-----	-----P G G G L Y G T A V A T M G M L	
Arabidopsis thaliana VP2	T F G A S T R W L L	-----Y T E Q A P S A V -----P D H -----M G L S F	-----	-----I S A Y V A G N S-----	-----L I S Y V A T D E N G I P G G G L F G T A V A T M G M L	
Plasmodium falciparum VP2	G G F F C H F -----S L D N A C A W	-----P D H -----M G L S F	-----	-----L I S Y V A T D E N G I P G G G L F G T A V A T M G M L	-----L I S Y V A T D E N G I P G G G L F G T A V A T M G M L	
Bacteroides vulgaris	A T F I I L W A L G	-----L E N W -----V N I S F	-----	-----I T E D O N -----N I T E D O N -----D F A -----	-----N I S M G U Y G I G I A A V G M L	
Prevotella oralis	A T F I I L Y L N L	-----M E N W -----M G L S F	-----	-----M M S Y L C A N G F -----N I S M S M A Q S I S R G U Y G I G I A A V G M L	-----M M S Y L C A N G F -----N I S M S M A Q S I S R G U Y G I G I A A V G M L	
Clostridium leptum	A A F P L I Y F G L	-----G A E K -----I G E Y F	-----	-----L V S Y F L S S G G S-----	-----S Y N N G L Y G V G L S A V G M L	
Mahella australiensis	I S F F L V W V Q V L	-----G M E H -----I G Y F Y	-----	-----L A S Y F L S S G G S-----	-----L A S Y F L S S G G S-----	
Clostridium lento cellulum	A A Y F L V V V N V L	-----G Q E H -----V G I Y F	-----	-----L A S Y F L S S G G S-----	-----L A S Y F L S S G G S-----	
Clostridium phytofermentans	A S Y F V I R L L	-----P D H -----M G L Y V	-----	-----I A S Y L L G A G A -----D-----	-----I N F N M G L Y G I A I A V G M L	
Intestinimonas butyriciproducens	A P A V L T V V	-----P D H -----M G L Y V	-----	-----I A S Y L L G A G A -----D-----	-----I N F N M G L Y G I A I A V G M L	
Lachnospirillum phytofermentans	A S Y F V I R L L	-----P D H -----M G L Y V	-----	-----L V S Y V A T D E N G I P G G G L F G T A V A T M G M L	-----L V S Y V A T D E N G I P G G G L F G T A V A T M G M L	
Hungatella hathewayi	G A Y V I I R L L	-----P E H -----I G I Y A	-----	-----L V S Y Y A T D G V V -----N-----	-----D F N I S G U Y G I G I A A V G M L	
Brachyspira hamponii	V S F L L V K A L L	-----P N N -----L G L F V	-----	-----D F N I S G U Y G I G I A A V G M L	-----D F N I S G U Y G I G I A A V G M L	
Brachyspira murdochii	V S F L L V K A L L	-----P N N -----L G L F V	-----	-----M L A F G F A G G F -----G S E A S -----S F S Q G L Y G I A L A S V G M L	-----M L A F G F A G G F -----G S E A S -----S F S Q G L Y G I A L A S V G M L	
Akkermansia muciniphila	A S A F L L Q L I G	-----L D N W -----A G I W G	-----	-----M L A F G F A G G F -----G S E A S -----S F S Q G L Y G I A L A S V G M L	-----M L A F G F A G G F -----G S E A S -----S F S Q G L Y G I A L A S V G M L	
Coprococcus eut扶ens	A T F I I L W L Q	-----A D N W I T -----W G I F G	-----	-----V L A Y G L A S G -----D W H F T G A E M S K G L Y G I A A V G M L	-----V L A Y G L A S G -----D W H F T G A E M S K G L Y G I A A V G M L	
Bacteroides fragilis	A T F I I L W L Q	-----A D N W I T -----W G I F G	-----	-----I A S Y G F G G -----D F N -----N V G M U Y G I G I A A V G M L	-----I A S Y G F G G -----D F N -----N V G M U Y G I G I A A V G M L	
Methanoscirrhus maezi VP2	A F Y V I T G F L M	-----G D S -----R F F Y	-----	-----I A S Y G F G G -----D F N -----N V G M U Y G I G I A A V G M L	-----I A S Y G F G G -----D F N -----N V G M U Y G I G I A A V G M L	
Clostridium tetani	S A A I I L S N T I F	-----G N -----L K A F F	-----	-----L V S Y F I V M G G G -----S N A M V G L Y G I S L A A V G M L	-----L V S Y F I V M G G G -----S N A M V G L Y G I S L A A V G M L	
Carboxydotermus hydrogenoformans	F T Y I I A Q Y V F	-----G S E W A -----P K I F I	-----	-----M V G Y W A A -----G F Y G I A I A A V G M L	-----M V G Y W A A -----G F Y G I A I A A V G M L	
Dehalogenimonas butyriciproducens	F A F A S V S L L G	-----A D -----I G V F W	-----	-----I V A Y N V A -----D V Y G I A I A A V G M L	-----I V A Y N V A -----D V Y G I A I A A V G M L	
Methanoscirrhus maezi VP1	A S Y V V T G H L L	-----G G Y G -----L N V F F	-----	-----Y I A F Q L A -----G L Y G I A I A A V G M L	-----Y I A F Q L A -----G L Y G I A I A A V G M L	
Desulfuromonas acetoxidans	A S M F I I L I M G	-----L S -----F G V F L	-----	-----L V A N Y F A -----G L Y G I G I A A V G M L	-----L V A N Y F A -----G L Y G I G I A A V G M L	

890
891 **Figure 9-figure supplement 1: Sequence alignment of exit channel loop regions of a blastp search obtained**
892 **with *PaPPase* as search sequence.** Sequences are sorted in two blocks (blue box) based on their loop₈₋₉ and
893 loop₁₀₋₁₁ length. Annotation of topology is based on the *TmPPase*:CaMg structure and may differ in non-
894 conserved regions.

895

896 **Additional files**

897 **Supplementary table 1: M-PPase numbering scheme.**

B&W [‡]	<i>Tm</i> PPase	<i>Vr</i> PPase	<i>Pa</i> PPase
1.50	F17	F25	Y20
2.50	K55	K94	R58
3.50	S87	S153	S96
4.50	G130	G194	G138
5.43	S184	S235	S176
5.50	R191	R242	R183
6.50	D243	D294	D235
6.53	E246	G297	E238
6.57	G250	R301	V242
7.50	G294	G335	A271
8.50	L321	L361	I294
9.50	G369	G411	G333
10.50	S416	S458	S380
11.50	D458	D500	D439
12.46	A495	A537	K476
12.49	G498	G540	T479
12.50	K499	K541	K480
13.50	V566	V597	V554
14.50	M611	M642	F599
15.50	A649	A680	A637
16.50	K707	K742	K691

[‡] Ballesteros & Weinstein nomenclature (Ballesteros & Weinstein, 1995)

898

899

Supplementary table 2: X-ray data collection and refinement statistics of 3.8 Å *PaPPase* structure.

Data collection	
Space group	P2 ₁
Cell dimensions	
a, b, c (Å)	107.2, 88.0, 116.8
α, β, γ (°)	90.0, 106.9, 90.0
Source	DLS: i04/i24 ESRF: ID23-1/MASSIF1
Wavelength* (Å)	0.966/0.979/0.971/0.968
Resolution (Å)	19.97-3.84 (3.98-3.84)
Overall (Å)	3.8
along h axis	5.3
along k axis	4.1
along l axis	3.8
Measured reflections	65003 (2063)
Unique reflections	13069 (653)
Completeness (%)	87.6
CC _{1/2}	0.979
Mean $I/\sigma(I)$	3.9
Multiplicity	5.0
B-factors (Å ²)	112.11
R _{merge}	0.335 (1.524)
R _{meas}	0.375 (1.749)
R _{wp}	0.163 (0.827)
Refinement	
R _{work} (%)/R _{free} (%)	28.9/31.1
No. of atoms	9734
Protein	9694
Ligands	33
Water	7
No. of chains (ASU)	2
B-factors (Å ²)	106.96
Protein	106.98
Ligands/Ions	94.85F
R. M. S. Deviations	
Bond lengths (Å)	0.002
Bond angle (°)	0.047
Ramachandran statistics (%)	
Favoured	96.61
Allowed	3.16
Outliers	0.23

Statistics for the highest-resolution shell are shown in parentheses

* Data from several beamlines

900

901

902 **Supplementary table 3: Helix by helix comparison of *PaPPase:Mg₅IDP* structure to other M-PPase structures.**

R.m.s.d. (Å) *	PaPPase:Mg ₅ IDP versus †						5LZQ vs. 4A01 †	
	5LZQ	4A01	4AV3	4AV6	5GPJ	6AFS		
Overall	1.24	1.50	1.67	1.236	1.50	1.49	1.44	0.86
Helix 1	2.16	2.70	2.31	2.23	2.21	2.72	2.39	4.70
Helix 2	1.33	2.29	1.43	1.66	2.41	2.42	1.92	0.86
Helix 3	1.37	2.06	1.93	1.33	1.57	2.06	1.72	4.78
Helix 4	1.18	1.26	1.79	1.58	1.57	1.30	1.45	1.98
Helix 5	1.79	1.61	1.79	1.46	1.09	1.37	1.52	1.41
Helix 6	1.59	1.18	1.32	1.44	0.89	1.10	1.25	1.35
Helix 7	1.84	2.38	2.28	2.07	2.34	2.39	2.22	1.68
Helix 8	1.87	2.09	2.97	2.06	1.81	2.06	2.14	0.96
Helix 9	1.25	1.48	1.85	1.46	1.63	1.48	1.52	1.05
Helix 10	1.20	1.79	1.43	1.09	1.78	1.77	1.51	2.39
Helix 11	1.10	1.43	1.52	1.23	1.34	1.37	1.33	1.92
Helix 12	0.91	0.94	2.77	1.13	2.05	0.94	1.45	0.68
Helix 13 ‡	3.01	3.26	1.01	1.03	1.71	3.23	2.21	1.27
Helix 14 ‡	2.94	2.73	1.78	1.87	1.85	2.73	2.32	0.70
Helix 15	0.83	0.97	1.30	0.86	1.12	0.95	1.01	0.73
Helix 16	1.44	1.42	1.33	1.26	1.35	1.40	1.37	1.04
Inner ring helices	1.28	1.26	1.67	1.23	1.31	1.19	1.28	-
Outer ring helices	1.82	2.20	1.88	1.64	1.89	2.21	1.82	-

* Structural alignment based on C_α atoms of subunit A.

† PDB identifier column header. 5LZQ: *TmPPase:Mg₅IDP*, 4AV6: *TmPPase:Mg₄P₁*, 5LZR: *TmPPase:Mg₂WO₄*, 4AV3: *TmPPase:CaMg*, 4A01: *VrPPase:Mg₅IDP*, 5GPJ: *VrPPase:Mg₂P₁*, 6AFS: *VrPPase: Mg₅P₁*

‡ *PaPPase:Mg₅IDP* helices cut to length to helices from comparison structures for alignment

903

904

Supplementary table 4: HELANAL-Plus curvature analysis of helix 5 of *PaPPase:Mg₅IDP*.

HELANAL-Plus Parameters *	Helix 5	Helix 5
	<i>PaPPase:Mg₅IDP</i>	<i>VrPPase:Mg₅IDP</i>
Helix length (residues)	37	37
Average number of residues per turn	3.66	3.69
Average unit height of helix (Å)	1.5	1.53
Average virtual torsion angle (°)	49.8	49.8
Average bending angle (°)	11.9	11
Maximum bending angle (°)	24.5	23.2
Radius of sphere curvature (Å)	114	76
R.m.s.d. of sphere fit (Å) (r.m.s.d.S)	0.247	0.266
R.m.s.d. of linear fit (Å) (r.m.s.d.L)	0.154	0.238
Geometry†	linear	kinked

* Definition of all parameters can be found in (Kumar & Bansal, 2012).

† Classification: Linear if, r.m.s.d.S > r.m.s.d.L and maximum bending angle (MBA) < 20° and if the 20° < MBA < 30°, r.m.s.d.S and r.m.s.d.L are both < 0.14 and 0.16 Å, respectively, and r.m.s.d.S > r.m.s.d.L. Kinked, if the value of the MBA is > 30° or the MBA is between 20° and 30° and r.m.s.d. to sphere (r.m.s.d.S) and 3D line (r.m.s.d.L) fit is more than 0.14 and 0.16 Å, respectively.

905

906

907 **Supplementary table 5: Comparison of the hydrogen bonding pattern around S^{5.43} and D^{6.43} in IDP-bound**
 908 **structures.**

Residue from	Helical geometry*		
	<i>PaPPase:Mg₅IDP</i>	<i>VrPPase:Mg₅IDP</i>	<i>TmPPase:Mg₅IDP</i>
5.37	(α)	3 ₁₀	3 ₁₀
5.38	3 ₁₀	α	3 ₁₀
5.39	3 ₁₀	α	(α)
5.40	(α)	α	(α)
5.41	α	α	α
5.42	3 ₁₀	α	α
5.43	α	α	α
5.43	3 ₁₀	3 ₁₀	α
5.44	α	α	α
5.45	(α)	α	α
5.46	α	α	α
6.40	α	(α)	3 ₁₀
6.41	3 ₁₀	α	3 ₁₀
6.42	α	α	α
6.43	α	(α)	(α)
6.44	(α)	π	π
6.45	π	π	π
6.46	π	α	α
6.47	α	3 ₁₀	π

* Hydrogen bonding from amino nitrogen to upstream carbonyl oxygen of main chain

Entries in parentheses are based on rise per residue as no hydrogen bond (distance > 4 Å) is formed

909
 910 **Supplementary table 6: Rotamer options for K^{12.46} in PaPPase:Mg₅IDP of the backbone-
 911 independent Richardson library.** Sorting based on their vdW radii overlap to surrounding atoms from lowest to
 912 highest. Modelled rotamer at the top of the table.

Chi ₁	Chi ₂	Chi ₃	Chi ₄	Sum vdW radii overlap [Å]	Clashes*	Hydrogen bonds
62	180	68	180	0.62	1	3
62	180	-68	180	2.00	2	4
63	-178	178	-179	2.55	3	2
63	-170	-177	72	2.84	3	1
62	180	180	-65	3.03	3	1
-70	-179	-66	-64	4.59	4	2
-70	-170	-66	-175	5.96	5	3
179	59	163	60	7.35	7	0
-177	180	68	65	7.46	7	1
-59	-69	-176	-70	7.53	8	3
-58	-61	-177	-179	8.31	10	2
-69	164	62	-179	8.44	7	2
180	179	78	179	8.50	9	4
-67	-176	174	76	9.04	8	0
-177	178	179	180	9.35	9	1
-177	68	180	-65	9.62	8	1
-62	-68	180	65	9.74	10	1
-177	180	171	63	10.01	10	2
-90	68	180	180	10.23	10	2
179	172	178	-72	10.36	8	1
-177	62	173	171	11.62	11	2
-67	-179	-179	-63	12.45	11	1
-59	-58	-75	-174	12.62	12	1
-175	-174	-69	179	12.94	10	2

The chi angles translate to m for minus (-60°), t for trans (±180°) and p for plus (+60°) per chi angle in Coot

* vdW radii overlap of ≥ 0.6 Å is classified as a clash

913

914 **Supplementary table 7: Rotamer options for K^{16,50}PaPPase:Mg₅IDP of the backbone-independent Richardson**
 915 **library.** Sorting based on their vdW radii overlap to surrounding atoms from lowest to highest. Modelled rotamer
 916 at the top of the table.

Chi ₁	Chi ₂	Chi ₃	Chi ₄	Sum vdW radii overlap [Å]	Clashes*	Hydrogen bonds
-70	-170	-66	-175	0	0	4
-69	164	62	-179	0	0	1
-69	-179	70	67	0	0	0
-177	180	-68	-65	0.83	1	0
-175	-174	-69	179	2.17	3	0
-70	-179	-66	-64	3.08	3	2
-59	-58	-75	-174	3.97	3	1
-67	176	179	177	6.41	5	2
-177	68	180	-65	8.98	9	1
62	180	68	180	9.03	7	4
-67	-179	-179	-63	9.1	8	0
-67	-176	174	76	10.38	9	2
-177	178	179	180	10.63	11	1
-177	180	68	65	11.13	7	1
179	62	173	171	11.68	12	0
-62	-68	180	65	12.41	10	1
179	59	163	60	12.62	12	0
-177	172	178	-72	12.77	11	1
-177	180	171	63	12.85	12	0
-58	-61	-177	-179	13.73	10	2
-59	-69	-176	-70	15.19	11	0
180	179	78	179	15.78	11	0
63	-178	178	-179	17.19	14	1
62	180	180	-65	19.7	15	1

The chi angles translate to m for minus (-60°), t for trans (±180°) and p for plus (+60°) per chi angle in Coot

* vdW radii overlap of ≥ 0.6 Å is classified as a clash

917

918 **Supplementary table 8: Catalytic turnover of wild-type TmPPase used for time-resolved structural studies in**
 919 **various conditions upon NaCl activation.**

Fixed-time Pi release assays	Wild-type TmPPase			
Reaction condition	Standard	Standard	Crystallisation-like	Crystallisation-like
Sample treatment	Relipidated	Relipidated	Relipidated	Detergent-only
Temperature (°C)	71	20	20	20
k_{cat} (s ⁻¹) [*]	45.13±3.59	0.20±0.03	0.39±0.03	0.16±0.05

* Error is shown as SEM of three technical repeats.

920

921 **Supplementary table 9: X-ray data collection and refinement statistics of time-resolved *TmPPase* structures at**
 922 **0, 60, 300, 600 and 3600 seconds post-activation.**

Data collection	t = 0 s	t = 0-60 s	t = 300 s	t = 600 s	t = 3600 s
Dataset [*]	Single best	Grouped	Combined	Combined	Combined
Space group	P2 ₁	P2 ₁	P2 ₁	P2 ₁	P2 ₁
Cell dimensions					
<i>a, b, c</i> (Å)	84.0, 110.2, 108.0	84.0, 110.1, 107.4	83.9, 110.6, 106.1	83.3, 111.6, 106.2	83.1, 111.1, 105.4
α, β, γ (°)	90.0, 107.9, 90.0	90.0, 108.0, 90.0	90.0, 108.2, 90.0	90.0, 109.1, 90.0	90.0, 108.9, 90.0
Source	DESY: P14-I	DESY: P14-I	DESY: P14-I	DESY: P14-I	DESY: P14-I
Wavelength (Å)	0.976	0.976	0.976	0.976	0.
Resolution (Å)	75.34-2.65 (3.08-2.65)	102.13-2.57 (2.89-2.57)	100.81-3.97 (4.09-3.97)	100.4-3.84 (4.17-3.84)	99.74-4.53 (5.22-4.53)
Overall (Å)	2.65	2.54	3.97	3.84	4.53
along <i>h</i> axis	2.65	2.54	3.77	3.86	4.53
along <i>k</i> axis	3.32	2.95	3.79	3.84	5.40
along <i>l</i> axis	3.79	3.38	4.51	4.71	6.00
Measured reflections	194305 (9787)	1793856 (27736)	90019 (2490)	85342 (2342)	43682 (2211)
Unique reflections	27956 (1398)	37297 (1868)	14163 (708)	13078 (654)	6063 (303)
Completeness (%)	91.6	93.8	95.7	90.7	87.8
CC _{1/2}	0.999	0.996	0.975	0.965	0.995
Mean <i>I</i> / $\sigma(I)$	12.3	12.2	6.1	4.4	10.1
Multiplicity	7.0	48.1	6.4	6.5	7.2
B-factors (Å ²)	108.65	70.28	88.03	210.38	286.11
R _{merge}	0.064 (0.993)	0.265 (3.733)	0.187 (0.589)	0.165 (0.779)	0.066 (1.307)
R _{meas}	0.069 (1.073)	0.268 (3.867)	0.203 (0.697)	0.179 (0.918)	0.072 (1.409)
R _{wp}	0.026 (0.042)	0.037 (0.995)	0.079 (0.368)	0.067 (0.479)	0.027 (0.519)
Refinement	t = 0 s	t = 0-60 s	t = 300 s	t = 600 s	t = 3600 s
Search Model	PDB: 4AV3	PDB: 4AV3	t=0-60 s	Chain A: 5LZQ (A); Chain B: t=0- 60 s (B)	Chain A: 5LZQ (A); Chain B: t=0- 60 s (B)
Active site	Empty	Empty	A: Mg ₄ PP _i , B: -	A: Mg ₄ PP _i , B: -	A: Mg ₅ PP _i , B: Mg ₄ P _{i2}
R _{work} (%)/R _{free} (%)	23.8/27.4	21.95/23.61	23.53/26.37	33.42/36.34	32.59/36.06
No. of atoms	10330	10715	10522	10077	10275
Protein	10311	10502	10508	10063	10246
Ligands/Lipids	0	212	13	13	29
Water	13	1	1	1	0
No. of chains (per ASU)	2	2	2	2	2
B-factors (Å ²)	114.96	79.30	132.51	215.75	406.84
Protein	114.99.	79.29	132.43	215.84	406.81
Ligands/Ions	103.14	79.86	195.19	192.68	416.95
R. M. S. Deviations					
Bond lengths (Å)	0.001	0.003	0.003	0.005	0.003
Bond angle (°)	0.35	0.57	0.60	0.81	0.62
Ramachandran statistics (%)					
Favoured	97.86	96.90	97.04	97.88	98.72
Allowed	2.14	3.10	2.96	2.12	1.28
Outliers	0.00	0.00	0.37	0.00	0.00

Statistics for the highest-resolution shell are shown in parentheses

* single best: dataset from best diffracting crystal, grouped: datasets from different time-points, combined: datasets from the same time-points

924
925

Supplementary table 10: Local B-factor distribution at active site of time-resolved *TmPPase* structures from different time-points.

Soaking time (s)	Dataset	Subunit	Active site	Occupancy	ΔB-factor*
300	Combined	A	PP _i	1	66
			PP _i	0.5	16
			P _i	1	59
600	Combined	A	PP _i	1	3
			PP _i	0.5	15
			P _i	1	17
3600	Combined	A	PP _i	1	17
			2 P _i	1	17
			P _i	1	23
	Combined	B	PP _i	1	22
			2 P _i	1	30
			P _i	1	1
					16
					5

* Absolute difference of b-factor ligand to average B-factor of active site residues within a 5 Å of ligand. Isotropic B-factor model. B-factor of side chain and main chain grouped in refinement.

928 References

929 Aller, P., Geng, T., Evans, G., & Foadi, J. (2016). Applications of the BLEND Software to
930 Crystallographic Data from Membrane Proteins, *The Next Generation in Membrane*
931 *Protein Structure Determination* (pp. 119–135). Springer International Publishing.
932 https://doi.org/10.1007/978-3-319-35072-1_9

933 Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment
934 search tool. *Journal of Molecular Biology*, 215(3), 403–410.
935 [https://doi.org/10.1016/S0022-2836\(05\)80360-2](https://doi.org/10.1016/S0022-2836(05)80360-2)

936 Anashkin, V. A., Malinen, A. M., Bogachev, A., & Baykov, A. A. (2021). Catalytic Asymmetry in
937 Homodimeric H⁺ -Pumping Membrane Pyrophosphatase Demonstrated by Non-
938 Hydrolyzable Pyrophosphate Analogs. *International Journal of Molecular Sciences*, 22,
939 9820. <https://doi.org/10.3390/ijms22189820>

940 Artukka, E., Luoto, H. H., Baykov, A. A., Lahti, R., & Malinen, A. M. (2018). Role of the
941 potassium/lysine cationic center in catalysis and functional asymmetry in membrane-
942 bound pyrophosphatases. *Biochemical Journal*, 475(6), 1141–1158.
943 <https://doi.org/10.1042/BCJ20180071>

944 Asaoka, M., Segami, S., & Maeshima, M. (2014). Identification of the critical residues for the
945 function of vacuolar H⁺-pyrophosphatase by mutational analysis based on the 3D
946 structure. *Journal of Biochemistry*, 156(6), 333–344.
947 <https://doi.org/10.1093/jb/mvu046>

948 Ballesteros, J. A., & Weinstein, H. (1995). Integrated methods for the construction of three-
949 dimensional models and computational probing of structure-function relations in G
950 protein-coupled receptors. *Methods in Neurosciences*, 25, 366–428.
951 [https://doi.org/10.1016/S1043-9471\(05\)80049-7](https://doi.org/10.1016/S1043-9471(05)80049-7)

952 Baltscheffsky, H., Von Stedingk, L. V., Heldt, H. W., & Klingenberg, M. (1966). Inorganic
953 Pyrophosphate: Formation in Bacterial Photophosphorylation. *Science*, 153(3740),
954 1120–1122. <https://doi.org/10.1126/science.153.3740.1120>

955 Baltscheffsky, M., Schultz, A., & Baltscheffsky, H. (1999). H⁺-PPases: A tightly membrane-
956 bound family. *FEBS Letters*, 457(3), 527–533. [https://doi.org/10.1016/S0014-5793\(99\)90617-8](https://doi.org/10.1016/S0014-5793(99)90617-8)

958 Baykov, A. A. (2020). Energy Coupling in Cation-Pumping Pyrophosphatase—Back to Mitchell.
959 *Frontiers in Plant Science*, 11. <https://doi.org/10.3389/fpls.2020.00107>

960 Baykov, A. A., Anashkin, V. A., & Malinen, A. M. (2021). Good-Practice Non-Radioactive Assays
961 of Inorganic Pyrophosphatase Activities. *Molecules*, 26(8),
962 <https://doi.org/10.3390/molecules26082356>

963 Baykov, A. A., Anashkin, V. A., Malinen, A. M., & Bogachev, A. V. (2022). The Mechanism of
964 Energy Coupling in H⁺/Na⁺-Pumping Membrane Pyrophosphatase—Possibilities and
965 Probabilities. *International Journal of Molecular Sciences*, 23(16), 9504.
966 <https://doi.org/10.3390/ijms23169504>

967 Baykov, A. A., Bakuleva, N. P., & Rea, P. A. (1993). Steady-state kinetics of substrate hydrolysis
968 by vacuolar H⁺-pyrophosphatase. *European Journal of Biochemistry*, 217(2), 755–762.
969 <https://doi.org/10.1111/j.1432-1033.1993.tb18303.x>

970 Baykov, A. A., Malinen, A. M., Luoto, H. H., & Lahti, R. (2013). Pyrophosphate-Fueled Na⁺ and
971 H⁺ Transport in Prokaryotes. *Microbiology and Molecular Biology Reviews*, 77(2), 267–
972 276. <https://doi.org/10.1128/MMBR.00003-13>

973 Belogurov, G. A., & Lahti, R. (2002). A Lysine Substitute for K⁺. *Journal of Biological Chemistry*,
974 277(51), 49651–49654. <https://doi.org/10.1074/jbc.M210341200>

975 Blehrádek, J. (1926). Influence of Temperature on Biological Processes. *Nature*, 118(2960),
976 <https://doi.org/10.1038/118117a0>

977 Dahl, A. C. E., Chavent, M., & Sansom, M. S. P. (2012). Bendix: Intuitive helix geometry analysis
978 and abstraction. *Bioinformatics*, 28(16), 2193–2194.
979 <https://doi.org/10.1093/bioinformatics/bts357>

980 Emsley, P., Lohkamp, B., Scott, W. G., & Cowtan, K. (2010). Features and development of Coot.
981 *Acta Crystallographica. Section D, Structural Biology*, 66(4), 486–501.
982 <https://doi.org/10.1107/S0907444910007493>

983 Esmaeili, N., Yang, X., Cai, Y., Sun, L., Zhu, X., Shen, G., Payton, P., Fang, W., & Zhang, H. (2019).
984 Co-overexpression of AVP1 and OsSIZ1 in Arabidopsis substantially enhances plant
985 tolerance to drought, salt, and heat stresses. *Scientific Reports*, 9(1),
986 <https://doi.org/10.1038/s41598-019-44062-0>

987 Foadi, J., Aller, P., Alguel, Y., Cameron, A., Axford, D., Owen, R. L., Armour, W., Waterman, D.
988 G., Iwata, S., & Evans, G. (2013). Clustering procedures for the optimal selection of data
989 sets from multiple crystals in macromolecular crystallography. *Acta Crystallographica.*
990 *Section D, Structural Biology*, 69(8), 1617–1632.
991 <https://doi.org/10.1107/S0907444913012274>

992 García-Contreras, R., Celis, H., & Romero, I. (2004). Importance of *Rhodospirillum rubrum* H⁺-
993 Pyrophosphatase under Low-Energy Conditions. *Journal of Bacteriology*, 186(19),
994 6651–6655. <https://doi.org/10.1128/JB.186.19.6651>

995 Gaxiola, R. A., Li, J., Undurraga, S., Dang, L. M., Allen, G. J., Alper, S. L., & Fink, G. R. (2001).
996 Drought- and salt-tolerant plants result from overexpression of the AVP1 H⁺-pump.
997 *Proceedings of the National Academy of Sciences of the United States of America*,
998 98(20), 11444–11449. <https://doi.org/10.1073/pnas.191389398>

999 Grant, B. J., Rodrigues, A. P. C., ElSawy, K. M., McCammon, J. A., & Caves, L. S. D. (2006). Bio3d:
1000 An R package for the comparative analysis of protein structures. *Bioinformatics*, 22(21),
1001 2695–2696. <https://doi.org/10.1093/bioinformatics/btl461>

1002 Heinonen, J. K. (2001). *Biological Role of Inorganic Pyrophosphate*. Springer.
1003 <https://doi.org/10.1007/978-1-4615-1433-6>

1004 Hertig, E. (2019). Distribution of *Anopheles* vectors and potential malaria transmission stability
1005 in Europe and the Mediterranean area under future climate change. *Parasites &*
1006 *Vectors*, 12. <https://doi.org/10.1186/s13071-018-3278-6>

1007 Hirono, M., Nakanishi, Y., & Maeshima, M. (2007). Essential amino acid residues in the central
1008 transmembrane domains and loops for energy coupling of *Streptomyces coelicolor* H⁺-
1009 pyrophosphatase. *Biochimica et Biophysica Acta - Bioenergetics*, 1767(7), 930–939.
1010 <https://doi.org/10.1016/j.bbabiobio.2007.03.014>

1011 Ho, B. K., & Gruswitz, F. (2008). HOLLOW: Generating Accurate Representations of Channel
1012 and Interior Surfaces in Molecular Structures. *BMC Structural Biology*, 8(1),
1013 <https://doi.org/10.1186/1472-6807-8-49>

1014 Holmes, A. O. M., Goldman, A., & Kalli, A. C. (2022). MPPases create a conserved anionic
1015 membrane fingerprint as identified via multi-scale simulations. *PLOS Computational*
1016 *Biology*, 18(10). <https://doi.org/10.1371/journal.pcbi.1010578>

1017 Johansson, N. G., Dreano, L., Vidilaseris, K., Khattab, A., Liu, J., Lasbleiz, A., Ribeiro, O., Kiriazis,
1018 A., Boije af Gennäs, G., Meri, S., Goldman, A., Yli-Kauhaluoma, J., & Xhaard, H. (2021).
1019 Exploration of Pyrazolo[1,5-a]pyrimidines as Membrane-Bound Pyrophosphatase
1020 Inhibitors. *ChemMedChem*, 16, 1–9. <https://doi.org/10.1002/cmdc.202100392>

1021 Johansson, N. G., Turku, A., Vidilaseris, K., Dreano, L., Khattab, A., Ayuso Pérez, D., Wilkinson,
1022 A., Zhang, Y., Tamminen, M., Grazhdankin, E., Kiriazis, A., Fishwick, C. W. G., Meri, S.,

1023 Yli-Kauhaluoma, J., Goldman, A., Boije af Gennäs, G., & Xhaard, H. (2020). Discovery of
1024 Membrane-Bound Pyrophosphatase Inhibitors Derived from an Isoxazole Fragment.
1025 *ACS Medicinal Chemistry Letters*. <https://doi.org/10.1021/acsmedchemlett.9b00537>

1026 Kabsch, W. (2010). Integration, scaling, space-group assignment and post-refinement. *Acta
1027 Crystallographica. Section D, Structural Biology*, 66(2),
1028 <https://doi.org/10.1107/S0907444909047374>

1029 Kellosalo, J., Kajander, T., Kogan, K., Pokharel, K., & Goldman, A. (2012). The Structure and
1030 Catalytic Cycle of a Sodium-Pumping Pyrophosphatase. *Science*, 337(6093), 473–476.
1031 <https://doi.org/10.1126/science.1222505>

1032 Kellosalo, J., Kajander, T., Palmgren, M. G., Lopéz-Marqués, R. L., & Goldman, A. (2011).
1033 Heterologous expression and purification of membrane-bound pyrophosphatases.
1034 *Protein Expression and Purification*, 79(1), 25–34.
1035 <https://doi.org/10.1016/j.pep.2011.05.020>

1036 Kumar, P., & Bansal, M. (2012). HELANAL-Plus: A web server for analysis of helix geometry in
1037 protein structures. *Journal of Biomolecular Structure and Dynamics*, 30(6), 773–783.
1038 <https://doi.org/10.1080/07391102.2012.689705>

1039 Lahti, R. (1983). Microbial Inorganic Pyrophosphatases. *Microbiological Reviews*, 47(2), 169–
1040 178.

1041 Lander, N., Cordeiro, C., Huang, G., & Docampo, R. (2016). Polyphosphate and
1042 acidocalcisomes. *Biochemical Society Transactions*, 44(1), 1–6.
1043 <https://doi.org/10.1042/BST20150193>

1044 Lemercier, G., Dutoya, S., Luo, S., Ruiz, F. A., Rodrigues, C. O., Baltz, T., Docampo, R., &
1045 Bakalara, N. (2002). A Vacuolar-type H⁺-Pyrophosphatase Governs Maintenance of
1046 Functional Acidocalcisomes and Growth of the Insect and Mammalian Forms of
1047 *Trypanosoma brucei*. *Journal of Biological Chemistry*, 277(40), 37369–37376.
1048 <https://doi.org/10.1074/jbc.M204744200>

1049 Lesk, C., Rowhani, P., & Ramankutty, N. (2016). Influence of extreme weather disasters on
1050 global crop production. *Nature*, 529(7584), <https://doi.org/10.1038/nature16467>

1051 Li, K.-M., Wilkinson, C., Kellosalo, J., Tsai, J.-Y., Kajander, T., Jeuken, L. J. C., Sun, Y.-J., &
1052 Goldman, A. (2016). Membrane pyrophosphatases from *Thermotoga maritima* and
1053 *Vigna radiata* suggest a conserved coupling mechanism. *Nature Communications*,
1054 7(13596), 1–11. <https://doi.org/10.1038/ncomms13596>

1055 Liebschner, D., Afonine, P. V., Baker, M. L., Bunkóczki, G., Chen, V. B., Croll, T. I., Hintze, B.,
1056 Hung, L.-W., Jain, S., McCoy, A. J., Moriarty, N. W., Oeffner, R. D., Poon, B. K., Prisant,
1057 M. G., Read, R. J., Richardson, J. S., Richardson, D. C., Sammito, M. D., Sobolev, O. V.,
1058 Adams, P. D. (2019). Macromolecular structure determination using X-rays, neutrons
1059 and electrons: Recent developments in Phenix. *Acta Crystallographica. Section D,
1060 Structural Biology*, 75(10), <https://doi.org/10.1107/S2059798319011471>

1061 Lin, S.-M., Tsai, J.-Y., Hsiao, C.-D., Huang, Y.-T., Chiu, C.-L., Liu, M.-H., Tung, J.-Y., Liu, T.-H., Pan,
1062 R.-L., & Sun, Y.-J. (2012). Crystal structure of a membrane-embedded H⁺-translocating
1063 pyrophosphatase. *Nature*, 484, 399–404. <https://doi.org/10.1038/nature10963>

1064 Liu, J., Pace, D., Dou, Z., King, T. P., Guidot, D., Li, Z.-H., Carruthers, V. B., & Moreno, S. N. J.
1065 (2014). A Vacuolar-H⁺-Pyrophosphatase (TgVP1) is Required for Microneme Secretion,
1066 Host Cell Invasion, and Extracellular Survival of *Toxoplasma gondii*. *Molecular
1067 Microbiology*, 93(4), 698–712. <https://doi.org/10.1111/mmi.12685.A>

1068 López-Marqués, R. L., Pérez-Castiñeira, J. R., Buch-Pedersen, M. J., Marco, S., Rigaud, J.-L.,
1069 Palmgren, M. G., & Serrano, A. (2005). Large-scale purification of the proton pumping
1070 pyrophosphatase from *Thermotoga maritima*: A “Hot-Solve” method for isolation of

1071 recombinant thermophilic membrane proteins. *Biochimica et Biophysica Acta - Biomembranes*, 1716(1), 69–76. <https://doi.org/10.1016/j.bbamem.2005.08.004>

1072

1073 Luoto, H. H., Baykov, A. A., Lahti, R., & Malinen, A. M. (2013). Membrane-integral
1074 pyrophosphatase subfamily capable of translocating both Na^+ and H^+ . *Proceedings of
1075 the National Academy of Sciences of the United States of America*, 110(4), 1255–1260.
1076 <https://doi.org/10.1073/pnas.1217816110>

1077 Luoto, H. H., Belogurov, G. A., Baykov, A. A., Lahti, R., & Malinen, A. M. (2011). Na^+ -
1078 translocating Membrane Pyrophosphatases Are Widespread in the Microbial World
1079 and Evolutionarily Precede H^+ -translocating Pyrophosphatases. *Journal of Biological
1080 Chemistry*, 286(24), 21633–21642. <https://doi.org/10.1074/jbc.M111.244483>

1081 Luoto, H. H., Nordbo, E., Baykov, A. A., Lahti, R., & Malinen, A. M. (2013). Membrane Na^+ -
1082 pyrophosphatases Can Transport Protons at Low Sodium Concentrations. *Journal of
1083 Biological Chemistry*, 288(49), 35489–35499.
1084 <https://doi.org/10.1074/jbc.M113.510909>

1085 Luoto, H. H., Nordbo, E., Malinen, A. M., Baykov, A. A., & Lahti, R. (2015). Evolutionarily
1086 divergent, Na^+ -regulated H^+ -transporting membrane-bound pyrophosphatases.
1087 *Biochemical Journal*, 467(2), 281–291. <https://doi.org/10.1042/BJ20141434>

1088 Maeshima, M. (2000). Vacuolar H^+ -pyrophosphatase. *Biochimica et Biophysica Acta -
1089 Biomembranes*, 1465(1–2), 37–51. [https://doi.org/10.1016/S0005-2736\(00\)00130-9](https://doi.org/10.1016/S0005-2736(00)00130-9)

1090 Malinen, A. M., Anashkin, V. A., Orlov, V. N., Bogachev, A. V., Lahti, R., & Baykov, A. A. (2022).
1091 Pre-steady-state kinetics and solvent isotope effects support the “billiard-type”
1092 transport mechanism in Na^+ -translocating pyrophosphatase. *Protein Science*, 31(9),
1093 e4394. <https://doi.org/10.1002/pro.4394>

1094 Malinen, A. M., Baykov, A. A., & Lahti, R. (2008). Mutual Effects of Cationic Ligands and
1095 Substrate on Activity of the Na^+ -Transporting Pyrophosphatase of *Methanoscincus*
1096 *mazae*. *Biochemistry*, 47(50), 13447–13454. <https://doi.org/10.1021/bi801803b>

1097 Malinen, A. M., Belogurov, G. A., Baykov, A. A., & Lahti, R. (2007). Na^+ -Pyrophosphatase: A
1098 Novel Primary Sodium Pump. *Biochemistry*, 46(30), 8872–8878.
1099 <https://doi.org/10.1021/bi700564b>

1100 McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C., & Read, R. J.
1101 (2007). Phaser crystallographic software. *Journal of Applied Crystallography*, 40(4).
1102 <https://doi.org/10.1107/S0021889807021206>

1103 McDonald, I. K., & Thornton, J. M. (1994). Satisfying Hydrogen Bonding Potential in Proteins.
1104 *Journal of Molecular Biology*, 238(5), 777–793.
1105 <https://doi.org/10.1006/jmbi.1994.1334>

1106 Moyle, J., Mitchell, R., & Mitchell, P. (1972). Proton-translocating Pyrophosphatase of
1107 *Rhodospirillum rubrum*. *FEBS Letters*, 23(2), 233–236. [https://doi.org/10.1016/0014-5793\(72\)80349-1](https://doi.org/10.1016/0014-
1108 5793(72)80349-1)

1109 Nakanishi, Y., Saijo, T., Wada, Y., & Maeshima, M. (2001). Mutagenic Analysis of Functional
1110 Residues in Putative Substrate-binding Site and Acidic Domains of Vacuolar H^+ -
1111 Pyrophosphatase. *Journal of Biological Chemistry*, 276(10), 7654–7660.
1112 <https://doi.org/10.1074/jbc.M009743200>

1113 Nordbo, E., Luoto, H. H., Baykov, A. A., Lahti, R., & Malinen, A. M. (2016). Two independent
1114 evolutionary routes to Na^+/H^+ cotransport function in membrane pyrophosphatases.
1115 *Biochemical Journal*, 473(19), 3099–3111. <https://doi.org/10.1042/BCJ20160529>

1116 Park, S., Li, J., Pittman, J. K., Berkowitz, G. A., Yang, H., Undurraga, S., Morris, J., Hirschi, K. D.,
1117 & Gaxiola, R. A. (2005). Up-regulation of a H^+ -pyrophosphatase (H^+ -PPase) as a strategy
1118 to engineer drought-resistant crop plants. *Proceedings of the National Academy of*

1119 *Sciences of the United States of America*, 102(52), 18830–18835.
1120 <https://doi.org/10.1073/pnas.0509512102>

1121 Ray, D. K., West, P. C., Clark, M., Gerber, J. S., Prishchepov, A. V., & Chatterjee, S. (2019).
1122 Climate change has likely already affected global food production. *PLoS ONE*, 14(5),
1123 e0217148. <https://doi.org/10.1371/journal.pone.0217148>

1124 Ryan, S. J., Carlson, C. J., Mordecai, E. A., & Johnson, L. R. (2019). Global expansion and
1125 redistribution of Aedes-borne virus transmission risk with climate change. *PLoS
1126 Neglected Tropical Diseases*, 13(3). <https://doi.org/10.1371/journal.pntd.0007213>

1127 Schrödinger, LLC. (n.d.). *The PyMOL Molecular Graphics System, Version 2.0* (2.2.3).
1128 <https://www.pymol.org/>

1129 Schultz, A., & Baltscheffsky, M. (2003). Properties of mutated *Rhodospirillum rubrum* H⁺-
1130 pyrophosphatase expressed in *Escherichia coli*. *Biochimica et Biophysica Acta -
1131 Bioenergetics*, 1607(2–3), 141–151. <https://doi.org/10.1016/j.bbabi.2003.09.003>

1132 Strauss, J., Wilkinson, C., Vidilaseris, K., Harborne, S. P. D., & Goldman, A. (2018). A Simple
1133 Strategy to Determine the Dependence of Membrane-Bound Pyrophosphatases on K⁺
1134 as a Cofactor. In K. N. Allen (Ed.), *Methods in Enzymology* (Vol. 607, pp. 131–156).
1135 Academic Press. <https://doi.org/10.1016/bs.mie.2018.04.018>

1136 Tickle, I. J., Flensburg, C., Keller, P., Paciorek, W., Sharff, A., Vonrhein, C., & Bricogne, G. (2018).
1137 *The STARANISO Server: Anisotropy of the Diffraction Limit and Bayesian Estimation of
1138 Structure Amplitudes*. The STARANISO Server. <https://staraniso.globalphasing.org>

1139 Tsai, J.-Y., Kellosalo, J., Sun, Y.-J., & Goldman, A. (2014). Proton/sodium pumping
1140 pyrophosphatases: The last of the primary ion pumps. *Current Opinion in Structural
1141 Biology*, 27(1), 38–47. <https://doi.org/10.1016/j.sbi.2014.03.007>

1142 Tsai, J.-Y., Tang, K.-Z., Li, K.-M., Hsu, B.-L., Chiang, Y.-W., Goldman, A., & Sun, Y.-J. (2019). Roles
1143 of the Hydrophobic Gate and Exit Channel in *Vigna radiata* Pyrophosphatase Ion
1144 Translocation. *Journal of Molecular Biology*, 431(8), 1619–1632.
1145 <https://doi.org/10.1016/j.jmb.2019.03.009>

1146 Vidilaseris, K., Kiriazis, A., Turku, A., Khattab, A., Johansson, N. G., Leino, T. O., Kiuru, P. S., Boije
1147 af Gennäs, G., Meri, S., Yli-Kauhaluoma, J., Xhaard, H., & Goldman, A. (2019). Asymmetry in catalysis by *Thermotoga maritima* membrane-bound pyrophosphatase demonstrated by a nonphosphorus allosteric inhibitor. *Science Advances*, 5(5).
1148 <https://doi.org/10.1126/sciadv.aav7574>

1149 Walker, R. R., & Leigh, R. A. (1981). Mg²⁺-Dependent, cation-stimulated inorganic
1150 pyrophosphatase associated with vacuoles isolated from storage roots of red beet (*Beta vulgaris* L.). *Planta*, 153(2), 150–155. <https://doi.org/10.1007/BF00384096>

1151 Wikipedia Community. (2022, August 31). *List of Doctor Dolittle characters* [Encyclopaedia].
1152 Wikipedia.
1153 https://en.wikipedia.org/w/index.php?title=List_of_Doctor_Dolittle_characters&oldid=1096837395

1154 Winter, G., Waterman, D. G., Parkhurst, J. M., Brewster, A. S., Gildea, R. J., Gerstel, M.,
1155 Fuentes-Montero, L., Vollmar, M., Michels-Clark, T., Young, I. D., Sauter, N. K., & Evans,
1156 G. (2018). DIALS: Implementation and evaluation of a new integration package. *Acta
1157 Crystallographica. Section D, Structural Biology*, 74 (2), 85–97.
1158 <https://doi.org/10.1107/S2059798317017235>

1159 Zhang, M., Wang, C., Otto, T. D., Oberstaller, J., Liao, X., Adapa, S. R., Udenze, K., Bronner, I.
1160 F., Casandra, D., Mayho, M., Brown, J., Li, S., Swanson, J., Rayner, J. C., Jiang, R. H. Y.,
1161 & Adams, J. H. (2018). Uncovering the essential genes of the human malaria parasite

1166 *Plasmodium falciparum* by saturation mutagenesis. *Science*, 360(6388).
1167 <https://doi.org/10.1126/science.aap7847>

1168 Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D. B., Huang, Y., Huang, M., Yao, Y., Bassu, S., Ciais,
1169 P., Durand, J.-L., Elliott, J., Ewert, F., Janssens, I. A., Li, T., Lin, E., Liu, Q., Martre, P.,
1170 Müller, C., ... Asseng, S. (2017). Temperature increase reduces global yields of major
1171 crops in four independent estimates. *Proceedings of the National Academy of Sciences*
1172 of the United States of America, 114(35), 9326–9331.
1173 <https://doi.org/10.1073/pnas.1701762114>

1174

1175 **Article and author information**

1176 **Acknowledgements**

1177 We thank the Leeds Astbury Centre for Molecular and Structural Biology for support, Diamond
1178 Light Source for access to beam line I04 and I24, the European Synchrotron Radiation Facility
1179 for access to beam line ID23-1 and MASSIF-1, and EMBL for access to beam line P14.I and
1180 P14.II(T-REXX) at PETRA III (mx747, mx839, mx862).

1181 **Funding**

1182 JS acknowledges funding from the European Union's Horizon 2020 research and innovation
1183 programme under the Marie Skłodowska-Curie grant 722687. CW was supported by the Leeds
1184 110th Anniversary Research Scholarships. AG and LJ acknowledge funding from the BBSRC
1185 (grant: BB/M021610/1). AG, KV and AMM received funding from Academy of Finland (grants:
1186 1322609, 308105 & 307775). ARP was supported by the Cluster of Excellence "The Hamburg
1187 Centre for Ultrafast Imaging" and "CUI: Advanced Imaging of Matter" of the Deutsche
1188 Forschungsgemeinschaft (DFG EXC1074, EXC2056). T-REXX is supported by the
1189 Bundesministerium für Bildung und Forschung ('Verbundforschung', 05K16GU1 and
1190 05K19GU1).

1191 **Contributions**

1192 **Jannik Strauss**

1193 Astbury Centre for Structural and Molecular Biology, University of Leeds, LS2 9JT, Leeds, UK.
1194 Contribution: Conceptualization; Methodology; Validation; Formal analysis; Investigation;
1195 Writing – original draft preparation; Writing – review & editing; Visualization; Project
1196 administration.

1197 Competing interests: No competing interests declared.

1198 **Craig Wilkinson**

1199 Astbury Centre for Structural and Molecular Biology, University of Leeds, LS2 9JT, Leeds, UK.
1200 Contribution: Conceptualization; Methodology; Validation; Formal analysis; Investigation;
1201 Project administration.

1202 Competing interests: No competing interests declared.

1203 **Keni Vidilaseris**

1204 Molecular and Integrative Biosciences, Biological and Environmental Sciences, University of
1205 Helsinki, 00100 Helsinki, Finland.

1206 Contribution: Methodology; Validation; Formal analysis; Investigation; Writing – original draft
1207 preparation; Writing – review & editing; Visualization.

1208 Competing interests: No competing interests declared.

1209 **Orquidea Ribeiro**

1210 Molecular and Integrative Biosciences, Biological and Environmental Sciences, University of
1211 Helsinki, 00100 Helsinki, Finland.

1212 Contribution: Investigation.

1213 Competing interests: No competing interests declared.

1214 **Jianing Liu**

1215 Molecular and Integrative Biosciences, Biological and Environmental Sciences, University of
1216 Helsinki, 00100 Helsinki, Finland.

1217 Contribution: Validation; Investigation; Visualization.

1218 Competing interests: No competing interests declared.

1219 **James Hillier**

1220 Astbury Centre for Structural and Molecular Biology, University of Leeds, LS2 9JT, Leeds, UK.

1221 Contribution: Investigation.

1222 Competing interests: No competing interests declared.

1223 **Anssi Malinen**

1224 Department of Life Technologies, University of Turku, FIN-20014 Turku, Finland

1225 Contribution: Methodology; Validation; Formal analysis; Investigation; Resources; Writing –
1226 review & editing.

1227 Competing interests: No competing interests declared.

1228 **Bernadette Gehl**

1229 Molecular and Integrative Biosciences, Biological and Environmental Sciences, University of
1230 Helsinki, 00100 Helsinki, Finland.

1231 Contribution: Investigation.

1232 Competing interests: No competing interests declared.

1233 **Lars J.C. Jeuken**

1234 Leiden Institute of Chemistry, University Leiden, PO Box 9502, 2300 RA Leiden, Netherlands.

1235 Contribution: Methodology; Validation; Formal analysis; Resources; Writing – review &
1236 editing; Supervision.

1237 Competing interests: No competing interests declared.

1238 **Arwen R. Pearson**

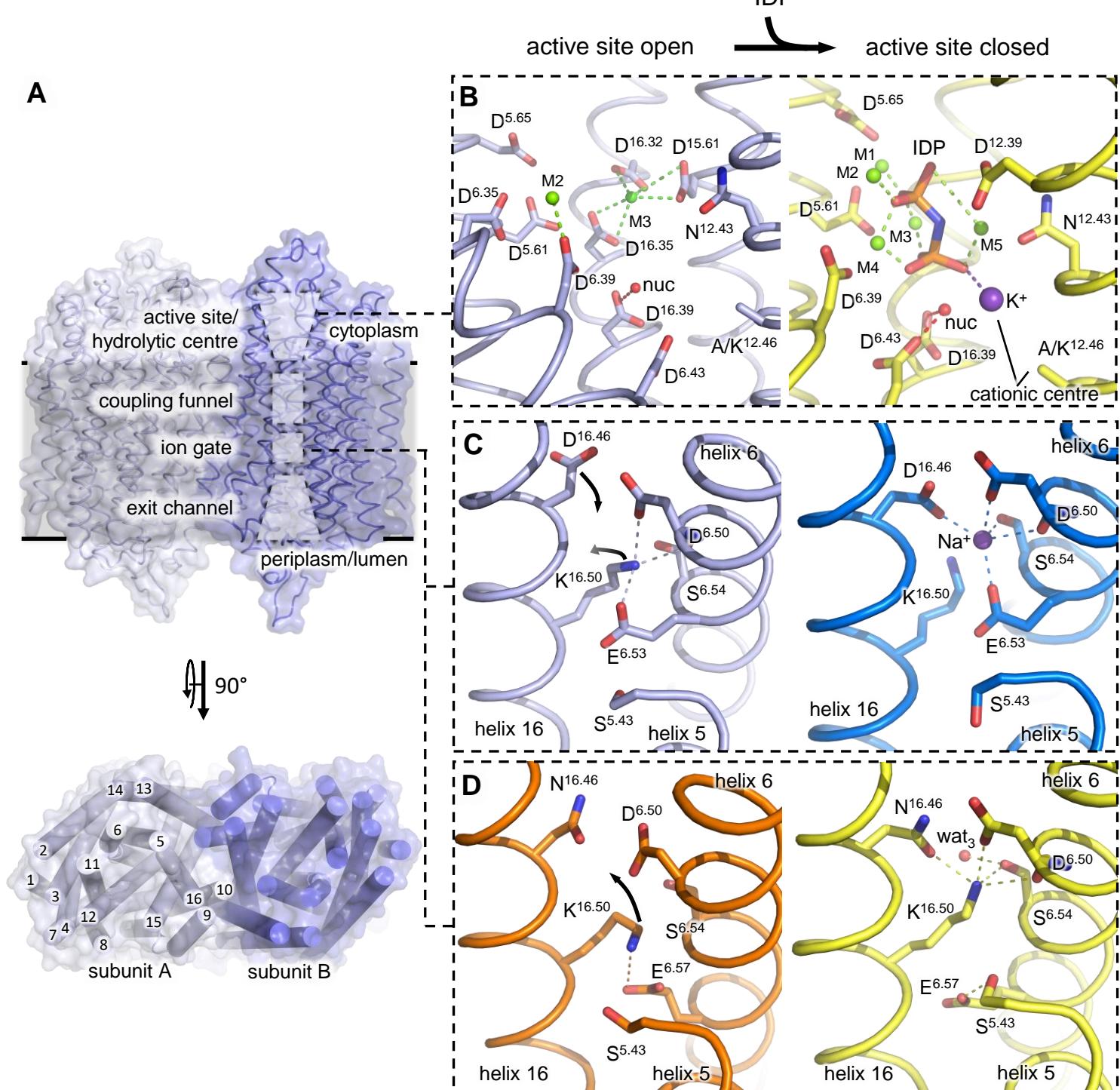
1239 Institute for Nanostructure and Solid State Physics, Hamburg Centre for Ultrafast Imaging,
1240 Universität Hamburg, 22761 Hamburg, Germany

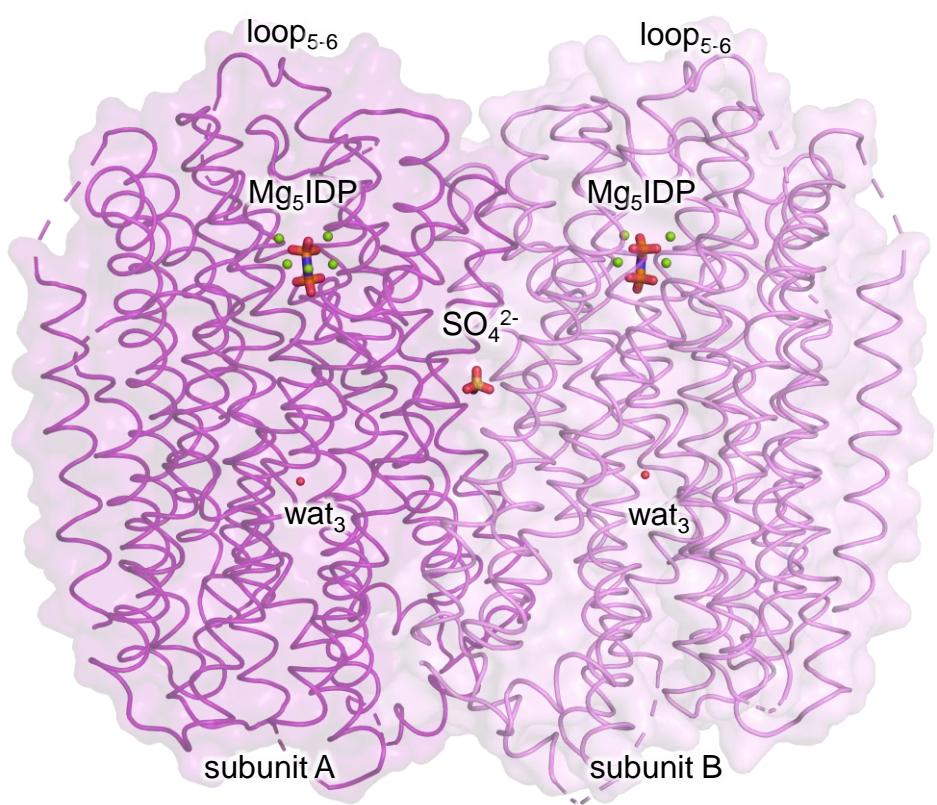
1241 Contribution: Conceptualization; Methodology; Formal analysis; Investigation; Resources;
1242 Writing – review & editing; Supervision; Project administration; Funding acquisition.

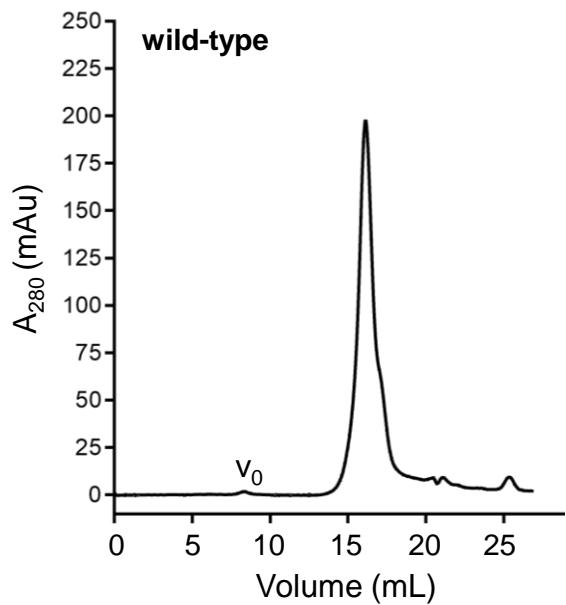
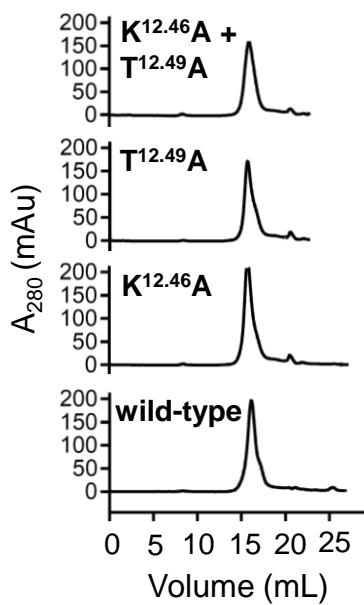
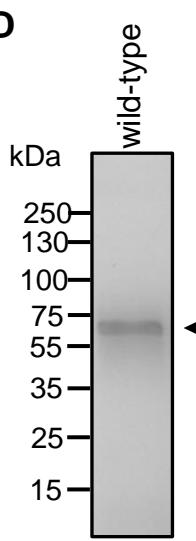
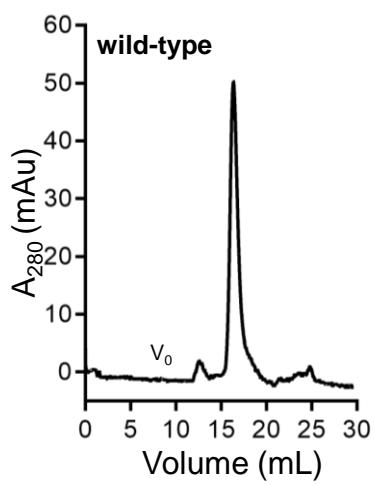
1243 Competing interests: No competing interests declared.

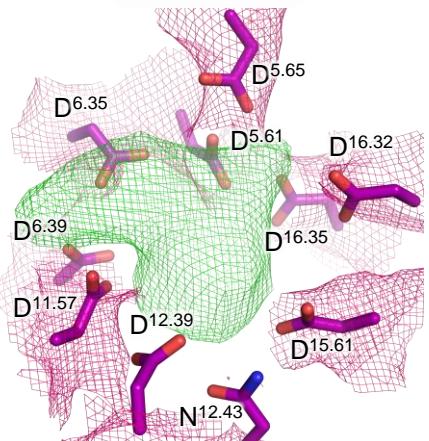
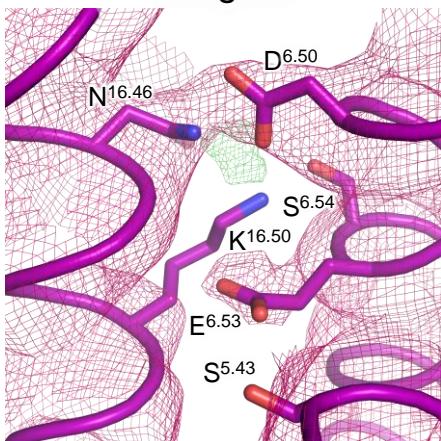
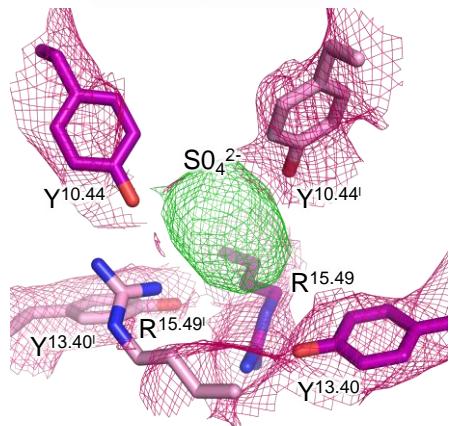
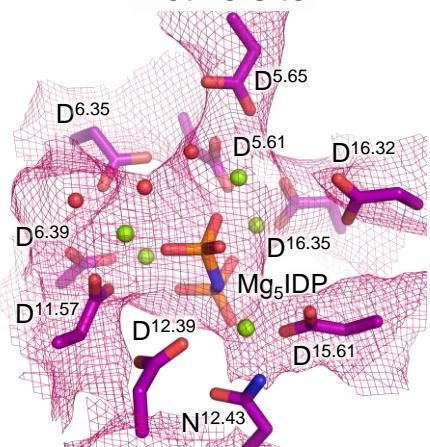
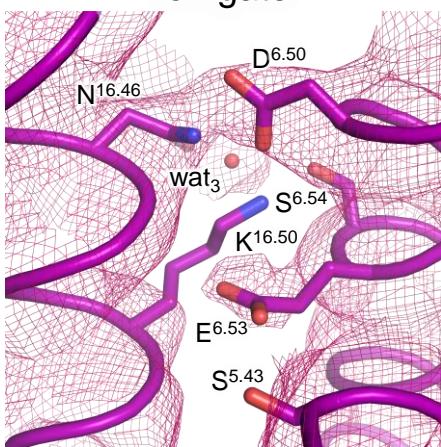
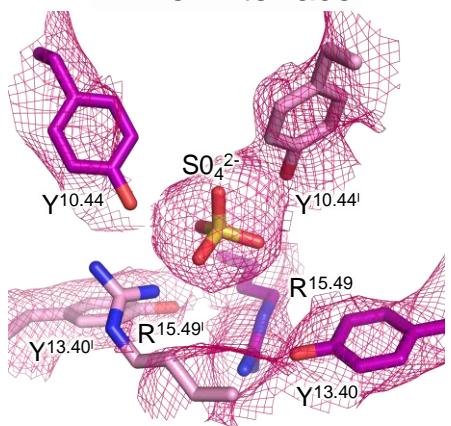
1244 **Adrian Goldman**

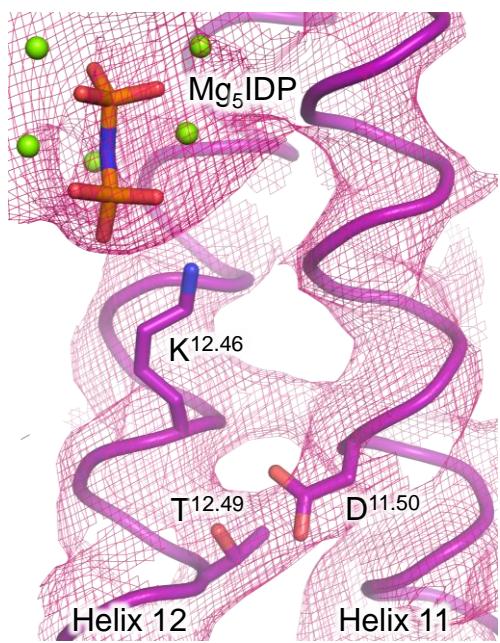
1245 Astbury Centre for Structural and Molecular Biology, University of Leeds, LS2 9JT, Leeds, UK
1246 and Molecular and Integrative Biosciences, Biological and Environmental Sciences, University
1247 of Helsinki, 00100 Helsinki, Finland.

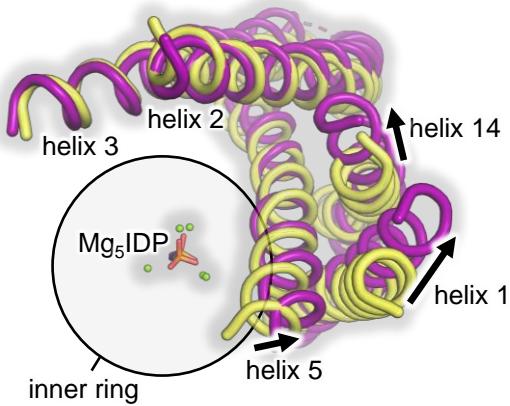
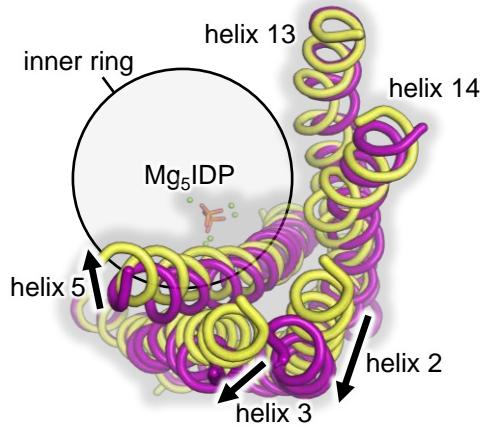

1248 Contribution: Conceptualization; Methodology; Validation; Formal analysis; Resources;
1249 Writing – original draft preparation; Writing – review & editing; Supervision; Project
1250 administration; Funding acquisition.

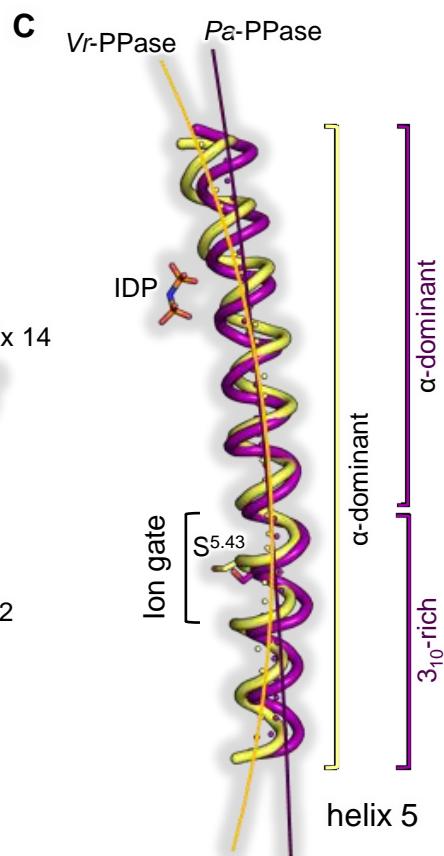

1251 Competing interests: No competing interests declared.

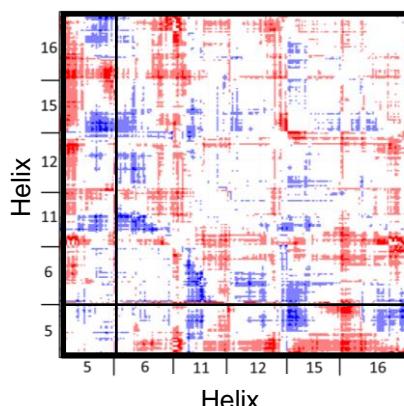
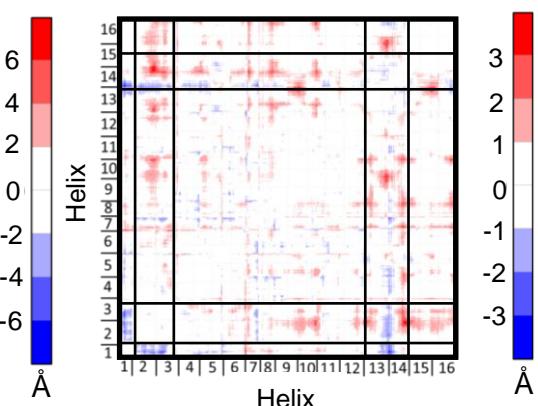
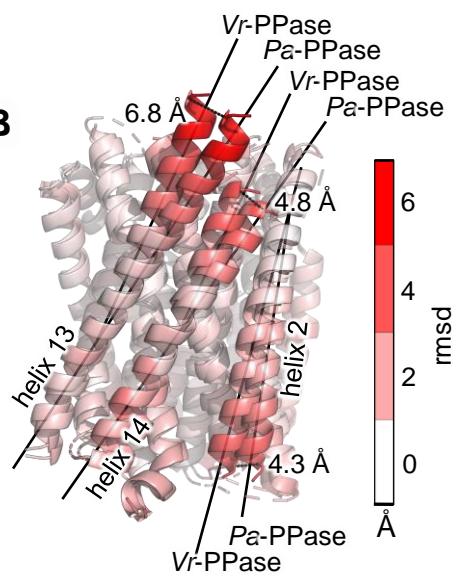
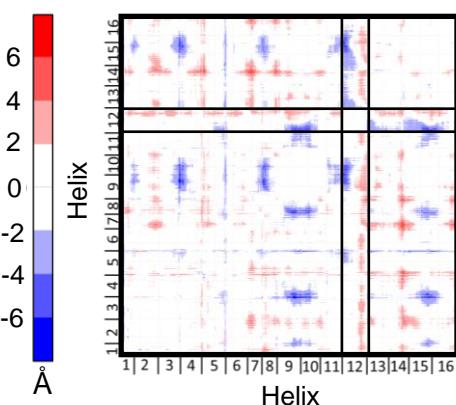
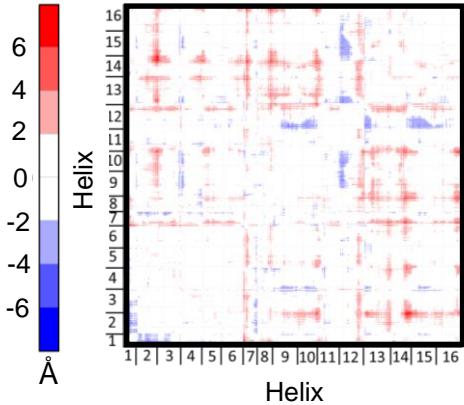




1252 **Data availability**

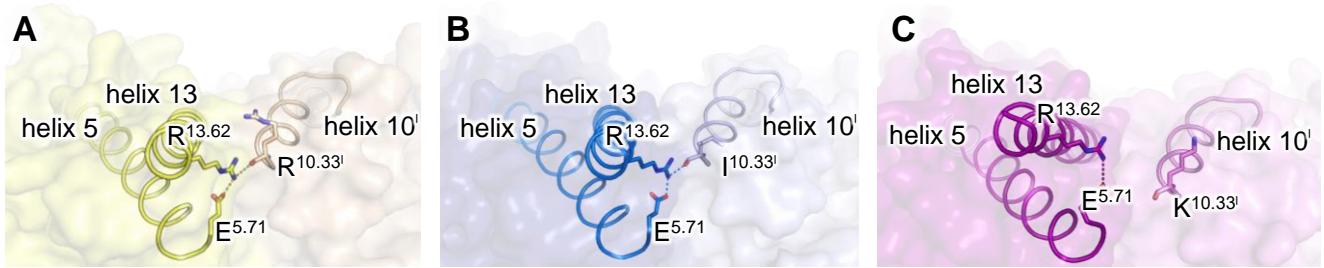






1253 All data needed to evaluate the conclusions in the paper are presented here. Additional data
1254 related to this paper may be requested from the authors. The atomic coordinates and
1255 structure factors of the *PaPPase*:Mg₅IDP complex (PDB ID: 8B37) and the grouped/combined
1256 time-resolved *TmPPase* structures at 0-60-seconds (PDB ID: 8B21), 300-seconds (PDB ID:

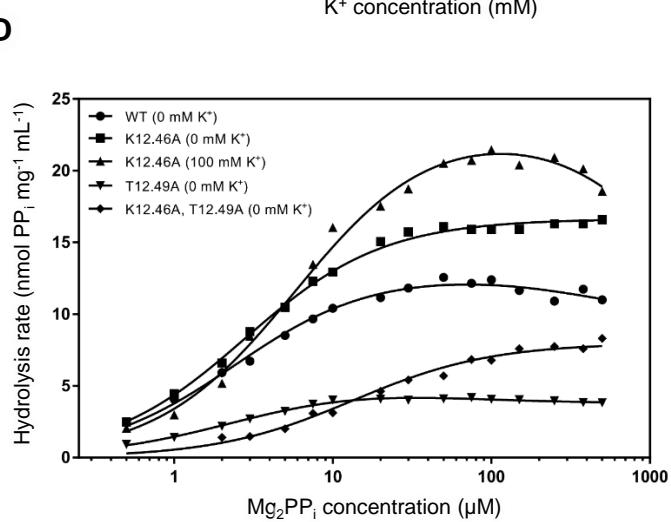
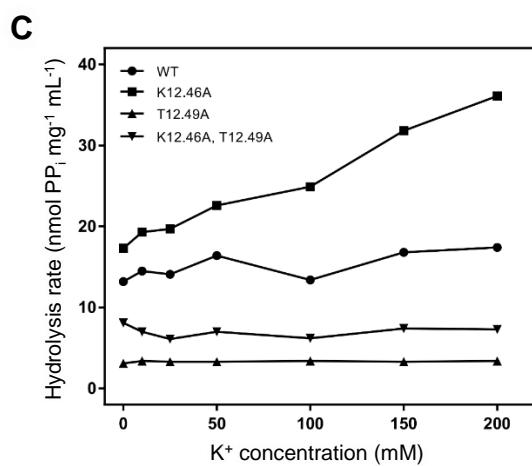
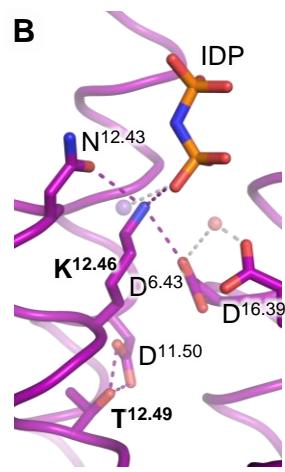
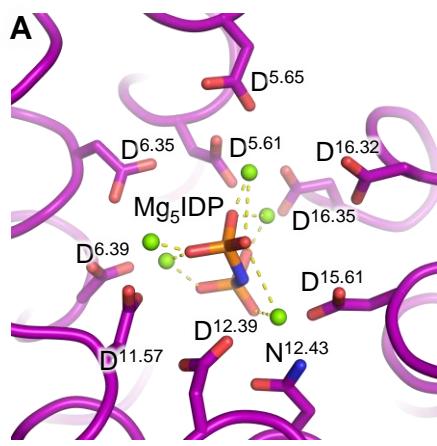

1257 8B22), 600-seconds (PDB ID: 8B23) and 3600-seconds (PDB ID: 8B24) have been deposited in
1258 the PDB, www.rcsb.org.

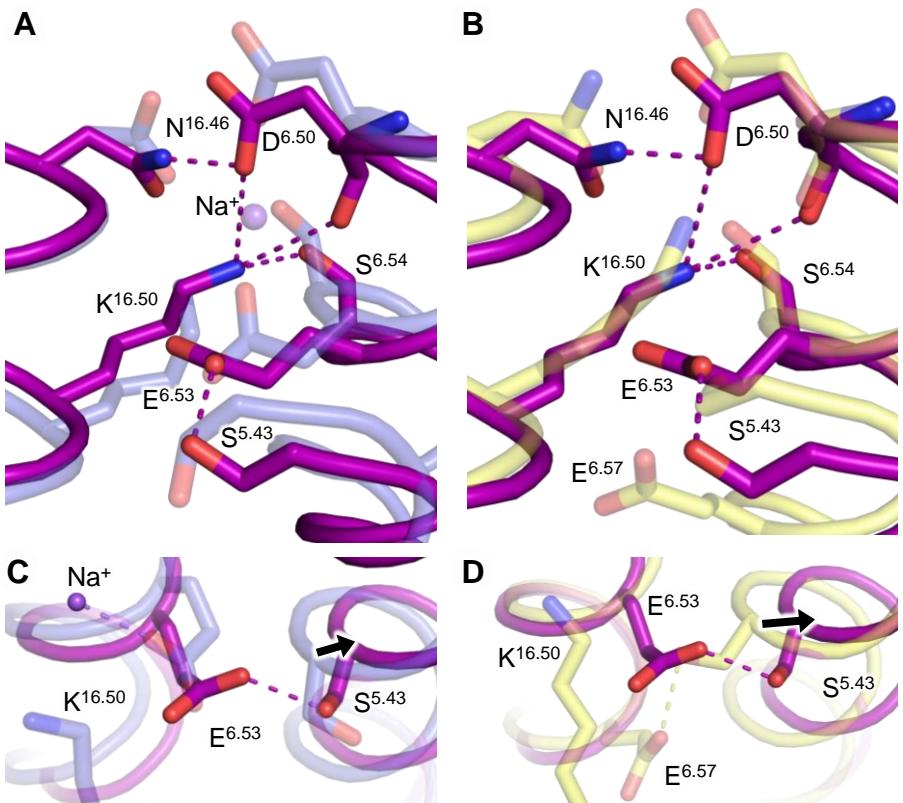



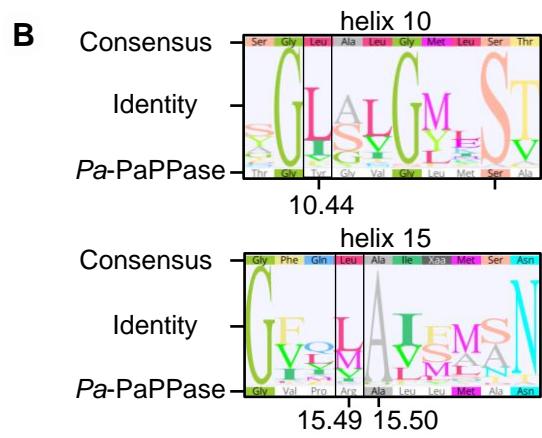

A**B****C****D****E**

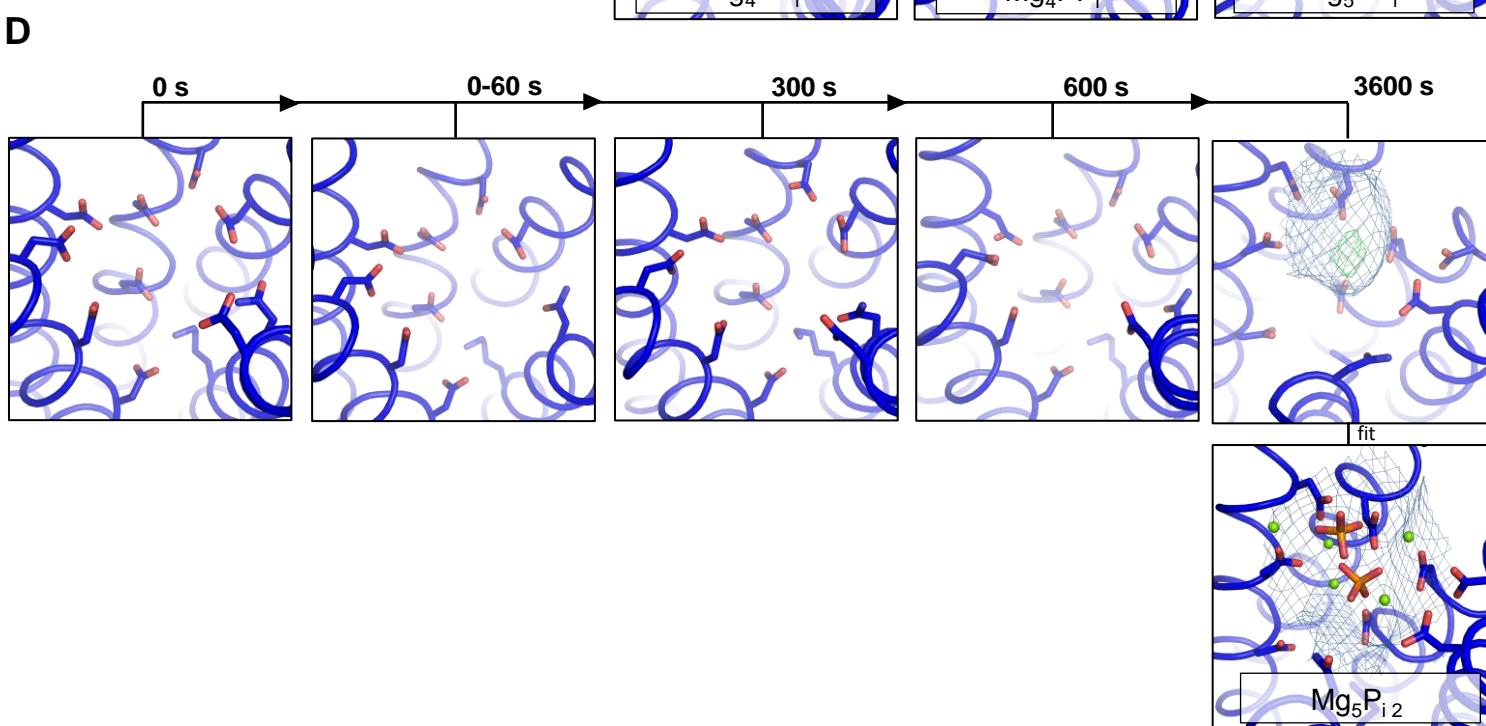
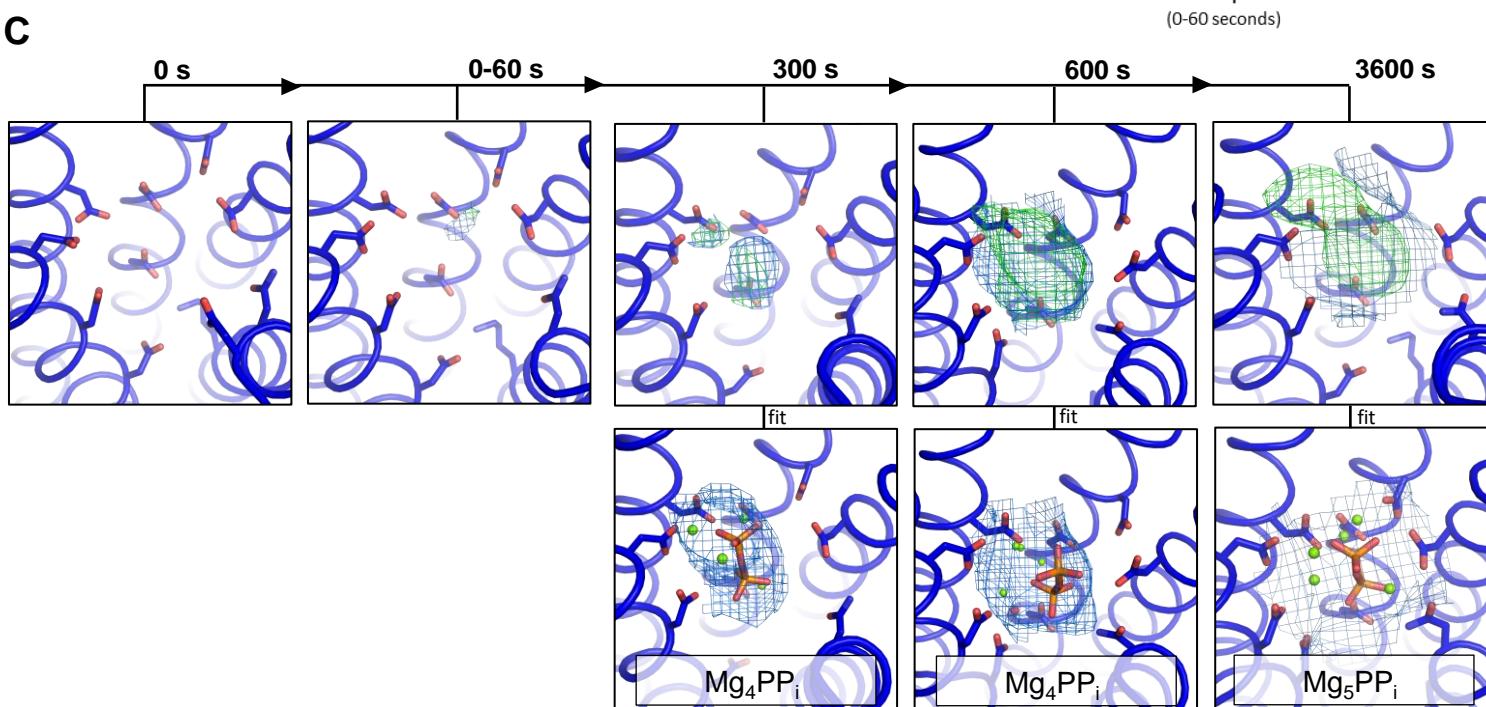
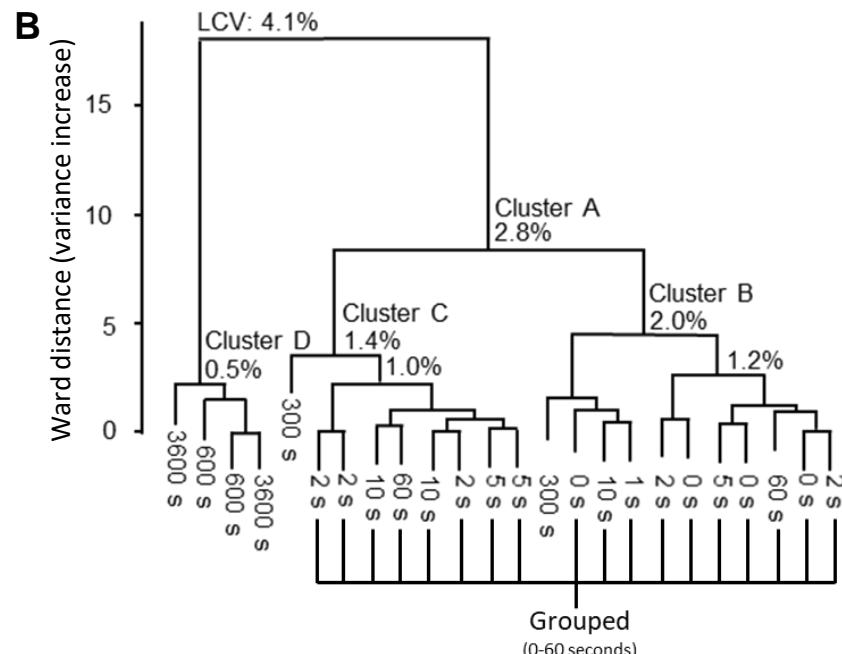
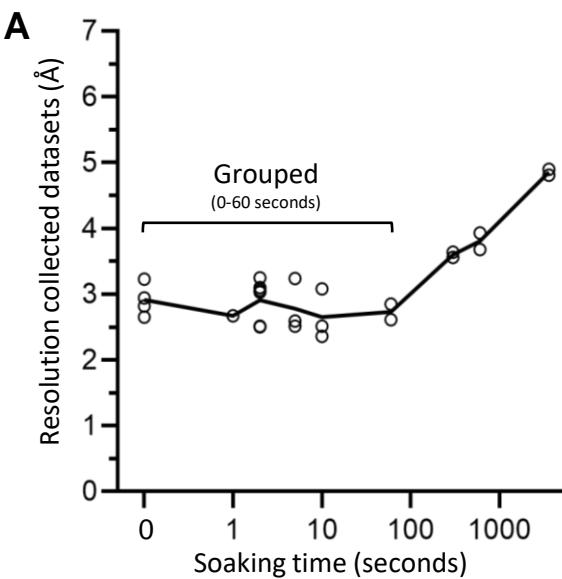





A**Active site****Ion gate****Dimer interface****B****Active site****Ion gate****Dimer interface**

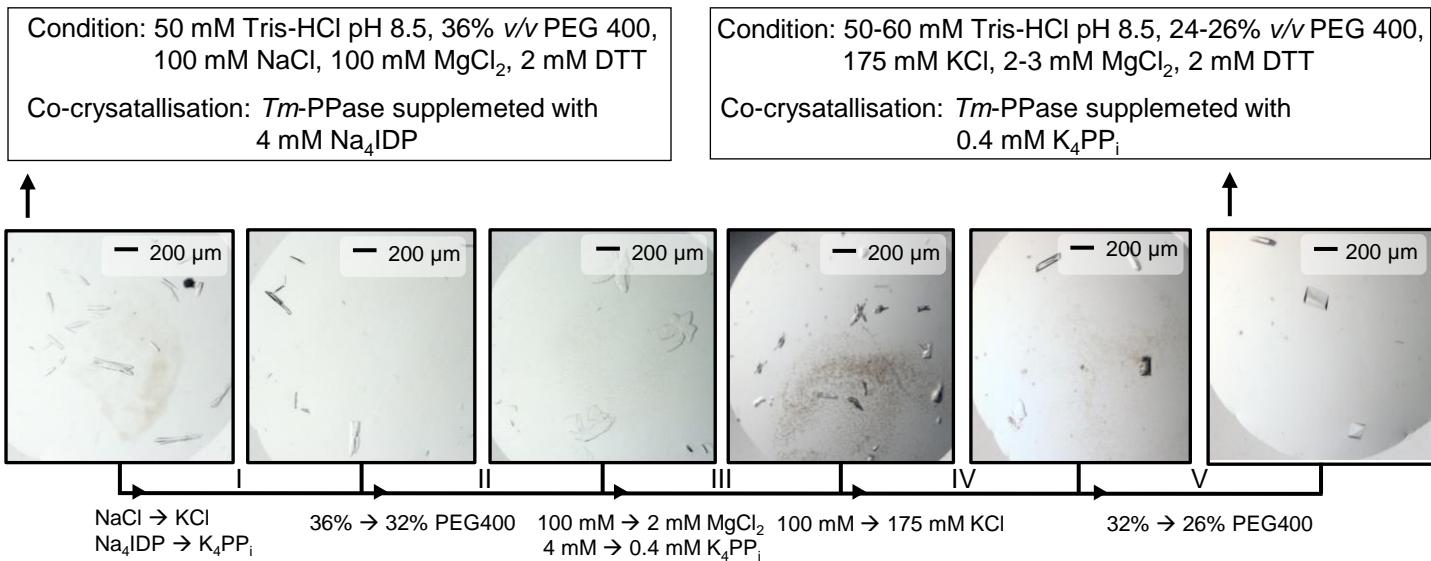
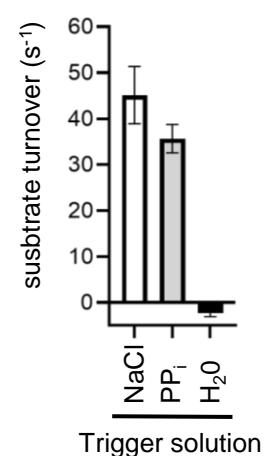
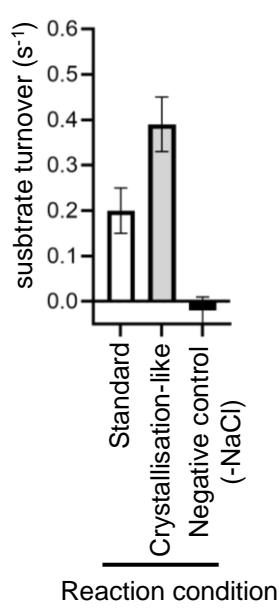
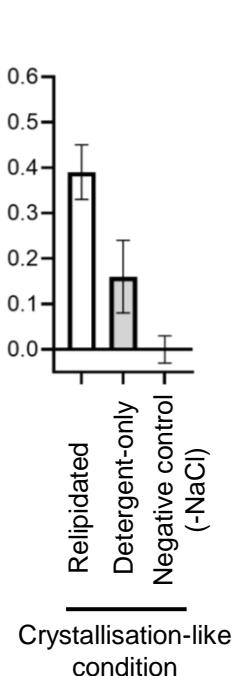


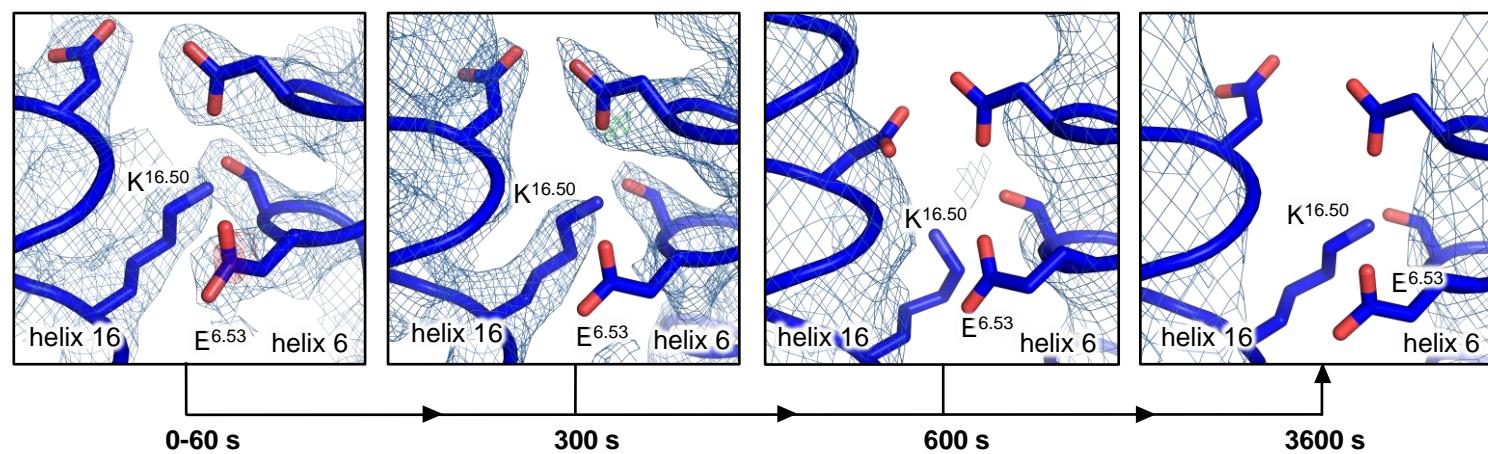




A**B**

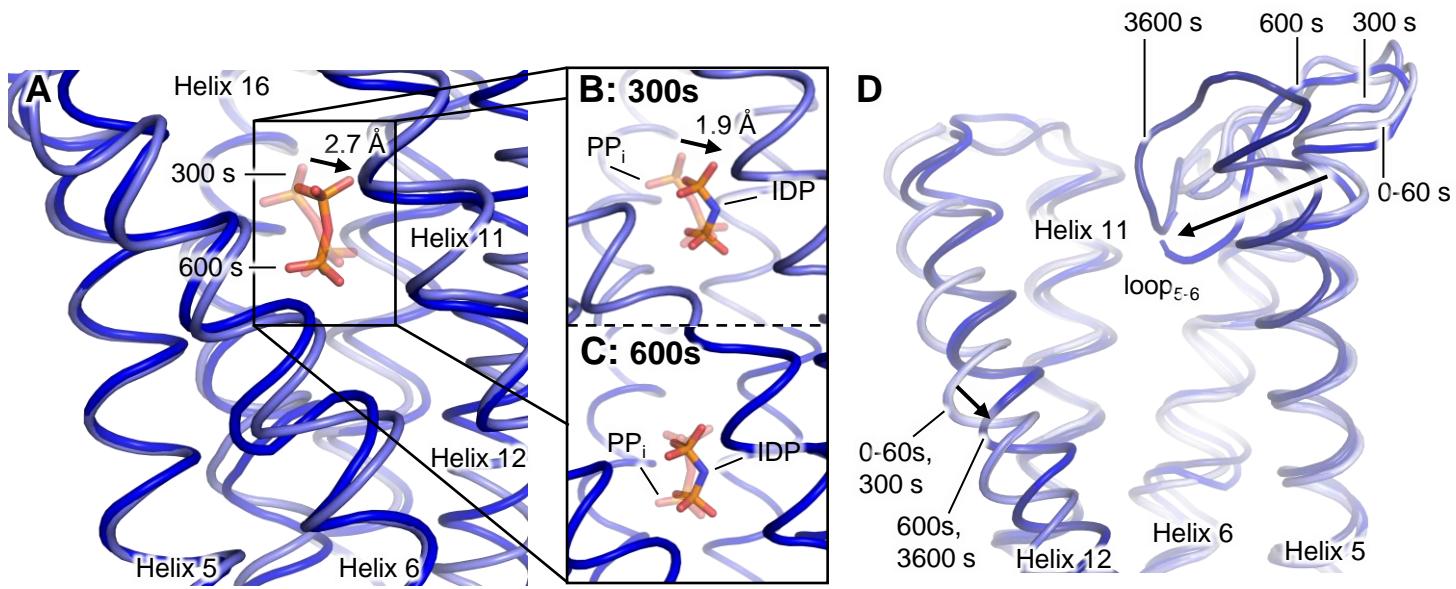

180°

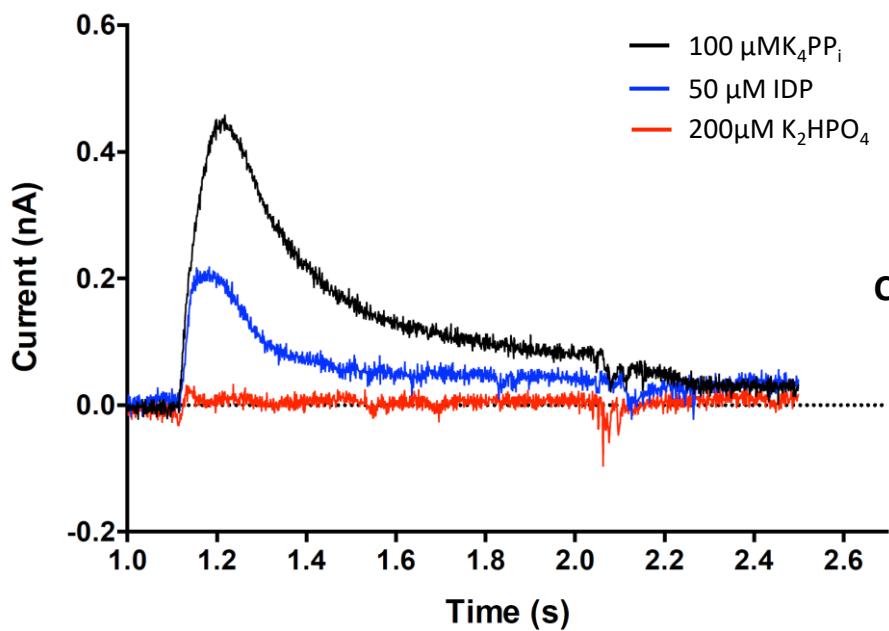
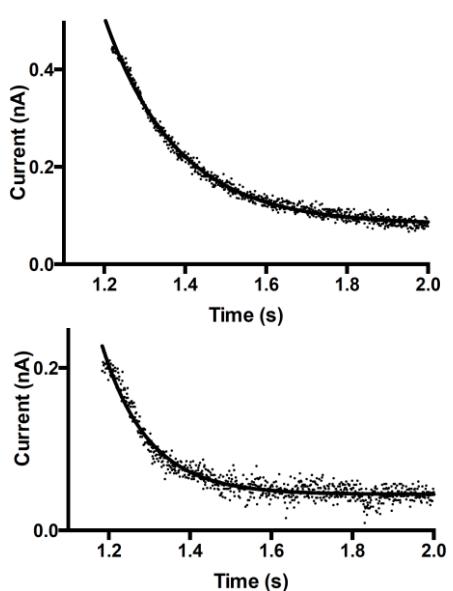
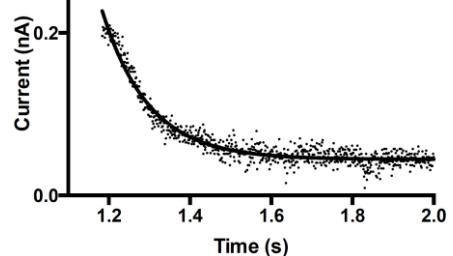


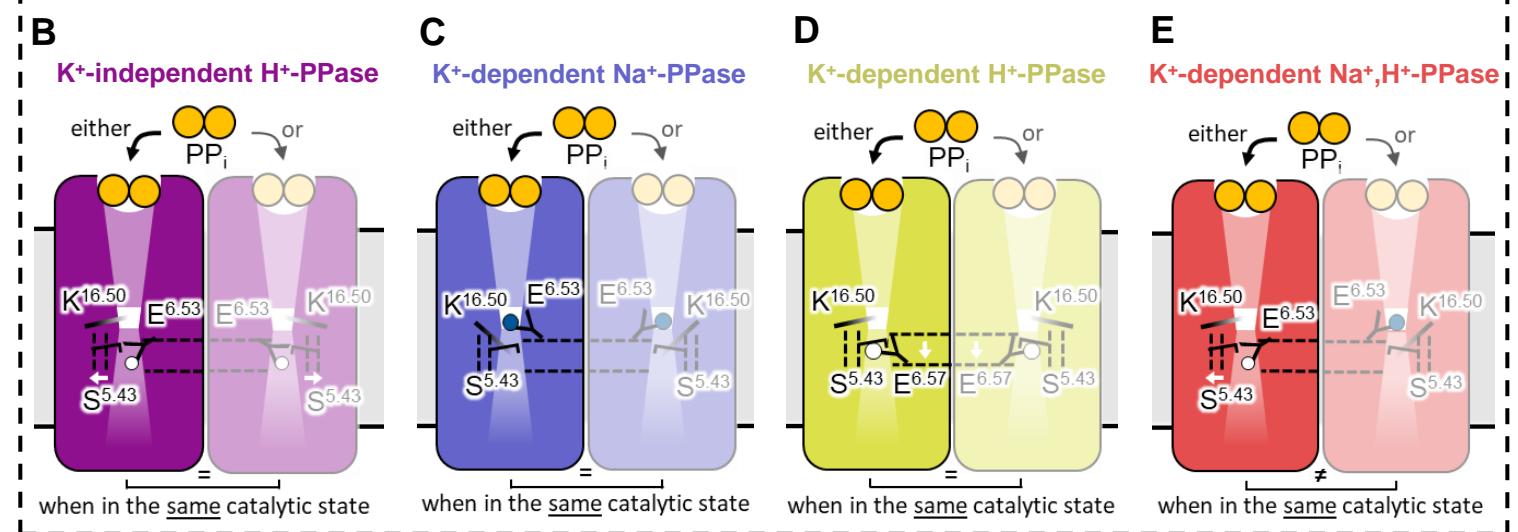
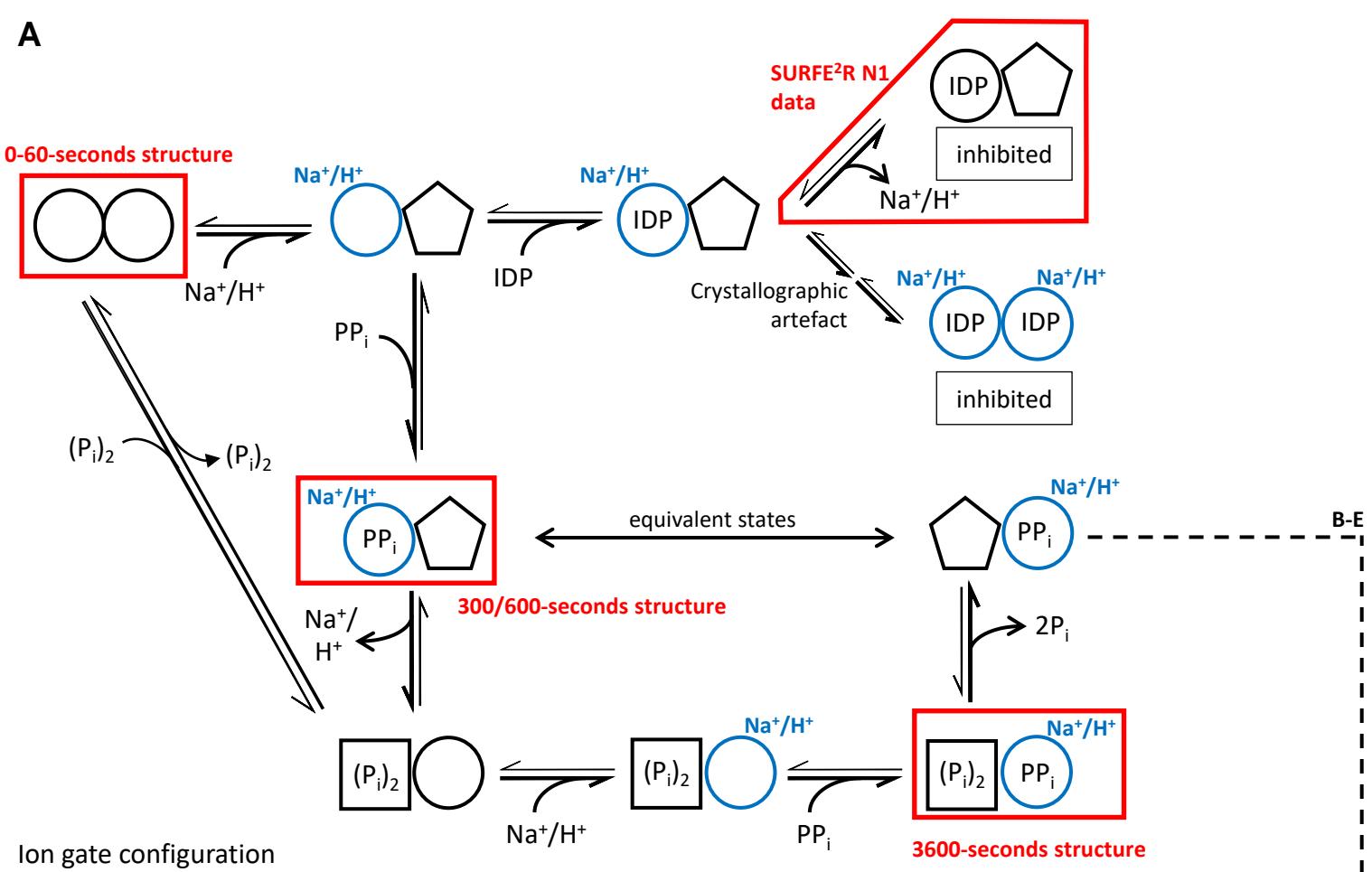




A**B****C****D****E**





A**B****C****D**

A**B****C**

Consensus	Helix 8	Loop ₈₋₉	Helix 9	Helix 10	Loop ₁₀₋₁₁	Helix 11
	760 AXFFLTYFLL	770 PDE	780 -WGIFV	860 LVSYYLA	870 -	880 GLYGIALAAVGML
Thermotoga maritima	LTAFLTYFYL	-KDLQGLDVLGFR-FGA---ISPWF		L FADYFA	-	-GLYGVIAALGML
Vigna radiata	GVAVVSVFVAL	-PTSFTIFNFQG-TQKVVVKWNQFL		FVSFTLA	-	-AMYGIAVAALGML
Arabidopsis thaliana VP1	GIAIVSVWVGL	-PGKYADLDGVTDAIAA-GKS		FVSFTLA	-	-AMYGVAVAALGML
Streptomyces coelicolor	LVAVAVFVYLPGKYADLDGVTDAIAA-GKS	-GDKPRILALV		YGAFLLLGTS	-	-IMLALFAVALAGTGL
Flavobacterium johnsoniae	ACFFLHQHML	-PETMQMSFFGEGSKAISSMRVFY		WISYALA	-	-GFYGVVALAASAMM
Rhodospirillum rubrum	GIILATAIVP	-GFGDIQGANGVLYSG---FDLFL		ITTYQLS	-	-GLFGIAITVTSML
Toxoplasma gondii	VLLLSVFFL	-PSEFLLDGQ-GTT---AWVHAAV		LVSHTLC	-	-GMYGIALAALGML
Plasmodium berghei VP1	TIFAIQGYCIL	-PPVLRYDVLK-EIP---NWKIV		GVSYIFC	-	-EVYGVLAAVGML
Plasmodium vivax VP1	AIIIVIGYFSL	-PISVKYNNLLKEIQR---WVIV		GVSYGLC	-	-DIYGYIALAAVGML
Angomonas deaneai	VLIIFITEFAL	-PPTFTINEVA-TGR---WGALT		YVSYRMC	-	-SLYGYIALALGIL
Plasmodium falciparum VP1	AIIAIGYVCF	-PSLVKYNYLKDIIHR---WVIV		GISYGLC	-	-DIYGYIALAAVGML
Leishmania donovani	VLIIFLTEVAL	-PPTFSVGGME-SSR---WGALI		YVSYRMC	-	-GVYGVFAALALGIL
Leishmania mexicana	MLILLTEVAL	-PTFNVGDMV-SSR---WGALI		YVSYRMC	-	-SVYGVFAALALGIL
Trypanosoma brucei	VLVFTIAYSL	-PDAFTVGAVE-TTK---WRAMV		YLSHHCA	-	-GLYGYIALALGIL
Trypanosoma cruzi	ALVFLTDFGL	-PDFTVGTAA-TTK---WRALV		FASYRMA	-	-DLYGFALAAALGIL
Trypanosoma rangeli	VLTFLTDLAL	-PDEFTIAVTH-TTK---WRALV		YTSYHMA	-	-DLYGFALAAALGIL
Chlorobium limicola	LSYFIIDYFL	-PASWTVDGFTYTS---LNIFL		VASHYYA	-	-GLYGIALAALGML
Plasmodium vivax VP2	GFFFIFCKML	-LSGEDSQNDYS-WI---YLSL		LASYYLGLAS	-NVTGDG---RAINGLYGTSVATMGML	
Pyrobaculum aerophilum	VLFFFIGAFTL	-GLDSTKA---LALAA		GISYMIYYT	-VPVSGFGELSKYLAGI	-FGTAMASVGLL
Moerella thermoacetaica	FLYPIISRYML	-SGPGVNF---IYFYG		LGAYWLGKSL	-GL---PGGGLYGTAVATMGML	
Arabidopsis thaliana VP2	TFFGASTRWL	-YTEQAPS-FAW---FNFA		ISAYWLGNTS	-GLVDENGIP	-PTGGLFGTAVATMGML
Plasmodium falciparum VP2	GFSFLCCLL	-SLDNAKNAW---IYFSF		LLSYYLGLKS	-NITGDH---NIIINGLYGTSVATMGML	
Bacteroides vulgatus	ATFLILWALG	-LENW---VNISF		ISYWLASGF	-DFA---NISMGLYGIGIAAVGML	
Prevotella oralis	ATFIIILYLLN	-MENW---MGLSF		MMSYLCANGF	-NMSMSAQSI	-SRGGLYGIGIAAVGML
Clostridium leptum	AAFPPLIYFGL	-GAEK---IGFYF		LVSYFLSGGS	-D---SYNNGLYGVGLS	-AVGML
Mahella australiensis	ISFFLIVWQVL	-GMEH---IGVYF		LASYFLAGGA	-G---DFNMGLYGVAIAAVGML	
Clostridium lentoellum	AAYFLVNVNL	-GOEH---VGIFY		IASYLLAGGA	-D---NFMGGLYGIAISAVGML	
Clostridium phytofermentans	ASYFVVIKILL	-PDH---MGLYV		LVSYYATGGV	-N---DFNIGLYGIGL	-SAVGML
Intestinimonas butyriciproducens	VAAPLTYTIV	-GN---WGVV		LISYFAAGGSL	-NVVDASGLFTAEFNKG	-YGIAGVGM
Lachnoclostridium phytofermentans	ASYFVVIKILL	-PDH---MGLYV		LISYYATGGV	-N---DFNIGLYGIGL	-SAVGML
Hungatella hathewayi	GAYVIIIRLLL	-PEH---IGIYA		MLAFCGAGGF	-GSEAS-SFSQGLYGI	-ALASVGM
Brachyspira hampsonii	VSFLLVKALL	-PNN---LGLFV		MLAFCGAGGF	-GAEAS-SFSQGLYGI	-ALASVGM
Brachyspira mурdochii	VSFLLVKALL	-PNN---LGLFV		VLAYGLASG	-DWHFTGAEMS	-KGLYGI
Akkermansia muciniphila	ASAFLQLIG	-LDNW---AGIWG		IASFGFAGGF	-D---NFAEGVY	-GIGFAAVGML
Cytophaga fermentans	AIAGMA---	-ALDWIT---WGIFG		IASYLLASGF	-DFN---NVGMGLY	-GIGIAAVGML
Bacteroides fragilis	ATFFILWLLQ	-LDNW---MWI		LVSYFIVGGS	-ADPGTGLYGI	-AASVAML
Methanoscincina maezi VP2	AFYYITGFLM	-GDS---RFFY		LVSFFVMGGG	-SNAMVGLYGI	-SLAAVGML
Clostridium tetani	SAAILSNTIF	-GN---LKAFF		MVGYWAA	-	-GFYGI
Carboxydothermus hydrogenoformans	FTYIIIAQYVF	-GSEWA---PKIFI		IVAYNVA	-	-DVYGI
Dehalogenimonas butyriciproducens	FAFASVSLLG	-AD---IGVFW		YIAFQLA	-	-GLYGI
Methanoscincina maezi VP1	ASYVVTGHLL	-GGY---LNVFF		LVANYFA	-	-GLYGI
Desulfuromonas acetoxidans	ASMFIIILIMG	-LS---FGVFL				