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Abstract 16 

A central goal of cognitive neuroscience is to build computational models that predict and explain 17 

neural responses to sensory inputs in the cortex. Recent studies attempt to borrow the 18 

representation power of deep neural networks (DNN) to predict the brain response and suggest a 19 

correspondence between artificial and biological neural networks in their feature representations. 20 

However, each DNN instance is often specified for certain computer vision tasks which may not 21 

lead to optimal brain correspondence. On the other hand, these voxel-wise encoding models focus 22 

on predicting single voxels independently, while brain activity often demonstrates rich and 23 

dynamic structures at the population and network levels during cognitive tasks. These two 24 

important properties suggest that we can improve the prevalent voxel-wise encoding models by 25 

integrating features from DNN models and by integrating cortical network information into the 26 

models. In this work, we propose a new unified framework that addresses these two aspects 27 

through DNN feature-level ensemble learning and brain atlas-level model integration. Our 28 

proposed approach leads to superior performance over previous DNN-based encoding models in 29 

predicting whole-brain neural activity during naturalistic video perception. Furthermore, our 30 

unified framework also facilitates the investigation of the brain’s neural representation mechanism 31 

by accurately predicting the neural response corresponding to complex visual concepts.  32 

33 
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Introduction 1 

A central goal of computational cognitive neuroscience is to build models that explain how the 2 

brain perceives sensory information1. An ideal computational model of sensory perception would 3 

be able to both perform the sensory perception task behaviorally and explain the underlying 4 

neural basis during the perception process2–6. This implies two critical goals: to model and 5 

predict neural activity in the brain with high accuracy and to achieve human-level performance 6 

behaviorally. Previous efforts diverge along these two routines. Most studies in visual and 7 

auditory neuroscience focus on analyzing how different levels of sensory information are 8 

represented in the cortical network and link these neural coding to perceptual behavior.4,7–15 9 

These hypothesis-driven works succeeded in interpreting neural coding and identifying the 10 

neural basis of behavioral properties. However, due to the limitation of linear models and the ad-11 

hoc choices of features used in these models, these hypothesis-driven methods often fall short in 12 

predicting neural activity with high accuracy. Furthermore, these empirical results cannot be 13 

directly turned into computational agents that perform such perception tasks thus lack high-level 14 

behavioral descriptions. On the other hand, cognitive models, particularly connectionist models, 15 

are designed to mimic human sensory perceptual behavior and perform the same tasks as 16 

humans.16,17 It is not until the surge of deep neural networks over the past decade that these 17 

models finally approach and surpass the human level in many sensory cognition tasks.18,19 As 18 

opposite to the neural coding studies, these artificial neural network (DNN) models excel in 19 

computational tasks, but it remains unclear whether and to what extent they reflect the same 20 

underlying representation and computations as the neural system.  21 

The recent advance in DNN models inspires new efforts that combine computational models 22 

with neural coding models.5,20–24 Specifically, these powerful pretrained networks are employed 23 

to build unit/voxel-wise prediction models in the cortex. These models fit an encoder from the 24 

external stimulus to the brain signal and allow for the investigation of representation and 25 

computations in large-scale neural circuits through the correlations between artificial neural 26 

layers and brain regions. These DNN models have already been optimized for performing 27 

corresponding cognitive tasks. As a prediction model, the main goal is to achieve high neural 28 

prediction accuracy in order to facilitate further analyses of the underlying coding and 29 

computation mechanisms.2,6  30 

Previous studies using voxel-wise encoding models have shown that, compared to theory-driven 31 

heuristic models, DNN models can predict neural responses with regard to static images and 32 

sounds in different ROIs within sensory cortex with higher accuracy.5,21,22,25 Some recent studies 33 

have also demonstrated that these approaches can be extended to naturalistic stimuli, such as 34 

movies and speech.23,24,26,27 However, two important challenges have limited the prediction 35 

performance of these models. First, the brain is an interconnected network with different areas 36 

dynamically reconfigured and involved in different modules during cognitive tasks,28–32 while 37 

the prevalent voxel-wise encoding models treat each voxel static and independently. Second, by 38 
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using pretrained task optimized DNN models, it is often assumed that there is a single optimal 1 

set of representation features aligned with a specific neural population along the network 2 

hierarchy.6,22 However, the feature representations are mainly driven by training objectives and 3 

enforcing a one-to-one correspondence may not be optimal. These two factors have significantly 4 

limited the performance of the current DNN-based models. Even the state-of-the-art DNN-based 5 

models can only explain ~50% of the total variance driven by the input stimuli.6 Therefore, 6 

pushing the model prediction performance towards the upper limit is an urgent demand for such 7 

prediction models. 8 

To get high encoding prediction accuracy via addressing these two issues, we focus on two sides 9 

of the encoding models. On the targeting neural activity side, it is often overlooked in the 10 

previous studies that both the stimulus-driven and the spontaneous parts of the neural activity 11 

show strong correlating structure at local and network levels.33–36 Thus we ask if we could 12 

incorporate correlated activity into the model by harnessing local and network local level 13 

structures in the neural activity to facilitate accurate neural encoding prediction. On the stimulus 14 

side, existing literature usually extracts feature representations from the stimuli by picking the 15 

optimal feature representation from a candidate model pool using model-selection 16 

procedures.21,25 However, the brain is a linked system where stimuli usually activate a broad 17 

network of cortical areas across the whole brain9,37, suggesting that the representation may be an 18 

integration of multi-level features rather than driven by a dominating mode. Moreover, an 19 

artificial neural network is not designed for replicating the brain topology thus different levels of 20 

feature extraction within the same model may also align to different neural populations.38 Thus 21 

we ask if we can push the capability of the encoding model towards the ceiling by enriching the 22 

feature representations to an integration on multiple levels over multiple regions in modeling the 23 

neural responses to naturalistic stimuli.   24 

Following this prediction-center principle, we identify three pairs of principles in neuroscience 25 

that could benefit the prediction from the machine learning perspective and validate the efficacy 26 

based on three levels of corresponding hypotheses. First, the neural activity of the brain is 27 

reflected in functional modules that are related but not overlapped with the underlying anatomy. 28 

Voxels that are not clustered spatially may also correlated through functional networks and 29 

shared both stimulus-driven and non-stimulus endogenous activity.35 Thus we hypothesize that 30 

the function-induced cluster-based encoding model provides complementary prediction power to 31 

the anatomy-induced model. Second, a brain region may participate in multiple perception 32 

processes that could be better captured by different computational models.39 Thus we 33 

hypothesize that integrating stimulus-derived features from different processing levels within 34 

each model will improve neural encoding accuracy. Thirdly, a brain region may reconfigure its 35 

role across multiple perception processes reflected in the form of different modularized 36 

structures.31 Thus we hypothesize that there exists heterogeneity in model performance across 37 

different ways of ROI clustering, and integrating these different atlases further improves model 38 

performance.  39 
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Moreover, we demonstrate the efficacy of the prediction-centered model from two applying 1 

views. Since the encoding weights identify an artificial neural network, we show that it serves as 2 

a novel metric that reveals functional organizations of voxels that deviate from the pure 3 

anatomically defined ROIs. Further, based on the representation similarity scores, we show that 4 

our more accurate prediction model actually results in a more similar representation with the 5 

brain regarding visual motion. Our approach promotes insight into why we should focus on 6 

prediction in building future encoding models.  7 

 8 

Results 9 

In this study, brain activity was recorded using functional magnetic resonance imaging (fMRI) 10 

when 10 subjects passively viewed 1102 naturalistic video clips. We focus on predicting the 11 

brain response from the corresponding video stimuli.40 We adopt the general voxel-wise neural 12 

encoding framework that has been widely used in the literature.41–43 In particular, DNN models 13 

are used to extract feature representations from each individual video stimulus. Another multi-14 

layer perceptron (MLP) network is trained to predict brain activation in each individual voxel 15 

regarding each stimulus, using the extracted features from the DNN models.  16 

 17 

To do this, we developed an iterative integration approach. As demonstrated in Figure 1, our 18 

model consists of two parts of integrations: the feature-level integration and the atlas-level 19 

integration. First, features of the input stimuli were extracted via feature-level integration that 20 

ensembles features from different layers of DNN models under multiple optimization parameters 21 

(Fig. 1a). Second, atlas-level integration was performed to combine encoding models based on 22 

multiple functional and anatomical atlases (Fig. 1d). Different functional atlases were 23 

constructed based on task-optimized parcellations using encoding model weights from voxel-24 

wise encoders (Fig. 1b). These functional atlases grouped voxels with similar representation 25 

properties together (Fig. 1c). We demonstrate the two parts of integrations and evaluate the 26 

performance of the overall model in the following sections.  27 
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 1 

Figure 1: Overview of the feature-level and atlas-level integration framework. a) Overview 2 

of voxel-wise encoding model framework. We feed input videos to a pre-trained deep neural 3 

network feature extractor and take intermediate layers to a multiple-layer perceptron to predict 4 

voxel-wise whole brain response captured by fMRI. The whole model is trained end-to-end with 5 

all parameters tunable. The last layer, with voxel activations as output, can be interpreted as 6 

linear regression with weights denoted as 𝑊𝐿. All the voxels share parameters except for the last 7 

linear regression. b) Overview of the feature level integration: we trained models separately 8 

while taking different intermediate layers and read-out pooling sizes, denoted as Y. Then we 9 

optimized an offline linear combination of their outputs with the linear weights denoted as 𝜂. The 10 

arrows indicate the gradient flow, and there is no gradient from the combined output to the input 11 

video. c) Functional clustering based on voxel-wise encoding weights: regression weights WL are 12 

weighted by the linear combination 𝜂. The concatenated regression weights 𝑊∗𝐿  are then used as 13 
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voxel embeddings for clustering. d) Atlas-level integration: each model is trained with voxels 1 

from the same ROI as output, while each atlas contains several ROIs. On different atlases, we 2 

combined the model outputs on their ROI-intersection (overlap of red and purple bars). e) Best 3 

model prediction score were plotted on the whole cortical surface, normalized to noise-ceiling.  4 

 5 

 6 

 7 
Figure 2. Feature-level integration improves brain prediction performance. a) Averaged 8 

brain prediction performance (explained variance) for each individual model. Blue bars: models 9 

trained with only one intermediate layer and one pooling size. Orange bar: concatenation model 10 

with a naive concatenation of all the input features for blue bar models. Red bar: integrated 11 

model that integrates the outputs of blue bar models.  b) Cortical mapping of the performance 12 

difference between the integration model and the naive concatenation model, scores are noise-13 

normalized. 14 

 15 

Feature-level integration. The prevalent practice for training a DNN-based voxel-wise 16 

encoding model depends on the strategy of choosing the best feature space with the highest 17 

prediction score,6 or concatenating features from multiple intermediate layers.24 We challenge 18 

these strategies both from neuroscience and deep neural network perspectives. Instead of these 19 

rather heuristic feature-selection strategies, we propose a systematic way of feature-integration 20 

via ensemble learning. On the one hand, there may not exist a one-to-one matching between the 21 

DNN feature layers and different neural populations, and one specific neural population may be 22 

involved in multiple different levels of information processing spanning over a set of features 23 

across the DNN hierarchy.38 On the other hand, the convergence speed varies when using 24 

intermediate layers and pooling sizes. For example, STS prediction model using high-level DNN 25 

features converges two times faster than lower-level DNN features (see Supplementary Table S4 26 

for more details), and a prediction model using smaller size pooling features converges faster 27 

than features with larger pooling size. As a result, a different subset of features may converge to 28 

their corresponding optimum at different rates for the same ROI; and the same subset of features 29 

may also converge at different rates for different ROIs. Therefore, a single-layer model with a 30 

naive concatenating strategy may suffer from the issue of desynchronization for the learned 31 

dynamics, and a single model would overfit one ROI and underfit another ROI simultaneously. 32 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 7, 2022. ; https://doi.org/10.1101/2022.11.06.515387doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.06.515387
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 
7 

To address this issue, we propose that integrating the features across multiple layers with 1 

separate optimizations under multiple atlases will improve the prediction accuracy over adopting 2 

a single concatenation model.  3 

 4 

To test this hypothesis, we implemented the proposed layer-level integration model and 5 

compared the model performance against baseline models including concatenation model and 6 

single layer encoding models. Specifically, we took a state-of-the-art visual model, the Swin-7 

Transformer model.44 We first trained separate encoding models using every intermediate layer 8 

of the DNN. These models were optimized end-to-end separately and their backbone 9 

Transformer parameters were not fixed. Then we ensembled the outputs of all models through a 10 

weighted summation (Fig. 1b), and the ensemble was weighted and optimized using the 11 

differential evolution algorithm to maximize the ROI-averaged validation score. This layer-level 12 

ensemble model achieved mean 𝑅2 = 0.425 on the validation set (Fig. 2a). As a comparison, our 13 

full ensemble model dominated the best single-layer model (mean 𝑅2 = 0.397) with paired 14 

𝑡(161325) = 15.7, 𝑝 = 2.21e-55 and the all-layer-concatenation model (mean 𝑅2 = 0.376) with 15 

paired 𝑡(161325) = 27.4, 𝑝 = 3.38e-165 under the two-sided two-sample t-test. The significantly 16 

improved explained variance of the layer-level integration model over the fully concatenated 17 

model indicates the existence of desynchronization in encoding models across layers and 18 

suggests the necessity of integrating multi-layer features under various optimization parameters 19 

rather than relying on a single model.  20 

 21 

Furthermore, it is worth pointing out that our model was robust and the results generalized to 22 

additional testing sets as well (Fig. 2a). In addition, our Swin-Transformer-based encoding 23 

model also outperformed other ensemble models using other architectures, such as 3D ResNet 24 

(see Supplement Table S1).  25 

 26 

Figure 3 Hierarchical task-optimized ROI (htROI) atlas defined by brain encoding model 27 

weights. a) Task-optimized ROI atlas based on hierarchical clustering. Each color represents an 28 

ROI, corresponding to the colored column in b). b) Hierarchical clustering: voxels are first 29 

clustered by K-means clustering. Vertical and horizontal black lines in the similarity matrix 30 
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indicate clusters by K-means, each pixel is a voxel pair. An additional hierarchical clustering is 1 

performed on K-means cluster centroids, and the final clusters are identified by cutting the 2 

dendrogram.  3 

 4 

Constructing hierarchical task-optimized ROI (htROI) atlas. In the previous section, we 5 

built a voxel-wise encoding model that integrates DNN representation features across different 6 

spatiotemporal scales. The model weights of the encoding model reflected the task-driven 7 

functional receptive properties of each individual voxel. To fully exploit the functional structure 8 

in the neural activity across the cortex, we next constructed a hierarchical task-optimized atlas 9 

(htROI) based on these voxel-wise functional encoding model weights. Specifically, different 10 

voxels shared the same parameter in the encoding model except for the last linear layer (Fig. 3a). 11 

We concatenated the weights of the last linear layers from multiple models into a vector and used 12 

it as the feature vector for each voxel, reflecting task-optimized functional receptive properties. 13 

Next, we performed hierarchical clustering45 to divide the whole brain into 6 modules (Fig. 3b), 14 

including an early visual cluster that mainly covered V1, V2, V3, and V4, a higher-level visual 15 

cluster that includes part of the lateral occipital complex (LOC), fusiform gyrus and posterior 16 

superior temporal cortex, and a somatosensory cluster that includes the post-central sulcus (Fig. 17 

3a).   18 

 19 

 20 
 21 

Figure 4 Atlas-level integration further improves brain prediction performance. a) 22 

Averaged brain prediction performance over the whole brain (explained variance) for models 23 

using different brain atlas partitions (aROI - anatomical ROI partition, htROI - hierarchical task-24 

optimized ROI, wbROI - whole brain). b) Cortical mapping of different atlas-based models. Left 25 

panel: constituent contribution measured by the gain in prediction score when adding each atlas 26 

model. Right panel: ensemble weight shows the contribution from a specific atlas model in each 27 

voxel from a complete ensemble including all atlas models.  28 
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 1 

Atlas-level model integration. After building the task-optimized functional atlas, we next 2 

integrated voxel-wise encoding models trained on both functional and anatomical atlases to build 3 

the final integrated encoding model. Considering the optimization of representation homogeneity 4 

within each region, we constructed the prediction model for the voxels in each region separately. 5 

We applied the SwinTransformer infrastructure as the backbone and train the prediction model 6 

with shared parameters except for the last linear layers. The final voxel-wise neural prediction 7 

was a weighted sum of model prediction from all integrated models based on different atlases. 8 

 9 

Here we validate whether incorporating brain atlas information into the encoding model would 10 

benefit the brain prediction performance, compared to treating whole brain as a homogeneous 11 

predicting target. Furthermore, as a functional brain atlas, htROI reflects the functional 12 

organization of the voxels, and including htROI in the final integrated model provides additional 13 

encoding information that facilitates the brain activity prediction, compared to anatomical-based 14 

atlas. To test these hypotheses, we examined our final integrated model performance and 15 

compared it against models trained on anatomical atlases only. Specifically, we adopted three 16 

atlases that parcellate cortex into different ROIs: the proposed hierarchical task-optimized ROI 17 

(htROI), the anatomical ROI (aROI), and the whole-brain ROI (wbROI) that takes the whole 18 

brain as a single ROI. The model integrating all three atlases together achieved the best 19 

performance on both the validation and test datasets (Fig. 4a, 𝑅2  = 0.4686 on the validation set, 20 

𝑅2 = 0.3918 on the test set).  21 

 22 

To further examine whether the integration is necessary, we performed two levels of ablation 23 

study. First, we took the wbROI which obtained 𝑅2 = 0.4259 on the validation set and 𝑅2 = 24 

0.3715 on test set as the baseline. Both the htROI and aROI outperformed whROI. The aROI 25 

obtained 𝑅2=0.4383 and paired 𝑡(161325) = 6.8, 𝑝 = 1.16e-11 when compared to wbROI under 26 

the two-sided two-sample t-test, as well as 𝑅2 = 0.3775 on the test set. The htROI obtained 27 

𝑅2=0.4497 and paired  𝑡(161325) = 13.1, 𝑝 = 3.21e-39 when compared to wbROI under the two-28 

sided two-sample t-test, as well as 𝑅2 = 0.3755 on the test set. This confirms that incorporating 29 

the network module information would contribute to the prediction model. Next, we examined 30 

whether the combination of htROI and aROI outperformed each of them separately. The 31 

combination of htROI and aROI (i.e., htROI + aROI in Fig. 4a) achieved 𝑅2 = 0.4667 and 𝑅2 = 32 

0.3902 on the test set. For the comparison, it had paired 𝑡(161325) = 9.2, 𝑝 =3.26e-20 when 33 

compared to htROI and 𝑡(161325) = 15.4, 𝑝 =1.43e-53 when compared to aROI under the two-34 

sided two-sample t-test. This supports the claim that the anatomical and functional atlases 35 

contain complementary information to each other and the prediction model benefits from 36 

integrating over both atlases.  A possible explanation here is that the htROI is designed to 37 

maximize the representation similarity in signals of voxels within the same cluster while the 38 

aROI provides prior information of module location. Indeed, the improvement of combination 39 
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over htROI is mainly located on the visual cortex while the improvement over aROI is broadly 1 

distributed over the whole brain (Fig. 4b).  2 

 3 

 4 

 5 

 6 

 7 
Figure 5: Representation similarity analysis and motion correlation analysis using the 8 

proposed integrated encoding model. a) Schematic for computing RSA score. We first 9 

compute the representation dissimilarity matrix (RDM) in the stimulus space, then compute the 10 

similarity score as the Pearson’s correlation coefficient between RDMs from model prediction 11 

and from real fMRI signal. b) Schematic for computing motion-correlation score. We estimate 12 

the motion index as a scalar value for each video by summing all of its optical flow vector 13 

magnitudes. The motion-correlation score is calculated by correlating each voxel’s activation to 14 

this motion scalar across videos. Finally compare the similarity of motion-correlation score from 15 

model prediction and from real fMRI across all voxels. c) The correlation between RSA and 16 

motion-correlation scores and the brain prediction score of each model (explained variance). 17 

Each point is a model with a specific layer-pooling configuration. d) Top: motion-correlation for 18 

each voxel in the integrated prediction model (left) and real fMRI signal (right). Bottom: local 19 

similarity between the prediction model and real fMRI, estimated as the spatial correlation within 20 

the 3 × 3 × 3 sliding window. 21 

 22 
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Improvement of conceptual representation through more accurate prediction models. In 1 

the previous sections, we built a more accurate model by applying deep neural network models 2 

with brain network modularization. The ultimate goal of such models is to better understand 3 

neural coding in the brain. Here we demonstrate that with this more accurate voxel-wise 4 

prediction model we can better characterize the encoding patterns of image features across the 5 

cortex.  6 

 7 

Representational geometry of neural populations has been widely studied in neuroimaging to 8 

understand the neural coding of sensory information and cognitive processes.46,47 9 

Representational similarity analysis (RSA) has become one of the standard methods to compare 10 

representations across spaces and to test cognitive and computational theories.46 We first 11 

analyzed the representation geometry in the predicted activity and the actual BOLD signal using 12 

RSA. For each model configuration, we computed the representational dissimilarity matrices 13 

(RDMs) of all video stimuli using the model prediction and the actual observed brain responses 14 

correspondingly. We then computed a representational similarity score as Pearson’s correlation 15 

between the RDMs for the predicted activity of the chosen model and the actual observed brain 16 

response. We found that the representational similarity score is strongly correlated with the 17 

model’s prediction performance (r = 0.96, p = 3.7e-104) and our proposed model achieved both 18 

the highest representational similarity score (𝜌 = 0.4501) as well as the prediction performance 19 

(explained variance R2=0.4686). This indicates that more accurate prediction models also 20 

demonstrate more similarity in terms of representational geometry of visual stimuli across the 21 

broad visual network in the cortex (Fig. 4).  22 

 23 

We next evaluated how our proposed model characterized motion-specific coding in the cortex, 24 

which is crucial for analyzing naturalistic video processing. To do this, we defined the motion 25 

index in each individual stimulus as the sum of the optical flow vectors’ magnitude. To quantify 26 

the neural encoding of motion information, we computed the voxel-wise motion representational 27 

similarity, which was Pearson’s correlation between the predicted or actual brain response and 28 

the motion index. We found that the prediction accuracy (explained variance) was positively 29 

correlated to the motion representational similarity of the predicted neural activity (r = 0.68, p = 30 

1.3e-25), suggesting that our model was able to capture motion-related coding in the brain 31 

response. Furthermore, we also evaluated the consistency between the predicted and actual 32 

motion representational similarity across the cortex. We found that our model showed high 33 

motion coding consistency across a broad range of cortices, including the early visual cortex, the 34 

dorsal and ventral visual pathway, and the sensorimotor cortex. This suggests that the 35 

performance improvement is beyond simply characterizing low-level texture features in the early 36 

visual cortex, but also covers cortical areas involved in intermediate and higher-level information 37 

processing. 38 

 39 

 40 
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Discussion 1 

In this work, we introduced a systematic and data-driven framework of optimizing voxel-wise 2 

neural encoding models by integrating DNN representation features and brain network structure 3 

information through iterative ensemble learning. Two key ingredients of our proposed method 4 

are: 1) the asynchronous integration of multi-scale representation features from DNN models; 2) 5 

functional clustering based on encoding model weights, and integration of encoding models over 6 

both functional and anatomical atlases. We demonstrated that our proposed method achieved 7 

state-of-the-art performance on a large-scale dataset in predicting neural responses to naturalistic 8 

videos.    9 

The classical view of visual processing in the cortex supports a domain specific theory of neural 10 

coding in the visual cortex with the visual cortex as a hierarchical feedforward processing 11 

model.9,37,48 These models and theories assume that each cortical area is often exclusively 12 

involved in a limited set of functional processing stages and feeds the processed information 13 

forward to the next level along the hierarchy. This classical view has guided the computational 14 

modeling of the visual cortex in the same way. Previous studies often use a single layer of 15 

representation features from pretrained models for a certain ROI.21,24 It is also demonstrated that 16 

there is a coarse alignment between hierarchical layers in vision CNN and areas in the ventral 17 

visual stream.22 However, recent studies have challenged this hierarchical idea from 18 

anatomical,37 experimental39 and computational38 perspectives, and reveal non-hierarchical 19 

processing in the visual cortex. Here we demonstrate a comprehensive framework that exploits 20 

the non-hierarchical processing properties by ensembling all different layers of representation 21 

from DNN models. Using a data-driven approach, we showed that ensembling lower and higher 22 

levels of representations from the DNN hierarchy improved encoding accuracy for both the 23 

classical “early” and “late” areas. Our results suggest that both hierarchical and non-hierarchical 24 

structures exist in the visual pathway. By evaluating the contributions of different layers and 25 

components of the ensemble model, we offer a systematic way of quantifying hierarchical and 26 

non-hierarchical structures in the visual system.  27 

The idea of using an in silico optimal observer model to infer the underlying computational 28 

mechanism in a biological system can be dated back to at least Marr’s three level’s of analysis.2 29 

With the emergence of DNN in vision, DNN-based models have been widely adapted as a 30 

compositional model of the sensory system, and have shown to be powerful tools in predicting 31 

neural activity and behavior.5 With a more accurate model, we are able to approach the nonlinear 32 

coding property of neural population from a new perspective. Traditional models of single 33 

neuron/voxel in the visual system, such as receptive field49 or population receptive field 34 

models50, mostly adopt a theory-driven structural approach. These models mostly use 35 

gaussian/gabor filter banks and generalized linear models to denote receptive encoding 36 

properties in the image space.41 These previous methods are particularly tailored for more 37 
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intuitive receptive structures in early areas and have been very effective in accounting for 1 

important properties, such as retinotopic map. Our approach allows us to evaluate highly 2 

abstract, dynamic and nonlinear coding properties in intermediate and higher-level cortical 3 

areas,51 and account for multi-sensory integration in the more abstract feature embedding space 4 

facilitated by the effective ensemble of deep neural network models. These advances allow us to 5 

better characterize the neural activity across the cortex. 6 

These more accurate prediction model of the brain can also be used as a preliminary tool to 7 

define functional ROI. Our model has shown great ability to generalize across subjects. Thus, we 8 

can use such models to define functional ROI based on general naturalistic stimuli without 9 

running traditional localizer tasks, which only covers a limited set of stimuli.52 This not only 10 

saves running time, but also extends the scope of traditional localizer to a novel virtual simulated 11 

version. On the other hand, these models also provide novel approach to find optimal stimuli as 12 

localizer. Recent study has provided data-driven frameworks to identify optimal stimulus for 13 

specific neural circuits using close-loop models.53,54 Our model can be fitted into such 14 

frameworks and used as the encoder for close-loop brain modulations. In these applications, the 15 

ability to accurately predict and generalize to a broad spectrum of input space is crucial.  16 

There are a few aspects that our model can be further improved. Currently we mainly constraint 17 

the ensembled models in vision and use the ViT model as the backbone of our specific 18 

instantiation of the proposed framework. In a more generalized case, different models from a 19 

broader range of modalities can be integrated into the same framework to account for different 20 

sensory modalities, such as audition, and to test different hypotheses about neural coding in 21 

different cortical networks. Another potential future direction is to explore the generalization and 22 

transferability of our proposed approach on different subjects and stimuli as the testing set.  23 

 24 

  25 
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Methods and Materials 1 

Dataset in brief 2 

We work on the Algonauts 2021 challenge dataset. Details on data acquisition and preprocessing 3 

are provided elsewhere.40 Briefly, the dataset consists of 1102 fMRI brain responses per subject 4 

(10 subjects), 1000 for training, and 102 held out for online submission. Each stimulus is a 3-5 

second clip of daily events, participants watched the video without playing the sound. Training 6 

set videos are scanned 3 times and averaged; test set videos are scanned 10 times to estimate 7 

noise ceiling and then averaged. The dataset provides voxel masks for 9 anatomical ROIs (V1, 8 

V2, V3, V4, LOC, EBA, FFA, STS, and PPA). BOLD activation is extensively preprocessed by 9 

GLMdenoise,55 and the stimulus responses are expressed in the regression coefficients of the 10 

general linear model. Voxels are filtered by thresholding noise ceiling with 161326 voxels in 11 

total for all 10 subjects. 12 

 13 

Voxel-wise encoding model architecture 14 

 15 

The voxel-wise encoding model consists of a feature extractor (Video Swin Transformer pre-16 

trained on Something-Something V2 Dataset56), a max-pooling read-out head, and a Multi-Layer 17 

Perceptron (MLP) prediction head. The outputs is activation values for every voxel in one ROI. 18 

One interesting property of this model is that, except for the last linear layer, all the other 19 

parameters are shared among all the voxels. This can be formulated as𝑌 =  𝑓1:𝐿−1(𝑋) 𝑊𝐿, 20 

where 𝑌 ∈ 𝑅𝐵 × 𝑁 is output voxel prediction, B is the batch size, N is number of voxels, 𝑊𝐿 ∈21 

𝑅𝐷 × 𝑁 is the weight for the last layer, D is channel size, 𝑋 is the input video, and 𝑓1:𝐿−1 denotes 22 

all transformations before the second last layer. We call the parameters in 𝑓1:𝐿−1 voxel-shared 23 

parameters and 𝑊𝐿 voxel-specific parameters (Fig. 1a). 𝑊𝐿 contains all the information about an 24 

arbitrary voxel, so we use it as task-optimized voxel embeddings for clustering. 25 

 26 

Feature extractor. The deep learning feature extractor model can be formulated as a sequential 27 

transformation of input 𝑥0 given by 𝑥𝐿 = 𝛿𝐿 ∘ 𝑥𝐿−1, where 𝑥𝐿is the hidden representation at 28 

layer depth 𝐿, 𝛿𝐿 is the transformation operation. The pre-trained Video Swin Transformer 29 

model consists of 4 major blocks with descending spatial size and increasing channel size (see 30 

Table S5 for the details). 31 
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Read-out and Prediction head. We take 𝒙𝒍 and connect it to a read-out head, which consists of 1 

an adaptive max-pooling operation with output size 𝟏 × 𝒏 × 𝒏, 𝒏 ∈ {𝟏, 𝟐, 𝟑, 𝟕}. The output 2 

feature of this read-out head is denoted as  𝒖𝒍
𝒏 = 𝒑𝒐𝒐𝒍𝒊𝒏𝒈𝟏×𝒏×𝒏(𝒙𝒍). The prediction head is a 3 

multilayer perceptron (MLP), with Exponential Linear Unit (ELU) activation function on 3 4 

hidden layers, 2048 feature channels per layer. The last layer is set to be without nonlinearity, its 5 

output dimension equal to the number of voxels in the ROI.  6 

 7 

 8 

Feature-block models ensemble 9 

We train separate models on a cartesian product of all intermediate layers (𝑙) and pooling sizes 10 

(𝑛), 𝑢𝑙
𝑛 denotes extracted feature, then ensemble their output 𝑦𝑙

𝑛
 as described in Algorithm 1. 11 

These models are trained to their individual early stopping point. The ensemble is intended to be 12 

hierarchical. First, multiple pooling size models are assembled within the same layer, and then 13 

ensemble inner-loop outputs are generated. If this hierarchy is violated, the validation score will 14 

be overfit and the test score will suffer. (Supplementary Table S1). 15 

 16 

Algorithm 1. Hierarchical ensemble of separately trained feature-block models 17 

 18 

For layer 𝑙 in {1, 2, . . . }: 19 

 For pooling size 𝑛 in {1, 2, . . . }: 20 

  Load pre-trained feature extractor weights; 21 

  Random initialize prediction-head weights; 22 

  Train 𝑦𝑙
𝑛

= 𝑚𝑜𝑑𝑒𝑙𝑙,𝑛(𝑢𝑙
𝑛) 23 

 𝑦𝑙 = 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒([ 𝑦𝑙
1

, 𝑦𝑙
2

, . . . ])  # ensemble all pooling sizes 24 

𝑦 = 𝑆𝑢𝑚𝜼([ 𝑦1, 𝑦2, . . . ])  # ensemble all layers 25 

 26 

 27 

The ensemble operates on model output 𝑦 as 28 

𝑦 = ∑ 𝜂𝑖𝑦
𝑖 ,

𝑖

(1) 29 

where 𝜂 denote ensemble weights solving 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝜂{𝜎(𝑦𝑣𝑎𝑙 , 𝑦)}, 𝜎 is the averaged voxel-wise 30 

Pearson’s correlation (R) over inputs. The weight 𝜂 is optimized to maximize the prediction 31 

score on the validation set through differential evolution.57 32 
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 1 

Hierarchical task-optimized ROI 2 

We take the last linear layer weight 𝑊𝐿 ∈ 𝑅𝐷 × 𝑁 as voxel embeddings for clustering. Note that 3 

𝑊𝐿 of different models are in separate embedding spaces defined by 𝑓1:𝐿−1(𝑋), to keep all voxel 4 

embeddings in the same space, the model for deriving htROI is trained with all whole-brain 5 

voxels. To adapt to ensemble models, we multiply voxel embeddings by their ensemble weight 6 

𝜂𝑖 and concatenate to obtain a joint voxel embedding 𝑊𝐿 = (𝜂1𝑊𝐿
1, 𝜂2𝑊𝐿

2, . . . , 𝜂𝑛𝑊𝐿
𝑛), where 7 

(𝑊𝐿)𝑇is then used as input for a K-means (𝐾 = 100) clustering with euclidean distance, then the 8 

cluster centroids are feed to a agglomerative hierarchical clustering with Ward’s method. This 2-9 

stage clustering method help reduce memory and computation usage significantly. Then ROIs 10 

are identified by dividing the clustering dendrogram (Fig. S1b Left), note that clusters can be 11 

subdivided or merged according to their hierarchy. We also plot a voxel-wise correlation matrix 12 

(Pearson’s R) to help identify clusters (Fig. S1b Right). 13 

Atlases ROI intersection combination 14 

 For each voxel v_i, suppose its predicted stimulus induced by the model trained on anatomical 15 

atlas is 𝑦𝑠
𝑖 
 and the prediction from the model trained on functional atlas is  𝑦𝑡

𝑖 
, its final output 16 

will be a weighted sum from these two models, i.e.  𝑤𝑠
𝑖 ⋅ 𝑦𝑠

𝑖
+ 𝑤𝑡

𝑖 ⋅ 𝑦𝑡
𝑖
 , where 𝑤𝑠

𝑖  and 𝑤𝑡
𝑖  17 

are the ensembling weight specialized for each voxel.  For two or more atlas models, we denote 18 

𝑉𝐴
𝑖 as voxels in the 𝑖 th ROI in atlas A, and 𝑉𝐵

𝑗 as voxels in the 𝑗 th ROI in atlas B, the 19 

intersection of 𝑉𝐴
𝑖 and 𝑉𝐵

𝑗 is 𝑉𝐴𝐵
𝑖𝑗. Since we trained separate models for each atlas, we 20 

ensemble their outputs on 𝑉𝐴𝐵
𝑖𝑗 to maximize prediction score on 𝑉𝐴𝐵

𝑖𝑗. This is repeated for all 21 

𝑉𝐴𝐵
𝑖𝑗 and iterates over all voxels exactly once. The ensemble weight is optimized on the mean 22 

of intersection voxels, we also consider voxel-wise ensemble methods, but found voxel-wise 23 

methods overfit to the validation set (Supplementary Table S2). 24 

 25 

Data availability 26 

The fMRI data used in this study is available at http://algonauts.csail.mit.edu/challenge.html. 27 

 28 

Code availability 29 

The analysis code used for this study is available at https://github.com/huzeyann/htROI-neural-30 

encoding  31 

  32 
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