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Abstract

A central goal of cognitive neuroscience is to build computational models that predict and explain
neural responses to sensory inputs in the cortex. Recent studies attempt to borrow the
representation power of deep neural networks (DNN) to predict the brain response and suggest a
correspondence between artificial and biological neural networks in their feature representations.
However, each DNN instance is often specified for certain computer vision tasks which may not
lead to optimal brain correspondence. On the other hand, these voxel-wise encoding models focus
on predicting single voxels independently, while brain activity often demonstrates rich and
dynamic structures at the population and network levels during cognitive tasks. These two
important properties suggest that we can improve the prevalent voxel-wise encoding models by
integrating features from DNN models and by integrating cortical network information into the
models. In this work, we propose a new unified framework that addresses these two aspects
through DNN feature-level ensemble learning and brain atlas-level model integration. Our
proposed approach leads to superior performance over previous DNN-based encoding models in
predicting whole-brain neural activity during naturalistic video perception. Furthermore, our
unified framework also facilitates the investigation of the brain’s neural representation mechanism
by accurately predicting the neural response corresponding to complex visual concepts.
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Introduction

A central goal of computational cognitive neuroscience is to build models that explain how the
brain perceives sensory information®. An ideal computational model of sensory perception would
be able to both perform the sensory perception task behaviorally and explain the underlying
neural basis during the perception process?-®. This implies two critical goals: to model and
predict neural activity in the brain with high accuracy and to achieve human-level performance
behaviorally. Previous efforts diverge along these two routines. Most studies in visual and
auditory neuroscience focus on analyzing how different levels of sensory information are
represented in the cortical network and link these neural coding to perceptual behavior.47-%5
These hypothesis-driven works succeeded in interpreting neural coding and identifying the
neural basis of behavioral properties. However, due to the limitation of linear models and the ad-
hoc choices of features used in these models, these hypothesis-driven methods often fall short in
predicting neural activity with high accuracy. Furthermore, these empirical results cannot be
directly turned into computational agents that perform such perception tasks thus lack high-level
behavioral descriptions. On the other hand, cognitive models, particularly connectionist models,
are designed to mimic human sensory perceptual behavior and perform the same tasks as
humans.'817 It is not until the surge of deep neural networks over the past decade that these
models finally approach and surpass the human level in many sensory cognition tasks.81% As
opposite to the neural coding studies, these artificial neural network (DNN) models excel in
computational tasks, but it remains unclear whether and to what extent they reflect the same
underlying representation and computations as the neural system.

The recent advance in DNN models inspires new efforts that combine computational models
with neural coding models.>2%-24 Specifically, these powerful pretrained networks are employed
to build unit/voxel-wise prediction models in the cortex. These models fit an encoder from the
external stimulus to the brain signal and allow for the investigation of representation and
computations in large-scale neural circuits through the correlations between artificial neural
layers and brain regions. These DNN models have already been optimized for performing
corresponding cognitive tasks. As a prediction model, the main goal is to achieve high neural
prediction accuracy in order to facilitate further analyses of the underlying coding and
computation mechanisms.?®

Previous studies using voxel-wise encoding models have shown that, compared to theory-driven
heuristic models, DNN models can predict neural responses with regard to static images and
sounds in different ROIs within sensory cortex with higher accuracy.>?12225 Some recent studies
have also demonstrated that these approaches can be extended to naturalistic stimuli, such as
movies and speech.?32426.27 However, two important challenges have limited the prediction
performance of these models. First, the brain is an interconnected network with different areas
dynamically reconfigured and involved in different modules during cognitive tasks,?%-32 while
the prevalent voxel-wise encoding models treat each voxel static and independently. Second, by
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using pretrained task optimized DNN models, it is often assumed that there is a single optimal
set of representation features aligned with a specific neural population along the network
hierarchy.52? However, the feature representations are mainly driven by training objectives and
enforcing a one-to-one correspondence may not be optimal. These two factors have significantly
limited the performance of the current DNN-based models. Even the state-of-the-art DNN-based
models can only explain ~50% of the total variance driven by the input stimuli.® Therefore,
pushing the model prediction performance towards the upper limit is an urgent demand for such
prediction models.

To get high encoding prediction accuracy via addressing these two issues, we focus on two sides
of the encoding models. On the targeting neural activity side, it is often overlooked in the
previous studies that both the stimulus-driven and the spontaneous parts of the neural activity
show strong correlating structure at local and network levels.33-3¢ Thus we ask if we could
incorporate correlated activity into the model by harnessing local and network local level
structures in the neural activity to facilitate accurate neural encoding prediction. On the stimulus
side, existing literature usually extracts feature representations from the stimuli by picking the
optimal feature representation from a candidate model pool using model-selection
procedures.?>?> However, the brain is a linked system where stimuli usually activate a broad
network of cortical areas across the whole brain®%’, suggesting that the representation may be an
integration of multi-level features rather than driven by a dominating mode. Moreover, an
artificial neural network is not designed for replicating the brain topology thus different levels of
feature extraction within the same model may also align to different neural populations.® Thus
we ask if we can push the capability of the encoding model towards the ceiling by enriching the
feature representations to an integration on multiple levels over multiple regions in modeling the
neural responses to naturalistic stimuli.

Following this prediction-center principle, we identify three pairs of principles in neuroscience
that could benefit the prediction from the machine learning perspective and validate the efficacy
based on three levels of corresponding hypotheses. First, the neural activity of the brain is
reflected in functional modules that are related but not overlapped with the underlying anatomy.
Voxels that are not clustered spatially may also correlated through functional networks and
shared both stimulus-driven and non-stimulus endogenous activity.3® Thus we hypothesize that
the function-induced cluster-based encoding model provides complementary prediction power to
the anatomy-induced model. Second, a brain region may participate in multiple perception
processes that could be better captured by different computational models.® Thus we
hypothesize that integrating stimulus-derived features from different processing levels within
each model will improve neural encoding accuracy. Thirdly, a brain region may reconfigure its
role across multiple perception processes reflected in the form of different modularized
structures.®! Thus we hypothesize that there exists heterogeneity in model performance across
different ways of ROI clustering, and integrating these different atlases further improves model
performance.
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Moreover, we demonstrate the efficacy of the prediction-centered model from two applying
views. Since the encoding weights identify an artificial neural network, we show that it serves as
a novel metric that reveals functional organizations of voxels that deviate from the pure
anatomically defined ROIs. Further, based on the representation similarity scores, we show that
our more accurate prediction model actually results in a more similar representation with the
brain regarding visual motion. Our approach promotes insight into why we should focus on
prediction in building future encoding models.

Results

In this study, brain activity was recorded using functional magnetic resonance imaging (fMRI)
when 10 subjects passively viewed 1102 naturalistic video clips. We focus on predicting the
brain response from the corresponding video stimuli.*® We adopt the general voxel-wise neural
encoding framework that has been widely used in the literature.**-*3 In particular, DNN models
are used to extract feature representations from each individual video stimulus. Another multi-
layer perceptron (MLP) network is trained to predict brain activation in each individual voxel
regarding each stimulus, using the extracted features from the DNN models.

To do this, we developed an iterative integration approach. As demonstrated in Figure 1, our
model consists of two parts of integrations: the feature-level integration and the atlas-level
integration. First, features of the input stimuli were extracted via feature-level integration that
ensembles features from different layers of DNN models under multiple optimization parameters
(Fig. 1a). Second, atlas-level integration was performed to combine encoding models based on
multiple functional and anatomical atlases (Fig. 1d). Different functional atlases were
constructed based on task-optimized parcellations using encoding model weights from voxel-
wise encoders (Fig. 1b). These functional atlases grouped voxels with similar representation
properties together (Fig. 1¢). We demonstrate the two parts of integrations and evaluate the
performance of the overall model in the following sections.
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Figure 1: Overview of the feature-level and atlas-level integration framework. a) Overview
of voxel-wise encoding model framework. We feed input videos to a pre-trained deep neural
network feature extractor and take intermediate layers to a multiple-layer perceptron to predict
voxel-wise whole brain response captured by fMRI. The whole model is trained end-to-end with
all parameters tunable. The last layer, with voxel activations as output, can be interpreted as
linear regression with weights denoted as W-. All the voxels share parameters except for the last
linear regression. b) Overview of the feature level integration: we trained models separately
while taking different intermediate layers and read-out pooling sizes, denoted as Y. Then we
optimized an offline linear combination of their outputs with the linear weights denoted as 1. The
arrows indicate the gradient flow, and there is no gradient from the combined output to the input
video. ¢) Functional clustering based on voxel-wise encoding weights: regression weights W' are
weighted by the linear combination 7. The concatenated regression weights W * are then used as
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voxel embeddings for clustering. d) Atlas-level integration: each model is trained with voxels
from the same ROI as output, while each atlas contains several ROIs. On different atlases, we
combined the model outputs on their ROI-intersection (overlap of red and purple bars). e) Best
model prediction score were plotted on the whole cortical surface, normalized to noise-ceiling.
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Figure 2. Feature-level integration improves brain prediction performance. a) Averaged
brain prediction performance (explained variance) for each individual model. Blue bars: models
trained with only one intermediate layer and one pooling size. Orange bar: concatenation model
with a naive concatenation of all the input features for blue bar models. Red bar: integrated
model that integrates the outputs of blue bar models. b) Cortical mapping of the performance
difference between the integration model and the naive concatenation model, scores are noise-
normalized.

Feature-level integration. The prevalent practice for training a DNN-based voxel-wise
encoding model depends on the strategy of choosing the best feature space with the highest
prediction score,® or concatenating features from multiple intermediate layers.?* We challenge
these strategies both from neuroscience and deep neural network perspectives. Instead of these
rather heuristic feature-selection strategies, we propose a systematic way of feature-integration
via ensemble learning. On the one hand, there may not exist a one-to-one matching between the
DNN feature layers and different neural populations, and one specific neural population may be
involved in multiple different levels of information processing spanning over a set of features
across the DNN hierarchy.® On the other hand, the convergence speed varies when using
intermediate layers and pooling sizes. For example, STS prediction model using high-level DNN
features converges two times faster than lower-level DNN features (see Supplementary Table S4
for more details), and a prediction model using smaller size pooling features converges faster
than features with larger pooling size. As a result, a different subset of features may converge to
their corresponding optimum at different rates for the same ROI; and the same subset of features
may also converge at different rates for different ROIs. Therefore, a single-layer model with a
naive concatenating strategy may suffer from the issue of desynchronization for the learned
dynamics, and a single model would overfit one ROI and underfit another ROI simultaneously.
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To address this issue, we propose that integrating the features across multiple layers with
separate optimizations under multiple atlases will improve the prediction accuracy over adopting
a single concatenation model.

To test this hypothesis, we implemented the proposed layer-level integration model and
compared the model performance against baseline models including concatenation model and
single layer encoding models. Specifically, we took a state-of-the-art visual model, the Swin-
Transformer model.** We first trained separate encoding models using every intermediate layer
of the DNN. These models were optimized end-to-end separately and their backbone
Transformer parameters were not fixed. Then we ensembled the outputs of all models through a
weighted summation (Fig. 1b), and the ensemble was weighted and optimized using the
differential evolution algorithm to maximize the ROI-averaged validation score. This layer-level
ensemble model achieved mean R? = 0.425 on the validation set (Fig. 2a). As a comparison, our
full ensemble model dominated the best single-layer model (mean R? = 0.397) with paired
t(161325) = 15.7, p = 2.21e-55 and the all-layer-concatenation model (mean R? = 0.376) with
paired t(161325) = 27.4, p = 3.38e-165 under the two-sided two-sample t-test. The significantly
improved explained variance of the layer-level integration model over the fully concatenated
model indicates the existence of desynchronization in encoding models across layers and
suggests the necessity of integrating multi-layer features under various optimization parameters
rather than relying on a single model.

Furthermore, it is worth pointing out that our model was robust and the results generalized to
additional testing sets as well (Fig. 2a). In addition, our Swin-Transformer-based encoding
model also outperformed other ensemble models using other architectures, such as 3D ResNet
(see Supplement Table S1).
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Figure 3 Hierarchical task-optimized ROI (htROI) atlas defined by brain encoding model
weights. a) Task-optimized ROI atlas based on hierarchical clustering. Each color represents an
ROI, corresponding to the colored column in b). b) Hierarchical clustering: voxels are first
clustered by K-means clustering. Vertical and horizontal black lines in the similarity matrix
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indicate clusters by K-means, each pixel is a voxel pair. An additional hierarchical clustering is
performed on K-means cluster centroids, and the final clusters are identified by cutting the
dendrogram.

Constructing hierarchical task-optimized ROI (htROI) atlas. In the previous section, we
built a voxel-wise encoding model that integrates DNN representation features across different
spatiotemporal scales. The model weights of the encoding model reflected the task-driven
functional receptive properties of each individual voxel. To fully exploit the functional structure
in the neural activity across the cortex, we next constructed a hierarchical task-optimized atlas
(htROI) based on these voxel-wise functional encoding model weights. Specifically, different
voxels shared the same parameter in the encoding model except for the last linear layer (Fig. 3a).
We concatenated the weights of the last linear layers from multiple models into a vector and used
it as the feature vector for each voxel, reflecting task-optimized functional receptive properties.
Next, we performed hierarchical clustering® to divide the whole brain into 6 modules (Fig. 3b),
including an early visual cluster that mainly covered V1, V2, V3, and V4, a higher-level visual
cluster that includes part of the lateral occipital complex (LOC), fusiform gyrus and posterior
superior temporal cortex, and a somatosensory cluster that includes the post-central sulcus (Fig.
3a).
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Figure 4 Atlas-level integration further improves brain prediction performance. a)
Averaged brain prediction performance over the whole brain (explained variance) for models
using different brain atlas partitions (aROI - anatomical ROI partition, htROI - hierarchical task-
optimized ROI, wbROI - whole brain). b) Cortical mapping of different atlas-based models. Left
panel: constituent contribution measured by the gain in prediction score when adding each atlas
model. Right panel: ensemble weight shows the contribution from a specific atlas model in each
voxel from a complete ensemble including all atlas models.
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Atlas-level model integration. After building the task-optimized functional atlas, we next
integrated voxel-wise encoding models trained on both functional and anatomical atlases to build
the final integrated encoding model. Considering the optimization of representation homogeneity
within each region, we constructed the prediction model for the voxels in each region separately.
We applied the SwinTransformer infrastructure as the backbone and train the prediction model
with shared parameters except for the last linear layers. The final voxel-wise neural prediction
was a weighted sum of model prediction from all integrated models based on different atlases.

Here we validate whether incorporating brain atlas information into the encoding model would
benefit the brain prediction performance, compared to treating whole brain as a homogeneous
predicting target. Furthermore, as a functional brain atlas, htROI reflects the functional
organization of the voxels, and including htROI in the final integrated model provides additional
encoding information that facilitates the brain activity prediction, compared to anatomical-based
atlas. To test these hypotheses, we examined our final integrated model performance and
compared it against models trained on anatomical atlases only. Specifically, we adopted three
atlases that parcellate cortex into different ROIs: the proposed hierarchical task-optimized ROI
(htRQI), the anatomical ROI (aROI), and the whole-brain ROI (wbROI) that takes the whole
brain as a single ROI. The model integrating all three atlases together achieved the best
performance on both the validation and test datasets (Fig. 4a, R? = 0.4686 on the validation set,
R? =0.3918 on the test set).

To further examine whether the integration is necessary, we performed two levels of ablation
study. First, we took the wbROI which obtained R? = 0.4259 on the validation set and R? =
0.3715 on test set as the baseline. Both the htROI and aROI outperformed whROI. The aROI
obtained R?=0.4383 and paired t(161325) = 6.8, p = 1.16e-11 when compared to wbROI under
the two-sided two-sample t-test, as well as R? = 0.3775 on the test set. The htROI obtained
R?=0.4497 and paired t(161325) = 13.1, p = 3.21e-39 when compared to wbROI under the two-
sided two-sample t-test, as well as R? = 0.3755 on the test set. This confirms that incorporating
the network module information would contribute to the prediction model. Next, we examined
whether the combination of htROI and aROI outperformed each of them separately. The
combination of htROI and aROl (i.e., htROI + aROl in Fig. 4a) achieved R? = 0.4667 and R? =
0.3902 on the test set. For the comparison, it had paired t(161325) = 9.2, p =3.26e-20 when
compared to htROI and t(161325) = 15.4, p =1.43e-53 when compared to aROI under the two-
sided two-sample t-test. This supports the claim that the anatomical and functional atlases
contain complementary information to each other and the prediction model benefits from
integrating over both atlases. A possible explanation here is that the htROI is designed to
maximize the representation similarity in signals of voxels within the same cluster while the
aROI provides prior information of module location. Indeed, the improvement of combination
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over htROI is mainly located on the visual cortex while the improvement over aROI is broadly
distributed over the whole brain (Fig. 4b).
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Figure 5: Representation similarity analysis and motion correlation analysis using the
proposed integrated encoding model. a) Schematic for computing RSA score. We first
compute the representation dissimilarity matrix (RDM) in the stimulus space, then compute the
similarity score as the Pearson’s correlation coefficient between RDMs from model prediction
and from real fMRI signal. b) Schematic for computing motion-correlation score. We estimate
the motion index as a scalar value for each video by summing all of its optical flow vector
magnitudes. The motion-correlation score is calculated by correlating each voxel’s activation to
this motion scalar across videos. Finally compare the similarity of motion-correlation score from
model prediction and from real fMRI across all voxels. c¢) The correlation between RSA and
motion-correlation scores and the brain prediction score of each model (explained variance).
Each point is a model with a specific layer-pooling configuration. d) Top: motion-correlation for
each voxel in the integrated prediction model (left) and real fMRI signal (right). Bottom: local
similarity between the prediction model and real fMRI, estimated as the spatial correlation within
the 3 x 3 x 3 sliding window.
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Improvement of conceptual representation through more accurate prediction models. In
the previous sections, we built a more accurate model by applying deep neural network models
with brain network modularization. The ultimate goal of such models is to better understand
neural coding in the brain. Here we demonstrate that with this more accurate voxel-wise
prediction model we can better characterize the encoding patterns of image features across the
cortex.

Representational geometry of neural populations has been widely studied in neuroimaging to
understand the neural coding of sensory information and cognitive processes. 647
Representational similarity analysis (RSA) has become one of the standard methods to compare
representations across spaces and to test cognitive and computational theories.*® We first
analyzed the representation geometry in the predicted activity and the actual BOLD signal using
RSA. For each model configuration, we computed the representational dissimilarity matrices
(RDMs) of all video stimuli using the model prediction and the actual observed brain responses
correspondingly. We then computed a representational similarity score as Pearson’s correlation
between the RDMs for the predicted activity of the chosen model and the actual observed brain
response. We found that the representational similarity score is strongly correlated with the
model’s prediction performance (r = 0.96, p = 3.7¢-104) and our proposed model achieved both
the highest representational similarity score (p = 0.4501) as well as the prediction performance
(explained variance R?=0.4686). This indicates that more accurate prediction models also
demonstrate more similarity in terms of representational geometry of visual stimuli across the
broad visual network in the cortex (Fig. 4).

We next evaluated how our proposed model characterized motion-specific coding in the cortex,
which is crucial for analyzing naturalistic video processing. To do this, we defined the motion
index in each individual stimulus as the sum of the optical flow vectors’ magnitude. To quantify
the neural encoding of motion information, we computed the voxel-wise motion representational
similarity, which was Pearson’s correlation between the predicted or actual brain response and
the motion index. We found that the prediction accuracy (explained variance) was positively
correlated to the motion representational similarity of the predicted neural activity (r = 0.68, p =
1.3e-25), suggesting that our model was able to capture motion-related coding in the brain
response. Furthermore, we also evaluated the consistency between the predicted and actual
motion representational similarity across the cortex. We found that our model showed high
motion coding consistency across a broad range of cortices, including the early visual cortex, the
dorsal and ventral visual pathway, and the sensorimotor cortex. This suggests that the
performance improvement is beyond simply characterizing low-level texture features in the early
visual cortex, but also covers cortical areas involved in intermediate and higher-level information
processing.
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Discussion

In this work, we introduced a systematic and data-driven framework of optimizing voxel-wise
neural encoding models by integrating DNN representation features and brain network structure
information through iterative ensemble learning. Two key ingredients of our proposed method
are: 1) the asynchronous integration of multi-scale representation features from DNN models; 2)
functional clustering based on encoding model weights, and integration of encoding models over
both functional and anatomical atlases. We demonstrated that our proposed method achieved
state-of-the-art performance on a large-scale dataset in predicting neural responses to naturalistic
videos.

The classical view of visual processing in the cortex supports a domain specific theory of neural
coding in the visual cortex with the visual cortex as a hierarchical feedforward processing
model.>3"48 These models and theories assume that each cortical area is often exclusively
involved in a limited set of functional processing stages and feeds the processed information
forward to the next level along the hierarchy. This classical view has guided the computational
modeling of the visual cortex in the same way. Previous studies often use a single layer of
representation features from pretrained models for a certain ROI.2124 [t is also demonstrated that
there is a coarse alignment between hierarchical layers in vision CNN and areas in the ventral
visual stream.?> However, recent studies have challenged this hierarchical idea from
anatomical,®” experimental®® and computational®® perspectives, and reveal non-hierarchical
processing in the visual cortex. Here we demonstrate a comprehensive framework that exploits
the non-hierarchical processing properties by ensembling all different layers of representation
from DNN models. Using a data-driven approach, we showed that ensembling lower and higher
levels of representations from the DNN hierarchy improved encoding accuracy for both the
classical “early” and “late” areas. Our results suggest that both hierarchical and non-hierarchical
structures exist in the visual pathway. By evaluating the contributions of different layers and
components of the ensemble model, we offer a systematic way of quantifying hierarchical and
non-hierarchical structures in the visual system.

The idea of using an in silico optimal observer model to infer the underlying computational
mechanism in a biological system can be dated back to at least Marr’s three level’s of analysis.?
With the emergence of DNN in vision, DNN-based models have been widely adapted as a
compositional model of the sensory system, and have shown to be powerful tools in predicting
neural activity and behavior.> With a more accurate model, we are able to approach the nonlinear
coding property of neural population from a new perspective. Traditional models of single
neuron/voxel in the visual system, such as receptive field*® or population receptive field
models®®, mostly adopt a theory-driven structural approach. These models mostly use
gaussian/gabor filter banks and generalized linear models to denote receptive encoding
properties in the image space.** These previous methods are particularly tailored for more
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intuitive receptive structures in early areas and have been very effective in accounting for
important properties, such as retinotopic map. Our approach allows us to evaluate highly
abstract, dynamic and nonlinear coding properties in intermediate and higher-level cortical
areas,®® and account for multi-sensory integration in the more abstract feature embedding space
facilitated by the effective ensemble of deep neural network models. These advances allow us to
better characterize the neural activity across the cortex.

These more accurate prediction model of the brain can also be used as a preliminary tool to
define functional ROI. Our model has shown great ability to generalize across subjects. Thus, we
can use such models to define functional ROI based on general naturalistic stimuli without
running traditional localizer tasks, which only covers a limited set of stimuli.>? This not only
saves running time, but also extends the scope of traditional localizer to a novel virtual simulated
version. On the other hand, these models also provide novel approach to find optimal stimuli as
localizer. Recent study has provided data-driven frameworks to identify optimal stimulus for
specific neural circuits using close-loop models.>3>* Our model can be fitted into such
frameworks and used as the encoder for close-loop brain modulations. In these applications, the
ability to accurately predict and generalize to a broad spectrum of input space is crucial.

There are a few aspects that our model can be further improved. Currently we mainly constraint
the ensembled models in vision and use the ViT model as the backbone of our specific
instantiation of the proposed framework. In a more generalized case, different models from a
broader range of modalities can be integrated into the same framework to account for different
sensory modalities, such as audition, and to test different hypotheses about neural coding in
different cortical networks. Another potential future direction is to explore the generalization and
transferability of our proposed approach on different subjects and stimuli as the testing set.
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Methods and Materials

Dataset in brief

We work on the Algonauts 2021 challenge dataset. Details on data acquisition and preprocessing
are provided elsewhere.® Briefly, the dataset consists of 1102 fMRI brain responses per subject
(10 subjects), 1000 for training, and 102 held out for online submission. Each stimulus is a 3-
second clip of daily events, participants watched the video without playing the sound. Training
set videos are scanned 3 times and averaged; test set videos are scanned 10 times to estimate
noise ceiling and then averaged. The dataset provides voxel masks for 9 anatomical ROIs (V1,
V2,V3,V4, LOC, EBA, FFA, STS, and PPA). BOLD activation is extensively preprocessed by
GLMdenoise,> and the stimulus responses are expressed in the regression coefficients of the
general linear model. VVoxels are filtered by thresholding noise ceiling with 161326 voxels in
total for all 10 subjects.

Voxel-wise encoding model architecture

The voxel-wise encoding model consists of a feature extractor (Video Swin Transformer pre-
trained on Something-Something V2 Dataset®®), a max-pooling read-out head, and a Multi-Layer
Perceptron (MLP) prediction head. The outputs is activation values for every voxel in one ROI.
One interesting property of this model is that, except for the last linear layer, all the other
parameters are shared among all the voxels. This can be formulated asy = f¥:=1(x) Wk,
where Y € RE* N js output voxel prediction, B is the batch size, N is number of voxels, Wt €
RP >N is the weight for the last layer, D is channel size, X is the input video, and f£~1 denotes
all transformations before the second last layer. We call the parameters in =1 voxel-shared
parameters and W! voxel-specific parameters (Fig. 1a). W contains all the information about an
arbitrary voxel, so we use it as task-optimized voxel embeddings for clustering.

Feature extractor. The deep learning feature extractor model can be formulated as a sequential
transformation of input x° given by x* = &% o x~1, where x’is the hidden representation at
layer depth L, 8% is the transformation operation. The pre-trained Video Swin Transformer
model consists of 4 major blocks with descending spatial size and increasing channel size (see
Table S5 for the details).
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Read-out and Prediction head. We take x! and connect it to a read-out head, which consists of
an adaptive max-pooling operation with output size 1 x n X n, n € {1, 2, 3, 7}. The output
feature of this read-out head is denoted as u!,, = poolingy,xn(x"). The prediction head is a
multilayer perceptron (MLP), with Exponential Linear Unit (ELU) activation function on 3
hidden layers, 2048 feature channels per layer. The last layer is set to be without nonlinearity, its
output dimension equal to the number of voxels in the ROI.

Feature-block models ensemble

We train separate models on a cartesian product of all intermediate layers (1) and pooling sizes
(n), ut,, denotes extracted feature, then ensemble their output yln as described in Algorithm 1.
These models are trained to their individual early stopping point. The ensemble is intended to be
hierarchical. First, multiple pooling size models are assembled within the same layer, and then
ensemble inner-loop outputs are generated. If this hierarchy is violated, the validation score will
be overfit and the test score will suffer. (Supplementary Table S1).

Algorithm 1. Hierarchical ensemble of separately trained feature-block models

For layer Lin {1,2,...}:
For pooling size nin {1, 2,...}:
Load pre-trained feature extractor weights;
Random initialize prediction-head weights;
Train y! = model, ,(u'y)
y' = Concatenate([ y',, y',,...]) #ensemble all pooling sizes
y = Sum, ([¥', y?...]) #ensemble all layers

The ensemble operates on model output y as

y= Z nyh (1)

where 7 denote ensemble weights solving maximize, {o(yyq,y)}, o is the averaged voxel-wise

Pearson’s correlation (R) over inputs. The weight 1 is optimized to maximize the prediction
score on the validation set through differential evolution.5’
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Hierarchical task-optimized ROI

We take the last linear layer weight Wt € RP *N as voxel embeddings for clustering. Note that
WL of different models are in separate embedding spaces defined by f1£~1(X), to keep all voxel
embeddings in the same space, the model for deriving htROI is trained with all whole-brain
voxels. To adapt to ensemble models, we multiply voxel embeddings by their ensemble weight
n; and concatenate to obtain a joint voxel embedding Wt = (n, Wk, n,WEt,,...,n,Wt,), where
(W)Tis then used as input for a K-means (K = 100) clustering with euclidean distance, then the
cluster centroids are feed to a agglomerative hierarchical clustering with Ward’s method. This 2-
stage clustering method help reduce memory and computation usage significantly. Then ROIs
are identified by dividing the clustering dendrogram (Fig. S1b Left), note that clusters can be
subdivided or merged according to their hierarchy. We also plot a voxel-wise correlation matrix
(Pearson’s R) to help identify clusters (Fig. S1b Right).

Atlases ROI intersection combination

For each voxel v_i, suppose its predicted stimulus induced by the model trained on anatomical
atlas is y*, and the prediction from the model trained on functional atlas is y*,, its final output
will be a weighted sum from these two models, i.e. w®; - y*, +w?’; - y*., where w; and w';
are the ensembling weight specialized for each voxel. For two or more atlas models, we denote
V4, as voxels in the i th ROl in atlas A, and V?; as voxels in the j th ROl in atlas B, the
intersection of V4; and V?; is V4%,;. Since we trained separate models for each atlas, we
ensemble their outputs on V4#,; to maximize prediction score on V4%, This is repeated for all
V48, and iterates over all voxels exactly once. The ensemble weight is optimized on the mean
of intersection voxels, we also consider voxel-wise ensemble methods, but found voxel-wise
methods overfit to the validation set (Supplementary Table S2).

Data availability
The fMRI data used in this study is available at http://algonauts.csail.mit.edu/challenge.html.

Code availability
The analysis code used for this study is available at https://github.com/huzeyann/htROI-neural-

encoding
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