

1

2 **Title:**

3 **Carcinogenicity and testicular toxicity of 2-bromopropane in a 26-week inhalation
4 study using the rasH2 mouse model**

5

6 Yuko Goto¹, Arata Saito^{1,#}, Kenji Takanobu¹, Hideki Senoh¹, Misae Saito¹, Yumi
7 Umeda^{1,\$}, Shotaro Yamano^{1,\$}

8

9 ¹Japan Bioassay Research Center, Japan Organization of Occupational Health and
10 Safety, Kanagawa 257-0015, Japan

11

12 [#]Current affiliation: Retired

13 ^{\$}Co-last authors

14

15 **Corresponding Author**

16

17 Shotaro Yamano

18 Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety,
19 2445 Hirasawa, Hadano, Kanagawa 257-0015, Japan

20 Email: shotaro-yamano@pulmpath.com

21 TEL: +81-463-82-3911

22 FAX: +81-463-82-3860

23

24 **Keywords:** 2-Bromopropane (2-BP), rasH2 mouse model, carcinogenicity, testicular
25 toxicity, whole-body inhalation

26

27 Word count: 3544 words

28 Number of Figures: 7 figures

29 Number of Tables: 1 table

30 Number of Supporting Information: 4 tables

31

32 **Abstract**

33 2-Bromopropane (2-BP) is a colorless liquid at room temperature and is used in closed
34 systems in factories, mainly as an intermediate for medicines, pesticides, and other
35 chemicals. However, the carcinogenicity of 2-BP is still unknown. The
36 CByB6F1-Tg(HRAS)2Jic (rasH2) transgenic mouse model has been established as an
37 alternative to long-term studies (1.5years-lifetime) to detect carcinogenicity in as short a
38 time as six months. We performed a 26-week inhalation exposure study of 2-BP using
39 the rasH2 mouse model. Male and female rasH2 mice were exposed to 0, 67, 200, or
40 600 ppm of 2-BP for 6 hours/day, 5 days/week for 26 weeks. All tissues and blood were
41 collected and subjected to biological and histopathological analyses. The results showed
42 a concentration-dependent increase in lung tumor development in male and female
43 rasH2 mice exposed by inhalation to 2-BP, which was significant by Peto's trend test.
44 Furthermore, in male rasH2 mice, 2-BP was found to be a testicular toxin. This study is
45 the first to demonstrate that 2-BP is carcinogenic in male and female mice and a
46 testicular toxin in male mice in the rasH2 mouse model.

47

48 **Abbreviations**

49 1-BP: 1-Bromopropane

50 2-BP: 2-Bromopropane

51 CFC: Chlorofluorocarbon

52 HE: hematoxylin and eosin

53 IARC: International Agency for Research on Cancer

54 OECD: Organisation for Economic Co-operation and Development

55 rasH2: Jic:CB6F1-Tg ras H2@Jcl

56

57

58

59

60

61 **Introduction**

62 2-Bromopropane (CAS number: 75-26-3, hereafter 2-BP) is a colorless liquid at room
63 temperature and is used in closed systems in factories, mainly as an intermediate for
64 medicines, pesticides and other chemicals. The Montréal Protocol was adopted in
65 Canada in 1987 to regulate the production, consumption, and trade of ozone-depleting
66 chemicals such as Chlorofluorocarbons (CFCs)¹. In addition to chemical manufacturing,
67 since the adoption of the Montréal Protocol the use of 2-BP as a solvent for cleaning has
68 increased in various factories as an alternative to CFCs and 1,1,1-trichloroethane. In the
69 fall of 1995, an outbreak of menstrual arrest and pancytopenia among female workers
70 and oligozoospermia or azoospermia among male workers exposed to a 2-BP cleaning
71 solution at an electronic parts factory in South Korea was reported^{2,3}. The causative
72 agent was 2-BP, whose toxicity to the testes, ovaries, and hematopoietic organs has
73 been reproduced in numerous experiments using rodents⁴⁻¹⁸. However, there is little
74 information on the carcinogenicity of 2-BP. Studies examining carcinogenicity in test
75 animals have not been reported. *In vitro* studies have reported that 2-BP induces
76 mutagenicity in *Salmonella typhimurium* TA100 and TA1535, but mutagenicity using
77 *Escherichia coli* WP2 uvrA and chromosome aberration using Chinese hamster lung
78 cells were both negative¹⁹.

79 Carcinogenicity studies on food additives, existing carcinogens, and oral drug
80 candidates have demonstrated that rasH2 mice are more sensitive to genotoxic as well
81 as non-genotoxic carcinogens than a p53 heterozygous mouse model²⁰⁻²³. Consequently,
82 the CByB6F1-Tg(HRAS)2Jic (rasH2) transgenic mouse model can be used for
83 detecting carcinogenicity in as short a time as six months. This model has been
84 established as an alternative to long-term studies (1.5 years-lifetime) to predict the
85 carcinogenic potential of chemicals²⁴.

86 We have previously conducted systemic inhalation exposure studies of various
87 chemicals in rodents, including rasH2 mice, and have examined various toxicities,
88 including carcinogenicity and pulmonary fibrosis²⁵⁻²⁷. In this study, we conducted a
89 26-week systemic inhalation exposure study of 2-BP using rasH2 mice and
90 comprehensively evaluated carcinogenicity in each organ and reproductive organ
91 toxicity.

92 **Material and Methods**

93

94 **Ethics declarations**

95 All animals were maintained and used in accordance with Guidelines for the Care and
96 Use of the Institutional Animal Care and Use Committee of the Japan Bioassay
97 Research Center. All the animal experiments were approved by the Institutional Animal
98 Care and Use Committee (Approval No.: 0164) and Genetic Recombination
99 Experiments Safety Committee (Approval No.: 2016-02) of the Japan Bioassay
100 Research Center, and have been reported following the recommendations in the
101 ARRIVE guidelines. We have complied with all relevant ethical regulations for animal
102 testing and research.

103

104 **Materials**

105 2-Bromopropane (2-BP) 1st grade (Lot No.: TWQ6860) was purchased from Wako Pure
106 Chemical (Osaka, Japan). Their detailed characteristics of 2-BP 1st grade is given in Fig.
107 1A. 2-BP was analyzed by mass spectrometry equipped with direct probe (M-80B,
108 Hitachi, Tokyo, Japan) before its use and analyzed by gas chromatography (5890A,
109 Agilent Technologies, Santa Clara, CA) before and after its use to confirm its stability
110 and purity. Gas chromatography was performed as follows: column: G-950 (1.2 mmφ,
111 20 m); column temperature: 150°C; Flow rate: 10 mL/min; Detector: Flame ionization
112 detector. Other reagents used in the study were of the highest grade available
113 commercially. Additionally, 2-BP in the chambers was monitored using gas
114 chromatography (14-B, Shimadzu, Kyoto, Japan): no gas chromatographic peaks other
115 than 2-bromopropan were detected in the inhalation exposure chambers.

116

117 **Animals**

118 6 weeks old male and female rasH2 mice were purchased from CLEA Japan, Inc.
119 (Tokyo, Japan). Mice were housed in an air-conditioned room under a 12 hour light/12
120 hour dark (8:00-20:00, light cycle) photoperiod, and fed a Certified Diet (CRF-1,
121 Oriental Yeast Co. Ltd., Tokyo, Japan) and tap water *ad libitum*. After 6 days of
122 quarantine and 5 days of acclimatization, they were exposed to 2-BP from 8 weeks of
123 age by the procedure described below.

124

125 **Generation of 2-bromopropane**

126 This study referred to the Organisation for Economic Co-operation and Development
127 (OECD) guidelines for carcinogenicity studies (OECD TG 451)²⁸. Four inhalation
128 exposure chambers (volume: 3.7 m³) were used throughout the 26-week exposure
129 period. 2-BP in a reservoir flask with a thermostatic water bath that was controlled at
130 22°C. Clean air was bubbled through liquid 2-BP to generate a saturated vapor mixture.
131 Airflow containing the saturated 2-BP vapor was cooled to 17°C by passing it through a
132 thermostatic condenser, resulting condensation of 2-BP. Then the liquid 2-BP was
133 re-warmed to 22°C, vaporizing the 2-BP, and diluted with clean air. Finally, the diluted
134 vapor-air mixture was then introduced into the spiral line mixer of each inhalation
135 exposure chamber, with the flow rate of the vapor-air mixture into each spiral line mixer
136 being adjusted using a flow meter for each target concentration. The spiral line mixer
137 diluted the 2-BP vapor-air mixture to the target concentrations with clean air.

138

139 **26-week inhalation study**

140 This experiment was conducted with reference to “Standards to be Observed by Testing
141 Institutions” Notification No. 76 of the Ministry of Labour, Japan, 1 September 1988
142 (amendment: Notification No. 13 of the Ministry of Labour, Japan, 29 March 2000) and
143 reference to the OECD principle of Good Laboratory Practice²⁹. For dosage setting, we
144 conducted a preliminary study of 4-weeks inhalation exposure to 2-BP (100, 300, 1000,
145 and 3000 ppm) using the non-TG rasH2 mice in accordance with the OECD TG 412³⁰.
146 A suppression in weight gain was observed among the males and females in the 1000
147 and 3000 ppm exposure group. Therefore, the maximum target concentration of 2-BP in
148 the 26 week study was set at 600 ppm (twice the no-effect level of the 4 week study):
149 target concentrations for 2-BP were set at 67, 200 and 600 ppm. The exposure schedule
150 was 6 hours per day; 5 days per week, for 26 weeks. Two hundred mice with 25 males
151 and 25 females in each group were housed in individual stainless-steel cages and
152 maintained at a temperature of 23 ± 2°C and a relative humidity of 50 ± 20% and a 12-h
153 light/dark cycle with 12 air changes per hour during the non-exposure periods and 7-9
154 air changes per hour during the exposure periods. During exposure to 2-BP for 6 hours,
155 the mice had free access to food and water. During the study period, body weight and
156 food consumption were measured once a week. All animals were fasted from the day
157 before the autopsy date. At 1-4 days after the last exposure, the blood of the mice was

158 collected under isoflurane anesthesia and the mice were euthanized by exsanguination.
159 Organs including the adrenal, thymus, testis, ovary, heart, lung, spleen, liver, kidney,
160 and brain were weighed, and all organs were examined for macroscopic lesions. For
161 histopathological analysis, all the tissues were collected from all mice in each group and
162 fixed in 10% neutral phosphate buffered formalin solution. The right lung was directly
163 fixed by immersion. The left lung was inflated with fixative at a water pressure of
164 20–25 cm, and then fixed by immersion.

165

166 **Hematological and blood chemistry tests**

167 For hematological examination, blood samples collected at the time of each autopsy
168 were analyzed with an automated hematology analyzer (ADVIA120, Siemens
169 Healthcare Diagnostics Inc. Tarrytown, NY). For biochemical tests, the blood was
170 centrifuged at 3,000 rpm (2,110 $\times g$) for 20 minutes, and the supernatant was analyzed
171 with an automated analyzer (Hitachi 7080, Hitachi, Ltd., Tokyo, Japan).

172

173 **Histopathological analysis**

174 Tissue sections were cut from paraffin-embedded specimens of all organs required by
175 OECD TG451²⁸, and the section (2- μ m thick) was stained with hematoxylin and eosin
176 (HE) for histological examination. The histopathological finding terms used in this
177 study for lesions were determined by certified pathologists from the Japanese Society of
178 Toxicologic Pathology, and based on the finding terms adopted by International
179 Harmonization of Nomenclature and Diagnostic Criteria for Lesions in Rats and Mice
180 (INHAND)³¹. Pathological diagnosis was performed blindly by three pathologists and
181 summarized after a cumulative discussion.

182

183 **Statistical analysis**

184 All statistical analysis was carried out by the BAIS system (Hitachi Social Information
185 Services Ltd., Tokyo, Japan) and GraphPad Prism 5 (GraphPad Software, San Diego,
186 CA). The incidences of non-neoplastic lesions were analyzed using the chi-square test,
187 and the severity was defined as 1, slight; 2, moderate; 3, marked; and 4, severe. The
188 incidence of neoplastic lesions was statistically analyzed by Fisher's exact test and
189 incidence trend was analyzed by Peto's trend test. Body weight, organ weight, food

190 consumption, and hematological and blood biochemical parameters were analyzed by
191 Dunnett's multiple comparison test. All statistical significance was set at $p<0.05$.
192

193 **Results**

194 **Characterization and concentration in the inhalation chamber of 2-Bromopropane**

195

196 The test substance was analyzed by mass spectrometry before its use. The measured
197 mass spectrum (Fig. 1B) was consistent with the literature spectrum of 2-bromopropane
198 (2-BP)³². 2-BP was also analyzed by gas chromatography for purity and stability before
199 and after its use. Gas chromatography indicated one major peak before and after its use.
200 No impurity peaks were detected before or after its use (data not shown), indicating that
201 the 2-BP used in the present study was stable for the duration of the study period.
202 The 2-BP concentrations were at the target concentrations over the 26-week exposure
203 period: 66.8 ± 1.2 ppm for the 67 ppm group, 200.6 ± 3.6 ppm for the 200 ppm group,
204 and 599.2 ± 10.0 ppm for the 600 ppm group.

205

206

207 **Clinical findings, survival, body weight curve, food intakes and final body weight**

208

209 Observations of the general condition of the mice and clinical findings showed no
210 changes throughout the study period that could be attributed to the effects of 2-BP.
211 There were no significant changes in the survival of females or males exposed to any
212 concentration of 2-BP compared to the control groups (Fig. 2A, B). Suppression of
213 body weight gain by males exposed to 200 ppm and 600 ppm 2-BP and females
214 exposed to 600 ppm was observed (Fig. 2C, D), and there was a statistically significant
215 reduction in final body weight in males exposed to 200 and 600 ppm and females
216 exposed to 600 ppm compared to the control group (Fig. 3A, B). Changes in food intake
217 were not as pronounced as those in body weight, and no concentration-dependent
218 changes were observed in either sex (Fig. 2E, F).

219

220

221 **Carcinogenicity of 2-BP in rasH2 mice**

222

223 In this study, tumors were observed in several organs of male and female rasH2 mice,
224 including the lung, skin, lymphatic vessel, oral cavity, stomach (forestomach), liver,
225 Harderian gland, urinary bladder, lymph node, thymus, subcutaneous tissue (subcutis),

226 spleen, bone marrow, nasal cavity, and vagina. A summary of the histopathological
227 findings for the neoplastic lesions in all organs is given in Table 1. Both male and
228 female rasH2 mice had numerous bronchiolo-alveolar adenomas and carcinomas in the
229 lungs, one of the predominant tumor organs in rasH2 mice. Representative microscopic
230 photographs of lung tumors are shown in Fig. 4. The adenomas that developed in 2-BP
231 exposed rasH2 mice (Fig. 4A) exhibited typical adenoma histology with the solitary
232 adenoma nodule compressing the surrounding tissue (Fig. 4B) and being composed of
233 cells with large nuclei and high nuclear/cytoplasmic ratios (Fig. 4C) compared to
234 normal alveolar epithelium (Fig. 4D) which constitutes the surrounding alveolar tissue.
235 The carcinoma shown in Figure 4E occupies a single lung lobe (Fig. 4E) and has
236 disseminated into the alveolar air space (Fig. 4F) and bronchial air space (Fig. 4G). The
237 presence of tumor cells in the airspace was also observed in the right lung, which was
238 fixed without formalin injection from the bronchus, and thus is not an artifact of
239 formalin injection. Occasionally, carcinoma tumor cells metastasized to other lung lobes
240 (intrapulmonary metastasis) (Fig. 4H). There were no differences in the histological
241 characteristics of these tumors due to 2-BP exposure.

242 There was a statistically significant increase in the development of
243 bronchiolo-alveolar carcinomas and total lung tumors in male mice exposed to 2-BP
244 and in the development of total lung tumors in female mice exposed to 2-BP (Peto's
245 trend test).

246 In addition, there was a statistically significant increase in the occurrence of
247 total hemangiogenic tumors in the subcutaneous tissue of males and malignant
248 lymphomas in the lymph node and all-sites of females (Peto's trend test). As with the
249 lung tumors, there were no differences in the histological characteristics of these tumors
250 due to 2-BP exposure.

251 These results indicate that 2-BP is carcinogenic in male and female rasH2 mice
252 exposed to 2-BP by inhalation.

253

254

255 **Reproductive toxicity of 2-BP in rasH2 mice**

256

257 Previous reports have shown that 2-BP is toxic to the testis ¹⁰ and ovary ¹⁴ and to fetal
258 development ³³ in rodents. Therefore, we examined the toxicity of 2-BP to reproductive

259 organs in male and female rasH2 mice. At necropsy, small testes were observed in 1
260 male exposed to 200 ppm and in 24 males exposed to 600 ppm, but not in the control
261 males. A summary of the effect of 2-BP on the testes and ovaries is shown in Fig. 5, and
262 absolute and relative weights of various organs are shown in Tables S1 and S2. In male
263 testes, there was a marked and statistically significant concentration-dependent
264 reduction in the testicular weight of 2-BP exposed mice (Fig. 5A, B).
265 Histopathologically, there was a decrease/loss of germ cells and spermatozoa in the
266 seminiferous tubules of the testes and an increase in Sertoli cells and Leydig cells (Fig.
267 5E). Furthermore, consistent with the histopathological changes in the testis, in the
268 epididymis, a decrease/loss of spermatozoa and an increase in cell debris were observed
269 in the head and tail regions (Fig. 5F). In particular, seminiferous tubular atrophy and
270 Leydig cell proliferation in the testis and reduced sperm with debris in the epididymis
271 were observed in all males exposed to 600 ppm. Grading of these histopathological
272 findings showed a statistically significant increase in testicular and epididymal lesions
273 (Fig. 5G, H). These results indicate that exposure to 2-BP has severe testicular toxicity
274 in male rasH2 mice.

275 A statistically significant decrease in ovarian weight was observed in female
276 ovaries in a 2-BP exposure concentration-dependent manner (Fig. 5C, D). However, the
277 decrease was mild and no histopathological changes were observed. Therefore, at the
278 concentration used in this study, 2-BP had little or no ovarian toxicity in rasH2 female
279 mice.

280

281

282 **Hematopoietic toxicity of 2-BP in rasH2 mice**

283

284 Previous reports have shown that 2-BP has hematopoietic toxicity in male and female
285 rodents. Therefore, we also examined the toxicity of 2-BP to hematopoietic organs in
286 male and female rasH2 mice. Figure 6A shows representative photographs of the bone
287 marrow in control and 600 ppm exposed mice, spleen weights are shown in Fig. 6B-E,
288 and hematologic and blood biochemistry data are shown in Tables S3 and S4.
289 Significant decreases in platelet counts were commonly observed in the male and
290 female groups exposed to more than 200 ppm and significant decreases in erythrocyte
291 counts and high MCH and MCV levels were commonly observed in the male and

292 female 600 ppm groups. However, histopathological observations of bone marrow
293 showed no change in 2-BP exposed male or female rasH2 mice (Fig. 6A). A significant
294 decrease in absolute spleen weight was observed only in the female 600 ppm exposure
295 group, but no change was observed in relative weight of the spleen in females, and no
296 change in spleen weight was observed in males (Fig. 6B-E). Histopathological
297 observations of the spleen showed no significant changes due to 2-BP exposure (Fig.
298 6F). In the bone marrow and spleen, pathological findings related to hematopoietic cells
299 showed no effect of 2-BP exposure (Fig. 6G, H). These results indicate that 2-BP did
300 not exhibit hematopoietic toxicity in male or female rasH2 mice in this study.

301

302 **Discussion**

303 In this study, we investigated various toxicological effects of systemic inhalation
304 exposure of up to 600 ppm 2-Bromopropane (2-BP) by male and female rasH2 mice.
305 The results showed a concentration-dependent increase in lung tumor development in
306 both male and female rasH2 mice, which was significant by Peto's trend test.
307 Furthermore, 2-BP was found to have testicular toxicity. This study provides the first
308 evidence that inhalation of 2-BP is carcinogenic in male and female mice and is a
309 testicular toxin in the rasH2 mouse model (Fig. 7).

310 The reported incidence of total lung tumors (adenomas plus carcinomas) in the
311 lungs of control rasH2 mice from the breeding colony established in 2018 at CLEA
312 Japan is approximately 7 - 20% ³⁴. In the present study, the total lung tumor incidence
313 in the control groups were 3/25 (12%) in males and 4/25 (16%) in females, which is
314 comparable to the background total lung tumor incidence reported by CLEA Japan. In
315 addition, the histopathological features of the lung tumors observed in this study were
316 not qualitatively altered by 2-BP exposure. Therefore, we can conclude that the increase
317 in tumorigenesis in the lungs of rasH2 mice was caused by inhalation exposure to 2-BP.

318 The mechanism of 2-BP carcinogenesis remains to be investigated in future studies.
319 1-Bromopropane (1-BP), an alkane bromide with a chemical structural formula similar
320 to that of 2-BP, is also carcinogenic and was classified as Group 2B (possibly
321 carcinogenic to humans) by IARC in 2016 ^{35,36,37}. While the carcinogenic mechanism of
322 1-BP has not been fully elucidated, it has been considered to be a nongenotoxic
323 carcinogen based on negative *in vitro* and *in vivo* mutagenicity studies ^{36,38}. In the IARC
324 Monograph 115, evaluation of the mechanisms of carcinogenesis is based on the "key

325 characteristics of carcinogens" proposed by Smith *et al.*³⁹. There is strong evidence that
326 1-BP is electrophilic or can be metabolically activated and induces oxidative stress,
327 chronic inflammation, and is immunosuppressive³⁶. It is possible that the mechanisms
328 of carcinogenesis of 2-BP may have similarities to those of 1-BP, however, this remains
329 to be determined in future studies.

330 As noted above, 1-BP is considered to be a nongenotoxic carcinogen. Maeng *et al.*,
331 1997,¹⁹ reported that 2-BP was mutagenic in *Salmonella typhimurium* TA100 and
332 TA1535, but that mutagenicity using *Escherichia coli* WP2 uvrA and chromosomal
333 aberration tests using Chinese hamster lung cells were negative. Furthermore,
334 micronuclei were not increased in experiments in which 2-BP was administered
335 intraperitoneally to F344 rats at doses up to 500 mg/kg BW once daily for 28 days¹⁹.
336 Therefore, the mutagenicity of 2-BP remains to be determined. In order to confirm
337 mutagenicity as a carcinogenic mechanism of 2-BP, the results of *in vivo* mutagenicity
338 assays using gpt delta mice, and using organs in which a cancer develops are needed
339⁴⁰⁻⁴².

340 Based on previous reports, 2-BP has been shown to have numerous testicular toxic
341 effects in humans and rats. Decreased sperm counts and decreased active sperm rates
342 have been observed in male workers exposed to a 2-BP cleaning solution at an
343 electronic factory in South Korea^{2,3}. A report on the effect of exposure to low
344 concentrations of 2-BP at a 2-BP manufacturing plant also suggested the possibility that
345 exposure to 2-BP resulted in decreased sperm count and motility⁴³. Moreover, testicular
346 toxicity has been observed in various experiments in which rats were exposed to 2-BP
347 at concentrations up to 3000 ppm by inhalation^{5,44}, intraperitoneal administration of up
348 to 500 mg/kgBW⁷, oral administration of up to 3.5 g/kgBW/day¹⁰, and subcutaneous
349 administration of up to 1800 mg/kgBW⁴⁵. It has been reported that the target cells of
350 2-BP in the testis are spermatogonia, and that apoptosis is induced via Bcl2 family
351 genes and the Fas signaling system^{11,12,46,47}. Consistent with these results, in the present
352 study, dramatic testicular atrophy was observed in male mice exposed to 600 ppm 2-BP,
353 indicating that 2-BP is a potent testicular toxicant in rasH2 mice. In contrast to the
354 effects on the testes, exposure to 2-BP resulted in a significant, but mild,
355 concentration-dependent decrease in ovarian weight, but no histopathological changes
356 were observed in the ovaries. Therefore, it was determined that no histological ovarian

357 toxicity was observed in rasH2 female mice in the present study at any of the exposure
358 concentrations.

359 In workers exposed to 2-BP, hematopoietic toxicity with anemia as the symptom
360 has been reported ^{2,3,43}. Based on these reports, we evaluated the hematopoietic toxicity
361 of 2-BP exposure in rasH2 mice. Analysis of peripheral blood samples at autopsy
362 revealed that a significant decrease in erythrocyte count was observed in the 600 ppm
363 groups of male and female rasH2 mice. However, no anemia symptoms were observed,
364 and histopathological analysis of bone marrow and spleen showed no effects of 2-BP
365 exposure. Based on these results, it was concluded that 2-BP did not exhibit
366 hematopoietic toxicity histologically in the present study.

367 In the present study we identified 2-BP as a potential carcinogen. However, the
368 use of the rasH2 mouse model did not allow us to elucidate the details of the target
369 organs or the mechanisms of carcinogenesis in the mouse. In addition, a 2-year
370 carcinogenicity study in rats, another rodent species, is needed to ascertain the
371 carcinogenicity of 2-BP in test animals and potentially in humans. We are currently in
372 the process of compiling the results of a carcinogenicity study of systemic inhalation
373 exposure to 2-BP in F344 rats.

374

375 **Conclusions**

376 In this study, various toxic effects of 2-Bromopropane (2-BP), including carcinogenicity,
377 were investigated in male and female rasH2 mice exposed by whole-body inhalation to
378 67, 200 and 600 ppm. The results showed a concentration-dependent increase in lung
379 tumor development in male and female rasH2 mice, and this increase was significant by
380 Peto's trend test. Furthermore, in male rasH2 mice, 2-BP was found to be testicular
381 toxin. This study is the first to demonstrate that 2-BP is carcinogenic in male and female
382 mice and is a testicular toxin in male mice in the rasH2 mouse model. Therefore, our
383 results identify 2-BP as a potential carcinogen and demonstrate that additional
384 carcinogenic studies on 2-BP need to be carried out. This will provide important
385 information for the IARC working group in evaluating the carcinogenicity of 2-BP.

386

387 **Data availability**

388 The datasets used during the current study are available from the corresponding author
389 on reasonable request.

390

391

392 **References:**

- 393 1. Environment, U. N. About Montreal Protocol. *Ozonaction*
394 <http://www.unep.org/ozonaction/who-we-are/about-montreal-protocol> (2018).
- 395 2. Kim, Y. *et al.* Hematopoietic and reproductive hazards of Korean electronic
396 workers exposed to solvents containing 2-bromopropane. *Scand J Work Environ Health*
397 **22**, 387–391 (1996).
- 398 3. Park, J.-S. *et al.* An Outbreak of Hematopoietic and Reproductive Disorders
399 Due to Solvents Containing 2-Bromopropane in an Electronic Factory, South Korea:
400 Epidemiological Survey. *Journal of Occupational Health* **39**, 138–143 (1997).
- 401 4. Lim, C. H. *et al.* Effects of 2-bromopropane on the female reproductive
402 function in Sprague-Dawley rats. *Ind Health* **35**, 278–284 (1997).
- 403 5. Ichihara, G. *et al.* Testicular and Hematopoietic Toxicity of 2-Bromopropane,
404 a Substitute for Ozone Layer-Depleting Chlorofluorocarbons. *Journal of Occupational*
405 *Health* **39**, 57–63 (1997).
- 406 6. Nakajima, T. *et al.* 2-Bromopropane-Induced Hypoplasia of Bone Marrow in
407 Male Rats. *Journal of Occupational Health* **39**, 228–233 (1997).
- 408 7. Yu, I. J. *et al.* Reproductive toxicity of 2-bromopropane in Sprague Dawley
409 rats. *Scand J Work Environ Health* **23**, 281–288 (1997).
- 410 8. Takeuchi, Y., Ichihara, G. & Kamijima, M. A Review on Toxicity of
411 2-Bromopropane: Mainly on its Reproductive Toxicity. *Journal of Occupational Health*
412 **39**, 179–191 (1997).
- 413 9. Nakajima, T. *et al.* Histopathologic Findings of Bone Marrow Induced by
414 2-Bromopropane in Male Rats. *Journal of Occupational Health* **39**, 81–82 (1997).
- 415 10. Son, H. Y. *et al.* Effects of 2-bromopropane on spermatogenesis in the
416 Sprague-Dawley rat. *Reprod Toxicol* **13**, 179–187 (1999).
- 417 11. Omura, M., Romero, Y., Zhao, M. & Inoue, N. Histopathological Changes of
418 the Testis in Rats Caused by Subcutaneous Injection of 2-Bromopropane. *Journal of*
419 *Occupational Health* **39**, 234–239 (1997).
- 420 12. Omura, M., Zhao, M., Romero, Y. & Inoue, N. Toxicity of 2-Bromopropane
421 on Spermatogonia and Spermatocyte. *Journal of Occupational Health* **39**, 1–2 (1997).
- 422 13. Omura, M., Romero, Y., Zhao, M. & Inoue, N. Histopathological evidence
423 that spermatogonia are the target cells of 2-bromopropane. *Toxicol Lett* **104**, 19–26
424 (1999).

425 14. Kamijima, M. *et al.* Ovarian Toxicity of 2-Bromopropane in the
426 Non-Pregnant Female Rat. *Journal of Occupational Health* **39**, 144–149 (1997).

427 15. Kamijima, M. *et al.* Disruption in Ovarian Cyclicity Due to 2-Bromopropane
428 in the Rat. *Journal of Occupational Health* **39**, 3–4 (1997).

429 16. Yu, X. *et al.* 2-Bromopropane causes ovarian dysfunction by damaging
430 primordial follicles and their oocytes in female rats. *Toxicol Appl Pharmacol* **159**,
431 185–193 (1999).

432 17. Sekiguchi, S. & Honma, T. Influence of 2-bromopropane on reproductive
433 system--2-bromopropane inhibits forced ovulation in mice. *Ind Health* **36**, 297–299
434 (1998).

435 18. Sekiguchi, S., Asano, G., Suda, M. & Honma, T. Influence of
436 2-bromopropane on reproductive system--short-term administration of 2-bromopropane
437 inhibits ovulation in F344 rats. *Toxicol Ind Health* **16**, 277–283 (2000).

438 19. Maeng, S. H. & Yu, I. J. Mutagenicity of 2-bromopropane. *Ind Health* **35**,
439 87–95 (1997).

440 20. Morton, D., Alden, C. L., Roth, A. J. & Usui, T. The Tg rasH2 mouse in
441 cancer hazard identification. *Toxicol Pathol* **30**, 139–146 (2002).

442 21. Cohen, S. M. Alternative models for carcinogenicity testing: weight of
443 evidence evaluations across models. *Toxicol Pathol* **29 Suppl**, 183–190 (2001).

444 22. MacDonald, J. *et al.* The utility of genetically modified mouse assays for
445 identifying human carcinogens: a basic understanding and path forward. The
446 Alternatives to Carcinogenicity Testing Committee ILSI HESI. *Toxicol Sci* **77**, 188–194
447 (2004).

448 23. Yamamoto, S. *et al.* Validation of transgenic mice carrying the human
449 prototype c-Ha-ras gene as a bioassay model for rapid carcinogenicity testing. *Environ
450 Health Perspect* **106 Suppl 1**, 57–69 (1998).

451 24. Yamamoto, S. *et al.* Rapid induction of more malignant tumors by various
452 genotoxic carcinogens in transgenic mice harboring a human prototype c-Ha-ras gene
453 than in control non-transgenic mice. *Carcinogenesis* **17**, 2455–2461 (1996).

454 25. Takeda, T. *et al.* Dose–response relationship of pulmonary disorders by
455 inhalation exposure to cross-linked water-soluble acrylic acid polymers in F344 rats.
456 *Particle and Fibre Toxicology* **19**, 27 (2022).

457 26. Yamano, S. *et al.* No evidence for carcinogenicity of titanium dioxide
458 nanoparticles in 26-week inhalation study in rasH2 mouse model. *Sci Rep* **12**, 14969
459 (2022).

460 27. Yamano, S. *et al.* Pulmonary dust foci as rat pneumoconiosis lesion induced
461 by titanium dioxide nanoparticles in 13-week inhalation study. *Particle and Fibre*
462 *Toxicology* **19**, 58 (2022).

463 28. OECD. *Test Guideline No. 451: Carcinogenicity Studies*. (Organisation for
464 Economic Co-operation and Development, 2018).

465 29. OECD Series on Principles of Good Laboratory Practice (GLP) and
466 Compliance Monitoring - OECD.
467 <https://www.oecd.org/chemicalsafety/testing/oecdseriesonprinciplesofgoodlaboratorypracticeglpandcompliancemonitoring.htm>.

468 30. OECD. *Test Guideline No. 412: Subacute Inhalation Toxicity: 28-Day Study*.
469 (Organisation for Economic Co-operation and Development, 2018).

470 31. Renne, R. *et al.* Proliferative and nonproliferative lesions of the rat and mouse
471 respiratory tract. *Toxicol Pathol* **37**, 5S-73S (2009).

472 32. McLafferty, F.W. Wiley Registry of Mass Spectral Data, 6th Edition. *Wiley*
473 *Science Solutions* (2000).

474 33. Kim, J.-C. *et al.* Effects of prenatal exposure to the environmental pollutant
475 2-bromopropane on embryo-fetal development in rats. *Toxicology* **196**, 77–86 (2004).

476 34. Tsutsumi, H. *et al.* rasH2 mouse: reproducibility and stability of
477 carcinogenicity due to a standardized production and monitoring system. *Journal of*
478 *Toxicologic Pathology* **35**, 19–24 (2022).

479 35. National Toxicology Program. Toxicology and carcinogenesis studies of
480 1-bromopropane (CAS No. 106-94-5) in F344/N rats and B6C3F1 mice (inhalation
481 studies). *Natl Toxicol Program Tech Rep Ser* 1–190 (2011).

482 36. IARC Monographs Volume 115: Evaluation of some industrial chemicals –
483 IARC.
484 <https://www.iarc.who.int/news-events/iarc-monographs-volume-115-evaluation-of-some-industrial-chemicals/>.

485 37. Grosse, Y. *et al.* Carcinogenicity of some industrial chemicals. *The Lancet*
486 *Oncology* **17**, 419–420 (2016).

489 38. Stelljes, M., Young, R. & Weinberg, J. 28-Day somatic gene mutation study
490 of 1-bromopropane in female Big Blue® B6C3F1 mice via whole-body inhalation:
491 Support for a carcinogenic threshold. *Regul Toxicol Pharmacol* **104**, 1–7 (2019).

492 39. Smith, M. T. *et al.* Key Characteristics of Carcinogens as a Basis for
493 Organizing Data on Mechanisms of Carcinogenesis. *Environ Health Perspect* **124**,
494 713–721 (2016).

495 40. Nohmi, T. *et al.* A new transgenic mouse mutagenesis test system using Spi-
496 and 6-thioguanine selections. *Environ Mol Mutagen* **28**, 465–470 (1996).

497 41. Nohmi, T., Suzuki, T. & Masumura, K. Recent advances in the protocols of
498 transgenic mouse mutation assays. *Mutat Res* **455**, 191–215 (2000).

499 42. Nohmi, T. & Masumura, K. Molecular nature of intrachromosomal deletions
500 and base substitutions induced by environmental mutagens. *Environ Mol Mutagen* **45**,
501 150–161 (2005).

502 43. Ichihara, G. *et al.* Occupational health survey on workers exposed to
503 2-bromopropane at low concentrations. *Am J Ind Med* **35**, 523–531 (1999).

504 44. Ichihara, G. *et al.* Testicular Toxicity of 2-Bromopropane. *Journal of
505 Occupational Health* **38**, 205–206 (1996).

506 45. Wu, X. *et al.* Male reproductive toxicity and beta-luteinizing hormone gene
507 expression in sexually mature and immature rats exposed to 2-bromopropane. *Hum Exp
508 Toxicol* **18**, 683–690 (1999).

509 46. Li, G.-X., Kang, K.-S. & Lee, Y.-S. 2-Bromopropane Induced Germ Cell
510 Apoptosis during Spermatogenesis in Male Rat. *Journal of Veterinary Medical Science*
511 **63**, 373–382 (2001).

512 47. Yu, X. *et al.* Involvement of Bcl-2 family genes and Fas signaling system in
513 primary and secondary male germ cell apoptosis induced by 2-bromopropane in rat.
514 *Toxicol Appl Pharmacol* **174**, 35–48 (2001).

515

516

517 **Acknowledgments:**

518 We wish to thank Dr. David B. Alexander of Nanotoxicology project, Nagoya City
519 University Graduate School of Medicine for his insightful comments and English
520 editing. Finally, we would like to express our heartfelt gratitude to all the Japan
521 Bioassay Research Center staff.

522

523 **Funding**

524 The present studies were contracted and supported by the Ministry of Health, Labour
525 and Welfare of Japan.

526

527 **Author information**

528 **Affiliation**

529 **Japan Bioassay Research Center, Japan Organization of Occupational Health and
530 Safety, Kanagawa, Japan**

531 Yuko Goto, Arata Saito, Kenji Takanobu, Hideki Senoh, Misae Saito, Yumi Umeda,
532 Shotaro Yamano

533

534 **Contributions**

535 A.S. performed the experiments and analyzed the data. M. S., K. T., H. S. and Y. U.
536 assisted with animal experiment including exposure animal care and sacrifices. K.T.,
537 H.S., Y.U. and S.Y. performed histopathological diagnoses. Y.G., S.Y. and Y.U. drafted
538 and revised the manuscript. All authors approved the manuscript as submitted.

539

540 **Corresponding author**

541 Shotaro Yamano

542

543 **Ethics declarations**

544 **Competing interests**

545 The authors declare no competing interests.

546

547

548 **Figure legends**

549 **Fig. 1**

550 **Characterization of 2-bromopropane (2-BP).**

551 A: General properties. B: Mass Spectrum.

552

553 **Fig. 2**

554 **Survival curves, Body Weight curves, and Food Intake of rasH2 mice exposed by**
555 **inhalation to 2-BP (67, 200, or 600 ppm, 6 hours/day, 5 days/week, 26 weeks).**

556 A, C, E: Male mice. B, D, F: Female mice.

557

558 **Fig. 3**

559 **Changes in the final body weights of rasH2 mice following inhalation exposure to**
560 **2-BP (67, 200, or 600 ppm, 6 hours/day, 5 days/week, 26 weeks).**

561 Final body weights in males (A) and females (B) were measured at sacrifice. Dunnett's
562 multiple comparison test was used to compare weights with the age-matched control (0
563 ppm) groups: ** $p<0.01$ and *** $p<0.001$.

564

565 **Fig. 4**

566 **Representative microscopic photographs of the male rasH2 mouse lung tumors.**

567 Bronchiolo-alveolar adenoma (A, B, C, D) and carcinoma (E, F, G, H).

568

569 **Fig. 5**

570 **Representative reproductive organ toxicity of rasH2 mice following inhalation**
571 **exposure to 2-BP (67, 200, or 600 ppm, 6 hours/day, 5 days/week, 26 weeks).**

572 Testis organ weights (A, B) and ovary organ weights (C, D) are shown. Loupe images
573 of testes exposed to 2-BP and magnified images (E). Typical histology of the head and
574 tail of the epididymis (F). Summary of the results of various pathological findings of the
575 testes (G) and epididymis (H) observed after 2-BP exposure. Dunnett's multiple
576 comparison test was used to compare the testes and ovary weights with age-matched
577 control (0 ppm) groups: ** $p<0.01$ and *** $p<0.001$.

578 Significant difference: *, $p<0.05$; **, $p<0.01$; ***, $p<0.001$ by Chi square test compared
579 with the respective controls for histological grading.

580

581 **Fig. 6**

582 **Representative hematopoietic organs toxicity of rasH2 mice following inhalation**
583 **exposure to 2-BP (67, 200, or 600 ppm, 6 hours/day, 5 days/week, 26 weeks).**

584 Typical histology of the bone marrow (A). Spleen weights of males (B, C) and females
585 (D, E). Typical histology of the spleen (F). Summary of the results of various
586 pathological findings of the bone marrow (G) and spleen (H) observed after 2-BP
587 exposure. Dunnett's multiple comparison test was used to compare the spleen weights
588 with the age-matched control (0 ppm) groups: * $p<0.05$.

589

590 **Fig. 7**

591 **Graphical abstract of this study.**

592

593

Fig. 1

A

Material	2-Bromopropane (2-BP)
Formula	$\begin{array}{c} \text{H} & \text{Br} & \text{H} \\ & & \\ \text{H} - \text{C} & - \text{C} & - \text{C} - \text{H} \\ & & \\ \text{H} & \text{H} & \text{H} \end{array}$
Molecular weight	122.99
CAS No.	75-26-3
Appearance	Colorless liquid
Specific gravity	1.3097
Boiling point (°C)	59.5
Vapor pressure (Pa)	28798 (25°C)
Purity (%)	99.9

B

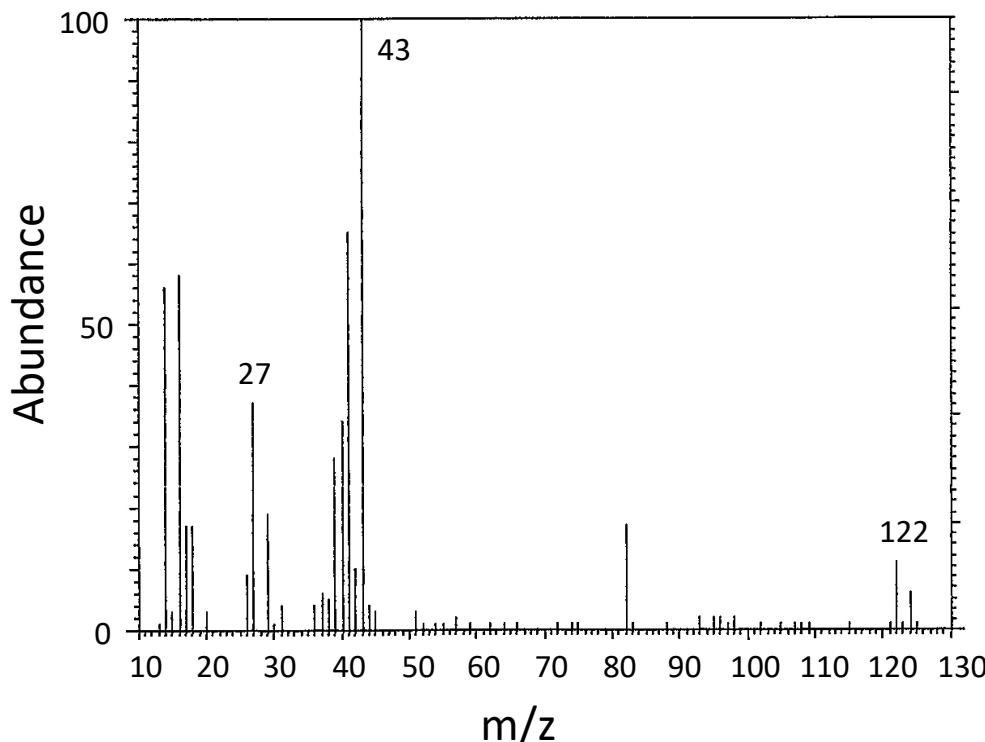


Fig. 2

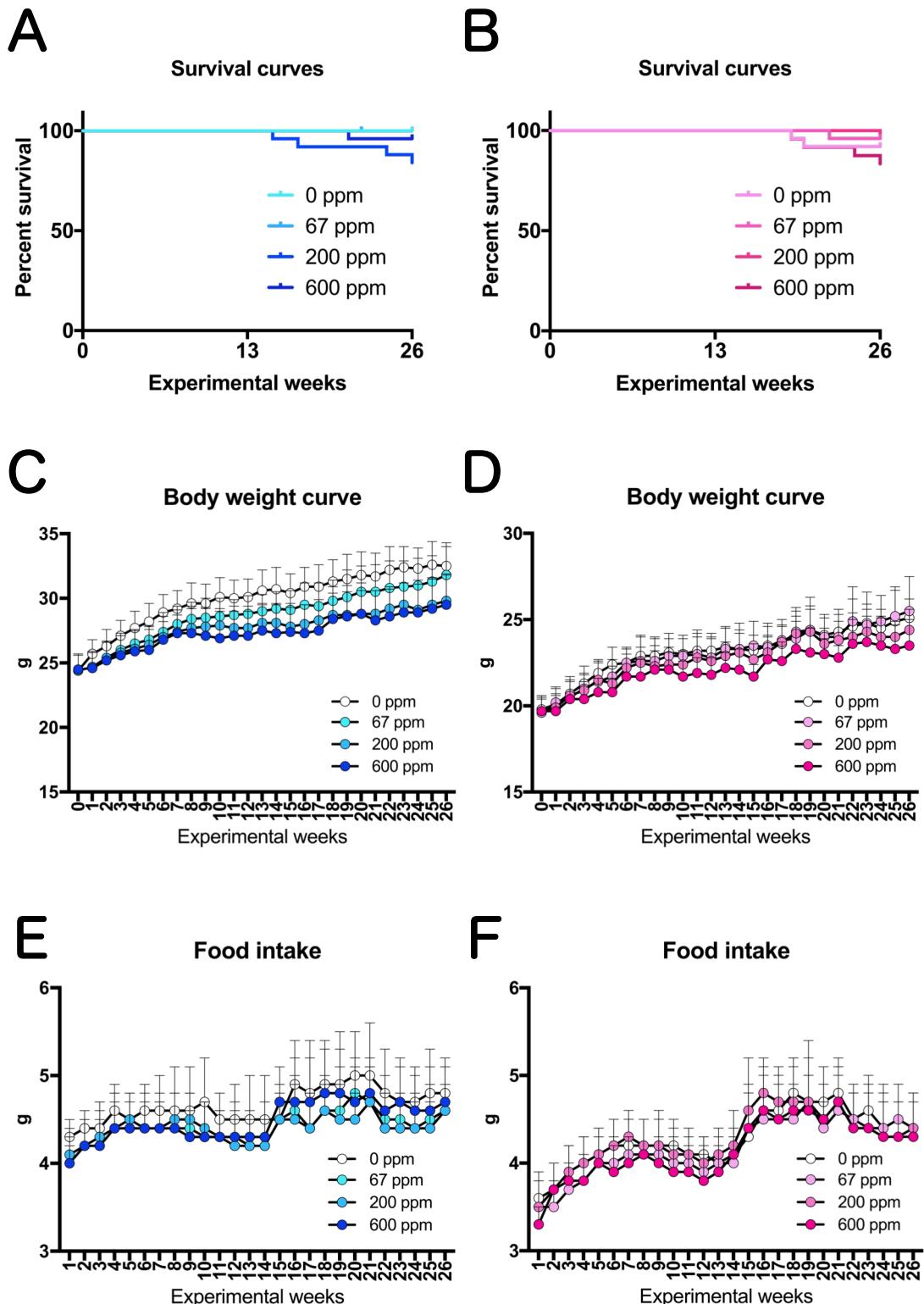


Fig. 3

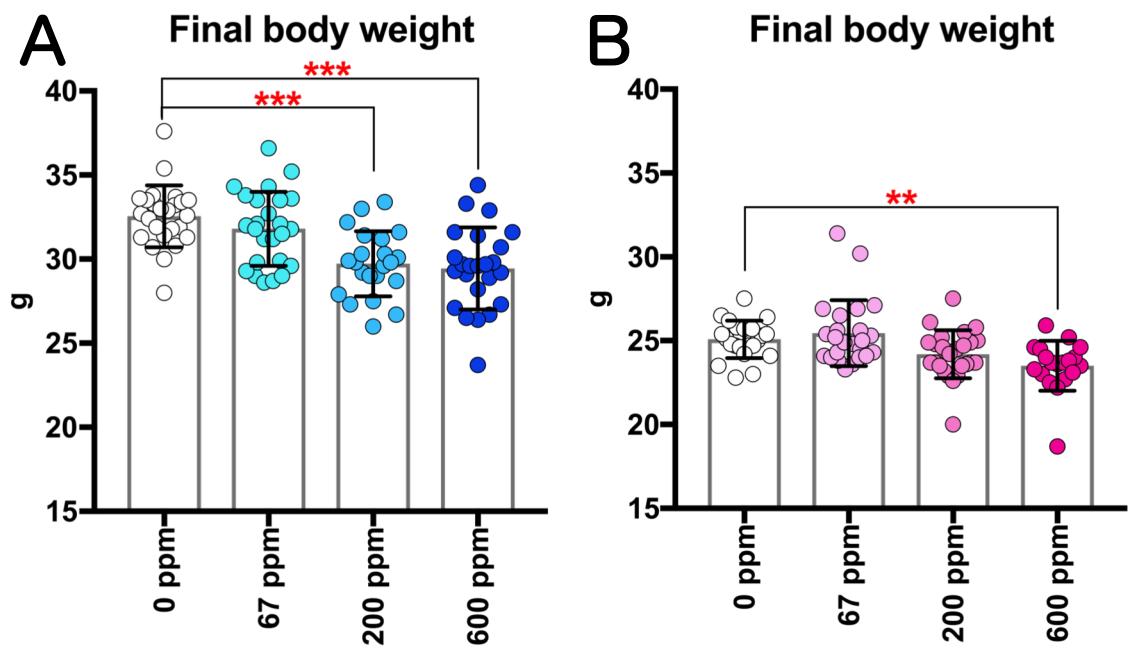
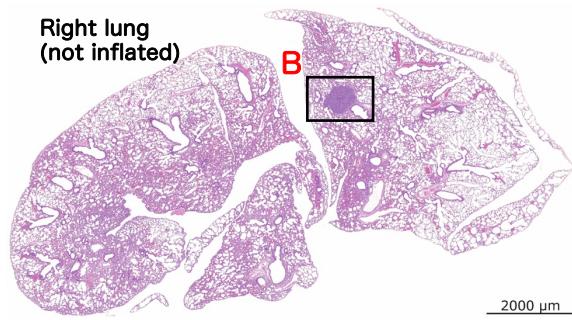



Fig. 4

A

Bronchiolo-alveolar adenoma
600 ppm, male

E

Bronchiolo-alveolar carcinoma
600 ppm, female

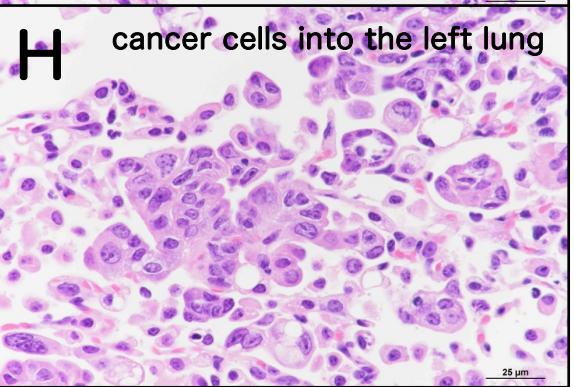
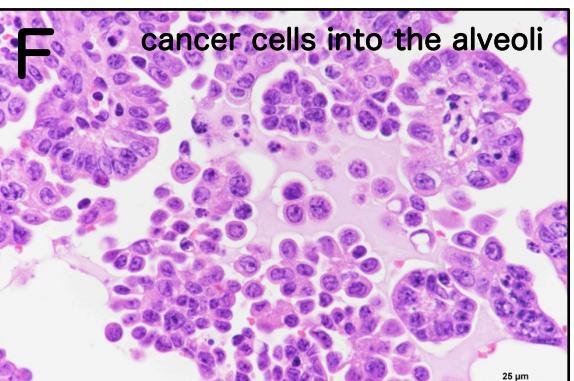
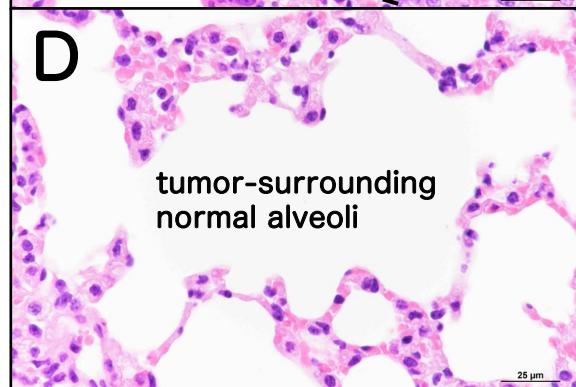
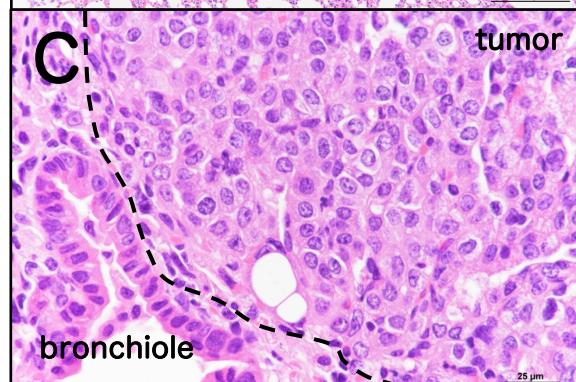
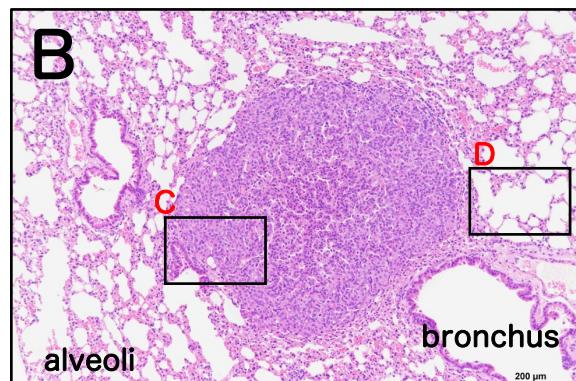
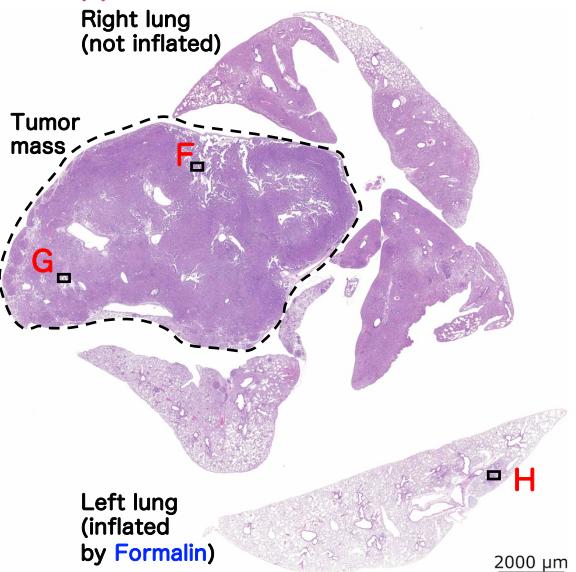
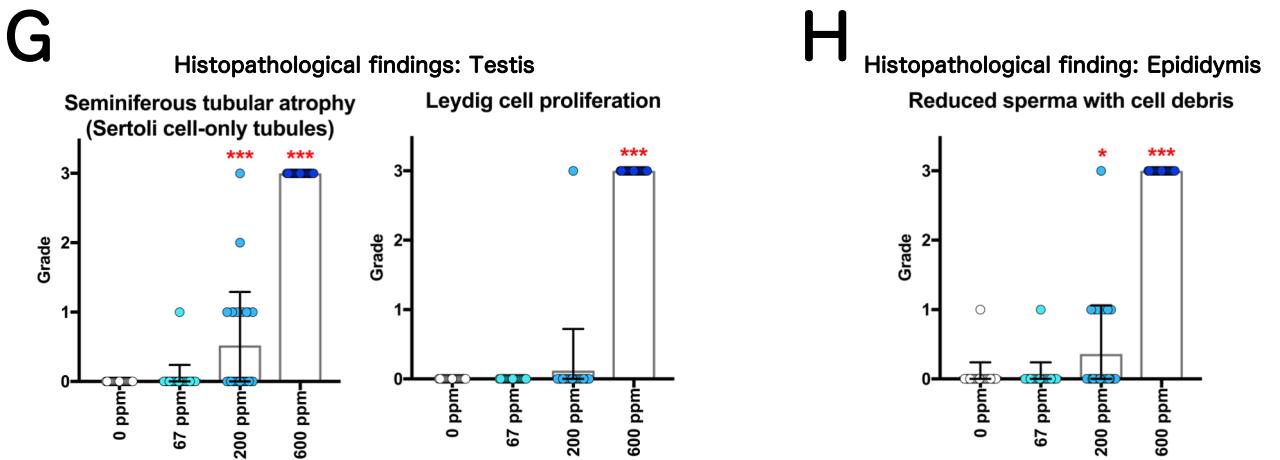
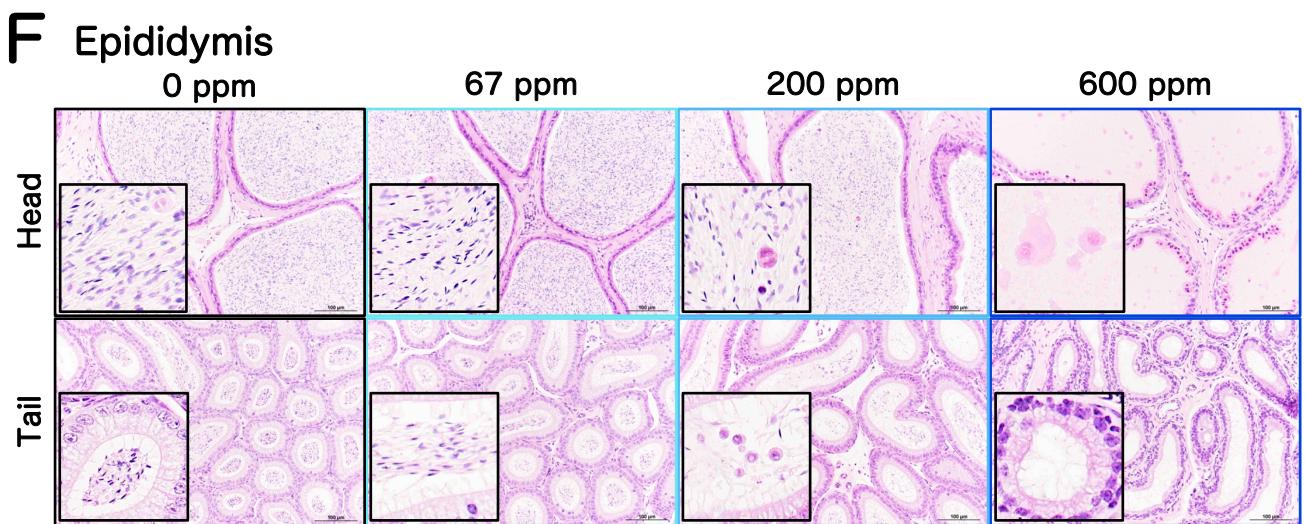
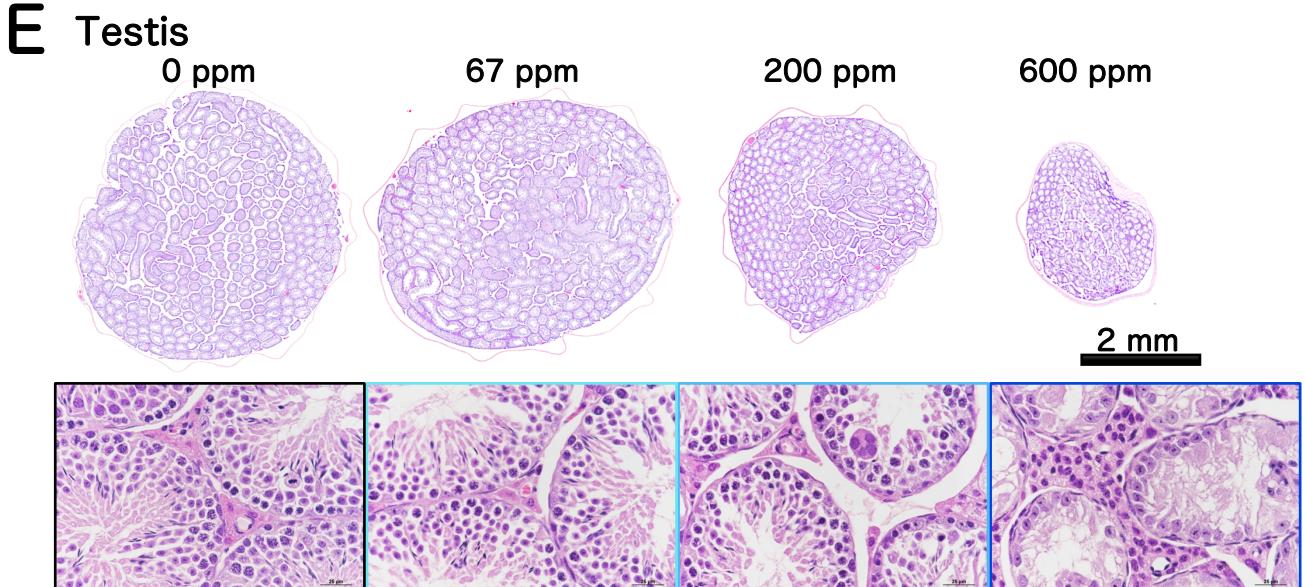
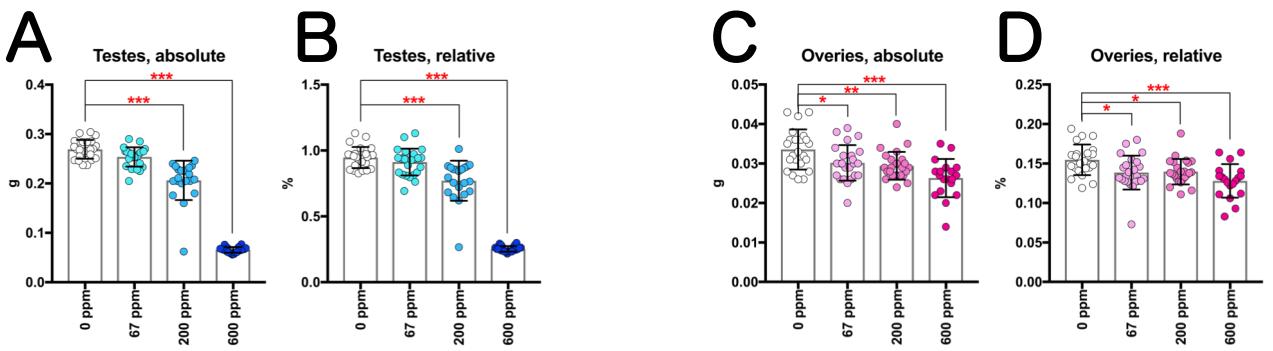
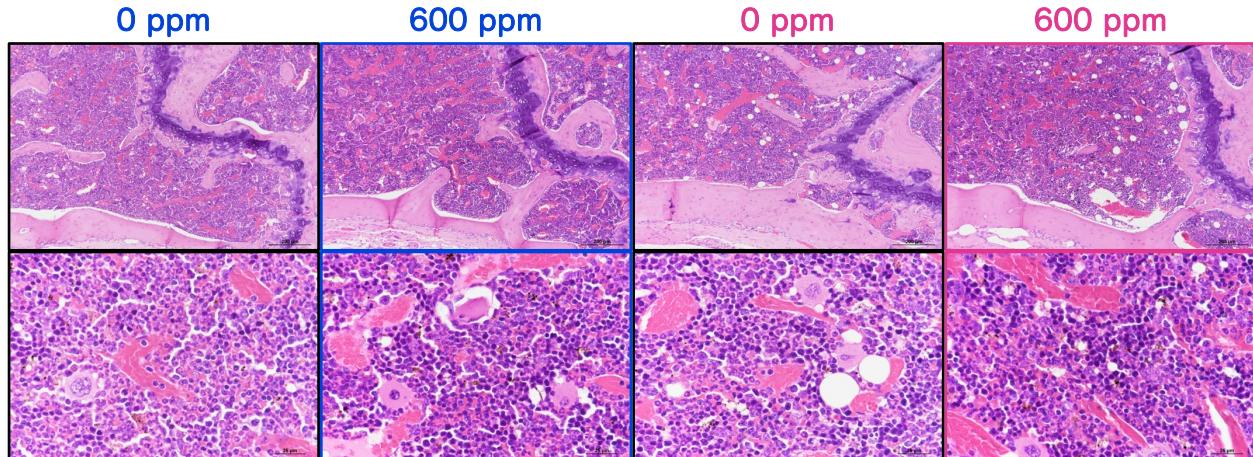
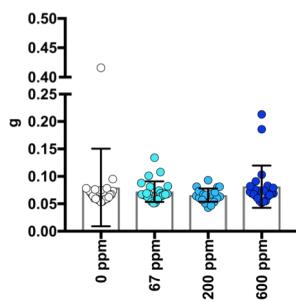
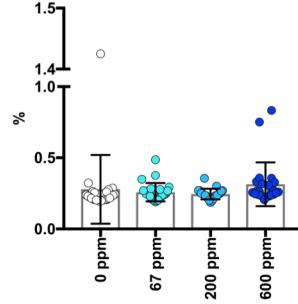







Fig. 5

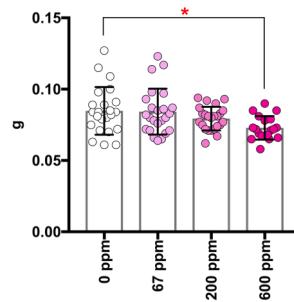







Fig. 6

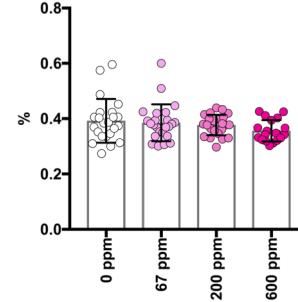
A Bone marrow


B

Spleen, absolute


C

Spleen, relative

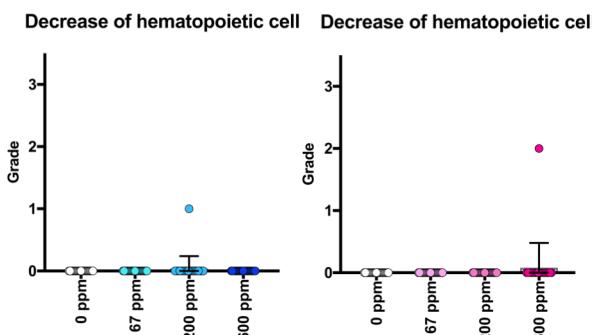

D

Spleen, absolute



E

Spleen, relative



F Spleen

G

Histopathological finding: Bone marrow

H

Histopathological finding: Spleen

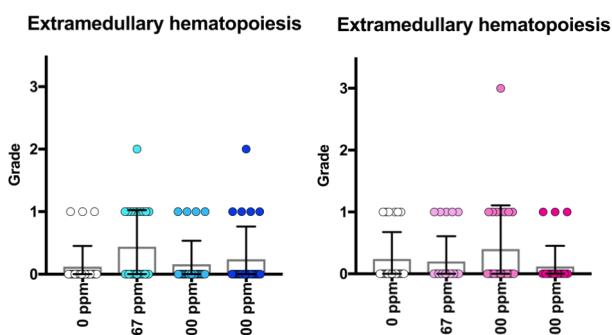
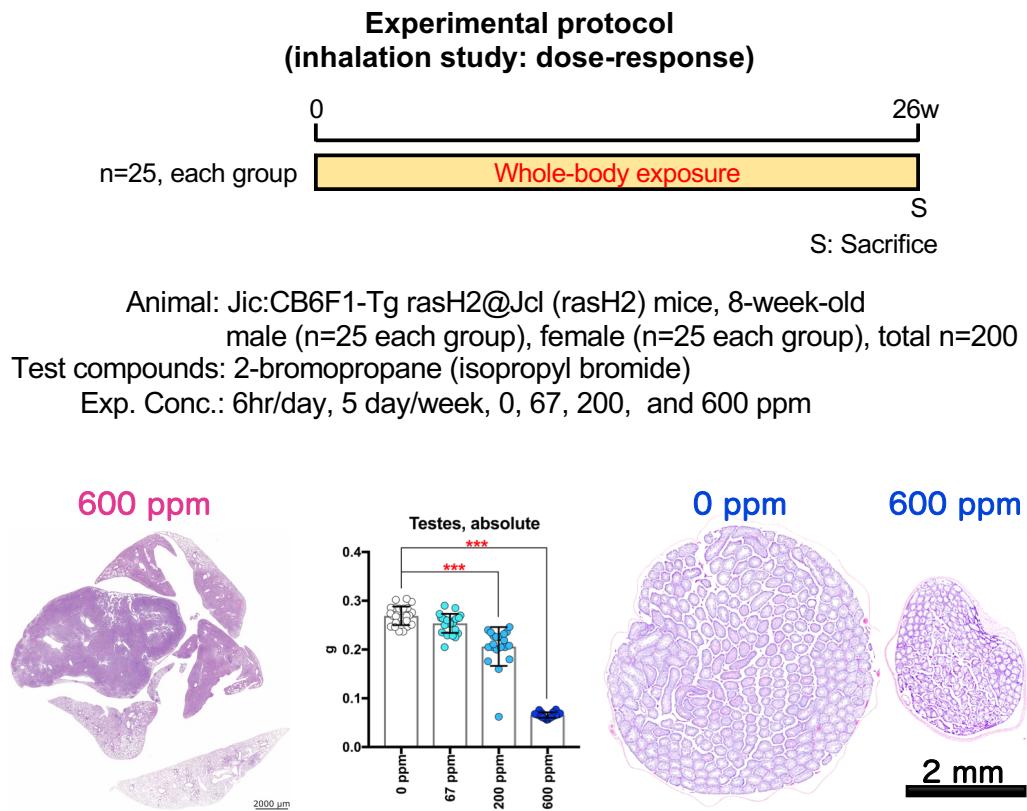



Fig. 7

Summary of results in this study

	Carcinogenicity	Reproductive toxicity	Hematopoietic toxicity
Male	Detected (Some evidence)	Detected (testis)	Not detected in histology
Female	Detected (Some evidence)	Not detected in histology	Not detected in histology

Table 1 Incidence of the histopathological findings of neoplastic lesions in the all organs.

	Exposure concentration (ppm) No. of animals Examined	Male					Female				
		0 25	67 25	200 25	600 25	trend test	0 25	67 25	200 25	600 25	trend test
Histopathological findings											
Lung	Bronchiolo-alveolar adenoma	3	3	2	5		2	1	5	4	
	Bronchiolo-alveolar carcinoma	0	1	3	4	#	2	2	2	5	
	total tumor	3	4	5	8	#	4	3	7	8	#
Skin	Squamous cell papilloma	0	0	0	1		0	0	0	0	
Lymphatic vessel	Lymphangioma	0	0	0	1		1	0	0	0	
Oral cavity	Squamous cell carcinoma	0	0	1	0		0	0	0	0	
Forestomach	Squamous cell papilloma	0	0	0	0		0	1	1	1	
	Squamous cell carcinoma	0	0	0	1		0	0	0	0	
Liver	Hepatocellular adenoma	0	1	1	0		0	0	0	0	
Harderian gland	Adenoma	0	0	1	0		1	0	0	1	
Urinary bladder	Urothelial papilloma	0	0	0	0		1	0	0	0	
Lymph node	Malignant lymphoma	0	0	2	0		0	0	0	2	#
Thymus	Malignant lymphoma	0	1	0	1		1	0	0	2	
All-sites	Malignant lymphoma	0	1	2	1		1	0	0	4	##
Subcutis	Hemangioma	0	0	0	1		0	1	0	0	
	Hemangiosarcoma	0	0	1	1		0	0	0	0	
	total tumor	0	0	1	2	#	0	1	0	0	
Spleen	Hemangiosarcoma	1	1	2	2		1	3	1	0	
Bone marrow	Hemangioma	0	0	0	0		1	0	0	0	
Nasal cavity	Hemangiosarcoma	0	0	0	0		0	0	1	0	
Vagina	Hemangiosarcoma						0	0	2	0	
All-sites	Hemangioma	0	0	0	1		1	1	0	0	
	Hemangiosarcoma	1	1	3	3		1	3	3	0	
	Total tumor	1	1	3	4		2	4	3	0	

#: p<0.05 and ##: p<0.01 by Peto trend test.