

1 **Megacolonies: an alternative social organization in anemonefishes?**

2 **Short title: Anemonefish megacolonies**

3

4 Manon Mercader¹, Jann Zwahlen¹, Kina Hayashi¹, Hiroki Takamiyagi¹, Yung-Che Tseng², Hai-
5 Thanh T. Nguyen³, Keishu Asada⁴, Jérôme Sowinski⁵, James Reimer^{6,7,*}, David Lecchini^{8,9,*} and
6 Vincent Laudet^{1,2,*}

7

8 ¹Marine Eco-Evo-Devo unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna
9 son, Okinawa 904-0495 Japan

10 ² Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10,
11 Dawen Rd, Jiaoxi Township, I-Lan 262, Taiwan

12 ³ Department of Biology, Institute for Biotechnology and Environment, Nha Trang University, 02
13 Nguyen Đinh Chieu, Nha Trang, Khanh Hoa, Viet Nam

14 ⁴ Computational Neuroethology Unit, Okinawa Institute of Science and Technology, 1919-1
15 Tancha, Onna son, Okinawa 904-0495 Japan

16 ⁵ Espace Bleu, Vaitape, 98730 Bora-Bora, French Polynesia

17 ⁶ Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara,
18 Okinawa 903-0213, Japan

19 ⁷Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa
20 903-0213, Japan

21 ⁸PSL Research University: EPHE-UPVD-CNRS-UAR 3278 CRIOBE BP 1013, 98729 Papetoai, Moorea,
22 French Polynesia.

23 ⁹ Laboratoire d'Excellence "CORAIL", 66100 Perpignan, France

24

25 * Equal last and corresponding authors: zoantharia1973@gmail.com (JM),

26 david.lecchini@ephe.psl.eu (DL), vincent.laudet@oist.jp (VL)

27

28 **Abstract**

29 Anemonefish are iconic examples of marine fishes living in mutualistic symbiosis with sea
30 anemones. In a given sea anemone, the anemonefishes have a stereotyped social organization
31 with a dominant female, a semi-dominant male, and several juveniles. A strict size-based
32 hierarchy governs the social interactions within these colonies, with each individual differing
33 from the previous or next fish in the order by +/- 20% size. This social organization is conserved
34 across the Indo-Pacific in all 28 species of anemonefish found on any of ten giant sea anemone
35 species. We report the existence of huge "megacolonies" of up to 100 fish living in large carpets
36 of sea anemones. This alternative organization was observed for different fish and anemone
37 species in different coral reef locations (French Polynesia, Japan, Taiwan, and Vietnam). In these
38 colonies, the strict size-based hierarchy is no longer recognizable, and the level of aggressivity of
39 the different members appears lower than in "normal" colonies. These megacolonies may
40 correspond to a previously overlooked type of social organization that could be linked to host
41 availability and offer a unique opportunity to understand anemonefish's behavioral, social, and
42 hormonal plasticity.

43 **Key words:** coral reef, anemonefish, clownfish, social organization

44 **Introduction**

45 Many animal species live in societies displaying a wide range of possible organizations, from
46 stable pairs, shoals of fish, flocks of birds, or swarms of insects to the eusocial organizations that
47 exist in many insects and mammals [1–3]. Social groups organize themselves in myriad ways, and
48 these organizations impact the whole life of animals, whether at the level of reproduction, food
49 intake, or defense against predators. Studying these modes of organization, their functioning,
50 their robustness, and also their flexibility and plasticity is essential to understand the organization
51 of ecological systems and to realize how they can adapt to environmental changes and, in
52 particular, to anthropogenic stresses [4,5]. Therefore, analyzing social organizations has allowed
53 biologists to understand multiple facets of social organizations, from the mechanistic processes
54 involved to the study of ecological and evolutionary functions [6].

55

56 The study of patterns of social organization in marine animals is particularly demanding due to
57 both the difficulty of conducting long-term observations and the marine environment's temporal
58 and spatial dynamism [7]. Thanks to biologging approaches combined with intensive observation
59 programs, we now have a much better idea of the social interactions between individuals in many
60 groups of cetaceans and fish, but work until now has generally been limited to comparatively
61 large animals [8,9]. Although there are many observations suggesting social organizations and
62 elaborate behaviors for other species of marine fish, we are still far from the same understanding
63 of social organizations as has been achieved for many terrestrial animals [7]. In coral reefs, fish
64 are widely studied regarding their ecology, behavior, and social organization [10]. Within this
65 ecosystem, anemonefish form a group that has been particularly studied from this point of view.

66 In this clade of 28 species of Pomacentridae, scientists have developed a preliminary integrated
67 understanding of social organization from ecological to molecular levels (reviewed in Laudet and
68 Ravasi, 2022 [11]). Indeed, these fish, which live in mutualistic symbiosis with giant sea anemones,
69 never abandon their host sea anemone and therefore form elaborate micro-societies that can
70 relatively easily be studied at sea [10–12].

71
72 The social structure of anemonefish within their host anemone is highly organized. This
73 organization consists of a hierarchy based on size: within a colony, no individual of the same size
74 exists, and the different fish are classified in descending order of size, with an average difference
75 of 20% between each rank [13,14]. At the top of the hierarchy, a dominant female will
76 aggressively defend the colony and maintain her ascendancy over the smaller members. The
77 second individual in size is the male who will reproduce with the female and take care of the
78 eggs, aerating them, removing dead eggs, and of course, also defending them against possible
79 predators. Thus, both parents exercise parental care to allow the proper development of the eggs
80 [15]. Finally, the colony contains a variable number of sexually immature juveniles, again ranked
81 by size, forming a queue waiting for access to reproduction. If the female dies, the male
82 transforms into a female, the largest of the juveniles into a male, and each subsequent juvenile
83 gains a place in the line [14,16]. Because of this social organization, anemonefish present exciting
84 opportunities to generate new concepts and test the robustness of current theories of social
85 evolution. Organized colonies of anemonefish thus raise many questions: Why juveniles give up
86 their own reproduction for a very long time? Why do breeding adults tolerate juveniles within
87 colonies? How are conflicts between colony members resolved? (See review by Buston et al.,

88 2022, which discusses these different questions in detail[14]). Anemonefishes allow addressing
89 all these questions, which are among the major objectives of behavioral ecologists and
90 evolutionary biologists.

91
92 Many indications suggest that this social organization is conserved within all 28 species of
93 anemonefish, which associate, in a non-random way, with ten species of giant sea anemones
94 [12,17]. It is, however, still unclear if this organization can be plastic and, in particular, how
95 changes in ecological constraints could eventually lead to different organizations. By observing
96 colonies of different anemonefish species at different coral reef locations and under different
97 ecological contexts, we have observed colonies that do not obviously fit with the precise
98 organization presented above. In this paper, we describe “megacolonies”, in which the strict
99 social hierarchy based on size does not seem to operate as rigidly as in “normal” cases. Such
100 observations could provide fascinating opportunities to study the plasticity of social organizations
101 when ecological constraints vary.

102

103 **Material and Methods**

104 **Field observations**

105 Observations of alternative colony structures were done while scuba diving or snorkeling during
106 various surveys and sampling activities. When possible, the noted colonies were revisited to
107 determine the colony's structure (i.e., number of individuals (fish and anemone), fish social status,
108 and presence of other species) via Underwater Visual Census (UVC) methods [18–20].

109

110 **Study sites**

111 Bora-Bora, French Polynesia. One megacolony was observed in the lagoon of Bora-Bora (16°29'S,
112 151°44'W), French Polynesia; a volcanic island formed 3.45 to 3.10 million years ago in the
113 tropical South Pacific. The coral reefs surrounding Bora-Bora have an area of about 70 km² [21].
114 Although there are several classic *A. chrysopterus* (the only anemonefish species present in
115 French Polynesia) colonies in the area, the megacolony was discovered on a turbid sandy area in
116 the barrier reef (16°26'59.07"S; 151°44'44.46"W) in 2021 and has been monitored since.

117

118 Kagoshima, Japan. This location hosts high densities of *A. clarkii* (mainly living in *E. quadricolor*),
119 the only anemonefish species present in mainland Japan. Most of them live in “normal” colonies,
120 but several megacolonies were observed in July 2022 in Kagoshima Bay (31°22'N, 130°40'E) on
121 the southern coast of Kyushu (East China Sea). This long (about 60 km from the end to the mouth
122 of the bay) and enclosed bay is partially of volcanic origin, and two submarine calderas mainly
123 shape its shoreline, Aira Caldera in the north and Ata Caldera at the southern mouth, and formed
124 22,000 and 150,000 years ago, respectively. The bay's northern end hosts large yellowtail (*Seriola*
125 *quinqueradiata*) and amberjack (*Seriola dumerili*) fish farming facilities, and the underwater
126 substrate is mainly composed of rock and muddy bottoms, making the water often turbid. At the
127 bay's entrance, the bottom is mainly composed of rock and sand, and the water is clearer.
128 Kagoshima Bay has a warm temperate climate (water temperature varies from an average of
129 16.5°C in winter to 28.5°C in summer).

130

131 Okinawa, Japan. Okinawa Island (26°28'N, 127°50'E) is part of the Ryukyu Archipelago in southern
132 Japan. It has a humid subtropical climate. Despite its relatively high latitude, the water
133 temperature varies from an average of 20°C in winter to 28°C in summer due to the northward
134 flowing warm-water Kuroshio Current. The island is surrounded by highly diverse fringing and
135 patch reefs, but the coast is also highly modified by land reclamation [22]. Okinawan waters are
136 home to six species of anemonefish (*A. clarkii*, *A. frenatus*, *A. ocellaris*, *A. perideraion*, *A.*
137 *polymnus*, and *A. sandaracinos*) living in association with seven anemone species [23].
138 Megacolonies were observed at several spots around the island; in Oura Bay on the east coast
139 (26°33'5.48"N, 128°2'18.47"E), Atsuta Beach on the west coast (26°30'51.91"N, 127°53'45.00"E),
140 and Chinen Peninsula in the south (26°10'14.17"N, 127°49'53.47"E), all between January and
141 August 2022.

142
143 Nha Trang Bay and Van Phong Bay, Vietnam. While the coral reefs of Nha Trang Bay are well-
144 known due to a long history of research (e.g., [24,25]). They face many anthropogenic pressures
145 [26,27], as opposed to more pristine Van Phong Bay. Megacolonies were found on sand/rubble
146 areas and were observed in both bays (Nha Trang Bay, 12°10'14.04"N, 109°18'43.20"E; Van
147 Phong Bay, 12°34'15.24"N, 109°23'58.30"E) during surveys in July 2022, with field notes taken
148 along with videos and images. Water temperatures during the surveys were 27°C to 30°C.

149
150 Kueishan Island, Taiwan. Kueishan Island is located northeast of Taiwan (24°50'N, 121°57'E). The
151 island is a geologically young and active volcanic island in Taiwan, and its hydrothermal vents
152 create a unique ecosystem around the island [28–30]. Water temperature varies between 20°C

153 and 28°C in the non-vent areas [31], and patchy coral communities surround the island. The
154 megacolony was observed on a rocky bottom with a few corals at the island's eastern tip
155 (24°50'29.9"N, 121°56'17.1"E).

156

157 **Results**

158 As described above, colonies with organizations deviating from the strict social structure of
159 "normal" colonies were found in different geographical locations and environmental conditions.
160 They involved various species of anemonefish and anemones (Fig 1 and Table 1). These different
161 types of alternative organization were classified into two categories: intraspecific megacolonies
162 (i.e., composed of a large number of anemonefishes of the same species living in a large number
163 of host anemones of the same species) and interspecific megacolonies (i.e., composed of a large
164 number of anemonefishes from several species living in various species of host anemones) (Fig
165 2). Detailed examples of each type of megacolony are given below.

166

167 **Figure 1:** Geographical location of the two types of megacolonies described in this study and in
168 previous studies with their fish and anemone species compositions.

169

170 **Table 1:** Summary of the different megacolony types. * indicates mentions in the scientific
171 literature.

Location	Depth (m)	Type of megacolony	Anemone species	Number of anemones	Anemone fish species	Number of female	Number of male	Number of subordinates	Other fish species
Borar-Bora	2.5	Intraspecific	<i>H. magnifica</i>	> 50	<i>A. chrysopterus</i>	7 or 8	8 or 9	>120	<i>D. trimaculatus</i>
Kagoshima	5	Intraspecific	<i>E. quadricolor</i>	± 25	<i>A. clarkii</i>	3	4	± 20	<i>D. trimaculatus</i>
Okinawa	7	Intraspecific	<i>E. quadricolor</i>	± 40	<i>A. frenatus</i>	11	11	± 30	<i>D. trimaculatus, C. viridis, P. moluccensis</i>
Okinawa	2	Intraspecific	<i>E. quadricolor</i>	4	<i>A. frenatus</i>	3	3	0	NA
Taiwan	10	Intraspecific	<i>E. quadricolor</i>	up 100	<i>A. clarkii</i>	NA	NA	NA	various Pomacentridae
Okinawa	7.5	Interspecific	<i>H. crispa</i> and <i>S. mertensi</i>	4 and 1	<i>A. clarkii</i> and <i>A. periderion</i>	1 and 2	1 and 3	3 and 4	various Pomacentridae
Vietnam	7	Interspecific	<i>H. aurora</i> , <i>H. crispa</i> and <i>E. quadricolor</i>	1, 1 and 1	<i>A. clarkii</i> and <i>A. periderion</i>	1	2	10 and 1	NA
Vietnam	7.5	Interspecific	<i>H. crispa</i>	3	<i>A. clarkii</i> and <i>A. periderion</i>	2	2	10 and 2	NA
Seychelles*	NA	Intraspecific	<i>H. magnifica</i>	up to 17	<i>A. akallopisos</i>	4	5	2	NA
Myake*	NA	Intraspecific	<i>E. quadricolor</i>	NA	<i>A. clarkii</i>	4	4	± 16	NA

172

173

174 **Figure 2:** (A) A “normal” colony (female, male and one juvenile) of *A. sandaracinos* on *S. mertensii*, (B) intraspecific megacolony in Bora-Bora, French Polynesia, composed of an *H. magnifica* carpet with several *A. chrysopterus* and *D. trimaculatus* (more images in S1 Fig.) and, (C) interspecific colony in Atsuta beach, Okinawa, Japan, in the picture all *A. clarkii* and one *A. perideraion* are visible as well as all 5 anemones (left *H. crispa* is actually two individuals with overlapping tentacles) (additional images in S4 Fig. and S5 Fig).

180

181 **Intraspecific megacolонies**

182 Bora-Bora, French Polynesia. This megacolony was composed of a carpet of the anemone
183 *Heteractis magnifica* on which the anemonefish *A. chrysopterus* lived. More than 50 *H. magnifica*
184 covered up to 95% of a dead coral patch of 3 m in length and 2 m wide (Fig 2-B and S1 Fig) at a
185 depth of 2.5 m. The anemonefish population was estimated to be comprised of seven or eight
186 females, eight or nine males, and more than 120 sub-adults and juveniles. When scared by a diver,
187 adult fish swam around and hid in the anemones but always returned to a well-defined site within
188 the megacolony. In this megacolony, the anemonefishes lived with a large three-spot *Dascyllus*
189 population (more than 150 individuals of *Dascyllus trimaculatus*).

190

191 Sata, Kagoshima, Japan. This megacolony was composed of many *A. clarkii* living on a carpet of
192 the anemone *Entacmea quadricolor*. The site was a rocky bottom, about 5m deep, with more
193 than 25 anemones mainly in cracks covering about 10% of an approximately three 3 X 5 m area
194 (S2 Fig). The colony was composed of three breeding pairs, one additional male, and

195 approximately 20 sub-adults and juveniles. Young recruits stayed within the tentacles of a specific
196 anemone, while bigger immature individuals were observed swimming from one anemone to the
197 other. Mature fish would also enter different anemones but always seemed to return to the same
198 spot. Few aggressive interactions were observed between *A. clarkii* individuals. A few *D.*
199 *trimaculatus* individuals were also found around this sparse anemone carpet. Several
200 megacolonies of this type were observed in this geographical area, but only one was described
201 in detail.

202
203 Oura Bay, Okinawajima Island, Okinawa, Japan. This megacolony was composed of a carpet of
204 the anemone *E. quadricolor* upon which live *A. clarkii* anemonefish. The site is a dead coral patch
205 (approximately 2 m in diameter) on a muddy bottom. The base is 7 m deep, and more than 40
206 anemones cover approximately 80% of the top part of the patch (around 5 m deep) (S3 Fig). The
207 anemonefish population was estimated to be 11 breeding pairs and approximately 30 subadults
208 and juveniles. The coral patch also hosted many *D. trimaculatus*, *Chromis viridis*, and
209 *Pomacentrus moluccensis*. No behavioral data were collected.

210
211 Chinen Peninsula, Okinawajima Island, Okinawa, Japan. A smaller megacolony of *A. frenatus* in *E.*
212 *quadricolor* was observed in the southeast of Okinawajima Island. It comprised four anemones
213 hosting three breeding pairs (S3 Fig). *A. clarkii* and *A. clarkii* fish seemed to be swimming freely
214 from one anemone to the other but eventually returned to the same host individual.

215

216 Kueishan Island, Taiwan. This megacolony was composed of a carpet of the anemone *E.*
217 *quadricolor* upon which live *A. clarkii* anemonefish. The site is a 10m deep rocky bottom with
218 some corals. Over a hundred *E. quadricolor* individuals cover an approximately 50m² area. A
219 large number of adults and juveniles inhabit this megacolony. However, no detailed estimation
220 of the colony's structure was performed. Various species of Pomacentridae (e.g., *D. trimaculatus*)
221 and Labridae also live in this anemone carpet (S4 Fig).

222

223 **Interspecific megacolonies**

224 Atsuta Beach, Okinawajima Island, Okinawa, Japan. This megacolony comprised four *Heteractis*
225 *crispa* and one *Stychodactyla mertensii* within about 2m² of a mix of dead and live scleractinian
226 corals, with an anemone coverage of approximately 30%. The site was 7.5 m deep. *A. perideraion*
227 inhabited the four *H. crispa*. One anemone hosted only one individual, another a colony
228 composed of a breeding pair, and one large subadult. The last two anemones were next to each
229 other and together hosted a colony consisting of a breeding pair and three juveniles. The *S.*
230 *mertensii* was inhabited by an *A. sandaracinos* colony (breeding pair and one juvenile) and an
231 *A. clarkii* colony (breeding pair and three juveniles) (Fig 2-C and S5 Fig). Aggressive interactions
232 between *A. clarkii* juvenile and *A. sandaracinos* individuals were observed but not between adults
233 (S6 Fig). Adult *A. clarkii* also entered the neighboring *H. crispa* without aggressive interactions
234 with resident *A. perideraion* individuals (S6 Fig). A high density and diversity of damselfish (e.g.,
235 *P. lepidogenys*, *P. alexanderae*, *Pomachromis richardsoni*, *Chromis chrysura*, *Amblyglyphidodon*
236 *curacao*), as well as several *Labroides dimidiatus* individuals, were observed around this
237 megacolony (S5 Fig).

238

239 Van Phong Bay, Vietnam. This megacolony was composed of three different species of host
240 anemone; *H. aurora* (size 22 X 22 cm), *H. crispa* (35 X 45 cm), and *E. quadricolor* (30X30 cm), all
241 within 5 m of each other, at depths of 6.5 to 7.6 m on the north coast of Hon Lon Island, on
242 rubble/sand substrate. The three anemones were inhabited by a large number of *A. clarkii* (three
243 adults and ten juveniles), which aggressively defended all three anemones. The mature fish
244 constantly swam between the three anemones, while juveniles remained with a single anemone
245 (7 on *H. aurora*, three on *H. crispa*). We did not observe any aggressive behavior between *A.*
246 *clarkii* individuals. One of the anemones (*H. crispa*) also contained a single *A. perideraion*.

247

248 Nha Trang Bay, Vietnam. This megacolony consisted of three *H. crispa* anemones (diameters 25
249 X 30 cm, 30 X 30 cm, 35 X 35 cm) within 3 m of each other at 7.3 to 8.1 m depth, within the marine
250 protected area at Hon Mun, Nha Trang Bay. The three anemones were inhabited by a large
251 number of *A. clarkii* (n=14, at least four adults, remainder juveniles), which aggressively defended
252 all three anemones. As in Van Phong Bay, mature fish constantly swam between anemones, while
253 juveniles remained with a single anemone (n= 5, 4, and 1, respectively). We did not observe any
254 aggressive behavior between *A. clarkii* individuals. Two of the anemones also contained a single
255 *A. perideraion*.

256

257 **Discussion**

258 These megacolonies of anemonefish living in different host anemone species and geographical
259 locations might be more common than previously thought. This situation raises new scientific
260 questions, notably in terms of socio-evolution, while providing a model to address them.

261
262 In the past literature, we did not find any mention of the term "megacolony." However, several
263 older studies have described alternative social organizations in anemonefish under different
264 names, such as "super anemones" [32] or "multi-adult social groups" [33]. We found also work
265 from the 1970s reporting the existence of such megacolonies in different geographical locations
266 and for various species (Fig 1 and Table 1). In Aldabra, Seychelles, carpets of up to 198 *H.*
267 *magnifica* individuals have been observed. They were divided into groups of up to 17 individual
268 anemones hosting as many as nine adult and several juvenile *A. akallopisos* [32]. In Miyake-jima,
269 Japan, *A. clarkii* was reported to form groups of 20 to 24 fish (four breeding pairs) on a 14m² area
270 partially covered by *E. quadricolor* [33–36]. Ten years later, *A. clarkii* megacolonies from Shikoku,
271 Japan, were used to investigate reproductive behavior and territory acquisition [37–40]. Thus,
272 there appears to be a wealth of information from the 1970s to early 1990s, but, to our knowledge,
273 there have been no recent studies on these types of colonies, as well as no previous descriptions
274 of any inter-specific megacolonies. Below, we highlight some research avenues we believe
275 megacolonies could help address.

276

277 **Plasticity in social structure and mating system**

278 Numerous studies have described the anemonefish's social structure as very stable and
279 conserved (reviewed in [11]). However, our observations combined with those from past studies

280 mentioned above suggest plasticity in anemonefish behavior and social organization. For
281 instance, Fricke (1979) described a typical colony social structure within the *A. akallopis*
282 megacolony. In their investigated site, each female defended a territory of a maximum of $0.88 \pm$
283 0.12 m^2 . Exceeding this surface area, a female cannot protect her territory against competitors,
284 which determines the spacing between colonies (breeding pairs). However, juveniles were
285 swimming freely from one territory to another [32]. Moyer (1980) observed competition
286 between *A. clarkii* breeding adults after the breeding season, which could lead to the
287 "displacement" of some individuals by more competitive ones. Displaced adults lived in a coral
288 near anemone patches and eventually displaced other adults to conquer a new territory and
289 breeding position. Moyer (1980) also reported long-distance travel (over 50 m away from an
290 anemone) and clustering behavior (i.e., several adults coming together about 20 m away from
291 their anemones)[33], which is more reminiscent of the damselfish *Dascyllus aruanus*' social
292 organization [41]. In the megacolonies we observed, fish were more mobile and seemed less
293 prone to aggressiveness than in "normal" colonies. Social interactions and behavior of bigger
294 social groups should be investigated in more detail, for example, using Social Network Analysis
295 (SNA) [6,42,43]. Megacolonies could represent useful models to assess how social systems vary
296 when ecological constraints change (in this case, change in habitat availability) and test several
297 theories in social evolution [10].

298 Buston (2022) and Rueger et al. (2021) have already beautifully discussed this subject [10,14],
299 and therefore, only points that could directly be addressed using megacolonies are considered
300 below. Differences in anemonefish ecology, such as anemone host species, level of host
301 specialization, capacities to move away from their hosts or not, etc., lead to various ecological

302 constraints, which in turn create interspecific variations in social systems. In this way, comparing
303 social behavior between species can help us to understand these variations' proximate and
304 ultimate causes. Megacolonies represent a model to study how social organization varies within
305 a species, that is, the plasticity of the social behavior. Megacolonies are also a great opportunity
306 to test the size-complexity hypothesis and assess social group transformation. What determines
307 the ability of a species to form megacolonies? From our observations, both generalists (e.g., *A.*
308 *clarkii*, *A. chrysopterus*) and specialists (e.g., *A. akallopisos*, *A. frenatus*) species can form bigger
309 groups. As only little data is available, it is still unclear which species form or do not form
310 megacolonies and what are the drivers of this alternative social structure. Elucidating answers to
311 these questions would greatly help our understanding of what can drive such behavioral plasticity.
312 We thus stress the need for more field observations.

313
314 Detailed studies of megacolonies could help address another exciting question: mating system
315 plasticity. Could the strict monogamy usually observed in anemonefish be plastic when social and
316 ecological constraints vary? Fishes display a great diversity of behavioral mating systems shaped
317 by various environmental and behavioral parameters (densities and distribution, resources
318 availability, level of parental care, territoriality) [44–46]. Plasticity of mating systems in fish is also
319 quite common [47–50]. Thus, it could be expected that when habitat availability and group size
320 increase, a switch toward polygamy could happen in anemonefishes, as in *D. aruanus* [51].
321 Occasional polygamy was observed in *A. clarkii*, with a male alternatively fertilizing clutches from
322 two different females [33,36]. However, a detailed study by Fricke (1979) showed that
323 monogamy was maintained, probably due to dominant males' aggressive behavior toward

324 smaller fish, which suppressed the maturation of testicular tissues [32]. Investigation of mating
325 behavior in megacolonies could help gain insights into how conserved or plastic mating systems
326 are in anemonefish. As females are known to be bigger and lay more eggs when living in larger
327 hosts [52], estimating the lifetime reproductive success and parentage relations among colony
328 members in megacolonies compared to “normal” colonies would also help in understanding how
329 populations adapt to variable environmental conditions.

330

331 **Coexistence mechanisms**

332 The use of megacolonies, particularly interspecific ones, as a model of coexistence, could help
333 understand how species diversity is maintained, a crucial question in fundamental and applied
334 sciences. Theoretical and empirical studies identify various ecological differences as the basis of
335 species coexistence, and we now understand how species' interactions with their environment
336 can maintain species diversity [53–56]. For anemonefish, several studies have identified multiple
337 mechanisms that sustain the coexistence of a large number of species [23,57,58]. Niche
338 differentiation like resource partitioning by living in association with different anemone species
339 or at different depths [23,57] is the main mechanism. But also cohabitation of different species
340 occupying the same niche and habitat, and lottery, such as the chance to colonize vacant space,
341 are at play [23,58]. However, the mechanisms promoting cohabitation are poorly known. Hattori
342 (2002) suggested that differences in body sizes (big *A. clarkii* and small *A. perideraion*) are key to
343 the cohabitation between those two species [59]. Coexistence could also vary depending on the
344 life stage [60] as coexistence is sometimes observed only with juveniles [23] and host preference
345 and mobility are known to depend on the development stage [61]. Reproductive interactions are

346 also known to play a role in maintaining species diversity [62], which could be the case for
347 anemonefish, given their particular mating system. We believe that interspecific megacolonies
348 are very interesting models for investigating the diversity of mechanisms fostering species
349 coexistence.

350

351 **Ultimate and proximate causes of aggressive behavior**

352 In “normal” colonies, the dominant female and sub-dominant male are very aggressive and
353 defend the colony against intruders, including divers or sharks [63]. In the megacolonies we
354 observed, this behavior sometimes seemed to be either exacerbated (interspecific megacolonies
355 in Taiwan) or lowered (intraspecific megacolony in Bora-Bora). In the second case,
356 anemonefishes showed reduced aggressiveness among themselves and toward intruders (divers,
357 *D. trimaculatus*). This would need further investigation and proper quantification and could offer
358 a very interesting entry point to understand better the molecular mechanisms controlling
359 aggressive behavior in anemonefishes [64,65]. It is tempting to relate the lower level of
360 aggressiveness to an often-observed behavior in lab-reared juveniles (1-2 cm). Indeed, juvenile
361 anemonefish are less aggressive when maintained at high densities than when maintained at low
362 densities allowing them to establish a territory [66]. Whether having a well-defined territory to
363 defend is a signal that promotes aggressive behavior, is an interesting hypothesis to test.

364

365 **An anemone's perspective**

366 Besides representing an exciting model to study anemonefish sociality and coexistence,
367 megacolonies could also provide an excellent opportunity to investigate host anemones'
368 reproductive strategies. Host anemones have complex reproductive biology that remains
369 generally poorly understood. They are gonochoric animals capable of sexual and asexual
370 reproduction [67], but the extent of each reproductive strategy and the conditions inducing one
371 or the other are unknown. Likewise, pelagic larval duration and settlement mechanisms are
372 understudied [68].

373 It could be hypothesized that large anemone carpets could be formed by clones of the same or a
374 few well-adapted individuals when environmental conditions are highly favorable [69]. In
375 contrast, sexual reproduction would be favored when environmental conditions become less
376 suitable, and dispersion to novel environments becomes a better option. We observed large
377 clusters of *E. quadricolor*, for which asexual reproduction via longitudinal fission is well known
378 [70,71], but also of *H. magnifica*, for which evidence of clonal reproduction is rare [72,73]. The
379 formation of large clusters could then result from a higher larval settlement. Field monitoring
380 and genetic surveys [74] of anemones clusters could help answer the following questions: are
381 clusters composed of different genotypes, and if so, which factors are triggering higher larval
382 recruitment (hydrodynamic, substrate type, light, conspecific density, etc.)? Or are they
383 composed of clones, and are these anemone species more prone to clonal duplication, or do
384 some environmental conditions enhance clonality over sexual reproduction? Understanding
385 these mysterious animals' reproductive ecology is an exciting field of research and could also help
386 implement better conservation and management measures. Indeed, giant sea anemones are
387 particularly targeted by fisheries for the aquarium trade and are sensitive to environmental

388 disturbances. Their populations can withstand only slight pressure and need extended recovery
389 times, and as anemonefish are obligate symbionts, the same applies to them [75].

390

391 **An overlooked concept**

392 Most of the recent work on anemonefish's social behavior has been done on *A. percula* (reviewed
393 in [14,15]) and, to a lesser extent, *A. ocellaris* [76] but little is known about other anemonefish
394 species. The only work performed on bigger groups and different species is now over 30 years
395 old [33–36] and seems to have been overlooked or perhaps even forgotten by the scientific
396 community. However, a detailed investigation of megacolonies would greatly benefit our
397 scientific understanding of social group evolution, coexistence mechanism, aggressive behavior
398 mechanisms, and even anemones' ecology. We strongly encourage future research to consider
399 this alternative social organization as a model worthy of more investigation. Results from such
400 studies could also benefit the field of conservation biology. Indeed, variations in environmental
401 conditions are known to affect social interactions. Therefore, as the frequency and intensity of
402 environmental disturbances keep increasing [77], it seems urgent to understand the plasticity of
403 intra- and inter-specific interactions in the face of changing environments to implement
404 adequate conservation and management measures.

405

406 **Acknowledgments**

407 The authors would like to thank Pr. Timothy Ravasi as well as Chanyoung Kim for their help in the
408 field.

409

410 **References**

- 411 1. Whitehead H. *Analyzing animal societies: quantitative methods for vertebrate social analysis*.
412 Chicago: University of Chicago Press; 2008.
- 413 2. Tanaka H, Frommen JG, Koblmüller S, Sefc KM, McGee M, Kohda M, et al. Evolutionary
414 transitions to cooperative societies in fishes revisited. Schneider J, editor. *Ethology*.
415 2018;124: 777–789. doi:10.1111/eth.12813
- 416 3. Kappeler PM, Clutton-Brock T, Shultz S, Lukas D. Social complexity: patterns, processes,
417 and evolution. *Behav Ecol Sociobiol*. 2019;73: 5, s00265-018-2613-4. doi:10.1007/s00265-
418 018-2613-4
- 419 4. Rubenstein DR, Alcock J. *Animal behavior*. 11th ed. New York: Oxford university press;
420 2019.
- 421 5. Hammond TT, Ortiz-Jimenez CA, Smith JE. Anthropogenic Change Alters Ecological
422 Relationships via Interactive Changes in Stress Physiology and Behavior within and among
423 Organisms. *Integrative and Comparative Biology*. 2020;60: 57–69. doi:10.1093/icb/icaa001
- 424 6. Sosa S, Jacoby DMP, Lihoreau M, Sueur C. Animal social networks: Towards an integrative
425 framework embedding social interactions, space and time. *Methods Ecol Evol*. 2021;12: 4–
426 9. doi:10.1111/2041-210X.13539
- 427 7. Brown C, Krause J, Laland KN, editors. *Fish cognition and behavior*. 2nd ed. Chichester,
428 West Sussex, UK ; Ames, Iowa: Wiley-Blackwell; 2011.
- 429 8. Krause J, Krause S, Arlinghaus R, Psorakis I, Roberts S, Rutz C. Reality mining of animal
430 social systems. *Trends in Ecology & Evolution*. 2013;28: 541–551.
431 doi:10.1016/j.tree.2013.06.002
- 432 9. Hays GC, Bailey H, Bograd SJ, Bowen WD, Campagna C, Carmichael RH, et al. Translating
433 Marine Animal Tracking Data into Conservation Policy and Management. *Trends in Ecology
& Evolution*. 2019;34: 459–473. doi:10.1016/j.tree.2019.01.009
- 435 10. Rueger T, Branconi R, Froehlich CYM, Heatwole SJ, Wong MYL, Buston PM. The Next
436 Frontier in Understanding the Evolution of Coral Reef Fish Societies. *Front Mar Sci*. 2021;8:
437 665780. doi:10.3389/fmars.2021.665780
- 438 11. Laudet V, Ravasi T. *Evolution, Development and Ecology of Anemonefishes: Model
439 Organisms for Marine Science*. 1st ed. Boca Raton: CRC Press; 2022.
440 doi:10.1201/9781003125365

441 12. Roux N, Salis P, Lee S-H, Besseau L, Laudet V. Anemonefish, a model for Eco-Evo-Devo.
442 *EvoDevo*. 2020;11: 20. doi:10.1186/s13227-020-00166-7

443 13. Buston PM, Cant MA. A new perspective on size hierarchies in nature: patterns, causes, and
444 consequences. *Oecologia*. 2006;149: 362–372. doi:10.1007/s00442-006-0442-z

445 14. Buston PM, Branconi R, Rueger T. Social Evolution in Anemonefishes. 1st ed. *Evolution,
446 Development and Ecology of Anemonefishes*. 1st ed. Boca Raton: CRC Press; 2022. pp. 143–
447 158. doi:10.1201/9781003125365-17

448 15. Barbasch TA, DeAngelis R, Rhodes J, Buston PM. Parental Care. 1st ed. *Evolution,
449 Development and Ecology of Anemonefishes*. 1st ed. Boca Raton: CRC Press; 2022. pp. 159–
450 166. doi:10.1201/9781003125365-18

451 16. Casas L, Parker CG, Rhodes JS. Sex Change from Male to Female. 1st ed. *Evolution,
452 Development and Ecology of Anemonefishes*. 1st ed. Boca Raton: CRC Press; 2022. pp. 117–
453 128. doi:10.1201/9781003125365-15

454 17. Hoepner CM, Fobert EK, Abbott CA, Silva KB da. No Place Like Home. 1st ed. *Evolution,
455 Development and Ecology of Anemonefishes*. 1st ed. Boca Raton: CRC Press; 2022. pp. 197–
456 208. doi:10.1201/9781003125365-23

457 18. Edgar GJ, Moverley J, Barrett NS, Peters D, Reed C. The conservation-related benefits of a
458 systematic marine biological sampling programme: The Tasmanian reef bioregionalisation
459 as a case study. *Biological Conservation*. 1997;79: 227–240. doi:10.1016/S0006-
460 3207(96)00095-X

461 19. Harborne AR, Mumby PJ, Kappel CV, Dahlgren CP, Micheli F, Holmes KE, et al. Reserve
462 effects and natural variation in coral reef communities. *Journal of Applied Ecology*. 2008;45:
463 1010–1018. doi:10.1111/j.1365-2664.2008.01490.x

464 20. Ward-Paige C, Mills Flemming J, Lotze HK. Overestimating Fish Counts by Non-
465 Instantaneous Visual Censuses: Consequences for Population and Community Descriptions.
466 *PLOS ONE*. 2010;5: e11722. doi:10.1371/journal.pone.0011722

467 21. Lecchini D, Brooker RM, Waqalevu V, Gairin E, Minier L, Berthe C, et al. Effects of
468 COVID-19 pandemic restrictions on coral reef fishes at eco-tourism sites in Bora-Bora,
469 French Polynesia. *Marine Environmental Research*. 2021;170: 105451.
470 doi:10.1016/j.marenvres.2021.105451

471 22. Masucci GD, Reimer JD. Expanding walls and shrinking beaches: loss of natural coastline in
472 Okinawa Island, Japan. *PeerJ*. 2019;7: e7520. doi:10.7717/peerj.7520

473 23. Hayashi K, Tachihara K, Reimer JD. Patterns of coexistence of six anemonefish species
474 around subtropical Okinawa-jima Island, Japan. *Coral Reefs*. 2018;37: 1027–1038.
475 doi:10.1007/s00338-018-01740-1

476 24. Dawson EY. Marine Plants in the Vicinity of the Institut Oceanographique de Nha Trang,
477 Viet Nam. *Pacific Science*. 1954;8: 373–469.

478 25. Fauchald K. Nephtyidae (Polychaeta) from the Bay of Nha Trang, South Viet Nam. *Naga*
479 Report. 1968; 1–33.

480 26. Nguyen AD, Zhao J, Feng Y, Hu W, Yu K, Gasparon M, et al. Impact of recent coastal
481 development and human activities on Nha Trang Bay, Vietnam: evidence from a *Porites lutea*
482 geochemical record. *Coral Reefs*. 2013;32: 181–193. doi:10.1007/s00338-012-0962-4

483 27. Tkachenko KS, Huan NH, Thanh NH, Britayev TA. Extensive coral reef decline in Nha
484 Trang Bay, Vietnam: *Acanthaster planci* outbreak: the final event in a sequence of chronic
485 disturbances. *Mar Freshwater Res*. 2021;72: 186. doi:10.1071/MF20005

486 28. Lu S-Y, Shen C-H, Chiau W-Y. Zoning strategies for marine protected areas in Taiwan: Case
487 study of Gueishan Island in Yilan County, Taiwan. *Marine Policy*. 2014;48: 21–29.
488 doi:10.1016/j.marpol.2014.03.001

489 29. Chen C, Chan T-Y, Chan BKK. Molluscan diversity in shallow water hydrothermal vents off
490 Kueishan Island, Taiwan. *Mar Biodiv*. 2018;48: 709–714. doi:10.1007/s12526-017-0804-2

491 30. Hsieh H-Y, Lo W-T. Mesoscale distribution and assemblage structure of fish larvae in the
492 Kuroshio waters off eastern Taiwan. *Mar Biodiv*. 2019;49: 1971–1986. doi:10.1007/s12526-
493 019-00958-8

494 31. Chiu L, Wang M-C, Tseng K-Y, Wei C-L, Lin H-T, Yang S-H, et al. Shallow-water
495 hydrothermal vent system as an extreme proxy for discovery of microbiome significance in
496 a crustacean holobiont. *Front Mar Sci*. 2022;9: 976255. doi:10.3389/fmars.2022.976255

497 32. Fricke HW. Mating System, Resource Defence and Sex Change in the Anemonefish
498 *Amphiprion akallopisos*. *Zeitschrift für Tierpsychologie*. 1979;50: 313–326.
499 doi:10.1111/j.1439-0310.1979.tb01034.x

500 33. Moyer JT. Influence of temperate waters on the behavior of the tropical anemonefish
501 *Amphiprion clarkii* at Miyake-jima, Japan. *Bulletin of Marine Science*. 1980; 261–272.

502 34. Moyer JT, Sawyers CE. Territorial behavior of the anemonefish *A. xanthurus* with notes on
503 the life history. *Japanese Journal of Ichthyology*. 1973;20: 85–93.

504 35. Moyer JT. Geographical Variation and Social Dominance in Japanese Populations of the
505 Anemonefish *Amphiprion clarkii*. *Japanese Journal of Ichthyology*. 1976;23: 12–22.

506 36. Moyer JT, Bell LJ. Reproductive Behavior of the Anemonefish *Amphiprion clarkii* at
507 Miyake-Jima, Japan. *Japanese Journal of Ichthyology*. 1976;22: 23–32.

508 37. Ochi H. Growth of the anemonefish *Amphiprion clarkii* in temperate waters, with special
509 reference to the influence of settling time on the growth of 0-year olds. *Marine Biology*.
510 1986;92: 223–229. doi:10.1007/BF00392839

511 38. Ochi H. Acquisition of Breeding Space by Nonbreeders in the Anemonefish *Amphiprion*
512 *clarkii* in Temperate Waters of Southern Japan. *Ethology*. 1989;83: 279–294.
513 doi:10.1111/j.1439-0310.1989.tb00535.x

514 39. Ochi H. Mating behavior and sex change of the anemonefish, *Amphiprion clarkii*, in the
515 temperate waters of southern Japan. *Environmental Biology of Fishes*. 1989;26: 257–275.
516 doi:10.1007/BF00002463

517 40. Hattori A, Yanagisawa Y. Life-history pathways in relation to gonadal sex differentiation in
518 the anemonefish, *Amphiprion clarkii*, in temperate waters of Japan. *Environ Biol Fish*.
519 1991;31: 139–155. doi:10.1007/BF00001015

520 41. Mann RP, Herbert-Read JE, Ma Q, Jordan LA, Sumpter DJT, Ward AJW. A model
521 comparison reveals dynamic social information drives the movements of humbug damselfish
522 (*Dascyllus aruanus*). *J R Soc Interface*. 2014;11: 20130794. doi:10.1098/rsif.2013.0794

523 42. Wasserman S, Faust K. Social network analysis: methods and applications. Cambridge ; New
524 York: Cambridge University Press; 1994.

525 43. Hart EE, Ciuti S, Herrmann L, Fennessy J, Wells E, Salter-Townshend M. Static and dynamic
526 methods in social network analysis reveal the association patterns of desert-dwelling giraffe.
527 *Behav Ecol Sociobiol*. 2022;76: 62. doi:10.1007/s00265-022-03167-9

528 44. Emlen ST, Oring LW. Ecology, Sexual Selection, and the Evolution of Mating Systems.
529 *Science*. 1977;197: 215–223. doi:10.1126/science.327542

530 45. Wittenberger JF, Tilson RL. The Evolution of Monogamy: Hypotheses and Evidence. *Annu
531 Rev Ecol Syst*. 1980;11: 197–232. doi:10.1146/annurev.es.11.110180.001213

532 46. Kokko H, Rankin DJ. Lonely hearts or sex in the city? Density-dependent effects in mating
533 systems. *Phil Trans R Soc B*. 2006;361: 319–334. doi:10.1098/rstb.2005.1784

534 47. Fricke HW. Control of different mating systems in a coral reef fish by one environmental
535 factor. *Animal Behaviour*. 1980;28: 561–569. doi:10.1016/S0003-3472(80)80065-0

536 48. Donaldson TJ. Facultative monogamy in obligate coral-dwelling hawkfishes (Cirrhitidae).
537 *Environ Biol Fish*. 1989;26: 295–302. doi:10.1007/BF00002466

538 49. Wong MYL, Munday PL, Jones GP. Habitat Patch Size, Facultative Monogamy and Sex
539 Change in a Coral-dwelling Fish, *Caracanthus unipinnna*. *Environ Biol Fish*. 2005;74: 141–
540 150. doi:10.1007/s10641-005-6715-2

541 50. Ziadi-Künzli F, Tachihara K. Female defence polygyny and plasticity in the mating system
542 of the demersal triggerfish *Rhinecanthus aculeatus* (Pisces: Balistidae) from Okinawa Island.
543 *Mar Biol*. 2016;163: 27. doi:10.1007/s00227-015-2780-z

544 51. Wong MYL, Fauvelot C, Planes S, Buston PM. Discrete and continuous reproductive tactics
545 in a hermaphroditic society. *Animal Behaviour*. 2012;84: 897–906.
546 doi:10.1016/j.anbehav.2012.07.013

547 52. Barbasch TA, Rueger T, Srinivasan M, Wong MYL, Jonesnd GP, Buston PM. Substantial
548 Plasticity of Reproduction and Parental Care in Response to Local Resource Availability.
549 *Oikos*. 2020; oik.07674. doi:10.1111/oik.07674

550 53. Hutchinson GE. Homage to Santa Rosalia or Why Are There So Many Kinds of Animals?
551 *The American Naturalist*. 1959;93: 145–159. doi:10.1086/282070

552 54. Chesson P. Mechanisms of Maintenance of Species Diversity. *Annual Review of Ecology*
553 and Systematics

554 55. Dornelas M, Gotelli NJ, McGill B, Shimadzu H, Moyes F, Sievers C, et al. Assemblage Time
555 Series Reveal Biodiversity Change but Not Systematic Loss. *Science*. 2014;344: 296–299.
556 doi:10.1126/science.1248484

557 56. Oosterhout BH, Serrano M, Bried JT, Siepielski AM. A framework for linking competitor
558 ecological differences to coexistence. *Journal of Animal Ecology*. 2019;88: 1534–1548.

559 57. Elliott JK, Mariscal RN. Coexistence of nine anemonefish species: differential host and
560 habitat utilization, size and recruitment. *Marine Biology*. 2001;138: 23–36.

561 58. Camp EF, Hobbs J-PA, De Brauwer M, Dumbrell AJ, Smith DJ. Cohabitation promotes high
562 diversity of clownfishes in the Coral Triangle. *Proc R Soc B*. 2016;283: 20160277.
563 doi:10.1098/rspb.2016.0277

564 59. Hattori A. Small and large anemonefishes can coexist using the same patchy resources on a
565 coral reef, before habitat destruction. *Journal of Animal Ecology*. 2002; 824–821.

566 60. Moll JD, Brown JS. Competition and Coexistence with Multiple Life-History Stages. *The*
567 *American Naturalist*. 2008;171: 839–843. doi:10.1086/587517

568 61. Huebner L, Dailey B, Titus B, Khalaf M, Chadwick N. Host preference and habitat
569 segregation among Red Sea anemonefish: effects of sea anemone traits and fish life stages.
570 *Mar Ecol Prog Ser*. 2012;464: 1–15. doi:10.3354/meps09964

571 62. Gómez-Llano M, Germain RM, Kyogoku D, McPeek MA, Siepielski AM. When Ecology
572 Fails: How Reproductive Interactions Promote Species Coexistence. *Trends in Ecology &*
573 *Evolution*. 2021;36: 610–622. doi:10.1016/j.tree.2021.03.003

574 63. Schligler J, Blandin A, Beldade R, Mills SC. Aggression of an orange-fin anemonefish to a
575 blacktip reef shark: a potential example of fish mobbing? *Mar Biodivers*. 2022;52: 17.
576 doi:10.1007/s12526-022-01258-4

577 64. Wong M, Uppaluri C, Medina A, Seymour J, Buston P. The four elements of within-group
578 conflict in animal societies: an experimental test using the clown anemonefish, *Amphiprion*
579 *percula*. *Behav Ecol Sociobiol*. 2016;70: 1467–1475. doi:10.1007/s00265-016-2155-6

580 65. Chen T-H, Hsieh C-Y. Fighting Nemo: Effect of 17 α -ethinylestradiol (EE2) on aggressive
581 behavior and social hierarchy of the false clown anemonefish *Amphiprion ocellaris*. *Marine*
582 *Pollution Bulletin*. 2017;124: 760–766. doi:10.1016/j.marpolbul.2016.12.042

583 66. Donelson JM, Romans P, Yamanaka S, Kinoshita M, Roux N. Anemonefish Husbandry. 1st
584 ed. *Evolution, Development and Ecology of Anemonefishes*. 1st ed. Boca Raton: CRC Press;
585 2022. pp. 237–252. doi:10.1201/9781003125365-27

586 67. Scott A. Sea Anemones. *Marine Ornamental Species Aquaculture*. 2017. pp. 437–456.
587 doi:10.1002/9781119169147.ch21b

588 68. Scott A, Harrison PL. Embryonic and Larval Development of the Host Sea Anemones
589 *Entacmaea quadricolor* and *Heteractis crispa*. *The Biological Bulletin*. 2007;213: 110–121.
590 doi:10.2307/25066627

591 69. Sherman CDH, Ayre DJ. Fine-scale adaptation in a clonal sea anemone. *Evolution*. 2008;62:
592 1373–1380. doi:10.1111/j.1558-5646.2008.00375.x

593 70. Dunn DF. The Clownfish Sea Anemones: Stichodactylidae (Coelenterata: Actiniaria) and
594 Other Sea Anemones Symbiotic with Pomacentrid Fishes. *Transactions of the American*
595 *Philosophical Society*. 1981;71: 3. doi:10.2307/1006382

596 71. Scott A, Hardefeldt JM, Hall KC. Asexual Propagation of Sea Anemones That Host
597 Anemonefishes: Implications for the Marine Ornamental Aquarium Trade and Restocking
598 Programs. Yang W-X, editor. PLoS ONE. 2014;9: e109566.
599 doi:10.1371/journal.pone.0109566

600 72. Brolund TM, Tychsen A, Nielsen LE, Arvedlund M. An assemblage of the host anemone
601 *Heteractis magnifica* in the northern Red Sea, and distribution of the resident anemonefish.
602 *J Mar Biol Ass*. 2004;84: 671–674. doi:10.1017/S0025315404009737h

603 73. Gatins R. Fine-scale population structure of two anemones (*Stichodactyla gigantea* and
604 *Heteractis magnifica*) in Kimbe Bay, Papua New Guinea. King Abdullah University of
605 Science and Technology. 2014.

606 74. Chan WWR, Tay YC, Ang HP, Tun K, Chou LM, Huang D, et al. Reproduction in Urbanised
607 Coastal Waters: Shallow-Water Sea Anemones (*Entacmaea quadricolor* and *Stichodactyla*
608 *haddoni*) Maintain High Genetic Diversity and Panmixia. *Diversity*. 2020;12: 467.
609 doi:10.3390/d12120467

610 75. Frisch AJ, Hobbs J-PA, Hansen ST, Williamson DH, Bonin MC, Jones GP, et al. Recovery
611 potential of mutualistic anemone and anemonefish populations. *Fisheries Research*.
612 2019;218: 1–9. doi:10.1016/j.fishres.2019.04.018

613 76. Hayashi K, Tachihara K, Reimer JD, Laudet V. Colour patterns influence symbiosis and
614 competition in the anemonefish–host anemone symbiosis system. Proc R Soc B. 2022;289:
615 20221576. doi:10.1098/rspb.2022.1576

616 77. Hughes TP, Kerry JT, Baird AH, Connolly SR, Dietzel A, Eakin CM, et al. Global warming
617 transforms coral reef assemblages. Nature. 2018;556: 492–496. doi:10.1038/s41586-018-
618 0041-2

619

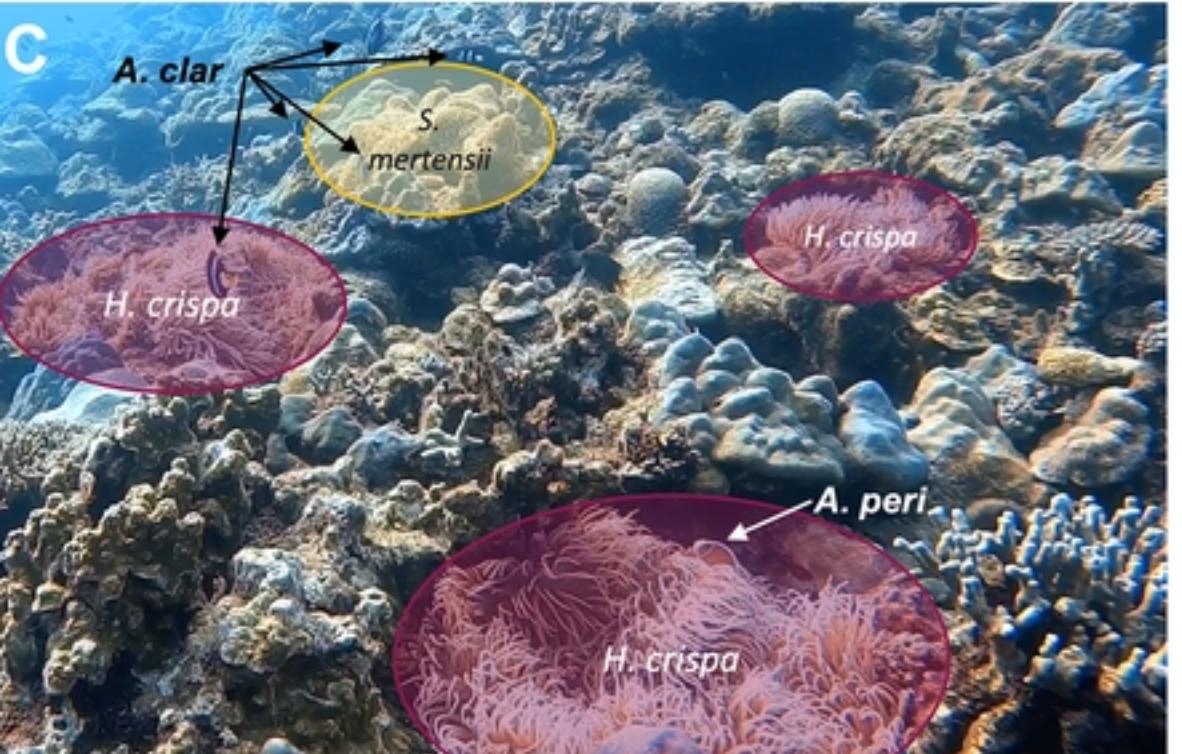
620 **Supporting information**

621 **S1 Fig.** Bora-Bora megacolony

622 **S2 Fig.** Kagoshima megalony (video)

623 **S3 Fig.** Chinen and Oura bay megacolonies

624 **S4 Fig.** Kueishan megacolony (video)


625 **S5 Fig.** Atsuta megacolony (video)

626 **S6 Fig.** Aggressive behavior between juveniles (video)

627

Figure

Figure