

1 **Peroxisomal β -oxidation enzyme, DECR2, regulates lipid metabolism and promotes
2 treatment resistance in advanced prostate cancer**

3

4 Chui Yan Mah^{1,2}, An Dieu Trang Nguyen^{1,2}, Takuto Niijima¹, Madison Helm^{1,2}, Jonas Dehairs³,
5 Feargal J Ryan^{2,5}, Natalie Ryan^{1,2}, Ian G Mills⁴, Johannes V Swinnen³, David J Lynn^{2,5}, Zeyad
6 D Nassar^{*1,2}, Lisa M Butler^{*1,2}

7

8 ¹South Australian Immunogenomics Cancer Institute and Freemasons Centre for Male Health
9 and Wellbeing, University of Adelaide, Adelaide, Australia

10 ²Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide,
11 Australia

12 ³Department of Oncology, Laboratory of Lipid Metabolism and Cancer, KU Leuven, Leuven,
13 Belgium

14 ⁴Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, United
15 Kingdom.

16 ⁵Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Australia

17

18 *Corresponding Authors:

19 Lisa M Butler: lisa.butler@adelaide.edu.au

20 Zeyad D Nassar: zeyad.nassar@adelaide.edu.au

21

22 **DISCLOSURE OF POTENTIAL CONFLICTS OF INTEREST**

23 The authors declare that there is no conflict of interest regarding the publication of this article.

24 **ABSTRACT**

25

26 Peroxisomes are central metabolic organelles that have key roles in fatty acid homeostasis,
27 including β -oxidation, and emerging evidence has linked aberrant peroxisome metabolism to
28 cancer development and progression. While targeting mitochondrial β -oxidation in prostate
29 cancer (PCa) has gained significant attention in recent years, the contribution of peroxisomal
30 β -oxidation (perFAO) to PCa tumorigenesis is comparatively unexplored. Herein, we explored
31 the therapeutic efficacy of targeting perFAO in PCa cells and clinical prostate tumours, and
32 subsequently identified peroxisomal 2,4-dienoyl CoA reductase 2 (DECR2), as a key
33 therapeutic target. DECR2 is markedly upregulated in clinical PCa, most notably in metastatic
34 castrate-resistant PCa. Depletion of DECR2 significantly suppressed proliferation, migration,
35 and 3D growth of a range of CRPC and enzalutamide-resistant PCa cell lines, and inhibited
36 LNCaP tumour growth and proliferation *in vivo*. Using transcriptomic and lipidomic analyses,
37 we determined that DECR2 influences cell cycle progression and lipid metabolism to enable
38 tumour cell proliferation. We further demonstrated a novel role for perFAO in driving resistance
39 to standard-of-care androgen receptor pathway inhibition, using genetic and pharmacological
40 approaches to alter DECR2/perFAO in treatment-resistant PCa cells. Our findings highlight a
41 need to focus on peroxisomes to suppress tumour cell proliferation and reveal new therapeutic
42 targets for advanced, treatment-resistant PCa.

43 **INTRODUCTION**

44

45 Prostate cancer (PCa) remains the most diagnosed malignancy and the leading cause of
46 cancer-related deaths in men globally¹. One of the main hurdles for the treatment of PCa is
47 overcoming resistance to current androgen-targeting agents, which form the mainstay of
48 therapy for locally advanced and metastatic PCa. Despite the development of potent androgen
49 receptor (AR) pathway inhibitors, including enzalutamide (ENZ), these agents are not curative
50 and patients with castrate-resistant prostate cancer (CRPC) eventually succumb to this
51 disease. Targeting cancer metabolism has gained increasing attention as an attractive
52 strategy to overcome resistance to AR-targeted therapies^{2–7}.

53

54 Altered lipid metabolism is a well-characterised hallmark of PCa and, accordingly, significant
55 research efforts have been made to target *de novo* lipogenesis and lipid uptake pathways^{7,8}.
56 Now, there is a growing body of evidence that implicates fatty acid oxidation (FAO, or β -
57 oxidation) as a critical aspect of lipid metabolism that drives PCa progression and treatment
58 resistance^{9–12}, irrespective of fatty acid source. Despite the complexity of the FAO pathway,
59 most drug development approaches have focused entirely on targeting mitochondrial carnitine
60 palmitoyltransferase I (CPT1), the rate-limiting enzyme of mitochondrial β -oxidation^{13–15}.
61 Indeed, our previous work demonstrated therapeutic efficacy in targeting mitochondrial β -
62 oxidation using a pharmacological agent, etomoxir (CPT1 inhibitor) in our established patient-
63 derived explant (PDE) model¹². With this observation, we also uncovered a novel target of
64 mitochondrial β -oxidation, DECR1, the rate-limiting enzyme of an auxiliary pathway of
65 polyunsaturated fatty acid (PUFA) oxidation¹². On the basis of this discovery, we were
66 motivated to investigate and characterise its peroxisomal counterpart, peroxisomal 2,4-
67 dienoyl-CoA reductase 2 (DECR2), and its role in PCa.

68

69 Peroxisomes are organelles that regulate the synthesis and turnover of complex lipids,
70 including the β -oxidation of very-long chain fatty acids (VLCFA) (**Figure 1a**), synthesis of bile

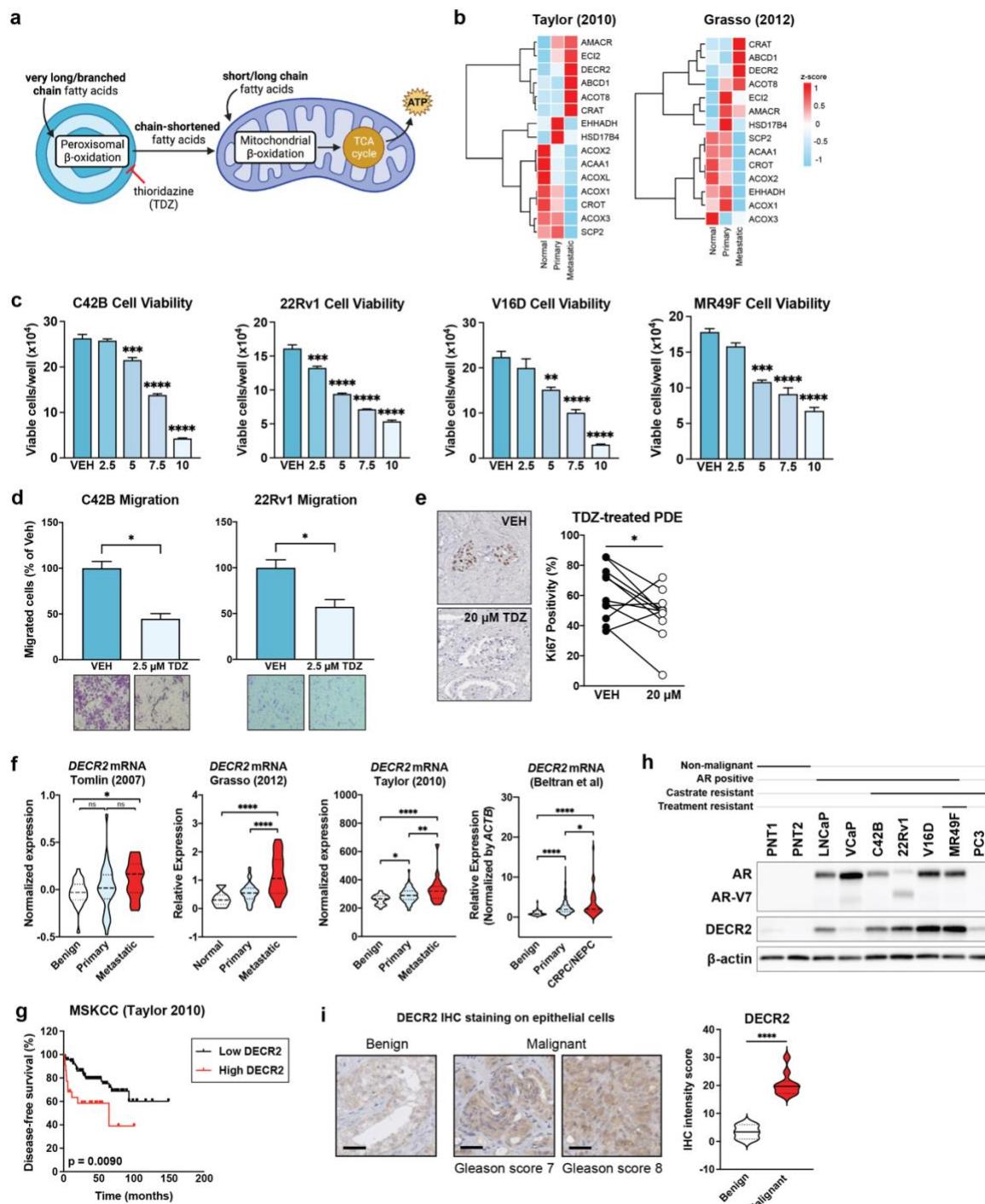
71 acids and ether lipids (such as plasmalogens), α -oxidation of branched-chain fatty acids
72 (BCFA), and regulate cholesterol biosynthesis. Although both the peroxisome and
73 mitochondria have similar functions (for example, both organelles can degrade fatty acids and
74 produce/scavenge reactive oxygen species), it is becoming increasingly clear that
75 peroxisomes are indispensable organelles that are essential for cellular well-being. For
76 instance, peroxisomes are the sole organelles in humans able to break down VLCFAs and the
77 only ones performing α -oxidation. Despite the critical roles of peroxisomes in lipid metabolism,
78 the functional effects of peroxisomal β -oxidation (perFAO) in cancer are not well recognised
79 and not as intensively studied as those of mitochondria. To this end, the most well-
80 characterised perFAO enzyme in PCa is α -methylacyl-CoA racemase (AMACR; involved in β -
81 oxidation of BCFA). AMACR is consistently overexpressed in PCa and is associated with
82 increased PCa risk¹⁶. More importantly, AMACR is highly specific for PCa and thus has been
83 exploited as a PCa-specific biomarker¹⁷. In a more recent study, Itkonen et al. reported that
84 peroxisomal enoyl-CoA Delta Isomerase 2 (ECI2; involved in β -oxidation of unsaturated fatty
85 acids) was significantly upregulated in human PCa and is associated with poor overall patient
86 survival¹⁸. Herein, we demonstrate the therapeutic efficacy of targeting perFAO *in vitro* and in
87 our patient-derived prostate tumour explants (PDE) to provide the first clinically relevant
88 evidence for targeting perFAO in PCa. We subsequently identified DECR2 as robustly
89 overexpressed in advanced and metastatic PCa tissues and uncovered its function as a
90 regulator of cell cycle progression and lipid metabolism. Finally, we provide evidence for a role
91 of DECR2 and perFAO in treatment resistance, indicating a novel therapeutic vulnerability for
92 CRPC.

93 **RESULTS**

94

95 ***Peroxisomal β-oxidation enzyme, DECR2, is overexpressed in prostate cancer***

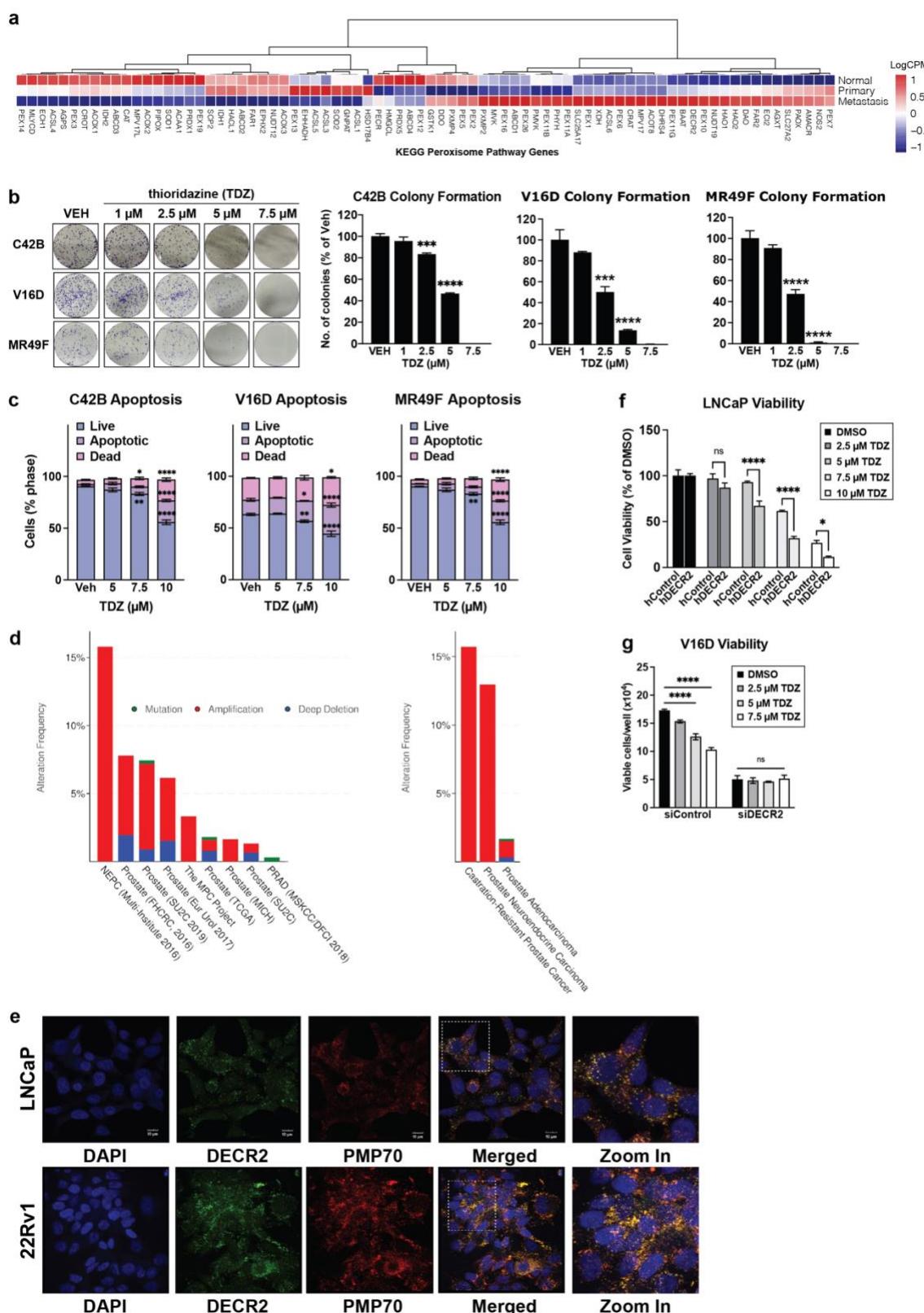
96 Little is known about targeting the enzymes of perFAO or their expression in PCa. Accordingly,
97 we evaluated the expression of a set of peroxisome-related genes (obtained from the KEGG
98 database) in the Taylor cohort¹⁹ composed of primary ($n = 131$) and metastatic ($n = 19$) tumour
99 tissues and noticed a significant variation in the expression of these genes with tumour
100 progression (**Supplementary Figure 1a**). Next, we sought to identify genes that are involved
101 in perFAO. To achieve this, we investigated GO terms (Molecular Signatures Database,
102 MSigDB) for perFAO and manually curated a list of $n = 15$ genes that were involved in perFAO,
103 and examined their expression in the Taylor and Grasso²⁰ (primary $n = 59$, metastatic CRPC
104 $n = 35$) cohorts (**Figure 1b**). Although we observed variability in their expression, this revealed
105 several perFAO genes: *ECI2*, *DECR2*, *ABCD1*, *CRAT*, and *ACOT8* (**Figure 1b**) involved in
106 regulation of fatty acid metabolism and energy homeostasis that were consistently
107 upregulated in both cohorts in metastatic tissues, suggesting an important role for perFAO in
108 PCa.


109

110 In light of this, we evaluated the efficacy of targeting perFAO using a potential clinical
111 candidate agent and inhibitor of perFAO, thioridazine (TDZ)^{21,22}, in CRPC and treatment-
112 resistant PCa cells (**Figure 1a**). TDZ is a first-generation antipsychotic drug that was
113 withdrawn from the global market in 2005 due to a well-defined risk of cardiac arrhythmias.
114 Despite that, TDZ continues to be used off-label for patients with severe or chronic
115 schizophrenia who are refractory to other treatment options²³. In recent years, TDZ has been
116 increasingly used as a perFAO inhibitor^{22,24}, likely through its inhibitory effects on Cytochrome
117 P450 enzymes^{25,26}. TDZ induced a dose-dependent reduction in cell viability of CRPC cells
118 (C42B, 22Rv1, V16D cell lines) and acquired ENZ-resistant MR49F cells (**Figure 1c**).
119 Furthermore, we tested the ability of TDZ to impede cell migration of C42B and 22Rv1 CRPC
120 cells, and showed significantly reduced migration at a low dose of 2.5 μM of TDZ (**Figure 1d**).

121 TDZ significantly and dose-dependently decreased colony formation ability, and induced
122 apoptosis and cell death in CRPC C42B, V16D and ENZ-resistant MR49F cell lines
123 (**Supplementary Figure 1b,c**). Our recent report demonstrated the efficacy of targeting
124 mitochondrial β -oxidation using the chemical inhibitor, etomoxir¹², using our well-defined
125 patient-derived explant (PDE) model that recapitulates the complexity of the clinical tumour
126 microenvironment²⁷. Herein, we evaluated the clinical efficacy of targeting perFAO using TDZ
127 in PDE tissues and observed an overall significant reduction in cell proliferation by an average
128 of $21.4 \pm 4.0\%$ ($n = 11$; $p < 0.05$), with only 2 patients showing no response (**Figure 1e**).
129

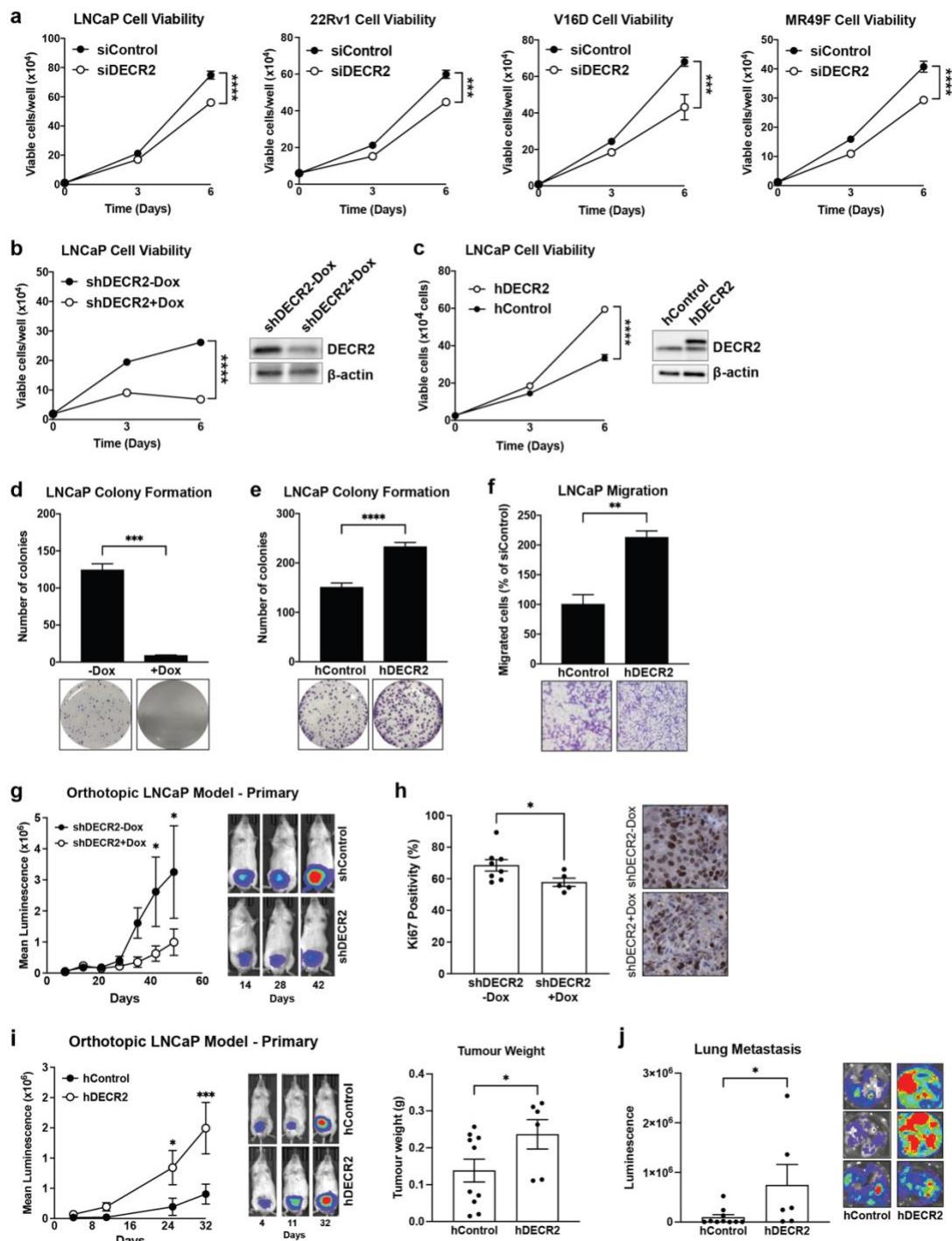
130 Our results demonstrated that TDZ is efficacious *in vitro* and *ex vivo* and provide proof-of-
131 concept that targeting perFAO may be a promising therapeutic strategy. However, no specific
132 inhibitors of perFAO currently exist. In view of our recent discovery of the role of mitochondrial
133 DECR1 in PCa¹² and its upregulation in metastatic tissues, we focused our attention on
134 DECR2 as a key enzyme involved in perFAO. We further validated the overexpression of
135 DECR2 mRNA in the Tomlin²⁸ ($n = 51$ primary and metastatic PCa) and Beltran²⁹ (CRPC $n =$
136 34, neuroendocrine PCa $n = 15$) cohorts and observed significantly higher levels of DECR2 in
137 metastatic tissue compared with primary (Beltran cohort) or normal tissue (Tomlin and Beltran
138 cohorts) (**Figure 1f**). In line with this observation, DECR2 gene copy number gain was evident
139 in several clinical PCa datasets (acquired from cBioportal; **Supplementary Figure 1d**). Higher
140 DECR2 levels were also significantly associated with biochemical recurrence in the MSKCC
141 (metastatic CRPC) cohort (**Figure 1g**). Next, we examined DECR2 protein expression in a
142 panel of cell lines: DECR2 levels were low in AR-positive, androgen-dependent LNCaP cells
143 and AR-positive CRPC C42B cells, intermediate in AR-positive CRPC 22Rv1 cells, and high
144 in AR-positive CRPC V16D and ENZ-resistant MR49F cell lines (**Figure 1h**). Similarly to
145 publicly available datasets, we also observed an increase in DECR2 expression in malignant
146 PCa tissues ($n = 10$) compared with benign tissues ($n = 3$), as assessed using quantitative
147 immunohistochemistry staining analysis (**Figure 1i**). Consistent with its known function, we
148 confirmed DECR2 localisation in the peroxisome using immunocytochemistry


149 (Supplementary Figure 1e). Furthermore, we provide evidence for the perFAO selectivity of
150 TDZ by demonstrating that overexpression of DECR2 markedly increased susceptibility of
151 LNCaP cells to TDZ treatment, while TDZ had no effect on DECR2 knockdown cells
152 (Supplementary Figure 1f, g).

153

154 **Figure 1 DECR2 is overexpressed in prostate cancer. (a)** Illustration of fatty acid oxidation
 155 in the peroxisome and mitochondria. Thioridazine (TDZ) is an inhibitor of perFAO. **(b)**
 156 Heatmap of peroxisomal beta-oxidation (perFAO) gene expression in Taylor and Grasso cohorts.
 157 We manually curated a list of perFAO genes based on Gene Ontology pathway. Cell viability
 158 of **(c)** castrate-resistant C42B, 22Rv1 and V16D, and enzalutamide-resistant MR49F prostate

159 cancer cell lines across a range of TDZ doses. **(d)** C42B and 22Rv1 prostate cancer cell lines
160 treated with 2.5 μ M TDZ were assessed for cell migration using transwell migration assay. **(e)**
161 Immunostaining for proliferative marker Ki67 in vehicle (VEH) or TDZ-treated (20 μ M) patient-
162 derived explants (PDEs). Immunohistochemical staining and quantification of the proliferative
163 marker Ki67 is shown ($n = 11$). **(f)** DECR2 expression with respect to tumour progression in
164 four independent datasets. DECR2 levels were analysed in normal, primary, and metastatic
165 castrate-resistant or neuroendocrine tissue samples. **(g)** The association of DECR2
166 expression and disease-free survival in the MSKCC (Taylor) cohort. **(h)** DECR2 protein
167 expression in non-malignant prostate cell lines (PNT1 and PNT2) and prostate cancer cell
168 lines (LNCaP, VCaP, C42B, 22Rv1, V16D, PC3), including enzalutamide-resistant prostate
169 cancer cell line (MR49F). **(i)** Left: Representative DECR2 IHC staining of benign prostate
170 tissues and prostate cancer tissues. Scale bar, 50 μ m. Right: DECR2 protein expression in a
171 validation cohort consisting of benign prostate tissues ($n = 3$) and prostate cancer tissues (n
172 = 10). All cell line data are representative of at least 2 independent experiments and presented
173 as mean \pm s.e.m of triplicate wells. Statistical analysis was performed using ordinary one-way
174 ANOVA or two-tailed student's t-test. Data in (g) were statistically analysed using a two-sided
175 log-rank test. * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$ and **** $p < 0.0001$.

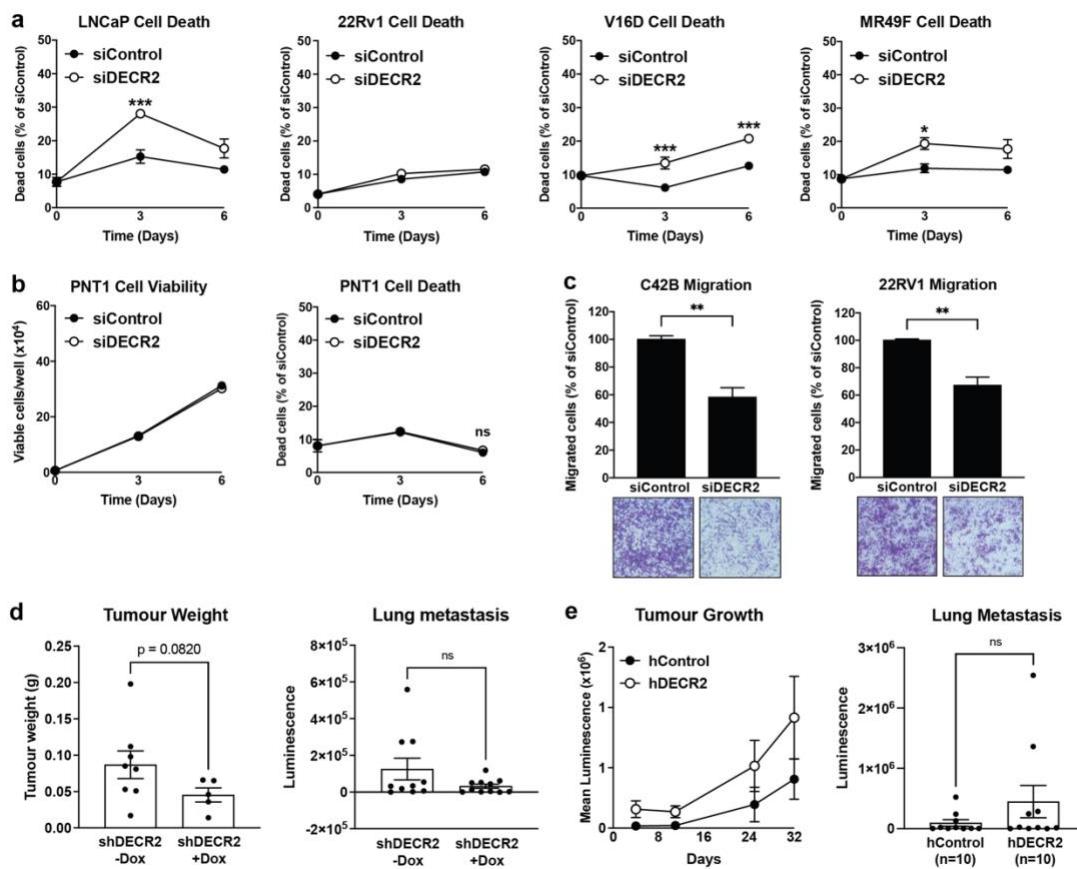

176

177 **Supplementary Figure 1 (a)** Heatmap of KEGG peroxisome pathway genes in the Taylor
 178 cohort. **(b)** C42B and 22Rv1 prostate cancer cell lines treated with TDZ (2.5 μ M) were
 179 assessed for cell migration using a transwell migration assay. **(c)** C42B, V16D and MR49F

180 prostate cancer cells were treated with TDZ for 48 h and assessed for apoptotic and dead
181 cells via flow cytometry. Data presented as percentage of cells in each live, apoptotic, or dead
182 state per sample. **(d)** Histogram displaying DECR2 mutation and copy-number alteration
183 frequency across 9 prostate cancer genomic datasets (left), and across 3 prostate cancer
184 subtypes (right). **(e)** Immunocytochemistry staining of LNCaP and 22Rv1 cells to determine
185 subcellular localisation of DECR2. DAPI: nuclei; Alexa Fluor 488 secondary antibody: DECR2;
186 Alexa Fluor 594 secondary antibody: PMP70 (Peroxisome), scale bar = 10 μ m. **(f)** Cell viability
187 of overexpression hDECR2 cells versus hControl LNCaP cells after treatment with varying
188 doses of TDZ. **(g)** Viability of V16D cells subjected to siRNA-mediated DECR2 knockdown
189 with or without TDZ treatment. All cell line data are representative of at least 2 independent
190 experiments and presented as mean \pm s.e.m of triplicate wells. Statistical analyses were
191 performed using ordinary one-way or two-way ANOVA: * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$ and
192 **** $p < 0.0001$.

193 **DECR2 targeting inhibits prostate cancer oncogenesis**

194 The upregulation of DECR2 levels in metastatic CRPC compared to benign tissues suggests
195 an important role for DECR2 in PCa growth and progression. Indeed, transient knockdown of
196 DECR2 significantly suppressed viability and induced cell death in androgen-dependent
197 LNCaP, CRPC 22Rv1 and V16D, and enzalutamide-resistant MR49F PCa cell lines (**Figure 2a, Supplementary Figure 2a**). No effect on cell viability was observed in non-malignant
198 PNT1 prostate cells (**Supplementary Figure 2b**). Similarly, doxycycline (dox)-inducible
200 knockdown of DECR2 with short hairpin RNA (shDECR2+Dox) significantly attenuated
201 viability in LNCaP PCa cell lines (**Figure 2b**). In contrast, constitutive ectopic overexpression
202 of DECR2 (hDECR2) in LNCaP cells significantly enhanced viability compared with vector
203 control cells (hControl; **Figure 2c**). Additionally, dox-inducible knockdown of DECR2 markedly
204 decreased LNCaP colony formation while stable overexpression of DECR2 increased colony
205 formation (**Figure 2d, e**). Likewise, DECR2 knockdown significantly reduced migration of
206 CRPC C42B and 22Rv1 PCa cells (**Supplementary Figure 2c**), while stable overexpression
207 of DECR2 increased migration in LNCaP cells (**Figure 2f**). Finally, dox-induced shDECR2
208 (shDECR2+Dox) cells showed significantly reduced capacity for tumour growth and a trend
209 towards reduced lung metastasis compared with non-dox-induced (shDECR2-Dox) cells using
210 LNCaP orthotopic xenografts (**Figure 2g; Supplementary Figure 2d**). Inspection of the
211 tumours also revealed significantly reduced cellular proliferation in shDECR2+Dox cells
212 compared with shDECR2-Dox cells (**Figure 2h**). In contrast, overexpression of DECR2 in
213 LNCaP cells significantly increased tumour growth compared with control cells (**Figure 2i**). In
214 addition, analysis of detectable tumours from hDECR2 ($n = 6$) and hControl ($n = 10$) mice
215 revealed a significant increase in tumour weight and lung metastasis of hDECR2 cells
216 compared with control cells (**Figure 2i, j**).



217

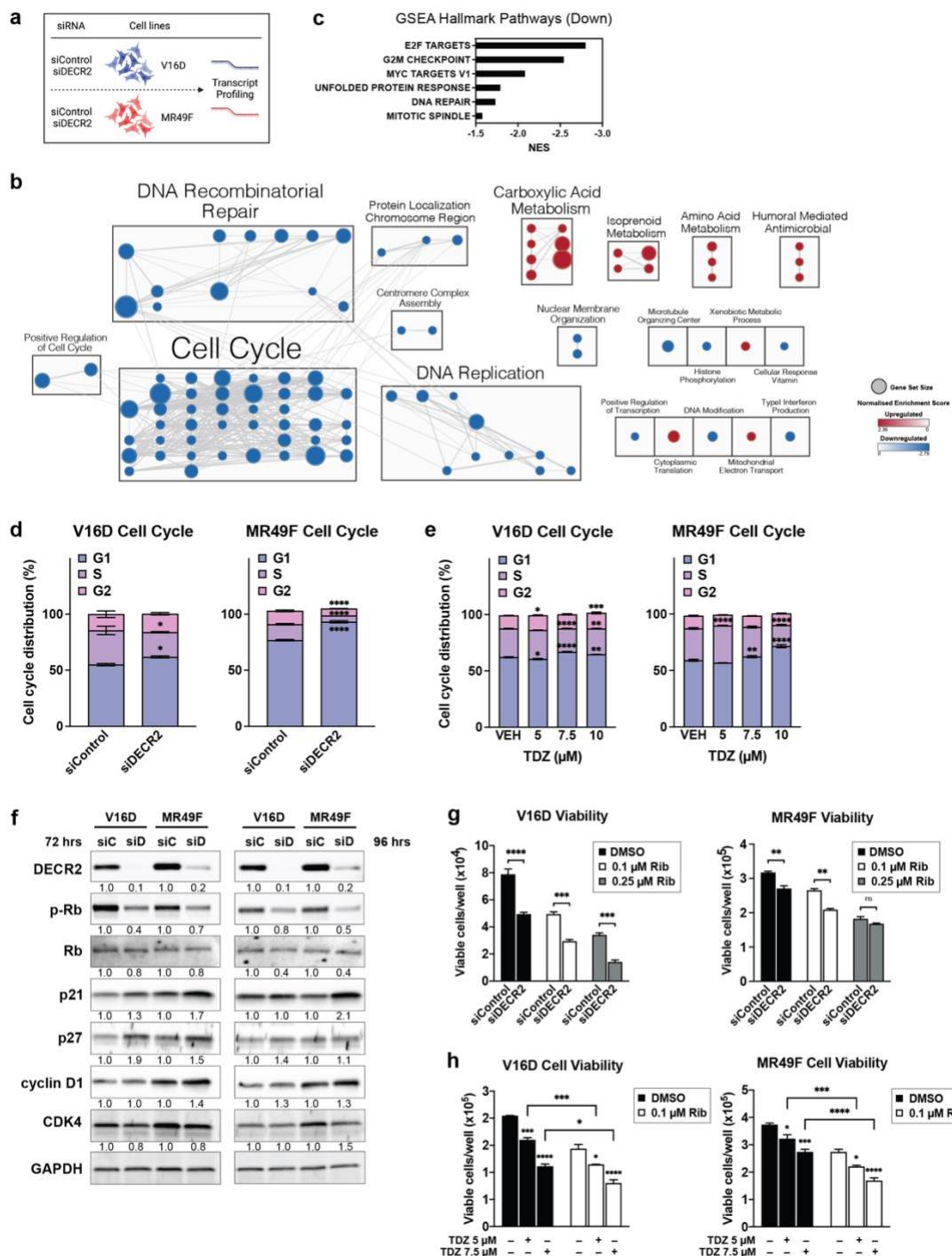
218 **Figure 2 DECR2 knockdown inhibits prostate cancer cell growth in vitro and in vivo. (a)**
219 Cell viability of androgen-dependent LNCaP, castrate-resistant 22Rv1 and V16D, and
220 enzalutamide-resistant MR49F prostate cancer cell lines subjected to siRNA-mediated
221 DECR2 knockdown. **(b)** Cell viability of LNCaP cells with stable/inducible shRNA DECR2
222 knockdown (shDECR2) and **(c)** stable overexpression of DECR2 (hDECR2). **(d)** LNCaP

223 colony formation was evaluated in cells with stable/inducible shRNA DECR2 knockdown
224 (shDECR2) or (e) stable DECR2 overexpression (hDECR2). (f) LNCaP stable DECR2
225 overexpression (hDECR2) cell lines were assessed for cell migration using a transwell
226 migration assay. (g) LNCaP cells with stable/inducible shRNA knockdown of DECR2
227 (shDECR2, $n = 11$) or control (shControl, $n = 10$) were analysed for orthotopic LNCaP tumour
228 growth in mice, representative bioluminescent tumour images (right). (h) Ki67 quantification
229 (left) and representative IHC staining (right) of orthotopic LNCaP tumours. Scale bar, 100 μ m.
230 This panel includes data from mice with sufficient sized tumours for analysis (shDECR2 $n = 5$,
231 shControl $n = 8$). (i) Tumour growth and tumour weight of intraprostatically injected LNCaP
232 cells with stable DECR2 overexpression (hDECR2, $n = 6$) or control (hControl, $n = 10$),
233 representative bioluminescent tumour images (right). (j) Lung luminescence readings of stable
234 DECR2 overexpression tumours in mice. All *in vitro* data are representative of at least 2
235 independent experiments and presented as mean \pm s.e.m of triplicate wells. Statistical
236 analysis was performed using ordinary one-way ANOVA or two-tailed student's t-test: * $p <$
237 0.05, ** $p < 0.01$, *** $p < 0.001$ and **** $p < 0.0001$.

238

239

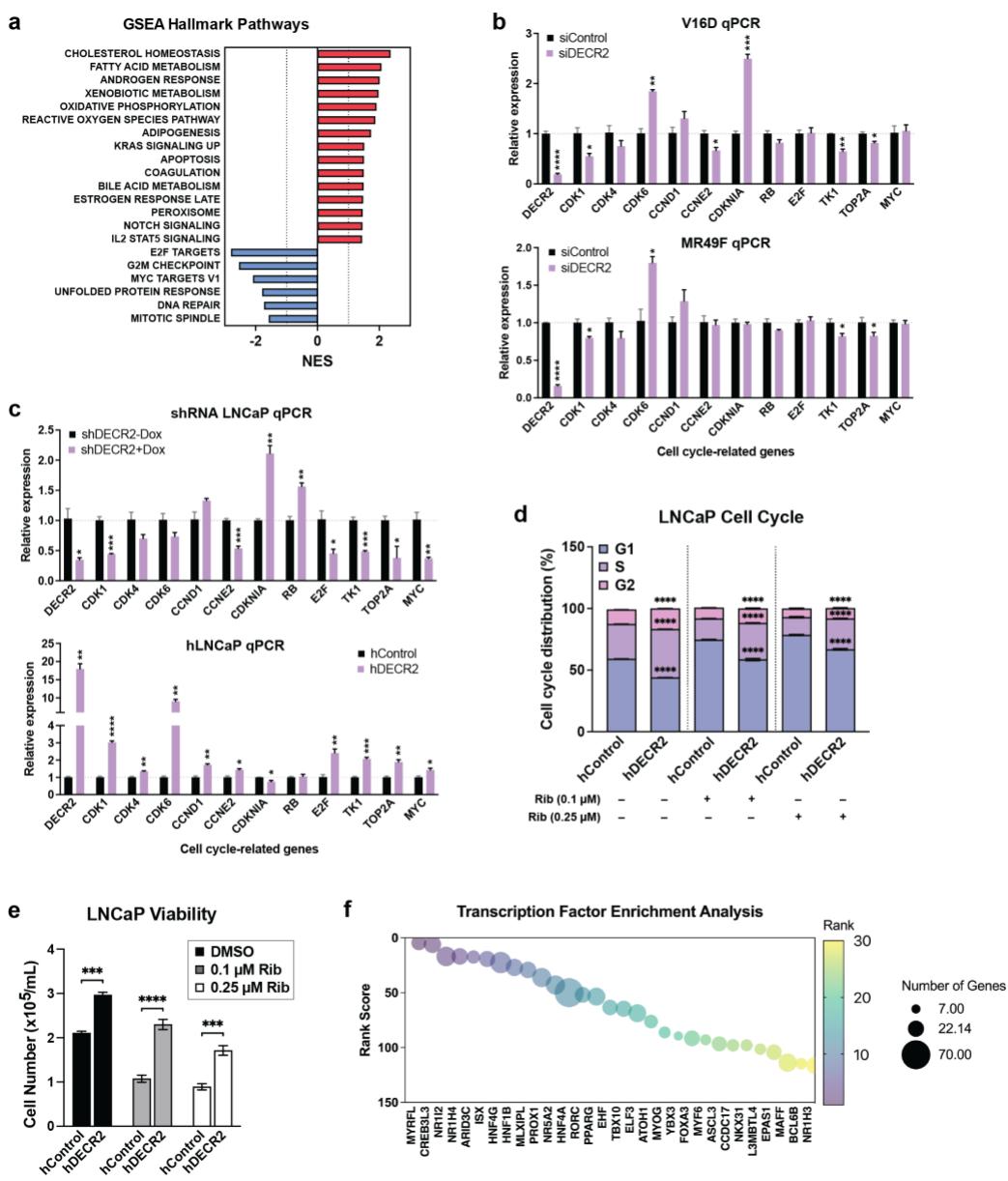
240 **Supplementary Figure 2 (a)** Cell death of androgen-dependent LNCaP, castrate-resistant
241 22Rv1 and V16D, and enzalutamide-resistant MR49F prostate cancer cell lines subjected to
242 siRNA-mediated DECR2 knockdown. **(b)** Cell viability and cell death of non-malignant prostate
243 PNT1 cells. **(c)** C42B and 22Rv1 prostate cancer cell lines subjected to siRNA-mediated
244 DECR2 knockdown were assessed for cell migration using a transwell migration assay. **(d)**
245 Tumour weight and lung luminescence readings following DECR2 knockdown in mice
246 (shDECR2 $n = 11$, shControl $n = 10$). Tumour weight includes data from mice with sufficient
247 sized tumours for analysis (shDECR2 $n = 5$, shControl $n = 8$). **(e)** Tumour growth and lung
248 luminescence readings of DECR2 overexpression mice ($n = 10$ per group, including mice with
249 non-detectable tumours). All cell line data are representative of at least 2 independent
250 experiments and presented as mean \pm s.e.m of triplicate wells. Statistical analyses were
251 performed using ordinary two-way ANOVA, or two-tailed student's t-test: ns = non-significant,
252 $*p < 0.05$, $**p < 0.01$, $***p < 0.001$.


253 **Depletion of DECR2 induces cell cycle arrest**

254 To investigate the mechanism by which PCa cell growth and proliferation was attenuated by
255 knockdown of DECR2, we carried out genome-wide transcriptional profiling of V16D and
256 MR49F PCa cells ($n = 6$ biological replicates) subjected to a pooled siRNA-mediated
257 knockdown of DECR2 (**Figure 3a**). Differential expression analysis identified > 8000 genes
258 that were significantly (FDR < 0.05) differentially expressed in DECR2 knockdown cells
259 compared to control cells (**Supplementary Data 1**). Gene Set Enrichment Analysis (GSEA)
260 revealed a strong enrichment for GO-terms/pathways (MSigDB) related to the cell cycle and
261 DNA replication and repair processes among downregulated genes in DECR2 knockdown
262 cells compared with control cells (**Supplementary Data 1**). Other metabolic processes such
263 as carboxylic acid pathways, branched-chain amino acid pathways and isoprenoid metabolic
264 processes were enriched among genes upregulated in DECR2 knockdown cells (**Figure 3b**;
265 **Supplementary Figure 3a; Supplementary Data 1**). GSEA analysis of the Hallmark pathway
266 terms (MSigDB) identified E2F targets to be enriched among downregulated genes (**Figure**
267 **3c**). Accordingly, we examined the effect of DECR2 knockdown on cell cycle profile by flow
268 cytometry. Knockdown of DECR2 induced cell cycle arrest at the G1/S phase in V16D and
269 MR49F PCa cell lines (**Figure 3d**). Further, we validated our observations via qPCR in
270 inducible DECR2 knockdown and overexpression cells (**Supplementary Figure 3b, c**). Stable
271 overexpression of DECR2 in LNCaP cells showed the opposite effect where there were
272 enhanced proportions of cells in S phase, consistent with an increase in cell proliferation
273 (**Supplementary Figure 3d**). Likewise, TDZ induced G1/S phase cell cycle arrest dose-
274 dependently in V16D and MR49F cells, particularly at the 10 μ M dose (**Figure 3e**). In light of
275 these findings, we assessed the effect of DECR2 knockdown on several cell-cycle related
276 proteins/regulators in V16D and MR49F cells. We observed an increase in cyclin-dependent
277 kinase inhibitors p21 and p27, and a decrease in cyclin-dependent kinase CDK4 (**Figure 3f**).
278 Notably, we observed a decrease in phosphorylated retinoblastoma (pRb), a tumour
279 suppressor protein in DECR2 knockdown cells compared to control cells (**Figure 3f**). We next
280 evaluated whether the cyclin-dependent kinase (CDK) 4/6 inhibitor, ribociclib (Rib) could

281 further enhance the effect of DECR2 knockdown. Indeed, Rib further abrogated viability of
282 DECR2 depleted V16D and MR49F cell lines (**Figure 3g**). In contrast, stable overexpression
283 of DECR2 in LNCaP cells rendered the cells more resistant to Rib compared to control cells
284 (**Supplementary Figure 3d, e**). Finally, we examined the effect of perFAO inhibition via TDZ
285 in combination with Rib on PCa cell viability. We found that TDZ further abrogated viability of
286 V16D and MR49F cell lines when treated in combination with Rib compared to vehicle-treated
287 cells or Rib alone (**Figure 3h**).

288

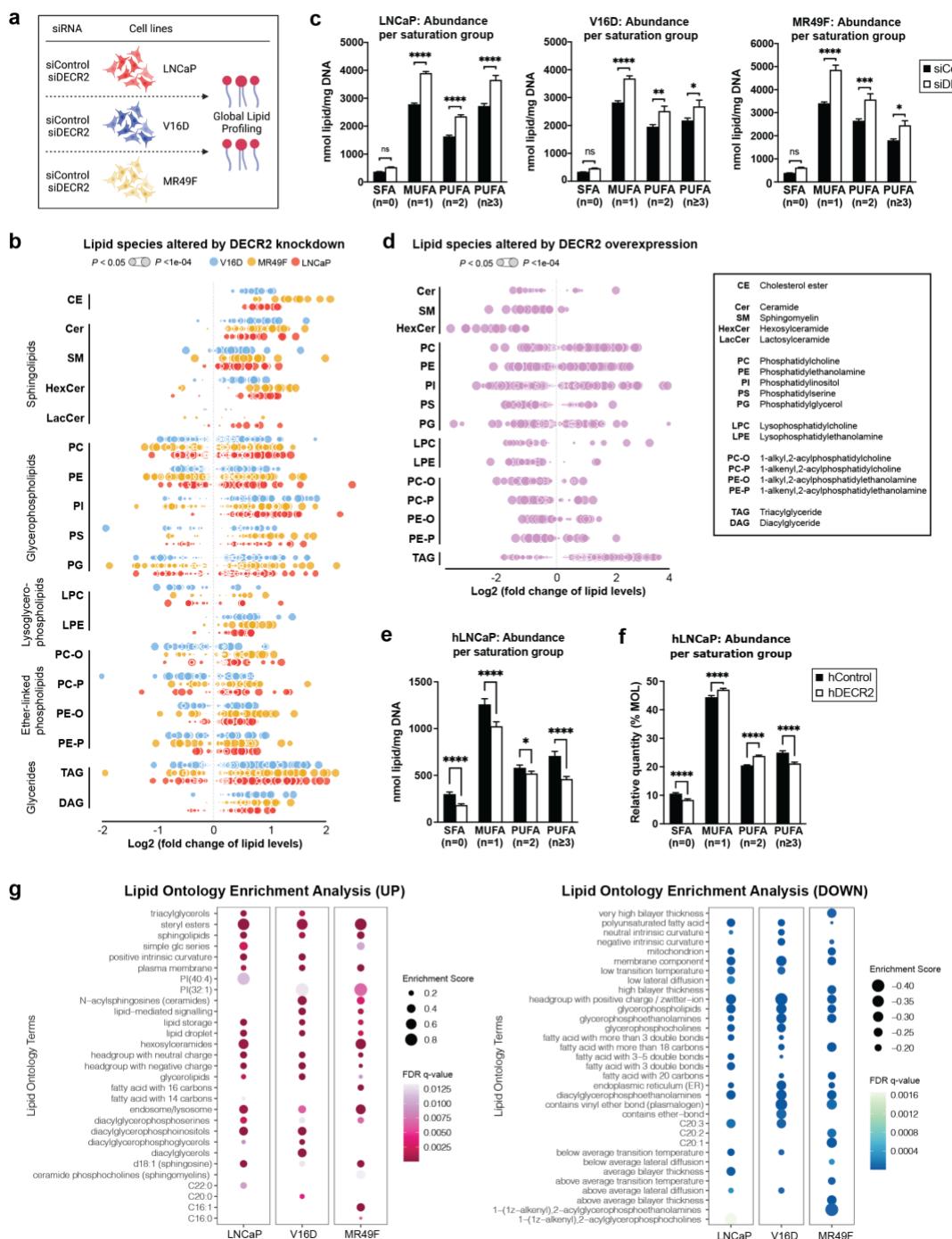

289 One of the most strongly enriched pathways from our RNAseq data was lipid metabolism and
290 fatty acid metabolic processes (**Figure 3b; Supplementary Figure 3a**). Consistent with these
291 data, transcription factor enrichment analysis³⁰ identified several lipid metabolism-related
292 transcription factors (i.e., HNF4G, HNF4A, PPARG) that were significantly enriched among
293 the top upregulated differentially expressed genes in DECR2 knockdown cells
294 (**Supplementary Figure 3f**).

295 **Figure 3 Transcriptomic analysis of the molecular mechanism of DECR2 function. (a)**
296 Schematic for DECR2-dependent RNA-seq-based changes in gene expression after DECR2
297 siRNA knockdown. **(b)** Gene interaction network of GSEA GO-terms (sourced from MSigDB,
298 FDR < 0.01) enriched in up- (red) or down- (blue) regulated genes in DECR2 knockdown
299 V16D and MR49F prostate cancer cells. Nodes represent gene sets and node size represents
300 the number of genes in the gene set. Edges represent overlap between gene sets and edge

301 width represents the number of genes that overlap (see **Supplementary Data 1**). **(c)** Bar chart
302 of enriched GSEA Hallmark terms among downregulated genes in DECR2 knockdown cells.
303 V16D and MR49F cell cycle distribution 96 h after **(d)** siRNA-mediated DECR2 knockdown **(e)**
304 TDZ treatment. Data presented as percentage of cells in G1, S or G2 phase per sample. **(f)**
305 Western blot analysis of a panel cell cycle-related protein markers in V16D and MR49F cells
306 72 and 96 h after DECR2 knockdown. GAPDH was used as loading control. Cell viability of
307 **(g)** V16D and MR49F prostate cancer cells after DECR2 knockdown. **(h)** Cell viability of V16D
308 and MR49F prostate cancer cells treated with TDZ (5 μ M and 7.5 μ M) and/or in combination
309 with Rib (0.1 μ M). All *in vitro* data are representative of at least 2 independent experiments
310 and presented as mean \pm s.e.m of triplicate wells. Statistical analysis was performed using
311 ordinary one-way or two-way ANOVA: ns = non-significant, * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$
312 and **** $p < 0.0001$.

313

314

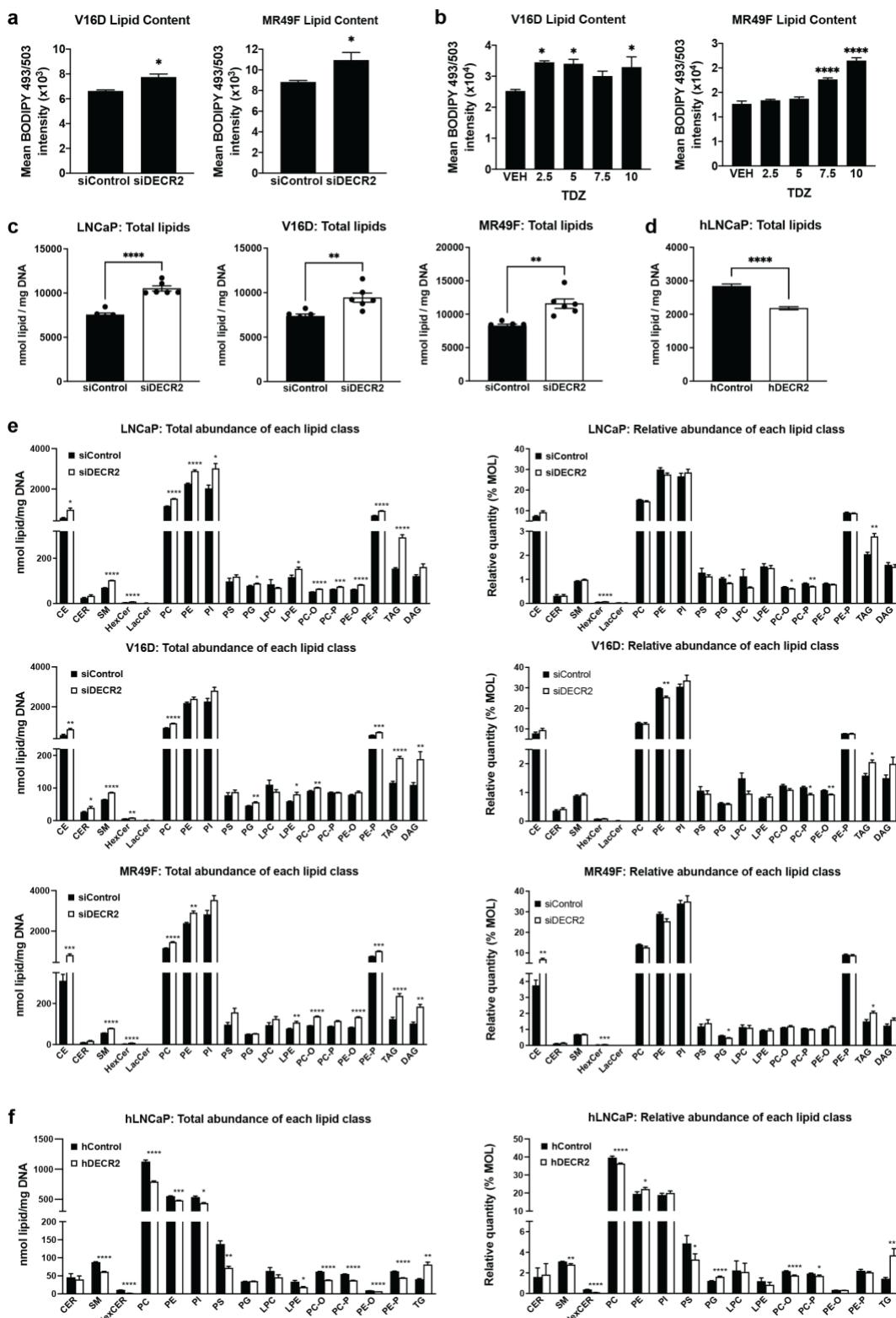

315 **Supplementary Figure 3 (a)** Significantly enriched MSigDB Hallmark terms among
 316 differentially expressed genes. Quantitative PCR (qPCR) of cell cycle-related genes in **(b)**
 317 DECR2 knockdown V16D and MR49F cells, and **(c)** dox-inducible shDECR2 knockdown cells
 318 and LNCaP overexpression hDECR2 cells. **(d)** Cell cycle distribution of LNCaP cells with
 319 stable overexpression of DECR2, treated with ribociclib (Rib; 0.1 μM and 0.25 μM). **(e)** Viability
 320 of LNCaP cells with stable overexpression of DECR2, treated with ribociclib. **(f)** Top 30
 321 transcription factors (TFs) that were enriched in our list of top upregulated differentially
 322 expressed genes ($p < 0.01$, \log_2 fold-change ≥ 1) using the MeanRank method in ChEA3³⁰.

323 TFs are ranked from 1 to 30 in ascending order (from left to right), bubble size indicates the
324 number of genes corresponding to the TF targets. All *in vitro* data are representative of at least
325 2 independent experiments and presented as mean \pm s.e.m of triplicate wells. Statistical
326 analyses were performed using ordinary one-way or two-way ANOVA. * $p < 0.05$, ** $p < 0.01$,
327 *** $p < 0.001$ and **** $p < 0.0001$.

328 **DECR2 knockdown dysregulates lipid metabolism of prostate cancer cells**

329 Given the biological role of DECR2 in perFAO, we further explored the impact of perturbing
330 DECR2 on lipid metabolism. Knockdown of DECR2 in V16D and MR49F PCa cells for 4 days
331 significantly induced neutral lipid accumulation, suggesting storage of lipids in lipid droplets
332 (**Supplementary Figure 4a**). Likewise, TDZ dose-dependently increased neutral lipid
333 accumulation in V16D and MR49F PCa cell lines (**Supplementary Figure 4b**). To understand
334 how cellular lipid composition is altered by DECR2 knockdown, we carried out a global
335 lipidomic analysis of LNCaP, V16D and MR49F PCa cells subjected to siRNA-mediated
336 knockdown of DECR2 (**Figure 4a**). Inspection of the lipid profiles of LNCaP, V16D and MR49F
337 PCa cells after transient knockdown of DECR2 revealed a profound remodelling of the cellular
338 lipidome (**Figure 4b**). All 3 cell lines displayed a strong and consistent accumulation of many
339 cellular lipids (**Figure 4b; Supplementary Figure 4c; Supplementary Data 2**), in particular
340 the cholesteryl esters, glycerides, sphingolipids, and several classes of (lyso)-phospholipids
341 such as PC, PE, PI and LPE (**Figure 4b; Supplementary Figure 4e**). Interestingly, we also
342 observed the accumulation of several classes of ether-linked phospholipids such as PC-O,
343 PE-O and PE-P (**Figure 4b; Supplementary Figure 4e**), which are known to be synthesised
344 within the peroxisome³¹. DECR2 knockdown did not markedly alter saturated fatty acids (SFA)
345 levels, but significantly increased the abundance of monounsaturated (MUFA) and
346 polyunsaturated fatty acids (PUFA) compared with control cells (**Figure 4c**). The opposite
347 effect on lipid accumulation was observed in DECR2-overexpressing (hDECR2) LNCaP cells,
348 whereby we observed a significant reduction in total lipid levels (**Figure 4d; Supplementary**
349 **Figure 4d; Supplementary Data 2**). Analysis of the lipidome revealed marked decrease in
350 abundance across almost all classes of lipids compared with control cells, except
351 triacylglycerides (TAG) which showed a significant increase in levels (**Figure 4d;**
352 **Supplementary Figure 4f**). Overexpression of DECR2 in LNCaP cells markedly decreased
353 SFA, MUFA and PUFA abundance compared with control cells (**Figure 4e**). However, closer
354 inspection of the relative abundance revealed a significant decrease in the proportions of SFA
355 and PUFA ($n \geq 3$) levels relative to MUFA and PUFA ($n = 2$) levels (**Figure 4f**). Next, we

356 performed a lipid ontology³² (LION) enrichment analysis to associate lipids in DECR2
357 knockdown cells with biological features (**Figure 4g**). Lipids with increased relative abundance
358 in DECR2 knockdown samples were enriched for terms associated with lipid storage/droplet,
359 sphingolipids, lipid-mediated signalling, PG, PI and PS, and alterations in lipids implicated in
360 the plasma membrane and endosome/lysosome. In contrast, LION enrichment analysis
361 revealed enrichment for terms associated with PUFAs, SM, PC, PE, plasmalogens, and
362 membrane components such as the mitochondria and endoplasmic reticulum, among lipids
363 downregulated in DECR2 knockdown cells.

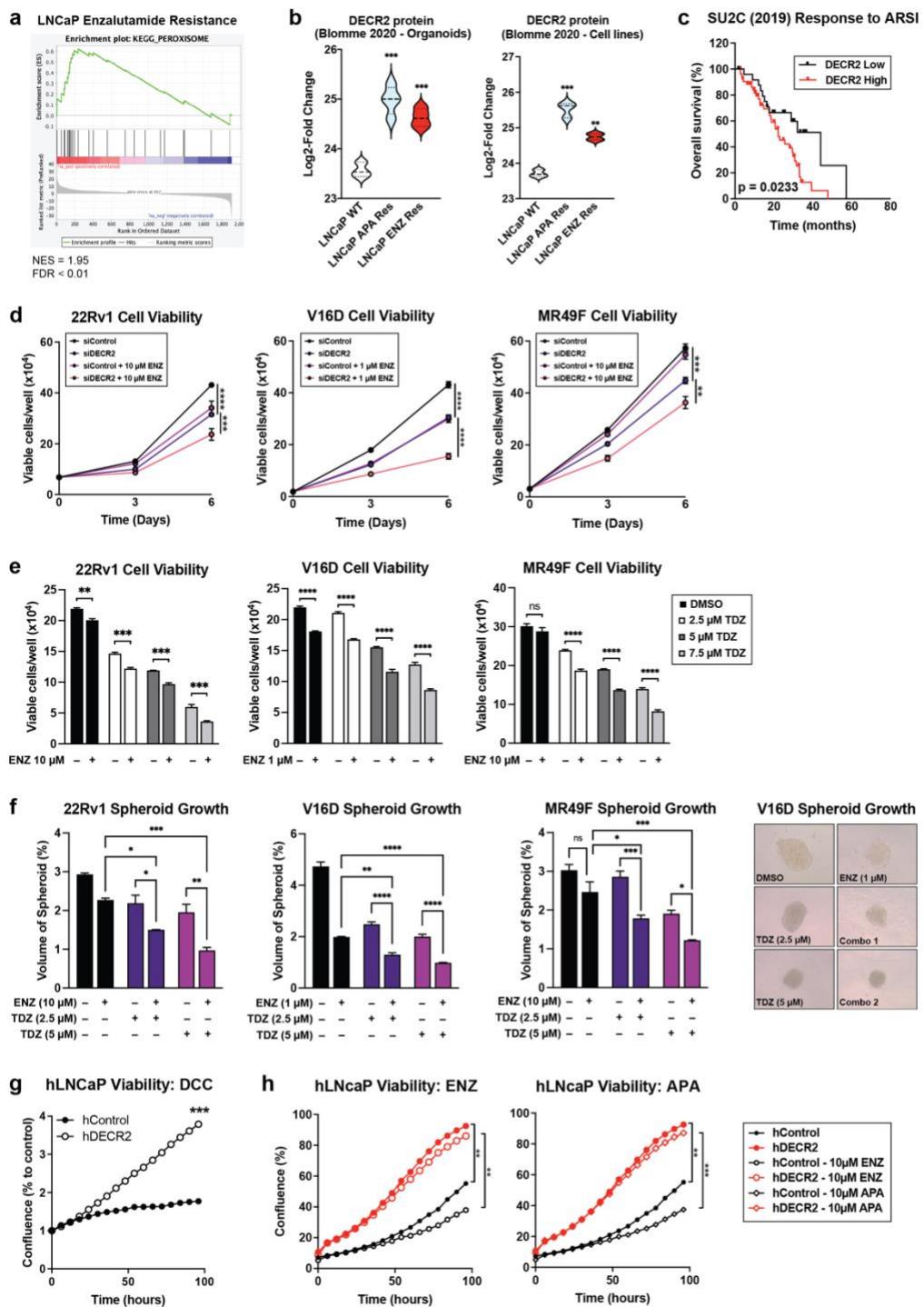


364 **Figure 4 Global lipidomics of DEC2 knockdown and overexpression in prostate**
365 **cancer cells reveal strongly altered lipid states.** (a) Global lipidomic study overview. (b)

366 Lipidomic analysis of LNCaP, V16D and MR49F prostate cancer cell lines subjected to siRNA-
367 mediated DEC2 knockdown relative to control. Values are shown as quantitative log2-fold
368 changes. Lipidomics data were from 6 replicates and are represented as means. Each dot
369 represents a lipid species. Dot size is proportionate to statistical significance (see

370 **Supplementary Data 2).** **(c)** Quantitative abundance per saturation group in LNCaP, V16D
371 and MR49F cells. **(d)** Lipidomic analysis of DECR2 overexpression (hDECR2) cells relative to
372 control (hControl). **(e)** Quantitative abundance and **(f)** Relative abundance per saturation
373 group in DECR2 overexpression cells. **(g)** Lipid ontology (LION) enrichment analysis of
374 relative lipid abundance in siControl versus siDECR2 LNCaP, V16D and MR49F prostate
375 cancer cells. Statistical analysis was performed using two-tailed student's t-test: * $p < 0.05$, ** p
376 < 0.01, *** $p < 0.001$ and **** $p < 0.0001$.

377

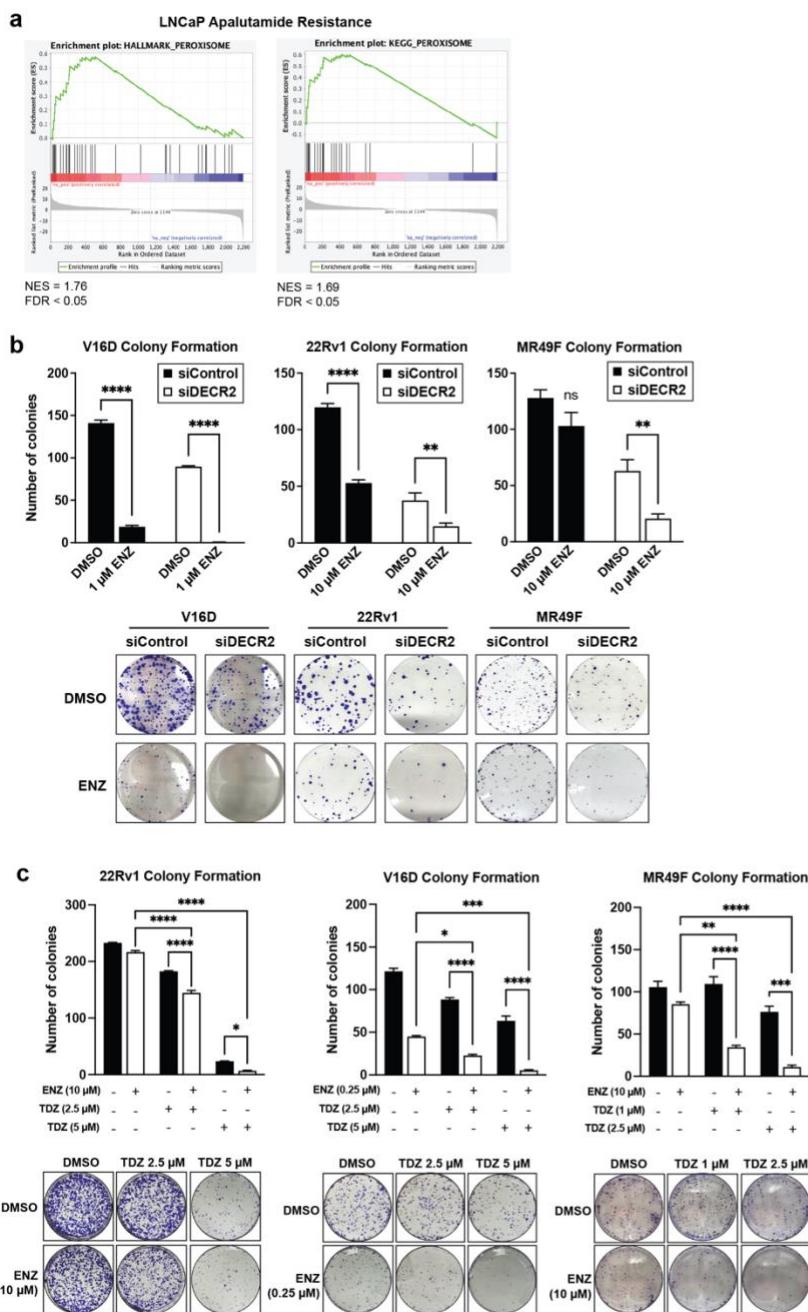

378

379 **Supplementary Figure 4 (a)** V16D and MR49F prostate cancer cells subjected to siRNA-
380 mediated DECR2 knockdown were assessed for neutral lipid content via flow cytometry. **(b)**
381 V16D and MR49F prostate cancer cells were treated with TDZ for 48 h and assessed for

382 neutral lipid content via flow cytometry. Total lipid abundance in **(c)** LNCaP, V16D and MR49F
383 cells, and in **(d)** DECR2 overexpressing LNCaP cells. **(e)** Quantitative (left panel) and relative
384 (right panel) abundance of each lipid class in LNCaP, V16D and MR49F cells. **(f)** Quantitative
385 (left) and relative (right) abundance of each lipid class in DECR2 overexpressing LNCaP cells.
386 Statistical analyses were performed using ordinary two-way ANOVA, or two-tailed student's t-
387 test. * p < 0.05, ** p < 0.01, *** p < 0.001 and **** p < 0.0001.

388 **DECR2 expression levels affect sensitivity to enzalutamide**

389 A recent proteomics study by Blomme et al. characterised the changes associated with
390 acquired resistance to AR pathway inhibition (ARI)². Here, we independently analysed their
391 proteomics dataset and found that MSigDB Hallmark and KEGG peroxisomal genes were
392 strongly associated with acquired ENZ and apalutamide (APA) resistance (**Figure 5a**;
393 **Supplementary Figure 5a**). Notably, DECR2 protein was robustly upregulated in ARI-
394 resistant cells and organoids (**Figure 5b**). Further, high DECR2 levels were significantly
395 associated with overall survival ($p = 0.0233$; **Figure 5c**) in the SU2C clinical PCa cohort,
396 consisting of patients with metastatic CRPC linked to longitudinal fatal outcomes³³.
397 Accordingly, we assessed whether DECR2 depletion or perFAO via TDZ could increase
398 sensitivity of CRPC (22Rv1 and V16D) and ENZ-resistant (MR49F) PCa cells to ENZ. Indeed,
399 DECR2 knockdown further attenuated 22Rv1, V16D and MR49F viability (**Figure 5d**) and
400 colony formation compared to DECR2 knockdown or ENZ alone (**Supplementary Figure 5b**).
401 Similarly, we showed that TDZ in combination with ENZ further attenuated 22Rv1, V16D and
402 MR49F viability (**Figure 5e**) and colony formation (**Supplementary Figure 5c**) compared to
403 TDZ or ENZ alone – most notably in the ENZ-resistant MR49F cells, suggesting re-
404 sensitisation to ENZ (**Supplementary Figure 5c**). TDZ in combination with ENZ also
405 significantly decreased 22Rv1, V16D and MR49F growth in 3D spheroids (**Figure 5f**), which
406 better mimics *in vivo* conditions than 2D cell culture³⁴, more effectively than TDZ or ENZ alone.
407 To investigate whether high DECR2 levels could confer resistance to ARI, we assessed cell
408 viability of stable overexpression of DECR2 in LNCaP cells under androgen-depleted
409 conditions. Stable overexpression of DECR2 significantly increased viability of LNCaP cells
410 compared with control cells cultured in charcoal-stripped serum medium (**Figure 5g**). Next,
411 we assessed cell viability of stable DECR2 overexpression LNCaP cells under AR inhibition
412 via treatment with ENZ and APA. In both conditions, stable DECR2 overexpression LNCaP
413 cells were significantly more resistant to ARI compared with control cells (**Figure 5h**).



414

415 **Figure 5 DECR2 confers resistance to enzalutamide in prostate cancer cells. (a)** GSEA
416 of peroxisomal Hallmark and KEGG proteins shows positive correlation with acquired
417 resistance to enzalutamide. **(b)** DECR2 protein expression is significantly increased in LNCaP
418 acquired apalutamide and enzalutamide resistance organoids and cell lines compared to
419 wildtype LNCaP organoids and cells. Data are represented as violin plots in GraphPad prism.

420 **(c)** The correlation of DECR2 expression with overall survival in the SU2C cohort. ARSI =
421 androgen receptor signalling inhibitor. **(d)** Cell viability of 22Rv1, V16D and MR49F cells
422 subjected to siRNA-mediated DECR2 knockdown, treated with ENZ (1 or 10 μ M). **(e)** Cell
423 viability of 22Rv1, V16D and MR49F prostate cancer cell lines treated with thioridazine, TDZ
424 (2.5, 5 and 7.5 μ M) and/or ENZ (1 or 10 μ M). **(f)** 22Rv1, V16D and MR49F cell growth in 3D
425 spheres, treated with TDZ (2.5 and 5 μ M) and/or ENZ (1 or 10 μ M). Spheroid volumes were
426 determined after four days of culturing the cells in 96-well microplates; spheres were assessed
427 using the ReViSP software. **(g)** Growth of hDECR2 and hControl LNCaP cells under charcoal-
428 stripped (androgen-deprived) conditions. **(h)** Growth of hDECR2 and hControl LNCaP cells
429 under full serum conditions and in response to enzalutamide (ENZ, 10 μ M) and apalutamide
430 (APA, 10 μ M). All data are representative of at least 2 independent experiments and presented
431 as mean \pm s.e.m of triplicate wells. Data in (c) were statistically analysed using a two-sided
432 log-rank test. Statistical analysis was performed using ordinary one-way or two-way ANOVA.
433 ns = non-significant, * p < 0.05, ** p < 0.01, *** p < 0.001 and **** p < 0.0001.

434

435

436 **Supplementary Figure 5 (a)** GSEA of peroxisomal Hallmark and KEGG proteins shows
437 positive correlation with acquired resistance to apalutamide. **(b)** V16D and MR49F colony
438 formation was evaluated in cells subjected to siRNA-mediated DECR2 knockdown, with or
439 without enzalutamide, ENZ (1 or 10 μ M) treatment. **(c)** 22Rv1 and MR49F colony formation
440 was evaluated in cells treated with TDZ (1 and 2.5 μ M) and/or ENZ (10 μ M). Statistical analysis

441 was performed using ordinary two-way ANOVA. * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$ and **** p

442 < 0.0001 .

443 **DISCUSSION**

444

445 Peroxisomal β -oxidation (perFAO) is an understudied aspect of fatty acid metabolism in PCa.
446 To provide proof-of-principle, and circumvent the time and resources required to develop and
447 test new drug treatments, we appropriated an existing clinically available pharmacological
448 agent to explore the efficacy and clinical exploitability of inhibiting perFAO, using thioridazine
449 (TDZ)²¹. A few studies have examined its anti-tumorigenic effects in several cancer cell types
450 such as the brain³⁵, lung³⁶, colon³⁷, ovarian³⁸ and breast³⁹. In this study, we provide first-in-
451 field evidence for the therapeutic efficacy of targeting perFAO, using TDZ, in clinical prostate
452 tumours and in *in vitro* cell line models of treatment-resistant PCa. Altogether, our findings
453 suggest that perFAO is an exploitable therapeutic target for PCa. However, recognising that
454 TDZ is not an ideal inhibitor of perFAO due to its lack of specificity and considering that no
455 other perFAO inhibitors currently exist, we sought to identify key functional genes of perFAO
456 that could be more specifically targeted therapeutically.

457

458 Cancer-related changes in peroxisomal gene and protein expression and metabolic flux, and
459 their relationship to cellular lipid profile, remain an area ripe for further investigation. Various
460 tumour types exhibit alterations in peroxisome abundance and activity, and it was recently
461 reported that expression of peroxisomal genes is elevated across different tumours⁴⁰.
462 Intriguingly, while some studies observed a decrease in peroxisomal activity in certain tumour
463 types, other groups indicated that peroxisomal metabolic activities promote tumour growth. It
464 is likely that the tumour-promoting or tumour-suppressing functions of peroxisomes are
465 dependent on the tumour type and disease stage⁴¹. Analysis of the expression of genes
466 involved in peroxisome/ β -oxidation in PCa revealed two distinct expression profiles that are
467 either up- or down-regulated with increasing tumour progression.

468

469 Not surprisingly, *AMACR* was one of the most consistently upregulated perFAO genes across
470 all stages of PCa, accompanied by *DECR2*. Notably, *DECR2* protein expression was highest

471 in castrate-resistant V16D and ENZ-resistant MR49F PCa cell lines. 2,4-dienoyl CoA
472 reductase 2 or DECR2 is a perFAO enzyme analogous to our recently discovered
473 mitochondrial DECR1. Besides residing in different cellular compartments, DECR1 and 2 are
474 both critical NADPH-dependent auxiliary enzymes that play key roles in (poly)unsaturated fatty
475 acid oxidation⁴². Unlike the mitochondria, peroxisomes do not produce ATP. Instead,
476 peroxisomes function to shorten very long chain fatty acids (VLCFA, C \geq 22) prior to transport
477 into the mitochondria for complete degradation and energy production³¹. Although upon
478 examination of the crystal structure of DECR2 showed selectivity for VLCFAs like
479 docosahexaenoic acid (DHA)⁴³, another study reported that DECR2 may be involved in the
480 degradation of short and medium chain substrates⁴⁴. In a very recent study, Spiegel et al.
481 characterised the lipidomic changes of a set of gene knockouts, including DECR2, in a colon
482 cancer cell line. The authors observed elevated levels of long-chain PUFAs in PI, PE-O and
483 PC-O lipid classes (C20 and C22), confirming previous studies that DECR2 can oxidise
484 unsaturated fatty acids and assist in the degradation of PUFAs such as arachidonic acid (AHA)
485 and DHA in peroxisomes⁴⁵.

486

487 Our findings shed new light on perFAO in regulating cell cycle progression and lipid
488 metabolism. One of the cellular processes most markedly affected by DECR2 inhibition is the
489 cell cycle, as demonstrated by our RNAseq data. We further showed that DECR2 knockdown
490 markedly arrested the cell cycle at the G1 phase, while high DECR2 levels exhibited an
491 accelerated rate of cell cycle progression. Consistent with our results, we observed a decrease
492 in phosphorylated retinoblastoma (pRb) tumour suppressor protein in DECR2 knockdown
493 compared with control cells. Of particular interest is the connection between peroxisomal fatty
494 acid metabolism and cell cycle progression. We observed that DECR2 knockdown or
495 overexpression had profound effects on the cellular lipidome, notably for altered lipid
496 abundance and composition. Koberlin et al. showed that functional phenotypes could be
497 predicted based on different lipid states, and is applicable to more membrane-dependent
498 processes such as cell division, proliferation, apoptosis, and autophagy⁴⁶. Gokcumen et al.

499 demonstrated that cells actively regulate their lipid composition and localisation during cell
500 division, and that specific lipids within lipid families have specific functions that contribute to
501 signalling and structural integrity of dividing cells⁴⁷. Notably, our LION enrichment analysis
502 revealed dramatic changes in glycerophospholipids in DECR2 knockdown cells, which are
503 essential building blocks for cell growth/proliferation. perFAO contributes to
504 glycerophospholipid (GL) synthesis⁴⁸⁻⁵⁰. Previous studies have also shown that key
505 phospholipids of plasma and organelle membrane, PC and PE, are differentially regulated
506 across the cell cycle (G1/S phase) mediated by transcription factors SREBP, AKT/mTORC1,
507 and p53⁵¹. perFAO can also alter the GL milieu to trigger actin remodelling to enable the
508 reorganisation of the plasma membrane needed for proper receptor localisation, recruitment
509 of signalling intermediates and changes in cell morphology required for proliferation and
510 survival⁵². Certain lipid species such as DGs and sphingolipids (ie. SM and Cer) can act as
511 second messengers, and changes in the acyl-chain composition of membrane lipids such as
512 PC are known to impact the regulation of oncogenic signalling pathways⁵³. Some studies have
513 linked Rb/pRb to the control of lipid metabolism, including but not limited to modulation of
514 mitochondrial oxidative phosphorylation⁵⁴ and lipid remodelling (ie. elongation and
515 desaturation)⁵⁵. In addition, Rb/pRb is able to cooperate with various metabolic pathways (ie.
516 mTORC1, SREBP, PI3K/AKT) to facilitate homeostatic control of cellular metabolism⁵⁶.
517 Intriguingly, we observed a marked increase in TG levels in DECR2 knockdown cells,
518 suggesting an accumulation of lipid droplets (LD) which we confirmed via BODIPY 493/503
519 neutral lipid staining. Previous studies have shown that LDs are tightly linked to cell cycle
520 progression, particularly in the G1/S phase transition, either by increasing their interaction with
521 the mitochondria and peroxisomes, or to microtubules, to energetically fuel cell proliferation
522 and promote cell survival through increased fatty acid oxidation, or to maintain lipid
523 homeostasis for efficient cell division⁵⁷. More recently, perFAO has been shown to prevent
524 lipotoxicity by regulating lipolysis from LDs via control of ATGL protein levels⁵⁸. Alterations in
525 membrane lipid composition have also been implicated to alter membrane properties such as
526 membrane fluidity, in a way that promotes survival and treatment resistance in cancer cells⁵⁹.

527 This can be attributed to changes in the desaturation ratio of membrane lipids, increased SM
528 and/or cholesterol content, and the formation of detergent-resistant membrane domains that
529 can activate multi-drug efflux transporters⁶⁰. Acyl-chain lengths can also have a profound
530 impact on curvature, fluidity, and fusion rates of biological membranes, although the biological
531 roles of different chain lengths and their regulation are less understood. Some possibilities
532 include remodelling and expanding the endoplasmic reticulum (ER)^{61,62}, and mobilisation of
533 lipids from LD stores^{51,63,64}, supporting the idea that membrane synthesis and integrity could
534 have potential impacts on cell division. In PCa, it was recently shown that fatty acid chain
535 elongation via ELOVL5 promotes prostate tumour growth⁶⁵. Future work is warranted to
536 explore in detail and dissect the specific roles of DECR2 in these activities and the possibilities
537 that these functional pathways intersect in order to drive tumour progression.

538

539 Besides uncovering a fundamental role for DECR2 in regulating lipid homeostasis and cell
540 cycle regulation, this study highlights the importance of perFAO for the first time in CRPC or
541 treatment resistance. Our findings suggest that abnormal perFAO is likely to be one of the
542 contributing factors for resistance to enzalutamide. Herein, we showed that combination of
543 DECR2 inhibition or TDZ with enzalutamide further abrogated PCa cell proliferation of 22Rv1,
544 V16D and MR49F PCa cells and overexpression of DECR2 confers LNCaP cells to be more
545 resistant to enzalutamide. Interestingly, a study by Shen et al. reported that BRAF mutant
546 melanoma ‘persister’ cells resistant to BRAF/MEK inhibition switch their metabolism from
547 glycolysis to oxidative phosphorylation that is predominantly dependent on perFAO compared
548 to mitochondrial β -oxidation²². Peroxisomal-derived ether-linked phospholipids have been
549 shown to drive susceptibility to and evasion from ferroptosis⁶⁶. Gajewski et al. found that
550 DECR2 loss promotes the resistance of tumour cells to immunotherapy by evading CD8+ T-
551 cell-mediated tumour ferroptosis *in vivo*⁶⁷. This suggests that low DECR2 expression may be
552 advantageous to promote tumour growth, which is contradictory to our current findings. More
553 extensive work will be needed to understand the diversity of mechanisms involved in the
554 regulation of DECR2 in PCa progression and treatment resistance. It is important to recognise

555 that peroxisomes do not function as an isolated entity. Organelle crosstalk and functional
556 interplay exists between peroxisomes and many organelles such as the mitochondria, ER,
557 lipid droplets and lysosomes to maintain metabolic homeostasis⁶⁸. A major challenge will be
558 to reveal the mechanisms that mediate the metabolic interplay between peroxisomes and
559 other organelles, and how these are impacted in various diseases/disorders. Our study also
560 extends the current focus of peroxisome-mediated lipid changes in cancer cells to exploring
561 the contribution of peroxisomes to tumorigenesis in the tumour microenvironment (i.e.
562 immunity and inflammation^{52,69,70}), potentially opening up new therapeutic avenues to fight
563 tumour cell proliferation by targeting peroxisome-related processes. Collectively, our findings
564 make a new contribution to the study of altered lipid metabolism in PCa and reveals DECR2
565 as a major modulator of cell cycle progression and lipid metabolism, and an exciting novel
566 candidate for therapeutic targeting.

567 **MATERIALS AND METHODS**

568

569 **Cell lines and tissue culture**

570 Human immortalized normal prostate epithelial cell lines PNT1 and PNT2 were obtained from
571 the European Collection of Authenticated Cell Cultures (ECACC). Prostate carcinoma cells
572 LNCaP and 22RV1 were obtained from the American Type Culture Collection (ATCC;
573 Rockville, MD, USA). Castrate-resistant V16D and enzalutamide-resistant MR49F cell lines
574 were derived through serial xenograft passage of LNCaP cells⁷¹ and were a kind gift from
575 Professor Amina Zoubeidi's laboratory (Vancouver Prostate Centre, Vancouver, Canada). All
576 cell lines were verified in 2022 via short tandem repeat profiling (Cell Bank Australia). Cells
577 were cultured in RPMI-1640 medium containing 10 % fetal bovine serum (FBS; Sigma-Aldrich,
578 NSW, Australia) in a 5 % CO₂ humidified atmosphere at 37 °C; 10 µM enzalutamide was
579 supplemented in the media for growth of MR49F cells.

580

581 **Ex vivo culture of human prostate tumours**

582 Patient derived-explant (PDE) culture was carried out according to techniques established in
583 our laboratory, as described previously²⁷. Briefly, 6 mm/8 mm biopsy cores were collected
584 from men undergoing robotic radical prostatectomy at St. Andrew's Hospital (Adelaide, South
585 Australia) with written informed consent through the Australia Prostate Cancer BioResource.
586 Tissues were dissected into smaller 1 mm³ pieces and cultured on Gelfoam sponges (80 x
587 125 mm Pfizer 1205147) in 24-well plates pre-soaked in 500 µL RPMI-1640 medium
588 supplemented with 10 % FBS and antibiotic/antimycotic solution. TDZ (10 µM or 20 µM) was
589 added into each well and the tissues were cultured in 5 % CO₂ in humidified atmosphere at
590 37 °C for 48 h, then snap frozen in liquid nitrogen and stored at -80 °C, or formalin-fixed and
591 paraffin-embedded. Clinicopathological features of the patients included in this study are
592 shown in **Table 1**.

593

594

595 **Immunohistochemistry (IHC)**

596 Paraffin-embedded tissue sections (2 – 4 μ m) were prepared prior to staining as previously
597 described. IHC staining was performed using DECR2 (ab153849 Abcam, diluted 1:1000)
598 antibody and the 3,3'-Diaminobenzidine (DAB) Enhanced Liquid Substrate System
599 tetrahydrochloride (Sigma Aldrich) as described previously. DECR2 staining intensity was
600 measured by Video Image Analysis.

601

602 **Analysis of publicly available prostate cancer datasets**

603 Gene expression data were downloaded from The Cancer Genome Atlas (TCGA) data portal,
604 cBioPortal (SU2C and MSKCC)⁷², and the GEO website; Taylor et al, GSE21034¹⁹; Grasso et
605 al, GSE35988²⁰; Tomlin et al, GSE6099²⁸. Proteomics data² (raw MaxQuant files) was
606 downloaded from the ProteomeXchange Consortium via the PRIDE partner repository using
607 the dataset identifier PXD016836 and analysed independently using the R software version
608 3.6.3.

609

610 **Western blotting**

611 Protein lysates were collected in RIPA lysis buffer (10 mM Tris, 150 mM NaCl, 1 mM EDTA,
612 1 % Triton X-100, 10 % protease inhibitor). Western blotting on whole cell protein lysates were
613 performed as previously described⁷³. Primary antibodies are shown in **Table 2**.

614

615 **Quantitative real-time PCR (qPCR)**

616 Total RNA was extracted from cells using the RNAeasy RNA extraction kit (Qiagen), followed
617 by cDNA synthesis using the iScript cDNA Synthesis kit (Bio-Rad) on the CFX384 Real-Time
618 System (Bio-Rad, NSW, Australia). qPCR was performed in triplicate as previously
619 described⁷³. Relative gene expression was determined using the comparative Ct method and
620 normalised to the internal housekeeping genes *GUSB* and *L19*. Primer sequences are shown
621 in **Table 3**.

622

623 **siRNA transfection**

624 Human DECR2 ON-TARGET plus SMART pool (L-009627-00-0005) small interfering RNAs
625 (siRNAs) and control siRNA (D-001810-01-20 ON-TARGET plus non-targeting siRNA #1)
626 were purchased from Millennium Science (Victoria, Australia). siRNAs (5 nM) were reverse
627 transfected using Lipofectamine RNAiMAX transfection reagent (Invitrogen, Victoria, Australia)
628 according to manufacturer's instructions.

629

630 **Generation of stable shDECR2 and hDECR2 LNCaP cells**

631 LNCaP cells were transduced with the universal negative control shRNA lentiviral particles
632 (shControl) or hControl (GFP-Puro), DECR2 shRNA inducible lentiviral particles (shDECR2,
633 RFP-Puro) designed by Horizon Discovery (Cambridge, UK), or hDECR2 (GFP-Puro)
634 designed by GenTarget Inc (San Diego, CA, USA) according to manufacturer's instructions.

635

636 **Functional assays**

637 **Cell viability**

638 Cells were seeded in triplicate in 24-well plates at a density of 2.5×10^4 – 6.0×10^4 cells/well
639 and reverse transfected with siRNA overnight or treated with drug supplemented medium.
640 Cells were manually counted using a hemocytometer 96 h post-siRNA knockdown or
641 treatment and cell viability was assessed by Trypan Blue exclusion as described previously⁷³.

642

643 **Cell proliferation / growth**

644 Cells were seeded in 96-well plates at a density of 3×10^3 – 5×10^3 cells/well and treated with
645 drug supplemented medium. Plates were then placed in the IncuCyte® live-cell analysis
646 system (Sartorius) and images of the cells were recorded every 6 hours. Cell growth or
647 proliferation were determined as a measure of confluency using the confluence image mask
648 on the Incucyte® Base Analysis Software.

649

650

651 **Cell migration**

652 Transwell migration assays were performed using 24-well polycarbonate Transwell inserts
653 (3422, Sigma-Aldrich). C42B and 22RV1 cells transfected overnight with siRNA were seeded
654 into the upper chamber of the Transwell at a density of 9.0×10^4 – 1.5×10^5 cells/well in serum-
655 free medium. 650 μ L of medium containing 10 % FBS was added to the bottom chamber.
656 Cells were incubated at 37 °C for 48 h. For TDZ treatment, medium in both the upper and
657 lower chambers were supplemented with TDZ (2.5 μ M). Inserts were washed with PBS and
658 non-migrated cells were gently removed using a cotton-tipped swab. The inserts were then
659 fixed in 4 % paraformaldehyde for 20 min and stained with 1 % crystal violet for 30 min. Images
660 of migrated cells were captured using the Axio Scope A1 Fluorescent Microscope (Zeiss) at
661 40 X magnification. The number of migrated cells were counted manually and presented as
662 percentages relative to control cells \pm SEM.

663

664 **Colony formation assay**

665 DECR2 stable knockdown (shDECR2) cells or DECR2 overexpression (hDECR2) cells were
666 prepared in a single-cell suspension before seeding in 6-well plates at a density of 500
667 cells/well. For TDZ treatment, C42B, V16D and MR49F cells were seeded overnight and
668 gently treated with drug-supplemented medium. Cells were incubated for 2 weeks at 37 °C
669 with medium being replenished every 3-5 days. After 2 weeks, cells were washed with PBS
670 and fixed with 4 % paraformaldehyde, then stained with 1 % crystal violet for 30 min. Colonies
671 were counted manually and results were reported as number of colonies \pm SEM.

672

673 **3D Spheroid growth assay**

674 For TDZ treatment, 22Rv1, V16D and MR49F cells were seeded (400 – 700 cells/well)
675 overnight in Nunclon Sphera 96-well U-shaped-bottom microplates (Thermo Fisher) and
676 gently treated with drug-supplemented medium. Cells were incubated for 6 days at 37 °C.
677 Images of spheroids were captured, and the sphere volume was determined using ImageJ
678 and the ReViSP software⁷⁴.

679 **Flow cytometry**

680 **Cell cycle analysis**

681 Cells were seeded in triplicate in 6-well plates at a density of 3×10^5 – 6×10^5 cells/well and
682 reverse transfected with siRNA overnight or treated with drug supplemented medium. Cells
683 were collected into fluorescence-activated cell sorting (FACS) tubes and centrifuged at 1,500
684 rpm for 5 min, then fixed in cold 70 % ethanol for 2 h. Samples were stained with 50 μ g/mL of
685 propidium iodide (PI, Sigma-Aldrich) and 100 μ g/mL Ribonuclease A from bovine pancreas
686 (Sigma-Aldrich) for 30 min at room temperature. Cells were analysed using a BD LSRFortessa
687 X-20 Flow Cytometer (BD Biosciences). Data were evaluated using FlowJo version 10.

688

689 **Apoptosis assay**

690 Cells were seeded in triplicate in 6-well plates at a density of 3×10^5 – 6×10^5 cells/well and
691 reverse transfected with siRNA overnight or treated with drug supplemented medium. Cells
692 were collected into FACS tubes and centrifuged at 1,500 rpm for 5 min, then resuspended in
693 FACS Binding Buffer (94 % Hank's Balanced Salt Solution, 1 % HEPES, 5 % CaCl_2), 7-AAD
694 (Thermo Fisher Scientific) and Annexin-V PE (BD) for 30 min in the dark. Cells were analysed
695 using a BD LSRFortessa X-20 Flow Cytometer (BD Biosciences). Data were evaluated using
696 FlowJo version 10.

697

698 **Neutral lipid content quantification**

699 Cells were seeded in triplicate in 24-well plates at a density of 3×10^5 – 6×10^5 cells/well and
700 reverse transfected with siRNA overnight or treated with drug supplemented medium. Cells
701 were collected into FACS tubes and centrifuged at 1,500 rpm for 5 min, then resuspended in
702 2 μ M of fluorescent neutral lipid dye BODIPY 493/503 (Thermo Fisher Scientific) for 15 min at
703 37 °C. Cells were resuspended in 300 μ L FACS Binding Buffer and analysed using a BD
704 LSRFortessa X-20 Flow Cytometer (BD Biosciences). Data were evaluated using FlowJo
705 version 10.

706

707 **Lipidomics**

708 Lipid extraction, mass spectrometry, and data analysis methods were performed as previously
709 described¹². Unpaired t-test p-values and FDR corrected p-values (using the
710 Benjamini/Hochberg procedure) were calculated using R version 4.1.2 and visualised using
711 ggplot2 version 3.3.5.

712

713 **RNAseq**

714 **RNA extraction and library preparation**

715 For RNAseq, 6 biological replicates of V16D and MR49F prostate cancer cells subjected to
716 either siControl or siDECR2 knockdown for 72 h were analysed. Total RNA was extracted
717 using TRIzol reagent (Thermo Fisher) and the RNeasy Micro Kit (Qiagen) and then depleted
718 for DNA using RNase-Free DNase Set (Qiagen). RNA quality and quantity was determined
719 using the Tapestation 2200 and Qubit, respectively. Libraries were generated using the Nugen
720 Universal Plus mRNA-seq protocol and converted to MGI compatible libraries using the
721 MGIEasy Universal Library Conversion Kit. Libraries were sequenced on the MGI DNBSEQ
722 G400 (paired-end reads, 2 x 98 bp) at the South Australian Genomics Centre (SAGC), South
723 Australian Health and Medical Research Institute, Australia.

724

725 **RNAseq analysis**

726 Sequence read quality was assessed using FastQC version 0.11.3 and trimmed with
727 Trimmomatic version 0.36 with a sliding window of a minimum PHRED score of 20 and a
728 window size of 4 nucleotides. Reads were also filtered for a minimum length of 36 nucleotides.
729 Next, reads were aligned to GRCh38 human genome with Ensembl version 105 annotation
730 using STAR version 2.7.9a. Gene count matrix was generated with FeatureCounts version
731 subread-2.0.3. Count matrix were imported into R version 4.1.2 for further analysis and
732 visualisation using ggplot2 version 3.3.5. Counts were normalised using the trimmed mean of
733 M values (TMM) method in EdgeR version 3.36 and represented as counts per million (cpm).
734 Differential gene expression analysis was performed using the glmLRT function in EdgeR.

735 Genes with < 2 cpm in at least 25% of samples were excluded from the differential expression
736 analysis. Gene Set Enrichment Analysis (GSEA) was carried out using the GSEA software
737 version 4.2.2 and the Molecular Signatures Database (MSigDB) to identify Hallmark and GO
738 biological processes/pathways that were differentially regulated in the absence of DECR2.
739 Data from GSEA were visualised using the Enrichment Map plugin⁷⁵ in Cytoscape version
740 3.9.1 to generate the gene interaction network. The resulting network map was filtered using
741 FDR < 0.01 and curated to remove redundant and uninformative nodes, resulting in a
742 simplified network.

743

744 **In vivo studies**

745 **Orthotopic tumour growth (shDECR2)**

746 10 µL containing 1 x 10⁶ DECR2 inducible knockdown cells (shDECR2) were injected
747 intraprostatically in 8-week-old NOD scid gamma (NSG) male mice. Whole-body imaging to
748 monitor luciferase-expressing LNCaP cells was performed at day 3 of the injection and once
749 weekly after that using the In Vivo Imaging System (IVIS, PerkinElmer). Following 1- week
750 post-injection, mice were randomised into two groups: Group A (shControl) mice were fed with
751 sucrose-containing water (2 mg/mL); Group B (shDECR2) mice were fed with
752 doxycycline/sucrose-treated water (2 mg/mL). D-luciferin (potassium salt, PerkinElmer) was
753 dissolved in sterile deionized water (0.03 g/mL) and injected subcutaneously (3 mg/20 g of
754 mouse body weight) before imaging. Bioluminescence is reported as the sum of detected
755 photons per second from a constant region of interest. After the animals were sacrificed, lungs
756 and livers were excised for ex vivo imaging using the IVIS system.

757

758 **Orthotopic tumour growth (hDECR2)**

759 10 µL containing 1 x 10⁶ DECR2 overexpression cells (hDECR2) or negative control cells
760 (hControl) were injected intraprostatically in 8-week-old NSG male mice. Whole-body imaging
761 to monitor luciferase-expressing LNCaP cells was performed at day 3 of the injection and once
762 weekly after that using the In Vivo Imaging System (IVIS, PerkinElmer). D-luciferin (potassium

763 salt, PerkinElmer) was dissolved in sterile deionized water (0.03 g/mL) and injected
764 subcutaneously (3 mg/20 g of mouse body weight) before imaging. Bioluminescence is
765 reported as the sum of detected photons per second from a constant region of interest. After
766 the animals were sacrificed, lungs and livers were excised for ex vivo imaging using the IVIS
767 system.

768

769 After each study, tumours that were excised were snap frozen for RNA extraction and formalin
770 fixed and paraffin embedded. All animal procedures were carried out in accordance with the
771 guidelines of the National Health and Medical Research Council of Australia. The orthotopic
772 xenograft studies were approved by the University of Adelaide Animal Ethics Committee
773 (approval number M-2019-037).

774

775 **Statistical analysis**

776 Results are reported as mean \pm SEM. Statistical analysis was performed using GraphPad
777 Prism (V9.0 for Mac). The differences between treatment groups were compared by t-test or
778 one-way ANOVA followed by Tukey or Dunnett post hoc test, unless otherwise stated in the
779 figure legends. Significance is expressed as $*p < 0.05$, $**p < 0.01$, $***p < 0.001$, $****p < 0.0001$.

780 **ACKNOWLEDGEMENTS**

781

782 The results published here are in part based on data generated by The Cancer Genome Atlas,
783 established by the National Cancer Institute and the National Human Genome Research
784 Institute, and we are grateful to the specimen donors and relevant research groups associated
785 with this project. Tissues for the patient-derived explants used in the study were collected with
786 informed consent via the Australian Prostate Cancer BioResource and we thank the doctors,
787 patients and health care professionals involved. We acknowledge expert technical assistance
788 in the study from Samira Khabbazi. Flow cytometry analysis was performed at the South
789 Australian Health Medical Research Institute (SAHMRI) in the ACRF Cellular Imaging and
790 Cytometry Core Facility, generously supported by the Australian Cancer Research Foundation,
791 Detmold Hoopman Group and Australian Government through the Zero Childhood Cancer
792 Program. The authors acknowledge the South Australian Genomics Centre (SAGC) which
793 provided the RNA-sequencing services. The SAGC is supported by the National Collaborative
794 Research Infrastructure Strategy (NCRIS) via BioPlatforms Australia and by the SAGC partner
795 institutes. Animal studies were performed at the Bioresources Facilities at the South Australian
796 Health and Medical Research Institute. The authors also thank Adelaide Microscopy
797 (University of Adelaide).

798

799 **AUTHOR CONTRIBUTIONS**

800

801 CYM, ZDN and LMB conceived the study and wrote the manuscript. CYM, MH, DJL, JD, JVS
802 designed experiments. CYM, ADTN, TN, JD, NR, JVS acquired data and performed
803 experiments. CYM, ADTN, TN, FR, DJL interpreted and analysed the data. DJL, ZDN, LMB
804 supervised the study. JVS, ZDN, LMB acquired funding. MH, CYM performed the *in vivo*
805 experiments. All authors read the manuscript, agree with the content, and were given the
806 opportunity to provide input.

807

808 **FINANCIAL SUPPORT**

809

810 The research programmes of LMB are supported by the Movember Foundation and the

811 Prostate Cancer Foundation of Australia through a Movember Revolutionary Team Award.

812 CYM is supported by an Early-Career Research Fellowship awarded by Prostate Cancer

813 Foundation of Australia. LMB is supported by a Principal Cancer Research Fellowship

814 awarded by Cancer Council's Beat Cancer project on behalf of its donors, the State

815 Government through the Department of Health and the Australian Government through the

816 Medical Research Future Fund (PRF1117). ZDN is supported by Cancer Australia

817 (ID2011672). ZDN and LMB are supported by the Hospital Research Foundation (C-PJ-10-

818 Prost-2020). DJL is supported by an EMBL Australia Group Leader Award.

819 **REFERENCES**

820

821 1 Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. *CA Cancer J Clin* 2019; **69**: 7–34.

822 2 Blomme A, Ford CA, Mui E, Patel R, Ntala C, Jamieson LE *et al.* 2,4-dienoyl-CoA reductase regulates lipid homeostasis in treatment-resistant prostate cancer. *Nat Commun* 2020; **11**: 2508.

823 3 Li W, Cohen A, Sun Y, Squires J, Braas D, Graeber TG *et al.* The role of CD44 in glucose metabolism in prostatic small cell neuroendocrine carcinoma. *Mol Cancer Res* 2016; **14**: 344–353.

824 4 Nambiar DK, Deep G, Singh RP, Agarwal C, Agarwal R. Silibinin inhibits aberrant lipid metabolism, proliferation and emergence of androgen-independence in prostate cancer cells via primarily targeting the sterol response element binding protein 1. *Oncotarget* 2014; **5**: 10017–10033.

825 5 Schulte ML, Fu A, Zhao P, Li J, Geng L, Smith ST *et al.* Pharmacological blockade of ASCT2-dependent glutamine transport leads to antitumor efficacy in preclinical models. *Nat Med* 2018; **24**: 194–202.

826 6 Zacharias NM, McCullough C, Shanmugavelandy S, Lee J, Lee Y, Dutta P *et al.* Metabolic differences in glutamine utilization lead to metabolic vulnerabilities in prostate cancer. *Sci Rep* 2017; **7**: 16159.

827 7 Zadra G, Ribeiro CF, Chetta P, Ho Y, Cacciatore S, Gao X *et al.* Inhibition of de novo lipogenesis targets androgen receptor signaling in castration-resistant prostate cancer. *Proc Natl Acad Sci USA* 2019; **116**: 631–640.

828 8 Watt MJ, Clark AK, Selth LA, Haynes VR, Lister N, Rebello R *et al.* Suppressing fatty acid uptake has therapeutic effects in preclinical models of prostate cancer. *Sci Transl Med* 2019; **11**. doi:10.1126/scitranslmed.aau5758.

829 9 Nassar ZD, Mah CY, Centenera MM, Irani S, Sadowski MC, Scott JS *et al.* Fatty acid oxidation is an adaptive survival pathway induced in prostate tumors by HSP90 inhibition. *Mol Cancer Res* 2020; **18**: 1500–1511.

830 10 Balaban S, Nassar ZD, Zhang AY, Hosseini-Beheshti E, Centenera MM, Schreuder M *et al.* Extracellular fatty acids are the major contributor to lipid synthesis in prostate cancer. *Mol Cancer Res* 2019; **17**: 949–962.

831 11 Schlaepfer IR, Rider L, Rodrigues LU, Gijón MA, Pac CT, Romero L *et al.* Lipid catabolism via CPT1 as a therapeutic target for prostate cancer. *Mol Cancer Ther* 2014; **13**: 2361–2371.

832 12 Nassar ZD, Mah CY, Dehairs J, Burvenich IJ, Irani S, Centenera MM *et al.* Human DECR1 is an androgen-repressed survival factor that regulates PUFA oxidation to protect prostate tumor cells from ferroptosis. *eLife* 2020; **9**. doi:10.7554/eLife.54166.

833 13 Dheeraj A, Agarwal C, Schlaepfer IR, Raben D, Singh R, Agarwal R *et al.* A novel approach to target hypoxic cancer cells via combining β-oxidation inhibitor etomoxir with radiation. *Hypoxia (Auckl)* 2018; **6**: 23–33.

834 14 Flaig TW, Salzmann-Sullivan M, Su L-J, Zhang Z, Joshi M, Gijón MA *et al.* Lipid catabolism inhibition sensitizes prostate cancer cells to antiandrogen blockade. *Oncotarget* 2017; **8**: 56051–56065.

835 15 Zaugg K, Yao Y, Reilly PT, Kannan K, Kiarash R, Mason J *et al.* Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress. *Genes Dev* 2011; **25**: 1041–1051.

836 16 Ananthanarayanan V, Deaton RJ, Yang XJ, Pins MR, Gann PH. Alpha-methylacyl-CoA racemase (AMACR) expression in normal prostatic glands and high-grade prostatic intraepithelial neoplasia (HGPIN): association with diagnosis of prostate cancer.

869 17 *Prostate* 2005; **63**: 341–346.

870 17 Jiang Z, Woda BA, Wu C-L, Yang XJ. Discovery and clinical application of a novel
871 prostate cancer marker: alpha-methylacyl CoA racemase (P504S). *Am J Clin Pathol*
872 2004; **122**: 275–289.

873 18 Itkonen HM, Brown M, Urbanucci A, Tredwell G, Ho Lau C, Barfeld S *et al.* Lipid
874 degradation promotes prostate cancer cell survival. *Oncotarget* 2017; **8**: 38264–38275.

875 19 Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS *et al.* Integrative
876 genomic profiling of human prostate cancer. *Cancer Cell* 2010; **18**: 11–22.

877 20 Grasso CS, Wu Y-M, Robinson DR, Cao X, Dhanasekaran SM, Khan AP *et al.* The
878 mutational landscape of lethal castration-resistant prostate cancer. *Nature* 2012; **487**:
879 239–243.

880 21 Van den Branden C, Roels F. Thioridazine: a selective inhibitor of peroxisomal beta-
881 oxidation in vivo. *FEBS Lett* 1985; **187**: 331–333.

882 22 Shen S, Faouzi S, Souquere S, Roy S, Routier E, Libenciu C *et al.* Melanoma Persister
883 Cells Are Tolerant to BRAF/MEK Inhibitors via ACOX1-Mediated Fatty Acid
884 Oxidation. *Cell Rep* 2020; **33**: 108421.

885 23 Purhonen M, Koponen H, Tiihonen J, Tanskanen A. Outcome of patients after market
886 withdrawal of thioridazine: a retrospective analysis in a nationwide cohort.
887 *Pharmacoepidemiol Drug Saf* 2012; **21**: 1227–1231.

888 24 Shi R, Zhang Y, Shi Y, Shi S, Jiang L. Inhibition of peroxisomal β -oxidation by
889 thioridazine increases the amount of VLCFAs and A β generation in the rat brain.
890 *Neurosci Lett* 2012; **528**: 6–10.

891 25 Daniel WA, Syrek M, Ryłko Z, Kot M. Effects of phenothiazine neuroleptics on the rate
892 of caffeine demethylation and hydroxylation in the rat liver. *Pol J Pharmacol* 2001; **53**:
893 615–621.

894 26 Gervasini G, Caballero MJ, Carrillo JA, Benitez J. Comparative cytochrome p450 in
895 vitro inhibition by atypical antipsychotic drugs. *ISRN Pharmacol* 2013; **2013**: 792456.

896 27 Centenera MM, Hickey TE, Jindal S, Ryan NK, Ravindranathan P, Mohammed H *et al.*
897 A patient-derived explant (PDE) model of hormone-dependent cancer. *Mol Oncol* 2018;
898 **12**: 1608–1622.

899 28 Tomlins SA, Mehra R, Rhodes DR, Cao X, Wang L, Dhanasekaran SM *et al.* Integrative
900 molecular concept modeling of prostate cancer progression. *Nat Genet* 2007; **39**: 41–51.

901 29 Beltran H, Prandi D, Mosquera JM, Benelli M, Puca L, Cyrta J *et al.* Divergent clonal
902 evolution of castration-resistant neuroendocrine prostate cancer. *Nat Med* 2016; **22**: 298–
903 305.

904 30 Keenan AB, Torre D, Lachmann A, Leong AK, Wojciechowicz ML, Utti V *et al.*
905 ChEA3: transcription factor enrichment analysis by orthogonal omics integration.
906 *Nucleic Acids Res* 2019; **47**: W212–W224.

907 31 Islinger M, Voelkl A, Fahimi HD, Schrader M. The peroxisome: an update on mysteries
908 2.0. *Histochem Cell Biol* 2018; **150**: 443–471.

909 32 Molenaar MR, Jeucken A, Wassenaar TA, van de Lest CHA, Brouwers JF, Helms JB.
910 LION/web: a web-based ontology enrichment tool for lipidomic data analysis.
911 *Gigascience* 2019; **8**. doi:10.1093/gigascience/giz061.

912 33 Abida W, Cyrta J, Heller G, Prandi D, Armenia J, Coleman I *et al.* Genomic correlates
913 of clinical outcome in advanced prostate cancer. *Proc Natl Acad Sci USA* 2019; **116**:
914 11428–11436.

915 34 Duval K, Grover H, Han L-H, Mou Y, Pegoraro AF, Fredberg J *et al.* Modeling
916 physiological events in 2D vs. 3D cell culture. *Physiology (Bethesda)* 2017; **32**: 266–
917 277.

918 35 Johannessen T-C, Hasan-Olive MM, Zhu H, Denisova O, Grudic A, Latif MA *et al.*

919 Thioridazine inhibits autophagy and sensitizes glioblastoma cells to temozolomide. *Int J*
920 *Cancer* 2019; **144**: 1735–1745.

921 36 Yue H, Huang D, Qin L, Zheng Z, Hua L, Wang G *et al.* Targeting Lung Cancer Stem
922 Cells with Antipsychological Drug Thioridazine. *Biomed Res Int* 2016; **2016**: 6709828.

923 37 Zhang C, Gong P, Liu P, Zhou N, Zhou Y, Wang Y. Thioridazine elicits potent
924 antitumor effects in colorectal cancer stem cells. *Oncol Rep* 2017; **37**: 1168–1174.

925 38 Yong M, Yu T, Tian S, Liu S, Xu J, Hu J *et al.* DR2 blocker thioridazine: A promising
926 drug for ovarian cancer therapy. *Oncol Lett* 2017; **14**: 8171–8177.

927 39 Tegowski M, Fan C, Baldwin AS. Selective Effects of Thioridazine on Self-Renewal of
928 Basal-Like Breast Cancer Cells. *Sci Rep* 2019; **9**: 18695.

929 40 Kim J-A. Peroxisome metabolism in cancer. *Cells* 2020; **9**. doi:10.3390/cells9071692.

930 41 Zalckvar E, Schuldiner M. Beyond rare disorders: A new era for peroxisomal
931 pathophysiology. *Mol Cell* 2022; **82**: 2228–2235.

932 42 Alphey MS, Yu W, Byres E, Li D, Hunter WN. Structure and reactivity of human
933 mitochondrial 2,4-dienoyl-CoA reductase: enzyme-ligand interactions in a distinctive
934 short-chain reductase active site. *J Biol Chem* 2005; **280**: 3068–3077.

935 43 De Nys K, Meyhi E, Mannaerts GP, Fransen M, Van Veldhoven PP. Characterisation of
936 human peroxisomal 2,4-dienoyl-CoA reductase. *Biochim Biophys Acta* 2001; **1533**: 66–
937 72.

938 44 Hua T, Wu D, Ding W, Wang J, Shaw N, Liu Z-J. Studies of human 2,4-dienoyl CoA
939 reductase shed new light on peroxisomal β -oxidation of unsaturated fatty acids. *J Biol*
940 *Chem* 2012; **287**: 28956–28965.

941 45 Spiegel A, Lauber C, Bachmann M, Heninger A-K, Klose C, Simons K *et al.* A set of
942 gene knockouts as a resource for global lipidomic changes. *Sci Rep* 2022; **12**: 10533.

943 46 Köberlin MS, Snijder B, Heinz LX, Baumann CL, Fauster A, Vladimer GI *et al.* A
944 conserved circular network of coregulated lipids modulates innate immune responses.
945 *Cell* 2015; **162**: 170–183.

946 47 Atilla-Gokcumen GE, Muro E, Relat-Goberna J, Sasse S, Bedigian A, Coughlin ML *et*
947 *al.* Dividing cells regulate their lipid composition and localization. *Cell* 2014; **156**: 428–
948 439.

949 48 Guo T, Gregg C, Boukh-Viner T, Kyryakov P, Goldberg A, Bourque S *et al.* A signal
950 from inside the peroxisome initiates its division by promoting the remodeling of the
951 peroxisomal membrane. *J Cell Biol* 2007; **177**: 289–303.

952 49 Herzog K, Pras-Raves ML, Vervaart MAT, Luyf ACM, van Kampen AHC, Wanders
953 RJA *et al.* Lipidomic analysis of fibroblasts from Zellweger spectrum disorder patients
954 identifies disease-specific phospholipid ratios. *J Lipid Res* 2016; **57**: 1447–1454.

955 50 Lodhi IJ, Semenkovich CF. Peroxisomes: a nexus for lipid metabolism and cellular
956 signaling. *Cell Metab* 2014; **19**: 380–392.

957 51 Sanchez-Alvarez M, Zhang Q, Finger F, Wakelam MJO, Bakal C. Cell cycle progression
958 is an essential regulatory component of phospholipid metabolism and membrane
959 homeostasis. *Open Biol* 2015; **5**: 150093.

960 52 Nath AS, Parsons BD, Makdissi S, Chilvers RL, Mu Y, Weaver CM *et al.* Modulation of
961 the cell membrane lipid milieu by peroxisomal β -oxidation induces Rho1 signaling to
962 trigger inflammatory responses. *Cell Rep* 2022; **38**: 110433.

963 53 Francis M, Abou Daher A, Azzam P, Mroueh M, Zeidan YH. Modulation of DNA
964 Damage Response by Sphingolipid Signaling: An Interplay that Shapes Cell Fate. *Int J*
965 *Mol Sci* 2020; **21**. doi:10.3390/ijms21124481.

966 54 Sanidas I, Morris R, Fella KA, Rumde PH, Boukhali M, Tai EC *et al.* A Code of Mono-
967 phosphorylation Modulates the Function of RB. *Mol Cell* 2019; **73**: 985–1000.e6.

968 55 Muranaka H, Hayashi A, Minami K, Kitajima S, Kohno S, Nishimoto Y *et al.* A distinct

969 function of the retinoblastoma protein in the control of lipid composition identified by
970 lipidomic profiling. *Oncogenesis* 2017; **6**: e350.

971 56 Takahashi C, Sasaki N, Kitajima S. Twists in views on RB functions in cellular
972 signaling, metabolism and stem cells. *Cancer Sci* 2012; **103**: 1182–1188.

973 57 Cruz ALS, Carrossini N, Teixeira LK, Ribeiro-Pinto LF, Bozza PT, Viola JPB. Cell
974 cycle progression regulates biogenesis and cellular localization of lipid droplets. *Mol
975 Cell Biol* 2019; **39**. doi:10.1128/MCB.00374-18.

976 58 Ding L, Sun W, Balaz M, He A, Klug M, Wieland S *et al.* Peroxisomal β -oxidation acts
977 as a sensor for intracellular fatty acids and regulates lipolysis. *Nat Metab* 2021; **3**: 1648–
978 1661.

979 59 Rysman E, Brusselmans K, Scheyns K, Timmermans L, Derua R, Munck S *et al.* De novo
980 lipogenesis protects cancer cells from free radicals and chemotherapeutics by promoting
981 membrane lipid saturation. *Cancer Res* 2010; **70**: 8117–8126.

982 60 Kopecka J, Trouillas P, Gašparović AČ, Gazzano E, Assaraf YG, Riganti C.
983 Phospholipids and cholesterol: Inducers of cancer multidrug resistance and therapeutic
984 targets. *Drug Resist Updat* 2020; **49**: 100670.

985 61 Vrablik TL, Watts JL. Emerging roles for specific fatty acids in developmental
986 processes. *Genes Dev* 2012; **26**: 631–637.

987 62 Volmer R, van der Ploeg K, Ron D. Membrane lipid saturation activates endoplasmic
988 reticulum unfolded protein response transducers through their transmembrane domains.
989 *Proc Natl Acad Sci USA* 2013; **110**: 4628–4633.

990 63 Brasaemle DL, Wolins NE. Packaging of fat: an evolving model of lipid droplet
991 assembly and expansion. *J Biol Chem* 2012; **287**: 2273–2279.

992 64 Krahmer N, Guo Y, Wilfling F, Hilger M, Lingrell S, Heger K *et al.* Phosphatidylcholine
993 synthesis for lipid droplet expansion is mediated by localized activation of
994 CTP:phosphocholine cytidylyltransferase. *Cell Metab* 2011; **14**: 504–515.

995 65 Centenera MM, Scott JS, Machiels J, Nassar ZD, Miller DC, Zinonos I *et al.* ELOVL5 is
996 a critical and targetable fatty acid elongase in prostate cancer. *Cancer Res* 2021; **81**:
997 1704–1718.

998 66 Zou Y, Henry WS, Ricq EL, Graham ET, Phadnis VV, Maretich P *et al.* Plasticity of
999 ether lipids promotes ferroptosis susceptibility and evasion. *Nature* 2020; **585**: 603–608.

1000 67 Gajewski T, Higgs E, Li S, Flood B, Hatogai K. 239 Decr2 loss promotes resistance of
1001 tumor cells to immunotherapy by affecting CD8+ T cell-regulated tumor ferroptosis. *J
1002 Immunother Cancer* 2020; **8**: A257–A257.

1003 68 Schrader M, Kamoshita M, Islinger M. Organelle interplay-peroxisome interactions in
1004 health and disease. *J Inherit Metab Dis* 2020; **43**: 71–89.

1005 69 Di Cara F, Andreoletti P, Trompier D, Vejux A, Bülow MH, Sellin J *et al.* Peroxisomes
1006 in immune response and inflammation. *Int J Mol Sci* 2019; **20**.
1007 doi:10.3390/ijms20163877.

1008 70 Di Cara F, Sheshachalam A, Braverman NE, Rachubinski RA, Simmonds AJ.
1009 Peroxisome-Mediated Metabolism Is Required for Immune Response to Microbial
1010 Infection. *Immunity* 2017; **47**: 93–106.e7.

1011 71 Toren P, Kim S, Johnson F, Zoubeidi A. Combined AKT and MEK Pathway Blockade
1012 in Pre-Clinical Models of Enzalutamide-Resistant Prostate Cancer. *PLoS One* 2016; **11**:
1013 e0152861.

1014 72 Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA *et al.* The cBio cancer
1015 genomics portal: an open platform for exploring multidimensional cancer genomics data.
1016 *Cancer Discov* 2012; **2**: 401–404.

1017 73 Armstrong HK, Koay YC, Irani S, Das R, Nassar ZD, Australian Prostate Cancer
1018 BioResource *et al.* A Novel Class of Hsp90 C-Terminal Modulators Have Pre-Clinical

1019 Efficacy in Prostate Tumor Cells Without Induction of a Heat Shock Response. *Prostate*
1020 2016; **76**: 1546–1559.

1021 74 Piccinini F, Tesei A, Arienti C, Bevilacqua A. Cancer multicellular spheroids: volume
1022 assessment from a single 2D projection. *Comput Methods Programs Biomed* 2015; **118**:
1023 95–106.

1024 75 Merico D, Isserlin R, Stueker O, Emili A, Bader GD. Enrichment map: a network-based
1025 method for gene-set enrichment visualization and interpretation. *PLoS One* 2010; **5**:
1026 e13984.

1027