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HIGHLIGHTS 

• Genomic SEM can examine genetic correlation across cortical regions. 
• We inferred regional genetic networks of cortical thickness and surface area.  
• Network-associated variants have been implicated in multiple traits. 

• These networks are genetically correlated with several psychiatric disorders including 
MDD, bipolar, ADHD, and alcohol dependence.   
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ABSTRACT 

 

Genetic contributions to human cortical structure manifest pervasive pleiotropy. This pleiotropy 

may be harnessed to identify unique genetically-informed parcellations of the cortex that are 

neurobiologically distinct from anatomical, functional, cytoarchitectural, or other cortical 

parcellation schemes. We investigated genetic pleiotropy by applying genomic structural 

equation modeling (SEM) to model the genetic architecture of cortical surface area (SA) and 

cortical thickness (CT) of 34 brain regions recently reported in the ENIGMA cortical GWAS. 

Genomic SEM uses the empirical genetic covariance estimated from GWAS summary 

statistics with LD score regression (LDSC) to discover factors underlying genetic covariance. 

Genomic SEM can fit a multivariate GWAS from summary statistics, which can subsequently 

be used for LD score regression (LDSC). We found the best-fitting model of cortical SA was 

explained by 6 latent factors and CT was explained by 4 latent factors. The multivariate GWAS 

of these latent factors identified 74 genome-wide significant (GWS) loci (p<5×10-8), including 

many previously implicated in neuroimaging phenotypes, behavioral traits, and psychiatric 

conditions. LDSC of latent factor GWAS results found that SA-derived factors had a positive 

genetic correlation with bipolar disorder (BPD), and major depressive disorder (MDD), and a 

negative genetic correlation with attention deficit hyperactivity disorder (ADHD), MDD, and 

insomnia, while CT factors displayed a negative genetic correlation with alcohol dependence. 

Jointly modeling the genetic architecture of complex traits and investigating multivariate 

genetic links across phenotypes offers a new vantage point for mapping genetically informed 

cortical networks.   
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1. INTRODUCTION 

 

A number of different neurobiological markers have been employed in conjunction with various 

organizational schemes to map the human cortex. It is possible that individual differences in 

regional cortical surface area (SA) and cortical thickness (CT) and may drive factors that affect 

each person and each region independently. However, the covariance structure of regional SA 

and CT reveals that individual differences are systematically coordinated within communities of 

brain regions, fluctuate in magnitude together within a population, may be instantiated as 

structural covariance networks (SCN)1, and partially recapitulate established organizational 

schemes2-5. For instance, SCN organization is consistent with topological patterns of cortical 

maturation observed throughout developmental stages from childhood and adolescence into 

early adulthood 6, and the same patterns are then targeted by neurodegenerative diseases in 

late life7,8. Second, brain regions with highly correlated CT or SA often represent networks that 

perform dedicated cognitive processes1,9,10. Third, regions within SCNs tend to be directly 

connected by white matter tracts. Indeed, about 40% of SCN connections show convergent 

white matter fiber connections, although other relationships captured by SCNs are 

independent of fiber connectivity5.  

The correlation structure between regions represented by an SCN is influenced by both the 

environment and genetics. The genetic factors underlying structural correlations closely 

resemble functional and developmental patterns4,5,11. We will refer to these patterns of genetic 

correlations between brain regions as genetically informed brain networks (GIBNs). Genetic 

correlations of CT or SA have been examined with twin studies12,13. These genetic influences 

were recapitulated in over 400 twin pairs, to show that the cortex is organized genetically into 

communities of structural and functional regions, is hierarchical, is modular, and is bilaterally 

symmetric11. Their genetically informed parcellation identified 12 spatially contiguous regions 

that qualify as GIBNs. Relatedly, SA and CT phenotypes overlap genetically with GIBNs, the 

latter being less granular and more discoverable14.  

While twin studies have laid important groundwork regarding genetic correlations of the brain, 

they have several limitations. First, twin studies do not provide specific genetic variants 
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associated with each GIBN11 and therefore offer an incomplete characterization of cortical 

pleiotropy. Second, twin studies rely on the equal environment assumption, which may by 

invalid for some studies. Third, quantifying the genetic correlation between GIBNs and low 

prevalence traits such as schizophrenia (0.5% prevalence)15 or bipolar disorder (1% 

prevalence)16 would require an extraordinarily large number of twin pairs to wield sufficient 

statistical power. Recently, genetic correlations between brain regions derived from GWAS 

results have been applied to estimate the contribution of common genetic variation.  This 

method confers several advantages over twin studies. These SA and CT GWAS results reveal 

pleiotropy and genetic correlation across many neuroimaging phenotypes17,18. Additionally, 

genome-wide SNP data allow effect-size estimation for individual variants and the ability to test 

genetic correlations with other traits in different populations. 

Genomic structural equation modeling (gSEM) is a multivariate statistical method that 

leverages the genetic architecture of many genetically correlated phenotypes to derive 

relatively few latent phenotypes, which explain the observed genetic correlation and loadings 

of multiple phenotypes onto a latent phenotype19. Therefore, gSEM applied to GWAS offers a 

genetically informed parcellation of the cortex that is neurobiologically distinct from anatomical, 

functional, cytoarchitectural, and other parcellation schemes6,20. Latent factors represent traits 

that explain the genetic correlation across multiple regions and define the brain regions that 

constitute each GIBN. Importantly, gSEM estimates the strength of association between 

genetic variants and each latent factor followed by a multivariate GWAS of each GIBN using 

GWAS summary statistics for individual correlated traits. Importantly, gSEM provides a 

description of the underlying genetic architecture of the traits being examined and effect size 

estimates for the underlying latent factors.  

In the present study, we sought to elucidate the genetic architecture of 34 regional SA and CT 

phenotypes reported in the ENIGMA-3 GWAS of over 50,000 primarily healthy individuals. We 

hypothesized that gSEM might identify brain partitions consistent with the 12 clusters 

described by Chen et al.11, along with other viable solutions. The genetic correlations reported 

in Grasby et al.18, were stronger within major anatomical lobes than across lobes. Thus, while 

we predicted gross lobar structure may be reflected by GIBNs, we further predicted that GIBNs 
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would reflect the complex relationships captured by functional networks, canonical resting-

state networks, fiber tract networks, gene expression networks, and other neurobiological 

systems6,11. We hypothesized from the outset that most genetic variants discovered by the 

ENIGMA-3 cortical GWAS would influence GIBNs in the present study, but we also sought to 

discover novel genetic markers, and discover links between known genetic variants and 

established regional associations as well as GIBNs. Additionally, we hypothesized genetic 

correlations between GIBNs and major neuropsychiatric disorders.  

2. METHODS 

 

2.1 Data  

We used the results of the ENIGMA-3 cortical GWAS that identified genetic loci associated 

with variation in cortical SA and CT measures in 51,665 individuals primarily (~94%) of 

European descent, from 60 international cohorts18. Phenotype measures were extracted from 

structural MRI scans for 34 regions defined by the Desikan-Killiany atlas using gyral anatomy, 

which establishes coarse partitions of the cortex21. Two global measures of total cortical SA 

and average CT, as well as 34 regional measures of SA and CT were averaged across left and 

right hemisphere structures to yield 70 distinct phenotypes. Multiple testing correction in the 

ENIGMA-3 GWAS was based on 60 independent phenotypes with a GWS threshold of 

P≤8.3×10−10. We accessed the GWAS summary results for the 34-regional bilateral analyses 

performed by Grasby et al. The primary GWAS presented in Grasby et al. had adjusted for 

global measures (total SA and mean CT). However, we requested alternate results without 

global adjustments to avoid artefactual negative (inverse) correlations between regions. 

Regional SA and CT metrics were analyzed separately.  

 

2.2 Analysis 

Our analyses were performed using the genomic-SEM package which is available for the R 

programming language19. The entire gSEM was performed twice, once for 34 SA regions and 
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once for 34 CT regions. Like standard SEM, gSEM includes an exploratory factor analysis 

(EFA) stage and a confirmatory factor analysis (CFA) stage. To avoid overfitting between the 

confirmatory and exploratory phases, we analyzed odd chromosomes in the EFA and even 

chromosomes in the CFA. Whereas SEM often fits multiple models corresponding to a priori 

hypotheses built on theoretical models, we took a hypothesis free (data driven) approach. In 

the EFA, we fit one model, which included up to 10 factors, for each of SA and CT. The optimal 

number of factors for each was determined using scree plots (see Supplementary Figures S1 

and S2). Positive factor loading estimates greater than a pre-specified threshold were carried 

forward to the confirmatory factor model stage to be re-estimated, and the remaining loading 

parameters were set to zero. As there was no consensus on factor loading cutoffs 22,23, we 

tested thresholds 0.3 and 0.5. Cross loadings that were allowed if they exceeded the 

threshold. Factors that loaded on only a single region were removed from CFA modeling. 

Therefore, some models with a large number of factors ended up as redundant, and were not 

carried forward to CFA.  

All of the distinct factor structures generated were carried forward to CFA and re-estimated 

using even chromosomes. Standardized root-mean square residual (SRMR), Akaike 

Information Criteria (AIC), model �2, and Comparative Fit Index (CFI) were used to evaluate 

model fit of the CFA models. The large number of GWASs and the large sample size of each 

GWAS meant that all model �2 statistics were highly significant (p~0) and hence are not 

presented.  

The top performing factor models in the CFA were further optimized by successive removal of 

non-significant factor loadings. In addition, we attempted to fit a bifactor model as part of the 

CFA step to account for correlation between the factors. Specifically, we fit a bifactor model 

where a “total” CT or SA factor was added, which loaded on all regions, and a multi-level 

model where all factors from the EFA loaded onto a 2nd order factor. The bifactor model failed 

to converge for all CFA models and the multilevel model failed to improve model fit; hence 

these results are not presented. For our purposes, a model which minimized the AIC was 

deemed optimal. SRMR and CFI were calculated to measure model fit.  
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Once the GIBNs were defined, we used gSEM to generate a multivariate GWAS of each 

GIBN. The GWS associations (p<5x10-8) for each GIBN were compared to the significant 

SNPs reported by Grasby et al. (with global correction) and then compared to the 

corresponding GWAS results without the global correction (the same results used to generate 

GIBNs). The FUnctional Mapping and Annotations (FUMA) package24 was used to annotate 

results from each GIBN GWAS, including annotating SNPs to specific genes, and identifying 

potential functional variants. FUMA was run based on LD in the 1000G Phase3 EUR reference 

panel25 and the default FUMA parameter settings. 

2.3 Polygenicity Analysis  

We examined the significant SNPs from the GIBN GWAS, as well as SNPs in LD using FUMA 

to test for functional associations with established behavioral traits and major neuropsychiatric 

disorders. First, we examined whether observed variants from the GWAS recapitulated GWS 

SNPs from previous GWAS results of neuroimaging traits including cortical GWAS results and 

other structural neuroimaging parameters17,26-31. We also looked for SNPs that were significant 

in GWASs of 12 neuropsychiatric disorders from the Psychiatric Genomics Consortium (PGC): 

ADHD32, alcohol dependence33, anorexia nervosa34, autism spectrum disorder35, bipolar36, 

cannabis use37, MDD38, obsessive compulsive disorder (OCD)39  posttraumatic stress disorder 

(PTSD)40, schizophrenia41, Tourette’s syndrome42, and anxiety43.  Finally, FUMA was used to 

functionally annotate loci that overlapped with previously published GWAS results.  

Genetic Correlation with Psychopathology 

We used cross-trait LDSC to identify links between psychiatric disorders and CT-derived 

GIBNs as well as psychiatric disorders and SA-derived GIBNs44. We estimated the genetic 

correlation between CT- and SA-derived GIBNs and neuropsychiatric disorders using their 

GWAS summary statistics44. To maximize statistical power, we limited the number of genetic 

correlations to 12 neuropsychiatric disorders.  
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2.4 Data and Code Availability 

The GWAS summary statistics which were used in this paper are available to download from 

the ENIGMA consortium website (http://enigma.ini.usc.edu/research/download-enigma-gwas-

results). Access to cohort data is available either through public repositories or directly from 

the cohort. Direct requests are required when informed consent or the approved study protocol 

does not permit deposition into a repository. Requests for data by qualified investigators are 

subject to scientific and ethical review to ensure that the data will be used for valid scientific 

research and to ensure compliance with confidentiality, consent, and data protection 

regulations. Some of the data are subject to material transfer agreements or data transfer 

agreements, and specific details on how to access data for each cohort are available in Grasby 

et al (2020).The Genomic SEM package used to analyze the data is publicly available at 

https://github.com/GenomicSEM/GenomicSEM. The ldsc package is publically available at 

https://github.com/bulik/ldsc. The results of the multivariate GWASs of the CT- and SA-derived 

GIBNs are available at https://pgc-ptsd.com/about/workgroups/imaging-workgroup/ . 

 

3. RESULTS 

 

3.1 Model Fit 

The SA-derived 6-GIBN solution resulted in the best overall model fit to the genetic 

covariances generated from the GWAS summary statistics (AIC=22,712,604, CFI=0.920, 

SRMR=0.062). See Supplementary Table S1 for fit statistics for each evaluated model.  The 6 

SA-derived GIBNs (SA1-SA6) loaded on 24 of the 34 brain regions18. The standardized 

estimates for the 6 SA-derived GIBN models (standardized factor loadings) are presented in 

Supplementary Table S2 and presented in Figure 1.  The GIBNs generally encompass 

contiguous brain regions and many correspond to known neuroanatomical features. SA1 

contains loadings for inferior temporal, isthmus cingulate, postcentral, precuneus, superior 

parietal, supramarginal, and temporal pole. SA2 contains loadings for caudal anterior 

cingulate, caudal middle frontal, medial orbitofrontal, paracentral, and rostral anterior cingulate. 

SA3 contains loadings for banks superior temporal sulcus (STS), inferior parietal, and middle 
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temporal. SA4 contains loadings for pars opercularis, pars orbitalis, and pars triangularis, SA

contains loadings for cuneus, lateral occipital, lingual, and pericalcarine, and SA6 correspon

to the auditory cortex. The 6-factor model indicated substantial correlation between GIBNs 

(rg=0.61 to 0.91) as reported in Supplementary Table S3.  

 

The CT-derived 4-GIBN solution resulted in the best model fit (AIC=17761928, CFI=0.932, 

SRMR=0.077; Supplementary Table S4). Significant non-zero loadings for CT-derived GIBN

loaded on 25 of the 34 brain regions from Grasby et al. See Supplementary Table S5 for the

estimated loadings that are visualized in Figure 2. As observed with SA models, the CT-

derived GIBNs generally encompassed contiguous cortical regions. CT1 contains loadings f

banks STS, caudal middle frontal, inferior parietal, paracentral, pars opercularis, post-centra
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pre-central, precuneus, rostral middle frontal, superior frontal, superior parietal, and 

supramarginal cortices. CT2 contains loadings for caudal anterior cingulate, frontal pole, 

insula, lateral orbitofrontal, medial orbitofrontal, pars orbitalis, rostral anterior cingulate, and 

rostral middle frontal. CT3 contains loadings for banks STS, superior temporal, and tempora

pole. CT4 contains loadings for cuneus, lateral occipital, parahippocampal, and pericalcarine

cortices. The CT-derived GIBNs were moderately to highly correlated (rg=0.67 to 0.87; 

Supplementary Table S6). 

 

Factor diagrams for SA- and CT-derived GIBNs are presented in Figure 3. Consistent with 

prior work, the SA-derived GIBNs were largely distinct from CT-derived GIBNs, although som

regional overlap exists between SA- and CT-derived GIBNs. For example, SA5 and CT4 are

both 4-region GIBNs, with 3 overlapping regions.   
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3.2 GWAS of Genetically Informed Brain Networks  

To identify specific genetic variants that may be influencing the GIBNs, we performed a 

multivariate GWAS on each SA- and CT-derived GIBN. Manhattan plots for SA- and CT-

derived GIBN GWASs, their associated quantile-quantile (QQ) plots, and genomic inflation 

factors (λ) are provided in Figures S3 to S12. We observed moderate p-value inflation (λ 

values between 1.06 and 1.16). However, the single-trait LD Score regression intercepts for

SA- and CT-derived GIBNs were all less than 1.02, indicating that the apparent inflation was

likely due to pleiotropy. A total of 5,843 GWS (p<5x10-8) variants were associated with 10 

GIBNs. Annotation by FUMA 24 mapped these variants to 74 independent regions, including

loci that were associated with the 6 SA-derived GIBNs and 10 loci that were associated with

the 4 CT-derived GIBNs. A phenogram45 of the 74 genetic associations is presented in Figu

4. A list of all GWS loci with their associated GIBNs is provided in Supplementary Table S7 

Except for two novel SNPs, all others were previously identified in Grasby et al.18 in either th

analysis adjusted for global SA/CT or the unadjusted analysis. The first novel SNP rs300693

 

for 

as 

ng 64 

ith 

gure 

 

the 

933, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 8, 2022. ; https://doi.org/10.1101/2022.11.04.515213doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.04.515213
http://creativecommons.org/licenses/by-nc-nd/4.0/


which resides near the genes SDCCAG8 and AKT3 on chromosome 1, was associated with

SA1 (p=4.08x10-9). The other novel SNP rs1004763 on chromosome 22, which resides in the

vicinity of gene SLC16A8, was associated with CT2 (p=3.41x10-08). 

3.3 Genetic Correlation 

We observed significant genetic correlation between multiple traits and SA-derived GIBNs a

reported in Supplementary Table S8. ADHD exhibited significant negative genetic correlatio

with all SA-derived GIBNs except SA4 (rg=-0.13 to -0.20, p=3.29x10-6 to 0.0038, pFDR=0.000

to 0.039). Significant positive genetic correlations were observed between bipolar disorder a

SA1, SA2, SA4, and SA5 (rg=0.10 to 0.14, p=3.00x10-4 to 0.0047, pFDR=0.012 to 0.043). 

Interestingly, we observed significant genetic correlations between MDD and SA-derived 

GIBNs, but in the opposite direction as bipolar disorder. We found a significant negative 
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correlation between MDD and SA6, which was not associated with bipolar disorder (rg=-0.10, 

p=0.0011, pFDR=0.17). Negative nominally significant (uncorrected p<0.05) correlations were 

observed between MDD SA1-SA3, and SA5 (rg= -0.057 to -0.080, p=0.0090 to 0.046), while 

SA4 was not genetically correlated with MDD (p=0.12). SA4 was significantly correlated with 

cannabis use disorder (rg=0.15; p=4.00 x 10-4, pFDR=0.012), while SA2 was nominally 

associated with cannabis use (rg=0.11, p=0.011). No significant genetic correlations were 

observed between the 6 SA-derived or 4-CT derived GIBNs and anorexia, autism, anxiety, 

schizophrenia, PTSD, or Tourette’s Syndrome (all p>0.05). 

Fewer genetic correlations were significant between CT-derived GIBN regions and psychiatric 

disorders (Supplementary Table S9). CT3 and CT4 were negatively correlated with alcohol 

use disorder, exhibiting the strongest correlations with any traits that we examined (CT3 rg=-

0.35, p=3x10-4, pFDR=0.012; CT4 rg=-0.31, p=7x10-4, pFDR=0.014). We found a negative 

nominally significant correlation between alcohol use disorder and CT1 (rg=-0.18, p=0.035, 

pFDR=0.22). CT3 had a positive nominally significant correlation with OCD (rg=0.22, p=0.0091, 

pFDR=0.078).  

The overlap of the GIBN GWS loci with prior GWAS of neuroimaging phenotypes or psychiatric 

disorders firmly points to the relevance of GIBN-related variants to brain structure and 

cognition. First, we note that novel variant rs3006933 has been previously associated with 

subcortical volumes46. Novel variants rs3006933  and rs100476317,29 have been associated 

with neuroimaging phenotypes of corpus callosum white matter microstructure47. A comparison 

of our GIBN GWAS with published psychiatric disorder GWAS results found that multiple SNPs 

linked to SA-derived GIBNs were also implicated in a GWAS of schizophrenia41. Specifically, 

we identified a cluster of 4 loci in the CRHR1 gene strongly associated with SA-derived GIBNs 

(rs62057153 associated with SA1) in our GWAS (p=5.22x10-17 to 8.45x10-21). We also 

observed an association between CT1 and rs11692435 (p=1.17x10-12), a schizophrenia-

related locus, within the ACTR1B gene. Finally, CT- and SA-derived GIBNs were associated 

with schizophrenia risk variants in the SLC39A8 gene; namely rs13107325 was associated 

with CT5 and rs13135092 was associated with SA5. No other traits had GWS variants 

associated with any of the GIBNs.  
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Annotation of GIBN-related SNPs using FUMA found that many have been previously 

associated with cognitive, behavioral, neuroanatomical, neurofunctional, and neuropsychiatric 

phenotypes. In addition to rs3006933 noted above14, SA6-linked locus rs990986148 and SA5-

linked SNP rs757083014 have also been associated with subcortical volumes. Multiple loci 

associated with SA-derived GIBNs that encompass temporal, parietal, and temporo-parietal 

association cortices include SA1-linked locus rs1010943449, SA3-linked SNP rs229914850, and 

SA6-linked locus rs990986150-54 have previously been implicated in academic attainment and 

cognitive ability. These GIBNS, particularly temporal (SA6) and temporoparietal (SA3) cortices, 

are the most more strongly linked to academic attainment and the most heritable55. The SA5-

linked locus rs6701689 has been reported for risk tolerance56. However, there is no support for 

this GIBN in the visual cortex (SA5) plays a role in risk tolerance, which is linked to cerebellar, 

midbrain, and prefrontal cortical anatomy, as well as glutamatergic and GABAergic 

neurotransmission56,57. The CT4-associated locus rs13107325 has been associated with many 

traits including schizophrenia58-65, bipolar disorder62,63,  Parkinson’s disease64,65, sedentary 

behavior46,66 and risk taking56, as well as cognition, intelligence, and educational attainment50-

54,67. This GIBN includes the parahippocampal and fusiform gyri, which have a firmly 

established link to schizophrenia68 and a recently identified link to sedentary behavior69.  

4. DISCUSSION 

 

The goal of the present study was to leverage the pleiotropic architecture of the human cortex 

to construct a genetically informed parcellation that could be distinct from anatomical, 

functional, cytoarchitectural, or other established parcellation schemes, although, our analysis 

starts with a somewhat crude anatomically-based 34-region parcellation. We investigated the 

genetic pleiotropy of regional cortical morphology by applying gSEM to jointly model the 

genetic architecture of 34 brain regions using results from the ENIGMA-3 GWAS18. The 

process was undertaken with gSEM to generate several possible solutions, from which the 

best-model fit was selected. This solution organized brain regions to optimally assign genetic 

pleiotropy to 6 SA- and 4 CT-derived latent factors, which we have termed genetically informed 

brain networks (GIBNs). Subsequent multivariate GWAS of these GIBNs were mapped by 

FUMA to 74 independent SNPs (p<5x10-8). LDSC results of CT- and SA-derived GIBNs were 
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positively correlated with OCD and bipolar disorder, but negatively correlated with alcohol use 

disorder, ADHD, MDD, and insomnia.  

We observed 74 GWS markers associated with the SA- and CT-GIBNs. The overlap of the 

GIBN GWS loci with prior GWAS of neuroimaging phenotypes or psychiatric disorders firmly 

points to the relevance of GIBN-related variants to brain structure and cognition. First, we note 

that novel variant rs3006933 has been previously associated with subcortical volumes46. Novel 

variants rs3006933  and rs100476317,29 have been associated with neuroimaging phenotypes 

of corpus callosum white matter microstructure47. A comparison of our GIBN GWAS with 

published psychiatric disorder GWAS results found that multiple SNPs linked to SA-derived 

GIBNs were also implicated in a GWAS of schizophrenia41. Specifically, we identified a cluster 

of 4 loci in the CRHR1 gene strongly associated with SA-derived GIBNs (rs62057153 

associated with SA1) in our GWAS (p=5.22x10-17 to 8.45x10-21). We also observed an 

association between CT1 and rs11692435 (p=1.17x10-12), a schizophrenia-related locus, 

within the ACTR1B gene. Finally, CT- and SA-derived GIBNs were associated with 

schizophrenia risk variants in the SLC39A8 gene; namely rs13107325 was associated with 

CT5 and rs13135092 was associated with SA5. No other traits had GWS variants associated 

with any of the GIBNs.  

Annotation of GIBN-related SNPs using FUMA found that many have been previously 

associated with cognitive, behavioral, neuroanatomical, neurofunctional, and neuropsychiatric 

phenotypes. In addition to rs3006933 noted above14, SA6-linked locus rs990986148 and SA5-

linked SNP rs757083014 have also been associated with subcortical volumes. Multiple loci 

associated with SA-derived GIBNs that encompass temporal, parietal, and temporo-parietal 

association cortices include SA1-linked locus rs1010943449, SA3-linked SNP rs229914850, and 

SA6-linked locus rs990986150-54 have previously been implicated in academic attainment and 

cognitive ability. These GIBNS, particularly temporal (SA6) and temporoparietal (SA3) cortices, 

are the most more strongly linked to academic attainment and the most heritable55. The SA5-

linked locus rs6701689 has been reported for risk tolerance56. However, there is no support for 

this GIBN in the visual cortex (SA5) plays a role in risk tolerance, which is linked to cerebellar, 

midbrain, and prefrontal cortical anatomy, as well as glutamatergic and GABAergic 

neurotransmission56,57. The CT4-associated locus rs13107325 has been associated with many 
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traits including schizophrenia58-65, bipolar disorder62,63,  Parkinson’s disease64,65, sedentary 

behavior46,66 and risk taking56, as well as cognition, intelligence, and educational attainment50-

54,67. This GIBN includes the parahippocampal and fusiform gyri, which have a firmly 

established link to schizophrenia68 and a recently identified link to sedentary behavior69.  

 

The GIBNs we generated can be compared to similar structures generated from twin studies. 

Using 400 twin pairs, Chen et al. generated twelve genetically-informed clusters from vertex-

based surface area measures11. The 12 clusters consisted of (1) motor-premotor cortex, (2) 

dorsolateral prefrontal cortex, (3) dorsomedial frontal cortex, (4) orbitofrontal cortex, (5) pars 

opercularis and subcentral region, (6) superior temporal cortex, (7) posterolateral temporal 

cortex, (8) anteromedial temporal cortex, (9) inferior parietal cortex, (10) superior parietal 

cortex, (11) precuneus, and (12) occipital cortex. The results of Chen et al.11 constitute the 

earliest genetically informed parcellation of the brain, which reported heritability estimates and 

genetic correlations between clusters. The genetically informed clusters are more consistent 

with classical anatomically-defined sulcal and gyral boundaries, Brodmann definitions, and 

cytoarchitectural patterns than our GIBNs. Importantly, our GIBNs, better represent functional 

specializations than the 12 genetically-informed clusters. However, these published twin 

studies notably lack any information about specific genetic variants. Thus, our study extends 

the circumscribed results of earlier twin studies by mapping specific genetic variants onto the 

cortical covariance structure.  

The organization of structural covariance networks is partially reflected in other schemes for 

organizing the human cortex including resting state networks, gene expression networks, white 

matter networks and other neurobiological brain features. Structural covariance networks 

(SCN) tend to reflect white matter connections throughout the cerebral cortex, although other 

information captured by SCNs is independent of fiber connectivity5. More recently, the 

covariance structure of cortical thickness was shown to be correlated with gene transcriptional 

networks that are organized with similar complex topology on the basis of modularity, small-

worldness, and rich-clubness 2. Whereas network properties such as degree and degree-

distribution differed, the cortical areas connected to each other within SCN modules had higher 
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levels of gene-co-expression than expected by chance alone2. Relatedly, gene co-expression 

networks are also mirrored by canonical resting-state networks70. Specifically, 136 consensus 

genes are differentially co-expressed in 4 resting-state networks including salience, dorsal 

default mode, visual, and sensorimotor.  

It is now firmly established that resting-state functional connectivity from fMRI evinces robust 

patterns of synchronous activity that intrinsically organize into canonical resting-state networks 
71. These resting state networks are typically identified by applying independent component 

analysis to the functional connectome72. We found that SA-derived GIBNs significantly align 

with several canonical resting-state networks. Most prominent among them is the 

recapitulation of the visual network by SA5, which is composed of cuneus, lateral occipital, 

lingual, and pericalcarine cortices73. Twin-based non-linear multidimensional heritability 

estimates (of multidimensional traits such as brain network architecture) are among the highest 

for the visual network (left h2
m=0.53; right h2

m=0.45) and auditory network (left h2
m=0.44; right 

h2
m=0.60)74. SA6, which includes superior and transverse temporal cortices, closely 

recapitulates the auditory cortex. The functional specializations of the human auditory cortex73, 

which include parts of the lateral prefrontal cortex, Broca’s area, and subcentral regions, are 

needed for human vocalization and language75,76. The dorsal attention network (DAN), which 

directs voluntary allocation of attention, is concordant with SA1 that is comprised of superior 

parietal, supramarginal, postcentral, precuneus, isthmus cingulate, and inferior temporal 

regions. A noteworthy omission from SA1, which is an important feature of the DAN, are the 

frontal eye fields (FEF)77. The most likely explanation is that the FEF is not a distinct region in 

FreeSurfer parcellation and therefore this phenotype is not well represented in ENIGMA 

cortical GWAS. The DAN has relatively high twin heritability estimates (left h2=0.45; right 

h2=0.40)74. The default mode network (DMN), which is sometimes partitioned into dorsal and 

ventral subnetworks78, resembles SA2 and SA3 respectively. The caudal anterior cingulate, 

caudal middle frontal, medial orbitofrontal, paracentral, and rostral anterior cingulate cortices 

comprise SA2, while banks of STS, inferior parietal, and middle temporal cortices comprise 

SA3. SA4 represents a partial recapitulation of the central executive network (CEN) with the 

pars opercularis, pars orbitalis, and pars triangularis, but lacks the temporoparietal structures, 

which are a core feature of the CEN79.  
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Our results are consistent with evidence that the functional connectome is shaped by genomic 

constraints74,80. For instance, twin data from the human connectome project (HCP) shows that 

individual variability in the areal size of 17 canonical functional networks, as defined by Yeo et 

al.73, reveal marked heritability (h2=0.34 to 0.40). Unimodal sensory networks such as auditory 

and visual networks are particularly heritable while hetero-modal networks such as the 

salience network and the central executive network are significantly less heritable74. Overall, 

the parcellation schemes reflect the genetic influences driving cortical areal expansion and 

represent genetically driven processes in embryological neurodevelopment.  

We find that behavioral traits and neuropsychiatric disorders showed distinct genetic 

correlations with SA-derived GIBNs that differ markedly from correlations with CT-derived 

GIBNs. Psychiatric disorders that were significantly genetically correlated with SA-derived 

GIBNS were not correlated with CT-derived GIBNs, and some CT-derived GIBNs were 

correlated with other psychiatric disorders that were not correlated with SA-derived GIBNs. 

CT3, which is located in the middle and superior temporal cortices, and CT4, which is located 

in the visual perceptual cortex, were strongly negatively correlated with alcohol use disorder. 

This divergent relationship between CT-derived and SA-derived networks is consistent with our 

findings form the ENIGMA-3 cortical GWAS where a consistent pattern of significant positive 

and negative correlations between total brain SA and behavioral traits/disorders was found, but 

average CT correlations with behavioral traits/disorders were non-significant18. Specifically, the 

ENIGMA-3 GWAS found that total SA was significantly positively correlated with cognitive 

function, educational attainment, Parkinson’s disease, and anorexia nervosa, but significantly 

negatively correlated with MDD, ADHD, depressive symptoms, neuroticism, and insomnia. In 

addition, the SA-derived GIBNs showed distinct genetic relationships to several psychiatric 

disorders. Several SA-derived GIBNs (SA1, SA2, SA4, SA5) were positively correlated with 

bipolar disorder, whereas SA-derived GIBNs (SA1, SA2, SA3, SA5, SA6) were negatively 

correlated with MDD, buttressing prior evidence that MDD and Bipolar are distinct conditions 

with divergent genetic bases78. While the relationship between these SA-derived GIBNs with 

MDD converge with the findings from the ENIGMA total surface area results, the relationship 

with bipolar disorder was novel. The GIBNs may provide additional power to detect genetic 

relationships when the strength of these relationships across cortical regions is heterogenous. 

Interestingly, although several GIBN-related SNPs we found were associated with 
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schizophrenia, there were no GIBNs that were significantly correlated with schizophrenia (rg 

=0.029 to 0.034; all p>0.30). 

There is ample evidence that genetic variants that influence SA are distinct from genetic 

variants that influence CT18. Genetic variation affecting gene regulation in progenitor cell types, 

present in fetal development, affects adult cortical SA81. An increase in proliferative divisions of 

neural progenitor cells leads to an expansion of the pool of progenitors, resulting in increases 

in neuronal production and larger cortical SA, which is more prevalent in gyrencephalic species 

(e.g. humans, primates)82. By contrast, loci near genes implicated in cell differentiation, 

migration, adhesion, and myelination are associated with CT. The present findings suggest a 

similar distinction holds in case of SA-derived GIBNs compared to CT-derived GIBNs. We 

hypothesize that the unique genetic correlations of SA-derived GIBNs and CT-derived GIBNs 

with behavioral traits/disorders may be explained by the distinct developmental functions of 

their associated genes. Further exploration of the common and distinct relationships of SA-

derived and CT-derived GIBNs with neuropsychiatric conditions using Mendelian 

Randomization and Latent Causal Variable (LCV) analysis may prove useful83. 

4.1 Limitations 

A number of limitations deserve consideration in interpreting the present findings. Our starting 

point for the gSEM was the GWAS of 34 cortical regions as defined by the Desikan-Killiany 

atlas. However, using cortical pleiotropy as an organizing schema for parcellation will not 

strictly adhere to regions defined by anatomical features. A high-resolution GWAS of the cortex 

would allow more flexibility in defining parcellation boundaries informed by genetic pleiotropy 

given it is likely that they differ from anatomically defined parcels. Realizing a high-resolution 

GWAS of the cortex poses a major computational challenge. For instance, a multivariate 

GWAS of 1,284 cortical vertex locations26 would be extremely time- and cost-prohibitive. 

Indeed, the present gSEM with just 34 phenotypes required about 2 weeks per chromosome 

running on the Shared Computing Cluster (SCC) at Boston University.  

The GWAS threshold we used to identify significant associations with the 6 SA-derived and 4 

CT-derived GIBNs was p<5x10-8, as we hypothesized that many of the associated loci would 

have been implicated in the prior GWAS, and we wanted to explore the relationship between 
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GIBN GWAS variants and other traits. This is supported by the fact that the vast majority 

GIBN-associated SNPs had been noted in other cortical GWASs17,18,29. However, we note that 

the two novel SNPs identified, the SA1-associated SNP, rs3006933, would survive a strict 

Bonferroni correction for 10 GIBN GWASs examined (p=4.08x10-9), while the CT2-associated 

variant, rs1004763, would not (p=3.41x10-08). Therefore, the relevance of rs1004763 to cortical 

thickness should be considered provisional until replicated. 

The present gSEM was based on the GWAS results of Grasby et al 18., which averaged left 

and right hemisphere phenotypic measures. This precluded an investigation of  hemispheric 

asymmetries.  

4.2 Conclusion 

We harnessed the pervasive pleiotropy of the human cortex to realize a unique genetically-

informed parcellation that is neurobiologically distinct from anatomical, functional, 

cytoarchitectural, and other established cortical parcellations, yet harbors meaningful 

topographic similarities to other network schemas, particularly resting-state fMRI networks. 

Strong genetic correlation between GIBNs and several major neuropsychiatric conditions 

including OCD, Bipolar, ADHD, and Alcohol Dependence, coupled with clear confirmation that 

nearly all GIBN-related SNPs play a role in cognitive, behavioral, neuroanatomical, and 

neurofunctional phenotypes, begins to expose the deeply interconnected architecture of the 

human cortex. Applying gSEM to model the joint genetic architecture of complex traits and 

investigate multivariate genetic links across phenotypes offers a new vantage point for 

mapping genetically informed cortical networks.  
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