bioRxiv preprint doi: https://doi.org/10.1101/2022.11.04.514718; this version posted March 28, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

Label-guided seed-chain-extend alignment on annotated
De Bruijn graphs

Harun Mustafal»2:3-*®, Mikhail Karasikov!?:3/@, Nika Mansouri Ghiasi*/®, Gunnar Rétsch!2:3:5:6:7
and André Kahles!:2:3:7:*

! Department of Computer Science, ETH Zurich, Zurich Switzerland
2 University Hospital Zurich, Zurich, Switzerland
3 Swiss Institute of Bioinformatics, Zurich, Switzerland
4 Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
5 ETH AI Center, Zurich, Switzerland
6 Department of Biology, ETH Zurich, Zurich, Switzerland
7 The LOOP Zurich — Medical Research Center, Zurich, Switzerland

Abstract. Exponential growth in sequencing databases has motivated scalable De Bruijn graph-
based (DBG) indexing for searching these data, using annotations to label nodes with sample IDs.
Low-depth sequencing samples correspond to fragmented subgraphs, complicating finding the long
contiguous walks required for alignment queries. Aligners that target single-labelled subgraphs re-
duce alignment lengths due to fragmentation, leading to low recall for long reads. While some (e.g.,
label-free) aligners partially overcome fragmentation by combining information from multiple sam-
ples, biologically-irrelevant combinations in such approaches can inflate the search space or reduce
accuracy.

We introduce a new scoring model, multi-label alignment (MLA), for annotated DBGs. MLA lever-
ages two new operations: To promote biologically-relevant sample combinations, Label Change
incorporates more informative global sample similarity into local scores. To improve connectivity,
Node Length Change dynamically adjusts the DBG node length during traversal. Our fast, ap-
proximate, yet accurate MLA implementation has two key steps: a single-label seed-chain-extend
aligner (SCA) and a multi-label chainer (MLC). SCA uses a traditional scoring model adapting
recent chaining improvements to assembly graphs and provides a curated pool of alignments. MLC
extracts seed anchors from SCA’s alignments, produces multi-label chains using MLA scoring, then
finally forms multi-label alignments. We show via substantial improvements in taxonomic classifi-
cation accuracy that MLA produces biologically-relevant alignments, decreasing average weighted
UniFrac errors by 63.1-66.8% and covering 45.5-47.4% (median) more long-read query characters
than state-of-the-art aligners. MLA’s runtimes are competitive with label-combining alignment and
substantially faster than single-label alignment.

1 Introduction

Sequencing databases are growing exponentially in size [1]. In recent years, sequence graphs, in particular
De Bruign graphs (DBGs), have become increasingly prominent models for representing and indexing
large collections of sequencing data [2], enabling improvements in both the scale and accuracy of many
biological analysis tasks, including genotyping [3.|4], variant calling [5\/6], and sequence search [3,[7].
Established search methods are designed for databases of assembled genomes [§]. However, a large
fraction of sequencing data deposited in archives like the Sequence Read Archive (SRA) or the European
Nucleotide Archive (ENA) have not yet been assembled [9]. This is because assembly requires expensive
compute and human labour resources, done by first representing the overlaps between reads as an as-
sembly graph (e.g., a DBG), then extensively cleaning the graph (often requiring manual intervention),
and finally assembling contiguous sequences (contigs) by graph traversal [10]. Since genome assembly
strives for long, high-quality contigs [11], the cleaning may discard a significant amount of signal from
the sample |12][13] with no guarantee that there will be no misassemblies among the final contigs [11].
To avoid these signal reduction and misassembly issues, a common way to compress and index a
collection of unassembled read sets for search queries is to first construct and only lightly clean an
assembly graph for each read set, then merge the graphs into a joint assembly graph [7,/14]. For indexing
diverse sequencing data sets, light cleaning is still crucial to reduce the accumulation of noise when
indexing diverse collections containing hundreds of thousands of samples [7]. DBG-based indexing tools

https://orcid.org/0000-0002-2125-6086
https://orcid.org/0000-0001-6200-5972
https://orcid.org/0000-0002-0833-0042
https://orcid.org/0000-0001-5486-8532
https://orcid.org/0000-0002-3411-069
https://doi.org/10.1101/2022.11.04.514718
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.04.514718; this version posted March 28, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

encode metadata as graph annotations, a key-value store associating each node with one or more metadata
tracks, such as sample labels [7,[15-23]. Similar to these previous works, we use accession IDs as labels
to associate nodes back to their original database entries.

A key search task on these indexes is sequence-to-graph alignment, a generalisation of pairwise
sequence-to-sequence alignment (i.e., computing the maximum similarity score between a query and
a target sequence). In this setting, the target sequences are the spellings of contiguous walks (§2.1)) on
the sequence graph [24H34]. Many of these tools follow a three-step seed-chain-extend search paradigm
(. This involves extracting and anchoring query seeds to the graph, using a co-linear chaining al-
gorithm to construct anchor chains, and then extending the chains via a search in the graph to form
alignments.

1.1 Challenges when aligning to annotated De Bruijn graphs

A large proportion of read sets in the SRA are sequenced at low depﬂﬁ, producing heavily fragmented
assembly graphs [13]. For metagenomics samples in particular, the constituent organisms are often se-
quenced at or below 1x coverage [35]. Although the light cleaning applied to assembly graphs ensures
that exact seed matches can be found [7], the long contiguous walks required for high-scoring (i.e., high-
precision) alignments are often not present because of high graph fragmentation. This results in low
recall, particularly for long reads, because the short alignments that can be found are not reported to
maintain search precision.

Current alignment approaches for sequence graphs have limited support for fragmented graphs. The
first approach is label-free alignment, which ignores annotations during alignment. When applied to an
annotated DBG representing a diverse cohort, these tools [21,25,(26}28,|29,[36}/37] can meander search
through a large search space inflated by biologically-irrelevant sample combinations [3,|15]. For this
reason, these tools primarily target single-species pangenomes that often satisfy the assumption that all
walks are biologically relevant. If this assumption holds, then these methods can overcome fragmentation
in an individual sample’s assembly graph by combining sequence information from multiple samples since
such contiguous walks are present in the joint graph. A second approach aligns queries to walks where
all nodes in the walk share one (single-label) or more (label-consistent) common label(s) [24,38]. These
tools suffer from low recall on fragmented assembly graphs, and so, this property also applies to joint
annotated graphs because sample combinations cannot compensate for fragmentation. However, these
tools do not suffer from search space inflation because all walks are biologically relevant. This is why these
tools are applied to high-quality contiguous graphs indexing reference genomes or high-depth sequencing
samples [241[38]. A third, recently-emerging intermediate approach is haplotype-aware alignment, which
either aligns in a label-free fashion and scores recombinations afterwards [39] or combines samples to a
restricted degree by penalising each combination during alignment [40}/41]. These alignment strategies
do not consider similarity (hence, biological relevance) when scoring a sample change and have so far
only been applied to single-species pangenomes.

A property shared by all of these approaches is that a discontinuity in an individual assembly graph
that does not overlap with another assembly graph will propagate to the joint DBG, limiting the joint
graph’s contiguity. This stems from the approaches’ shared definition of alignment: the alignment target
must be a contiguous walk.

1.2 Contribution: Label-guided sequence-to-DBG alignment

Our goal in this work is to develop an alignment approach that can produce long accurate alignments
to collections of low-depth sequencing samples represented by fragmented annotated DBGs. To this end,
we propose a new alignment strategy called multi-label alignment (MLA) designed for annotated DBGs.
The strategy extends alignment scoring models with two key new operations: (i) Label Change and
(i) Node Length Change. The label change operation penalizes traversals that change from one sample
to a dissimilar sample, thus enhancing local single-character similarity scores with more informative
global similarity. The node length change operation dynamically adjusts the node length, thus using
shorter-length nodes as proxies for missing nodes to locally improve graph connectivity (i.e., reducing
fragmentation).

8 The fungi SRA samples indexed by [7] have a median (mean) k-mer multiplicity of 9 (10.5) (Supp. Fig. .

https://doi.org/10.1101/2022.11.04.514718
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.04.514718; this version posted March 28, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

Efficiently implementing these operations must overcome several computational challenges. First,
efficient anchor chaining relies on having a small number of anchors per query [42], an assumption that
is easily violated in a multi-label setting. Second, sequence-to-graph alignment decision problems (i.e.,
does there exist an alignment) that allow for DBG edits is shown to be NP-complete [43], necessitating
heuristics to prevent excessive use of node length change operations.

To address these challenges, we implement MLA in a fast, approximate, yet accurate two-step ap-
proach: The first step is a new single-label seed-chain-extend aligner for annotated DBGs called SCA
(Fig 1—3), meant to reduce the computational burden of multi-label chaining by first performing single-
label chaining with a traditional scoring model and extending the top chains among all labels to provide
a preliminary alignment pool. SCA, adapts recent improvements in chaining to a DBG setting. The
second step is a multi-label chainer called MLC (Fig 4) that incorporates our novel MLA scoring op-
erations into its chain scoring. It extracts anchors from the alignments provided by SCA, resulting in
a much smaller curated anchor set on which we apply our more expensive operations. It then performs
multi-label chaining on these anchors and stitches the multi-label chains into alignments using fragments
from SCA’s alignments.

Overall, we show in this work how our fast approximate implementation of MLA produces substan-
tially longer and more accurate alignments compared to state-of-the-art aligners.

1) ‘ 2)) [[Amj) (TGC)[(GCA%[(CAT%[(ATG]}[(GCT%
Extract seeds - Anchor (CATG TGCA) (GCAT) (CATG) (AGCT
. S) ‘ j seeds (CATG) (ATGC) (TGCA) (GCAT) (CATG)

|n| CATGCATGGCGCT (o aTeeATe) ,E- (CATG) (TGCA) (GCAT) (CATG) (AGCT)
(CATG) (ATGC) I (CATG) (AGCT

| 3) L 2 CATGCATGGCGCT

p—

Mltabel (T6C) GCA [-CAT J_ATG o GCT,)| Chaining ~ (TGCATGIGCT J——>>(-—TGCATGTAGCT)
chaining (T6C | GCA § CAT) ATG) (6CT)| e —>
(CCAT Y_ATG | TGC | GCAJ CAT | ATG) TGCA Joo(6CT J—=>
DT =

Fig. 1. Computing multi-label alignments (MLAs) of a query sequence to an annotated De Bruijn
graph. Each colour represents a label in the graph annotation, with some nodes having multiple labels. We
first 1) extract seeds (shown in purple, shaded seeds have no match) of length | < k from the query sequence
(in this example, k = 4, | = 3, and the query is CATGCATGGCGCT) and 2) anchor the seeds to the graph, where
each anchor matches a seed to a node and a label (each column represents the node-label pairs to which a seed
matches). Then, we 8) construct single-label chains and extend them along single-label walks into alignments
using SCA (the purple characters in the query indicate mismatched characters). We then 4) extract anchors from
this alignment pool and form multi-label chains using MLC (indicated by the green line). We connect anchors
using single-label alignment segments to form MLAs.

2 Preliminaries and Background

2.1 Notation and Definitions

A string is a finite sequence of characters drawn from an alphabet X. ¥ denotes the set of all strings of
length k (k-mers). For a string s = s[1]s[2] - - - s[I] of length |s| = [, with indices 1 < i < j <[, we denote
a substring by s[i : j] := s[i] - - - s[j]. The set of all k-mers extracted from a string set S is denoted by
(S, k) = Uges ULy {sli i+ k =1},

A node-centric De Bruijn graph (DBG) of order k representing S has the nodes V' := K(5, k) and im-
plicit edges E(V) := {(v1,v2) € VZ:01[2 : k] = va[1 : k — 1]} [44]. The spelling of a walk W = (v1,. .., V)
on a DBG is the string T' = vivg[k] - - - v [k]. An annotated DBG has an auxiliary set of string labels
£ and an annotation A : V — 2° associating each node with a label set. W is label consistent if
Nt A(vi) #0. V: £ — 2V fetches all nodes with a given label.

https://doi.org/10.1101/2022.11.04.514718
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.04.514718; this version posted March 28, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

We denote a query string by Q € X9l A sequence-to-graph alignment of Q to the target string T
along W is a tuple a = (Qq, Tu, Eq, W), where Q,, is a substring of @, T, is a substring of T, and E, is a
sequence of edit operations transforming T, to (),. These operations are in {match, mismatch, insertion
open, insertion extension, deletion open, deletion extension}. Each operation has a score, denoted by
A, Ax, Aro, Arg, Apo, and Apg, respectively. Only A_ is positive, all other scores are negative.
The score of a, denoted by Ag(a), is the sum of all edit operation scores, where a higher score indicates
greater similarity. a is label consistent if W' is label consistent. Given two alignments aq, a2 with respective
substrings Qi1 : i1 +1; — 1], Q[iz : ia+12—1] s.t. i1 < iz, we define overlap(aq, as) := min{ls, iy + 13 —is}.
ay and ag overlap if overlap(ay,as) > 0 and are disjoined by a gap of length —overlap(a, as) otherwise.
For a gap length | € N, we denote the scoring model’s gap penalty by Ag(l). In this work, we assume
affine scoring (e.g., Ag(l) := Ao + (I — 1)A g for an insertion).

2.2 Sequence-to-graph alignment with seed-extend-chain

Modern approximate aligners predominantly use the seed-chain-extend paradigm involving (i) seed an-
choring, (ii) co-linear chaining, and (iii) anchor extension [45]. A seed is a query substring while an
anchor is a tuple of a seed and a graph walk spelling a superstring of the seed. A chain is a sequence of
anchors s.t. any two consecutive anchors are in order in both the query and target, meaning that there
exists a walk connecting their nodes [46]. Some works determine a traversal distance between nodes
on-the-fly by traversing local neighbourhoods around nodes [29,[30]. More efficient strategies require a
decomposition of the graph, typically into subgraphs [28,|47] or a path/walk cover [31-33,/46]. After
chaining, anchor extension searches the graph forwards and backwards from the ends of each anchor to
find high-scoring walks.

3 Methods

3.1 General alignment workflow

Given a query @, we find and anchor seeds, compute label-consistent alignments using SCA, then chain
these alignments together into MLAs using MLC. First, given a user-set seed length | < k, we extract
l-mer seeds from @ (Fig. 1) and anchor them by fetching all graph nodes with matching [-length suffixes
and their associated labels (Fig. 2). An anchor oy is a tuple in A := N x N x V' x £ anchoring the
seed Q[i : i + 1 — 1] to a node v, with an associated label £ € A(v). Afterwards, we find the top-scoring
single-label chains (Fig. 3, . We extend each chain into a single-label alignment by using global
alignment to connect consecutive anchors and ends-free extension from the first and last anchor in the
chain. Given the resulting alignment pool, we extract all [-mer anchors and compute multi-label chains
(Fig. 4, , incorporating label change (Ar¢) and node length change operations (Ay,). We construct
MLASs from the top multi-label chains using segments from the label-consistent alignments.

3.2 Deriving a Scoring Model for Novel Alignment Operations

We now detail the scoring model for our new operations for sequence-to-graph alignment: Apc and Ap,.
For all constants defined in this section, refer to for the values we use in our experiments. We define
and extend two probabilistic graphical models for sequence-to-sequence alignment: a target model and a
null model, based on the probabilistic models presented by [48]. Briefly, a model represents all possible
mutations of an underlying target sequence, where a walk in a model emits edit operations that generate
a query sequence (detailed in Supp. . The score of any edit operation is the log probability ratio of
the operation’s corresponding transition probabilities in the target and the null model. The alignment
score is the sum of these log ratios (i.e., the query’s log-likelihood ratio). These sequence-to-sequence
alignment models trivially induce analogous models for sequence-to-graph alignment by treating the
spelling of each walk in a sequence graph as a separate target sequence and, hence, a pair of target and
null graphical models.

https://doi.org/10.1101/2022.11.04.514718
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.04.514718; this version posted March 28, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

Deriving and Computing Label-change Scores For simplicity, suppose that we traverse along an
edge (v1,v2) s.t. A(v1) = {¢1} and A(va) = {¢2}, where ¢; # ¢5. We denote this label change from ¢; to
{5 as f1 — l5 and score this event using the probability that vy has label ¢; conditioned on vs having
the label /5. Intuitively, this is the probability that the k-mer vs observed in the sample with label 5 is
also present in the sample with label ¢1, but was not observed (Fig. . To formulate this precisely, we
extend our alignment models so that each graph-traversing operation emits a label change with transition
probability Pr(¢; — ¢3). Thus, the label-change score is

r(ly — lo) J 1)

ALc(€1 — 52) = /\LC {logg Pr (61 - 62)

where Apc is a user-set scaling constant. For the null model, we assume no relationship between ¢; and
ls, s0 Pro(¢y — f3) := Pr(¢3), where Pr(¢) is the empirical probability of a label ¢: Pr(¢) := % For
this new model to be reducible to a label-free setting, we require that Arc(¢ — ¢) =0 (i.e., only score
if the label changes) and that Apc(¢; — ¢2) < 0 (i.e., no label change increases the score). We satisfy
these requirements if Pr(¢; — ¢3) := Pr(V(¢1) N V(¢2)), which simplifies Equation [1| to

ALC(EI — 62) = /\LC Uogg Pr(€1|€2)j . (2)

Due to the log in the definition of Apc and the use of integers for alignment scores, we only re-
quire order-of-magnitude accuracy when computing Pr(¢;|¢2). So, we approximate Pr(¢1|¢2) using Hy-
perLogLog++ counters [49] of V(¢1) and V(¢3), respectively, and the precomputed values |V(¢1)| and

V(l2)].
GCAT CATG
-TGCA TGCA
GCAC
Arc@—) > Arc@—©@)

Fig. 2. Label change scores measure sample similarity. Arc measures the probability that a node with
an orange label is also present in the blue sample but was not observed in that sample. We score a change to the
orange label much higher because of the large overlap between the orange and blue k-mer sets.

Deriving Penalties for Node Length Changes Since low sequencing depth can produce disconnected
graphs, one way to compensate for this is to allow for node insertions into the graph during the search. In
this section, we describe how we use dynamic changes of the underlying DBG’s order k during alignment
as a more tractable proxy for inserting nodes.

Although MLC only utilises node length change operations during chaining, we nonetheless incorpo-
rate this operation into our scoring model to derive its scoring function. For this, we switch our graph
from a DBG of fixed order k to a variable-order DBG of maximum order k [50].

(ATGT M TGTAPM GTAG I TAGC M AGCT)

(AATG)(ATGG I TGGAM GGAG I GAGC)
Ap(4—2) -’-j

ATCT HTCTG) X GG

Fig. 3. Traversal in a variable-order DBG overcomes graph disconnects to spell the sequence
ATCTGGAGCT. Traversing from TCTG to its suffix TG allows for traversal to TGGA, so the red nodes compensate
for the disconnect in the blue subgraph. In ML A, nodes of length | < k act as proxies for k-mers. In this graph,
TGG stands in for CTGG. In our model, nodes of length < k may only traverse to longer nodes (e.g., TGG cannot
traverse to GG). The green line represents the path taken to spell the sequence above and the orange arrows
represent node length-changing traversals.

https://doi.org/10.1101/2022.11.04.514718
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.04.514718; this version posted March 28, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

Given a node v of length k with spelling s and a suffix length 1 <1 < k, a node length change is the
traversal from v to the node with spelling s[k — [+ 1 : k]. In our model, nodes with length [are proxies
for missing k-mers (Fig. [3)). However, we need to define penalties for changing the node length to prevent
degenerate cases, such as searches along walks where every node has a short length (e.g., 1 or 2) that
exist for every sequence over the alphabet.

To avoid this case, and to ensure that the model reduces to standard sequence-to-graph alignment
on fixed-k DBGs, our scoring model does not penalise traversals that increase the node length by 1 or
maintain the node length at k. Otherwise, we penalise traversal from a node of length k& to one of length
1 <1 < k with a score Ar(k — 1) and disallow all other node length-changing traversals. Consolidating
these rules,

0 ifl1:12:k0r11+1:12
AL(ll —>l2) = (k_ZQ)AJ if li=Fkandly <k y (3)
—00 ifliy<kandl; +1#1s

where A; < 0 is a user-set constant.

3.3 Local co-linear chaining on assembly DBGs

We now describe the modular chaining algorithm used by both SCA and MLC. Given anchors sorted
by increasing end position (i.e., i + 1), we perform local chaining using Algorithm [1} based on the more
practical alternative algorithm implementation by |42|ﬂ Their algorithm minimises a non-negative chain
cost rather than maximising an integer score, so we use the equations by [52] to convert scores into costs
when evaluating our termination condition. This forward pass computes optimal chaining scores. We
reconstruct chains by backtracking, ensuring that we incorporate each anchor into, at most, one chain.

The helper function connect : A x A — Z approximates the score of a global alignment connecting
anchor o to g, with different implementations for SCA and MLC. Note that this score does not include
« since its score is already included in the score vector Ag when computing updates.

Algorithm 1 Computing local co-linear chaining scores.

Input: A sequence of anchors (Qtiyiv 1«5 Qiplpontn) St. & <Yy = iz + lz <iy + 1. An initial guess of the
maximum distance between anchors b € N and a scaling factor by > 1.
Output: Ag € Z" s.t. Ag[j] is the best chaining score from any subsequence of (1,155 - -, @il ngj) ending
with Ojljve, -
1: Ag « [Az -1y, ..., Az - 1]
2: repeat
3: F+1
4: for L + 1 ton do
5: F«+min{je{F,...,L}:ir +1r — (i +1;) < b}
6: for j <~ F to L s.t. i; <ip andi; +1; <ir+1r do
T 5 < Agl[j] + connect(cvi; 1,06, Qigipvrer)
8: Ag[L] < max {As[L], s}
9: end for
10: end for
11: blast —b
12: b<b-by > Increase max. distance between anchors
13: Sbest < max {Ag[1],..., Ag[n]} > Find the best score.
14: Chest < [2 (|Q| — %)" > Convert score into a cost.

15: until cphest > bast
16: return Ag

9 We fall back to the chaining algorithm from minimap2 [51] with affine gap scoring if there are more than |Q)|
anchors (§3.6).

https://doi.org/10.1101/2022.11.04.514718
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.04.514718; this version posted March 28, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

3.4 SCA: Single-label seed-chain-extend alignment

SCA implements co-linear chaining and anchor extension algorithms for label-consistent alignment. After
seed anchoring, we merge the anchors into maximal unique matches (MUMs). We then group the anchors
by label and perform separate forward passes of the chaining algorithm for each group. Afterwards, we
select the top p|@Q| chains (with ties) among all labels and backtrack to construct these chains. p is a
user-set chain density (§4.3).

To compute the connection score between two anchors «; and as, we sum a match score for the
additional characters introduced by as to a gap penalty based on the absolute difference between (i) the
difference of a; and «’s seed end positions in the query, and (ii) the traversal distance between their
nodes in the graph (Supp. Algorithm . To quickly estimate a traversal distance between two nodes
along a label-consistent walk, we use walk covers of the subgraphs representing each label. A walk cover
is a set of walks s.t. each node is visited at least once. So, a traversal distance is known if there exists a
walk from «aq to as in the cover.

For each chain, we connect consecutive anchors using global alignment, then extend the first anchor
backwards and the last anchor forwards using ends-free extension. For global alignment, we use TCG-
Aligner [15] to ensure that each connecting walk is represented by the cover. For ends-free extension,
we modify TCG-Aligner’s extender to restrict traversal to label-consistent walks. To further reduce the
number of extensions, we discard chains that overlap with already-completed alignments. The result is
a pool of label-consistent alignments.

3.5 MLC: Multi-label co-linear chaining

Given a pool of label-consistent alignments, we extract anchors from these alignments and construct
multi-label chains (Fig. [[}4). Unlike the co-linear chaining method in SCA, we have access to global
alignment scores for connecting any in-order pair of anchors extracted from the same label-consistent
alignment. We leverage this to define an anchor connection score that ensures that MLC’s chaining scores
equal the final MLA scores.

One property of MLC’s scoring is that, given a chain of anchors from the same alignment and label,
we only need the anchors at the beginning and end of the chain to compute the chain score. So, as a
preprocessing step, we discard any anchor «;,1y,¢; if it is the only anchor at position i; and if another
anchor a1y, ¢, exists from the same alignment.

After the forward pass, we reconstruct the highest-scoring chains that cover each label from the pool
of label-consistent alignments. We construct an MLA from each chain by connecting consecutive anchors
using alignment segments from the pool.

Multi-label anchor connection scoring We now detail MLC’s anchor connection scoring (Supp.
Algorithm . Suppose we have anchors «;,iy,¢; and &, 1y,¢, from alignments a, and a,, respectively.
We cousider three cases for the update score: (i) extending along the same alignment (i.e., x = y), (ii)
connecting disjoint alignments (i.e., overlap(as,a,) < 0), and (44) connecting overlapping alignments
(i.e., overlap(ag, ay) > 0).

(i) If = y, then the anchor connection score is the score of a,’s segment up to the longer query
substring ending at iy, +1 (i.e., Ag(ay[: it +1]) — As(ay[: i; +1])).

(i1) If a, and a, cover disjoint regions of @), then the connection score includes the sum of a,’s
remaining score, the score of a,’s segment up until 7y, 4 [, the label change score, and the gap penalty
for inserting extra query characters:

As(ag) — As(ag[: i +1]) + As(ay [ir +1]) (4)
+ ALc(fj —lr) 4+ Apo + Ag(— overlap(a,, ay))

To differentiate this case from (iii), we insert a sentinel $ character into the target spelling with an

incurred Apo score.

(1i1) If a, and a, cover overlapping regions of @), assume that the current alignment segment of a,
up until ¢; + [is of length > k and that |ay[ir, ;]| > k (meant to avoid ambiguity when spelling a walk).
We also only consider overlaps of length < k — 1 (i.e., one cannot traverse from a, to a, with a single
step without modifying the graph) since we assume that longer overlaps would have been discovered

https://doi.org/10.1101/2022.11.04.514718
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.04.514718; this version posted March 28, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

otherwise via normal graph traversal during anchor extension. We use a two-step procedure to try to
connect the two anchors. First, we try to find an intermediate anchor Qi v, ey, from ay s.t. i; =i, and
hop to that node. Then we continue the traversal along a, towards v;, to complete the connection. If
such a node exists, the connection score is

Aslay[ip +1]) — As(ayl: i +1]) + Aro(l; — €1) 5)

+ ALk —=1)- lvﬂgvj,
Using Fig. [3| as an example, one such intermediate anchor is the node AATG sharing a 2-mer suffix with
the node TCTG.

Note that this score does not depend on the length of v; and v;/’s longest common suffix if v; # vj.
We motivate this design choice with the following observation: If there is a single character mismatch
between position k — 1’ + 1 (where I’ need not equal the seed length [) in a node v’s spelling and position
k — 1" in another node v"’s spelling that prevents the nodes from being adjacent (e.g., v spells GATGC and
v’ spells ACGCT for k = 5 and " = 3), then we require I’ node insertions to create a path to v’ from a
predecessor of v, despite the ground truth that it originated from a single substitution (for our example,
given appropriate characters ¢,d € X, these new nodes would spell cdGAC, dGACG, and GACGC). Thus,
defining the connection score as a function of k — I’ instead of k — [would induce unequal scores for each
value of I’, even though all of these edit events are equally likely.

3.6 Time and Space Complexity

Suppose we have n sorted anchors (incurring a worst-case complexity of O(nlogn) if the seeder does
not produce sorted anchors). Let C' denote the time to execute a connect function. If n < |Q)|, then
Algorithm [has an average-case time complexity in O(c*|Q|C), where ¢* is the minimum chain cost [42].
If n > |Q|, then we fall back to the chaining algorithm from minimap2 [51] with a worst-case time
complexity in O(bnC) for the forward pass, where b is a user-set bandwidth parameter. Although we
perform p|Q| backtracking procedures, since each anchor is incorporated into at most one chain, we
terminate a procedure as soon as we reach an already-chained anchor. So, backtracking takes worst-case
O(n) time. Alongside the n anchors, we store ©(1) information per anchor for the chaining scores and
backtracking information, so the total space complexity is in ©(n).
Consider SCA’s connect. Suppose that @ maps to L labels, with corresponding anchor counts ny, ..., nr,

walk cover sizes W1, ..., Wg, and optimal chaining costs cj,...,c}. Since MUMs generally satisfy n; <

|Q| [42], the average-case time complexity of SCA’s forward passes is O (\Q| 25:1 et Wl) . After extension,

1
we extract m anchors from the resulting alignments.

Considering MLC, it is clear that Cyra € O(1). Since we chain anchors from multiple labels in a
single forward pass, we can no longer assume that m < |@| will generally hold. Thus, MLA chaining has
an average-case time complexity in O(c*|Q]) when m < |Q| and worst-case time complexity in O(bm)
otherwise. Splicing alignment segments to convert a multi-label chain into an MLA spelling 7' runs in
worst-case O(|T]) time.

4 Evaluation Methodology

We compare our methods to GraphAligner [28], a state-of-the-art tool for traditional sequence-to-graph
alignment to DBGs, and PLAST [24], a BLAST-like tool for label-consistent alignment to annotated
DBGs. We implement two additional baselines: SCA+FixedMLC100 implements multi-label chaining
with Apc = =100, while SCA+MLC(no NLC) implements our Ar¢ but disallows node length changes.
We evaluate all tools on a simulated joint assembly graph indexing 3042 fungi genomes from Gen-
Bank [53].

4.1 Simulating assembly graphs and query sequences

From each genome, we simulate a 10x-coverage Illumina HiSeq-type read set using ART v2.5.8 [54] and
construct a cleaned assembly DBG of order k£ = 31 using the procedure in MetaGraph [7]. We then

https://doi.org/10.1101/2022.11.04.514718
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.04.514718; this version posted March 28, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

merge these graphs into an annotated DBG with nodes labelled by their source accession IDs. To merge
the graphs, we compute walk covers for each graph and construct the joint graph from these sequences.

We pre-process the graph and generate walks using the procedure described by [33]. To reduce the
final representation size, we refrain from maintaining a matrix of traversal distances from each node to
each stored walk. Instead, we augment each cover with additional walks spanning the edges discarded
during pre-processing. We losslessly encode the walks as coordinate graph annotations [15|. We use the
GFA representation of the joint graph to interface with GraphAligner and the walk covers to construct
the PLAST index.

We simulate query reads from the same genomes with a different random seed, using ART for Illumina
HiSeqg-type reads and pbsim3 [55] for PacBio Sequel CLR-type, PacBio Sequel HiFi-type, and ONT-type
reads. We generate HiFi reads from simulated 10-pass Sequel subreads using the PacBio ccs tool. We
form a query set for each read type by drawing 100 random reads from the pool of reads aggregated from
all genomes.

4.2 Recall-, coverage- and taxonomy-based measures

Alongside read mapping quality, we measure the accuracy of the retrieved labels w.r.t. the ground-truth
genomes using taxonomic profiles since our query reads are simulated from known genomes.

Taxonomic classification accuracy is highly dependent on which alignments are reported in a read
mapping. So, we first find an appropriate score cut-off to determine which alignments to report for each
read. Since our test reads are of different lengths, we divide each score by the length of its corresponding
query to get a relative score. Given the alignments of a read sorted by decreasing relative score and
a cut-off, we select alignments by greedily picking a disjoint subset whose relative scores are above the
cut-off. We vary the cut-off from 0.0 to 1.0 in steps of 0.02. For each cut-off, we evaluate the (i) recall and
the (%) mean taxonomic profile error. We measure taxonomic profile error using the WGSUniFrac error
of the profile relative to the ground-truth profile [56], a measure of the fraction of the taxonomic tree
traversal distance that differs between the two profiles. For easier interpretation, we define the UniFrac
accuracy as 1.0 — WGSUniFrac error. Since taxonomic IDs are not available for all strains, we generate
a custom taxonomic tree by augmenting the NCBI Taxonomy with a new leaf node for each GenBank
accession ID. The ground-truth profile of a read states that its ground-truth accession is 100% abundant,
whereas the profiles computed from alignments weight each accession by the fraction of query characters
covered by alignments to that accession.

4.3 Experimental setup and code availability

We performed all experiments on an AMD EPYC-Rome processor from ETH Zurich’s high-performance
compute systems using a single thread and a seed size of [= 19, with default parameters for all tools
except for the following: For scoring, we set A— =1 and A, = Ajp = Ajg = Apo = Apg = —1. For
SCA and MLC, we use a chain density of p = 0.01 and chaining parameters b = 400 and by = 4. In MLC,
we set the label-change score scaling factor to Ao = A— and the node length change scaling factor to
Ay = Apg. We implemented our methods within the GPLv3-licensed MetaGraph framework [7] hosted
at https://github.com/ratschlab/metagraph. The data and scripts for reproducing our results are
available from the biorxiv branch at https://github.com/ratschlab/mla/tree/biorxiv.

5 Results and Discussion

5.1 Assembly graphs are much wider than pangenomes

Our simulated assembly graphs have a median (mean) graph size of 48,660 (122,826) k-mers (Supp. Fig. .
After merging these assembly graphs, the annotated DBG contains 187,662,586 k-mers. We observe that
unlike the pangenome graphs explored in previous chaining works with widths ranging from 1 to 60 [31}-
33], our assembly graphs are much wider (i.e., their minimal walk covers are large), with a median
(mean) width of 221 (542.8). These observations corroborate our choice to refrain from encoding a full
node-to-walk distance matrix for SCA.

https://github.com/ratschlab/metagraph
https://github.com/ratschlab/mla/tree/biorxiv
https://doi.org/10.1101/2022.11.04.514718
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.04.514718; this version posted March 28, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

5.2 Multi-label alignments are substantially longer, computed at competitive execution
times

For all read types, we observe that full MLA (SCA+MLC) produces the longest alignments (Fig. [4]),
with median read coverage increases of 47.4% for HiFi reads, 46.7% for CLR reads, and 45.5% for ONT
reads, respectively, relative to the next-best state-of-the-art aligner. All methods have median coverages
of 100% for Illumina reads, with the smallest inter-quartile range observed for MLA. Our baselines
SCA+FixedMLC100 and SCA+MLC(no NLC) achieve similar or slightly improved performance relative
to SCA, but far below MLA. PLAST has the highest third quartile coverage for PacBio reads among
all tools and higher median coverage on HiFi reads than the most comparable tool SCA. However, its
execution time is ~280-1200x slower than SCA (Fig. @

- Illumina Blo HiFi PacBio CLR

o 5 100%
% E
T o
g%
CE

%

< e p o
C)(IPJ’ (,Pf\\l\ \g\;\\ ‘:(‘P\X? CN‘II\ \g\x\\\ N SCPA:;\‘ . \‘“\\\ C)(IPJ’ ({P/N\ \g\s\\

Fig. 4. Coverage of each read’s best alignment. Coverage is the percentage of query characters covered by
an alignment. SCA+FixedMLC100 sets Arc = —100 for label changes. SCA+MLC(no NLC) uses our Arc, but
not does allow node length changes.

5.3 MLA maintains the best classification accuracy at most read mapping recall levels

Sweeping through different relative score cut-offs, we observe that full MLA has the greatest recall on
error-prone reads for all cut-offs and the greatest recall for HiFi reads at cut-offs below 0.5 (Fig. . All
tools perform similarly on Illumina reads. When comparing taxonomic profiles, MLA has the greatest
UniFrac accuracy for long reads at recall values above 20% for HiFi and ONT reads and above 50%
for CLR reads (Fig. @ All tools perform similarly on Illumina reads. For a score cut-off of 0.0, all
methods have notable decreases in UniFrac accuracy. The areas under the mean UniFrac Accuracy-
Recall curves (AUARCS) for Illumina reads are 0.90 for all methods. For all long-read types, MLA has
the highest AUARCs, ranging from 0.85-0.88, compared to SCA (0.80-0.83), SCA+FixedMLC100 (0.82—
0.84), SCA+MLC(no NLC) (0.82-0.85), and PLAST (0.55-0.68). We infer from these results that MLA
improves accuracy by chaining together alignments to related samples.

lllumina PacBio HiFi PacBio CLR
=100%

Method M“"'\

GraphAligner
PLAST
—e— SCA
SCA-+FixedMLC100
—+— MLA: SCA+MLC(no NLC)
MLA (full): SCA+MLC

o
2

@
2

9
2

Reads Alignable (Recall)

2

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Min. Relative Score to Report Alignment Min. Relative Score to Report Alignment Min. Relative Score to Report Alignment Min. Relative Score to Report Alignment

Fig. 5. Read mapping recall for different relative score cut-offs. For each relative score (i.e., score scaled
by query length) cut-off, the recall is the fraction of reads with an alignment scoring at least at that cut-off.

lllumina PacBio HiFi PacBio CLR ONT

o [l] &%8\]' Method
8o 2(1(7 st g e A e

. ‘ Eae——=S - %= L i
§ 0.807 SCA+FixedMLC100 : Y \\M ——]
< 0.736 - —— SCAtMLC(no NLC) .4
g 0018 MLA (full): SCA+MLC
£ 0.530
5 0353

0.000 , , , h
0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100%
Reads Alignable (Recall) Reads Alignable (Recall) Reads Alignable (Recall) Reads Alignable (Recall)

Fig. 6. Mean UniFrac accuracy of all mapped reads at different read mapping recall levels. UniFrac
accuracy measures the similarity between a read’s taxonomic profile (induced from the labels of all reported
alignments) and its ground-truth profile, similar to precision. We estimate means from 1000 bootstrap samples,
with shading representing the 95% CI of the mean. Based on our interpretation of WGSUniFrac error values
(detailed in Supp. , each y-axis grid line corresponds to the midpoint value of a taxonomic rank (accession,
strain, species, genus, etc.). The y-axis is scaled to better emphasise the upper range of UniFrac accuracy values,
corresponding to accuracy at lower taxonomic ranks. We exclude GraphAligner since it does not consider labels.

10

https://doi.org/10.1101/2022.11.04.514718
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.04.514718; this version posted March 28, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

5.4 Overall performance

Overall, MLAs are substantially longer than alignments produced by other tools (Fig. [7]). We achieve
these results while maintaining competitive execution times and the lowest RAM usage. For Illumina
reads, SCA and MLC are substantially faster than all other tools. GraphAligner is the fastest tool for
long reads, with SCA and MLA having comparable execution times.

O~ GraphAligner 0~ PLAST —e— SCA 0~ SCA+FixedMLC100 —0— SCA+MLC(no NLC) 0— MLA (full): SCA+MLC
lllumina PacBio HiFi PacBio CLR ONT
Mean Coverage of Mean Coverage of Mean Coverage of Mean Coverage of
Best Alignment Best Alignment Best Alignment Best Alignment

1.00 1.00 1.00 1.00
reads/s 075 reads/s 075 reads/s 075

%5 1.00
Mean
UniFrac
Accuracy

1.00
Mean
UniFrac
Accuracy

1.00 0.25 55 1.00
Mean 01250 ° Mean
UniFrac 0.50 .99 UniFrac
Accuracy 075 Accuracy

1.98
o

o 600 oo
Reads 297 Reads 297 Reads 297 Reads 297
Alignable o Alignable Alignable 3 Alignable d
(Recall) 396 (Recall) .9 (Recall) 596 (Recall) 396
RAM Usage (GB) RAM Usage (GB) RAM Usage (GB) RAM Usage (GB)

Fig. 7. Comparison of performance measures for each alignment tool. See Supp. Tab. for the numbers
plotted here.

6 Conclusions

In this work, we presented the multi-label alignment (MLA) strategy, a novel alignment scoring model
that compensates for disconnects in low-depth assembly graphs by combining sequence information from
multiple related samples and improving graph connectivity during alignment. We implement MLA on
annotated De Bruijn graphs (DBGs) with a two-step process: SCA computes label-consistent alignments
and MLC computes multi-label alignments from alignments produced by SCA.

Since SCA does not encode a traversal distance matrix from each node to each walk encoded by the
graph annotation, providing such a matrix can potentially increase label-consistent alignment lengths
and consequently provide a stronger basis for MLC. Despite the large widths of assembly graphs, we
expect this matrix to be sparse and, hence, easily compressible.

Another possible extension is merging SCA and MLC into a single holistic seed-chain-extend proce-
dure. We maintained these two steps in this work to provide a small number of anchors to each chaining
run. One can explore how well our current approach approximates this unified approach and how to
approximate an ends-free extension incorporating label and node length changes. In this context, there
are a few possibilities for implementing the node length change operation into chain scoring. These in-
clude using the current procedure of finding intermediate suffix-sharing nodes and a more sensitive, but
daunting approach of representing walk covers for all desirable node length values | < k.

Although our algorithms are implemented within the MetaGraph framework, the concepts from
our methods can readily be applied in other pangenome graph frameworks and potentially see more
widespread use. These methods make unassembled read sets a more powerful resource for bioinformatics
research.

Acknowledgements

We thank Ragnar Groot Koerkamp, Maximilian Mordig, Mohammed Alser, Mario Stanke, Inanc Birol,
and anonymous reviewers for their helpful discussions and feedback. H.M. and M.K. were partially funded
as part of Swiss National Research Programme (NRP) 75 “Big Data” by the SNSF grant #407540.167331.
A K. is partially funded by The LOOP Zurich and the Monique Dornonville de la Cour Foundation
to G.R. HM., M.K., and A.K. were also partially funded by ETH core funding (to G.R.). H.M. is
also partially funded by the Personalized Health and Related Technologies (PHRT) Transition Postdoc
Fellowship Project #2021/453. We declare no conflicts of interest.

11

https://doi.org/10.1101/2022.11.04.514718
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.04.514718; this version posted March 28, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

References

1. K. Katz, O. Shutov, R. Lapoint, M. Kimelman, J. Brister, and C. O’Sullivan, “The Sequence Read Archive:
a decade more of explosive growth,” Nucleic Acids Research, vol. 50, no. D1, pp. D387-D390, 11 2021.

2. C. Marchet, C. Boucher, S. J. Puglisi, P. Medvedev, M. Salson, and R. Chikhi, “Data structures based on
k-mers for querying large collections of sequencing data sets,” Genome Research, vol. 31, no. 1, pp. 1-12,
2021.

3. J. Sirén, J. Monlong, X. Chang, A. M. Novak, J. M. Eizenga, C. Markello, J. A. Sibbesen, G. Hickey, P.-C.
Chang, A. Carroll, N. Gupta, S. Gabriel, T. W. Blackwell, A. Ratan, K. D. Taylor, S. S. Rich, J. I. Rotter,
D. Haussler, E. Garrison, and B. Paten, “Pangenomics enables genotyping of known structural variants in
5202 diverse genomes,” Science, vol. 374, no. 6574, p. abg8871, 2021.

4. G. Hickey, D. Heller, J. Monlong, J. A. Sibbesen, J. Sirén, J. Eizenga, E. T. Dawson, E. Garrison, A. M.
Novak, and B. Paten, “Genotyping structural variants in pangenome graphs using the vg toolkit,” Genome
Biology, vol. 21, no. 1, p. 35, 02 2020.

5. T. Krannich, W. T. J. White, S. Niehus, G. Holley, B. V. Halldérsson, and B. Kehr, “Population-scale
detection of non-reference sequence variants using colored de Bruijn graphs,” Bioinformatics, vol. 38, no. 3,
pp. 604-611, 11 2021.

6. R. M. Colquhoun, M. B. Hall, L. Lima, L. W. Roberts, K. M. Malone, M. Hunt, B. Letcher, J. Hawkey,
S. George, L. Pankhurst, and Z. Igbal, “Pandora: nucleotide-resolution bacterial pan-genomics with reference
graphs,” Genome Biology, vol. 22, no. 1, p. 267, 09 2021.

7. M. Karasikov, H. Mustafa, D. Danciu, M. Zimmermann, C. Barber, G. Rétsch, and A. Kahles, “Metagraph:
Indexing and analysing nucleotide archives at petabase-scale,” bioRxiv, 2020.

8. A. Morgulis, E. M. Gertz, A. A. Schéffer, and R. Agarwala, “A fast and symmetric dust implementation to
mask low-complexity dna sequences,” Journal of Computational Biology, vol. 13, no. 5, pp. 1028-1040, 2006.

9. P. W. Harrison, A. Ahamed, R. Aslam, B. T. F. Alako, J. Burgin, N. Buso, M. Courtot, J. Fan, D. Gupta,
M. Haseeb, S. Holt, T. Ibrahim, E. Ivanov, S. Jayathilaka, V. Balavenkataraman Kadhirvelu, M. Kumar,
R. Lopez, S. Kay, R. Leinonen, X. Liu, C. O’Cathail, A. Pakseresht, Y. Park, S. Pesant, N. Rahman, J. Rajan,
A. Sokolov, S. Vijayaraja, Z. Waheed, A. Zyoud, T. Burdett, and G. Cochrane, “The European Nucleotide
Archive in 2020,” Nucleic Acids Research, vol. 49, no. D1, pp. D82-D85, 11 2020.

10. A. Bankevich, A. V. Bzikadze, M. Kolmogorov, D. Antipov, and P. A. Pevzner, “Multiplex de bruijn graphs
enable genome assembly from long, high-fidelity reads,” Nature Biotechnology, vol. 40, no. 7, pp. 1075-1081,
07 2022.

11. A. Rahman and P. Medvedev, “Assembler artifacts include misassembly because of unsafe unitigs and un-
derassembly because of bidirected graphs,” Genome Research, vol. 32, no. 9, pp. 1746-1753, 2022.

12. J. Sirén, “Indexing variation graphs,” in Proceedings of the Meeting on Algorithm Engineering and Experi-
ments, 2017, pp. 13-27.

13. A. Rhie, S. A. McCarthy, O. Fedrigo, J. Damas, G. Formenti, S. Koren, M. Uliano-Silva, W. Chow, A. Fung-
tammasan, J. Kim, C. Lee, B. J. Ko, M. Chaisson, G. L. Gedman, L. J. Cantin, F. Thibaud-Nissen, L. Hag-
gerty, 1. Bista, M. Smith, B. Haase, J. Mountcastle, S. Winkler, S. Paez, J. Howard, S. C. Vernes, T. M. Lama,
F. Grutzner, W. C. Warren, C. N. Balakrishnan, D. Burt, J. M. George, M. T. Biegler, D. Iorns, A. Digby,
D. Eason, B. Robertson, T. Edwards, M. Wilkinson, G. Turner, A. Meyer, A. F. Kautt, P. Franchini, H. W.
Detrich, H. Svardal, M. Wagner, G. J. P. Naylor, M. Pippel, M. Malinsky, M. Mooney, M. Simbirsky, B. T.
Hannigan, T. Pesout, M. Houck, A. Misuraca, S. B. Kingan, R. Hall, Z. Kronenberg, I. Sovi¢, C. Dunn,
Z. Ning, A. Hastie, J. Lee, S. Selvaraj, R. E. Green, N. H. Putnam, I. Gut, J. Ghurye, E. Garrison, Y. Sims,
J. Collins, S. Pelan, J. Torrance, A. Tracey, J. Wood, R. E. Dagnew, D. Guan, S. E. London, D. F. Clayton,
C. V. Mello, S. R. Friedrich, P. V. Lovell, E. Osipova, F. O. Al-Ajli, S. Secomandi, H. Kim, C. Theofanopoulou,
M. Hiller, Y. Zhou, R. S. Harris, K. D. Makova, P. Medvedev, J. Hoffman, P. Masterson, K. Clark, F. Martin,
K. Howe, P. Flicek, B. P. Walenz, W. Kwak, H. Clawson, M. Diekhans, L. Nassar, B. Paten, R. H. S. Kraus,
A. J. Crawford, M. T. P. Gilbert, G. Zhang, B. Venkatesh, R. W. Murphy, K.-P. Koepfli, B. Shapiro, W. E.
Johnson, F. Di Palma, T. Marques-Bonet, E. C. Teeling, T. Warnow, J. M. Graves, O. A. Ryder, D. Haussler,
S. J. O’Brien, J. Korlach, H. A. Lewin, K. Howe, E. W. Myers, R. Durbin, A. M. Phillippy, and E. D. Jarvis,
“Towards complete and error-free genome assemblies of all vertebrate species,” Nature, vol. 592, no. 7856,
pp. 737-746, 04 2021.

14. B. Solomon and C. Kingsford, “Improved search of large transcriptomic sequencing databases using split
sequence bloom trees,” Journal of Computational Biology, vol. 25, no. 7, pp. 755-765, 2018.

15. M. Karasikov, H. Mustafa, G. Réatsch, and A. Kahles, “Lossless indexing with counting de bruijn graphs,”
Genome Research, vol. 32, no. 9, pp. 1754-1764, 2022.

16. P. Pandey, F. Almodaresi, M. A. Bender, M. Ferdman, R. Johnson, and R. Patro, “Mantis: A fast, small,
and exact large-scale sequence-search index,” Cell Systems, vol. 7, no. 2, pp. 201-207.e4, 08 2018.

17. Z. Igbal, M. Caccamo, I. Turner, P. Flicek, and G. McVean, “De novo assembly and genotyping of variants
using colored de bruijn graphs,” Nature Genetics, vol. 44, no. 2, pp. 226—232, 02 2012.

12

https://doi.org/10.1101/2022.11.04.514718
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.04.514718; this version posted March 28, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

18. G. Holley and P. Melsted, “Bifrost: highly parallel construction and indexing of colored and compacted de
bruijn graphs,” Genome Biology, vol. 21, no. 1, p. 249, 09 2020.

19. C. Marchet, Z. Igbal, D. Gautheret, M. Salson, and R. Chikhi, “REINDEER: efficient indexing of k-mer
presence and abundance in sequencing datasets,” Bioinformatics, vol. 36, no. Supplement_1, pp. i177-1185,
07 2020.

20. F. Almodaresi, H. Sarkar, A. Srivastava, and R. Patro, “A space and time-efficient index for the compacted
colored de Bruijn graph,” Bioinformatics, vol. 34, no. 13, pp. 1169-177, 06 2018.

21. E. Garrison, J. Sirén, A. M. Novak, G. Hickey, J. M. Eizenga, E. T. Dawson, W. Jones, S. Garg, C. Markello,
M. F. Lin, B. Paten, and R. Durbin, “Variation graph toolkit improves read mapping by representing genetic
variation in the reference,” Nature Biotechnology, vol. 36, no. 9, pp. 875-879, 10 2018.

22. L. Turner, K. V. Garimella, Z. Igbal, and G. McVean, “Integrating long-range connectivity information into
de Bruijn graphs,” Bioinformatics, vol. 34, no. 15, pp. 2556-2565, 03 2018.

23. J. Fan, J. Khan, N. P. Singh, G. E. Pibiri, and R. Patro, “Fulgor: a fast and compact k-mer index for
large-scale matching and color queries,” Algorithms for Molecular Biology, vol. 19, no. 1, p. 3, 01 2024.

24. T. Schulz, R. Wittler, S. Rahmann, F. Hach, and J. Stoye, “Detecting high-scoring local alignments in
pangenome graphs,” Bioinformatics, vol. 37, no. 16, pp. 2266-2274, 02 2021.

25. P. Ivanov, B. Bichsel, H. Mustafa, A. Kahles, G. Rétsch, and M. Vechev, “Astarix: Fast and optimal sequence-
to-graph alignment,” in Research in Computational Molecular Biology, 2020, pp. 104-119.

26. P. Ivanov, B. Bichsel, and M. Vechev, “Fast and optimal sequence-to-graph alignment guided by seeds,” in
Research in Computational Molecular Biology, 2022, pp. 306-325.

27. C. Lee, C. Grasso, and M. F. Sharlow, “Multiple sequence alignment using partial order graphs,” Bioinfor-
matics, vol. 18, no. 3, pp. 452-464, 03 2002.

28. M. Rautiainen and T. Marschall, “Graphaligner: rapid and versatile sequence-to-graph alignment,” Genome
Biology, vol. 21, no. 1, p. 253, 09 2020.

29. T. Dvorkina, D. Antipov, A. Korobeynikov, and S. Nurk, “Spaligner: alignment of long diverged molecular
sequences to assembly graphs,” BMC' Bioinformatics, vol. 21, no. 12, p. 306, 07 2020.

30. H. Li, X. Feng, and C. Chu, “The design and construction of reference pangenome graphs with minigraph,”
Genome Biology, vol. 21, no. 1, p. 265, 10 2020.

31. J. Ma, M. Céceres, L. Salmela, V. Makinen, and A. I. Tomescu, “Chaining for accurate alignment of erroneous
long reads to acyclic variation graphs,” Bioinformatics, vol. 39, no. 8, p. btad460, 07 2023.

32. G. Chandra and C. Jain, “Gap-sensitive colinear chaining algorithms for acyclic pangenome graphs,” Journal
of Computational Biology, vol. 30, no. 11, pp. 1182-1197, 2023.

33. J. Rajput, G. Chandra, and C. Jain, “Co-Linear Chaining on Pangenome Graphs,” in 23rd International
Workshop on Algorithms in Bioinformatics, ser. Leibniz International Proceedings in Informatics, vol. 273,
2023, pp. 12:1-12:18.

34. A. Joudaki, A. Meterez, H. Mustafa, R. Groot Koerkamp, A. Kahles, and G. Réatsch, “Aligning distant
sequences to graphs using long seed sketches,” Genome Research, 2023.

35. D. Danko, D. Bezdan, E. E. Afshin, S. Ahsanuddin, C. Bhattacharya, D. J. Butler, K. R. Chng, D. Donnellan,
J. Hecht, K. Jackson, K. Kuchin, M. Karasikov, A. Lyons, L. Mak, D. Meleshko, H. Mustafa, B. Mutai, R. Y.
Neches, A. Ng, O. Nikolayeva, T. Nikolayeva, E. Png, K. A. Ryon, J. L. Sanchez, H. Shaaban, M. A. Sierra,
D. Thomas, B. Young, O. O. Abudayyeh, J. Alicea, M. Bhattacharyya, R. Blekhman, E. Castro-Nallar,
A. M. Canas, A. D. Chatziefthimiou, R. W. Crawford, F. De Filippis, Y. Deng, C. Desnues, E. Dias-Neto,
M. Dybwad, E. Elhaik, D. Ercolini, A. Frolova, D. Gankin, J. S. Gootenberg, A. B. Graf, D. C. Green,
1. Hajirasouliha, J. J. Hastings, M. Hernandez, G. Iraola, S. Jang, A. Kahles, F. J. Kelly, K. Knights, N. C.
Kyrpides, P. P. Labaj, P. K. Lee, M. H. Leung, P. O. Ljungdahl, G. Mason-Buck, K. McGrath, C. Meydan,
E. F. Mongodin, M. O. Moraes, N. Nagarajan, M. Nieto-Caballero, H. Noushmehr, M. Oliveira, S. Ossowski,
O. O. Osuolale, O. Ozcan, D. Paez-Espino, N. Rascovan, H. Richard, G. Réatsch, L. M. Schriml, T. Semmler,
O. U. Sezerman, L. Shi, T. Shi, R. Siam, L. H. Song, H. Suzuki, D. S. Court, S. W. Tighe, X. Tong, K. I.
Udekwu, J. A. Ugalde, B. Valentine, D. 1. Vassilev, E. M. Vayndorf, T. P. Velavan, J. Wu, M. M. Zambrano,
J. Zhu, S. Zhu, C. E. Mason, N. Abdullah, M. Abraao, A. hamlat Adel, M. Afaq, F. S. Al-Quaddoomi, I. Alam,
G. E. Albuquerque, A. Alexiev, K. Ali, L. E. Alvarado-Arnez, S. Aly, J. Amachee, M. G. Amorim, M. Ampadu,
M. A.-F. Amran, N. An, W. Andrew, H. Andrianjakarivony, M. Angelov, V. Antelo, C. Aquino, Alvaro
Aranguren, L. F. Araujo, H. F. Vasquez Arevalo, J. Arevalo, C. Arnan, L. E. Alvarado Arnez, F. Arredondo,
M. Arthur, F. Asenjo, T. S. Aung, J. Auvinet, N. Aventin, S. Ayaz, S. Baburyan, A.-M. Bakere, K. Bakhl,
T. F. Bartelli, E. Batdelger, F. Baudon, K. Becher, C. Bello, M. Benchouaia, H. Benisty, A.-S. Benoiston,
J. Benson, D. Benitez, J. Bernardes, D. Bertrand, S. Beurmann, T. Bitard-Feildel, L. Bittner, C. Black,
G. Blanc, B. Blyther, T. Bode, J. Boeri, B. Boldgiv, K. Bolzli, A. Bordigoni, C. Borrelli, S. Bouchard, J.-P.
Bouly, A. Boyd, G. P. Branco, A. Breschi, B. Brindefalk, C. Brion, A. Briones, P. Buczansla, C. M. Burke,
A. Burrell, A. Butova, I. Buttar, J. Bynoe, S. Bonigk, K. O. Bgifot, H. Caballero, X. W. Cai, D. Calderon,
A. Cantillo, M. Carbajo, A. Carbone, A. Cardenas, K. Carrillo, L. Casalot, S. Castro, A. V. Castro, A. Castro,
A. V. B. Castro, S. Cawthorne, J. Cedillo, S. Chaker, J. Chalangal, A. Chan, A.I. Chasapi, S. Chatziefthimiou,

13

https://doi.org/10.1101/2022.11.04.514718
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.04.514718; this version posted March 28, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

S. R. Chaudhuri, A. K. Chavan, F. Chavez, G. Chem, X. Chen, M. Chen, J.-W. Chen, A. Chernomoretz,
A. Chettouh, D. Cheung, D. Chicas, S. Chiu, H. Choudhry, C. Chrispin, K. Ciaramella, E. Cifuentes, J. Cohen,
D. A. Coil, S. Collin, C. Conger, R. Conte, F. Corsi, C. N. Cossio, A. F. Costa, D. Cuebas, B. D’Alessandro,
K. E. Dahlhausen, A. E. Darling, P. Das, L. B. Davenport, L. David, N. R. Davidson, G. Dayama, S. Delmas,
C. K. Deng, C. Dequeker, A. Desert, M. Devi, F. S. Dezem, C. N. Dias, T. R. Donahoe, S. Dorado, L. Dorsey,
V. Dotsenko, S. Du, A. Dutan, N. Eady, J. A. Eisen, M. Elaskandrany, L. Epping, J. P. Escalera-Antezana,
C. L. Ettinger, I. Faiz, L. Fan, N. Farhat, E. Faure, F. Fauzi, C. Feigin, S. Felice, L. P. Ferreira, G. Figueroa,
A. Fleiss, D. Flores, J. L. Velasco Flores, M. A. Fonseca, J. Foox, J. C. Forero, A. Francis, K. French,
P. Fresia, J. Friedman, J. J. Fuentes, J. Galipon, M. Garcia, L. Garcia, C. Garcia, A. Geiger, S. M. Gerner,
S. L. Ghose, D. P. Giang, M. Giménez, D. Giovannelli, D. Githae, S. Gkotzis, L. Godoy, S. Goldman,
G. H. Gonnet, J. Gonzalez, A. Gonzalez, C. Gonzalez-Poblete, A. Gray, T. Gregory, C. Greselle, S. Guasco,
J. Guerra, N. Gurianova, W. Haehr, S. Halary, F. Hartkopf, J. J. Hastings, A. Hawkins-Zafarnia, N. H.
Hazrin-Chong, E. Helfrich, E. Hell, T. Henry, S. Hernandez, P. L. Hernandez, D. Hess-Homeier, L. E. Hittle,
N. X. Hoan, A. Holik, C. Homma, I. Hoxie, M. Huber, E. Humphries, S. Hyland, A. Héssig, R. Hausler,
N. Hiisser, R. A. Petit, B. Iderzorig, M. Igarashi, S. B. Igbal, S. Ishikawa, S. Ishizuka, S. Islam, R. Islam,
K. Tto, S. Ito, T. Ito, T. Ivankovic, T. Iwashiro, S. Jackson, J. Jacobs, M. James, M. Jaubert, M.-L. Jerier,
E. Jiminez, A. Jinfessa, Y. De Jong, H. W. Joo, G. Jospin, T. Kajita, A. S. Ahmad Kassim, N. Kato,
A. Kaur, I. Kaur, F. de Souza Gomes Kehdy, V. S. Khadka, S. Khan, M. Khavari, M. Ki, G. Kim, H. J.
Kim, S. Kim, R. J. King, K. Knights, G. KoLoMonaco, E. Koag, N. Kobko-Litskevitch, M. Korshevniuk,
M. Kozhar, J. Krebs, N. Kubota, A. Kuklin, S. S. Kumar, R. Kwong, L. Kwong, 1. Lafontaine, J. Lago, T. Y.
Lai, E. Laine, M. Laiola, O. Lakhneko, I. Lamba, G. de Lamotte, R. Lannes, E. De Lazzari, M. Leahy, H. Lee,
Y. Lee, L. Lee, V. Lemaire, E. Leong, M. H. Leung, D. Lewandowska, C. Li, W. Liang, M. Lin, P. Lisboa,
A. Litskevitch, E. M. Liu, T. Liu, M. A. Livia, Y. H. Lo, S. Losim, M. Loubens, J. Lu, O. Lykhenko,
S. Lysakova, S. Mahmoud, S. A. Majid, N. Makogon, D. Maldonado, K. Mallari, T. M. Malta, M. Mamun,
D. Manoir, G. Marchandon, N. Marciniak, S. Marinovic, B. Marques, N. Mathews, Y. Matsuzaki, V. Matthys,
M. May, E. McComb, A. Meagher, A. Melamed, W. Menary, K. N. Mendez, A. Mendez, I. M. Mendy, I. Meng,
A. Menon, M. Menor, R. Meoded, N. Merino, C. Meydan, K. Miah, M. Mignotte, T. Miketic, W. Miranda,
A. Mitsios, R. Miura, K. Miyake, M. D. Moccia, N. Mohan, M. Mohsin, K. Moitra, M. Moldes, L. Molina,
J. Molinet, O.-E. Molomjamts, E. Moniruzzaman, S. Moon, 1. de Oliveira Moraes, M. Moreno, M. S. Mosella,
J. W. Moser, C. Mozsary, A. L. Muehlbauer, O. Muner, M. Munia, N. Munim, M. Muscat, T. Mustac,
C. Muioz, F. Nadalin, A. Naeem, D. Nagy-Szakal, M. Nakagawa, A. Narce, M. Nasu, I. G. Navarrete,
H. Naveed, B. Nazario, N. R. Nedunuri, T. Neff, A. Nesimi, W. C. Ng, S. Ng, G. Nguyen, E. Ngwa, A. Nicolas,
P. Nicolas, A. Nika, H. Noorzi, A. Nosrati, H. Noushmehr, D. N. Nunes, K. O’Brien, N. B. O’'Hara, G. Oken,
R. A. Olawoyin, J. Q. Oliete, K. Olmeda, T. Oluwadare, I. A. Oluwadare, N. Ordioni, J. Orpilla, J. Orrego,
M. Ortega, P. Osma, I. O. Osuolale, O. M. Osuolale, M. Ota, F. Oteri, Y. Oto, R. Ounit, C. A. Ouzounis,
S. Pakrashi, R. Paras, C. Pardo-Este, Y.-J. Park, P. Pastuszek, S. Patel, J. Pathmanathan, A. Patrignani,
M. Perez, A. Peros, S. Persaud, A. Peters, A. Phillips, L. Pineda, M. P. Pizzi, A. Plaku, A. Plaku, B. Pompa-
Hogan, M. G. Portilla, L. Posada, M. Priestman, B. Prithiviraj, S. Priya, P. Pugdeethosal, C. E. Pugh,
B. Pulatov, A. Pupiec, K. Pyrshev, T. Qing, S. Rahiel, S. Rahmatulloev, K. Rajendran, A. Ramcharan,
A. Ramirez-Rojas, S. Rana, P. Ratnanandan, T. D. Read, H. Rehrauer, R. Richer, A. Rivera, M. Rivera,
A. Robertiello, C. Robinson, P. Rodriguez, N. A. Rojas, P. Rolddn, A. Rosario, S. Roth, M. Ruiz, S. E. Boja
Ruiz, K. Russell, M. Rybak, T. S. Sabedot, M. Sabina, I. Saito, Y. Saito, G. A. Malca Salas, C. Salazar,
K. M. San, J. Sanchez, K. Sanchir, R. Sankar, P. T. de Souza Santos, Z. Saravi, K. Sasaki, Y. Sato, M. Sato,
S. Sato, R. Sato, K. Sato, N. Sayara, S. Schaaf, O. Schacher, A.-L. M. Schinke, R. Schlapbach, C. Schori,
J. R. Schriml, F. Segato, F. Sepulveda, M. S. Serpa, P. F. De Sessions, J. C. Severyn, H. Shaaban, M. Shakil,
S. Shalaby, A. Shari, H. Shim, H. Shirahata, Y. Shiwa, R. Siam, O. Da Silva, J. M. Silva, G. Simon, S. K.
Singh, K. Sluzek, R. Smith, E. So, N. Andreu Somavilla, Y. Sonohara, N. Rufino de Sousa, C. Souza, J. Sperry,
N. Sprinsky, S. G. Stark, A. La Storia, K. Suganuma, H. Suliman, J. Sullivan, A. A. M. Supie, C. Suzuki,
S. Takagi, F. Takahara, N. Takahashi, K. Takahashi, T. Takeda, I. K. Takenaka, S. Tanaka, A. Tang, Y. Man
Tang, E. Tarcitano, A. Tassinari, M. Taye, A. Terrero, E. Thambiraja, A. Thiébaut, S. Thomas, A. M.
Thomas, Y. Togashi, T. Togashi, A. Tomaselli, M. Tomita, I. Tomita, X. Tong, O. Toth, N. C. Toussaint,
J. M. Tran, C. Truong, S. I. Tsonev, K. Tsuda, T. Tsurumaki, M. Tuz, Y. Tymoshenko, C. Urgiles, M. Usui,
S. Vacant, B. Valentine, L. E. Vann, F. Velter, V. Ventorino, P. Vera-Wolf, R. Vicedomini, M. A. Suarez-
Villamil, S. Vincent, R. Vivancos-Koopman, A. Wan, C. Wang, T. Warashina, A. Watanabe, S. Weekes,
J. Werner, D. Westfall, L. H. Wieler, M. Williams, S. A. Wolf, B. Wong, Y. L. Wong, T. Wong, R. Wright,
T. Wunderlin, R. Yamanaka, J. Yang, H. Yano, G. C. Yeh, O. Yemets, T. Yeskova, S. Yoshikawa, L. Zafar,
Y. Zhang, S. Zhang, A. Zhang, Y. Zheng, and S. Zubenko, “A global metagenomic map of urban microbiomes
and antimicrobial resistance,” Cell, vol. 184, no. 13, pp. 3376-3393.e17, 2021.

36. M. Heydari, G. Miclotte, Y. Van de Peer, and J. Fostier, “Browniealigner: accurate alignment of illumina
sequencing data to de bruijn graphs,” BMC Bioinformatics, vol. 19, no. 1, p. 311, 09 2018.

14

https://doi.org/10.1101/2022.11.04.514718
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.04.514718; this version posted March 28, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

37

38.

39.

40.

41.
42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

made available under aCC-BY-NC 4.0 International license.

A. Limasset, B. Cazaux, E. Rivals, and P. Peterlongo, “Read mapping on de bruijn graphs,” BMC Bioinfor-
matics, vol. 17, no. 1, p. 237, 06 2016.

N. Luhmann, G. Holley, and M. Achtman, “Blastfrost: fast querying of 100,000s of bacterial genomes in
bifrost graphs,” Genome Biology, vol. 22, no. 1, p. 30, 01 2021.

Y. Rosen, J. Eizenga, and B. Paten, “Modelling haplotypes with respect to reference cohort variation graphs,”
Bioinformatics, vol. 33, no. 14, pp. i118-i123, 07 2017.

J. Avila, P. Bonizzoni, S. Ciccolella, G. D. Vedova, L. Denti, D. Monti, Y. Pirola, and F. Porto, “Recgraph:
adding recombinations to sequence-to-graph alignments,” bioRziv, 2022.

G. Chandra and C. Jain, “Haplotype-aware sequence-to-graph alignment,” bioRziv, 2023.

C. Jain, D. Gibney, and S. V. Thankachan, “Algorithms for colinear chaining with overlaps and gap costs,”
Journal of Computational Biology, vol. 29, no. 11, pp. 1237-1251, 2022.

D. Gibney, S. V. Thankachan, and S. Aluru, “On the hardness of sequence alignment on de bruijn graphs,”
Journal of Computational Biology, vol. 29, no. 12, pp. 1377-1396, 2022.

R. Chikhi and G. Rizk, “Space-efficient and exact de bruijn graph representation based on a bloom filter,”
Algorithms for Molecular Biology, vol. 8, no. 1, p. 22, 09 2013.

J. Shaw and Y. W. Yu, “Proving sequence aligners can guarantee accuracy in almost o(m log n) time through
an average-case analysis of the seed-chain-extend heuristic,” Genome Research, vol. 33, no. 7, pp. 1175-1187,
2023.

V. Makinen, A. I. Tomescu, A. Kuosmanen, T. Paavilainen, T. Gagie, and R. Chikhi, “Sparse dynamic
programming on dags with small width,” ACM Trans. Algorithms, vol. 15, no. 2, 02 2019.

X. Chang, J. Eizenga, A. M. Novak, J. Sirén, and B. Paten, “Distance indexing and seed clustering in sequence
graphs,” Bioinformatics, vol. 36, no. Supplement_1, pp. i146-i153, 07 2020.

M. C. Frith, “How sequence alignment scores correspond to probability models,” Bioinformatics, vol. 36,
no. 2, pp. 408-415, 07 2019.

S. Heule, M. Nunkesser, and A. Hall, “Hyperloglog in practice: Algorithmic engineering of a state of the art
cardinality estimation algorithm,” in Proceedings of the 16th International Conference on Extending Database
Technology, 2013, p. 683-692.

C. Boucher, A. Bowe, T. Gagie, S. J. Puglisi, and K. Sadakane, “Variable-order de bruijn graphs,” in 2015
Data Compression Conference, 2015, pp. 383-392.

H. Li, “Minimap2: pairwise alignment for nucleotide sequences,” Bioinformatics, vol. 34, no. 18, pp. 3094—
3100, 05 2018.

J. M. Eizenga and B. Paten, “Improving the time and space complexity of the wfa algorithm and generalizing
its scoring,” bioRziv, 2022.

E. W. Sayers, E. E. Bolton, J. Brister, K. Canese, J. Chan, D. Comeau, C. Farrell, M. Feldgarden, A. M. Fine,
K. Funk, E. Hatcher, S. Kannan, C. Kelly, S. Kim, W. Klimke, M. Landrum, S. Lathrop, Z. Lu, T. Madden,
A. Malheiro, A. Marchler-Bauer, T. Murphy, L. Phan, S. Pujar, S. Rangwala, V. Schneider, T. Tse, J. Wang,
J. Ye, B. Trawick, K. Pruitt, and S. Sherry, “Database resources of the National Center for Biotechnology
Information in 2023,” Nucleic Acids Research, vol. 51, no. D1, pp. D29-D38, 11 2022.

W. Huang, L. Li, J. R. Myers, and G. T. Marth, “ART: a next-generation sequencing read simulator,”
Bioinformatics, vol. 28, no. 4, pp. 593-594, 12 2011.

Y. Ono, M. Hamada, and K. Asai, “PBSIM3: a simulator for all types of PacBio and ONT long reads,” NAR
Genomics and Bioinformatics, vol. 4, no. 4, p. lqac092, 12 2022.

W. Wei and D. Koslicki, “WGSUniFrac: Applying UniFrac Metric to Whole Genome Shotgun Data,” in
22nd International Workshop on Algorithms in Bioinformatics, ser. Leibniz International Proceedings in
Informatics, vol. 242, 2022, pp. 15:1-15:22.

15

https://doi.org/10.1101/2022.11.04.514718
http://creativecommons.org/licenses/by-nc/4.0/

	Label-guided seed-chain-extend alignment on annotated De Bruijn graphs

