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ABSTRACT

The conserved WhiA protein family is present in most Gram-positive bacteria and plays a role in
cell division. WhiA contains a DNA-binding motive and has been identified as a transcription
factor in actinomycetes. In Bacillus subtilis, the absence of WhiA influences cell division and
chromosome segregation, however, it is still unclear how WhiA influences these processes, but
the protein does not seem to function as transcription factor in this organism. To further
investigate the function of WhiA in B. subtilis, we performed a yeast two-hybrid screen to find
interaction partners, and a Hi-C experiment to reveal possible changes in chromosome
conformation. The latter experiment indicated a reduction in short range chromosome
interactions, but how this would affect either cell division or chromosome segregation is unclear.
Based on adjacent genes, a role in carbon metabolism was put forward. To study this, we
measured exometabolome fluxes during growth on different carbon sources. This revealed that
in AwhiA cells the pool of branched-chain fatty acid precursors is lower. However, the effect on
the membrane fatty acid composition was minimal. Transcriptome data could not link the

metabolome effects to gene regulatory differences.

IMPORTANCE

WhiA is a conserved DNA binding protein that influences cell division and chromosome
segregation in the Gram-positive model bacterium B. subtilis. The molecular function of WhiA is
still unclear, but a previous study has suggested that the protein does not function as a
transcription factor. In this study, we used yeast two-hybrid screening, chromosome

conformation capture analysis, metabolomics, transcriptomics and fatty acid analysis to obtain
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45  more information about the workings of this enigmatic protein.
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INTRODUCTION

WHhiA is a conserved DNA binding protein that can be found in most Gram-positive bacteria,
including the simple cell wall-lacking Mycoplasmas. The crystal structure of Thermotoga
maritima WhiA shows a bipartite conformation in which a degenerate N-terminal LAGLIDADG
homing endonuclease domain is tethered to a C-terminal helix-turn-helix DNA binding domain.
However, none of the characterized WhiA proteins have shown any nuclease activity (1). In the
actinomycetes Streptomyces, S. venezuelae and Corynebacterium glutamicum WhiA functions as
a transcriptional activator of many genes, among which the key cell division gene ftsZ (2-4).
Mutations in whiA prevent the induction of FtsZ in streptomycetes, thereby blocking synthesis of
sporulation septa (5, 6). In Bacillus subtilis, inactivation of WhiA reduces the growth rate in rich
medium and affects the expression of a variety of genes, but not that of ftsZ or other cell division
related genes (7). Moreover, no relationship was found between WhiA binding sites on the
genome and regulated genes, suggesting that WhiA does not function as a classic transcription
factor in this organism (7). Nevertheless, WhiA is important for cell division in B. subtilis, and the
absence of WhiA is synthetic lethal when cell division proteins are inactivated that regulate the
formation of the Z-ring, such as the regulatory MinCD proteins, and the FtsZ polymer crosslinker
ZapA (7). Later it was found that WhiA is also important for proper chromosome segregation in
this organism, and whiA mutants display increased nucleoid spacing (8). Despite the conserved
nature of this protein and its role in key cellular processes, it is unclear how this protein operates
in B. subtilis. In the current study, we performed a wide variety of analysis, including a Yeast two-

hybrid analysis, chromosome conformation capture (Hi-C), metabolomics and transcriptomics, to
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68 gain a better understanding of the function of WhiA. Eventually, this led us to investigate the
69  fatty acid composition of the cell membrane in whiA mutants.

70
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RESULTS

Yeast two-hybrid screening

To find possible interaction partners of WhiA that could help to elucidate its function, we
performed a genome wide yeast two-hybrid screen (9). To increase the chances of detecting
relevant interactions, we used full length WhiA, and separately its N- and C-terminal domains,
containing the degenerative LAGLIDADG homing endonuclease domain (amino acids 1-227) and
the helix-turn-helix domain (amino acids 222-316), respectively. The latter domain is responsible
for interaction with the chromosome, which was confirmed by a microscopic analysis of GFP
fusions (Fig. S1). After screening a genomic library with an approximately 15-fold redundancy of
the B. subtilis genome, we found 3 potential interaction partners, YIxS, Yrh) and YlaD, which
interacted both with full length WhiA and the N-terminal domain (Fig. S2A). Full-length WhiA
showed some auto-activation in the screen. When we used the synthetic complete media lacking
leucine, uracyl and adenine (-LUA), which makes the selection more stringent (9), the interaction
between YIxS and full length WhiA was still observed (Fig. S2A). YIxS is 32 % identical to
Escherichia coli RimP involved in ribosome assembly (10). YrhJ is a fatty acid monooxygenase,
catalyzing hydroxylation of a range of fatty acids (11), and YlaD functions as an anti-sigma factor
(12, 13). To test whether these proteins are involved in the activity of WhiA, we deleted the
corresponding genes and tested for reduced growth rate in rich medium, chromosome
segregation defects, and cell division phenotype in a AzapA background strain. Unfortunately,
none of the deletion mutants showed a phenotype that resembled that of a AwhiA mutant (Fig.

S2B). It is therefore unlikely that either YIxS, YrhJ or YlaD is involved in the activity of WhiA.
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93
94  Chromosome conformation
95 A conserved feature of AwhiA mutants is the increased internucleoid distance (8). Since WhiA is
96 a conserved DNA binding protein it might play a role in the organization of the chromosome. To
97 examine this, we performed a Hi-C (chromosome conformation capture) analysis of AwhiA cells.
98 Both wild type and AwhiA cells produced similar contact maps and the absence of WhiA does not
99 affect the alignment of chromosome arms by the SMC condensing complex (Fig. 1A) (14).
100 However, a clear difference was observed for short range genome interaction between the two
101  strains (Fig. 1B). Short range interactions (< 50 kb) were reduced upon whiA deletion, thereby
102 indicating potential involvement of WhiA in mediating non-specific local interaction on a genome
103  wide scale. However, it is unclear how this would lead to increased spacing between daughter
104  chromosomes or influence cell division.
105
106  Growth on different carbon sources
107  whiA is the 4" gene in an operon of 6 genes that is constitutively expressed during growth (Fig.
108  S3) (7). The first gene, yvcl, encodes a Nudix hydrolase that hydrolyses organic pyrophosphates
109 and is considered a housecleaning enzyme (15, 16). The second gene, yvc), encodes a GTPase
110 required for the proper expression of DNA uptake proteins during natural competence (17, 18).
111  The third gene, yvcK, encodes an UDP-sugar binding protein that is essential for growth under
112  gluconeogenic conditions (19). crH, the fifth gene downstream of whiA, is a HPr-like protein that
113  participates in catabolite repression as secondary cofactor of the global catabolite regulator CcpA

114 (20, 21). The final gene, yvcN, is an uncharacterized acetyltransferase (Subtiwiki database (16)).
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115 In many bacteria whiA is located adjacent to yvcK and crh (STRING database (22)). Possibly, this
116  conserved organization points towards a metabolic function of WhiA. Inactivation of yvcK blocks
117  growth on citrate and result in very poor growth on either fumarate or malate as sole carbon
118  sources (23). To examine whether the absence of WhiA also affects growth using these carbon
119  sources, we grew a whiA mutant in Spizizen minimal salt medium using either malate, fumarate
120  or citrate as carbon source. To prevent any downstream effects, a marker-less whiA mutant was
121  used, containing a stop codon at the beginning of the gene (strain KS696 (7)). As shown in Fig.
122 2A, the whiA mutant was able to grow in the different media with a growth rate similar to that
123 of the wild-type strain, indicating that WhiA and YvcK work in different pathways. As shown in
124  Fig. 2A and previously reported, the whiA mutant grows slower in rich LB medium (7). The reason
125  that this effect was not observed in minimal medium (Fig. 2A), could be related to the lower
126  doubling time in minimal medium compared to LB (~53 min versus ~21 min), which can mitigate
127  chromosome segregation and cell division defects (24, 25). Therefore, we tested whether the
128 chromosome segregation and cell division defects were present in minimal medium.
129 Interestingly, the inter-nucleoid spacing was still larger in a whiA mutant (Fig. S4A), and depletion
130  of WhiA in a AzapA background increased the cell length and occasionally generated aberrant
131  nucleoids in minimal medium (Fig. S4B).

132

133  Utilization of carbon sources

134  To examine whether WhiA is involved in catabolite regulation, like crh, we first measured the
135 carbon consumption by means of exometabolomics, using proton nuclear magnetic resonance

136  spectroscopy (*H-NMR) (26). This required a minimal chemically defined medium for which often
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137 M9 medium is used. However, M9 medium has been optimized for E. coli and not for B. subtilis,
138  and the latter easily lyses in this medium in the stationary phase (26). Therefore, we composed
139  an alternative chemically defined medium based on different minimal media used for B. subtilis,
140 aslisted in Table S1. In essence, the resulting medium, named Amber medium, uses a phosphate
141  buffer, ammonium salt and glutamate as nitrogen sources, and 22 mM for any carbon source.
142  We tested growth on glucose alone, glucose and citrate, glucose and fumarate, and glucose and
143  malate. Fig. 2B shows that both wild type and the marker-less whiA mutant grows fine in this
144  medium using these conditions. Malate was incorporated in this analysis since it is the second
145  preferred carbon source of B. subtilis, and its utilization is not subjected to carbon catabolite
146  repression in this organism (27).

147 To determine the exometabolome, 2 ml of culture was collected at regular time intervals
148  and rapidly filtered, and the filtrate stored at -20 °C for later *H-NMR spectroscopic analysis.
149 Identification of metabolites was based on NMR spectra alignment of pure standard compounds
150 and the quantification was done based on the integration and comparison of the designated
151  peaks to an internal standard peak (see methods section for details). The final data were based
152  on 3 independent biological replicates, and the quality of the replicates was confirmed using a
153  principal component analysis (Fig. S5). As shown in Fig. 3, the consumption of the different
154  carbon sources was the same for wild-type and whiA mutant cells in all 4 growth conditions.
155  Citrate and fumarate utilization was initiated when most glucose was exhausted, confirming that
156  fumarate and citrate were subjected to glucose-dependent catabolite repression in both strains.
157  Malate was consumed faster than glucose as has been shown before (Meyer et al., 2014). These

158  data show that WhiA is not involved in catabolite repression.
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159

160 Exometabolome analysis

161  Aside of the supplied carbon sources (glucose, citrate, fumarate and malate), we were able to
162  detect 18 other metabolites in the medium. Interestingly, several of these metabolites showed a
163  different secretion kinetic in the whiA mutant. To facilitate the interpretation of the
164 exometabolome data, the time-resolved extracellular metabolite concentrations were plotted
165 onto the relevant pathways (Fig. 4 and 5). The differences became apparent after approximately
166 180 min, when glucose levels started to go down. The depleted pools of the branched-chain fatty
167  acid precursors isovalerate, isobutyrate and 2-methylbutyrate (Fig. S7A), and the higher secretion
168  of acetate and 2-oxoglutarate in the whiA mutant, are most obvious. We were not able to identify
169 isoleucine, leucine and oxaloacetate due to the detection limits of the method (26). Citrate and
170 isocitrate were only measurable when the medium contained the TCA intermediate citrate or
171  fumarate (Fig. 4 lower panel, and Fig. 5 upper panel). The reason for this is that expression of
172  citrate synthase and aconitase is induced when citrate is present in the medium or fumarate
173  becomes the sole carbon source after glucose levels have fallen (26, 28).

174

175  Transcriptome analysis

176  To examine whether the changes in metabolism were related to changes in gene expression, we
177 compared the transcriptomes of wild type and whiA mutant cells grown in Amber medium
178  supplemented with glucose and malate as carbon sources. When the cultures reached an ODsgo
179 of 0.5 (Fig. 2B, 120-180 min), cells were harvested for RNA isolation. The experiment was

180 repeated one more time to provide a biological replicate. The volcano plot in Fig. 6 depicts the

10


https://doi.org/10.1101/2022.11.02.514974
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.02.514974; this version posted November 4, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

181  distribution of expression differences against adjusted p-values. 57 genes were upregulated and
182 40 downregulated more than 3-fold with an adjusted p-value < 0.05 (Table 1, data for all genes
183  arelisted in Table S7). The most highly upregulated genes, ydcF, ydcG and pamR form an operon.
184  PamR is a transcription factor that affects expression of prophages and certain metabolic genes
185  (29). The bmrB operon, coding for a multidrug ABC transporter (30), is also strongly upregulated
186 inthe whiA mutant. This transporter is involved in the activation of KinA, one of the key regulators
187  of sporulation. It should be mentioned that a whiA mutant displays only a very mild defect in
188  sporulation (7). The upregulated tapA operon is required for synthesis of the major extracellular
189  matrix (31). Other upregulated genes were the epeX (yydF) operon encoding proteins controlling
190 the activity of the LiaRS cell envelope stress-response system (32), the fatR operon involved in
191 lipid degradation (33), and the, sunA and nupN operons necessary for biosynthesis of a
192  siderophore, antimicrobial peptide and the uptake of guanosine, respectively (34-36).

193 Strongly downregulated genes comprised the wapA operon, expressing one of the main
194  cell surface proteins in B. subtilis (37), the fadN operon involved in fatty acid degradation (38),
195 and the frIB operon coding for an amino sugar uptake system (39). Several genes involved in
196 amino acid biosynthesis were also downregulated, including the mtnA operon involved in
197 methionine salvage (40), the tdh operon involved in threonine utilization (41, 42), and proHJ
198 necessary for production of proline (43), respectively. Finally, expression of the major citrate
199 synthase encoded by citZ was also significantly downregulated (44).

200 The downregulation of citrate synthase did not show in the exometabolomics data, and
201 infact the secretion of 2-oxoglutarate, downstream of citrate in the TCA cycle, was higher in the

202  whiA mutant (Fig. 5). In the medium containing citrate or fumarate as additional carbon sources,

11
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203  there was also no difference in either citrate or isocitrate secretion and consumption between
204  wild type and the mutant (Fig. 4 and 5). When we lowered the stringency and included genes
205 that were more than 2-fold regulated (Table S7), only the 2.8-fold upregulation of rocG, which
206 encodes glutamate dehydrogenase responsible for the conversion of glutamate to 2-
207  oxoglutarate (45), could be linked to the metabolomics data, since 2-oxoglutarate levels
208 increased faster in the whiA mutant in all four growth conditions (Fig. 4 and 5). However, another
209 reason for the increased 2-oxoglutarate levels might be the reduction in branched-chain fatty
210 acid precursors that rely on 2-oxoglutarate for the aminotransferase reaction (46). The
211  transcriptome data did not reveal any obvious reason for the reduced synthesis of branched
212  chain fatty acid precursors. Table S2 lists the fold-change expression of the main genes involved
213  in branched-chain amino acids metabolism and fatty acid synthesis (see Fig. S7 for pathway
214  schemes). The branched-chain amino acid transporters bcaP and braB were upregulated
215  significantly by 1.9 and 1.4-fold, respectively (p-value<0.05), and so were ybgE and ilvD involved
216  in branched-chain fatty acid precursors synthesis (1.9- and 1.5-fold, respectively). Possibly, this is
217  aresponse to low substrate levels. However, yvbW, encoding a putative leucine permease, was
218 downregulated 1,7-fold. The leuA operon involved in leucine biosynthesis was downregulated
219  significantly but only by approximately 1.4-fold, and there was no significant difference in
220  expression of either valine or isoleucine biosynthesis genes (Table S2). Overall, the transcriptome
221  data did not provide a clear explanation for the exometabolome differences.

222

223  Fatty acid analysis

224  B. subtilis contains primarily branched-chain fatty acids. Synthesis of anteiso-fatty acids requires

12
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225  isoleucine, and the iso-C15 and -C17 and iso-C14 and -C16 fatty acids require leucine and valine,
226  respectively (de Mendoza et al., 2002). Therefore, the reduced cellular concentration of these
227  amino acids might lead to a change in the fatty acid composition of a whiA mutant. To investigate
228  this, we analyzed the fatty acid composition of wild-type (strain 168) and AwhiA cells (strain
229  KS696) using gas chromatography (Table S3). For this, cells were harvested when the cultures
230 reached an ODsgo of approximately 0.5. The majority of fatty acids, 93.9 % in the wild type strain,
231  are branched-chain fatty acids, and this fraction hardly changes in the AwhiA mutant (93.1 %).
232 The distribution of straight, iso and anteiso chains over the different fatty acids is shown in Fig.
233  7A. The fraction of iso-fatty acids in the whiA mutant is slightly down from 53.8 % to 45.8 %,
234 whereas the fraction of anteiso fatty acids slightly increases from 40.1 % to 47.3 % (Fig. 7B). The
235  reduction in leucine and valine derived fatty acids is in line with the metabolome data, but the
236  increased contribution of isoleucine derived fatty acids is not.

237 Anteiso-fatty acids disturb the lipid packing more than iso-fatty acids and will therefore
238 increase membrane fluidity, which is an important way B. subtilis regulates its membrane fluidity
239  (47). This might explain why the AwhiA mutant contains 2.5 % less short fatty acid species (C13,
240 C14, C15) and 3.6 % more long fatty acid species (C16, C17, C18) (Fig. 7A), in order to maintain
241  membrane fluidity homeostasis. Indeed, a membrane fluidity assay, using the membrane fluidity
242  sensitive dye Laurdan (48, 49), did not detect strong differences in membrane fluidities between

243  both strains when grown in either minimal medium or LB (not shown).

13
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244  DISCUSSION

245

246  Despite the conserved nature of WhiA and its documented role as transcriptional activator in the
247  actinomycetes, it is unclear how this protein functions in B. subtilis, and other Gram-positive
248  bacteria. Hi-C data indicated that the absence of WhiA reduces short range (< 50 kb) chromosome
249 interactions. The areas where this occurred did not correlate to WhiA binding sites that were
250 previously determined using Chip-on-chip analysis (7). We could also not detect a clear
251  correlation between transcription difference and the absence of these short range chromosome
252  interactions (data not shown). However, the current resolution of the Hi-C analysis is insufficient
253  to make such correlations. Whether the reduction in short range chromosome interactions
254  affects chromosome segregation is unclear since there is no clear mechanism that would link
255  these two phenomena.

256 Both cell division and chromosome replication are linked to the metabolic state of cells.
257  In B. subtilis the glycosyltransferase UgtP couples nutritional availability to cell division (50). The

258  protein is involved in lipoteichoic acid synthesis using UDP-glucose as substrate. Under nutrient-
259  rich conditions, intracellular levels of UDP-glucose are high and UgtP inhibits FtsZ assembly in a
260 UDP-glucose dependent manner. Another example is the glycolytic enzyme pyruvate
261 dehydrogenase kinase that, by an yet unknown mechanism, positively regulates Z-ring assembly
262  (51). Moreover, temperature sensitive mutants in the B. subtilis DnaC helicase, DnaG primase
263 and DnaE polymerase can be suppressed by mutations in different glycolytic enzymes, among
264  which pyruvate kinase (52). Since inactivation of WhiA affects both cell division and DNA

265  segregation and since whiA is located in an operon adjacent to yvcK and crh, which are involved

266 in gluconeogenic growth and catabolite repression, respectively (19, 20), it was tempting to

14
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267  assume that WhiA affects cell division and chromosome replication by playing a role in carbon
268 metabolism. However, our study showed that WhiA is neither required for gluconeogenic growth
269  nor plays a role in carbon catabolite repression. Nevertheless, the metabolomics data did reveal
270  that in a whiA mutant the pool of branched-chain fatty acid precursors is reduced. It was not
271  possible to link this effect to changes in the transcriptome although this might be due to the fact
272  that we measured gene regulation at the end of exponential growth, whereas the differences in
273  the exometabolome was most apparent in the beginning of the stationary phase. Of note, several
274  of the most strongly up- and downregulated genes were also found in a previous transcriptome
275  study where a whiA deletion mutant was grown in rich LB medium, including the upregulated
276  ydcF, bmrB, tasA, and dhbE operons, and the downregulated mtnK and wapA operons (Fig. S8)
277 (7). However, none of these genes have so far been linked to either cell division or chromosome
278  segregation.

279 Why the absence of WhiA affects branched-chain fatty acid precursor levels is unclear. It
280 s possible that these changes have an effect on metabolic regulators that use these cofactors,
281  such as CodY, which activity is affected by branched-chain amino acids (53). However, only a
282  small fraction (11 %) of the CodY regulon was significantly affected in the AwhiA mutant. It is also
283  unclear how a reduction in branched-chain fatty acid precursors would influence cell division and
284  DNA segregation in a AwhiA mutant. Changes in the fatty acid composition of the membrane
285  could in theory influence the activity of membrane proteins, however the observed differences
286  were limited, and in fact the addition of the branched-chain fatty acid precursors isovalerate,
287  isobutyrate and 2-methyl butyrate to LB medium did not restore the growth defect of a AwhiA

288  mutant (not shown). In conclusion, the molecular function of WhiA in B. subtilis, and therefore in
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289  many other Gram-positive bacteria and the mycoplasmas, remains an enigma.
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290 MATERIALS AND METHODS

291

292  Bacterial strains and growth conditions

293  Luria-Bertani (LB) medium was used for routine selection and maintenance of B. subtilis and E.
294  coli strains. Spizizen’s minimal medium SMM (54) consisted of 2 g/l (NH4).S04, 14 g/I K;HPOa, 6
295 g/l KH2PO4, 1 g/l sodium citrate, 2 g/l MgS0a4, 5 g/l glucose, 2 g/l tryptophan, 0.2 g/l casamino
296  acids and 2.2 g/l ammonium ferric citrate. The defined minimal (Amber) medium consisted of 70
297 mM Kz2HPOs and 30 mM KH;PO4 (adjusted to pH 7.4), 15 mM sodium chloride, 10 mM (NH4)2SO0a,
298  0.002 mM of trace elements (ZnCl;, MnSQg, CuCly, CoCl; and NazMo0Oa4), 22 mM glucose, 0.25 mM
299  tryptophan, 10 mM glutamate, 1 mM MgS0Oa, 0.1 mM calcium chloride and 0.01 mM ammonium
300 ferric citrate (Table S1). When indicated, the medium was supplemented with 22 mM final
301 concentration of malate, fumarate or citrate. All strains were grown at 37 °C at 250 rpm. B. subtilis
302 strains used in this study are listed in Table S4. The mutant strains provided by other labs were
303 transformed into our laboratory strain to ensure isogenic backgrounds. If indicated, the medium
304  was supplemented with a mixture of 3 branched-chain fatty acid precursors (100 um of 2-methyl-
305 butyrate, isobutyrate and isovalerate, Sigma-Aldrich) or straight fatty acid precursors (100 um of
306 methyl-butyrate, methyl-propionate and methyl-valerate, Sigma-Aldrich).

307 WhiA depletion strain (LB45) (8) was always grown in presence of erythromycin, due to
308 the Campbell type integration of the Pspac-whiA construct into the whiA locus. Depletion of WhiA
309 was accomplished by inoculating a single colony into LB medium with 0.1 mM IPTG and growth
310 at 37 °C to an ODego of ~1. Subsequently, cells were harvested, washed in pre-warmed LB

311  medium, and resuspended to an ODggo of 0.01 and grown in the absence of IPTG. For spot dilution
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312  assays a single colony (strain LB45) was used to inoculate LB or Amber medium with 0.1 mM IPTG
313 and grown at 37 °C to an ODsgo of 0.5. Subsequently, cells were serial diluted in pre-warmed LB
314  or Amber medium and 10 ul spots were inoculated and grown at 37 °C overnight.

315

316  Strain constructions

317 Molecular cloning, PCRs and transformations were carried out using standard techniques.
318 Plasmids and oligonucleotides used in this study are listed in Table S5 and S6, respectively. The
319  xylose inducible msfGFP-WhiA N-terminus, C-terminus and full-length fusions were constructed
320 as follows. A PCR fragment containing whiA N-terminus domain, C-terminus domain and full-
321 length were amplified with oligonucleotide pairs LB11-LB12, LB13-LB14 and LB11-LB14,
322  respectively. Genomic DNA of strain 168 was used as template. BamHI and EcoRl restriction sites,
323  aflexible linker and terminator were inserted into the primers. Each PCR product and the amyE-
324  integration vector pHJS105 (55) were digested with BamHI and EcoRI restriction enzymes and
325 ligated. The resulting plasmids were named pLB19, pLB20 and pLB18, respectively, verified by
326 sequencing and transformed into B. subtilis 168 and competent cells, resulting in strains LB230,
327 LB231 and LB232, respectively. Each strain was transformed with genomic DNA from whiA
328 knockout KS400 (7), resulting in strains LB295, LB296 and LB294, respectively. The cellular
329 localization of the GFP fusion proteins was determined using fluorescence microscopy.

330

331  Yeast-two hybrid assays

332  Proteins of interest were expressed in Saccharomyces cerevisiae strain PJ69-4a as fusions to the

333  GAL4 binding domain BD or activating domain AD, from the vectors pGBDU-C1 and pGAD-C1,
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334  respectively. The whiA N-terminal and C-terminal domains were cloned into a pGBDU bait vector
335 by gap repair and directly transformed into S. cerevisiae strain PJ69-4a. The DNA sequences of all
336 cloned fragments were verified by sequencing. These baits were used to screen a B. subtilis prey
337 library essentially as previously described (9). In brief, three B. subtilis genomic libraries were
338 constructed in E. coli, restrictions of the 4.2 Megabase B. subtilis chromosome produced
339 approximately 1.6 x 10° DNA ends that could be ligated into the pGAD prey vectors. Each library
340 contained at least 2.5 x 10° clones, thus providing a 15-fold redundancy. The PJ69-4a yeast strain
341 was transformed by each library DNA and at least 1.5 x 107 prey-containing colonies were
342  harvested and pooled. The library-containing cells were mated with bait-containing cells. The
343  mixture was plated on rich YEPD medium and incubated for 5 h at 30 °C. Cells were collected,
344  washed and spread on synthetic complete medium plates lacking the amino acids leucine and
345 histidine and the nucleotide uracil (SC-LUH). To calculate the mating efficiencies and the number
346  of diploids, cells were also spread on SC-L and SC-LU plates. A screening is covered if the number
347  of diploids is greater than 1 x 10° and the mating efficiency greater than 20 %. After 10-12 days
348  of incubation at 30 °C, the colonies obtained were transferred to the SC-LUA (synthetic complete
349  medium lacking leucine, uracil and adenine) and SC-LUH medium and incubated for 3-5 days. The
350 interaction candidates were identified by PCR amplification and sequencing of the DNA inserts in
351 the prey plasmids. To screen for false-positive interactions, protein-encoding prey plasmids were
352 rescued from His* Ade* colonies, reintroduced in PJ69-4alfa strain by transformation and
353  subjected to a mating with cells containing: /) an empty bait vector, ii) the initial bait used in the
354  screen and iii) a variety of unrelated baits. The diploid cells were tested for expression of the

355 interaction phenotypes (His* and Ade*). Specific interactions were reproducible with the initial
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356 bait and not associated with self-activation or stickiness of the prey protein. The interactions not
357 fulfilling these criteria corresponded to false positives and were discarded.

358

359 Chromosome capture by Hi-C

360 Cultures were grown in LB media with shaking and samples for Hi-C were collected at exponential
361 growth phase (ODeoo 0.6). Hi-C was carried out exactly as described before with digestion using
362  Hindlll (56). Hi-C matrices were constructed using the Galaxy HiCExplorer webserver (57). Briefly,
363 paired-end reads were mapped separately to the B. subtilis ggnome (NCBI Reference Sequence
364 NC_000964.3) using very sensitive local setting mode in Bowtie2 (Galaxy v.2.3.4.2). The mapped
365 files were used to build the contact matrix using the tool hicBuildMatrix (Galaxy v.2.1.2.0) using
366  a bin size of 10 kb, and Hindlll restriction site (AAGCTT) and AGCT as the dangling sequence. The
367 contact matrix was then used for further analysis and visualization using the interactive browser-
368  based visualization tool ‘Bekvaem’ essentially as described before (56).

369

370  Microscopy

371  Exponentially growing cells were stained with the fluorescent membrane dye FM-95 and the DNA
372  wasstained with DAPI. Cells were grown overnight on LB agar plates. A single colony was streaked
373  outon LB agar plates supplemented with 0.1 % xylose for the induction of expression, grown for
374  ~6 h and subsequently mounted on microscope slides covered with a thin film of 1 % agarose.
375  Microscopy was performed on an inverted fluorescence Nikon Eclipse Ti microscope. The digital
376 images were acquired and analysed with ImageJ v.1.48d5 (National Institutes of Health).

377
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378 Metabolome analysis

379 The main culture (20 ml) was inoculated with an exponentially growing overnight culture to an
380 initial ODsoo of 0.05. The optical density was monitored and 2 ml cell suspension was sampled.
381 Three experiments were carried out to provide the necessary biological replicates. During
382  cultivation, the pH value was determined at each sampling time point by using HI 2211 pH/mV/uC
383 bench meter (Hanna instruments Deutschland GmbH, Kehl, Germany). 2 ml of cell culture
384 medium were taken at 60, 120, 180, 240, 300, 360, 420 and 480 min by sterile filtration, using a
385 0.45 mm pore size filter (Sarstedt AG, Nuernberg, Germany), to get sterile extracellular
386 metabolite samples of the bacterial culture, and directly frozen until measurement. 'H-NMR
387 analysis was carried out as described previously (58). In brief, 400 ul of the sample was mixed
388  with 200 pul of a sodium hydrogen phosphate buffer (0.2 M, pH 7.0) to avoid chemical shifts due
389 to pH, which was made up with 50 % D;0. The buffer also contained 1 mM trimethylsilyl
390 propanoic acid-d4 (TSP) which was used for quantification and also as a reference signal at 0.0
391 ppm. To obtain NMR spectra, a 1D-NOESY pulse sequence was used with a presaturation on the
392 residual HDO signal. A total of 64 FID scans were performed with 600.27 MHz and at a
393  temperature of 310 K using a Bruker AVANCE-II 600 NMR spectrometer operated by TOPSPIN 3.1
394  software (both from Bruker Biospin). For qualitative and quantitative data analysis, we used AMIX
395  (Bruker Biospin, version 3.9.14). We used the AMIX Underground Removal Tool on obtained
396 NMR-spectra to correct the baseline, thereby using the following parameters: left border region
397 20 ppm and right border region -20 ppm and a filter width of 10 Hz. Absolute quantification was
398 performed as previously described (58). In brief, a signal of the metabolite, either a complete

399 signal or a proportion, was chosen manually and integrated. The area was further normalized on
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400 the area of the internal standard TSP and on the corresponding number of protons and the
401 sample volume. For statistical comparison of extracellular metabolite data and growth, bar-
402  charts, and XY-plots, we used Prism (version 6.01; GraphPad Software). The time-resolved
403  extracellular metabolite concentrations were log; (x + 1) transformed for the separation via PCA.
404  The PCA was done using PAST v3.16 with auto-scaled data (59).

405

406  Transcriptome analysis

407  Cells (2 ml cultures) were spun down (30 s Eppendorf centrifuge, 14,000 rpm, 4 °C), resuspended
408 in 0.4 mlice-cold growth medium and added to a screw cap Eppendorf tube containing 1.5 g glass
409  beads (0.1 mm), 500 ul phenol:chloroform:isoamyl alcohol (25:24:1), 50 ul 10 % SDS and 50 ul
410 RNAse free water (60). All solutions were prepared with diethylpyrocarbonate (DEPC)-treated
411  water. After vortexing, tubes were frozen in liquid nitrogen and stored at -80 °C. Cells were
412  broken using a bead-beater for 4 min at room temperature. After centrifugation, the water phase
413  was transferred to a clean tube containing 400 pl chloroform, after vortexing and centrifugation,
414  the water phase was used for RNA isolation with High Pure RNA Isolation Kit (Roche Diagnostics
415  GmbH, Mannheim, Germany), yielding >3 ug total RNA per sample. TapeStation System (Agilent)
416  was used for checking the integrity of the RNA, and RIN values of 8.3 — 9.2 were obtained. For
417  next-generation sequencing, a ribosomal RNA depletion was performed on the total RNA using
418 the Ribo-Zero rRNA Removal Kit (Gram-Positive Bacteria) (lllumina). Bar-coded RNA libraries
419  were generated according to the manufacturers’ protocols using the lon Total RNA-Seq Kit v2
420 and the lon Xpress RNA-Seq barcoding kit (Thermo Fisher Scientific). The size distribution and

421  vyield of the barcoded libraries were assessed using the 2200 TapeStation System with Agilent
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422  D1000 ScreenTapes (Agilent Technologies). Sequencing templates were prepared on the lon Chef
423  System using the lon Pl Hi-Q Chef Kit (Thermo Fisher Scientific). Sequencing was performed on
424  an lon Proton System using an lon Pl v3 chip (Thermo Fisher Scientific) according to the
425  instructions of the manufacturer. After quality control and trimming the sequence reads were
426  mapped onto the genome (genome-build-accession NCBI Assembly: GCA_000009045.1) using
427  the Torrent Mapping Alignment Program. The lon Proton system generates sequence reads of
428 variable lengths, and this program combines a short read algorithm (61), and long read
429  algorithms (62) in a multistage mapping approach. The gene expression levels were quantified
430 using HTseq (63). The data was normalized and analysed for differential expression using R
431  statistical software and the DESeq2 package (64). The RNA-seq data have been submitted to and
432  are accessible in the Gene Expression Omnibus (GEO) using accession number GSE121479.

433

434  Lipid analysis

435  The fatty acid composition was determined from cells growing in Amber medium when the
436  cultures reached an ODego of approximately 0.5. Cells were harvest by centrifugation at 10.000x
437  rcffor 5 min at 4 °C, washed once with 0.9 % ice-cold NaCl, and submitted to flash freeze in liquid
438  N.. Fatty acids were analyzed as fatty acid methyl esters (FAME) using gas chromatography. All
439  analyses were carried out in triplicates at thelLaboratory Genetic Metabolic Disease, Amsterdam
440 UMC.

441

442  Laurdan GP spectroscopy

443  For the measurement of membrane fluidity in batch cultures as reported before (49), cells were
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grown in either LB or Spizizen minimal salt medium (SMM) to an OD of approximately 0.5,
followed by 5 min incubation with 10 mM Laurdan. Subsequently, cells were washed three times
with pre-warmed buffer containing 50 mM Na>HPO4/NaH,PO4 pH 7.4, 0.1 % glucose and 150 mM
NaCl with and without the membrane fluidizer benzyl alcohol (30 mM). The Laurdan fluorescence
intensities were measured at 4355 nm and 49045 nm upon excitation at 350+10 nm, using a
Tecan Infinite 200M fluorometer. The Laurdan generalized polarization (GP) was calculated using

the formula GP = (lazs — lago) / (lazs + lago).
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Table 1. Transcriptome comparison of wild-type (strain 168) and whiA marker-less mutant cells
(strain KS696). Cells were grown in defined minimal (Amber) medium with glucose and malate
and harvested for RNA isolation during exponential growth (ODsoo ~0.5). Genes with an adjusted

p-value < 0.05 and Fold Change (FC) > 3 (AwhiA/wt) are listed. Genes found in a previous

transcriptome AwhiA analysis performed in LB rich medium are indicated by * (7) (see also Fig.
S8). Genes located in one operon are listed together in one row.
Gene FC Function
Upregulated
ydcF*-G*- pamR* 24-50  unknown
bmrB-C*-D* 4-14 multidrug ABC transporter
tapA*-sipW*-tasA* 4-6 major component of biofilm matrix
yxbB-A-yxnB-asnH-yxaM 3-5 biosynthesis of asparagine & unknown
yxbC-D 3 unknown (upstream of yxbB operon)
yrzl 51 unknown
epeX-E-P-A-B 2-5 control of LiaRS cell envelope stress system
ybdZ 3.4 unknown
yfmG 3.2 unknown
fatR-yrhJ 3 fatty acid metabolism
dhbA*-C*-E*-B*-F* 3 biosynthesis of the siderophore bacillibactin
besA* 2.4 iron acquisition, ferri-bacillibactin esterase
yobB 35 unknown
sunA-T-bdbA*-sunA-bdbB 3-4 sublancin lantibiotic production & thiol-disulfide oxidoreductase
yitP-O-M 3 biofilm toxin & unknown
nupN-O-P 3 uptake of guanosine
yoaW 3.1 secreted protein with unknown function
ybdN 3.1 unknown
yyzl 3.1 unknown
skfA-B-C-E-F-G-H 2-4 spore killing factor
Downregulated
mtnU*-A*-K* -(3-6)  methionine salvage

WapA*-1*-yxzC*-G*-J*-[*-yxiG*-

H* g K -5.9 cell wall-associated WapA protein toxin & unknown

yonN-J-B-yomW-U-Z -(3-4)  parts of SP-beta prophage genome

fadN-A-E -4 fatty acid degradation

bsdB-C-yclD -(3-4)  resistance to salicylic acid

Tdh-kbl -(3-4)  threonine utilization

frIB-O-N-M -(3-4)  fructose metabolism

yezD -3.4 unknown

proH-J -3 osmoadaptive de novo production of proline
oxdC -3.2 oxalate decarboxylase

licH -3.0 6-phospho-beta-glucosidase, lichenan utilization
citz -3.0 citrate synthase, TCA cycle
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634

635

636  Fig. 1. Chromosome conformation capture (Hi-C) analysis.

637  (A) Normalized Hi-C contact maps of wild type (top) and AwhiA strains (below) at exponential
638 phase. SMC dependent juxtaposition of the chromosome arms is observed in both strains as the
639 secondary (vertical) diagonal (14). (B) Difference plot of wild type and AwhiA strains. The

640 magnified view of difference in short-range contacts (between 10 kb and 100 kb) is shown below.
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642
643  Fig. 2. Growth on different carbon sources.

644  Growth measured as optical density of the wild-type strain (strain 168) and the whiA marker-less

645 mutant (strain KS696). (A) Growth in LB medium, and in Spizizen minimal salt medium (SMM)
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646  supplemented with 22 mM of either citrate, fumarate or malate. (B) Growth in chemically defined
647 minimal Amber medium supplemented with 22 mM of either glucose, glucose and citrate,
648  glucose and fumarate or glucose and malate. Data are shown as mean values and standard
649  deviation of triplicate samples.

650

651

33


https://doi.org/10.1101/2022.11.02.514974
http://creativecommons.org/licenses/by-nc/4.0/

652

653

654

655

656

657

658

659

660

661

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.02.514974; this version posted November 4, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Figure 3

4 :
% Tglucose § wt
1 i —— DwhiA

40 -
glucose citrate ‘
g _ —F——3—3%—4—1
£ 20 . ;
o
0 T T T T 1
40
glucose fumarate
s
é 20 _""\—\l\ _—'_!\x—-\l\
U - - -
0 N N
—T T LA B f
40
glucose malate
S
E® '”_\\\ '\,\
U -1 -
O L L T T
0 120 240 360 480 0 120 240 360 480

minutes minutes

Fig. 3. Carbon utilization.

Carbon source utilization (concentration in mM) of wild-type (strain 168) and whiA marker-less
mutant cells (strain KS696) during growth in defined minimal (Amber) medium supplemented
with either glucose, glucose and malate, glucose and citrate or glucose and fumarate (22 mM
each). Data are shown as mean values and standard deviation of triplicate samples. The dashed
lines mark the time point when the glucose culture enters stationary phase (360 min) (see Fig.

2B).
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Fig. 4. Exometabolome of cells grown with either glucose or glucose and citrate.

Time-resolved extracellular metabolite concentrations (in mM) of wild-type (strain 168) and whiA
marker-less mutant cells (strain KS696) grown in chemically defined minimal Amber medium with
either glucose alone (upper panel) or glucose and citrate (lower panel) as carbon source (22 mM
each). Dashed lines indicate entry into stationary phase (360 min). The compounds are arranged
according to the main metabolic pathways: glycolysis, TCA cycle, overflow metabolites,
branched-chain amino acids and branched-chain fatty acids precursors. Data are shown as mean

values and standard deviation of triplicate samples.
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Fig. 5. Exometabolome in cells grown with either glucose and fumarate or glucose and malate.
Time-resolved extracellular metabolite concentrations (in mM) of wild-type (strain 168) and whiA
marker-less mutant cells (strain KS696) grown in chemically defined minimal Amber medium with
either glucose and fumarate (upper panel) or glucose and malate (lower panel) as carbon sources
(22 mM each). Dashed lines indicate entry into stationary phase (360 min). The compounds are
arranged according to the main metabolic pathways: glycolysis, TCA cycle, overflow metabolites,
branched-chain amino acids and branched-chain fatty acids precursors. Data are shown as mean

values and standard deviation of triplicate samples.
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Fig. 6. Volcano plot of transcriptome data

Volcano plot depicting the transcriptome data as a relation between adjusted p-values and log:

fold expression change. Wild-type (strain 168) and whiA marker-less mutant cells (strain KS696)

were grown in defined minimal (Amber) medium with glucose and malate and sampled during

exponential growth. Main downregulated and upregulated genes in the whiA mutant are shown

in green and red, respectively. Genes are listed in Table S2.
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696  Fig. 7. Fatty acid analysis of AwhiA mutant.
697 (A) Comparison of the total iso- and anteiso-fatty acids and fatty acid chain length between wild
698 type B. subtilis and AwhiA cells. (B) Detailed comparison of the different fatty acids.

699  Concentrations of individual fatty acids are listed in Table S3.
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