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Abstract: The severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2) has infected 7 
over 600 million individuals and caused over 6.5 million deaths. To understand the immune re- 8 
sponse individuals have from the SARS-CoV-2 infection, we studied the immunoglobulins against 9 
the virus’s antigens. The diversified complementarity determining region 3 (CDR3) can be used to 10 
characterize an antibody. We downloaded four public RNA-seq data sets that were collected be- 11 
tween March 2020 and March 2022 from the Gene Expression Omnibus (GEO) in our longitudinal 12 
analysis. In total, there were 269 SARS-CoV-2 positive patients and 26 negative patients who served 13 
as a control group. Samples were grouped based on their SARS-CoV-2 variant type and/or the time 14 
they were collected. Among 629,137 immunoglobulin V(D)J sequences identified by reconstructing 15 
the V(D)J sequences, we found 1011 common V(D)Js (same V gene, J gene and CDR3 sequences in 16 
each SARS-CoV-2 positive group) shared by more than one patient in each group and no common 17 
V(D)Js were from the negative control group. In our clustering analysis, we identified 129 conver- 18 
gent clusters from the SARS-CoV-2 positive groups. One of these convergent clusters matched the 19 
protein sequence of crystal 3D structures of the antibodies against SARS-CoV-2 in the Protein Data 20 
Bank (PDB). In our longitudinal analysis between the Alpha and Omicron variant, we found 2.7% 21 
of common CDR3s were shared although the longitudinal profiling of common V(D)Js was variant 22 
specific. Although diverse immunoglobulin profiles were observed, the convergence of common 23 
V(D)Js suggests that there exists antibodies with similar antigenic specificities across patients in dif- 24 
ferent groups over various stages of the pandemic. 25 
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 27 

1. Introduction 28 
When humans are infected with severe acute respiratory syndrome-related corona- 29 

virus-2 (SARS-CoV-2), the immune system will naturally generate antibodies with bind- 30 
ing specificity to SARS-CoV-2 and these antibodies can be detected in the blood serum of 31 
patients [1, 2]. The convergent antibodies that neutralize SARS-CoV-2 play an important 32 
role in fighting the severity of the coronavirus disease-2019 (COVID-19) [3, 4]. The char- 33 
acterization of antibodies will help elucidate the mechanisms of immune response and 34 
find strategies that lead to a potential treatment of COVID-19. Antibodies with highly di- 35 
versified antigen binding specificity are produced from B-lymphocytes under V(D)J rear- 36 
rangement that will define the antibody responses [5]. The variable structure in the heavy 37 
and light chains contain complementarity-determining regions (CDRs), where mutations 38 
are prone to occur. The CDR3 of the heavy chain covers the D gene and junction regions 39 
of D-J and V-D. The highly mutable CDR3 region could contribute to the diversity of an- 40 
tibodies, which is theoretically estimated at 1015 variants [6, 7]. Therefore, the sequence 41 
similarity analysis of CDR3s could infer the specificity of antibodies against antigens. 42 

Four antibodies responsive to the earlier SARS-CoV-2 variant (WA-1) have been re- 43 
ported to be able to interact with a wide range of variants of concern (VOCs) [8]. The 44 
antibodies against different VOCs are readily found to suggest that antibodies with broad 45 
neutralization may exist [9-13]. On the other hand, convergent antibodies reactive to 46 
SARS-CoV-2 from different infected subjects suggest the diversified immune response 47 
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against the SARS-CoV-2 may share similar clonotypes [3, 14]. It is useful to investigate 48 
naturally generated convergent antibodies from different time periods of the COVID-19 49 
pandemic as infections of different variants constantly are appearing worldwide.    50 

Bulk RNA-seq is a widely used methodology for the differential expression (DE) of 51 
genes [15-17]. Using routine DE analysis of RNA-seq can easily result in the loss of valu- 52 
able information in the dataset. RNA-seq of lymphocytes using high throughput next gen- 53 
eration sequencing provides a resource for mRNA transcript of antibody genes. Although 54 
single cell/bulk cell BCR-seq sequencing is available to retrieve the V(D)J sequences [7, 55 
18], the abundant datasets of bulk RNA-seq are readily available while BCR-seq data are 56 
not generated. The immune repertoire reconstruction tools (for example: TRUST4, MixCR 57 
et al.) can help retrieve V(D)J sequences from Bulk RNA-seq [19, 20]. We have leveraged 58 
the TRUST4 to reconstruct the heavy chain VDJ for a longitudinal analysis of convergent 59 
antibodies.   60 

2. Materials and Methods 61 
RNA-seq datasets: Four public RNA-seq data sets were retrieved from the Gene Ex- 62 

pression Omnibus (GEO) [21]. Collectively, in these four data sets, there were 269 COVID- 63 
19 positive patients and 26 negative patients. These patients were distributed among 5 64 
different groups (Figure 5a). 65 

 66 

 67 
Figure 1. Overview of Sample Population and Experimental Design. (a) RNA-seq data from the 68 
same patient were combined in each group. All data were downloaded from the GEO databases 69 
(Group 1: GSE157103; Group 2: GSE172114; Group 3 and 4: GSE190680; and Group 5: GSE201530). 70 
SARS-CoV-2 variants in Group 1 and 2 were not identified. (b) The workflow of the longitudinal 71 
analysis of reconstructed V(D)Js.   72 

Samples in Group 1 were collected between March 2020 and April 2020. The data set 73 
consisted of 69 blood samples which were extracted from patients who were admitted to 74 
either the infectious disease unit or the designated ICU at a university hospital network 75 
in northeast France. All the patients in this group tested positive for SARS-CoV-2 through 76 
a qRT-PCR test which detected COVID-19 nucleic acids using a nasopharyngeal swab.  77 

Samples in Group 2 were collected between April 2020 and May 2020 from patients 78 
that were admitted to either Albany Medical Center’s medical floor or the medical inten- 79 
sive care unit (MICU). The data set included 126 blood samples from 100 patients who 80 
tested positive for SARS-CoV-2 and 26 patients who tested negative for SARS-CoV-2.  81 

Samples in Group 3 were collected between February 2021 and May 2021 by extract- 82 
ing blood from the buffy coat and was then purified with the Maxwell RSC simply RNA 83 
Blood Kit. In total, the data set included 100 blood samples which were extracted from 48 84 
patients. We assigned 32 of the 48 patients to Group 3 as they had been classified as 85 
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patients who had contracted the Alpha variant. Blood was extracted from patients 86 
through three samplings which took place 10 days, 25 days, and 45 days after the patient 87 
began feeling symptoms compatible to SARS-CoV-2. All 32 patients had their blood sam- 88 
pled 10 days after the patient started experiencing symptoms, 30 samples were collected 89 
25 days after the patient started experiencing symptoms, and 5 samples were collected 45 90 
days after the patient started experiencing symptoms. In our experiment, we combined 91 
each patient’s samplings into one sample.  92 

Samples in Group 4 were from the same downloaded dataset as Group 3 but were 93 
classified as patients who had contracted the E484K escape mutation of the Alpha variant. 94 
There were 13 patients who tested positive for the mutation and samples were collected 95 
through three different samplings. All 13 patients were sampled 10 days after experienc- 96 
ing symptoms, 10 patients were sampled 25 days after experiencing symptoms, and 7 pa- 97 
tients were sampled 45 days after experiencing symptoms. In this group, each patient’s 98 
samplings was combined as well.  99 

Samples in Group 5 were collected between December 2021 and March 2022 from 100 
patients that were infected with the Omicron variant. Patients in this group were admitted 101 
due to either testing positive after attending an outpatient clinic at Krnakenhaus St. Vin- 102 
zenz Zams using the SARS-CoV-2 PCR test or being in contact with a family member who 103 
had tested positive for SARS-CoV-2. 47 of the blood samples were collected zero, one, two, 104 
three, four, and five days after patients had tested positive for SARS-CoV-2 by the qRT- 105 
PCR test. 14 patients were sampled on day 0, 7 patients were sampled on day 1, 14 patients 106 
were sampled on day 2, 7 patients were sampled on day 3, 2 patients were sampled on 107 
day 4, and 3 patients were sampled on day 5. 108 

 109 
Reconstruction of VDJs and Longitudinal Analysis: The workflow is shown in Fig- 110 

ure 1b.  The RNA-seq raw reads from the same patient were merged into one fastq file 111 
and used as input for the bioinformatics tool TRUST4 [19, 22]. TRUST4 reconstructs im- 112 
mune repertoires and annotates the V(D)J assembly of each sample. Then, using the re- 113 
constructed immunoglobulin molecules, the variable regions, including the frameworks 114 
and hypervariable regions, are annotated.  115 

 116 
 The normalized score to evaluate the frequencies of common VDJs were calculated. 117 

Each group consisted of a different number of patients and a different number of VDJs 118 
predicted in each patient; therefore, the normalized score included the weight of the num- 119 
ber of patients in each group. Thus, we could perform longitudinal comparison without 120 
the effects of each group’s population size. To calculate the normalized score of common 121 
VDJs we implemented the following equation: 122 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑	𝑆𝑐𝑜𝑟𝑒	𝑓𝑜𝑟	𝐶𝑜𝑚𝑚𝑜𝑛	𝑉(𝐷)𝐽𝑠 =
𝑛!
𝑁!

∙ 100 ∙
𝑆
𝑠"

 123 

𝑛! = 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑜𝑚𝑚𝑜𝑛	𝑉(𝐷)𝐽𝑠	𝑖𝑛	𝑝𝑎𝑡𝑖𝑒𝑛𝑡	𝑥 124 

𝑁! = 𝑡𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑉(𝐷)𝐽𝑠	𝑖𝑛	𝑝𝑎𝑡𝑖𝑒𝑛𝑡	𝑥 125 

𝑆 = 𝑡𝑜𝑡𝑎𝑙	𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠	𝑖𝑛	𝑎𝑙𝑙	𝑔𝑟𝑜𝑢𝑝𝑠 126 

𝑠" = 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠	𝑖𝑛	𝑔𝑟𝑜𝑢𝑝	𝑖	(𝑖 = 1, 2, 3, 4, 5) 127 
 128 
Nomalize scores for each patient are shown as violin plots in Figure 2b. The heavy 129 

chain VH gene usage was evaluated by the abundancy of each VH gene in the common 130 
VDJs. A heatmap was created to display the frequency of each VH gene in Figure 2c. 131 

 Identification of convergent VDJ clusters and Protein Data Bank search with the 132 
reconstructed VDJ sequences: We performed a pair-wise calculation using the 133 
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Levenshtein Distance [23] between CDR3 amino acid sequences from groups with the 134 
same VH and JH genes and the same amino acid sequence length of CDR3s. We set the 135 
Levenshtein Distance cutoff value to equal 2. The network was then visualized with the 136 
Gephi Software downloaded from (https://gephi.org).  The common VDJ sequences were 137 
then used as queries to search the Protein Data Bank (PDB) to find the homologous VDJs 138 
from an antibody that was clinically proven to be against SARS-CoV-2.  139 

3. Results 140 

3.1. Identification of common V(D)Js from RNA-seq and the logitudinal analysis 141 
There were 269 SARS-CoV-2 positive patients and 26 negative patients who served 142 

as a control group. Samples were grouped based on their SARS-CoV-2 variant type and/or 143 
the time they were collected. We reconstructed the V(D)Js using an immune repertoire 144 
reconstruction tool TRUST4 [19].  A total 629,137 heavy chain VDJs were reconstructed. 145 
The V, J and CDR3 regions were annotated based on the VDJ genes from the international 146 
ImMunoGeneTics information system (IMGT) [24, 25] and the human genome reference 147 
hg38. The immunoglobulins with common VDJs are defined as having the same V and J 148 
genes are used and the exact same CDR3 sequences are matched within each group. We 149 
identified a total of 1011 common VDJs in groups 1-5 as shown in Figure 2a. The common 150 
VDJs can be found in a diversified number of patients in each group (supplementary Table 151 
S1).  The common VDJs were then analyzed in the longitudinal analysis. A common VDJ 152 
(VH4-59, JH4 and CDR3 sequence CARGFDYW) was observed in all five sample groups 153 
(Figure 1a). Five other VDJs were found across four out of the five groups. When compar- 154 
ing Group 3 (infected by Alpha variant) to Group 5 (infected by Omicron variant), we 155 
found 13 common VDJs that existed in both groups making up 2.7% of unique common 156 
VDJs in the two groups.  157 

 158 
 159 

 160 
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Figure 2. A Longitudinal Comparison of Common VDJs across the Five Different Groups. (a) The red bars at bottom left 161 
side show the total number of common VDJs for each group. The black bars at top show the number of IGC-VDJs and 162 
the number of common VDJs in only each group itself. The panel (a) also lists the V, CDR3 and J for the IGC-VDJs that 163 
were found in 4 or 5 groups. (b) Shows a comparison of common VDJs with the normalized scores. **** represents the 164 
p-value < 0.05 threshold using the one-tail t-test with heteroscedastic setting. (c) The heatmap of VH usage of VDJs 165 
between different groups. The frequencies of VH genes in common VDJs were utilized to generate the heatmap. 166 

 In order to compare the common VDJs longitudinally (Inter-Group Common VDJs 167 
as IGC-VDJs), the frequencies of IGC-VDJs in common VDJs of each group were adjusted 168 
by the number of patients in each group (see the calculation of normalized score in meth- 169 
ods). The result shows a significant decrease in the normalized score for the patient group 170 
infected with the Omicron variant (Figure 2b), which may suggest that more patients tend 171 
to contain immunoglobulins with Omicron specific VDJs. The normalized score for the 172 
SARS-CoV-2 negative groups was zero further suggesting that the immunoglobulins with 173 
common VDJs found in other groups correlated with the viral infection.  174 

To characterize the common VDJs further, we generated a heatmap of VH gene us- 175 
ages in all five groups. The VH3 gene family has been dominantly used in all groups. 176 
However, we observed that IGHV3-30 is more favorited in the variants from the early 177 
period of the COVID-19 pandemic such as Group 2 and Group 3 infected by the Alpha 178 
variant. IGHV3-74 and IGHV3-7 were preferred by Omicron-infected Group 5.      179 

3.2. Identification and Verification of Convergent VDJs 180 
 The antigenic specificity of antibodies is mostly determined by their VDJ usage and 181 

diversified CDR3 regions [26]. Immunoglobulins with same V gene and J gene and similar 182 
CDR3 sequences have been suggested to respond to the same antigens [3, 14, 27]. There- 183 
fore, we are combining the CDR3 length and Levenshtein distance of amino acid se- 184 
quences to characterize the CDR3 regions. If VDJs are using same V genes, J genes, same 185 
CDR3 length and Levenshtein distance is 2 or less, the VDJs will be classified as a conver- 186 
gent cluster.  187 

 188 
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Figure 3. The identification of convergent VDJ clusters and comparison of the variable regions between the con- 189 
vergent cluster and the antibodies responsive to SARS-CoV-2. (a) The convergent clusters were colored based on 190 
the number of nodes in each cluster. (b) A Crystal Structure of an Anti-SARS-CoV-2 Human Neutralizing Anti- 191 
body Fab Fragment (7K8N_A). The heavy chain CDR3 region is highlighted in yellow. (c) VDJ amino acid se- 192 
quence comparison among two members of the convergent cluster 5, 7K8N_A and 7D0C_G from an antibody 193 
against SARS-CoV-2 in the Protein Data Bank (PDB). 194 

We identified a total of 129 convergent clusters. Figure 3a visualized all the common 195 
VDJs and convergent clusters. The top 15 clusters with the most nodes are labeled. Clus- 196 
ters 2 and 15 covered all five SARS-CoV-2 positive groups (Table 1). We observed that 197 
Cluster 1, 2, 8, and 15 cover the Omicron-infected group and Alpha-infected groups. Clus- 198 
ter 3-7 and 9-14 were from groups that were not Omicron-infected (Table 1). The complete 199 
convergent VDJ list are available from the supplementary Table S2. The result indicates 200 
the possible variant specific antibodies existing in the groups.  201 

To evaluate the convergent clusters, we leverage the Protein Data Bank (PDB) to 202 
search for a protein structure. The information of antibodies in PDB database may provide 203 
the antigenic specificity. We found that two Fab structures that are known to respond to 204 
SARS-CoV-2 have highly similar or the exact same CDR3 amino acid sequences to mem- 205 
bers of our identified convergent cluster 2 (Figure 3b and 3c) [28, 29]. The Fab fragment 206 
7K8N is from a neutralizing antibody against the ACE2 receptor-binding domain (RBD) 207 
of SARS-CoV-2 [28]. 7D0C is from another neutralizing antibody that shows bivalent 208 
binding and inhibition of SARS-CoV-2 [29]. 209 

Table 1. Representative CDR3 sequences, V genes and J genes for the top 15 Convergent VDJ clusters  210 

Convergent 
Cluster ID VH Gene Representative CDR3 JH Gene Group Unique VDJs 

in Clusters 
1 IGHV3-15 CDYYHYYGMDVW IGHJ6 1,3,5 18 
2 IGHV3-53 CARDYGDYYFDYW IGHJ4 1,2,3,4,5 12 
3 IGHV3-15 CTTGGAVW IGHJ4 1,2,3 15 
4 IGHV3-33 CARVASYYYGMDVW IGHJ6 1,2,3 11 
5 IGHV3-33 CAREGIVGATTGLDYW IGHJ4 1,3,4 10 
6 IGHV4-34 CARGAPGFW IGHJ4 1,2,3,4 8 
7 IGHV3-49 CTRHDFWSGYYFDYW IGHJ4 1,2,3 11 
8 IGHV3-30 CARARGGSYYYGMDVW IGHJ6 1,3,5 12 
9 IGHV3-53 CARDLVVYGMDVW IGHJ6 1,2,3 8 
10 IGHV3-30 CARDGGSWFDPW IGHJ5 1,2,3 9 
11 IGHV3-49 CTRDDFWSGYYDYW IGHJ4 1,2,3 8 
12 IGHV3-23 CAKDPFYDFWSGYYYDYW IGHJ4 1,2,3,4 5 
13 IGHV4-31 CARVRITMIVVVDAFDIW IGHJ3 1,2,3,4 7 
14 IGHV3-23 CAKDRGNDYGDQLDYW IGHJ4 1,2,3 8 
15 IGHV4-59 CARGFDFW IGHJ4 1,2,3,4,5 4 

 211 

4. Discussion 212 

The convergent antibodies identified in this study have potential antigen specificity 213 
against SARS-CoV-2. The absence of common V(D)Js in the negative control group’s 214 
data set suggests the low antibody titer in normal blood serum and the very diversified 215 
VDJs are used for immunoglobulins generated by PBMCs. Our longitudinal study has 216 
shown that there are 2.7% common VDJs that exist in patients upon being infected with 217 
the Alpha or Omicron variants of COVID-19. The convergent analysis has suggested that 218 
the antibodies developed in different patients with similar antigenic specificity may po- 219 
tentially share similar clonotypes. Most of the convergent VDJ clusters are from multiple 220 
groups, which indicates that different SARS-CoV-2 VOCs occurring in different pan- 221 
demic periods may induce similar clonality of B-lymphocytes [30]. This phenomenon 222 
has also been observed in the influenza virus vaccination [31]. The CDR3s of Cluster 7 223 
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and 11 show high similarity with one amino acid difference in the length of the se- 224 
quence, which suggests that multiple clusters share similar antigenic specificity. In addi- 225 
tion to the convergent CDJ clusters, our analysis result regarding the common VDJs 226 
show that most of the antibodies with common VDJs are group specific. The unique an- 227 
tibody profiling in each group suggests diversified immune response profiles were gen- 228 
erated upon infection of SARS-CoV-2.  229 

This project provides an efficient way to characterize the antibodies against SARS- 230 
CoV-2 in COVID-19 positive patients. The 3D structure of immunoglobulin Fab frag- 231 
ments in PDB database confirms that one convergent VDJ cluster in our study and pro- 232 
vides validation for our analysis. Although the methods in the project were used to char- 233 
acterize antibodies against COVID-19, the procedure can easily be implemented to ana- 234 
lyze other antibody-related immune responses against different viral and auto-immune 235 
diseases. This method allows us to identify the variable regions of the light chain as well. 236 
It is challenging to pair the heavy and light chain using bulk RNA-seq. However, a sin- 237 
gle cell RNA-seq can be processed for a just few samples and solve this challenge be- 238 
cause the bulk RNA-seq aids with the process of identifying the individual samples con- 239 
taining the interesting antibodies. The specificity of convergent antibodies can be 240 
screened through the recombinant antibody production system.  241 
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