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Abstract: The severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2) has infected
over 600 million individuals and caused over 6.5 million deaths. To understand the immune re-
sponse individuals have from the SARS-CoV-2 infection, we studied the immunoglobulins against
the virus’s antigens. The diversified complementarity determining region 3 (CDR3) can be used to
characterize an antibody. We downloaded four public RNA-seq data sets that were collected be-
tween March 2020 and March 2022 from the Gene Expression Omnibus (GEO) in our longitudinal
analysis. In total, there were 269 SARS-CoV-2 positive patients and 26 negative patients who served
as a control group. Samples were grouped based on their SARS-CoV-2 variant type and/or the time
they were collected. Among 629,137 immunoglobulin V(D)] sequences identified by reconstructing
the V(D)] sequences, we found 1011 common V(D)]s (same V gene, ] gene and CDR3 sequences in
each SARS-CoV-2 positive group) shared by more than one patient in each group and no common
V(D)Js were from the negative control group. In our clustering analysis, we identified 129 conver-
gent clusters from the SARS-CoV-2 positive groups. One of these convergent clusters matched the
protein sequence of crystal 3D structures of the antibodies against SARS-CoV-2 in the Protein Data
Bank (PDB). In our longitudinal analysis between the Alpha and Omicron variant, we found 2.7%
of common CDR3s were shared although the longitudinal profiling of common V(D)]Js was variant
specific. Although diverse immunoglobulin profiles were observed, the convergence of common
V(D)]Js suggests that there exists antibodies with similar antigenic specificities across patients in dif-
ferent groups over various stages of the pandemic.

Keywords: SARS-CoV-2; complementarity determining region 3; convergent; RNA-seq

1. Introduction

When humans are infected with severe acute respiratory syndrome-related corona-
virus-2 (SARS-CoV-2), the immune system will naturally generate antibodies with bind-
ing specificity to SARS-CoV-2 and these antibodies can be detected in the blood serum of
patients [1, 2]. The convergent antibodies that neutralize SARS-CoV-2 play an important
role in fighting the severity of the coronavirus disease-2019 (COVID-19) [3, 4]. The char-
acterization of antibodies will help elucidate the mechanisms of immune response and
find strategies that lead to a potential treatment of COVID-19. Antibodies with highly di-
versified antigen binding specificity are produced from B-lymphocytes under V(D)]J rear-
rangement that will define the antibody responses [5]. The variable structure in the heavy
and light chains contain complementarity-determining regions (CDRs), where mutations
are prone to occur. The CDR3 of the heavy chain covers the D gene and junction regions
of D-J and V-D. The highly mutable CDR3 region could contribute to the diversity of an-
tibodies, which is theoretically estimated at 10’5 variants [6, 7]. Therefore, the sequence
similarity analysis of CDR3s could infer the specificity of antibodies against antigens.

Four antibodies responsive to the earlier SARS-CoV-2 variant (WA-1) have been re-
ported to be able to interact with a wide range of variants of concern (VOCs) [8]. The
antibodies against different VOCs are readily found to suggest that antibodies with broad
neutralization may exist [9-13]. On the other hand, convergent antibodies reactive to
SARS-CoV-2 from different infected subjects suggest the diversified immune response
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against the SARS-CoV-2 may share similar clonotypes [3, 14]. It is useful to investigate
naturally generated convergent antibodies from different time periods of the COVID-19
pandemic as infections of different variants constantly are appearing worldwide.

Bulk RNA-seq is a widely used methodology for the differential expression (DE) of
genes [15-17]. Using routine DE analysis of RNA-seq can easily result in the loss of valu-
able information in the dataset. RN A-seq of lymphocytes using high throughput next gen-
eration sequencing provides a resource for mRNA transcript of antibody genes. Although
single cell/bulk cell BCR-seq sequencing is available to retrieve the V(D)] sequences [7,
18], the abundant datasets of bulk RNA-seq are readily available while BCR-seq data are
not generated. The immune repertoire reconstruction tools (for example: TRUST4, MixCR
et al.) can help retrieve V(D)] sequences from Bulk RNA-seq [19, 20]. We have leveraged
the TRUST4 to reconstruct the heavy chain VD] for a longitudinal analysis of convergent
antibodies.

2. Materials and Methods

RNA-seq datasets: Four public RNA-seq data sets were retrieved from the Gene Ex-
pression Omnibus (GEO) [21]. Collectively, in these four data sets, there were 269 COVID-
19 positive patients and 26 negative patients. These patients were distributed among 5
different groups (Figure 5a).
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Figure 1. Overview of Sample Population and Experimental Design. (a) RNA-seq data from the
same patient were combined in each group. All data were downloaded from the GEO databases
(Group 1: GSE157103; Group 2: GSE172114; Group 3 and 4: GSE190680; and Group 5: GSE201530).
SARS-CoV-2 variants in Group 1 and 2 were not identified. (b) The workflow of the longitudinal
analysis of reconstructed V(D)Js.

Samples in Group 1 were collected between March 2020 and April 2020. The data set
consisted of 69 blood samples which were extracted from patients who were admitted to
either the infectious disease unit or the designated ICU at a university hospital network
in northeast France. All the patients in this group tested positive for SARS-CoV-2 through
a qRT-PCR test which detected COVID-19 nucleic acids using a nasopharyngeal swab.

Samples in Group 2 were collected between April 2020 and May 2020 from patients
that were admitted to either Albany Medical Center’s medical floor or the medical inten-
sive care unit (MICU). The data set included 126 blood samples from 100 patients who
tested positive for SARS-CoV-2 and 26 patients who tested negative for SARS-CoV-2.

Samples in Group 3 were collected between February 2021 and May 2021 by extract-
ing blood from the buffy coat and was then purified with the Maxwell RSC simply RNA
Blood Kit. In total, the data set included 100 blood samples which were extracted from 48
patients. We assigned 32 of the 48 patients to Group 3 as they had been classified as
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patients who had contracted the Alpha variant. Blood was extracted from patients 86
through three samplings which took place 10 days, 25 days, and 45 days after the patient 87
began feeling symptoms compatible to SARS-CoV-2. All 32 patients had their blood sam- 88
pled 10 days after the patient started experiencing symptoms, 30 samples were collected 89
25 days after the patient started experiencing symptoms, and 5 samples were collected 45 90
days after the patient started experiencing symptoms. In our experiment, we combined 91
each patient’s samplings into one sample. 92
Samples in Group 4 were from the same downloaded dataset as Group 3 but were 93
classified as patients who had contracted the E484K escape mutation of the Alpha variant. 94
There were 13 patients who tested positive for the mutation and samples were collected 95
through three different samplings. All 13 patients were sampled 10 days after experienc- 96
ing symptoms, 10 patients were sampled 25 days after experiencing symptoms, and 7 pa- 97
tients were sampled 45 days after experiencing symptoms. In this group, each patient’s 98
samplings was combined as well. 99
Samples in Group 5 were collected between December 2021 and March 2022 from 100
patients that were infected with the Omicron variant. Patients in this group were admitted 101
due to either testing positive after attending an outpatient clinic at Krnakenhaus St. Vin- 102
zenz Zams using the SARS-CoV-2 PCR test or being in contact with a family member who 103
had tested positive for SARS-CoV-2. 47 of the blood samples were collected zero, one, two, 104
three, four, and five days after patients had tested positive for SARS-CoV-2 by the qRT- 105
PCR test. 14 patients were sampled on day 0, 7 patients were sampled on day 1, 14 patients 106
were sampled on day 2, 7 patients were sampled on day 3, 2 patients were sampled on 107
day 4, and 3 patients were sampled on day 5. 108
109
Reconstruction of VDJs and Longitudinal Analysis: The workflow is shown in Fig- 110
ure 1b. The RNA-seq raw reads from the same patient were merged into one fastq file 111
and used as input for the bioinformatics tool TRUST4 [19, 22]. TRUST4 reconstructs im- 112
mune repertoires and annotates the V(D)] assembly of each sample. Then, using the re- 113
constructed immunoglobulin molecules, the variable regions, including the frameworks 114
and hypervariable regions, are annotated. 115
116
The normalized score to evaluate the frequencies of common VD]Js were calculated. 117
Each group consisted of a different number of patients and a different number of VDJs 118
predicted in each patient; therefore, the normalized score included the weight of the num- 119
ber of patients in each group. Thus, we could perform longitudinal comparison without 120
the effects of each group’s population size. To calculate the normalized score of common 121

VDJs we implemented the following equation: 122
n
Normalized Score for Common V(D)Js = N_x 100 o 123
x i
n, = number of common V(D)Js in patient x 124
N, = total number of V(D)]s in patient x 125
S = total patients in all groups 126
s; = number of patients in groupi (i =1,2,3,4,5) 127
128

Nomalize scores for each patient are shown as violin plots in Figure 2b. The heavy 129
chain VH gene usage was evaluated by the abundancy of each VH gene in the common 130
VDJs. A heatmap was created to display the frequency of each VH gene in Figure 2c. 131

Identification of convergent VD] clusters and Protein Data Bank search with the 132
reconstructed VD] sequences: We performed a pair-wise calculation using the 133
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Levenshtein Distance [23] between CDR3 amino acid sequences from groups with the
same VH and JH genes and the same amino acid sequence length of CDR3s. We set the
Levenshtein Distance cutoff value to equal 2. The network was then visualized with the
Gephi Software downloaded from (https://gephi.org). The common VD] sequences were
then used as queries to search the Protein Data Bank (PDB) to find the homologous VDJs
from an antibody that was clinically proven to be against SARS-CoV-2.

3. Results

3.1. Identification of common V(D)]s from RNA-seq and the logitudinal analysis

There were 269 SARS-CoV-2 positive patients and 26 negative patients who served
as a control group. Samples were grouped based on their SARS-CoV-2 variant type and/or
the time they were collected. We reconstructed the V(D)Js using an immune repertoire
reconstruction tool TRUST4 [19]. A total 629,137 heavy chain VDJs were reconstructed.
The V, ] and CDR3 regions were annotated based on the VDJ genes from the international
ImMunoGeneTics information system (IMGT) [24, 25] and the human genome reference
hg38. The immunoglobulins with common VD]Js are defined as having the same V and ]
genes are used and the exact same CDR3 sequences are matched within each group. We
identified a total of 1011 common VDJs in groups 1-5 as shown in Figure 2a. The common
VDJs can be found in a diversified number of patients in each group (supplementary Table
S1). The common VDJs were then analyzed in the longitudinal analysis. A common VD]
(VH4-59, JH4 and CDR3 sequence CARGFDYW) was observed in all five sample groups
(Figure 1a). Five other VDJs were found across four out of the five groups. When compar-
ing Group 3 (infected by Alpha variant) to Group 5 (infected by Omicron variant), we
found 13 common VDJs that existed in both groups making up 2.7% of unique common
VDJs in the two groups.
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Figure 2. A Longitudinal Comparison of Common VDJs across the Five Different Groups. (a) The red bars at bottom left
side show the total number of common VDJs for each group. The black bars at top show the number of IGC-VD]s and
the number of common VDJs in only each group itself. The panel (a) also lists the V, CDR3 and ] for the IGC-VDJs that
were found in 4 or 5 groups. (b) Shows a comparison of common VDJs with the normalized scores. **** represents the
p-value < 0.05 threshold using the one-tail t-test with heteroscedastic setting. (c) The heatmap of VH usage of VD]s
between different groups. The frequencies of VH genes in common VD]Js were utilized to generate the heatmap.

In order to compare the common VD]Js longitudinally (Inter-Group Common VD]Js
as IGC-VDJs), the frequencies of IGC-VD]Js in common VD]Js of each group were adjusted
by the number of patients in each group (see the calculation of normalized score in meth-
ods). The result shows a significant decrease in the normalized score for the patient group
infected with the Omicron variant (Figure 2b), which may suggest that more patients tend
to contain immunoglobulins with Omicron specific VDJs. The normalized score for the
SARS-CoV-2 negative groups was zero further suggesting that the immunoglobulins with
common VDJs found in other groups correlated with the viral infection.

To characterize the common VD]Js further, we generated a heatmap of VH gene us-
ages in all five groups. The VH3 gene family has been dominantly used in all groups.
However, we observed that IGHV3-30 is more favorited in the variants from the early
period of the COVID-19 pandemic such as Group 2 and Group 3 infected by the Alpha
variant. IGHV3-74 and IGHV3-7 were preferred by Omicron-infected Group 5.

3.2. Identification and Verification of Convergent VD]s

The antigenic specificity of antibodies is mostly determined by their VDJ usage and
diversified CDR3 regions [26]. Inmunoglobulins with same V gene and ] gene and similar
CDR3 sequences have been suggested to respond to the same antigens [3, 14, 27]. There-
fore, we are combining the CDR3 length and Levenshtein distance of amino acid se-
quences to characterize the CDR3 regions. If VDJs are using same V genes, ] genes, same
CDR3 length and Levenshtein distance is 2 or less, the VDJs will be classified as a conver-
gent cluster.
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Figure 3. The identification of convergent VD] clusters and comparison of the variable regions between the con-
vergent cluster and the antibodies responsive to SARS-CoV-2. (a) The convergent clusters were colored based on
the number of nodes in each cluster. (b) A Crystal Structure of an Anti-SARS-CoV-2 Human Neutralizing Anti-
body Fab Fragment (7K8N_A). The heavy chain CDR3 region is highlighted in yellow. (c) VD] amino acid se-
quence comparison among two members of the convergent cluster 5, 7K8N_A and 7D0C_G from an antibody
against SARS-CoV-2 in the Protein Data Bank (PDB).

We identified a total of 129 convergent clusters. Figure 3a visualized all the common
VDJs and convergent clusters. The top 15 clusters with the most nodes are labeled. Clus-
ters 2 and 15 covered all five SARS-CoV-2 positive groups (Table 1). We observed that
Cluster 1, 2, 8, and 15 cover the Omicron-infected group and Alpha-infected groups. Clus-
ter 3-7 and 9-14 were from groups that were not Omicron-infected (Table 1). The complete
convergent VD] list are available from the supplementary Table S2. The result indicates
the possible variant specific antibodies existing in the groups.

To evaluate the convergent clusters, we leverage the Protein Data Bank (PDB) to
search for a protein structure. The information of antibodies in PDB database may provide
the antigenic specificity. We found that two Fab structures that are known to respond to
SARS-CoV-2 have highly similar or the exact same CDR3 amino acid sequences to mem-
bers of our identified convergent cluster 2 (Figure 3b and 3c) [28, 29]. The Fab fragment
7K8N is from a neutralizing antibody against the ACE2 receptor-binding domain (RBD)
of SARS-CoV-2 [28]. 7DOC is from another neutralizing antibody that shows bivalent
binding and inhibition of SARS-CoV-2 [29].

Table 1. Representative CDR3 sequences, V genes and ] genes for the top 15 Convergent VD] clusters

Convergent . Unique VD]Js
Cluster ID VH Gene Representative CDR3 JH Gene Group in Clusters
1 IGHV3-15 CDYYHYYGMDVW IGHJ®6 1,3,5 18
2 IGHV3-53 CARDYGDYYFDYW IGHJ4 1,2,3,4,5 12
3 IGHV3-15 CTTGGAVW IGHJ4 1,2,3 15
4 IGHV3-33 CARVASYYYGMDVW IGHJ®6 1,2,3 11
5 IGHV3-33 CAREGIVGATTGLDYW IGHJ4 1,3,4 10
6 IGHV4-34 CARGAPGEW IGHJ4 1,2,3,4 8
7 IGHV3-49 CTRHDEWSGYYFDYW IGHJ4 1,2,3 11
8 IGHV3-30 CARARGGSYYYGMDVW IGHJ®6 1,3,5 12
9 IGHV3-53 CARDLVVYGMDVW IGHJ®6 1,2,3 8
10 IGHV3-30 CARDGGSWEFDPW IGHJ5 1,2,3 9
11 IGHV3-49 CTRDDEFWSGYYDYW IGHJ4 1,2,3 8
12 IGHV3-23 CAKDPFYDFWSGYYYDYW IGHJ4 1,2,3,4 5
13 IGHV4-31 CARVRITMIVVVDAFDIW IGHJ3 1,2,3,4 7
14 IGHV3-23 CAKDRGNDYGDQLDYW IGHJ4 1,2,3 8
15 IGHV4-59 CARGFDFEW IGHJ4 1,2,3,4,5 4

4. Discussion

The convergent antibodies identified in this study have potential antigen specificity
against SARS-CoV-2. The absence of common V(D)]Js in the negative control group’s
data set suggests the low antibody titer in normal blood serum and the very diversified
VDJs are used for immunoglobulins generated by PBMCs. Our longitudinal study has
shown that there are 2.7% common VD]Js that exist in patients upon being infected with
the Alpha or Omicron variants of COVID-19. The convergent analysis has suggested that
the antibodies developed in different patients with similar antigenic specificity may po-
tentially share similar clonotypes. Most of the convergent VD] clusters are from multiple
groups, which indicates that different SARS-CoV-2 VOCs occurring in different pan-
demic periods may induce similar clonality of B-lymphocytes [30]. This phenomenon
has also been observed in the influenza virus vaccination [31]. The CDR3s of Cluster 7
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and 11 show high similarity with one amino acid difference in the length of the se- 224
quence, which suggests that multiple clusters share similar antigenic specificity. In addi- 225
tion to the convergent CD]J clusters, our analysis result regarding the common VDJs 226
show that most of the antibodies with common VDJs are group specific. The unique an- 227
tibody profiling in each group suggests diversified immune response profiles were gen- 228
erated upon infection of SARS-CoV-2. 229

This project provides an efficient way to characterize the antibodies against SARS- 230
CoV-2 in COVID-19 positive patients. The 3D structure of immunoglobulin Fab frag- 231
ments in PDB database confirms that one convergent VD] cluster in our study and pro- 232
vides validation for our analysis. Although the methods in the project were used to char- 233
acterize antibodies against COVID-19, the procedure can easily be implemented to ana- 234

lyze other antibody-related immune responses against different viral and auto-immune 235
diseases. This method allows us to identify the variable regions of the light chain as well. 236
It is challenging to pair the heavy and light chain using bulk RNA-seq. However, a sin- 237

gle cell RNA-seq can be processed for a just few samples and solve this challenge be- 238
cause the bulk RNA-seq aids with the process of identifying the individual samples con- 239
taining the interesting antibodies. The specificity of convergent antibodies can be 240
screened through the recombinant antibody production system. 241
Supplementary Materials: Supplementary Table S1 and Table S2. 242
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