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Abstract	19	

We	 report	 an	 Osprey-based	 computational	 protocol	 to	 prospectively	 identify	 oncogenic	20	

mutations	that	act	via	disruption	of	molecular	 interactions.	 It	 is	applicable	to	analyze	both	21	

protein-protein	and	protein-DNA	interfaces	and	has	been	validated	on	a	dataset	of	clinically	22	

relevant	mutations.	 In	 addition,	 it	was	 used	 to	 predict	 previously	 uncharacterized	patient	23	

mutations	in	CDK6	and	p16	genes,	which	were	experimentally	confirmed	to	impair	complex	24	

formation.	25	

	26	

Main	27	

Missense	mutations	play	a	central	role	in	the	onset	and	progression	of	cancer.1	Examples	of	28	

relevant	 molecular	 mechanisms	 include	 oncogenic	 activation/inactivation	 of	 proteins,1	29	

disruption	of	the	contacts	between	proteins	and	their	macromolecular	interaction	partners,2-30	
5	 or	 emergence	 of	 cancer	 drug	 resistance.6	 The	 last	 has	 been	 previously	 addressed	 by	 a	31	

computational	protocol6,7	predicting	likely	resistance	mutations	in	the	pharmacological	target	32	
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of	targeted	cancer	drugs.	However,	to	the	best	of	our	knowledge,	no	theoretical	framework	33	

exists	 to	 systematically	 evaluate	 mutations	 within	 the	 interaction	 interfaces	 of	 critical	34	

signalling	 and	 regulatory	 components	 to	 identify	 disrupting	 mutations	 involved	 in	 the	35	

aetiology	and	progression	of	cancer	(Fig.	1a).		36	

We	suggest	that	such	mutations	(1)	have	a	high	likelihood	to	be	formed	in	a	particular	cancer	37	

type	and	(2)	affect	the	molecular	interactions	formed	by	interaction	partners,	i.e.,	disrupt	in	38	

the	investigated	cases.	We	report	here	the	development	and	validation	of	a	computational	39	

protocol,	Disruptor,	to	address	these	aspects:	 It	builds	upon	our	previous	work6	where	we	40	

systematically	evaluate	the	 impact	on	binding	affinity	for	all	possible	mutations	within	the	41	

binding	interface	using	experimental	structures	of	central	protein	complexes.	In	addition,	we	42	

combine	gene	sequences	and	mutational	signatures8	to	calculate	the	probability	with	which	43	

a	 specific	 mutation	 is	 formed.	 Results	 of	 these	 analyses	 are	 used	 to	 predict	 and	 rank	44	

mutations	that	have	a	high	probability	to	become	clinically	relevant	for	carcinogenesis	(Fig.	45	

1b).	 We	 have	 tested	 Disruptor	 on	 a	 dataset	 of	 known	 mutations	 involving	 p53:DNA	 (a	46	

consensus	recognition	sequence),	p53:ASPP2	(also	known	as	53BP2),	ERK2:DUSP6,	p16	(also	47	

known	 as	 INK4a	 or	 CDKN2):CDK6	 (Fig.	 1b-c),	 and	 Smad4:Smad2	 complexes.	 In	 all	 cases,	48	

Disruptor	predicted	clinically	relevant	mutations,	which	have	been	demonstrated	to	disrupt	49	

binding	 to	 their	 respective	 interaction	partner	 (Table	1).	 For	example,	 this	 includes	highly	50	

prevalent	p53	hotspot	mutations,	e.g.,	at	residues	R248,	R249,	and	R273,	which	are	known	to	51	

interfere	 with	 binding	 of	 the	 transcription	 factor	 to	 its	 DNA	 response	 element	 and	 thus	52	

hamper	transactivation.2,5	Furthermore,	transactivation	data	deposited	in	the	International	53	

Agency	for	Research	on	CANCER	(IARC)	TP53	database	(version	R20,	July	2019)9	confirmed	54	

that	 31%	 (67	 out	 of	 215)	 of	 our	 predicted	mutations	were	 indeed	 non-functional	 or	 only	55	

partially	 functional.	 In	 contrast,	 only	 4%	 of	 mutations	 (10	 out	 of	 the	 215)	 showed	56	

transactivation	activity	despite	their	classification	as	disruptive.	Unfortunately,	for	the	vast	57	

majority	 of	 predicted	 p53	mutations	 (64%)	within	 the	 DNA	 binding	 site,	 no	 functional	 or	58	

mechanistic	 data	 were	 available.	 This	 lack	 of	 data	 was	 not	 limited	 to	 p53,	 which	 is	 a	59	

thoroughly	 investigated	 target,	 but	 rather	 a	 general	 trend:	 For	 each	 interaction	 pair,	 we	60	

identified	several	mutations,	that	have	not	yet	been	investigated	experimentally	despite	their	61	

detection	in	cancer	patients,	sometimes	even	multiple	times	(Supplementary	Tables	S1-S8).	62	

To	investigate	some	of	these	understudied	mutations	in	more	detail,	we	selected	three	p16	63	

(G23S,	 G55D,	 and	 P81L,	 Fig.	 1c)	 and	 two	 CDK6	 (D102N	 and	 D110N)	 patient	 mutations	64	
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predicted	by	our	method	for	experimental	validation.	Intriguingly,	in	a	biochemical	assay	for	65	

quantifying	 binary	 complex	 formation	 of	 cellularly	 expressed	 proteins	 (termed	 LUMIER	66	

assay10;	Fig.	1d)	all	five	of	our	selected	mutants	showed	a	significant	decrease	in	their	binary	67	

interaction	 with	 the	 binding	 partner	 when	 compared	 to	 the	 non-mutated	 complex	 of	68	

p16:CDK6	(Fig.	1e).	69	

Besides	 providing	 validation	 of	 Disruptor,	 this	 indicates	 that	 there	 may	 be	 many	 more	70	

overlooked	disease-relevant	mutations	in	patients	that	occur	only	at	low	rates	and	thus	only	71	

affect	a	small	patient	population	or	even	individuals.	We	therefore	suggest	that	our	method	72	

could	be	an	especially	valuable	tool	in	precision	medicine.		73	

However,	some	limitations	of	the	current	approach	should	be	noted.	There	are	many	other	74	

mechanisms	by	which	mutations	can	affect	protein	function	that	are	not	addressed	in	this	75	

computational	 framework.	For	example,	many	p53	mutations	also	exert	a	gain-of-function	76	

phenotype,	e.g.	via	changes	in	protein	stability	or	reprogramming	of	DNA	or	protein-protein	77	

interaction	preferences.11	In	addition,	Disruptor	requires	structural	data	as	input,	which	may	78	

not	always	be	available.	We	are	thus	working	on	the	extension	of	our	computational	toolbox	79	

towards	 additional	 molecular	 mechanisms	 and	 are	 investigating	 the	 suitability	 of	80	

computationally	 derived	 structural	 models	 (e.g.	 generated	 using	 AlphaFold12)	 as	 starting	81	

point	for	our	analyses.	82	

	83	

Taken	 together,	 we	 report	 a	 computational	 protocol	 to	 prospectively	 predict	 protein	84	

mutations	 affecting	 binding	 to	macromolecular	 interaction	 partners.	 It	 can	 be	 applied	 to	85	

investigate	data	on	novel	patient	mutations,	guide	selection	of	mutants	for	subsequent	wet	86	

lab	experiments,	and	even	predict	a	potential	mode	of	action	on	a	molecular	level.	In	addition,	87	

Disruptor	 can	 not	 only	 be	 used	 to	 systematically	 investigate	 all	 mutations	 within	 the	88	

interaction	interface	of	a	given	target	of	interest,	but	also	identify	those	that	will	most	likely	89	

emerge	 in	 the	 clinic.	 Moreover,	 we	 highlight	 an	 adaptable	 computational	 workflow	 for	90	

anticipating	and	unveiling	the	functional	relevance	of	less	common	and	overlooked	patient	91	

mutations.		92	

	93	

	94	

	95	
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Table	 1.	 Exemplary,	 computationally	 predicted	 patient	 mutations	 confirmed	 to	 disrupt	96	

complex	formation.	97	

Protein	 Interaction	partner	 Mutation	 Reference	

p53	 DNA	consensus	sequence	 R248Q	 Merabet	et	al.2	

	 	 R248W	 Merabet	et	al.	

	 	 R249S	 Merabet	et	al.	

	 	 R273C	 Garg	et	al.5	

	 	 R273H	 Garg	et	al.	

	 	 R273L	 Garg	et	al.	

	 ASPP2/53BP2	 R248W	 Gorina	et	al.13	

	 	 R249S	 Gorina	et	al.	

	 	 R273H	 Gorina	et	al.	

ERK2	 DUSP6	 D321N	 Brenan	et	al.3	Taylor	

et	al.	14	

p16	 CDK6	 G23D	 McKenzie	et	al.15	

	 	 M53I	 Harland	et	al.16	

	 	 D84G	 Yarbrough	et	al.17	

	 	 D84H	 Ruas	et	al.18	

	 	 D84N	 Ruas	et	al.	

	 	 D84V	 Yarbrough	et	al.	

	 	 D84Y	 Ruas	et	al.	

	 	 R87P	 Yarbrough	et	al.	

smad4	 smad2	 R361C	 Shi	et	al.4	

	 	 D537E	 Shi	et	al.	

	 	 D537Y	 Gori		et	al.19	

	98	
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	99	
Fig.1.	p16-CDK6	results.	a	Schematic	representation	of	the	molecular	mechanism,	where	the	100	

two	 binding	 partners	 are	 presented	 in	 blue	 and	 green.	 Upon	 mutation	 (red),	 binding	 is	101	

disrupted.	 b	 Overview	 of	 the	 computational	 workflow.	 The	 inset	 shows	 the	 interaction	102	
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between	p16	(green)	and	CDK6	(blue),	with	the	interaction	interface	coloured	yellow	(p16)	103	

and	violet	(CDK6).	c	Heatmap	showing	the	changes	in	the	Osprey20	log	K*	score	for	mutations	104	

(Y-axis,	H1-3	correspond	to	different	histidine	protonation	states)	compared	to	wildtype	(wt,	105	

marked	black)	p16	residues	(X-axis).	Triple	point	mutations	are	marked	grey.	Hotspot	residues	106	

predicted	to	disrupt	interaction	with	CDK6	are	coloured	red	on	the	p16	surface	below.	Arrows	107	

indicate	the	p16	residue	position.	d	Left:	Schematic	depiction	of	the	LUMIER	assay	for	the	108	

detection	of	protein:protein	interactions.	A	p16	protein	tagged	with	the	NanoLuc	Luciferase	109	

(NLuc)	is	transiently	expressed	in	HEK293T	cells	together	with	Flag-tagged	CDK6.	The	complex	110	

is	 immunoprecipitated	with	 Flag	antibodies	 and	 the	emission	of	 light	 is	detected	on-bead	111	

upon	 substrate	 (benzylcoelenterazine)	 addition	 if	 the	 bait	 protein	 is	 present.	 Expression	112	

profiles	 have	 been	 validated	 by	 Western	 Blot	 as	 shown	 in	 Supplementary	 Fig.	 1.	 Right:	113	

introduction	of	dimerization	interfering	mutations	to	either	CDK6	or	p16	lower	the	detected	114	

luciferase	signal.	e	LUMIER	assay	of	Flag-tagged	CDK6	variants	in	the	presence	of	wildtype	or	115	

mutated	p16-NLuc.	Please	note,	we	introduced	the	p16	mutations	into	mouse,	not	human,	116	

p16	 and	 thus	 G23S,	 G55D,	 and	 P81L	 correspond	 to	 mouse	 G15S,	 G47D	 and	 P73L.	 The	117	

bioluminescence	signals	were	normalized	on	the	corresponding	input	signals.	Bars	represent	118	

the	luciferase	intensity	relative	to	wild-type	CDK6	and	p16	interactions.	Error	bars	represent	119	

SEM	 of	 n=5	 independ.	 experiments.	 Significance	 was	 determined	 by	 t-test	 *p<	 0.05;	120	

**p<0.01;	***p<0.001.	121	

	122	

Methods	123	

Preparation	of	input	structures	124	

The	 following	 PDB	 entries	 were	 used	 for	 the	 analysis:	 1tup	 (p53:DNA	 complex),21	 1ycs	125	

(p53:ASPP2),13	 2fys	 (ERK2:DUSP6),22	 1bi7	 (p16:CDK6),23	 and	 1u7v	 (Smad4:Smad2).24	 All	126	

structures	were	prepared	using	the	default	parameters	of	the	Protein	Preparation	Wizard25	127	

in	Maestro	release	2020-326	and	all	water	molecules	and	buffer	components	were	deleted.	In	128	

case	of	CDK6,	ERK2,	and	p53:ASPP2,	only	residues	within	12	Å	of	the	 interaction	 interface	129	

were	 included,	and	chains	A	and	B	were	used	 for	 the	calculation	 for	both	p53:ASPP2	and	130	

Smad4:Smad2.	All	three	p53	copies	were	analysed	in	case	of	1tup.		131	

	132	

	133	

	134	
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Computational	evaluation	of	mutations	135	

Structures	 and	 definitions	 of	mutable	 residues	 and	 allowed	mutations	were	 submitted	 in	136	

YAML	file	format.	In	case	of	histidine	mutations,	all	three	protonation	states	were	considered.	137	

Mutable	residues	were	either	investigated	alone	or	in	pairs.	Wildtype	residues	were	set	to	138	

continuously	flexible,	all	other	residues	were	kept	rigid.	ZAFF27	force	field	parameters	were	139	

added	 for	 zinc	 ions	 and	 zinc	 coordinating	 residues	 and	 downloaded	 here:	140	

https://ambermd.org/tutorials/advanced/tutorial20/ZAFF.htm.	 Template	 coordinates	 and	141	

force	 field	 parameters	 for	 phosphoserines	 were	 calculated	 using	 Antechamber	 19.0.	 An	142	

example	 input	 file	 for	 each	 of	 the	 interaction	 pairs	 is	 provided	 in	 the	 supplementary	143	

information.	Osprey	version	320	was	used	for	calculating	K*	scores,	which	predicts	low-energy	144	

structural	 ensembles	 and	 provides	 an	 approximation	 to	 binding	 affinity.	 The	 stability	145	

threshold	was	disabled	and	an	epsilon	of	0.03	was	used.	OSPREY	is	free	and	open-source	and	146	

available	on	GitHub	at	https://github.com/donaldlab/OSPREY3.	147	

	148	

Calculation	of	probabilities	149	

A	detailed	description	of	the	calculation	of	probabilities	has	been	reported	previously.6,7,28	150	

Briefly,	mutational	signatures	and	their	contribution	to	the	mutational	burden	in	a	particular	151	

cancer	 type8	 have	 been	 combined	 to	 calculate	 cancer-specific	 values	 for	 single	 base	152	

exchanges	within	a	defined	trinucleotide	context.	These	have	been	used	to	calculate	relative	153	

probabilities	 for	generation	of	 the	DNA	sequence	mutations	encoding	 for	 the	 investigated	154	

protein	amino	acid	mutation.	We	only	calculated	probabilities	for	mutations	that	could	be	155	

generated	with	single-	or	double	base	pair	exchanges,	because	we	considered	mutation	of	156	

the	whole	 trinucleotide	 codon	 required	 for	 triple	 point	mutations	 as	 extremely	 unlikely.6	157	

Colorectal	and	cervical	cancer	associated	probabilities	have	been	calculated	 for	ERK2,	and	158	

melanoma	and	colorectal	cancer	associated	probabilities	have	been	calculated	for	p16	and	159	

smad4,	respectively.	No	cancer-associated	probabilities	have	been	calculated	for	p53,	given	160	

that	p53	mutations	have	been	observed	in	the	majority	of	cancer	types.	161	

	162	

Data	analysis	163	

Mutations	with	a	change	of	Log10	K*	scores	greater	than	–3	in	comparison	to	wildtype	scores	164	

from	 the	 same	 run	were	 considered	 to	disrupt	 the	 interactions.	Histidine	mutations	were	165	

included	 only	 if	 all	 three	 protonation	 states	 disrupted	 binding.	 Triple	 point	 mutations	166	
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requiring	mutations	of	all	three	bases	of	the	codon	were	discarded.	This	led	to	a	final	set	of	167	

mutations	we	considered	clinically	relevant.	To	prioritize	mutations	further,	the	number	of	168	

individual	mutations	included	for	each	residue	position	were	analysed.	Protein	residues	with	169	

the	 highest	 number	 of	 predicted	 individual	 mutations	 were	 considered	 as	 “mutational	170	

hotspots”	 and	 cancer-associated	 probabilities	 for	 all	 mutations	 at	 these	 positions	 were	171	

calculated	to	prioritize	individual	mutants	further.	An	overview	of	the	top-three	mutational	172	

hotspots,	and	the	individual	mutations	and	their	probabilities	are	reported	in	Supplementary	173	

Table	S1-S8.	174	

	175	

Selection	of	mutants	to	be	tested	176	

Two	 of	 the	 three	 p16	mutations	 (human	G23S	 and	G55D	 (mouse	G15S	 and	G47D))	were	177	

chosen	because	they	were	prioritized	by	our	protocol	(Fig.	1c)	and	both	have	been	associated	178	

with	hereditary	melanoma.29,30	P81L	(corresponding	to	P73L	in	mouse)	was	included,	because	179	

within	the	dataset	of	computationally	predicted	mutations	it	was	among	the	most	frequently	180	

reported	in	cancer	patients	(29	times).	In	contrast,	CDK6	generally	appears	to	be	mutated	at	181	

a	very	low	rate,	with	only	97	unique	missense	mutations	reported	in	COSMIC31	in	total	and	182	

the	most	common	mutations	observed	only	five	times	in	patient	samples.	For	comparison,	183	

the	p16	H83Y	mutation	 is	 reported	128	 times	and	one	of	387	unique	missense	mutations	184	

deposited.	We	therefore	focused	on	two	CDK6	mutations	(i.e.	D102N	and	D110N)	that	were	185	

also	observed	in	the	clinic.	186	

	187	

Cell	culture	and	antibodies	188	

HEK293	cells	were	grown	in	Dulbecco’s	modified	Eagle’s	medium	(DMEM)	supplemented	with	189	

10%	 fetal	 bovine	 serum	 (FBS).	 Transient	 transfections	 were	 performed	 with	 TransFectin	190	

reagent	(Bio-Rad,	#1703352).	Antibody	used	for	LUMIER	experiments	was	mouse	anti-FLAG	191	

(Sigma-Aldrich,	#F3165).	The	expression	constructs	were	cloned	using	cDNA	as	PCR	templates	192	

for	 amplifying	 the	 inserts	 (CDK6	 (Gene	 ID:	 12571,	 p16	 (Gene	 ID:	 12578)),	 digestion	 with	193	

restriction	enzymes	and	ligation	into	a	Flag	or	NLuc	vector.		194	

	195	

Western	Blotting	196	

Expression	of	 indicated	Flag-tagged	CDK6	 constructs	 in	HEK293	 cells	were	determined	via	197	

Western	blotting	with	indicated	Flag	antibody	[mouse	anti-FLAG®	M2-tag	(Sigma-Aldrich,	St.	198	
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Louis,	MO,	USA,	F3165-1MG)].	5x	SDS	loading	buffer	was	added	to	the	lysate	to	reach	a	final	199	

concentration	of	1x	SDS	LB.	200	

	201	

LUMIER	experiments	202	

HEK293	 cells	 were	 transiently	 transfected	 with	 wild	 type	 or	 mutated	 p16-NLuc	203	

(NanoLuciferase)	and	3xFlag-tagged	wild	type	CDK6	constructs.	Subsequent	to	homogenizing	204	

the	cells	with	a	syringe	[lysis	buffer:	150	mM	NaCl,	10	mM	sodium	phosphate	(pH	7.2),	0.05%	205	

Triton-X100	supplemented	with	standard	protease	 inhibitors]	 the	 lysates	were	clarified	by	206	

centrifugation	at	13,000	rpm	for	20	min.	Cell	extracts	were	incubated	on	an	overhead	shaker	207	

with	anti-flag	antibody	(0.6	μg	per	sample)	and	protein	G–Sepharose	beads	or	IgG	beads	for	208	

3	hours	at	4°C.	Isolated	complexes	were	washed	three	times	with	lysis	buffer	and	three	times	209	

with	 PBS.	 Probes	 were	 transferred	 to	 96-well	 white-walled	 plates	 and	 subjected	 to	210	

bioluminescence	 analysis	 using	 the	 PHERAstar	 FSX	 luminometer.	 As	 substrate	211	

benzylcoelenterazine	 is	 used.	 NLuc	 bioluminescence	 signals	 were	 integrated	 for	 1.2	 s	212	

following	addition	of	 luciferase	substrate.	Raw	Data	Bioluminescence	signals	are	shown	 in	213	

Supplementary	Fig.	1.		214	
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