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Abstract

Fluorescence microscopy has become an indispensable tool for revealing the
dynamic regulations of cells and organelles in high resolution noninvasively.
However, stochastic noise inherently restricts the upper bonds of optical
interrogation quality and exacerbates the observation fidelity in encountering joint
demand of high frame rate, long-term, and low photobleaching and phototoxicity.
Here, we propose DeepSeMi, a self-supervised-learning-based denoising framework
capable of increasing SNR by over 12 dB across various conditions. With the
introduction of newly designed eccentric blind-spot convolution filters, DeepSeMi
accomplished efficacious denoising requiring no clean data as references and no
compromise of spatiotemporal resolution on diverse imaging systems. The
computationally 15-fold multiplied photon budget in a standard confocal
microscope by DeepSeMi allows for recording organelle interactions in four colors
and high-frame-rate across tens of thousands of frames, monitoring migrasomes and
retractosomes over a half day, and imaging ultra-phototoxicity-sensitive
Dictyostelium cells over thousands of frames, all faithfully and sample-friendly.
Through comprehensive validations across various cells and species over various
instruments, we prove DeepSeMi is a versatile tool for reliably and bio-friendly
breaking the shot-noise limit, facilitating automated analysis of massive data about

cell migrations and organelle interactions.
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Introduction

The magnificence of the harmonically orchestrated systems, organs, tissues, and cells
attracts people to exploit the mystery of life[l, 2]. Among the various phenotypic
activities and processes, organelles interact with one another and the cytoskeleton to
synergistically execute various physiological functions that support the functioning of
living beings. Such gorgeous patterns reflect live organelles of complex, dynamic, and
interplay in highly dynamic yet organized interactions capable of orchestrating complex
cellular functions[3]. Thereby, visualizing the functionality and complexity of organelles
in their native states requires high spatiotemporal resolution observation without

perturbing these physiologically presented regulations in a long term.

Standing in the center of approaches dedicated to probing and deciphering the micro
world is the non-invasive fluorescent microscope capable of high spatiotemporal
resolution[4] and good protein-specificity[5]. Combined with fruitful fluoresce
proteins[6, 7] and indicators[8], lustrous and remarkable advances in enriched
fluorescence microscope[l, 9-12] have brought flourishing discoveries across many
disciplines including cell biology[13], immunology[14], and neuroscience[15], among
others. However, the limited photon budget with insufficient signal-to-noise ratio (SNR)
becomes a fundamental lingering challenge to be solved for fluorescent microscopes that
prevents more discoveries to be achieved[16]. The low quantum yield of fluorescent
indicators and the stochastic nature of noise make the contamination inevitable[6],
aggravating the measurement uncertainty and impairing downstream quantitative
analysis, including cell segmentation[17], cell tracking[18], and signal extraction[19].
Overcoming this limitation physically requires enlarging excitation dosage[20] or
enriching the expression of indicators[21], but either damaging the fragile living systems
or poisoning the cellular health and both altering morphological and functional

interpretations that follow. Such a condition is even worse in long-term imaging that
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necessitates repeated dosage over the same sample hundreds and thousands of times to
observe pivotal processes like cell proliferation[22], migration[13, 23], organelle
interactions[24, 25], and neuronal firing[26]. To mitigate noise contaminations without
excessive light exposure-induced photobleaching and phototoxicity that perturbs the
sample in its native state, people have to sacrifice imaging speed, resolution, or

dimensions[27].

Despite limited advances achieved across physical approaches, numerous
algorithmic approaches have been proposed to break the shot noise limit by utilizing
statistics of the noise[28]. Traditional denoising methods that exploit canonical properties
of the noise (such as Gaussianity[29] and structures in the signal[30]) achieve great
success in photographic denoising [30] but have limited performances in complex,
turbulent, and dynamic living systems and with remarkable time consuming and
computing complexity. In contrast, supervised learning methods utilizing a data-driven
prior learned from paired noisy and clean measurements are proven to be valid as long as
samples are drawn from the same distribution[31]. To extend the generalization ability,
the requirement of clean data can be further replaced by additional independent noisy
measurements[32], fertilizing breakthroughs in interpolating noise-contaminated
functional data [33, 34]. However, neither of these supervised methods circumvents the
denoising of videographic high-resolution recording with both intensity fluctuations and
deformations of living organisms or organelles. The causes of the shortage are manifolds.
Firstly, since the same physiological phenomenon would not repeat twice for each cell or
organism, the requirement of clean data by methods can only be satisfied through
simulations which remain remarkable gaps between training and inferring domains[35].
Secondly, even only the paired noisy data is required in interpolation-based methods like
Deeplnterpolation [34] and DeepCAD [33], the precondition of interframe continuity
likely defiles visualizing rapid transformations of living organisms or organelles. Thirdly,

data-hungry nature ensued from the insufficient exploitation of noise statistics forces
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92  these methods to compromise, either hampering the genuine visualization to keep the
93  organism safe, or sacrificing the sample health to acquire excessive captures for ensuring

94  visualization quality.

95 Here, we overcome the aforementioned limitations and propose deep self-supervised

96 learning enhanced microscope (DeepSeMi), a brand-new tool that readily and veritably

97  increases the SNR over 12 dB across various conditions and systems, and catalyzes noise-

98  free videography of diverse structures and functional signals with minimized

99  photodamage in a long term. DeepSeMi explores noise priors that root in data itself
100  through concatenating newly designed eccentric convolution filters and eccentric blind
101  convolution filters with intentionally limited receptive fields across both spatial and
102 temporal dimensions (Supplementary Fig. 1, Methods), fundamentally surrogating the
103  data-hungry shortage of supervised methods and genuinely accomplishing SNR
104  reinforcing even over fast transformed samples. Compared to recently developed
105  interpolation-based denoising methods, DeepSeMi is capable of observing organelles of
106  sophisticated movements and transformations without motion artifacts. Thereby,
107  DeepSeMi standing by the means of self-supervision outperforms other methods in both
108  performance and generalization abilities, and computationally amplifies the photon budget of
109  multiple instruments in long-term tracking of organelles and organisms’ activities without the
110 burden of exacerbating sample health in traditional approaches. Through DeepSeMi, organelle
111  interactions in their native states inside 4-color-labelled-L929 cells were recorded over
112 30 minutes and 14, 000 time points in high SNR by a confocal microscope, a widely used
113 instrument adored by the high resolution and hated by the photodamage. Aided by
114  DeepSeMi, brittle structures like migrasomes and retractosomes were densely tracked in
115 a half-day-long session uninterrupted without trackable photobleaching, and multiple
116  organelles can be segmented accurately free of false positives by noise contamination.
117  Even fragile and phototoxicity-susceptible samples like Dictyostelium cells were also

118  clearly recorded over 36,000 shots in multicolor, attributed to DeepSeMi enhancement.
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119  Not limited to cultured cells and organisms, the capability and generality of DeepSeMi
120  are also demonstrated in a series of photon-limited imaging experiments over various
121 species, including nematodes, zebrafish, and mice, all intravitally. We open-source
122 DeepSeMi to the whole community and hope it can spur new discoveries that were

123 previously unseen by the walls of noise limitation.

124 Results

125 DeepSeMi roots in noise statistics and accomplishes single-flow high-fidelity

126  denoising

127  Given the complexity of noisy conditions and sample topologies, limited research has
128  been conveyed to solve the noise contamination of cellular videography. To our
129  knowledge, no data-driven methods capable of long-duration imaging in the intercellular
130  environment at high spatiotemporal resolution have been demonstrated with robust
131  denoising capability in practice. Recent advances in computer vision provide clues to
132 mitigate the problem, where the mapping between different captures of the same scene
133 can form a deep neural network that effectively removes noises in fresh capture[32].
134  However, such exploitation of noise statistics only stays at the frame level and loses
135 motion information of non-stop contents, limiting applications on spatial-invariant

136  functional imaging or sluggish cell migration in low resolution [33, 34].

137 The innovation of DeepSeMi roots in a full exploitation of noise statistics. Studies
138  show that mutual mappings from neighbors to a centered pixel can be well established
139  even excluding the pixel itself due to local structure continuity [36]. Under noisy
140  conditions, although those mappings are significantly defiled, the zero means and
141  independence of noise make the average of the defiled mappings relocate the clear pixel
142  information, facilitating estimation of each clear pixel from the surrounding noisy

143 spatiotemporal neighborhood [37] (Fig. la). Based on that observation, DeepSeMi
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144  thereby established mappings between per pixel of the noisy videography and its
145  surrounding pixels to effectively denoise videography. The utility of pixel-level noise
146  statistics makes DeepSeMi robust even over a single noisy shot, and consequently
147  eliminates the annoying need for excessive captures to ensure the performance compared

148  with previous techniques [33, 34] (Fig. le).

149 To establish these special mappings, two brand new convolution kernels were
150 developed for conveying the aforementioned thought with optimized efficiency in
151  DeepSeMi. The first convolutional kernels receive both the inferred pixel and its
152 eccentrically surrounded neighbors to keep the DeepSeMi efficient in both restoring
153  structures and eliminating noise (Fig. 1b, Supplementary Fig. 1b), and are accordingly
154  named as eccentric convolution. The second convolution kernels resemble the blind-spot
155  property by only receiving the eccentrically surrounded neighbors of the inferred pixel to
156  achieve an even stronger noise cleanse ability (Fig. 1c, Supplementary Fig. 1¢), and are
157  accordingly named as eccentric blind-spot convolution. A single flow across the blind-
158  spot convolution thereby consists of millions of sub-approaches where each input noisy
159  pixel is synthesized only by the neighbors without itself, accomplishing denoising in a
160  self-supervised learning manner exceedingly efficiently. The rationale for combining
161  both filters in the DeepSeMi is to achieve an appropriate balance between the preservation
162  of details and noise robustness with the assistance of the pixel-level blind-spot technique
163  (Methods). Six branches composed of these two convolutional filters deliver
164  permutational receptive-limited fields of both spatial and temporal dimensions, and are
165  further merged by a feature fusion network to form preferential representations of the
166  output video block (Fig. 1d). Computation losses are differentiated ergo between the input
167 and output to guide the updates of the network parameters through backpropagation
168  (Supplementary Fig. 2). The comprehensively optimized DeepSeMi also leverages a
169  time-to-feature folding operation which feeds more temporal information without

170  increasing additional computational cost to increase performance (Methods).
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171 We benchmarked the denoising capability of DeepSeMi through extensive
172 simulations compared with various mainstream methods. To fully emulate real
173  experiments within complex situations, we evaluated those methods in Moving MNIST
174  datasets where both the noise level and the movement speed of the contents are varied in
175  alarge range. Among all methods, DeepSeMi achieved the best denoising results across
176  all noise levels, even achieving 15 dB higher SNR compared to raw capture at extremely
177  noisy conditions where samples were submersed in noise (Fig. 1g, Supplementary Fig.
178  3). While most of the literature merely comparing SNR in static scenes, we further
179  evaluated the denoising ability of those methods encountering swift contents across
180  various speeds. As the increase of the content moving speed, DeepSeMi kept being the
181  top tier in terms of restoration quality over other methods with at least 12 dB SNR
182  improvement (Fig. 1h, Supplementary Fig. 4), where techniques using frame-level noise
183  statistics (DeepCAD [33] and Deeplnterpolation [34]) lowered their performance quickly
184  due to the frame interpolation nature (Supplementary Fig. 5, Supplementary Fig. 6). In
185  more complicated Poisson noise contaminations where the noise scale correlates with the
186  image intensity (Supplementary Fig. 7), DeepSeM:i still outperformed all other methods
187 by over 4 dB ahead. Across all tests, the UDVDI15 technique [38] utilized the similar
188  blind-spot technique immediately following up DeepSeMi. However, our proposed
189  DeepSeMi achieved superior performance thanks to the improvement of spatiotemporal
190  convolutions, additional eccentric blind-spot convolutions, and additional receptive field

191  limited branches in temporal domain (Methods).

192 Besides, DeepSeMi was also proved to have generalization ability across different
193  noise scales and content speed. Given the DeepSeMi that trained at a moderate speed
194  (Supplementary Fig. 8a-c), the performances are nearly consistent when the content speed
195  varies across 20% to 180% range. We further tested the generalization ability of
196  DeepSeMi in experiments, where DeepSeMi was trained for the modality of

197  mitochondrial membrane but tested in the co-labeled cell membrane and mitochondrial


https://doi.org/10.1101/2022.11.02.514874
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.02.514874; this version posted November 3, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Page 9 of 42

198  matrix data (Supplementary Fig. 9a). We found the noise-contaminated mitochondrial
199  matrices were cleaned by DeepSeMi in both clustered forms close to the cell center and
200  scattered forms in the cell edge (Supplementary Fig. 9b-e). Composited interactions of
201  both membranes and mitochondrial matrix were clearly displayed after DeepSeMi
202  enhancement which was only trained in a third and unimodal data (Supplementary Fig.
203 9f-h). By denoised dual-color co-labeled mitochondria data (Supplementary Fig. 10a),
204  self-consistency of DeepSeMi was validated since the denoised results were highly
205  consistent between dual channels despite the noise distributions being largely different
206  between them (Supplementary Fig. 10c). The great generalization ability and self-
207  consistency of DeepSeMi ensure the fidelity of observation across complicated micro-
208  environment during long-term cellular imaging, accomplishing apparent enhancements
209 in recovering both structural and functional diversities (Supplementary Fig. 11,

210  Supplementary Video 1).

211  DeepSeMi unlocks high-speed long-term imaging with minimized photobleaching

212 High-temporal resolution imaging is ideal for observing swift intracellular organelle
213 interactions, cell migration, and multicellular interactions, yet regretfully limited in a
214 short term due to the compromise of photobleaching and phototoxicity. With extensive
215  evaluations, we found that healthy mitochondria can only stand for 45.3 uW laser power
216 (2%, 488 nm) (Supplementary Fig. 12) for a 3-minute-long session at 30 frames per
217  second (fps) in a commercial confocal microscope without apparent photobleaching
218  (Supplementary Fig. 13, Methods). Higher scanning laser dosage quickly quenched the
219  fluorescence, failing the imaging process due to missing mitochondrial structural
220  information. However, such a low power dosage exacerbated the noise contaminations to
221  the observations and yielded barely characterized structures (Supplementary Fig. 13d),
222 and the situation was even worse when the mitochondria were densely clustered due to

223 lack of sparsity. On the other hand, with the proposed DeepSeMi, mitochondria under
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224 even 14.6 uW (0.5%, 488 nm) power dosage can be faithfully denoised with intact and
225  natural form restored (Supplementary Fig. 14, 15). Under that mild excitation, the
226  fluorescent intensity drop was unrecognizable, suggesting DeepSeMi enhancement not
227  only accomplished high-temporal resolution recording but even reduced the
228  photobleaching further (Supplementary Video. 2). From other perspectives, the
229  computational enhancement of DeepSeMi brings a surge of available photon budget of
230  optical instruments. Considering DeepSeMi achieves even higher visualization quality of
231  mitochondrial structures in 23.1 uW (1%, 488 nm) (Supplementary Fig. 13b) than raw
232 captures in 537 uW (32%, 488 nm) (Supplementary Fig. 13g), the available photon

233 budget was enlarged at least ten folds.

234 We quantitatively verify the photon budget enlargement of DeepSeMi across two
235  dimensions. In the first dimension, we approximated the photon budget enlargement as
236  the multiplication of excitation power in raw captures through which the same SNR of
237  DeepSeMi enhancement can be achieved (Supplementary Fig. 16). We found at least 15-
238  times more power dosage in raw frames was required to produce the same level of
239  imaging quality as DeepSeMi enhancement across various noisy conditions, verifying
240  DeepSeMi enlarges the photon budget by 15 folds leastways. In the second dimension,
241  we investigate the photon budget enlargement as the excessive concentration of dyes in
242 raw captures to approach the DeepSeMi-enhanced SNR. We proved DeepSeMi achieved
243 no-compromise results in over 50 times diluted dye concentrations across migrasomes,
244 lysosomes, and mitochondria, and the resulting captures were comparable with the non-
245  diluted ones (Fig. 1f, Supplementary Fig. 17). Although both the higher power dosage
246  and dye concentration facilitate better visual inspections with fewer noise contaminations,
247  on the other hand, both of them cause significant cytotoxicity and perturbation over the
248  native regulation of the organelles and organisms. Instead, DeepSeMi enables tens of
249  times photon budget increments computationally, permitting high-fidelity functional and

250  structural interrogation which is previously unmet. Towards directions of broader
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251  applications, the multiplied photon budget by DeepSeMi strongly extends the capacity of
252 the commercial confocal microscope in pursuing higher spectral complexity, higher

253  frame rate, and longer recording sessions.

254 With the encouragement of apparent SNR enhancement of DeepSeMi under
255  sample-friendly power dosage across thousands of captures, we performed imaging at 7.5
256  fps on 1929 cells with four structures labeled by four colors (tagBFP-SKL, TOM20-GFP,
257  SiT-mApple, and WGA647 for peroxisomes, mitochondria, Golgi, and migrasomes,
258  respectively) on a commercial confocal microscope (Fig. 2a, Methods), for 30 minutes
259  and over 13,500 time points. Excitation power was set at 2% to obviate photobleaching
260 and keep live cells healthy (Fig. 2b), at the expense of plenty of noise and ruptured
261  structures that defiled the raw captures. Contrastingly, the enhancement of DeepSeMi
262  clearly revealed delicate structures of punctate peroxisomes, threadlike mitochondria, and
263  fluctuated membranes (Supplementary Video. 3). The brittle mitochondrial fission and
264  fusion were obviously distinguished (Fig. 2c-d), highlighting the importance of
265  combining minimization of illumination photon dose with SNR enhancement of

266  DeepSeMi.

267 Together with the high temporal resolution and long-term capability, DeepSeMi
268  catalyzes new abilities of tracking subtle movements of mitochondria, an important
269  component of mitochondria regulation in many aspects of cell biology. An individual rod-
270  shaped mitochondrion was tracked based on DeepSeMi-enhanced recordings over 500
271  seconds, unveiling complicated trajectories and nonlinear movements (Fig. 2e-f).
272  Sampling the data at full temporal resolution presented brief transitions between
273  mitochondria leaving and approaching, and quick motions happened when the leaving or
274  approaching of mitochondria paused temporally [39] (Fig. 2g). These transient processes
275  cannot be captured if the sampling frequency dropped by 10-fold to 0.75 Hz, which was

276  the compromised framerate for the standard confocal microscope without DeepSeMi
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277  enhancement in catching the similar photon budget. We thereby demonstrated that the
278  high temporal resolution enabled by DeepSeMi is indispensable to characterizing the
279  veritable trajectories as complex movements between frames were likely to be missed
280  when temporal resolution dropped down (Fig. 2h). We measured mitochondria leaving
281 and approaching rates of 0.53 um/s and 0.46 pum/s, respectively. Furthermore, when
282  analyzing these rates as a function of the displacement of each leaving or approaching
283  event (Fig. 2i-j), we found that long displacing events correlated with slow rates of
284  leaving or approaching. There was a broader range of leaving rates compared to
285  approaching rates during short displacing events, leading to diverse fluctuations in
286  mitochondria displacement. Overall, the SNR enhancement of DeepSeMi vehemently
287  enlarged the available photon budget of an optical instrument without compromising
288  visual quality for down-stream analysis. DeepSeMi allowed us to quantify not only
289  mitochondria dynamic displacements but also alterations of other organelles on a much

290  finer temporal scale than what was achieved in previous methods.

291  DeepSeMi enables monitoring migrasomes and retractosomes over a half day in

292  their native states

293  Migrasome is recently recognized as an extracellular organelle that plays a significant
294  role in various physiological processes, including mitochondrial quality control, organ
295  morphogenesis, and cell interaction [40, 41]. Despite fruitful results that have been
296  discovered related to migrasome regulations by light microscope, uninterruptedly
297  observing migrasomes during cell migrations in a half-day-long term remains challenging
298 limited by continuously imaging-induced photobleaching and phototoxicity

299  (Supplementary Fig. 18).

300 Here, through DeepSeMi enhancement, we accomplished high-resolution 2 fps

301  imaging of the generation, growth, and rupture of migrasomes in a half-day-long term
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302  with over 86,000 time points with only 2% power shots (45.3 uW of 488 nm, 49.8 pW of
303 561 nm). L929 cells expressed TOM20-GFP and TSPAN4-mCherry to tag the
304 mitochondria and migrasomes, respectively. A representative two-color image frame
305 from a movie of the mitochondria and migrasomes clearly showed the enormous SNR
306 enhancement by DeepSeMi compared to the raw capture (Fig. 3a, Supplementary Video
307  4). Near the cell body, DeepSeMi enabled us to find migrasomes that presented the entire
308  generation and growth procedure across ~ 300 minutes of imaging windows, which was
309  41% of the whole imaging session (Fig. 3b). The DeepSeMi enhanced results clearly
310  show that some mitochondria were expelled by the cell and kept inside a migrasomes
311  (Fig. 3d-e), known as the mitocytosis [41]. Compared to barely recognized migrasomes
312 in the raw images (Fig. 3¢), 51 migrasomes were segmented from the whole DeepSeMi-
313 enhanced capture (Methods), with color-coded area and longevity statistics summarized
314  in Fig. 3f. We measured an averaged maximum area of 5.81 um? (Fig. 3g) during an
315 averaged 141-minute lifespan of migrasomes (Fig. 3h), which were weakly correlated
316  with each other (Fig. 31). We noticed a general pattern of the maximum area across those
317 migrasomes consisting of a quick rising representing the growth, a slightly declined
318 plateau, and a sharp drop representing the rupture (Fig. 3j). The dynamics of rupture was
319  much faster than the other two procedures (Fig. 3k), which necessitated DeepSeMi
320  enabled high temporal-resolution and uninterrupted captures across a long term to catch

321 these features.

322 Retractosome is recently reported as a newly discovered extracellular organelle
323  that is closely related to cell migrations [42]. Since uninterrupted cell migrations can be
324  continuously imaged benefiting from DeepSeMi-enabled low-phototoxicity, high-SNR,
325 and long-term recording ability, pronounced retractosomes were recognized which were
326  transformed from broken-off retraction fibers (Fig. 31-m). Albeit the indistinguishable
327  beads-on-a-string features in the raw captured video, retractosomes were clearly

328  recognized when they moved along with the wobbled retraction fibers (Supplementary
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329  Video 5). After the cell migrated away, plenty of retraction fibers and retractosomes were
330 left behind and forming a complicated network structure that was fractured by the noise.
331 In opposition, DeepSeMi reunited the network by wiping out noise contaminations and
332 thus delivering the potential to study the physiological functions of retractosomes in the

333 future.

334  DeepSeMi facilitates automated analysis of cellular structures from massive data

335 Uncovering the peculiarities of important life-preserving and disease-driving
336  organelles requires robust and unbiased segmentation and tracking tools. Compared to
337 biased and time-consuming manual analysis, recent advances in deep-learning-based
338  processing techniques utilize statistical and graphical knowledge to accomplish fast,
339  unbiased, and automated organelle analysis and are capable of recognizing complicated
340 dynamics like fission and fusion of mitochondria [17]. Confronting the growing
341 requirement of long-term recordings and attendant considerable amounts of cellular
342  imaging data in hundreds of gigabytes [43], automated cellular analysis gradually

343  becomes indispensable for new physiological discoveries.

344 Inspired by those advancements, we utilized the state-of-the-art organelle
345  segmentation method [44] and accordingly trained 3 segmentation networks for
346  mitochondria, migrasomes, and retraction fiber, respectively (Fig. 4a, Methods). We
347  found raw captures of mitochondria under 14.6 pW (0.5% of 488 nm), a bio-friendly
348 power dosage, suffered pronounced segmentation errors due to noise contaminations
349  (Fig. 4b-d, Supplementary Fig. 19). The incorrect segmentation fragments in the
350  background were only eliminated when the power dosage was pushed into 537.6 yW
351  (32% of 488 nm), at a cost of significant photobleaching (Fig. 4b-d, Supplementary Fig.
352 13h). By contrast, DeepSeMi enhancement enabled the segmentation model to output

353  reasonable and gap-less results even at 14.6 pW (0.5% of 488 nm) (Fig. 4b,
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354  Supplementary Fig. 19), permitting reliable segmentation during long-term imaging
355 thanks to heavily reduced photobleaching. Through additionally performing
356  mitochondrial skeletonization and keypoint detection based on instance segmentation[17]
357  (Supplementary Fig. 20), we found remarkable noisy stains in raw captures were
358 recognized as endpoints and junctions of broken skeletons (third row of Fig. 4b,
359  Supplementary Fig. 19). These false positives were well avoided in DeepSeMi enhanced
360 results, and the skeletonization result by DeepSeMi at 14.6 uW (0.5% of 488 nm) are
361 comparable of that in the raw image at 537.6 pW (32% of 488 nm). Quantitively,
362  DeepSeMi enhanced videography achieved significantly larger mitochondria area (Fig.
363  4e, ***p<0.0001, two-sided Wilcoxon rank sum test; Supplementary Fig. 19, Methods)
364 and longer branch length (Fig. 4f, ***p<0.0001, two-sided Wilcoxon rank sum test;
365  Supplementary Fig. 19, Methods) compared to the raw ones at sample-friendly power
366  dosage (14.6 puW (0.5% of 488 nm) and 23.1 uW (1% of 488 nm)). These statistics were
367  only comparable when the power comes to harmful 537.6 puW (32% of 488 nm, p>0.1,
368  two-sided Wilcoxon rank sum test). The over 15 times power reduction of DeepSeMi in
369 achieving high-quality subcellular segmentation validated with over 15 times enlarged
370  photon budget in photobleaching study previously (Supplementary Fig. 13), together
371  indicate the strong promotion of DeepSeMi over an optical instrument in terms of bio-

372  friendly, resolving ability, and data fidelity.

373 To further evaluate the improvement of segmentation accuracy brought by the
374  DeepSeMi enhancement, we manually segmented migrasomes and retraction fibers as the
375  ground truth and then compared the results with automated segmentations on DeepSeMi
376  enhanced videography (Methods). DeepSeMi apparently achieved much clearer
377  micrographs and hence cleaner segmentations (Fig. 4g-h). Statistically, DeepSeMi
378 enhancement achieved 0.9449 =+ 0.0782 recalls (n = 32 images) in migrasome
379  segmentations, holding a safe head compared to raw-video-based segmentation (0.5522

380 £ 0.1359 recalls, n = 32 images). The same advantages were held in segmenting string-


https://doi.org/10.1101/2022.11.02.514874
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.02.514874; this version posted November 3, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Page 16 of 42

381 like retraction fibers (Fig. 4j-k), where DeepSeMi enhancement achieved 0.9493 +0.0618
382  recalls (n = 12 images) compared to 0.3391 + 0.1848 recalls by raw video (» = 12 images,
383  Fig. 41). The high segmentation accuracy enabled by DeepSeMi under sample-friendly
384  power dosage would be the key for massive data analysis through automated algorithms

385  after long-term recordings.

386  DeepSeMi accomplishes SNR enhancement across various samples

387  Lastly, we demonstrated that DeepSeMi effectively increases SNRs across various
388  samples, including cultured cells, unicellular organisms, nematodes, non-mammalian
389  vertebrates, and mammals. We have demonstrated DeepSeMi enabled high-temporal-
390 resolution imaging of mitochondria, low-phototoxicity half-day-long imaging of
391  migrasomes and retractosomes, and facilitated automated analysis in massive data under
392  bio-friendly illumination dosage, but the power of DeepSeMi could be extended further.
393  Here we delineated DeepSeMi helped study of rearrangement of organelles after
394  decomposing cytoskeleton and other organelle-related studies. By dosing an appropriate
395  concentration of latrunculin-A (lat-A) to induce the depolymerization of the intracellular
396  cytoskeleton, a new spatial distribution of intracellular organelles was formed
397  (Supplementary Fig. 21). We found the migrasomes were generated following the rapid
398  contraction of the cell membrane after depolymerization of the cytoskeleton (Fig. 5a). All
399  those observations relied on the enhancement of DeepSeMi, which restored mitochondria
400 and other organelles of diverse morphologies from noise. Similar improvements
401  happened in the study of vesicle fission (Supplementary Fig. 11h, Supplementary Video
402 1), where kymographs (x-t projections) obviously presented the enhancements of
403  DeepSeMi (Supplementary Fig. 111), and also in the study of migrating cell interacting
404  with amigrasome (Supplementary Fig. 22b), producing migrasomes (Supplementary Fig.
405  22c¢), and expelling mitochondria in low light dosage (Supplementary Fig. 22d,
406  Supplementary Video 6).
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407 DeepSeMi also enabled high-SNR, half-hour-long imaging of Dictyostelium cells,
408 an amoeba-like important eukaryote model for studying genetics, cell biology, and
409  biochemistry [45]. Despite the great value of Dictyostelium cells in research, it is
410  ultrasensitive to photodamage since 215 uW of laser dosage at 638 nm and 50.6 uW of
411  laser dosage at 561 nm killed 30% of D. discoideum after 30-minute imaging, preventing
412 high-SNR half-hour-long imaging in conventional approaches (Supplementary Fig. 23,
413  24). We applied DeepSeMi to circumvent the problem, which enabled dual-color and
414  high-SNR imaging at the 45.3 uW dosage at 488 nm and the 49.8 uW dosage at 561 nm
415  over 30 minutes without apparent photodamage (Fig. 5b, Supplementary Fig. 23, 25).
416  Contractile vacuoles and membranes of Dictyostelium cells were evidently recognized
417  with clear boundaries through DeepSeMi enhancement (Fig. 5c¢), and uninterrupted
418  videography dedicatedly enabled by DeepSeMi unveiling startling motions of
419  Dictyostelium cells such as contracting (Fig. 5d, Supplementary Video 7). The ability of
420  DeepSeMi that strongly improves SNR without increasing power dosage sheds new light

421  on studying photodamage-sensitive but valuable animal models like Dictyostelium cells.

422 Caenorhabditis elegans (C. elegans) and zebrafish are used as central model
423  systems across biological disciplines[46, 47]. Rather scattered tissues of C. elegans
424  exuberate the noise contaminations even further compared to cultured cells (Fig. Se,
425  Supplementary Fig. 26a), but DeepSeMi still substantially improved the contrast and
426  sharpness of cells (Supplementary Fig. 26b-f). Although utilizing a higher NA objective
427  suffers even more from scattering, DeepSeMi restored delicate structures with sharp
428  edges and high contrast from noise (Supplementary Fig. 26g-j). On the other hand, the
429  transparency of zebrafish larvae not only helps better observation of structures and
430  functions of cells and organisms in vivo, but also eliminates the protective barrier to
431 photodamage during optical observation [48]. Thereby, imaging zebrafish larvae
432 necessitates low illumination power to not alter the sample health state and normal

433  physiological regulation, which inevitably raises challenges from noise contaminations
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434  (Fig. 51, Supplementary Fig. 27a). We proved that enhancement of DeepSeMi broke the
435  dilemma and provided a clear view of macrophage in zebrafish larvae under a mild power
436  dosage (45.3 uW, Fig. 5g, Supplementary Fig. 27b-c), supplying the potential for long-
437  term observation for studying development and function in the highly complex vertebrate

438  model system.

439 DeepSeMi is also demonstrated to be operative in functional imaging in mice that
440  are widely used in systems and evolutionary neuroscience. We tested the generalization
441  ability of DeepSeMi in nonlinear microscope where neurons were sequentially excited by
442  a focused femtosecond laser in vivo. DeepSeMi readily enhanced visualization of
443  morphologies of neuronal structures (Fig. 5h, Supplementary Fig. 28a-c, Supplementary
444  Fig. 29a-1) from barely recognized noisy captures, and also veritably increased temporal
445  contrast of calcium transients (Supplementary Fig. 28d, Supplementary Fig. 29j). The
446  denoised videos by DeepSeMi facilitated 1.5 times more neurons to be found and would
447  impel potential interrogation of neuronal circuits (Supplementary Fig. 28e,
448  Supplementary Fig. 29k). For observing even smaller structures like wobbled neuronal
449  dendrites and axons in vivo in the mouse brain, the enhancement of DeepSeMi also has

450  no compromise (Supplementary Fig. 30).

451 Discussion

452  Many species of great scientific value are vulnerable to photodamage, necessitating low-
453  power dosage for sample health yet sacrificing SNR, and the condition deteriorates when
454  high spatiotemporal resolution is required for deciphering composited morphology-
455  related regulations. To address these problems, we present DeepSeMi, a versatile self-
456  supervised paradigm capable of enhancing over 12 dB SNR, improving 15-fold photon
457  budget, and reducing 50 times fluorescent dye concentration across various species and
458  instruments with only noisy images required. DeepSeMi with specially designed

459  receptive field-limited convolutional filters readily accomplishes noise contamination
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460  removal without clean data reference or inter-frame interpolations, achieving superior
461  performance over other methods especially in data with complicated transformation.
462  Computationally enhanced photon budget by DeepSeMi fertilized high-frame-rate 4-
463  color organelle recordings across tens of thousands of frames, tracking migrasomes and
464  retractosomes over a half day, and ultra-photodamage-sensitive D. discoideum imaging
465  over thousands of frames, all high-fidelity, intravitally, and sample-friendly. Besides,
466  DeepSeMi was proven to help automated analysis of cells and organelles which is a strong
467  aid in processing massive imaging data and is in trend. Performance of DeepSeMi on
468  wvarious species including nematodes, zebrafish, and mice on both widefield and two-
469  photon microscopes was also validated both qualitatively and quantitatively. In
470  conclusion, DeepSeMi offers a combination of high-resolution, high-speed, multi-color
471  imaging and low photobleaching and phototoxicity that makes it well suited for studying

472  intracellular dynamics and beyond.

473 As a fundamental limitation in fluorescence imaging, stochastic noise determines
474  the upper bound of imaging quality and compromises speed, resolution, and sample
475  health across any instrument. The proposed DeepSeMi can be seamlessly extended to
476  various devices that suffer the noise most, including three-photon microscope with ultra-
477  small absorption cross-section[49], and Raman microscope with critical excitation
478  conditions[50]. In other devices such as widefield and light-field microscope where
479  background contaminates more in scattering tissues than noise, DeepSeMi can
480  collaborate with computational background elimination methods [51] to jointly improve

481  imaging quality with backgrounds rejected and SNR increased.

482 The rearrangement of computationally multiplied photon budgets by DeepSeMi
483  can be more diverse. We have shown benefits of shortened exposure which supports a
484  higher frame rate for interrogating fast dynamics (Fig. 2), and reduced frame rate which

485 enables longer recording time for investigating long-term variations (Fig. 3).
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486  Furthermore, the temporal resolution of an optical system can be further enhanced
487  without losing spatial resolution through combination with multiplexing techniques [52],
488 and DeepSeMi is readily to mitigate the photodamage due to excessive power dosage.
489  When pushing the frame rate to a limit, a standard device may be capable of imaging
490  ultrafast phenomena like spiking[53] and flagellar locomotion[54] without losing fidelity
491 by using DeepSeMi.

492 Despite basic exploration has been explored in this manuscript, manifold research
493  can further increase the accessibility of DeepSeMi. By combining with advanced model
494  compression and pruning techniques[55], the computation time of DeepSeMi can be
495  further compressed for high-speed data inference. Training DeepSeMi across a large
496  range of conditions with varied noise and transformations over multiple samples forms a
497  general model, and DeepSeMi in specific conditions with better performance can be

498  swiftly distributed from the basic one with fine-tuning[56].

499 In short, we believe DeepSeMi provides a robust solution to overcome the shot-
500 noise limitation in fluorescent microscope. Catalyzed by the computational enhancement
501  of DeepSeMi, various organelles and organisms could be safely recorded over a long term
502 in a high spatiotemporal resolution which brings insights into new physiological

503 discoveries.

504
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505 Methods

506 Network structure. DeepSeMi consisted of six 3D hybrid blind-spot neural networks
507  (four spatial blind spot networks and two temporal blind spot networks) and one feature
508  fusion network (Supplementary Fig. 2). All six hybrid blind-spot networks had the same
509  U-net-like structure for extracting features from input videos. Each hybrid blind-spot
510 network consisted of 14 three 3D convolution layers. The first two layers were 3D
511  eccentric blind-spot convolutional layers with 3 X 3 X 3 sized kernels (Fig. 1c). The
512 encoding path of DeepSeMi was composed by 3D eccentric blind-spot convolutional
513  layers (3x3x3 sized kernels) and MaxPooling layers (2x2x2) alternately. Similarly, the
514  decoding path was implemented by 3D eccentric convolutional layers (3x3x3 sized
515  kernels) and Upsampling layers (2x2x2) alternately. The numbers of input features and
516  output features in each layer were set to 32 to accommodate single-GPU training. The
517  feature fusion network consisted of three 3D convolutional layers with 1x1x1 kernels.
518  The number of input channels of the feature fusion network was 32x6=192 to match the
519  size of concatenated features of the six branch networks, while the number of output
520 channels of the feature fusion network matches the real image and depends on
521  experiments. The loss function of DeepSeMi was a summation of 11 norm and 12 norm,
522 while the learning rate is set to 0.0001.

523 We usually picked up 1000 patches from noisy videos to form the training set, and
524  the size of each patch was 128x128%32. Good convergence usually could be obtained
525  after 30-50 epochs of training. The entire training process took 10 hours on an NVIDIA
526 3090 Ti graphics card.

527

528 The concept of eccentric blind-spot convolution and eccentric convolution. The
529  eccentric blind-spot convolution stemming from traditional convolutions plays a

530 significant role in DeepSeMi. Here we illustrate the concept of eccentric blind-spot
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531  convolution through derivations. To simplify the description, all following operations are
532 derived in 2D, while the 3D operations can be easily extended.

533  The traditional discrete convolution (Supplementary Fig. 1a) can be formulated as:

h h
534 Ymn = Z z Xm—in—j " kh+i+1,h+j+1
i=—h &= j=—p

535  where y is the output of the convolution, x is the input image, k is the kernel of
536  convolution with a size of [2h + 1,2h + 1]. Note the information of input pixel x,, ,, will
537  be transmitted to the output pixel y,, , in the above traditional convolution process when
538 i =0andj = 0, resulting the noise of input pixel x,, , will also be kept at the output
539  pixel y,, . Training a neural network composed of such convolutional layers in noise-
540  only data will generate trivial results with the identified mapping, and only noisy-clean
541  data pairs or sequential noisy acquisitions can fuel that neural network with the deficiency
542 of self-supervision. To give the neural network the ability to self-supervised denoising,
543  we construct an eccentric blind-spot convolution kernel (Supplementary Fig. 1c), which

544  can be formulated as
h h

545 Ymn = z Z Xm—i+h+1n—j " kh+i+1,h+j+1
j=—h &= j=—h

546  where the symbols are the same as the above equation. With the proposed eccentric blind-
547  spot convolution, the noisy information of input pixel x,, , will not be conserved in the
548  output pixel y;, ,, and information of the output pixel y,, , can only be estimated from
549  local pixels around the input pixel x;, ,,.

550 In the next we derive the proposed eccentric convolutional filter and explain why it
551  is important to DeepSeMi. In fact, we found that directly combining the aforementioned
552 eccentric blind-spot convolution kernels with traditional convolutional kernels, the blind-
553 spot properties which are the key to ensure the self-supervision would lose. To illustrate
554  that, we concatenate a 2D eccentric blind-spot convolution and a 2D traditional

555  convolution:

h h
— At
556 Ymn = § —n §  Xm-ith+1,n—j Kh—iy1,h-jr1
i=— j=—h
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h h
7 = N ' .
mn — . . Ym—L,n—] h—i+1,h—j+1
i=—h j=—h

where x is the input, y is the intermediate variable from the eccentric blind-spot
convolutional kernel k* and z is the output from the traditional convolutional kernel k2.
Both kernels are with size [2h + 1,2h + 1]. It can be easily found that when h > 0, if
! ={1, a=landb=h+1
a,b 0, others
and
2 2{1, a=handb=h+1
a,b 0, others
the above formula can be simplified to:
Ymn = Xm+1n
Zmn = Ym-1n
This is equivalent to:
Zmn = Ym-1n = Xmn
In other words, the original noise pixel x,, , is directly mapped into an output pixel
Zmn With the same position, indicating the blind-spot properties are dropped. In an
extreme condition h = 0, such blind-spot properties can be still hold, which explained
why we utilized 3D convolutions with kernel size 1 X 1 X 1 in the feature fusion network

(FFnet).

To circumvent this shortage, we designed another eccentric convolution which can
be formulated as

h h
— X . . kl
Ymn = m—i+hn—j " Kp—i+1,h—j+1
i=—h &= j=_p

Following the similar derivations as shown above, it can be proved that the blind-spot
properties are kept in the combination of fully blind convolutions and eccentric
convolutions.

Although the introduction of blind-spot convolutional kernels enabled the neural
network to learn denoising without excessive data, the receptive field is limited to only
one direction for both the kernels and kernels composited networks. We thus established

the hybrid blind-spot network as multiple branches to extract features from different
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584  directions, and then fuse these features by feature fusion network (FFnet) to achieve the
585 all-direction-received output result.

586

587 Time to channel operation. We inserted a time to channel operation [38] at the
588  beginning of the input of the neural network for inputting more temporal information but
589  without obviously increasing the computing time. To achieve that, two times more input
590 frames were input to the network and stacked in the channel dimensions instead of

591  temporal dimensions, which can be quickly squeezed after interacting with the next

592  convolutional kernel. As an example, a video block with a size of C X (T+2F) X HX W

593  was desired to be input, we realigned it to a tensor of size 2FC+C) X TXH X W by

594  multiplexing some frames as the real input of the DeepSeMi.

595

596  Generation of simulated motion datasets. To fully compare the denoising performance
597  of different algorithms on the video denoising task, we utilized the Moving MNIST
598  dataset as the simulated dataset, which is widely used in the field of computer vision. The
599  images from MNIST handwritten digit database served as the main moving contents in
600  generated videos, while each frame is 256 pixels X 256 pixels in size. In the beginning,
601  we randomly selected 10 handwritten digits to form the basic content, and generated
602  random motions for each of the digits. Then, the whole video was generated frame by
603  frame through keeping shifting the digits in predefined tracks. In order to keep the
604  handwritten digits within the bounds of the video frame, the handwritten digit bounced at
605 the edges of the video frame. The size of the video we usually generate was
606  256x256x1000.

607

608 Noise simulation and analysis. We evaluated the performance of DeepSeMi in both
609  Gaussian noise and Poisson noise. The Gaussian noise was simulated by dataset by the

610  getExperimentNoise function derived from BM3D [57] with varied noise scales. The
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611  Poisson noise was simulated by the MPG model function derived from DeepCAD [33].
612  We utilized several merits to evaluate the noise scale. Peak signal-to-noise ratio (PSNR)
613  is widely used for measuring the similarity between recovered images and paired ground
614  truth images. The PSNR (in dB) is calculated as:

615 PSNR =10-1 e
= 0910( 1 Zﬂlz?z(li,j—xi,i)z

niny <i

616  where X is any; X n, recovered image, / is the paired noise-free image. MAX; is set to
617 65535 for 16-bit unsigned integer images. Another merit, Signal-to-noise ratio (SNR) is

618  also selected to quantify the image quality after denoising. The SNR (in dB) is calculated

619 as:
SR X,
620 SNR =10 - logy (=t 2]
TR — X,)?
621

622  Evaluation of photobleaching. Photobleaching represents the inability of the fluorescent
623  protein to emit photons after continuous excitation. To evaluate the photobleaching under
624  different power dosage, we averaged all pixel intensities from the acquired image. To
625 eliminate the influence of the sensor background noise even without fluorescence photons
626  input, we calculated the averaged intensity in a sample-free area, and accordingly updated
627  the averaged intensity across the whole image such that it represents net fluorescence
628  photon flux. We then quantified the speed of photobleaching by fitting the photobleaching
629  curve using an exponential function.

630

631  Training of organelle segmentation network. As the demand for studying cell biology
632  through microscopic fluorescence imaging increases, it is necessary to utilize automated
633  analysis tools to process massive imaging data in a relatively short time for fertilizing
634  quick experiment iterations. We thereby demonstrated DeepSeMi enhances automated
635 analysis of organelles with high precision and low phototoxicity. We utilized a physics-
636  based machine learning method for organelle segmentation [44]. We simulated both the

637  optical imaging results and segmented ground truth of mitochondria, migrasomes, and
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638  retraction fibers based on the morphological characteristics. 1500 paired images were
639  prepared for each organelle. We then built and trained a traditional 2D U-net using the
640  simulated datasets, with the size of the input image of 256x256. It took about 10 minutes
641  on an NVIDIA 3080 Ti graphics card to achieve good convergence results in about 4-10
642  epochs. The learning rate is set to 0.0001.

643 We utilized merits of precision, recall, Fl1-score, and accuracy for segmentation

644  evaluation of the network:

645 ision = —F
preClSlon = TP n Fp
646 =
recat = TP Y FN
647 F1 - 2TP
S€OT€ = TP + FN + FP
TP + TN
648 accuracy =

TP+TN+ FP+FN

649  where TP is true positive, TN is true negative, FP is false positive, and FN is false
650 negative.

651

652  Mitochondria analysis. After mitochondria segmentation through the methods in the
653  above section, the connected regions from the segmented binary masks were detected by
654  bwlabel function in MATLAB to accomplish the mitochondrial instance segmentation.
655  The mitochondrial area of each connected region was calculated, and the skeletons and
656  key points of mitochondria were picked up through hwmorph function in MATLAB.
657  According to the different topological positions, the key points were classified into
658  junctions or end points. We tracked the mitochondria with Imaris (Oxford Instruments)
659  across recording sessions to indicate the movement state of mitochondria.

660
661  Cell culture and imaging system. L.929 cells and NRK cells were cultured in DMEM

662  (Gibco) medium supplemented with 10% FBS (Biological Industries), 2 mM GlutaMAX
663  and 100 U/ml penicillin-streptomycin in 5% CO2 at 37°C. The PiggyBac Transposon

664  Vector System was used to generate the stably expressing cell line. For L1929 cells,
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665  Vigofect was used for cell transfection according to the manufacturer’s manual. NRK
666  cells’ transfection was via Amaxa nucleofection using solution T and program X-001. 35
667  mm confocal dishes were precoated with fibronectin (10 mg/ml) at 37°C for 1 hour. Cells
668  were cultured in fibronectin-precoated confocal dishes for 4 hours before imaging. AX2
669 axenic strain cells were provided by the Jeffrey G Williams laboratory (Cell and
670  Developmental Biology, College of Life Sciences, University of Dundee, UK). The AX2
671  WT cells and the derived cell line were cultured in HL5 medium (Formedium # HLF2),
672  supplemented with antibiotics, at 22°C. The plasmids pDM323 and pDM451 were
673  provided by the Huaqing Cai laboratory (National Laboratory of Biomacromolecules,
674  Institure of Biophysics, Chinese Academy of Sciences, China). The DNA fragments
675 encoding dajumin and cAR1 were PCR-amplified and cloned into the overexpressing

676  plasmids.

677 C. elegans stably overexpressing OSM-3-GFP were provided by the Guangshuo Ou
678  laboratory (School of Life Sciences, Tsinghua University, China). We cultivated C.
679  elegans on nematode growth medium agar plates seeded with the Escherichia coli OP50
680 at 20 °C. For live cell imaging, worms were anesthetized with 1 mg/mL levamisole and

681  mounted on 3% agarose pads at 20 °C.
682  The Tg(mpegl.1:PLMT-eGFP-caax) transgenic zebrafish was provided by Boqi Liu. All

683  adult zebrafish were kept in a water-circulating system at 28.5 °C. Fertilized eggs were
684  raised at 28.5 °C in Holtfreter’s solution. The embryos were embedded in 1% low-
685  melting-point agarose for live-cell imaging. The use of all zebrafish adults and embryos
686  was conducted according to the guidelines from the Animal Care and Use Committee of

687  Tsinghua University.

688 All imaging experiments in this research were based on a Nikon Al confocal

689  microscope (Bioimaging center, School of Life Sciences, Tsinghua University, China).

690  All cellular imaging was conducted by a 100 X objective (NA 1.45, oil immersion). A

691  10x objective (10%, NA 0.45, air) was used to capture the global image of C. elegans and
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692  zebrafish. Two-photon imaging was conducted with a customized two-photon imaging

693  system under a commercial objective (25%, NA 1.05, XLPLN25XWMP2, Olympus).

694

695
696
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697  Data availability

698  All relevant data that support the findings of this study are available from the
699  corresponding authors upon reasonable request.

700

701  Code availability

702 Our DeepSeMi can be found at https://github.com/GuoxunZhang-PhD/DeepSeMi.
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858 Fig. 1 | DeepSeMi accomplishes self-supervised video denoising based on the
859  statistical characteristics of noise. a, Statistical principle of DeepSeMi. In clean
860  conditions, a learned mapping from neighbors to a centered pixel can be well established
861  even excluding the pixel itself since local structure continuity (the first row). It is worth
862  exploring whether we can establish a learned mapping from neighbor noisy pixels to the
863  targeted noisy pixel.(the second row). A neural network aimed at establishing the learned
864  mapping thereby yields averaged fluctuant gradients on the target pixel (the third row).

865  Fortunately, the zero-mean assumption of noise contaminations ensures that averaged


https://doi.org/10.1101/2022.11.02.514874
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.02.514874; this version posted November 3, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Page 34 of 42

866  gradients relocate the clean information of the target pixel that is unobserved (the fourth
867  row), which provides the rationale of DeepSeMi. b, The schematics of the 3D eccentric
868  convolution. In a 3D (x, y, t) patch (blue), an eccentric neighborhood (yellow)
869  surrounding the target pixel (red) is multiplied with a learnable kernel (green), and the
870  dimension-reduced summation forms an output pixel (grey) in the output patch. Note in
871  eccentric convolution, the eccentric neighborhood still contains the target pixel. ¢, The
872  schematics of the 3D eccentric blind-spot convolution. All symbols are the same as b.
873  Note in eccentric blind-spot convolution, the eccentric neighborhood doesn’t contain the
874  target pixel, and thereby the output pixel (gray) excludes the information of the target
875 pixel (red). d, Structure of the proposed spatiotemporal hybrid 3D blind-spot
876  convolutional neural network. The neural network consists of six sub-networks with the
877  same structure and a final feature fusion network (FFnet). Among six sub-networks, four
878  spatial 3D blind-spot convolutional neural networks (SBSnet, top four) and two temporal
879 3D blind-spot convolutional neural networks (TBSnet, bottom two) share the same
880  parameters, respectively. The input patch is rotated and fed into each sub-network, and
881  the output features accordingly are rotated in order to match each other’s size before
882  feature fusion (Methods). e, DeepSeMi enables signal-to-noise-ratio (SNR) enhancement
883  with only the experimental data through a single shot. The low-SNR recordings can be
884  used to train the proposed self-supervised neural network in situ, which enable the trained
885  network to enhance the low SNR recordings itself. f, The raw captures of cells labeled by
886  WGA with a diluted concentration (2 ng/ml, 500 times diluted, left) and corresponding
887  DeepSeMi enhancement (right). Magnified views about migrasomes in 500 times diluted
888  dye concentration are presented at the bottom (left for raw and right for DeepSeMi
889  enhancement). Scale bar in the first row is 30 um, and in the second rows is 10 pm. g-h,
890  DeepSeMi denoising performance indicated by the SNR over different noise levels

891  (Supplementary Fig. 3) and content speeds (Supplementary Fig. 4), respectively.


https://doi.org/10.1101/2022.11.02.514874
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.02.514874; this version posted November 3, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Page 35 of 42

DeepSeMi|TOM20-GFP DeepSeMi|WGAB47

b 1
4 1 ° 1
= = 21 =
7} 7} 7} 7}
05 $05 “:’n s 05
= £ %0 =
~  |tagBFP-SKL - ~  |SiT-mApple -

0 5

0_ 15 20
Time (min)

DeepSeMi

% 10F
5T
83sf 1
[=%
L
a s s s L s L L L s
50 100 150 200 ) 250 300 350 400 450 500
Time (s)
E|_ ‘\
Ly ' o
N
] 5 \M “\i
£ D S
Q
o
K]
& 0.75 751
= . S S
[a) ‘ s P Leaving
—_— Idling
. 0 —_—— Approaching
—_— Time
150 T T T T T T T T T
I 1oF Keeping away 13 Getting close ,g
£ ER% 3 ° ES
38 3 o® ° ‘u-; 100}
- g o o
c c =
3° 3 [e® '.’...{ 8
£ Er7rew” © L4 »
4 ] . ” . 5 50F B
Q o ° X
© S5 ¢4 T 0.75 fps 7.5 fps
[P [N 3 —_————
7] o | J
o ol ae®® ° v ° = 0 L L L L L ' L L L
0 05 1 15 2 25 0 1 2 3 " 50 100 150 200 250 300 350 400 450 500
Velocity (um/s) Velocity (um/s) Time (s)

892  Fig. 2 | Long-term, high-temporal resolution, and low-phototoxicity imaging of
893  organelle interactions by DeepSeMi. a, Left, raw (top) and DeepSeMi-enhanced
894  (bottom) micrographs of an 1929 cell expressing fluorescent proteins (TOM20-GFP,
895  TagBFP-SKL, and SiT-mApple) and labeled by WGA647. Right, individual channels of
896  the yellow box marked in the left panel are displayed separately. Scale bar, 10 um. b,
897  Fluorescence intensity fluctuations (n =10) of 4 channels during a 30-minute long

898  imaging session (13,500 frames) at 2% light intensity. Fluorescence intensity curves were
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899  normalized to initial values. ¢-d, Raw and DeepSeMi-enhanced time-lapse images that
900 reflect mitochondrial morphological changes during low-light recording. White arrows
901  mark the process of mitochondrial fission and fusion. Scale bar, 5 um. e, Raw (left) and
902  DeepSeMi-enhanced (right) four-color cellular imaging in low-light conditions, with
903 trajectories of a rod-shaped mitochondria tracked and zoomed in the bottom-right corner.
904  The color-coded time stamps are labeled at the bottom. Scale bar, 5 pm. f, Displacement
905  of the rod-shaped mitochondria plotted as a function of time. g, Inferred mitochondria
906  displacements versus time under different imaging frame rates. Different colors represent
907  different relative states of rod-shaped mitochondria to the cell body, where green for
908 leaving, blue for approaching, and red for idling. Red arrows mark differences between
909  displacement inferences of full sampling rate (7.5 Hz) and 10-fold sub-sampling rate
910  (0.75 Hz). h, Tracked drifting distances of mitochondria during 500 seconds with full
911  sampling rate (7.5 Hz) and 10-fold sub-sampling rate (0.75 Hz). i-j, Distributions of the
912  moving rates and displacements of tracked rod-shaped mitochondria during leaving and

913  approaching states, respectively.
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914 Fig. 3 | DeepSeMi enables half-day-long observations of migrasomes and
915  retractosomes with low-phototoxicity. a, Raw (top left) and DeepSeMi-enhanced
916  (bottom right) micrograph of L929 cells expressing both TOM20-GFP and TSPAN4-
917  mCherry. Scale bar, 20 um. b-¢, Zoom-in panels that visualize extracellular migrasomes
918  generation and displacement by raw and DeepSeMi-enhanced recordings, respectively.

919  The migrasomes marked by white arrows burst at the end of their longevities. Scale bar,
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920 10 pm. d-e, Zoom-in panels that visualize mitocytosis and displacements by raw and
921  DeepSeMi enhanced recordings, respectively. Scale bar, 10 pum. f, The areas of
922  extracellular migrasomes changing along time in DeepSeMi-enhanced videos. Different
923  colors represent different migrasomes (n = 51). g, Violin plot of the maximum area of
924  extracellular migrasomes in DeepSeMi-enhanced videos. White circle: median. Thin
925  wvertical lines: upper and lower proximal values. Violin-shaped area: kernel density
926  estimates of data distribution. n = 51 data points. h, Violin plot of the longevity of
927  extracellular migrasomes in DeepSeMi-enhanced videos. Symbols are the same as in g.
928 n = 51 data points. i, Scatter plot of longevity and maximum area of extracellular
929  migrasomes in DeepSeMi-enhanced videos. » = 51 data points. j, Statistics of the
930 normalized migrasome area changing across the migrasomes life span. Gray curves
931  represent the trend of each migrasome (n = 51), and the red curve represents the average.
932 Kk, Histogram of the area changing rate of migrasomes across n = 51 migrasomes. I-m,
933  Generation of retractosomes in regions through which cells have migrated over. A global
934  view where the first row represents images enhanced by DeepSeMi and the second row

935  represents the raw images. Scale bar, 20 pm.
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936  Fig. 4 | DeepSeMi facilitates accurate automated analysis of cellular structures with
937  low light dosage. a, Schematic diagram illustrating the segmentation of mitochondria,
938  migrasomes, and retraction fibers through three neural networks (Methods). b-d,
939  Differences of mitochondrial analysis based on raw images (bottom left) and DeepSeMi-
940  enhanced (top right) images decreased as power dosage increased. The first row
941  represents the raw captures (bottom left) and the DeepSeMi-enhanced fluorescence
942  images (top right). The second row represents the instance segmentation of the raw
943  captures (bottom left) and the enhanced images (top right). The third row represents the
944  skeletonization of the raw captured mitochondria (bottom left) and the enhanced
945  mitochondria (top right). Scale bar, 20 um. e, Statistics of mitochondria area based on the
946  instance segmentation before (red) and after DeepSeMi enhancement (blue). White circle:
947  median. Thin vertical lines: upper and lower proximal values. Violin-shaped area: kernel
948  density estimates of data distribution. f, Statistics of branch length of mitochondria based

949  on the skeletonization before (red) and after DeepSeMi enhancement (blue). Symbols as
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950 ine. g-h, Instance segmentation of migrasomes before (bottom left) and after DeepSeMi
951  enhancement (top right). Scale bar, 20 pm. i, Segmentation precision, recall, F1, accuracy
952  scores of the migrasomes before (red) and after DeepSeMi enhancement (blue). Ground
953  truth data is manually annotated (Methods). n = 32 images. j-k, Instance segmentation of
954  retraction fibers before (bottom left) and after DeepSeMi enhancement (top right). Scale
955  bar, 10 um. 1, Segmentation precision, recall, F1 scores of the retraction fibers before
956  (red) and after DeepSeMi enhancement (blue). Ground truth data is manually annotated

957  (Methods). n = 12 images.
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958  Fig. 5 | DeepSeMi seamlessly improves SNRs over various species. a, Generation of a
959  migrasome from the L.929 cell with four organelles labeled colorfully (TOM20-GFP,
960 WGA647, TagBFP-SKL, and SiT-mApple, Supplementary Fig. 20) after treatment with
961  Latrunculin-A (lat-A) (0.5 pg/ml. Methods). For each panel, the right part represents
962  DeepSeMi-enhanced results and the left panel represents the raw image. Scale bar, 10
963 um. b, Raw (top right) and DeepSeMi-enhanced (bottom left) long-term high-speed
964  imaging of photo-sensitive Dictyostelium cells. Scale bar, 10 um. ¢, Zoom-in panels of
965  the white boxes marked in b represent contractile vacuoles and membranes. Intensity
966  profiles along the white dash lines were plotted at the bottom. Scale bar, 3 um. d, Time-
967 lapse imaging of expansion and contraction of the contractile vacuole enhanced by

968  DeepSeMi. Scale bar, 4 um. e, In vivo imaging of C. elegans in a millimeter-scale field-
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969  of-view by raw (top) and DeepSeMi-enhanced (bottom) captures, respectively. Scale bar,
970 100 um. f, In vivo imaging of zebrafish larvae in a millimeter-scale field-of-view by raw
971  (top right) and DeepSeMi-enhanced (bottom left) captures, respectively. Scale bar, 200
972  um. g, Observation of macrophage in zebrafish larvae in vivo by raw (left) and
973  DeepSeMi-enhanced (right) images, respectively. Scale bar, 5 ym. h, Low-SNR image
974  (left), DeepSeMi-restored image (middle), and high-SNR reference image recorded by
975  10-fold higher photon flux as references (right). Low-SNR and high-SNR images were
976  recorded through a hybrid multi-SNR two-photon system for validation [33]. 8 time

977  points were displayed for each modality. Scale bar, 20 pm.
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