
Page 1 of 42 

Bio-friendly long-term subcellular dynamic recording by self-1 

supervised image enhancement microscopy 2 

Guoxun Zhang1,2*, Xiaopeng Li3*, YuanlongZhang1,2*, Xiaofei Han1,2, Xinyang Li1,2,4, 3 

Jinqiang Yu3, Boqi Liu3, Jiamin Wu1,2†, Li Yu3† & Qionghai Dai1,2† 4 

1Department of Automation, Tsinghua University, Beijing, 100084, China 5 

2Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China 6 

3State Key Laboratory of Membrane Biology, Tsinghua University–Peking University 7 

Joint Centre for Life Sciences, Beijing Frontier Research Centre for Biological Structure, 8 

School of Life Sciences, Tsinghua University, Beijing, 100084, China 9 

4Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 10 

China 11 

 12 

*These authors contributed equally to this work 13 

 14 

†Correspondence: wujiamin@tsinghua.edu.cn (J.W.), liyulab@mail.tsinghua.edu.cn 15 

(L.Y.), qhdai@tsinghua.edu.cn (Q.D.) 16 

 17 

  18 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 3, 2022. ; https://doi.org/10.1101/2022.11.02.514874doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.02.514874
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 2 of 42 

Abstract 19 

Fluorescence microscopy has become an indispensable tool for revealing the 20 

dynamic regulations of cells and organelles in high resolution noninvasively. 21 

However, stochastic noise inherently restricts the upper bonds of optical 22 

interrogation quality and exacerbates the observation fidelity in encountering joint 23 

demand of high frame rate, long-term, and low photobleaching and phototoxicity. 24 

Here, we propose DeepSeMi, a self-supervised-learning-based denoising framework 25 

capable of increasing SNR by over 12 dB across various conditions. With the 26 

introduction of newly designed eccentric blind-spot convolution filters, DeepSeMi 27 

accomplished efficacious denoising requiring no clean data as references and no 28 

compromise of spatiotemporal resolution on diverse imaging systems. The 29 

computationally 15-fold multiplied photon budget in a standard confocal 30 

microscope by DeepSeMi allows for recording organelle interactions in four colors 31 

and high-frame-rate across tens of thousands of frames, monitoring migrasomes and 32 

retractosomes over a half day, and imaging ultra-phototoxicity-sensitive 33 

Dictyostelium cells over thousands of frames, all faithfully and sample-friendly. 34 

Through comprehensive validations across various cells and species over various 35 

instruments, we prove DeepSeMi is a versatile tool for reliably and bio-friendly 36 

breaking the shot-noise limit, facilitating automated analysis of massive data about 37 

cell migrations and organelle interactions.   38 
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Introduction  39 

The magnificence of the harmonically orchestrated systems, organs, tissues, and cells 40 

attracts people to exploit the mystery of life[1, 2]. Among the various phenotypic 41 

activities and processes, organelles interact with one another and the cytoskeleton to 42 

synergistically execute various physiological functions that support the functioning of 43 

living beings. Such gorgeous patterns reflect live organelles of complex, dynamic, and 44 

interplay in highly dynamic yet organized interactions capable of orchestrating complex 45 

cellular functions[3]. Thereby, visualizing the functionality and complexity of organelles 46 

in their native states requires high spatiotemporal resolution observation without 47 

perturbing these physiologically presented regulations in a long term.  48 

Standing in the center of approaches dedicated to probing and deciphering the micro 49 

world is the non-invasive fluorescent microscope capable of high spatiotemporal 50 

resolution[4] and good protein-specificity[5]. Combined with fruitful fluoresce 51 

proteins[6, 7] and indicators[8], lustrous and remarkable advances in enriched 52 

fluorescence microscope[1, 9-12] have brought flourishing discoveries across many 53 

disciplines including cell biology[13], immunology[14], and neuroscience[15], among 54 

others. However, the limited photon budget with insufficient signal-to-noise ratio (SNR) 55 

becomes a fundamental lingering challenge to be solved for fluorescent microscopes that 56 

prevents more discoveries to be achieved[16]. The low quantum yield of fluorescent 57 

indicators and the stochastic nature of noise make the contamination inevitable[6], 58 

aggravating the measurement uncertainty and impairing downstream quantitative 59 

analysis, including cell segmentation[17], cell tracking[18], and signal extraction[19]. 60 

Overcoming this limitation physically requires enlarging excitation dosage[20] or 61 

enriching the expression of indicators[21], but either damaging the fragile living systems 62 

or poisoning the cellular health and both altering morphological and functional 63 

interpretations that follow. Such a condition is even worse in long-term imaging that 64 
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necessitates repeated dosage over the same sample hundreds and thousands of times to 65 

observe pivotal processes like cell proliferation[22], migration[13, 23], organelle 66 

interactions[24, 25], and neuronal firing[26]. To mitigate noise contaminations without 67 

excessive light exposure-induced photobleaching and phototoxicity that perturbs the 68 

sample in its native state, people have to sacrifice imaging speed, resolution, or 69 

dimensions[27].  70 

Despite limited advances achieved across physical approaches, numerous 71 

algorithmic approaches have been proposed to break the shot noise limit by utilizing 72 

statistics of the noise[28]. Traditional denoising methods that exploit canonical properties 73 

of the noise (such as Gaussianity[29] and structures in the signal[30]) achieve great 74 

success in photographic denoising [30] but have limited performances in complex, 75 

turbulent, and dynamic living systems and with remarkable time consuming and 76 

computing complexity. In contrast, supervised learning methods utilizing a data-driven 77 

prior learned from paired noisy and clean measurements are proven to be valid as long as 78 

samples are drawn from the same distribution[31]. To extend the generalization ability, 79 

the requirement of clean data can be further replaced by additional independent noisy 80 

measurements[32], fertilizing breakthroughs in interpolating noise-contaminated 81 

functional data [33, 34]. However, neither of these supervised methods circumvents the 82 

denoising of videographic high-resolution recording with both intensity fluctuations and 83 

deformations of living organisms or organelles. The causes of the shortage are manifolds. 84 

Firstly, since the same physiological phenomenon would not repeat twice for each cell or 85 

organism, the requirement of clean data by methods can only be satisfied through 86 

simulations which remain remarkable gaps between training and inferring domains[35]. 87 

Secondly, even only the paired noisy data is required in interpolation-based methods like 88 

DeepInterpolation [34] and DeepCAD [33], the precondition of interframe continuity 89 

likely defiles visualizing rapid transformations of living organisms or organelles. Thirdly, 90 

data-hungry nature ensued from the insufficient exploitation of noise statistics forces 91 
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these methods to compromise, either hampering the genuine visualization to keep the 92 

organism safe, or sacrificing the sample health to acquire excessive captures for ensuring 93 

visualization quality.  94 

Here, we overcome the aforementioned limitations and propose deep self-supervised 95 

learning enhanced microscope (DeepSeMi), a brand-new tool that readily and veritably 96 

increases the SNR over 12 dB across various conditions and systems, and catalyzes noise-97 

free videography of diverse structures and functional signals with minimized 98 

photodamage in a long term. DeepSeMi explores noise priors that root in data itself 99 

through concatenating newly designed eccentric convolution filters and eccentric blind 100 

convolution filters with intentionally limited receptive fields across both spatial and 101 

temporal dimensions (Supplementary Fig. 1, Methods), fundamentally surrogating the 102 

data-hungry shortage of supervised methods and genuinely accomplishing SNR 103 

reinforcing even over fast transformed samples. Compared to recently developed 104 

interpolation-based denoising methods, DeepSeMi is capable of observing organelles of 105 

sophisticated movements and transformations without motion artifacts. Thereby, 106 

DeepSeMi standing by the means of self-supervision outperforms other methods in both 107 

performance and generalization abilities, and computationally amplifies the photon budget of 108 

multiple instruments in long-term tracking of organelles and organisms’ activities without the 109 

burden of exacerbating sample health in traditional approaches. Through DeepSeMi, organelle 110 

interactions in their native states inside 4-color-labelled-L929 cells were recorded over 111 

30 minutes and 14, 000 time points in high SNR by a confocal microscope, a widely used 112 

instrument adored by the high resolution and hated by the photodamage. Aided by 113 

DeepSeMi, brittle structures like migrasomes and retractosomes were densely tracked in 114 

a half-day-long session uninterrupted without trackable photobleaching, and multiple 115 

organelles can be segmented accurately free of false positives by noise contamination. 116 

Even fragile and phototoxicity-susceptible samples like Dictyostelium cells were also 117 

clearly recorded over 36,000 shots in multicolor, attributed to DeepSeMi enhancement. 118 
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Not limited to cultured cells and organisms, the capability and generality of DeepSeMi 119 

are also demonstrated in a series of photon-limited imaging experiments over various 120 

species, including nematodes, zebrafish, and mice, all intravitally. We open-source 121 

DeepSeMi to the whole community and hope it can spur new discoveries that were 122 

previously unseen by the walls of noise limitation. 123 

Results 124 

DeepSeMi roots in noise statistics and accomplishes single-flow high-fidelity 125 

denoising 126 

Given the complexity of noisy conditions and sample topologies, limited research has 127 

been conveyed to solve the noise contamination of cellular videography. To our 128 

knowledge, no data-driven methods capable of long-duration imaging in the intercellular 129 

environment at high spatiotemporal resolution have been demonstrated with robust 130 

denoising capability in practice. Recent advances in computer vision provide clues to 131 

mitigate the problem, where the mapping between different captures of the same scene 132 

can form a deep neural network that effectively removes noises in fresh capture[32]. 133 

However, such exploitation of noise statistics only stays at the frame level and loses 134 

motion information of non-stop contents, limiting applications on spatial-invariant 135 

functional imaging or sluggish cell migration in low resolution [33, 34]. 136 

The innovation of DeepSeMi roots in a full exploitation of noise statistics. Studies 137 

show that mutual mappings from neighbors to a centered pixel can be well established 138 

even excluding the pixel itself due to local structure continuity [36]. Under noisy 139 

conditions, although those mappings are significantly defiled, the zero means and 140 

independence of noise make the average of the defiled mappings relocate the clear pixel 141 

information, facilitating estimation of each clear pixel from the surrounding noisy 142 

spatiotemporal neighborhood [37] (Fig. 1a). Based on that observation, DeepSeMi 143 
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thereby established mappings between per pixel of the noisy videography and its 144 

surrounding pixels to effectively denoise videography. The utility of pixel-level noise 145 

statistics makes DeepSeMi robust even over a single noisy shot, and consequently 146 

eliminates the annoying need for excessive captures to ensure the performance compared 147 

with previous techniques [33, 34] (Fig. 1e).  148 

To establish these special mappings, two brand new convolution kernels were 149 

developed for conveying the aforementioned thought with optimized efficiency in 150 

DeepSeMi. The first convolutional kernels receive both the inferred pixel and its 151 

eccentrically surrounded neighbors to keep the DeepSeMi efficient in both restoring 152 

structures and eliminating noise (Fig. 1b, Supplementary Fig. 1b), and are accordingly 153 

named as eccentric convolution. The second convolution kernels resemble the blind-spot 154 

property by only receiving the eccentrically surrounded neighbors of the inferred pixel to 155 

achieve an even stronger noise cleanse ability (Fig. 1c, Supplementary Fig. 1c), and are 156 

accordingly named as eccentric blind-spot convolution. A single flow across the blind-157 

spot convolution thereby consists of millions of sub-approaches where each input noisy 158 

pixel is synthesized only by the neighbors without itself, accomplishing denoising in a 159 

self-supervised learning manner exceedingly efficiently. The rationale for combining 160 

both filters in the DeepSeMi is to achieve an appropriate balance between the preservation 161 

of details and noise robustness with the assistance of the pixel-level blind-spot technique 162 

(Methods). Six branches composed of these two convolutional filters deliver 163 

permutational receptive-limited fields of both spatial and temporal dimensions, and are 164 

further merged by a feature fusion network to form preferential representations of the 165 

output video block (Fig. 1d). Computation losses are differentiated ergo between the input 166 

and output to guide the updates of the network parameters through backpropagation 167 

(Supplementary Fig. 2). The comprehensively optimized DeepSeMi also leverages a 168 

time-to-feature folding operation which feeds more temporal information without 169 

increasing additional computational cost to increase performance (Methods). 170 
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We benchmarked the denoising capability of DeepSeMi through extensive 171 

simulations compared with various mainstream methods. To fully emulate real 172 

experiments within complex situations, we evaluated those methods in Moving MNIST 173 

datasets where both the noise level and the movement speed of the contents are varied in 174 

a large range. Among all methods, DeepSeMi achieved the best denoising results across 175 

all noise levels, even achieving 15 dB higher SNR compared to raw capture at extremely 176 

noisy conditions where samples were submersed in noise (Fig. 1g, Supplementary Fig. 177 

3). While most of the literature merely comparing SNR in static scenes, we further 178 

evaluated the denoising ability of those methods encountering swift contents across 179 

various speeds. As the increase of the content moving speed, DeepSeMi kept being the 180 

top tier in terms of restoration quality over other methods with at least 12 dB SNR 181 

improvement (Fig. 1h, Supplementary Fig. 4), where techniques using frame-level noise 182 

statistics (DeepCAD [33] and DeepInterpolation [34]) lowered their performance quickly 183 

due to the frame interpolation nature (Supplementary Fig. 5, Supplementary Fig. 6). In 184 

more complicated Poisson noise contaminations where the noise scale correlates with the 185 

image intensity (Supplementary Fig. 7), DeepSeMi still outperformed all other methods 186 

by over 4 dB ahead.  Across all tests, the UDVD15 technique [38] utilized the similar 187 

blind-spot technique immediately following up DeepSeMi. However, our proposed 188 

DeepSeMi achieved superior performance thanks to the improvement of spatiotemporal 189 

convolutions, additional eccentric blind-spot convolutions, and additional receptive field 190 

limited branches in temporal domain (Methods). 191 

Besides, DeepSeMi was also proved to have generalization ability across different 192 

noise scales and content speed. Given the DeepSeMi that trained at a moderate speed 193 

(Supplementary Fig. 8a-c), the performances are nearly consistent when the content speed 194 

varies across 20% to 180% range. We further tested the generalization ability of 195 

DeepSeMi in experiments, where DeepSeMi was trained for the modality of 196 

mitochondrial membrane but tested in the co-labeled cell membrane and mitochondrial 197 
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matrix data (Supplementary Fig. 9a).  We found the noise-contaminated mitochondrial 198 

matrices were cleaned by DeepSeMi in both clustered forms close to the cell center and 199 

scattered forms in the cell edge (Supplementary Fig. 9b-e). Composited interactions of 200 

both membranes and mitochondrial matrix were clearly displayed after DeepSeMi 201 

enhancement which was only trained in a third and unimodal data (Supplementary Fig. 202 

9f-h). By denoised dual-color co-labeled mitochondria data (Supplementary Fig. 10a), 203 

self-consistency of DeepSeMi was validated since the denoised results were highly 204 

consistent between dual channels despite the noise distributions being largely different 205 

between them (Supplementary Fig. 10c). The great generalization ability and self-206 

consistency of DeepSeMi ensure the fidelity of observation across complicated micro-207 

environment during long-term cellular imaging, accomplishing apparent enhancements 208 

in recovering both structural and functional diversities (Supplementary Fig. 11, 209 

Supplementary Video 1). 210 

DeepSeMi unlocks high-speed long-term imaging with minimized photobleaching 211 

High-temporal resolution imaging is ideal for observing swift intracellular organelle 212 

interactions, cell migration, and multicellular interactions, yet regretfully limited in a 213 

short term due to the compromise of photobleaching and phototoxicity. With extensive 214 

evaluations, we found that healthy mitochondria can only stand for 45.3 μW laser power 215 

(2%, 488 nm) (Supplementary Fig. 12) for a 3-minute-long session at 30 frames per 216 

second (fps) in a commercial confocal microscope without apparent photobleaching 217 

(Supplementary Fig. 13, Methods). Higher scanning laser dosage quickly quenched the 218 

fluorescence, failing the imaging process due to missing mitochondrial structural 219 

information. However, such a low power dosage exacerbated the noise contaminations to 220 

the observations and yielded barely characterized structures (Supplementary Fig. 13d), 221 

and the situation was even worse when the mitochondria were densely clustered due to 222 

lack of sparsity. On the other hand, with the proposed DeepSeMi, mitochondria under 223 
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even 14.6 μW (0.5%, 488 nm) power dosage can be faithfully denoised with intact and 224 

natural form restored (Supplementary Fig. 14, 15). Under that mild excitation, the 225 

fluorescent intensity drop was unrecognizable, suggesting DeepSeMi enhancement not 226 

only accomplished high-temporal resolution recording but even reduced the 227 

photobleaching further (Supplementary Video. 2). From other perspectives, the 228 

computational enhancement of DeepSeMi brings a surge of available photon budget of 229 

optical instruments. Considering DeepSeMi achieves even higher visualization quality of 230 

mitochondrial structures in 23.1 μW (1%, 488 nm) (Supplementary Fig. 13b) than raw 231 

captures in 537 μW (32%, 488 nm) (Supplementary Fig. 13g), the available photon 232 

budget was enlarged at least ten folds.  233 

 We quantitatively verify the photon budget enlargement of DeepSeMi across two 234 

dimensions. In the first dimension, we approximated the photon budget enlargement as 235 

the multiplication of excitation power in raw captures through which the same SNR of 236 

DeepSeMi enhancement can be achieved (Supplementary Fig. 16). We found at least 15-237 

times more power dosage in raw frames was required to produce the same level of 238 

imaging quality as DeepSeMi enhancement across various noisy conditions, verifying 239 

DeepSeMi enlarges the photon budget by 15 folds leastways. In the second dimension, 240 

we investigate the photon budget enlargement as the excessive concentration of dyes in 241 

raw captures to approach the DeepSeMi-enhanced SNR. We proved DeepSeMi achieved 242 

no-compromise results in over 50 times diluted dye concentrations across migrasomes, 243 

lysosomes, and mitochondria, and the resulting captures were comparable with the non-244 

diluted ones (Fig. 1f, Supplementary Fig. 17). Although both the higher power dosage 245 

and dye concentration facilitate better visual inspections with fewer noise contaminations, 246 

on the other hand, both of them cause significant cytotoxicity and perturbation over the 247 

native regulation of the organelles and organisms. Instead, DeepSeMi enables tens of 248 

times photon budget increments computationally, permitting high-fidelity functional and 249 

structural interrogation which is previously unmet. Towards directions of broader 250 
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applications, the multiplied photon budget by DeepSeMi strongly extends the capacity of 251 

the commercial confocal microscope in pursuing higher spectral complexity, higher 252 

frame rate, and longer recording sessions. 253 

 With the encouragement of apparent SNR enhancement of DeepSeMi under 254 

sample-friendly power dosage across thousands of captures, we performed imaging at 7.5 255 

fps on L929 cells with four structures labeled by four colors (tagBFP-SKL, TOM20-GFP, 256 

SiT-mApple, and WGA647 for peroxisomes, mitochondria, Golgi, and migrasomes, 257 

respectively) on a commercial confocal microscope (Fig. 2a, Methods), for 30 minutes 258 

and over 13,500 time points. Excitation power was set at 2% to obviate photobleaching 259 

and keep live cells healthy (Fig. 2b), at the expense of plenty of noise and ruptured 260 

structures that defiled the raw captures. Contrastingly, the enhancement of DeepSeMi 261 

clearly revealed delicate structures of punctate peroxisomes, threadlike mitochondria, and 262 

fluctuated membranes (Supplementary Video. 3). The brittle mitochondrial fission and 263 

fusion were obviously distinguished (Fig. 2c-d), highlighting the importance of 264 

combining minimization of illumination photon dose with SNR enhancement of 265 

DeepSeMi. 266 

Together with the high temporal resolution and long-term capability, DeepSeMi 267 

catalyzes new abilities of tracking subtle movements of mitochondria, an important 268 

component of mitochondria regulation in many aspects of cell biology. An individual rod-269 

shaped mitochondrion was tracked based on DeepSeMi-enhanced recordings over 500 270 

seconds, unveiling complicated trajectories and nonlinear movements (Fig. 2e-f). 271 

Sampling the data at full temporal resolution presented brief transitions between 272 

mitochondria leaving and approaching, and quick motions happened when the leaving or 273 

approaching of mitochondria paused temporally [39] (Fig. 2g). These transient processes 274 

cannot be captured if the sampling frequency dropped by 10-fold to 0.75 Hz, which was 275 

the compromised framerate for the standard confocal microscope without DeepSeMi 276 
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enhancement in catching the similar photon budget. We thereby demonstrated that the 277 

high temporal resolution enabled by DeepSeMi is indispensable to characterizing the 278 

veritable trajectories as complex movements between frames were likely to be missed 279 

when temporal resolution dropped down (Fig. 2h).  We measured mitochondria leaving 280 

and approaching rates of 0.53 μm/s and 0.46 μm/s, respectively. Furthermore, when 281 

analyzing these rates as a function of the displacement of each leaving or approaching 282 

event (Fig. 2i-j), we found that long displacing events correlated with slow rates of 283 

leaving or approaching. There was a broader range of leaving rates compared to 284 

approaching rates during short displacing events, leading to diverse fluctuations in 285 

mitochondria displacement.  Overall, the SNR enhancement of DeepSeMi vehemently 286 

enlarged the available photon budget of an optical instrument without compromising 287 

visual quality for down-stream analysis. DeepSeMi allowed us to quantify not only 288 

mitochondria dynamic displacements but also alterations of other organelles on a much 289 

finer temporal scale than what was achieved in previous methods. 290 

DeepSeMi enables monitoring migrasomes and retractosomes over a half day in 291 

their native states 292 

Migrasome is recently recognized as an extracellular organelle that plays a significant 293 

role in various physiological processes, including mitochondrial quality control, organ 294 

morphogenesis, and cell interaction [40, 41]. Despite fruitful results that have been 295 

discovered related to migrasome regulations by light microscope, uninterruptedly 296 

observing migrasomes during cell migrations in a half-day-long term remains challenging 297 

limited by continuously imaging-induced photobleaching and phototoxicity 298 

(Supplementary Fig. 18).  299 

Here, through DeepSeMi enhancement, we accomplished high-resolution 2 fps 300 

imaging of the generation, growth, and rupture of migrasomes in a half-day-long term 301 
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with over 86,000 time points with only 2% power shots (45.3 μW of 488 nm, 49.8 μW of 302 

561 nm). L929 cells expressed TOM20-GFP and TSPAN4-mCherry to tag the 303 

mitochondria and migrasomes, respectively. A representative two-color image frame 304 

from a movie of the mitochondria and migrasomes clearly showed the enormous SNR 305 

enhancement by DeepSeMi compared to the raw capture (Fig. 3a, Supplementary Video 306 

4). Near the cell body, DeepSeMi enabled us to find migrasomes that presented the entire 307 

generation and growth procedure across ~ 300 minutes of imaging windows, which was 308 

41% of the whole imaging session (Fig. 3b). The DeepSeMi enhanced results clearly 309 

show that some mitochondria were expelled by the cell and kept inside a migrasomes 310 

(Fig. 3d-e), known as the mitocytosis [41]. Compared to barely recognized migrasomes 311 

in the raw images (Fig. 3c), 51 migrasomes were segmented from the whole DeepSeMi-312 

enhanced capture (Methods), with color-coded area and longevity statistics summarized 313 

in Fig. 3f. We measured an averaged maximum area of 5.81 μm2 (Fig. 3g) during an 314 

averaged 141-minute lifespan of migrasomes (Fig. 3h), which were weakly correlated 315 

with each other (Fig. 3i). We noticed a general pattern of the maximum area across those 316 

migrasomes consisting of a quick rising representing the growth, a slightly declined 317 

plateau, and a sharp drop representing the rupture (Fig. 3j). The dynamics of rupture was 318 

much faster than the other two procedures (Fig. 3k), which necessitated DeepSeMi 319 

enabled high temporal-resolution and uninterrupted captures across a long term to catch 320 

these features. 321 

Retractosome is recently reported as a newly discovered extracellular organelle 322 

that is closely related to cell migrations [42]. Since uninterrupted cell migrations can be 323 

continuously imaged benefiting from DeepSeMi-enabled low-phototoxicity, high-SNR, 324 

and long-term recording ability, pronounced retractosomes were recognized which were 325 

transformed from broken-off retraction fibers (Fig. 3l-m). Albeit the indistinguishable 326 

beads-on-a-string features in the raw captured video, retractosomes were clearly 327 

recognized when they moved along with the wobbled retraction fibers (Supplementary 328 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 3, 2022. ; https://doi.org/10.1101/2022.11.02.514874doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.02.514874
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 14 of 42 

Video 5). After the cell migrated away, plenty of retraction fibers and retractosomes were 329 

left behind and forming a complicated network structure that was fractured by the noise. 330 

In opposition, DeepSeMi reunited the network by wiping out noise contaminations and 331 

thus delivering the potential to study the physiological functions of retractosomes in the 332 

future. 333 

DeepSeMi facilitates automated analysis of cellular structures from massive data 334 

Uncovering the peculiarities of important life-preserving and disease-driving 335 

organelles requires robust and unbiased segmentation and tracking tools. Compared to 336 

biased and time-consuming manual analysis, recent advances in deep-learning-based 337 

processing techniques utilize statistical and graphical knowledge to accomplish fast, 338 

unbiased, and automated organelle analysis and are capable of recognizing complicated 339 

dynamics like fission and fusion of mitochondria [17]. Confronting the growing 340 

requirement of long-term recordings and attendant considerable amounts of cellular 341 

imaging data in hundreds of gigabytes [43], automated cellular analysis gradually 342 

becomes indispensable for new physiological discoveries.  343 

 Inspired by those advancements, we utilized the state-of-the-art organelle 344 

segmentation method [44] and accordingly trained 3 segmentation networks for 345 

mitochondria, migrasomes, and retraction fiber, respectively  (Fig. 4a, Methods). We 346 

found raw captures of mitochondria under 14.6 μW (0.5% of 488 nm), a bio-friendly 347 

power dosage, suffered pronounced segmentation errors due to noise contaminations 348 

(Fig. 4b-d, Supplementary Fig. 19). The incorrect segmentation fragments in the 349 

background were only eliminated when the power dosage was pushed into 537.6 μW 350 

(32% of 488 nm), at a cost of significant photobleaching (Fig. 4b-d, Supplementary Fig. 351 

13h). By contrast, DeepSeMi enhancement enabled the segmentation model to output 352 

reasonable and gap-less results even at 14.6 μW (0.5% of 488 nm) (Fig. 4b, 353 
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Supplementary Fig. 19), permitting reliable segmentation during long-term imaging 354 

thanks to heavily reduced photobleaching. Through additionally performing 355 

mitochondrial skeletonization and keypoint detection based on instance segmentation[17] 356 

(Supplementary Fig. 20), we found remarkable noisy stains in raw captures were 357 

recognized as endpoints and junctions of broken skeletons (third row of Fig. 4b, 358 

Supplementary Fig. 19). These false positives were well avoided in DeepSeMi enhanced 359 

results, and the skeletonization result by DeepSeMi at 14.6 μW (0.5% of 488 nm) are 360 

comparable of that in the raw image at 537.6 μW (32% of 488 nm). Quantitively, 361 

DeepSeMi enhanced videography achieved significantly larger mitochondria area (Fig. 362 

4e, ***p<0.0001, two-sided Wilcoxon rank sum test; Supplementary Fig. 19, Methods) 363 

and longer branch length (Fig. 4f, ***p<0.0001, two-sided Wilcoxon rank sum test; 364 

Supplementary Fig. 19, Methods) compared to the raw ones at sample-friendly power 365 

dosage (14.6 μW (0.5% of 488 nm) and 23.1 μW (1% of 488 nm)). These statistics were 366 

only comparable when the power comes to harmful 537.6 μW (32% of 488 nm, p>0.1, 367 

two-sided Wilcoxon rank sum test). The over 15 times power reduction of DeepSeMi in 368 

achieving high-quality subcellular segmentation validated with over 15 times enlarged 369 

photon budget in photobleaching study previously (Supplementary Fig. 13), together 370 

indicate the strong promotion of DeepSeMi over an optical instrument in terms of bio-371 

friendly, resolving ability, and data fidelity. 372 

To further evaluate the improvement of segmentation accuracy brought by the 373 

DeepSeMi enhancement, we manually segmented migrasomes and retraction fibers as the 374 

ground truth and then compared the results with automated segmentations on DeepSeMi 375 

enhanced videography (Methods). DeepSeMi apparently achieved much clearer 376 

micrographs and hence cleaner segmentations (Fig. 4g-h). Statistically, DeepSeMi 377 

enhancement achieved 0.9449 ± 0.0782 recalls (n = 32 images) in migrasome 378 

segmentations, holding a safe head compared to raw-video-based segmentation (0.5522 379 

± 0.1359 recalls, n = 32 images). The same advantages were held in segmenting string-380 
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like retraction fibers (Fig. 4j-k), where DeepSeMi enhancement achieved 0.9493 ± 0.0618 381 

recalls (n = 12 images) compared to 0.3391 ± 0.1848 recalls by raw video (n = 12 images, 382 

Fig. 4l). The high segmentation accuracy enabled by DeepSeMi under sample-friendly 383 

power dosage would be the key for massive data analysis through automated algorithms 384 

after long-term recordings. 385 

DeepSeMi accomplishes SNR enhancement across various samples 386 

Lastly, we demonstrated that DeepSeMi effectively increases SNRs across various 387 

samples, including cultured cells, unicellular organisms, nematodes, non-mammalian 388 

vertebrates, and mammals. We have demonstrated DeepSeMi enabled high-temporal-389 

resolution imaging of mitochondria, low-phototoxicity half-day-long imaging of 390 

migrasomes and retractosomes, and facilitated automated analysis in massive data under 391 

bio-friendly illumination dosage, but the power of DeepSeMi could be extended further. 392 

Here we delineated DeepSeMi helped study of rearrangement of organelles after 393 

decomposing cytoskeleton and other organelle-related studies. By dosing an appropriate 394 

concentration of latrunculin-A (lat-A) to induce the depolymerization of the intracellular 395 

cytoskeleton, a new spatial distribution of intracellular organelles was formed 396 

(Supplementary Fig. 21). We found the migrasomes were generated following the rapid 397 

contraction of the cell membrane after depolymerization of the cytoskeleton (Fig. 5a). All 398 

those observations relied on the enhancement of DeepSeMi, which restored mitochondria 399 

and other organelles of diverse morphologies from noise. Similar improvements 400 

happened in the study of vesicle fission (Supplementary Fig. 11h, Supplementary Video 401 

1), where kymographs (x-t projections) obviously presented the enhancements of 402 

DeepSeMi (Supplementary Fig. 11i), and also in the study of migrating cell interacting 403 

with a migrasome (Supplementary Fig. 22b), producing migrasomes (Supplementary Fig. 404 

22c), and expelling mitochondria in low light dosage (Supplementary Fig. 22d, 405 

Supplementary Video 6).  406 
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 DeepSeMi also enabled high-SNR, half-hour-long imaging of Dictyostelium cells, 407 

an amoeba-like important eukaryote model for studying genetics, cell biology, and 408 

biochemistry [45]. Despite the great value of Dictyostelium cells in research, it is 409 

ultrasensitive to photodamage since 215 μW of laser dosage at 638 nm and 50.6 μW of 410 

laser dosage at 561 nm killed 30% of D. discoideum after 30-minute imaging, preventing 411 

high-SNR half-hour-long imaging in conventional approaches (Supplementary Fig. 23, 412 

24). We applied DeepSeMi to circumvent the problem, which enabled dual-color and 413 

high-SNR imaging at the 45.3 μW dosage at 488 nm and the 49.8 μW dosage at 561 nm 414 

over 30 minutes without apparent photodamage (Fig. 5b, Supplementary Fig. 23, 25). 415 

Contractile vacuoles and membranes of Dictyostelium cells were evidently recognized 416 

with clear boundaries through DeepSeMi enhancement (Fig. 5c), and uninterrupted 417 

videography dedicatedly enabled by DeepSeMi unveiling startling motions of 418 

Dictyostelium cells such as contracting (Fig. 5d, Supplementary Video 7). The ability of 419 

DeepSeMi that strongly improves SNR without increasing power dosage sheds new light 420 

on studying photodamage-sensitive but valuable animal models like Dictyostelium cells. 421 

 Caenorhabditis elegans (C. elegans) and zebrafish are used as central model 422 

systems across biological disciplines[46, 47]. Rather scattered tissues of C. elegans 423 

exuberate the noise contaminations even further compared to cultured cells (Fig. 5e, 424 

Supplementary Fig. 26a), but DeepSeMi still substantially improved the contrast and 425 

sharpness of cells (Supplementary Fig. 26b-f). Although utilizing a higher NA objective 426 

suffers even more from scattering, DeepSeMi restored delicate structures with sharp 427 

edges and high contrast from noise (Supplementary Fig. 26g-j). On the other hand, the 428 

transparency of zebrafish larvae not only helps better observation of structures and 429 

functions of cells and organisms in vivo, but also eliminates the protective barrier to 430 

photodamage during optical observation [48]. Thereby, imaging zebrafish larvae 431 

necessitates low illumination power to not alter the sample health state and normal 432 

physiological regulation, which inevitably raises challenges from noise contaminations 433 
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(Fig. 5f, Supplementary Fig. 27a). We proved that enhancement of DeepSeMi broke the 434 

dilemma and provided a clear view of macrophage in zebrafish larvae under a mild power 435 

dosage (45.3 μW, Fig. 5g, Supplementary Fig. 27b-c), supplying the potential for long-436 

term observation for studying development and function in the highly complex vertebrate 437 

model system. 438 

 DeepSeMi is also demonstrated to be operative in functional imaging in mice that 439 

are widely used in systems and evolutionary neuroscience. We tested the generalization 440 

ability of DeepSeMi in nonlinear microscope where neurons were sequentially excited by 441 

a focused femtosecond laser in vivo. DeepSeMi readily enhanced visualization of 442 

morphologies of neuronal structures (Fig. 5h, Supplementary Fig. 28a-c, Supplementary 443 

Fig. 29a-i) from barely recognized noisy captures, and also veritably increased temporal 444 

contrast of calcium transients (Supplementary Fig. 28d, Supplementary Fig. 29j). The 445 

denoised videos by DeepSeMi facilitated 1.5 times more neurons to be found and would 446 

impel potential interrogation of neuronal circuits (Supplementary Fig. 28e, 447 

Supplementary Fig. 29k). For observing even smaller structures like wobbled neuronal 448 

dendrites and axons in vivo in the mouse brain, the enhancement of DeepSeMi also has 449 

no compromise (Supplementary Fig. 30).  450 

Discussion  451 

Many species of great scientific value are vulnerable to photodamage, necessitating low-452 

power dosage for sample health yet sacrificing SNR, and the condition deteriorates when 453 

high spatiotemporal resolution is required for deciphering composited morphology-454 

related regulations. To address these problems, we present DeepSeMi, a versatile self-455 

supervised paradigm capable of enhancing over 12 dB SNR, improving 15-fold photon 456 

budget, and reducing 50 times fluorescent dye concentration across various species and 457 

instruments with only noisy images required. DeepSeMi with specially designed 458 

receptive field-limited convolutional filters readily accomplishes noise contamination 459 
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removal without clean data reference or inter-frame interpolations, achieving superior 460 

performance over other methods especially in data with complicated transformation. 461 

Computationally enhanced photon budget by DeepSeMi fertilized high-frame-rate 4-462 

color organelle recordings across tens of thousands of frames, tracking migrasomes and 463 

retractosomes over a half day, and ultra-photodamage-sensitive D. discoideum imaging 464 

over thousands of frames, all high-fidelity, intravitally, and sample-friendly. Besides, 465 

DeepSeMi was proven to help automated analysis of cells and organelles which is a strong 466 

aid in processing massive imaging data and is in trend. Performance of DeepSeMi on 467 

various species including nematodes, zebrafish, and mice on both widefield and two-468 

photon microscopes was also validated both qualitatively and quantitatively. In 469 

conclusion, DeepSeMi offers a combination of high-resolution, high-speed, multi-color 470 

imaging and low photobleaching and phototoxicity that makes it well suited for studying 471 

intracellular dynamics and beyond. 472 

  As a fundamental limitation in fluorescence imaging, stochastic noise determines 473 

the upper bound of imaging quality and compromises speed, resolution, and sample 474 

health across any instrument. The proposed DeepSeMi can be seamlessly extended to 475 

various devices that suffer the noise most, including three-photon microscope with ultra-476 

small absorption cross-section[49], and Raman microscope with critical excitation 477 

conditions[50]. In other devices such as widefield and light-field microscope where 478 

background contaminates more in scattering tissues than noise, DeepSeMi can 479 

collaborate with computational background elimination methods [51] to jointly improve 480 

imaging quality with backgrounds rejected and SNR increased. 481 

 The rearrangement of computationally multiplied photon budgets by DeepSeMi 482 

can be more diverse. We have shown benefits of shortened exposure which supports a 483 

higher frame rate for interrogating fast dynamics (Fig. 2), and reduced frame rate which 484 

enables longer recording time for investigating long-term variations (Fig. 3). 485 
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Furthermore, the temporal resolution of an optical system can be further enhanced 486 

without losing spatial resolution through combination with multiplexing techniques [52], 487 

and DeepSeMi is readily to mitigate the photodamage due to excessive power dosage. 488 

When pushing the frame rate to a limit, a standard device may be capable of imaging 489 

ultrafast phenomena like spiking[53] and flagellar locomotion[54] without losing fidelity 490 

by using DeepSeMi. 491 

Despite basic exploration has been explored in this manuscript, manifold research 492 

can further increase the accessibility of DeepSeMi. By combining with advanced model 493 

compression and pruning techniques[55], the computation time of DeepSeMi can be 494 

further compressed for high-speed data inference. Training DeepSeMi across a large 495 

range of conditions with varied noise and transformations over multiple samples forms a 496 

general model, and DeepSeMi in specific conditions with better performance can be 497 

swiftly distributed from the basic one with fine-tuning[56].  498 

In short, we believe DeepSeMi provides a robust solution to overcome the shot-499 

noise limitation in fluorescent microscope. Catalyzed by the computational enhancement 500 

of DeepSeMi, various organelles and organisms could be safely recorded over a long term 501 

in a high spatiotemporal resolution which brings insights into new physiological 502 

discoveries. 503 

  504 
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Methods 505 

Network structure. DeepSeMi consisted of six 3D hybrid blind-spot neural networks 506 

(four spatial blind spot networks and two temporal blind spot networks) and one feature 507 

fusion network (Supplementary Fig. 2). All six hybrid blind-spot networks had the same 508 

U-net-like structure for extracting features from input videos. Each hybrid blind-spot 509 

network consisted of 14 three 3D convolution layers. The first two layers were 3D 510 

eccentric blind-spot convolutional layers with 3×3×3 sized kernels (Fig. 1c). The 511 

encoding path of DeepSeMi was composed by 3D eccentric blind-spot convolutional 512 

layers (3×3×3 sized kernels) and MaxPooling layers (2×2×2) alternately. Similarly, the 513 

decoding path was implemented by 3D eccentric convolutional layers (3×3×3 sized 514 

kernels) and Upsampling layers (2×2×2) alternately. The numbers of input features and 515 

output features in each layer were set to 32 to accommodate single-GPU training. The 516 

feature fusion network consisted of three 3D convolutional layers with 1x1x1 kernels. 517 

The number of input channels of the feature fusion network was 32×6=192 to match the 518 

size of concatenated features of the six branch networks, while the number of output 519 

channels of the feature fusion network matches the real image and depends on 520 

experiments. The loss function of DeepSeMi was a summation of l1 norm and l2 norm, 521 

while the learning rate is set to 0.0001. 522 

We usually picked up 1000 patches from noisy videos to form the training set, and 523 

the size of each patch was 128×128×32. Good convergence usually could be obtained 524 

after 30-50 epochs of training. The entire training process took 10 hours on an NVIDIA 525 

3090 Ti graphics card. 526 

 527 

The concept of eccentric blind-spot convolution and eccentric convolution. The 528 

eccentric blind-spot convolution stemming from traditional convolutions plays a 529 

significant role in DeepSeMi. Here we illustrate the concept of eccentric blind-spot 530 
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convolution through derivations. To simplify the description, all following operations are 531 

derived in 2D, while the 3D operations can be easily extended. 532 

The traditional discrete convolution (Supplementary Fig. 1a) can be formulated as: 533 

𝑦𝑦𝑚𝑚,𝑛𝑛 = � � 𝑥𝑥𝑚𝑚−𝑖𝑖,𝑛𝑛−𝑗𝑗 ∙ 𝑘𝑘ℎ+𝑖𝑖+1,ℎ+𝑗𝑗+1

ℎ

𝑗𝑗=−ℎ

ℎ

𝑖𝑖=−ℎ
 534 

where 𝑦𝑦  is the output of the convolution, 𝑥𝑥  is the input image, 𝑘𝑘  is the kernel of 535 

convolution with a size of [2ℎ + 1,2ℎ + 1]. Note the information of input pixel 𝑥𝑥𝑚𝑚,𝑛𝑛 will 536 

be transmitted to the output pixel 𝑦𝑦𝑚𝑚,𝑛𝑛 in the above traditional convolution process when 537 

𝑖𝑖 = 0 and 𝑗𝑗 = 0, resulting the noise of input pixel 𝑥𝑥𝑚𝑚,𝑛𝑛 will also be kept at the output 538 

pixel 𝑦𝑦𝑚𝑚,𝑛𝑛. Training a neural network composed of such convolutional layers in noise-539 

only data will generate trivial results with the identified mapping, and only noisy-clean 540 

data pairs or sequential noisy acquisitions can fuel that neural network with the deficiency 541 

of self-supervision. To give the neural network the ability to self-supervised denoising, 542 

we construct an eccentric blind-spot convolution kernel (Supplementary Fig. 1c), which 543 

can be formulated as 544 

𝑦𝑦𝑚𝑚,𝑛𝑛 = � � 𝑥𝑥𝑚𝑚−𝑖𝑖+ℎ+1,𝑛𝑛−𝑗𝑗 ∙ 𝑘𝑘ℎ+𝑖𝑖+1,ℎ+𝑗𝑗+1

ℎ

𝑗𝑗=−ℎ

ℎ

𝑖𝑖=−ℎ
 545 

where the symbols are the same as the above equation. With the proposed eccentric blind-546 

spot convolution, the noisy information of input pixel 𝑥𝑥𝑚𝑚,𝑛𝑛 will not be conserved in the 547 

output pixel 𝑦𝑦𝑚𝑚,𝑛𝑛, and information of the output pixel 𝑦𝑦𝑚𝑚,𝑛𝑛 can only be estimated from 548 

local pixels around the input pixel 𝑥𝑥𝑚𝑚,𝑛𝑛.  549 

In the next we derive the proposed eccentric convolutional filter and explain why it 550 

is important to DeepSeMi. In fact, we found that directly combining the aforementioned 551 

eccentric blind-spot convolution kernels with traditional convolutional kernels, the blind-552 

spot properties which are the key to ensure the self-supervision would lose. To illustrate 553 

that, we concatenate a 2D eccentric blind-spot convolution and a 2D traditional 554 

convolution: 555 

𝑦𝑦𝑚𝑚,𝑛𝑛 = � � 𝑥𝑥𝑚𝑚−𝑖𝑖+ℎ+1,𝑛𝑛−𝑗𝑗 ∙ 𝑘𝑘ℎ−𝑖𝑖+1,ℎ−𝑗𝑗+1
1

ℎ

𝑗𝑗=−ℎ

ℎ

𝑖𝑖=−ℎ
 556 
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𝑧𝑧𝑚𝑚,𝑛𝑛 = � � 𝑦𝑦𝑚𝑚−𝑖𝑖,𝑛𝑛−𝑗𝑗 ∙ 𝑘𝑘ℎ−𝑖𝑖+1,ℎ−𝑗𝑗+1   
2

ℎ

𝑗𝑗=−ℎ

ℎ

𝑖𝑖=−ℎ
 557 

where 𝑥𝑥  is the input, 𝑦𝑦  is the intermediate variable from the eccentric blind-spot 558 

convolutional kernel 𝑘𝑘1 and 𝑧𝑧 is the output from the traditional convolutional kernel 𝑘𝑘2. 559 

Both kernels are with size [2ℎ + 1,2ℎ + 1]. It can be easily found that when ℎ > 0, if 560 
𝑘𝑘𝑎𝑎,𝑏𝑏
1 = �1, 𝑎𝑎 = 1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏 = ℎ + 1

0,    𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒  561 

and 562 
𝑘𝑘𝑎𝑎,𝑏𝑏
2 = �1, 𝑎𝑎 = ℎ 𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏 = ℎ + 1

0,    𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒  563 

the above formula can be simplified to: 564 

𝑦𝑦𝑚𝑚,𝑛𝑛 = 𝑥𝑥𝑚𝑚+1,𝑛𝑛 565 

𝑧𝑧𝑚𝑚,𝑛𝑛 = 𝑦𝑦𝑚𝑚−1,𝑛𝑛 566 

This is equivalent to: 567 

𝑧𝑧𝑚𝑚,𝑛𝑛 = 𝑦𝑦𝑚𝑚−1,𝑛𝑛 = 𝑥𝑥𝑚𝑚,𝑛𝑛 568 

In other words, the original noise pixel 𝑥𝑥𝑚𝑚,𝑛𝑛  is directly mapped into an output pixel  569 

𝑧𝑧𝑚𝑚,𝑛𝑛  with the same position, indicating the blind-spot properties are dropped. In an 570 

extreme condition ℎ = 0, such blind-spot properties can be still hold, which explained 571 

why we utilized 3D convolutions with kernel size 1 × 1 × 1 in the feature fusion network 572 

(FFnet). 573 

To circumvent this shortage, we designed another eccentric convolution which can 574 

be formulated as 575 

𝑦𝑦𝑚𝑚,𝑛𝑛 = � � 𝑥𝑥𝑚𝑚−𝑖𝑖+ℎ,𝑛𝑛−𝑗𝑗 ∙ 𝑘𝑘ℎ−𝑖𝑖+1,ℎ−𝑗𝑗+1
1

ℎ

𝑗𝑗=−ℎ

ℎ

𝑖𝑖=−ℎ
 576 

Following the similar derivations as shown above, it can be proved that the blind-spot 577 

properties are kept in the combination of fully blind convolutions and eccentric 578 

convolutions. 579 

Although the introduction of blind-spot convolutional kernels enabled the neural 580 

network to learn denoising without excessive data, the receptive field is limited to only 581 

one direction for both the kernels and kernels composited networks. We thus established 582 

the hybrid blind-spot network as multiple branches to extract features from different 583 
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directions, and then fuse these features by feature fusion network (FFnet) to achieve the 584 

all-direction-received output result.  585 

 586 

Time to channel operation. We inserted a time to channel operation [38] at the 587 

beginning of the input of the neural network for inputting more temporal information but 588 

without obviously increasing the computing time. To achieve that, two times more input 589 

frames were input to the network and stacked in the channel dimensions instead of 590 

temporal dimensions, which can be quickly squeezed after interacting with the next 591 

convolutional kernel. As an example, a video block with a size of C×(T+2F)×H×W 592 

was desired to be input, we realigned it to a tensor of size (2FC+C)×T×H×W by 593 

multiplexing some frames as the real input of the DeepSeMi. 594 

 595 

Generation of simulated motion datasets. To fully compare the denoising performance 596 

of different algorithms on the video denoising task, we utilized the Moving MNIST 597 

dataset as the simulated dataset, which is widely used in the field of computer vision. The 598 

images from MNIST handwritten digit database served as the main moving contents in 599 

generated videos, while each frame is 256 pixels × 256 pixels in size. In the beginning, 600 

we randomly selected 10 handwritten digits to form the basic content, and generated 601 

random motions for each of the digits. Then, the whole video was generated frame by 602 

frame through keeping shifting the digits in predefined tracks. In order to keep the 603 

handwritten digits within the bounds of the video frame, the handwritten digit bounced at 604 

the edges of the video frame. The size of the video we usually generate was 605 

256x256x1000.  606 

 607 

Noise simulation and analysis. We evaluated the performance of DeepSeMi in both 608 

Gaussian noise and Poisson noise. The Gaussian noise was simulated by dataset by the 609 

getExperimentNoise function derived from BM3D [57] with varied noise scales. The 610 
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Poisson noise was simulated by the MPG_model function derived from DeepCAD [33]. 611 

We utilized several merits to evaluate the noise scale. Peak signal-to-noise ratio (PSNR) 612 

is widely used for measuring the similarity between recovered images and paired ground 613 

truth images. The PSNR (in dB) is calculated as: 614 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 10 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙10(
𝑀𝑀𝑀𝑀𝑀𝑀𝐼𝐼2

1
𝑛𝑛1𝑛𝑛2

∑ ∑ (𝐼𝐼𝑖𝑖,𝑗𝑗−𝑋𝑋𝑖𝑖,𝑗𝑗)2𝑛𝑛2
𝑗𝑗

𝑛𝑛1
𝑖𝑖

) 615 

where 𝑋𝑋 is a 𝑛𝑛1 × 𝑛𝑛2 recovered image, I is the paired noise-free image. 𝑀𝑀𝑀𝑀𝑀𝑀𝐼𝐼 is set to 616 

65535 for 16-bit unsigned integer images. Another merit, Signal-to-noise ratio (SNR) is 617 

also selected to quantify the image quality after denoising. The SNR (in dB) is calculated 618 

as: 619 

𝑆𝑆𝑆𝑆𝑆𝑆 = 10 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙10(
∑ ∑ 𝑋𝑋𝑖𝑖,𝑗𝑗2

𝑛𝑛2
𝑗𝑗

𝑛𝑛1
𝑖𝑖

∑ ∑ (𝐼𝐼𝑖𝑖,𝑗𝑗 − 𝑋𝑋𝑖𝑖,𝑗𝑗)2𝑛𝑛2
𝑗𝑗

𝑛𝑛1
𝑖𝑖

) 620 

 621 

Evaluation of photobleaching. Photobleaching represents the inability of the fluorescent 622 

protein to emit photons after continuous excitation. To evaluate the photobleaching under 623 

different power dosage, we averaged all pixel intensities from the acquired image. To 624 

eliminate the influence of the sensor background noise even without fluorescence photons 625 

input, we calculated the averaged intensity in a sample-free area, and accordingly updated 626 

the averaged intensity across the whole image such that it represents net fluorescence 627 

photon flux. We then quantified the speed of photobleaching by fitting the photobleaching 628 

curve using an exponential function. 629 

 630 

Training of organelle segmentation network. As the demand for studying cell biology 631 

through microscopic fluorescence imaging increases, it is necessary to utilize automated 632 

analysis tools to process massive imaging data in a relatively short time for fertilizing 633 

quick experiment iterations. We thereby demonstrated DeepSeMi enhances automated 634 

analysis of organelles with high precision and low phototoxicity. We utilized a physics-635 

based machine learning method for organelle segmentation [44]. We simulated both the 636 

optical imaging results and segmented ground truth of mitochondria, migrasomes, and 637 
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retraction fibers based on the morphological characteristics. 1500 paired images were 638 

prepared for each organelle. We then built and trained a traditional 2D U-net using the 639 

simulated datasets, with the size of the input image of 256x256. It took about 10 minutes 640 

on an NVIDIA 3080 Ti graphics card to achieve good convergence results in about 4-10 641 

epochs. The learning rate is set to 0.0001. 642 

We utilized merits of precision, recall, F1-score, and accuracy for segmentation 643 

evaluation of the network: 644 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 645 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 646 

𝐹𝐹1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  
2𝑇𝑇𝑇𝑇

2𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
 647 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =  
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
 648 

where TP is true positive, TN is true negative, FP is false positive, and FN is false 649 

negative. 650 

 651 

Mitochondria analysis. After mitochondria segmentation through the methods in the 652 

above section, the connected regions from the segmented binary masks were detected by 653 

bwlabel function in MATLAB to accomplish the mitochondrial instance segmentation. 654 

The mitochondrial area of each connected region was calculated, and the skeletons and 655 

key points of mitochondria were picked up through bwmorph function in MATLAB. 656 

According to the different topological positions, the key points were classified into 657 

junctions or end points.  We tracked the mitochondria with Imaris (Oxford Instruments) 658 

across recording sessions to indicate the movement state of mitochondria. 659 

 660 

Cell culture and imaging system. L929 cells and NRK cells were cultured in DMEM 661 

(Gibco) medium supplemented with 10% FBS (Biological Industries), 2 mM GlutaMAX 662 

and 100 U/ml penicillin-streptomycin in 5% CO2 at 37℃. The PiggyBac Transposon 663 

Vector System was used to generate the stably expressing cell line. For L929 cells, 664 
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Vigofect was used for cell transfection according to the manufacturer’s manual. NRK 665 

cells’ transfection was via Amaxa nucleofection using solution T and program X-001. 35 666 

mm confocal dishes were precoated with fibronectin (10 mg/ml) at 37℃ for 1 hour. Cells 667 

were cultured in fibronectin-precoated confocal dishes for 4 hours before imaging.AX2 668 

axenic strain cells were provided by the Jeffrey G Williams laboratory (Cell and 669 

Developmental Biology, College of Life Sciences, University of Dundee, UK). The AX2 670 

WT cells and the derived cell line were cultured in HL5 medium (Formedium # HLF2), 671 

supplemented with antibiotics, at 22℃. The plasmids pDM323 and pDM451 were 672 

provided by the Huaqing Cai laboratory (National Laboratory of Biomacromolecules, 673 

Institure of Biophysics, Chinese Academy of Sciences, China). The DNA fragments 674 

encoding dajumin and cAR1 were PCR-amplified and cloned into the overexpressing 675 

plasmids. 676 

C. elegans stably overexpressing OSM-3-GFP were provided by the Guangshuo Ou 677 

laboratory (School of Life Sciences, Tsinghua University, China). We cultivated C. 678 

elegans on nematode growth medium agar plates seeded with the Escherichia coli OP50 679 

at 20 °C. For live cell imaging, worms were anesthetized with 1 mg/mL levamisole and 680 

mounted on 3% agarose pads at 20 °C. 681 

The Tg(mpeg1.1:PLMT-eGFP-caax) transgenic zebrafish was provided by Boqi Liu. All 682 

adult zebrafish were kept in a water-circulating system at 28.5 °C. Fertilized eggs were 683 

raised at 28.5 °C in Holtfreter’s solution. The embryos were embedded in 1% low-684 

melting-point agarose for live-cell imaging. The use of all zebrafish adults and embryos 685 

was conducted according to the guidelines from the Animal Care and Use Committee of 686 

Tsinghua University. 687 

All imaging experiments in this research were based on a Nikon A1 confocal 688 

microscope (Bioimaging center, School of Life Sciences, Tsinghua University, China). 689 

All cellular imaging was conducted by a 100× objective (NA 1.45, oil immersion). A 690 

10x objective (10×, NA 0.45, air) was used to capture the global image of C. elegans and 691 
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zebrafish. Two-photon imaging was conducted with a customized two-photon imaging 692 

system under a commercial objective (25×, NA 1.05, XLPLN25XWMP2, Olympus). 693 

 694 

 695 
  696 
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Data availability 697 

All relevant data that support the findings of this study are available from the 698 

corresponding authors upon reasonable request.  699 

 700 

Code availability 701 

Our DeepSeMi can be found at https://github.com/GuoxunZhang-PhD/DeepSeMi. 702 
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Fig. 1 | DeepSeMi accomplishes self-supervised video denoising based on the 858 

statistical characteristics of noise. a, Statistical principle of DeepSeMi. In clean 859 

conditions, a learned mapping from neighbors to a centered pixel can be well established 860 

even excluding the pixel itself since local structure continuity (the first row). It is worth 861 

exploring whether we can establish a learned mapping from neighbor noisy pixels to the 862 

targeted noisy pixel.(the second row). A neural network aimed at establishing the learned 863 

mapping thereby yields averaged fluctuant gradients on the target pixel (the third row). 864 

Fortunately, the zero-mean assumption of noise contaminations ensures that averaged 865 
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gradients relocate the clean information of the target pixel that is unobserved (the fourth 866 

row), which provides the rationale of DeepSeMi. b, The schematics of the 3D eccentric 867 

convolution. In a 3D (x, y, t) patch (blue), an eccentric neighborhood (yellow) 868 

surrounding the target pixel (red) is multiplied with a learnable kernel (green), and the 869 

dimension-reduced summation forms an output pixel (grey) in the output patch. Note in 870 

eccentric convolution, the eccentric neighborhood still contains the target pixel. c, The 871 

schematics of the 3D eccentric blind-spot convolution. All symbols are the same as b. 872 

Note in eccentric blind-spot convolution, the eccentric neighborhood doesn’t contain the 873 

target pixel, and thereby the output pixel (gray) excludes the information of the target 874 

pixel (red). d, Structure of the proposed spatiotemporal hybrid 3D blind-spot 875 

convolutional neural network. The neural network consists of six sub-networks with the 876 

same structure and a final feature fusion network (FFnet). Among six sub-networks, four 877 

spatial 3D blind-spot convolutional neural networks (SBSnet, top four) and two temporal 878 

3D blind-spot convolutional neural networks (TBSnet, bottom two) share the same 879 

parameters, respectively. The input patch is rotated and fed into each sub-network, and 880 

the output features accordingly are rotated in order to match each other’s size before 881 

feature fusion (Methods). e, DeepSeMi enables signal-to-noise-ratio (SNR) enhancement 882 

with only the experimental data through a single shot. The low-SNR recordings can be 883 

used to train the proposed self-supervised neural network in situ, which enable the trained 884 

network to enhance the low SNR recordings itself. f, The raw captures of cells labeled by 885 

WGA with a diluted concentration (2 ng/ml, 500 times diluted, left) and corresponding 886 

DeepSeMi enhancement (right). Magnified views about migrasomes in 500 times diluted 887 

dye concentration are presented at the bottom (left for raw and right for DeepSeMi 888 

enhancement). Scale bar in the first row is 30 μm, and in the second rows is 10 μm. g-h, 889 

DeepSeMi denoising performance indicated by the SNR over different noise levels 890 

(Supplementary Fig. 3) and content speeds (Supplementary Fig. 4), respectively.  891 
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Fig. 2 | Long-term, high-temporal resolution, and low-phototoxicity imaging of 892 

organelle interactions by DeepSeMi. a, Left, raw (top) and DeepSeMi-enhanced 893 

(bottom) micrographs of an L929 cell expressing fluorescent proteins (TOM20–GFP, 894 

TagBFP–SKL, and SiT-mApple) and labeled by WGA647. Right, individual channels of 895 

the yellow box marked in the left panel are displayed separately. Scale bar, 10 μm. b, 896 

Fluorescence intensity fluctuations (n =10) of 4 channels during a 30-minute long 897 

imaging session (13,500 frames) at 2% light intensity. Fluorescence intensity curves were 898 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 3, 2022. ; https://doi.org/10.1101/2022.11.02.514874doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.02.514874
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 36 of 42 

normalized to initial values. c-d, Raw and DeepSeMi-enhanced time-lapse images that 899 

reflect mitochondrial morphological changes during low-light recording. White arrows 900 

mark the process of mitochondrial fission and fusion. Scale bar, 5 µm. e, Raw (left) and 901 

DeepSeMi-enhanced (right) four-color cellular imaging in low-light conditions, with 902 

trajectories of a rod-shaped mitochondria tracked and zoomed in the bottom-right corner. 903 

The color-coded time stamps are labeled at the bottom. Scale bar, 5 µm. f, Displacement 904 

of the rod-shaped mitochondria plotted as a function of time. g, Inferred mitochondria 905 

displacements versus time under different imaging frame rates. Different colors represent 906 

different relative states of rod-shaped mitochondria to the cell body, where green for 907 

leaving, blue for approaching, and red for idling. Red arrows mark differences between 908 

displacement inferences of full sampling rate (7.5 Hz) and 10-fold sub-sampling rate 909 

(0.75 Hz). h, Tracked drifting distances of mitochondria during 500 seconds with full 910 

sampling rate (7.5 Hz) and 10-fold sub-sampling rate (0.75 Hz). i-j, Distributions of the 911 

moving rates and displacements of tracked rod-shaped mitochondria during leaving and 912 

approaching states, respectively.   913 
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Fig. 3 | DeepSeMi enables half-day-long observations of migrasomes and 914 

retractosomes with low-phototoxicity. a, Raw (top left) and DeepSeMi-enhanced 915 

(bottom right) micrograph of L929 cells expressing both TOM20-GFP and TSPAN4-916 

mCherry. Scale bar, 20 μm. b-c, Zoom-in panels that visualize extracellular migrasomes 917 

generation and displacement by raw and DeepSeMi-enhanced recordings, respectively. 918 

The migrasomes marked by white arrows burst at the end of their longevities. Scale bar, 919 
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10 μm. d-e, Zoom-in panels that visualize mitocytosis and displacements by raw and 920 

DeepSeMi enhanced recordings, respectively. Scale bar, 10 μm. f, The areas of 921 

extracellular migrasomes changing along time in DeepSeMi-enhanced videos. Different 922 

colors represent different migrasomes (n = 51). g, Violin plot of the maximum area of 923 

extracellular migrasomes in DeepSeMi-enhanced videos. White circle: median. Thin 924 

vertical lines: upper and lower proximal values. Violin-shaped area: kernel density 925 

estimates of data distribution. n = 51 data points. h, Violin plot of the longevity of 926 

extracellular migrasomes in DeepSeMi-enhanced videos. Symbols are the same as in g. 927 

n = 51 data points. i, Scatter plot of longevity and maximum area of extracellular 928 

migrasomes in DeepSeMi-enhanced videos. n = 51 data points. j, Statistics of the 929 

normalized migrasome area changing across the migrasomes life span. Gray curves 930 

represent the trend of each migrasome (n = 51), and the red curve represents the average. 931 

k, Histogram of the area changing rate of migrasomes across n = 51 migrasomes. l-m, 932 

Generation of retractosomes in regions through which cells have migrated over. A global 933 

view where the first row represents images enhanced by DeepSeMi and the second row 934 

represents the raw images. Scale bar, 20 μm.   935 
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Fig. 4 | DeepSeMi facilitates accurate automated analysis of cellular structures with 936 

low light dosage. a, Schematic diagram illustrating the segmentation of mitochondria, 937 

migrasomes, and retraction fibers through three neural networks (Methods). b-d, 938 

Differences of mitochondrial analysis based on raw images (bottom left) and DeepSeMi-939 

enhanced (top right) images decreased as power dosage increased. The first row 940 

represents the raw captures (bottom left) and the DeepSeMi-enhanced fluorescence 941 

images (top right). The second row represents the instance segmentation of the raw 942 

captures (bottom left) and the enhanced images (top right). The third row represents the 943 

skeletonization of the raw captured mitochondria (bottom left) and the enhanced 944 

mitochondria (top right). Scale bar, 20 μm. e, Statistics of mitochondria area based on the 945 

instance segmentation before (red) and after DeepSeMi enhancement (blue). White circle: 946 

median. Thin vertical lines: upper and lower proximal values. Violin-shaped area: kernel 947 

density estimates of data distribution. f, Statistics of branch length of mitochondria based 948 

on the skeletonization before (red) and after DeepSeMi enhancement (blue). Symbols as 949 
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in e. g-h, Instance segmentation of migrasomes before (bottom left) and after DeepSeMi 950 

enhancement (top right). Scale bar, 20 μm. i, Segmentation precision, recall, F1, accuracy 951 

scores of the migrasomes before (red) and after DeepSeMi enhancement (blue). Ground 952 

truth data is manually annotated (Methods). n = 32 images. j-k, Instance segmentation of 953 

retraction fibers before (bottom left) and after DeepSeMi enhancement (top right). Scale 954 

bar, 10 μm. l, Segmentation precision, recall, F1 scores of the retraction fibers before 955 

(red) and after DeepSeMi enhancement (blue). Ground truth data is manually annotated 956 

(Methods). n = 12 images.  957 
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 Fig. 5 | DeepSeMi seamlessly improves SNRs over various species. a, Generation of a 958 

migrasome from the L929 cell with four organelles labeled colorfully (TOM20–GFP, 959 

WGA647, TagBFP–SKL, and SiT-mApple, Supplementary Fig. 20) after treatment with 960 

Latrunculin-A (lat-A) (0.5 μg/ml. Methods). For each panel, the right part represents 961 

DeepSeMi-enhanced results and the left panel represents the raw image. Scale bar, 10 962 

μm. b, Raw (top right) and DeepSeMi-enhanced (bottom left) long-term high-speed 963 

imaging of photo-sensitive Dictyostelium cells. Scale bar, 10 μm. c, Zoom-in panels of 964 

the white boxes marked in b represent contractile vacuoles and membranes. Intensity 965 

profiles along the white dash lines were plotted at the bottom. Scale bar, 3 μm. d, Time-966 

lapse imaging of expansion and contraction of the contractile vacuole enhanced by 967 

DeepSeMi. Scale bar, 4 μm. e, In vivo imaging of C. elegans in a millimeter-scale field-968 
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of-view by raw (top) and DeepSeMi-enhanced (bottom) captures, respectively. Scale bar, 969 

100 μm. f, In vivo imaging of zebrafish larvae in a millimeter-scale field-of-view by raw 970 

(top right) and DeepSeMi-enhanced (bottom left) captures, respectively. Scale bar, 200 971 

μm. g, Observation of macrophage in zebrafish larvae in vivo by raw (left) and 972 

DeepSeMi-enhanced (right) images, respectively. Scale bar, 5 μm. h, Low-SNR image 973 

(left), DeepSeMi-restored image (middle), and high-SNR reference image recorded by 974 

10-fold higher photon flux as references (right). Low-SNR and high-SNR images were 975 

recorded through a hybrid multi-SNR two-photon system for validation [33]. 8 time 976 

points were displayed for each modality. Scale bar, 20 μm.  977 
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