

Seidel *et al.*

1 Co-translational binding of importins to nascent proteins

2 Maximilian Seidel^{1,2}, Natalie Romanov¹, Agnieszka Obarska-Kosinska¹, Anja Becker¹, Nayara
3 Trevisan Doimo de Azevedo³, Jan Provaznik³, Sankarshana R. Nagaraja¹, Jonathan J. M. Landry³,
4 Vladimir Benes³ and Martin Beck^{1*}

5 **Affiliations:**

7 ¹ Department of Molecular Sociology, Max Planck Institute of Biophysics, Frankfurt, Germany.

8 ² Faculty of Bioscience, Heidelberg University, Heidelberg, Germany.

9 ³ Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.

10 * Corresponding author: martin.beck@biophys.mpg.de

11 **Abstract:** Various cellular quality control mechanisms support proteostasis. While, ribosome-
12 associated chaperones prevent misfolding of nascent chains during translation, importins were shown
13 to prevent the aggregation of specific cargoes in a post-translational mechanism prior the import into
14 the nucleoplasm. Here, we hypothesized that importins may already bind ribosome-associated cargo in
15 a co-translational manner. We systematically measured the nascent chain association of all importins in
16 *Saccharomyces cerevisiae* by selective ribosome profiling. We identified a subset of importins that bind
17 to a wide range of nascent, often uncharacterized cargoes. This included ribosomal proteins, chromatin
18 remodelers and RNA binding proteins that are aggregation prone in the cytosol. We show that importins
19 act consecutively with other ribosome-associated chaperones. Thus, the nuclear import system is
20 directly intertwined with nascent chain folding and chaperoning.

22
23 **One-Sentence Summary:** We describe an unanticipated connection between co-translational protein
24 chaperoning and the nuclear import system.

Seidel *et al.*

25 Main Text

26 Faithful protein biogenesis and the maintenance of a functional proteome poses a logistic burden for
27 cells (1). Errors in proteostasis result in protein aggregation, consequently leading to pathogenic
28 phenotypes (2). Therefore, it is crucial to ensure the quality of nascent proteins already in the vicinity
29 of the ribosome. Nascent proteins are supported by an array of different co-translationally acting quality
30 factors including nascent chain chaperones, nascent chain modifiers and translocation factors such as
31 the signal recognition particle (SRP) and their protein complex partner subunits (3, 4). Ultimately, their
32 synergistic action prevents intramolecular misfolding and ensures the reliable formation of stable
33 multidomain arrangements (3, 4).

34 Importins (also called karyopherins) are nuclear transport receptors (NTRs) that bind the nuclear
35 localization sequences (NLSs) of their cargo in the cytoplasm and facilitate its passage through nuclear
36 pore complexes (NPCs) into the nucleoplasm (5). Moreover, importins contribute to proteostasis (6). *in*
37 *vitro*, importins inhibit the precipitation of basic, aggregation-prone cargoes by preventing their
38 unspecific interaction with cytosolic polyanions such as RNA (7). This has been shown for specific
39 ribosomal proteins and histones (7). The importin transportin β 2 (Kap β 2) suppresses phase separation
40 of RNA-binding proteins such as FUS and interference with cargo binding causes non-native phase
41 transitions (8–11). Further, importins disaggregate NLS-bearing cargoes and even rescue
42 neurodegenerative phenotypes *in vivo* (8–11). Beyond FUS, similar mechanisms may be relevant for
43 TDP-43, TAF15, EWSR1, hnRNP A1, hnRNP A2, arginine-rich proteins and the spindle assembly factor
44 TPX2 (10, 12, 13). These previous studies addressed post-translational mechanisms and inferred the
45 molecular binding mode of importins from a limited number of individual cargoes. If importins bind to
46 the nascent chains of their cargo in a co-translational manner, and if so, on which binding sites they
47 generally act, remained unknown.

48 We reasoned, that during the translation of many proteins that are destined to bind nucleic acids in the
49 nucleus, basic patches are exposed as nascent chains. Protein folding in an RNA-rich environment such
50 as the cytosol may thus critically depend on shielding of the respective patches. We therefore
51 hypothesized that importins may bind to nascent chains. In this study, we systematically measured
52 nascent chain association of all 11 importins in *Saccharomyces cerevisiae*. We used selective ribosome
53 profiling (SeRP) (14) to quantify the co-translational binding of importins to nascent proteins in a
54 translatome-wide manner. Our approach led to the identification of a specific subset of importins that
55 co-translationally associate with various cargoes, many of them remained previously unidentified. We
56 show that importins act consecutively with other nascent chain chaperones, in particular on nucleic acid
57 binding proteins. We propose a model in which cargo complex formation is intertwined with nascent
58 chain chaperoning to promote the faithful biogenesis of nuclear proteins. Our findings may have wider
59 implications for our understanding of proteostasis in eukaryotes and provide new perspectives on
60 neurodegenerative disease.

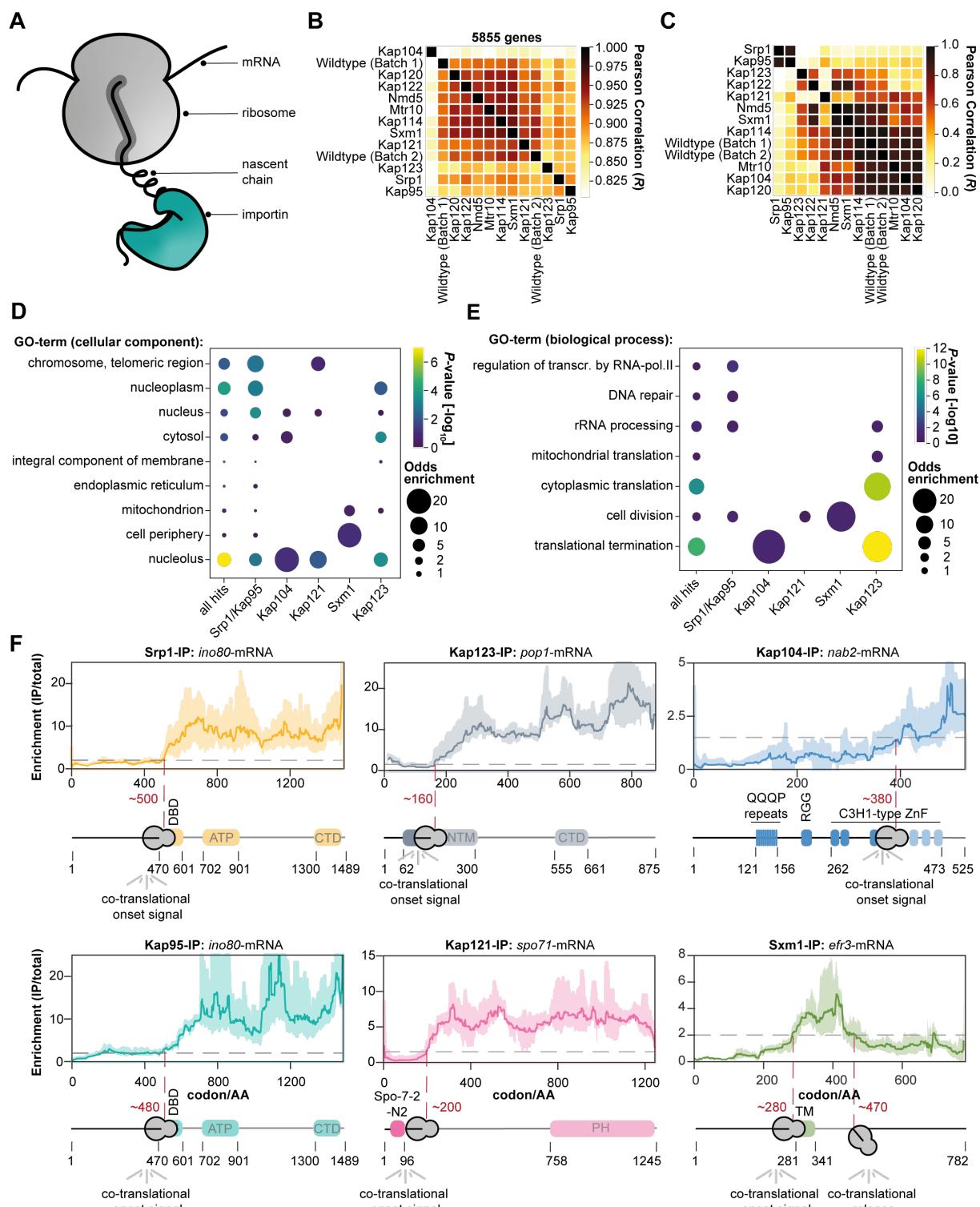
Seidel *et al.*

61 **Selective ribosome profiling identifies the co-translational binding of importins to nascent cargoes**

62 To systematically assess co-translational engagement of importins with nascent cargo (**Fig. 1A**), we
63 used selective ribosome profiling (SeRP) (14, 15). This method relies on the affinity purification of co-
64 translational interactors, in this case importins, whereby subsequent sequencing of ribosome-protected
65 mRNA fragments serves as a quantitative proxy for positional chaperone association. It enables the
66 quantification of co-translational binding of nascent chain chaperones to their substrates in a discovery
67 mode for the entire translatome. Furthermore, SeRP systematically unravels the position of binding sites
68 within the relevant open reading frames (ORFs) and thus provides their biophysical properties (16–19).
69 For affinity purification, we systematically tagged all 11 yeast importins (**Fig. S1A, S1B**) with C-
70 terminal twin-StrepII tags (20) using a scar-free cloning technique preserving endogenous 3'
71 untranslated regions (21). We applied the primary amine reactive crosslinker DSP to stabilize potentially
72 transient interactions of importins which may be susceptible to RanGTP throughout lysis (**Figs. S1A,**
73 **S1C**) as previously described (15, 16, 22). After RNase I digestion and enrichment of the ribosome-
74 nascent chain complexes (RNC), we purified the respective co-sedimented importins from the RNCs
75 (**Fig. S1D**). We acquired SeRP data sets by sequencing the ribosome-protected fragments in four
76 biological replicates for each of the 11 importins and a no-bait wildtype strain. We processed the
77 sequencing reads as previously described to obtain the ribosome-protected footprints (**Fig. S1E**) (14).
78 The resulting translatome-wide data set captures ribosome footprints for all mRNAs that are affinity-
79 enriched for the respective importins. Pearson correlation between replicates was overall larger than
80 between different conditions (**Fig. S2**). To systematically identify potential hits, we developed a pipeline
81 to short-list candidate profiles that considers both the IP and total translatome relative to a no-bait
82 wildtype control (**Fig. S3**). We used a manually curated list of cargoes of Srp1 and Kap95 from the
83 literature as ground truth (**Fig. S3B** and **Table S1**) and an area under the curve (AUC)-value as a metric
84 to identify co-translational cargoes. We note that our ground truth may contain cargoes that only bind
85 post-translationally, which would result in a conservative, over-estimation of the false discovery rate.
86 Subsequently, we manually inspected all SeRP profiles short-listed by our analysis approach to create a
87 high-confidence list of hits (**Fig. S4**), in which the hits are statistically elevated over the background
88 (**Fig. S5**).

89 Our translatome-wide data, allowed to systematically chart and to compare the co-translational cargo
90 spectra of the different importins. Our approach was very complementary to previous studies that
91 investigated post-translational cargo spectra (5, 23–26), such that it very accurately identified
92 heterodimeric interactions of importins instead of larger complexes but neglected those that only occur
93 post-translationally. Pearson correlation of the AUC-values for all identified hits suggests a strong
94 separation between the cargoes identified for the individual importins. The data obtained for the beta-
95 type importins Kap114, Kap120, Kap121, Kap122, Mtr10, Sxm1, and Nmd5 largely correlated with
96 negative no-bait controls (**Fig. 1B**). Indeed, very few or no cargoes were detected for this subset. We
97 wondered if this might be related to the detection limit of our method, however, the abundance of

Seidel *et al.*


98 importins and the number of identified hits did not correlate (**Fig. S6**). For Srp1, Kap95, Kap123 and
99 Kap121, 28, 27, 30 and 9 co-translationally bound cargoes were detected, respectively. The respective
100 signal was distinct from negative no-bait controls (**Fig. 1C**). In contrast to previous proteomic studies
101 (27, 28), we found little overlap between the set of cargoes identified for each importin (**Fig. S7**), with
102 the exception of Srp1 and Kap95 (see below). Among the identified hits, gene ontology (GO) analysis
103 revealed enrichment for the nucleus and its sub-compartments underscoring that co-translational binding
104 was specific for nuclear import cargoes (**Fig. 1D**). While cytoplasmic translation and translation
105 termination were enriched in the Kap123-SeRP hit set, regulators of transcription by polymerase II,
106 DNA repair and cell division were found in the Srp1-Kap95 set. We also found that both, Srp1-Kap95
107 and Kap123 shared enrichment for rRNA processing proteins (**Fig. 1E**). In contrast to Srp1-Kap95 and
108 Kap123 which seemed to be distinct in their function, Kap121 was associated to processes within the
109 nucleolus as well as the chromosome and telomeric regions. Taken together, this data pointed to a model
110 in which Srp1-Kap95, Kap123, and Kap121 prominently associate with a specific set of cargoes in a co-
111 translational manner, while other importins may preferably act post-translationally.

112

113 **Co-translational association of importins is enduring**

114 Selective ribosome profiles allow visualization of importin binding events within an open reading frame,
115 as shown for representative examples in **Fig. 1F**. In contrast to profiles previously obtained for the
116 ribosome-associated Hsp70 chaperones Ssb1 and Ssb2 (Ssb1/2) (16, 17), chaperonin TRiC (16) or the
117 signal recognition particle (SRP) (18, 19), the importin-derived profiles suggested that once importin is
118 bound to the nascent protein, it remained tethered (**Fig. 1F**). This is reminiscent of the co-translational
119 interactions previously observed during protein complex formation (29, 30). This particular binding
120 pattern may be due to the requirement of RanGTP for the dissociation of import complexes that is absent
121 in the cytosol (31, 32). Thus, importins constitute an enduring chaperoning system that holds onto its
122 substrates from synthesis in the cytosol until release into the native context in the nucleus. A notable
123 exception was Efr3 (**Fig. 1F**), which is annotated as a plasma membrane protein. Nevertheless, a strong
124 signal was observed for the importin Sxm1 that binds to the nascent chain of Efr3 approximately at
125 codon 280. Interestingly, it was released ~180 codons downstream, similar to the transient binding
126 mechanisms of ubiquitous co-translational chaperones and the SRP.

Seidel et al.

127

128 *Figure legend on the next page.*

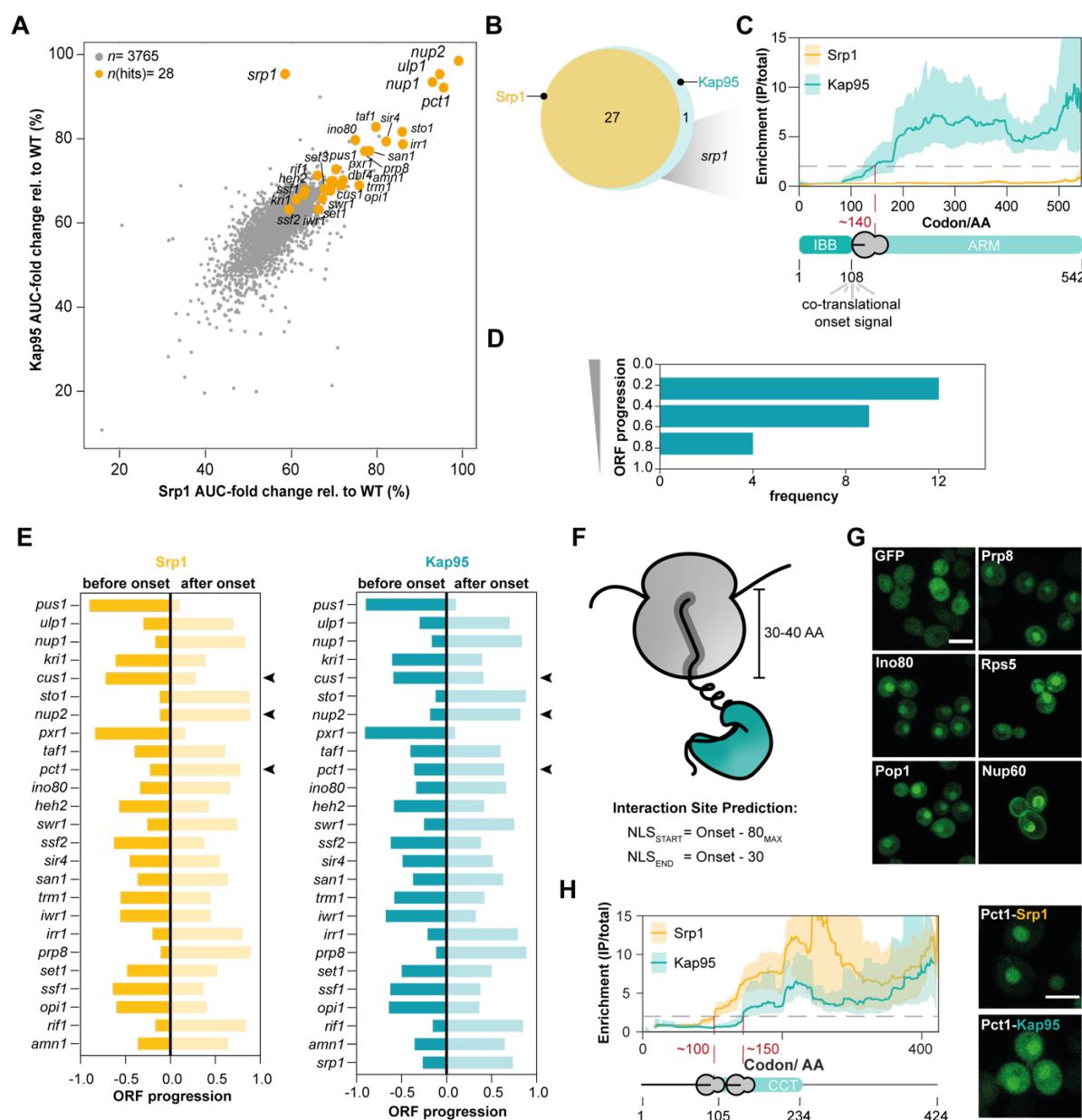
Seidel *et al.*

129 **Figure 1:** SeRP of importins reveals co-translational binding to cargo. **A**, Scheme illustrating the co-
130 translational binding of importins to a nascent chain. **B**, Pearson correlation of the area under curve
131 (AUC)-values of the selective ribosome enrichment profiles (IP/total) of 5855 genes quantified across
132 the experiments. **C**, Same as **B** but for the 71 manually curated cargoes. **D**, Visualization of the Gene
133 Ontology (GO)-enrichment for cellular compartments. While Srp1-Kap95 enriches chromosomal and
134 telomeric regions, Kap123 shows enrichment for the nucleolus. Only significantly enriched GO-terms
135 are shown (P -value < 0.1 , not adjusted, Fisher Exact Test relative to all proteins quantified). **E**, Same as
136 **D** but for biological function. While Kap123 enriches for rRNA processing, cytoplasmic translation,
137 and translation termination, Srp1-Kap95 rather enriches for cell division, DNA repair, and transcription
138 regulation. **F**, Representative SeRP profiles. In most cases, importins associate with the nascent chain
139 and subsequently remain bound, whereas Efr3 (Sxm1-SeRP) constitutes an exception. SeRP profiles
140 (IP/total) are shown for the respective mRNA targets from $n=4$ biologically independent replicates (solid
141 lines are averaged across replicates; shades reflect largest to smalls replicate value interval). Grey dashed
142 lines indicate an arbitrary threshold of 2 used for onset estimation (red dashed line). Note, that in the
143 case of *nab2*-mRNA, a threshold of 1.5 was chosen. Domain annotation based on Pfam. transcr.:
144 transcription; RNA-pol. II: RNA-polymerase II; IP: immunoprecipitation; AA: amino acid; DBD: DNA
145 binding domain; ATP: ATP helicase domain; CTD: C-terminal domain; NTM: N-terminal motif;
146 QQQP: glutamine-rich region; RGG: arginine-glycine-glycine domain; C3H1-type ZnF: cysteine-
147 cysteine-cysteine-histidine-type zinc finger domain; PH: Pleckstrin homology domain; TM:
148 transmembrane domain.

149

150 **Srp1 and Kap95 mutually bind to nascent cargo**

151 Srp1 (importin-alpha) and Kap95 (importin-beta) represent the classical nuclear import pathway in yeast
152 (33). In contrast to other beta-type importins that directly bind the NLSs of their cargoes, this classical
153 pathway requires importin-alpha as an adaptor. The interaction with importin-beta liberates the
154 autoinhibitory NLS of importin-alpha from the NLS binding groove. This structural rearrangement
155 results in the activation of the Srp1-Kap95 heterodimer that in turn binds to the cargo NLS (34). To
156 explore if Srp1 and Kap95 mutually bind to nascent chains, we compared the AUC-fold change of the
157 Srp1- to the Kap95-SeRP experiments, which was highly correlated (**Fig. 2A**). 27 cargoes are common
158 to both experiments (**Figs. 2A, 2B**). In addition, nascent Srp1 itself was bound by Kap95 reflecting a
159 co-translational protein complex formation (**Figs. 2B, 2C**). The respective SeRP profile showed an onset
160 approximately at codon ~ 150 (**Fig. 2C**), suggesting the interaction with Kap95 occurred once the
161 synthesis of the importin-beta binding domain (IBB) was completed.


162 We therefore wondered if the onset observed for the Srp1 and Kap95 association occurred at similar
163 positions within the relevant ORFs. SeRP profiles for both, Srp1 and Kap95 showed a pronounced N-
164 terminal preference, contrasting other co-translationally acting importins (**Fig. 2D** and **Fig. S8**). On the
165 level of individual ORFs, simultaneous binding of Srp1 and Kap95 was observed (**Fig. 2E** and **Fig. S9**),
166 with very few exceptions, suggesting heterodimer formation prior to cargo binding. This finding
167 suggested that the above-introduced mechanism of Srp1-Kap95 heterodimer activation, which has been
168 elucidated by structural and biochemical analysis for a smaller set of substrates, appears to be broadly
169 applicable to the co-translational formation of cargo complexes (25, 34).

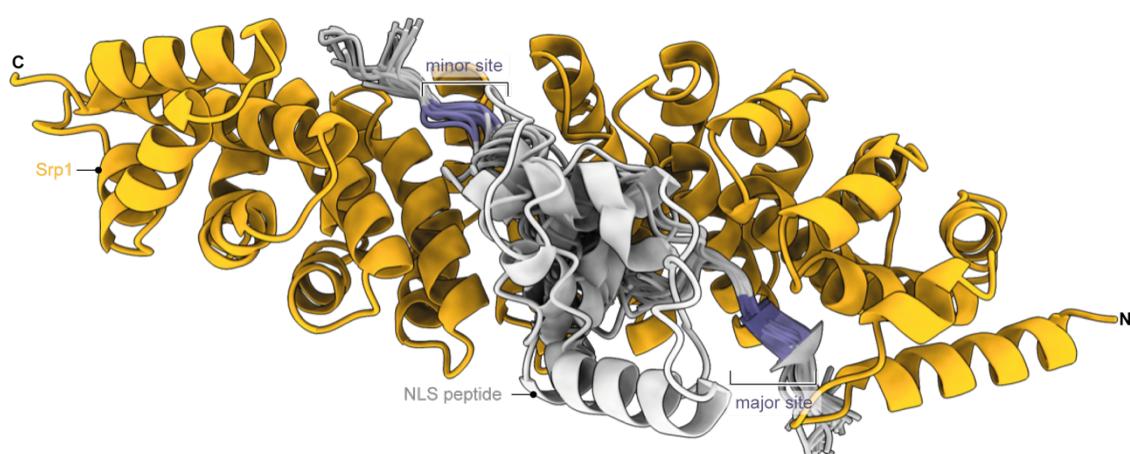
170 To address the functional relevance of the observed onsets, previous studies used genetic perturbation
171 and biochemical assays (16, 18, 19, 22, 29, 30). We queried whether the respective peptides upstream
172 of the onset would be sufficient for nuclear localization. Therefore, we generated GFP fusions of

Seidel et al.

173 peptides within a 40 amino acid sequence window upstream of the onset, accounting for the emergence
174 of the peptide from the ribosomal exit tunnel (**Fig. 2F**). While GFP without any fusion peptide was
175 present throughout the entire cell, peptide fusions of 5 randomly selected cargoes (Srp1-Kap95: Ino80,
176 Prp8; Kap123: Rps5, Pop1, Nup60) were sufficient for nuclear localization (**Fig. 2G**). In case of Pct1,
177 for which a slightly shifted onset of Kap95 with respect to Srp1 was observed, we found that the N-
178 terminally localized peptide showed a stronger nuclear enrichment (**Fig. 2H**).

Seidel et al.

179


180 **Figure 2:** Srp1 and Kap95 synchronously bind to nascent cargoes. **A**, Scatter plot of the AUC-values of
 181 genes quantified in Srp1 in comparison to Kap95 (detailed in **Materials and Methods**). The identified
 182 hits are highlighted in orange. **B**, Venn diagram showing the overlap of the identified cargoes.
 183 **C**, Enrichment profile of *srp1*-mRNA in Srp1- and Kap95-SeRP experiments. Kap95 binds to nascent Srp1
 184 at codon ~140 corresponding to the release of the entire IBB domain. SeRP profiles (IP/total) are shown
 185 for the respective mRNA targets from $n=4$ biologically independent replicates (solid lines are averaged
 186 across replicates; shades reflect largest to smallest replicate value interval). Grey dashed lines indicate an
 187 arbitrary threshold of 2 used for onset estimation (red dashed line). **D**, Distribution of onsets shows an
 188 N-terminal preference. Arrowheads indicate 3 slightly divergent cases. **F-G**, Peptides upstream of the observed onsets are
 189 sufficient for nuclear localization of the respective GFP fusion proteins. **G**, Representative confocal
 190 images for GFP fusions with peptides from the indicated cargoes. Scale bar: 5 μ m. **H**, SeRP profiles as
 191 in C but for *pct1* indicate a slightly shifted onset of Srp1 and Kap95; the N-terminally localized peptide
 192 shows stronger nuclear localization apparent in confocal slices (as in F). IP: immunoprecipitation; AA:
 193 amino acid; IBB: importin-beta binding domain; ARM: armadillo repeat; NLS: nuclear localization
 194 sequence; GFP: green fluorescent protein; CCT: choline-phosphate cytidylyltransferase.
 195

Seidel *et al.*

196 **Prediction of classical NLSs in Srp1-Kap95 cargoes**

197 To map putative cNLS in the proteins identified as hits, we ran AlphaFold-Multimer (35) structure
198 prediction for pairs of Srp1 and consecutive overlapping fragments of the respective protein sequences
199 (see **Materials and Methods**). For all hits, we obtained at least one prediction with a fragment
200 occupying the NLS binding site of the Srp1. Some hits contained two or more NLSs predicted with
201 similar scores. The predicted NLSs frequently occurred at the N-terminal region in agreement with the
202 N-terminal preference found within the SeRP data (**Fig. 2D**). All known NLS motifs were predicted
203 with top scores (**Table S2** and **S3**) validating our procedure. The structural superposition (**Fig. 3A**) and
204 structure-based sequence alignment revealed that most of the predicted motifs exhibit sequences
205 resembling classical NLS (cNLS) motifs of Srp1 of either the monopartite (K-K/R-X-K/R) or bipartite
206 (K/R-K/R-X₁₀₋₁₂-K/R_{3/5}) type (**Fig. 3B**) (36), whereby the linker region can be considerably longer.
207 Some sequences, however, were very different from the sequence consensus or bound to the NLS
208 binding site in the opposite direction and might correspond to false positive predictions or non-canonical
209 NLSs. Altogether, these results confirmed that the identified target proteins bind to Srp1 and allow a
210 prediction of the corresponding cNLS motifs.

A

B

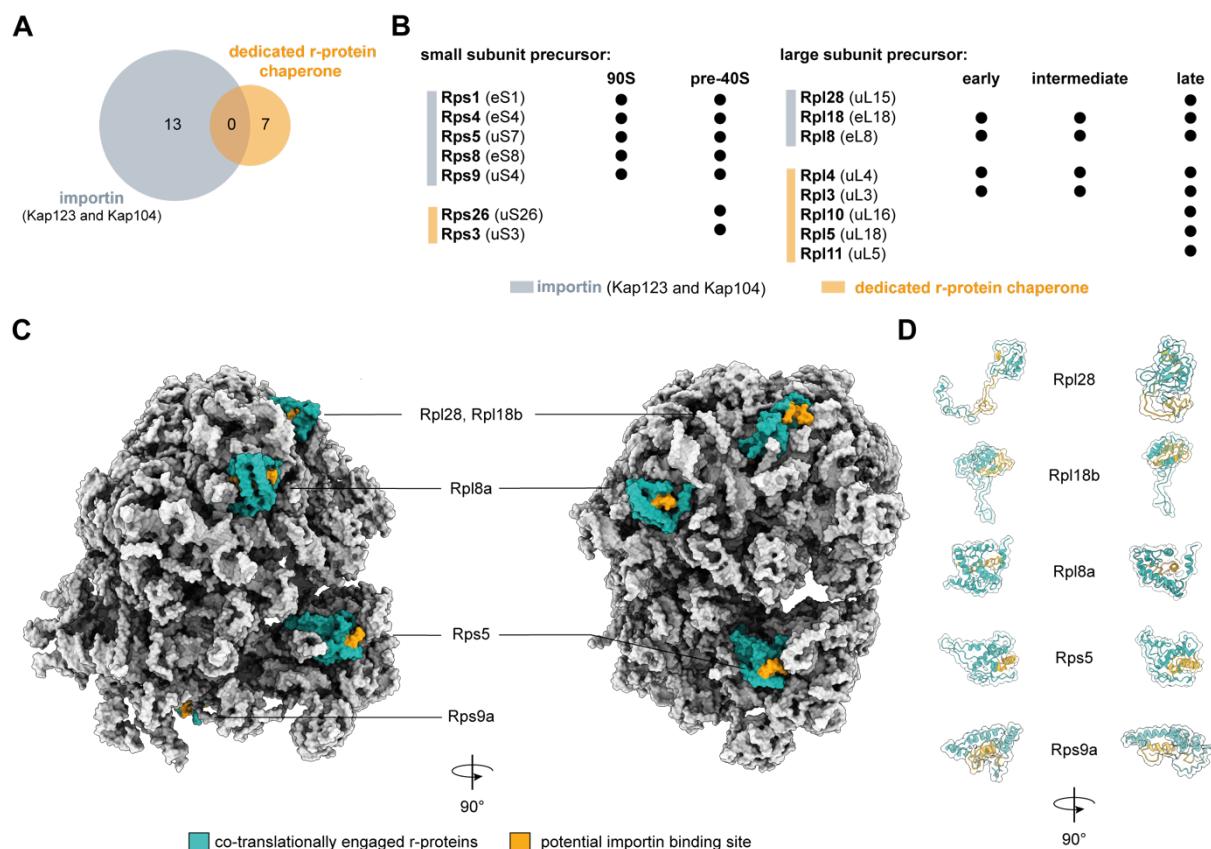
consensus	---KR-----	-----PRKRRRL---
Srp1 (31-58)*	-ELRRR-R-DT--QQVE---LR-K---A-K-	R---D---E---A---LAKRRNF---
Arnl1 (11-36)	-SFKRG-R-D---I---Q---SLE---S	PC---T---R---PLKKMSP-SP
Dbf4 (55-81)	-PKKRS-L-E---R-L-EL---QQ---Q	QH---LH---EKKAR1-ER
Heh2 (100-132)	-TNKRK-R-E---Q-IS---T-DNE-A-K-MQI	Q---E---EK---S---TAKRKSR-KR
Irr1 (71-84)	-T---Y---VD	TA---T
Iwr1 (80-137)	-KKSRR-DSD-DEKS-Q---Q---RL---AAE	ERKPKRSR-KY
Nup1 (46-68)	-SYANH-L-E---E-S-DV	ED---T
Nup1 (429-448)	-EKSE-N---H---T	E---LH
Nup1 (451-475)	-GKQEEN-G---D-E---G	D---S-D---A---PPKSTAP-IF
Nup2 (2-13)	-AKRV-A-D---A---Q	ENE---P---KRKRRLP-VS
Op1 (100-115)	-AKRV-A-D---A---Q---YN	Q---R---E
Pct1 (28-68)	-KNKRQ-R-E---E-T---E---E	DEFF---TNKRQKL-SR
Prp8 (94-116)	-LHGKRK-L-D---I-G---K---D---TF	PRKRRL-TK
San1 (179-202)	-TKAKRK-R-D---S-E-N-E	VTRKSRKR-AK
Sto1 (2-31)	-FNRKRR-G-D---S-E-N-E	GTKKRKD-N
Ulp1 (57-65)	-FDE---D-E---NY	MPKQR1-PP
Ulp1 (153-174)	-TRKHK-F-D---T---S---T-WA	R-D-F---RP
Cus (233-240)	-	NTSRFN-YL
Ino80 (171-190)	-NGKSM-R---G---NG	LPNKRRI-ES
Pus1 (28-55)	-TKARK-A-D---F---DD-EK-D	VOPKMGAL
Pxr1 (148-183)	-KRK-R-E---GDD---S-E---DE---DD	Q-KSPRKDAA-A
Rif1 (46-67)	-POQAHM-H-I---Q---S---DL	IDKPKRS
Set1 (3-31)	-NYYRRA-H-A---S---S	DKKKHHKKK-H
Set1 (220-229)	-G-SYR-QP	TPKRRL-AS
Tbs1 (17-38)	-TQKQS-S-E---WA	QYSRSGH-YQ
Tbs1 (157-169)	-AN---Q	A-THRCKRN-SL
	NG	KHNORVEN-TR
		KSVKKPRL-DK

211

minor site

212

Figure legend on the next page.

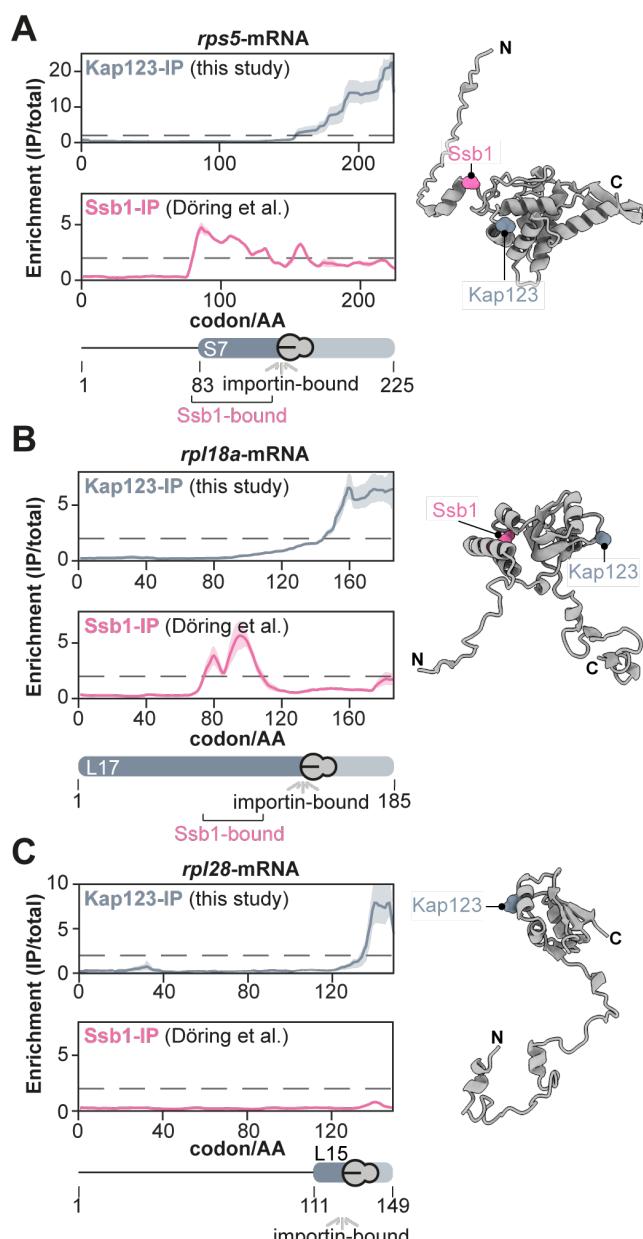

Seidel *et al.*

213 **Figure 3:** Co-translationally bound Srp1 cargoes have predicted cNLSs. **A**, Srp1 (AA 70-512) structure
214 (orange) with peptides modeled using AlphaFold-Multimer. Only predictions i) with the ipTM+pTM
215 score > 0.7 , ii) bound to the canonical NLS-binding site in Srp1, iii) bound in the N- to C-terminus
216 orientation as known from crystal structures of Srp1-NLS are shown (PDB: 1WA5) (37). The entire
217 data set is listed (Table S3). **B**, Structure-based sequence alignment derived from subpanel **A** display
218 hallmarks of cNLSs. Regions of the target sequences are shown in the alignment indicated in parentheses
219 (in AA). Peptides are colored by sequence conservation. *inhibitory peptide of Srp1 (PDB: 1WA5) (37).
220

221 **Kap123 cargoes act in early stages of ribosome biogenesis**

222 Ribosomal proteins (r-proteins) are synthesized in the cytoplasm and are transported into the nucleolus
223 where they associate with ribosomal RNAs (rRNA). Out of the 87 yeast r-proteins, 13 were detected in
224 our screen, including 5 paralogous pairs. 12 out of 13 detected r-proteins co-translationally engaged
225 with Kap123, the other one with Kap104 (Fig. S4). We found that for the paralogous r-proteins, the
226 selective ribosome profiles were identical in shape, and enrichments varied according to their paralog-
227 specific expression levels (38) (Fig. S10A). Moreover, none of the identified r-proteins overlapped with
228 the substrate spectrum of known r-protein chaperones (39) (Fig. 4A), suggesting a unique functional
229 role of Kap123 in ribosome biogenesis. Specifically, the identified r-proteins suggested that Kap123 is
230 relevant for early stages of 60S and 90S ribosome biogenesis (Fig. 4B). This notion is further supported
231 by other identified cargoes that include several early ribosome biogenesis factors such as e.g. Nug1,
232 Noc2, Ecm16 (Fig. 1E, Fig. S4) (40–43).

233 Interestingly, when we depicted the apparent onsets for the interaction of Kap123 into a mature 80S
234 ribosome structure (PDB: 4V7R) (44) we noticed that they typically mapped to the C-terminally located
235 structured domains of the respective r-proteins (Figs. 4C, 4D and S8). Within the mature 80S ribosome,
236 the respective sites were engaged in various contacts suggesting an inaccessibility for importin binding.
237 A possible interpretation of this observation is that faithful structural rearrangements of r-proteins during
238 biogenesis ultimately renders ribosomes invisible to the nuclear import system to prevent nuclear re-
239 import.


240

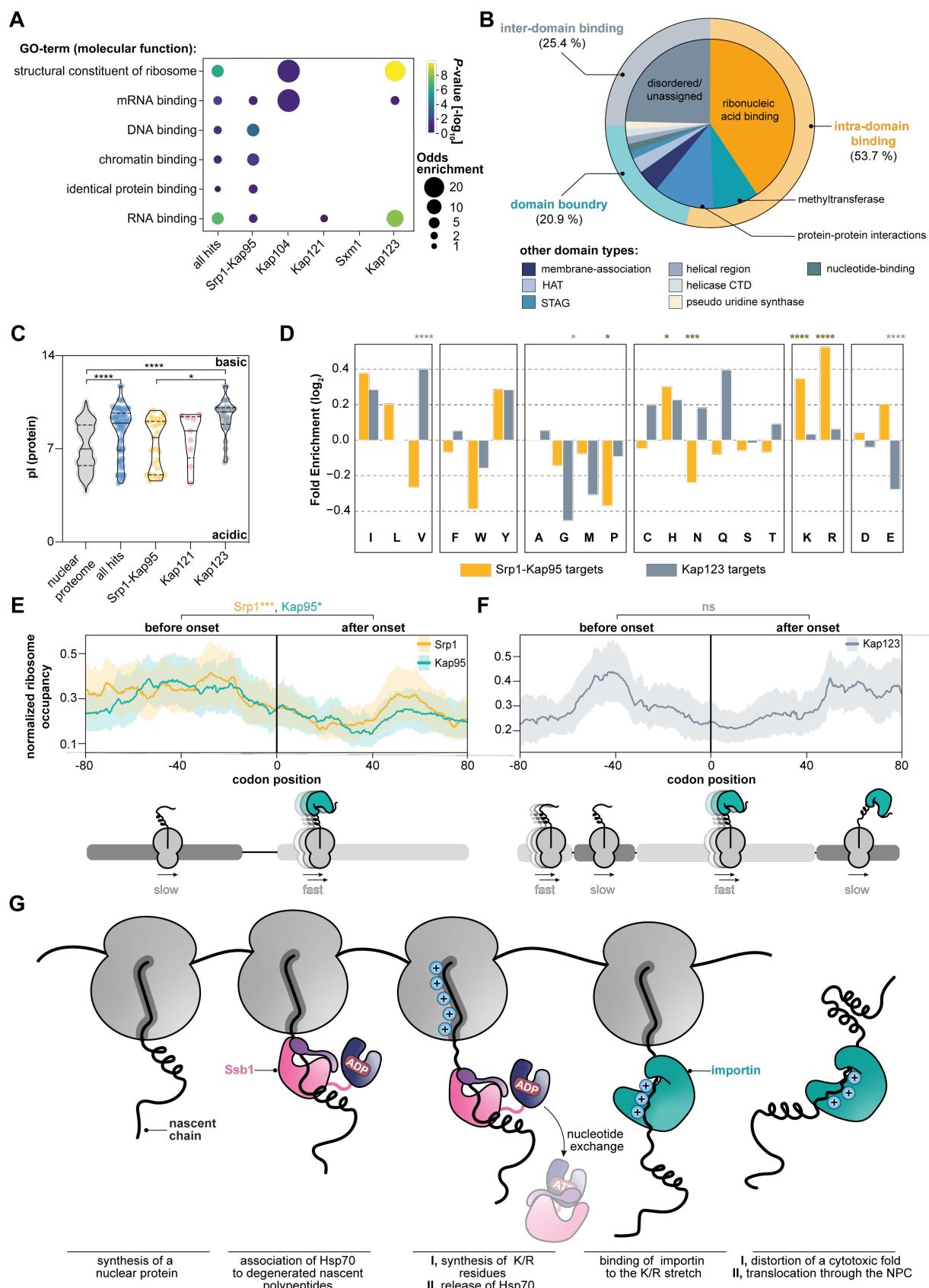
241 **Figure 4:** Engagement of Kap123 with nascent chains reveals novel aspects in ribosome biogenesis. **A**,
 242 Venn-Diagram of cargo overlap between importins and dedicated r-protein chaperones (Tsr2, Yar1,
 243 Acl4, Rrb1, Sqt1 and Syo1). The importins Kap123 and Kap104 chaperone unique r-proteins which else
 244 would not be covered by the substrate spectrum of r-protein chaperones. **B**, Importin chaperoned r-
 245 proteins are required in early ribosome biogenesis. **C**, Potential Kap123 and Kap104 binding moieties
 246 are buried within mature 80S ribosome. Co-translationally engaged r-proteins are highlighted in
 247 turquoise with their potential importin binding site highlighted in orange. Peptides highlighted in orange
 248 represent -50 to -30 of the onsets. **D**, same as for C, but represented as cartoons. Depicted structures can
 249 be accessed at the PDB: 4V7R (44).

Seidel *et al.*

250 **Ssb1/2 chaperoning occurs upstream of importin binding**

251 Upstream of their structured domains that are bound by Kap123, the respective r-proteins typically
252 contain a charged N-terminal patch that appears intrinsically disordered in their primary structure, but
253 is engaged in contacts with rRNA in the mature ribosome. We therefore wondered whether the broadly
254 acting nascent chain chaperones Ssb1/2 (17) that are known to bind intrinsically disordered, charged
255 patches, could act upstream of Kap123. We therefore systematically analyzed the co-occupation of
256 importin chaperoned nascent chains with Ssb1/2, and the Hsp60 TRiC/chaperonin using previously
257 published data sets (16, 17) (**Fig. S10B**). We found that the nascent chains of all r-proteins bound by
258 Kap123 and Kap104 are also captured by Ssb1/2, and in the case of Rpl8a, Rps1a/b, Rps5 and Rps9b
259 also by TRiC. Across the Ssb1 co-chaperoned r-protein SeRP profiles, we found that Ssb1 binding
260 temporarily preceded Kap123 binding (**Figs. 5A, 5B, and Fig. S10C**). A notable exception was Rpl28
261 that has not been reported as a substrate for other nascent chain chaperones and may not require Ssb1/2-
262 binding due to its unstructured N-terminus captured by Kap123 (**Fig. 5C**). Previous mass spectrometry
263 data indicated that a subset of the yeast proteome is rendered aggregation-prone in absence of Ssb1/2
264 (45). While Ssb1/2 substrates were depleted in nascent Srp1-Kap95 or Kap121 cargoes as compared to
265 the nuclear proteome, they were enriched in the corresponding nascent Kap123 cargoes (**Fig. S10D**).
266 Interestingly, nascent Kap123 cargoes very frequently aggregated in the absence of Ssb1/2 (**Fig. S10D**),
267 suggesting that both processes are intertwined. Taken together, this analysis suggested a Ssb1/2-
268 importin handover mechanism for substrate recognition (**Fig. S10E**). Since Ssb1/2 is thought to retain
269 hydrophobic and positively charged nascent peptides in a linear, degenerated form (16, 17) it may
270 facilitate co-translational importin cargo recognition.

273 **Figure 5:** Nascent chaperoning and cargo complex formation of r-proteins. SeRP profiles and
274 AlphaFold models of **A**, Rps5, **B**, Rpl18a, and **C**, Rpl28. **A**, and **B**, The SeRP profiles reveal, that for
275 nascent Rps5 and Rpl18a, Ssb1 first binds to the nascent chain. Subsequently, it is released prior to
276 Kap123 binding. **C**, In contrast, Rpl28 does not require Ssb1 chaperoning. Nevertheless, Kap123 binds
277 C-terminally. The folds exemplify the structural organization of many r-proteins. A nascent r-protein
278 recognized by Kap123 contains an N-terminally disordered, charged patch and a consecutive structured
279 domain. SeRP profiles (IP/total) are shown for the respective mRNA targets from $n=4$ biologically
280 independent replicates (solid lines are averaged across replicates; shades reflect largest to smalls
281 replicate value interval). Grey dashed lines indicate an arbitrary threshold of 2 used for onset estimation.
282 SeRP for Ssb1 (17) represents profiles generated from $n=2$ biologically independent replicates.
283 AlphaFold models of r-proteins were obtained from the AlphaFold database
284 (<https://alphafold.ebi.ac.uk/>) (46, 47). C-terminal binding sites (40 AA downstream of onset) are labeled
285 for Ssb1 and Kap123 within the structures, respectively. IP: immunoprecipitation; AA: amino acid.


Seidel *et al.*

286 **Co-translational importin binding sites have distinct biophysical properties**

287 While small molecules can diffuse across NPCs, larger molecules above ~30-50 kDa require active
288 transport (48). We therefore asked if co-translationally associated cargoes were above this size
289 threshold. Our analysis showed that the majority of the Srp1-Kap95 chaperoned cargoes exceed the size
290 threshold and thus depend on active import. This was less pronounced for the Kap121 cargoes and stood
291 in strong contrast to the Kap123 cargoes. In the latter set, small proteins with a median size of only ~30
292 kDa were particularly enriched suggesting that the majority of which could also passively enter the
293 nucleus if they were not bound to Kap123 (**Fig. S11A**). Concomitantly, many of the Kap123 cargoes
294 were highly abundant and synthesized with an exceptionally high translation rate (**Figs. S11B, S11C**).
295 These findings point to a model in which co-translational cargo complex formation may mask
296 potentially harmful biophysical properties, in particular of Kap123 cargoes.

297 Gene Ontology analysis indicated that many co-translational cargoes encode for ribonucleic acid binders
298 (**Fig. 6A**). The apparent onsets of importins within the ORFs of co-translational cargoes were enriched
299 for specific types of domains, namely tRNA methyltransferases as well as DNA-, RNA- or histone
300 processing domains. To a much lesser extent, they occurred at sites of protein-protein interactions or
301 membrane association (**Fig. 6B**). Since nucleic acid binding domains are often charged, we assessed the
302 isoelectric point (pI) of the proteins detected by our screen. In comparison to the entire nuclear proteome,
303 co-translationally bound cargoes had higher pI-values and were enriched for lysine and arginine, in
304 particular Kap123 cargoes (**Fig. 6C, Fig. S11D**). Interestingly, co-translational cargoes of importins
305 bear strong positive charges as compared to the substrates of the ubiquitous chaperones Ssb1/2 and
306 TRiC (**Fig. S11E**), stressing the unique role of importins. The local amino acid signature upstream of
307 the observed onsets for Srp1 and Kap123 displays a strong enrichment for the positively charged
308 residues lysine and arginine as compared to the entire protein (**Figs. 6D**). At last, we analyzed if the
309 elongation fidelity is affected by the compositional bias at importin binding sites. We noticed an
310 increased ribosomal occupancy upstream to the observed onset suggesting a decrease in elongation prior
311 to importin binding (**Figs. 6E, 6F**). Interestingly, the charged lysine and arginine residues that are
312 enriched at the observed onsets of many cargoes, are not only a hallmark of the NLS motif but they are
313 also associated with less abundant tRNAs (49) and thus likely reduce translation speed to warrant
314 importin binding. These findings generalize the basic chaperoning function of importins for numerous
315 cargoes and provides more detailed insights about the chaperoned cargo sites and their biophysical
316 properties.

Seidel *et al.*

Seidel *et al.*

319 **Figure 6:** Importins protect positively charged ribonucleic acid binding domains. **A**, Visualization of
320 the Gene Ontology (GO)-enrichment for molecular functions. Co-translationally targeted cargo shows
321 strong enrichment for DNA-, RNA-, chromatin-, protein-binding properties, and structural proteins of
322 the ribosome. Only significantly enriched GO-terms are shown (P-value < 0.1, not adjusted, Fisher Exact
323 Test relative to all proteins quantified). **B**, Onsets are frequently observed at ribonucleic acid binding
324 sites. Apparent onsets were mapped as described in **Materials and Methods** and classified according
325 to their annotated function. **C**, Importins capture preferentially positively charged nascent cargoes.
326 While the pI-values of nuclear proteins are distributed bimodally, nascent cargoes are shifted towards
327 high pI-values. Violin plot shows median and quartiles. ***P < 0.00074 (nuclear proteome, all hits);
328 ***P < 0.001 (nuclear proteome, Kap123); *P = 0.032 (Srp1/Kap95, Kap123). Non-parametric Mann-
329 Whitney U-test. **D**, Amino acid enrichment in apparent onsets for nascent Srp1-Kap95 and Kap123
330 cargoes as compared to the full-length proteins (Fisher Exact Test). *P = 0.0101 (Srp1-Kap95; proline);
331 *P = 0.0152 (Srp1-Kap95; histidine); ***P = 0.0015 (Srp1-Kap95; asparagine); ***P < 0.001 (Srp1-
332 Kap95; lysine); ***P < 0.001 (Srp1-Kap95; arginine); ***P < 0.001 (Kap123; valine). *P = 0.0489
333 (Kap123; glycine). ***P < 0.001 (Kap123; glutamate). **E**, and **F**, Metagene analysis of the ribosome
334 occupancy at apparent onset sites for nascent Srp1-Kap95 (**E**) and Kap123 (**F**) cargoes. Prior to the
335 onset, an increased occupancy is observed, implying a decrease in elongation. ***P = 0.0028 (Srp1:
336 before, after onset); *P = 0.0113 (Kap95: before, after onset); ns = 0.8642 (Kap123: before and after
337 onset). Solid lines represent averaged profiles; shades reflect a 95% confidence interval. For **C-F**, ns
338 P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.005, ***P < 0.001. **G**, Conceptual model of nascent cargo
339 complex formation. As the nascent chain emerges from the ribosome, it may be bound by ubiquitous
340 chaperones (e.g. Ssb1) that temporarily chaperone structured patches. Once released, importins
341 nascently form cargo complexes and shield charged patches. GO: gene ontology; HAT: histone
342 acetyltransferase; CTD: C-terminal domain; pI: isoelectric point.

Seidel *et al.*

343 **Conclusion**

344 Taken together, our data point to the following model (**Fig. 6G**): Importins bind to the nascent chain of
345 many cargoes during protein synthesis. This mechanism is particularly prominent for basic nuclear and
346 r-proteins that are primarily substrates for Srp1-Kap95, Kap121, and Kap123. Prior to co-translational
347 engagement of importins, many lysins and arginines, which are often constituents of nucleic acid
348 binding domains, are synthesized causing an intrinsic reduction of the translational speed due to their
349 rare codon usage. This decrease in translational fidelity may be beneficial for faithful importin
350 association. In some cases, we even observe a direct handover between temporarily bound Ssb1/2 and
351 importins. This handover might be necessary for cargo recognition by importin in particular for proteins
352 whose importin binding sites become inaccessible in the ternary structure.

353 Predicted and experimentally characterized NLSs indicate that in some cases, the observed onset may
354 be shifted downstream to the physical importin binding site. This may be explained by the modulation
355 of the availability of the binding site by other nascent chain binders as exemplified for Hsp70 or
356 temporary acetylation of N-terminal NLS by N^α-terminal acetyl transferases (50, 51). Alternatively,
357 domain recognition of importins may explain this phenomenon as exemplified by a recent structural
358 study (52).

359 We propose that the co-translational nuclear import complex formation shields positively charged
360 patches early during biogenesis, in an RNA-rich environment. This may be particularly relevant for
361 nucleic acid binding domains that otherwise may be aggregation-prone in the cytosol. These insights
362 strengthen the notion that importins are part of a basic client chaperone network. It was previously
363 shown that importin 4 (yeast: Kap123) chaperones the basic RPS3A (yeast: Rps1a) (7) that otherwise
364 aggregates in the presence of tRNA. Our study highlights that this protection of Rps1a is already
365 established co-translationally. This chaperoning presumably lasts until the nuclear entry of the import
366 complex. In the nucleoplasm, it becomes exposed to RanGTP and the cargo is released into the destined
367 biophysical environment to engage with native interaction partners. Some of the cargo complexes may
368 rely on alternative release cues, such as the histone dimer H2A•H2B, the SUMO-deconjugating enzyme
369 Ulp1, the mRNA binding protein Nab2, Nab4, and Npl3, or the ribosomal protein eS26 (53–57).

370 Beyond the co-translational proteostatic function of importins, our study extends the known spectrum
371 of cargoes chaperoned by importins beyond ribosomal proteins, histones, and some RNA binding
372 proteins (7, 10). We found 71 unique co-translational substrates (summarized in **Fig. S4**), many of them
373 accounting for previously undescribed nuclear transport cargoes. Surprisingly, histones and many of the
374 r-proteins did not enrich co-translationally. This may be due to the action of additional and very
375 specialized chaperone networks that may protect them from misfolding in a co-translational fashion (39,
376 58). Although importins have been shown to be partially redundant in function and their cargo spectrum
377 (27, 33), our data indicate a rather low redundancy in the co-translational binding capacity (**Figs. 1B**,
378 **1C** and **Fig. S7**). We find that the Srp1-Kap95 heterodimer, Kap123, Kap121 and to lesser extent
379 Kap104, Sxm1, Mtr10 and Kap122 co-translational act on nascent chains, while Kap114, Kap120, and

Seidel *et al.*

380 Nmd5 did not show any significant binding under the conditions tested (**Figs. 1B, 1C**). One may
381 speculate that the subset of importins identified in this study act as co-translational chaperones under
382 optimal growth conditions. Other importins may be required under permissive conditions, for example,
383 Kap114 that is indispensable under saline stress (59).

384 Overall, our findings suggest a role of importins as proteostatic safeguards for nascent nuclear proteins
385 but also open up novel perspectives on previous findings that associated importins with biomolecular
386 condensation. For example, Kap123 and some of the here identified co-translational cargoes (e.g. Nug1
387 and Noc2) were reported to phase separate upon heat shock (60). We speculate that recruitment of
388 Kap123 may ensure reversibility by protecting the RNA-binding patches of cargoes in the respective
389 RNA containing granules. Furthermore, importin-alpha, importin-beta, and the Kap121 homolog
390 importin- β 3 were found to co-translationally associate with Nup358-granules that manufacture NPCs in
391 early fly development (61). Most importantly, importins were attributed to counteract neurodegenerative
392 disease by enhancing the solubility of nuclear proteins associated with pathological features such as
393 FUS and TDP-43 (6). Some of the genes identified in *S. cerevisiae* in our study are known to drive
394 neurodegeneration in humans. Among these genes are *prp8* that is associated with retina pigmentosa
395 (62), *efr3* that is mutated in autism spectrum disorder (63), and *taf1* that if mutated can cause intellectual
396 disability (64). Our study demonstrates that the solubility of such proteins may be enhanced co-
397 translationally to prevent the exposure of aggregation-prone ribonucleic acid binders prior to their full
398 accessibility to the cytoplasm.

Seidel *et al.*

399 **Acknowledgment**

400 We thank Patrick Hoffmann, Filipa Pereira, and Gerhard Hummer for insightful discussions; Erin
401 Schuman, and Alessandro Ori for critical reading of the manuscript. We would like to thank Dingquan
402 Yu and Jan Kosinski from CSSB & EMBL Hamburg for support with AlphaFold modeling. The authors
403 would like to acknowledge the support of the Imaging Facility at the Max Planck Institute of Brain
404 Research. Additionally, the authors like to thank Georg Stoecklin, Lars Steinmetz, and Britta Brügger
405 for the critical assessment of the project. M.B. acknowledges funding by the Max Planck Society and
406 the European Research Council (724349-ComplexAssembly).

407

408 **Authors Contribution**

409 M.S. conceived the project, designed experiments, performed experiments, analyzed data, and wrote the
410 manuscript. N.R. developed the analysis pipeline, analyzed data, and wrote the manuscript. A.O.-K.
411 conducted AlphaFold modeling, analyzed data, and wrote the manuscript. A.B. performed experiments.
412 J.J.M.L., N.T.D.d.A, and J.P. performed experiments and analyzed data. S.R.N. performed experiments.
413 V.B. designed experiments and supervised the project. M.B. conceived the project, designed
414 experiments, analyzed data, supervised the project, and wrote the manuscript.

415

416 **Declaration of interests**

417 The authors declare no competing interests.

Seidel et al.

418 References

- 419 1. Y. E. Kim, M. S. Hipp, A. Bracher, M. Hayer-Hartl, F. Ulrich Hartl, *Molecular chaperone*
420 *functions in protein folding and proteostasis* (2013), vol. 82.
- 421 2. F. U. Hartl, Protein Misfolding Diseases. *Annu. Rev. Biochem.* **86**, 21–26 (2017).
- 422 3. F. Morales-Polanco, J. H. Lee, N. M. Barbosa, J. Frydman, Cotranslational Mechanisms of
423 Protein Biogenesis and Complex Assembly in Eukaryotes. *Annu. Rev. Biomed. Data Sci.* **5**, 67–
424 94 (2022).
- 425 4. G. Kramer, A. Shiber, B. Bukau, Mechanisms of cotranslational maturation of newly
426 synthesized proteins. *Annu. Rev. Biochem.* **88**, 337–364 (2019).
- 427 5. C. E. Wing, H. Y. J. Fung, Y. M. Chook, Karyopherin-mediated nucleocytoplasmic transport.
428 *Nat. Rev. Mol. Cell Biol.* **0123456789** (2022), doi:10.1038/s41580-021-00446-7.
- 429 6. C. E. Springhower, M. K. Rosen, Y. M. Chook, Karyopherins and condensates. *Curr. Opin.*
430 *Cell Biol.* **64**, 112–123 (2020).
- 431 7. S. Jakel, J.-M. Mingot, P. Scharzmaier, E. Hartmann, D. Görlich, Importins fulfil a dual
432 function as nuclear import receptors and cytoplasmic chaperones for exposed basic domains.
433 *EMBO J.* **21**, 377–386 (2002).
- 434 8. M. Hofweber, S. Hutten, B. Bourgeois, E. Spreitzer, A. Niedner-Boblenz, M. Schifferer, M. D.
435 Ruepp, M. Simons, D. Niessing, T. Madl, D. Dormann, Phase Separation of FUS Is Suppressed
436 by Its Nuclear Import Receptor and Arginine Methylation. *Cell.* **173**, 706–719.e13 (2018).
- 437 9. T. Yoshizawa, R. Ali, J. Jiou, H. Y. J. Fung, K. A. Burke, S. J. Kim, Y. Lin, W. B. Peeples, D.
438 Saltzberg, M. Soniat, J. M. Baumhardt, R. Oldenbourg, A. Sali, N. L. Fawzi, M. K. Rosen, Y.
439 M. Chook, Nuclear Import Receptor Inhibits Phase Separation of FUS through Binding to
440 Multiple Sites. *Cell.* **173**, 693–705.e22 (2018).
- 441 10. L. Guo, H. J. Kim, H. Wang, J. Monaghan, F. Freyermuth, J. C. Sung, K. O'Donovan, C. M.
442 Fare, Z. Diaz, N. Singh, Z. C. Zhang, M. Coughlin, E. A. Sweeny, M. E. DeSantis, M. E.
443 Jackrel, C. B. Rodell, J. A. Burdick, O. D. King, A. D. Gitler, C. Lagier-Tourenne, U. B.
444 Pandey, Y. M. Chook, J. P. Taylor, J. Shorter, Nuclear-Import Receptors Reverse Aberrant
445 Phase Transitions of RNA-Binding Proteins with Prion-like Domains. *Cell.* **173**, 677–692.e20
446 (2018).
- 447 11. S. Qamar, G. Z. Wang, S. J. Randle, F. S. Ruggeri, J. A. Varela, J. Q. Lin, E. C. Phillips, A.
448 Miyashita, D. Williams, F. Ströhl, W. Meadows, R. Ferry, V. J. Dardov, G. G. Tartaglia, L. A.
449 Farrer, G. S. Kaminski Schierle, C. F. Kaminski, C. E. Holt, P. E. Fraser, G. Schmitt-Ulms, D.
450 Klenerman, T. Knowles, M. Vendruscolo, P. St George-Hyslop, FUS Phase Separation Is
451 Modulated by a Molecular Chaperone and Methylation of Arginine Cation-π Interactions. *Cell.*
452 **173**, 720–734.e15 (2018).
- 453 12. M. S. Safari, M. R. King, C. P. Brangwynne, S. Petry, Interaction of spindle assembly factor
454 TPX2 with importins-α/β inhibits protein phase separation. *J. Biol. Chem.* **297**, 100998 (2021).
- 455 13. S. Hutten, S. Usluer, B. Bourgeois, F. Simonetti, H. M. Odeh, C. M. Fare, M. Czuppa, M.
456 Hruska-Plochan, M. Hofweber, M. Polymenidou, J. Shorter, D. Edbauer, T. Madl, D.
457 Dormann, Nuclear Import Receptors Directly Bind to Arginine-Rich Dipeptide Repeat Proteins
458 and Suppress Their Pathological Interactions. *Cell Rep.* **33**, 108538 (2020).
- 459 14. C. V. Galmozzi, D. Merker, U. A. Friedrich, K. Döring, G. Kramer, *Selective ribosome*
460 *profiling to study interactions of translating ribosomes in yeast* (Springer US, 2019;
461 <http://dx.doi.org/10.1038/s41596-019-0185-z>), vol. 14.
- 462 15. A. H. Becker, E. Oh, J. S. Weissman, G. Kramer, B. Bukau, Selective ribosome profiling as a
463 tool for studying the interaction of chaperones and targeting factors with nascent polypeptide
464 chains and ribosomes. *Nat. Protoc.* **8**, 2212–2239 (2013).
- 465 16. K. C. Stein, A. Kriel, J. Frydman, Nascent Polypeptide Domain Topology and Elongation Rate
466 Direct the Cotranslational Hierarchy of Hsp70 and TRiC/CCT. *Mol. Cell.* **75**, 1117–1130.e5
467 (2019).
- 468 17. K. Döring, N. Ahmed, T. Riemer, H. G. Suresh, Y. Vainshtein, M. Habich, J. Riemer, M. P.
469 Mayer, E. P. O'Brien, G. Kramer, B. Bukau, Profiling Ssb-Nascent Chain Interactions Reveals
470 Principles of Hsp70-Assisted Folding. *Cell.* **170**, 298–311.e20 (2017).
- 471 18. J. W. Chartron, K. C. L. Hunt, J. Frydman, Cotranslational signal-independent SRP preloading

Seidel *et al.*

473 during membrane targeting. *Nature*. **536**, 224–228 (2016).

474 19. D. Schibich, F. Gloge, I. Pöhner, P. Björkholm, R. C. Wade, G. Von Heijne, B. Bukau, G.
475 Kramer, Global profiling of SRP interaction with nascent polypeptides. *Nature*. **536**, 219–223
476 (2016).

477 20. T. G. M. Schmidt, L. Batz, L. Bonet, U. Carl, G. Holzapfel, K. Kiem, K. Matulewicz, D.
478 Niermeier, I. Schuchardt, K. Stanar, Development of the Twin-Strep-tag® and its application
479 for purification of recombinant proteins from cell culture supernatants. *Protein Expr. Purif.* **92**,
480 54–61 (2013).

481 21. Â. Carvalho, F. Pereira, B. Johansson, The MX4blaster cassette: Repeated and clean
482 Saccharomyces cerevisiae genome modification using the genome-wide deletion collection.
483 *FEMS Yeast Res.* **13**, 711–719 (2013).

484 22. E. Oh, A. H. Becker, A. Sandikci, D. Huber, R. Chaba, F. Gloge, R. J. Nichols, A. Typas, C. A.
485 Gross, G. Kramer, J. S. Weissman, B. Bukau, Selective ribosome profiling reveals the
486 cotranslational chaperone action of trigger factor *in vivo*. *Cell*. **147**, 1295–1308 (2011).

487 23. J. Lu, T. Wu, B. Zhang, S. Liu, W. Song, J. Qiao, H. Ruan, Types of nuclear localization
488 signals and mechanisms of protein import into the nucleus. *Cell Commun. Signal.* **19**, 1–10
489 (2021).

490 24. G. Paci, J. Caria, E. A. Lemke, Cargo transport through the nuclear pore complex at a glance.
491 *J. Cell Sci.* **134** (2021), doi:10.1242/jcs.247874.

492 25. Y. M. Chook, K. E. Süel, Nuclear import by karyopherin- β s: Recognition and inhibition.
493 *Biochim. Biophys. Acta - Mol. Cell Res.* **1813**, 1593–1606 (2011).

494 26. I. Baade, S. Hutten, E. L. Sternburg, M. Pörschke, M. Hofweber, D. Dormann, R. H.
495 Kehlenbach, The RNA-binding protein FUS is chaperoned and imported into the nucleus by a
496 network of import receptors. *J. Biol. Chem.* **296**, 100659 (2021).

497 27. M. Mackmull, B. Klaus, I. Heinze, M. Chokkalingam, A. Beyer, R. B. Russell, A. Ori, M.
498 Beck, Landscape of nuclear transport receptor cargo specificity. *Mol. Syst. Biol.* **13**, 962
499 (2017).

500 28. M. Kimura, Y. Morinaka, K. Imai, S. Kose, P. Horton, N. Imamoto, Extensive cargo
501 identification reveals distinct biological roles of the 12 importin pathways. *Elife*. **6**, 1–31
502 (2017).

503 29. M. Seidel, A. Becker, F. Pereira, J. J. M. Landry, N. Trevisan, D. De Azevedo, C. M. Fusco, E.
504 Kaindl, N. Romanov, J. Baumbach, J. D. Langer, E. M. Schuman, K. R. Patil, G. Hummer, V.
505 Benes, M. Beck, Co-translational assembly orchestrates competing biogenesis
506 pathwaysbiogenesis pathways. *Nat. Commun.*, 1–15 (2022).

507 30. A. Shiber, K. Döring, U. Friedrich, K. Klann, D. Merker, M. Zedan, F. Tippmann, G. Kramer,
508 B. Bukau, Cotranslational assembly of protein complexes in eukaryotes revealed by ribosome
509 profiling. *Nature*. **561**, 268–272 (2018).

510 31. D. Görlich, M. J. Seewald, K. Ribbeck, Characterization of Ran-driven cargo transport and the
511 RanGTPase system by kinetic measurements and computer simulation. *EMBO J.* **22**, 1088–
512 1100 (2003).

513 32. D. Görlich, N. Panté, U. Kutay, U. Aebi, F. R. Bischoff, Identification of different roles for
514 RanGDP and RanGTP in nuclear protein import. *EMBO J.* **15**, 5584–5594 (1996).

515 33. D. Xu, A. Farmer, Y. M. Chook, Recognition of nuclear targeting signals by Karyopherin- β
516 proteins. *Curr. Opin. Struct. Biol.* **20**, 782–790 (2010).

517 34. M. Stewart, Molecular mechanism of the nuclear protein import cycle. *Nat. Rev. Mol. Cell
518 Biol.* **8**, 195–208 (2007).

519 35. R. Evans, M. O'Neill, A. Pritzel, N. Antropova, A. Senior, T. Green, A. Žídek, R. Bates, S.
520 Blackwell, J. Yim, O. Ronneberger, S. Bodenstein, M. Zielinski, A. Bridgland, A. Potapenko,
521 A. Cowie, K. Tunyasuvunakool, R. Jain, E. Clancy, P. Kohli, J. Jumper, D. Hassabis, *bioRxiv*,
522 in press, doi:10.1101/2021.10.04.463034.

523 36. S. Hahn, P. Maurer, S. Caesar, G. Schlenstedt, Classical NLS Proteins from *Saccharomyces
524 cerevisiae*. *J. Mol. Biol.* **379**, 678–694 (2008).

525 37. Y. Matsuura, M. Stewart, Structural basis for the assembly of a nuclear export complex.
526 *Nature*. **432**, 872–877 (2004).

527 38. M. M. Ghulam, M. Catala, S. Abou Elela, Differential expression of duplicated ribosomal
528 protein genes modifies ribosome composition in response to stress. *Nucleic Acids Res.* **48**,

Seidel et al.

529 1954–1968 (2020).

530 39. B. Pillet, V. Mitterer, D. Kressler, B. Pertschy, Hold on to your friends: Dedicated chaperones
531 of ribosomal proteins: Dedicated chaperones mediate the safe transfer of ribosomal proteins to
532 their site of pre-ribosome incorporation. *BioEssays*. **39**, 1–12 (2017).

533 40. M. Kornprobst, M. Turk, N. Kellner, J. Cheng, D. Flemming, I. Koš-Braun, M. Koš, M.
534 Thoms, O. Berninghausen, R. Beckmann, E. Hurt, Architecture of the 90S Pre-ribosome: A
535 Structural View on the Birth of the Eukaryotic Ribosome. *Cell*. **166**, 380–393 (2016).

536 41. L. Kater, M. Thoms, C. Barrio-Garcia, J. Cheng, S. Ismail, Y. L. Ahmed, G. Bange, D.
537 Kressler, O. Berninghausen, I. Sinning, E. Hurt, R. Beckmann, Visualizing the Assembly
538 Pathway of Nucleolar Pre-60S Ribosomes. *Cell*. **171**, 1599–1610.e14 (2017).

539 42. S. Ismail, D. Flemming, M. Thoms, J. V. Gomes-Filho, L. Randau, R. Beckmann, E. Hurt,
540 Emergence of the primordial pre-60S from the 90S pre-ribosome. *Cell Rep*. **39** (2022),
541 doi:10.1016/j.celrep.2022.110640.

542 43. C. Sailer, J. Jansen, K. Sekulski, V. E. Cruz, J. P. Erzberger, F. Stengel, A comprehensive
543 landscape of 60S ribosome biogenesis factors. *Cell Rep*. **38**, 110353 (2022).

544 44. A. Ben-Shem, L. Jenner, G. Yusupova, M. Yusupov, Crystal Structure of the Eukaryotic
545 Ribosome. *Science (80-.).* **330**, 1203–1209 (2010).

546 45. F. Willmund, M. Del Alamo, S. Pechmann, T. Chen, V. Albanèse, E. B. Dammer, J. Peng, J.
547 Frydman, The cotranslational function of ribosome-associated Hsp70 in eukaryotic protein
548 homeostasis. *Cell*. **152**, 196–209 (2013).

549 46. J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool,
550 R. Bates, A. Žídek, A. Potapenko, A. Bridgland, C. Meyer, S. A. A. Kohl, A. J. Ballard, A.
551 Cowie, B. Romera-Paredes, S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen, D. Reiman, E.
552 Clancy, M. Zielinski, M. Steinegger, M. Pacholska, T. Berghammer, S. Bodenstein, D. Silver,
553 O. Vinyals, A. W. Senior, K. Kavukcuoglu, P. Kohli, D. Hassabis, Highly accurate protein
554 structure prediction with AlphaFold. *Nature*. **596**, 583–589 (2021).

555 47. M. Varadi, S. Anyango, M. Deshpande, S. Nair, C. Natassia, G. Yordanova, D. Yuan, O. Stroe,
556 G. Wood, A. Laydon, A. Žídek, T. Green, K. Tunyasuvunakool, S. Petersen, J. Jumper, E.
557 Clancy, R. Green, A. Vora, M. Lutfi, M. Figurnov, A. Cowie, N. Hobbs, P. Kohli, G.
558 Kleywegt, E. Birney, D. Hassabis, S. Velankar, AlphaFold Protein Structure Database:
559 Massively expanding the structural coverage of protein-sequence space with high-accuracy
560 models. *Nucleic Acids Res*. **50**, D439–D444 (2022).

561 48. B. L. Timney, B. Raveh, R. Mironksa, J. M. Trivedi, S. J. Kim, D. Russel, S. R. Wente, A.
562 Sali, M. P. Rout, Simple rules for passive diffusion through the nuclear pore complex. *J. Cell
563 Biol*. **215**, 57–76 (2016).

564 49. V. Presnyak, N. Alhusaini, Y. H. Chen, S. Martin, N. Morris, N. Kline, S. Olson, D. Weinberg,
565 K. E. Baker, B. R. Graveley, J. Coller, Codon optimality is a major determinant of mRNA
566 stability. *Cell*. **160**, 1111–1124 (2015).

567 50. U. A. Friedrich, M. Zedan, B. Hessling, K. Fenzl, L. Gillet, J. Barry, M. Knop, G. Kramer, B.
568 Bukau, Nα-terminal acetylation of proteins by NatA and NatB serves distinct physiological
569 roles in *Saccharomyces cerevisiae*. *Cell Rep*. **34** (2021), doi:10.1016/j.celrep.2021.108711.

570 51. R. Ree, S. Varland, T. Arnesen, Spotlight on protein N-terminal acetylation. *Exp. Mol. Med*. **50**
571 (2018), doi:10.1038/s12276-018-0116-z.

572 52. N. E. Bernardes, H. Yee, J. Fung, Y. Li, Z. Chen, Y. M. Chook, Structure of Importin-4 bound
573 to the H3-H4 · ASF1 histone · histone chaperone complex, 1–22 (2022).

574 53. A. Padavannil, P. Sarkar, S. J. Kim, T. Cagatay, J. Jiou, C. A. Brautigam, D. R. Tomchick, A.
575 Sali, S. D’Arcy, Y. M. Chook, Importin-9 wraps around the H2A-H2B core to act as nuclear
576 importer and histone chaperone. *Elife*. **8**, 1–24 (2019).

577 54. S. Schütz, U. Fischer, M. Altvater, P. Nerurkar, C. Peña, M. Gerber, Y. Chang, S. Caesar, O. T.
578 Schubert, G. Schlenstedt, V. G. Panse, A RanGTP-independent mechanism allows ribosomal
579 protein nuclear import for ribosome assembly. *Elife*. **3**, e03473 (2014).

580 55. B. Senger, G. Simos, F. R. Bischoff, A. Podtelejnikov, M. Mann, E. Hurt, Mtr10p functions as
581 a nuclear import receptor for the mRNA-binding protein Np13p. *EMBO J*. **17**, 2196–2207
582 (1998).

583 56. D. C. Y. Lee, J. D. Aitchison, Kap104p-mediated nuclear import. Nuclear localization signals
584 in mRNA- binding proteins and the role of Ran and RNA. *J. Biol. Chem*. **274**, 29031–29037

Seidel et al.

585 (1999).

586 57. V. G. Panse, B. Küster, T. Gerstberger, E. Hurt, Unconventional tethering of Ulp1 to the
587 transport channel of the nuclear pore complex by karyopherins. *Nat. Cell Biol.* **5**, 21–27 (2003).

588 58. R. J. Burgess, Z. Zhang, Histone chaperones in nucleosome assembly and human disease. *Nat.*
589 *Struct. Mol. Biol.* **20**, 14–22 (2013).

590 59. C. Liao, S. Shankar, W. Pi, C. Chang, G. R. Ahmed, W. Chen, K. Hsia, Karyopherin Kap114p-
591 mediated trans-repression controls ribosomal gene expression under saline stress. *EMBO Rep.*
592 **21**, 1–18 (2020).

593 60. E. W. J. Wallace, J. L. Kear-Scott, E. V. Pilipenko, M. H. Schwartz, P. R. Laskowski, A. E.
594 Rojek, C. D. Katanski, J. A. Riback, M. F. Dion, A. M. Franks, E. M. Airoldi, T. Pan, B. A.
595 Budnik, D. A. Drummond, Reversible, Specific, Active Aggregates of Endogenous Proteins
596 Assemble upon Heat Stress. *Cell.* **162**, 1286–1298 (2015).

597 61. B. Hampelz, A. Schwarz, P. Ronchi, H. Bragulat-Teixidor, C. Tischer, I. Gaspar, A. Ephrussi,
598 Y. Schwab, M. Beck, Nuclear Pores Assemble from Nucleoporin Condensates During
599 Oogenesis. *Cell.* **179**, 671–686.e17 (2019).

600 62. K. L. Boon, R. J. Grainger, P. Ehsani, J. D. Barrass, T. Auchynnikava, C. F. Inglehearn, J. D.
601 Beggs, Prp8 mutations that cause human retinitis pigmentosa lead to a U5 snRNP maturation
602 defect in yeast. *Nat. Struct. Mol. Biol.* **14**, 1077–1083 (2007).

603 63. A. R. Gupta, M. Pirruccello, F. Cheng, H. J. Kang, T. V. Fernandez, J. M. Baskin, M. Choi, L.
604 Liu, A. G. Ercan-Senicek, J. D. Murdoch, L. Klei, B. M. Neale, D. Franjic, M. J. Daly, R. P.
605 Lifton, P. De Camilli, H. Zhao, N. Šestan, M. W. State, Rare deleterious mutations of the gene
606 EFR3A in autism spectrum disorders. *Mol. Autism.* **5** (2014), doi:10.1186/2040-2392-5-31.

607 64. J. A. O’Rawe, Y. Wu, M. J. Dörfel, A. F. Rope, P. Y. B. Au, J. S. Parboosingh, S. Moon, M.
608 Kousi, K. Kosma, C. S. Smith, M. Tzetis, J. L. Schuette, R. B. Hufnagel, C. E. Prada, F.
609 Martinez, C. Orellana, J. Crain, A. Caro-Llopis, S. Oltra, S. Monfort, L. T. Jiménez-Barrón, J.
610 Swensen, S. Ellingwood, R. Smith, H. Fang, S. Ospina, S. Stegmann, N. Den Hollander, D.
611 Mittelman, G. Highnam, R. Robison, E. Yang, L. Faivre, A. Roubertie, J. B. Rivière, K. G.
612 Monaghan, K. Wang, E. E. Davis, N. Katsanis, V. M. Kalscheuer, E. H. Wang, K. Metcalfe, T.
613 Kleefstra, A. M. Innes, S. Kitsiou-Tzeli, M. Rosello, C. E. Keegan, G. J. Lyon, TAF1 Variants
614 Are Associated with Dysmorphic Features, Intellectual Disability, and Neurological
615 Manifestations. *Am. J. Hum. Genet.* **97**, 922–932 (2015).

616 65. M. Martin, Cutadapt removes adapter sequences from high-throughput sequencing reads.
617 *EMBnet.journal.* **17**, 10 (2011).

618 66. J. M. Cherry, E. L. Hong, C. Amundsen, R. Balakrishnan, G. Binkley, E. T. Chan, K. R.
619 Christie, M. C. Costanzo, S. S. Dwight, S. R. Engel, D. G. Fisk, J. E. Hirschman, B. C. Hitz, K.
620 Karra, C. J. Krieger, S. R. Miyasato, R. S. Nash, J. Park, M. S. Skrzypek, M. Simison, S.
621 Weng, E. D. Wong, Saccharomyces Genome Database: The genomics resource of budding
622 yeast. *Nucleic Acids Res.* **40**, 700–705 (2012).

623 67. F. Cunningham, J. E. Allen, J. Alvarez-Jarreta, M. R. Amode, I. M. Armean, O.
624 Austine-Orimoloye, A. G. Azov, I. Barnes, R. Bennett, A. Berry, J. Bhai, A. Bignell, K. Billis,
625 S. Boddu, L. Brooks, M. Charkhchi, C. Cummins, L. Da Rin Fioretto, C. Davidson, K. Dodiya,
626 S. Donaldson, B. El Houdaigui, T. El Naboulsi, R. Fatima, C. G. Giron, T. Genez, J. G.
627 Martinez, C. Guijarro-Clarke, A. Gymer, M. Hardy, Z. Hollis, T. Hourlier, T. Hunt, T.
628 Juettemann, V. Kaikala, M. Kay, I. Lavidas, T. Le, D. Lemos, J. C. Marugán, S. Mohanan, A.
629 Mushtaq, M. Naven, D. N. Ogeh, A. Parker, A. Parton, M. Perry, I. Pilizota, I. Prosovetskaia,
630 M. P. Sakthivel, A. I. A. Salam, B. M. Schmitt, H. Schuilenburg, D. Sheppard, J. G. Perez-
631 Silva, W. Stark, E. Steed, K. Sutinen, R. Sukumaran, D. Sumathipala, M. M. Suner, M. Szpak,
632 A. Thormann, F. F. Tricomi, D. Urbina-Gómez, A. Veidenberg, T. A. Walsh, B. Walts, N.
633 Willhoft, A. Winterbottom, E. Wass, M. Chakiachvili, B. Flint, A. Frankish, S. Giorgetti, L.
634 Haggerty, S. E. Hunt, G. R. Iisley, J. E. Loveland, F. J. Martin, B. Moore, J. M. Mudge, M.
635 Muffato, E. Perry, M. Ruffier, J. Tate, D. Thybert, S. J. Trevanion, S. Dyer, P. W. Harrison, K.
636 L. Howe, A. D. Yates, D. R. Zerbino, P. Flicek, Ensembl 2022. *Nucleic Acids Res.* **50**, D988–
637 D995 (2022).

638 68. W. McKinney, Data Structures for Statistical Computing in Python. *Proc. 9th Python Sci.*
639 *Conf.* **1**, 56–61 (2010).

640 69. C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E.

Seidel et al.

641 Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M.
642 Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T.
643 Reddy, W. Weckesser, H. Abbasi, C. Gohlke, T. E. Oliphant, Array programming with
644 NumPy. *Nature*. **585**, 357–362 (2020).

645 70. M. I. Love, W. Huber, S. Anders, Moderated estimation of fold change and dispersion for
646 RNA-seq data with DESeq2. *Genome Biol.* **15**, 1–21 (2014).

647 71. M. Blum, H. Y. Chang, S. Chuguransky, T. Grego, S. Kandasamy, A. Mitchell, G. Nuka, T.
648 Paysan-Lafosse, M. Qureshi, S. Raj, L. Richardson, G. A. Salazar, L. Williams, P. Bork, A.
649 Bridge, J. Gough, D. H. Haft, I. Letunic, A. Marchler-Bauer, H. Mi, D. A. Natale, M. Necci, C.
650 A. Orengo, A. P. Pandurangan, C. Rivoire, C. J. A. Sigrist, I. Sillitoe, N. Thanki, P. D.
651 Thomas, S. C. E. Tosatto, C. H. Wu, A. Bateman, R. D. Finn, The InterPro protein families and
652 domains database: 20 years on. *Nucleic Acids Res.* **49**, D344–D354 (2021).

653 72. J. Mistry, S. Chuguransky, L. Williams, M. Qureshi, G. A. Salazar, E. L. L. Sonnhammer, S.
654 C. E. Tosatto, L. Paladin, S. Raj, L. J. Richardson, R. D. Finn, A. Bateman, Pfam: The protein
655 families database in 2021. *Nucleic Acids Res.* **49**, D412–D419 (2021).

656 73. N. Mészáros, J. Cibulka, M. J. Mendiburo, A. Romanauska, M. Schneider, A. Köhler, Nuclear
657 Pore Basket Proteins Are Tethered to the Nuclear Envelope and Can Regulate Membrane
658 Curvature. *Dev. Cell.* **33**, 285–298 (2015).

659 74. S. Ghaemmaghami, W. K. Huh, K. Bower, R. W. Howson, A. Belle, N. Dephoure, E. K.
660 O’Shea, J. S. Weissman, Global analysis of protein expression in yeast. *Nature*. **425**, 737–741
661 (2003).

662 75. Y. Arava, Y. Wang, J. D. Storey, C. L. Liu, P. O. Brown, D. Herschlag, Genome-wide analysis
663 of mRNA translation profiles in *Saccharomyces cerevisiae*. *Proc. Natl. Acad. Sci. U. S. A.* **100**,
664 3889–3894 (2003).

665 76. E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, T. E.
666 Ferrin, UCSF Chimera - A visualization system for exploratory research and analysis. *J.
667 Comput. Chem.* **25**, 1605–1612 (2004).

668 77. T. D. Goddard, C. C. Huang, E. C. Meng, E. F. Pettersen, G. S. Couch, J. H. Morris, T. E.
669 Ferrin, UCSF ChimeraX: Meeting modern challenges in visualization and analysis. *Protein Sci.*
670 **27**, 14–25 (2018).

671 78. A. M. Waterhouse, J. B. Procter, D. M. A. Martin, M. Clamp, G. J. Barton, Jalview Version 2-
672 A multiple sequence alignment editor and analysis workbench. *Bioinformatics*. **25**, 1189–1191
673 (2009).

674 79. M. C. King, C. P. Lusk, G. Blobel, Karyopherin-mediated import of integral inner nuclear
675 membrane proteins. *Nature*. **442**, 1003–1007 (2006).

676 80. I. L. Rempel, P. Popken, A. Ghavami, A. Mishra, R. A. Hapsari, A. H. G. Wolters, A. C.
677 Veldsink, M. Klaassens, A. C. Meinema, B. Poolman, B. N. G. Giepmans, P. R. Onck, A.
678 Steen, L. M. Veenhoff, Flexible and Extended Linker Domains Support Efficient Targeting of
679 Heh2 to the Inner Nuclear Membrane. *Structure*. **28**, 185–195.e5 (2020).

680 81. A. C. Meinema, J. K. Laba, R. A. Hapsari, R. Otten, F. A. A. Mulder, A. Kralt, G. Van Den
681 Bogaart, C. P. Lusk, B. Poolman, L. M. Veenhoff, Long unfolded linkers facilitate membrane
682 protein import through the nuclear pore complex. *Science (80-).* **333** (2011), pp. 90–93.

683 82. Y. Matsuura, M. Stewart, Nup50/Npap60 function in nuclear protein import complex
684 disassembly and importin recycling. *EMBO J.* **24**, 3681–3689 (2005).

685 83. T. Fries, C. Betz, K. Sohn, S. Caesar, G. Schlenstedt, S. M. Bailer, A novel conserved nuclear
686 localization signal is recognized by a group of yeast importins. *J. Biol. Chem.* **282**, 19292–
687 19301 (2007).

688 84. M. A. Mackinnon, A. J. Curwin, G. J. Gaspard, A. B. Suraci, J. P. Fernández-Murray, C. R.
689 McMaster, The Kap60-Kap95 Karyopherin Complex Directly regulates phosphatidylcholine
690 synthesis. *J. Biol. Chem.* **284**, 7376–7384 (2009).

691 85. K. M. Keck, L. F. Pemberton, Interaction with the histone chaperone Vps75 promotes nuclear
692 localization and HAT activity of Rtt109 in vivo. *Traffic*. **12** (2011), pp. 826–839.

693 86. F. C. Gardiner, R. Costa, K. R. Ayscough, Nucleocytoplasmic trafficking is required for
694 functioning of the adaptor protein Sla1p in endocytosis. *Traffic*. **8** (2007), pp. 347–358.

695 87. E. Czeko, M. Seizl, C. Augsberger, T. Mielke, P. Cramer, Iwr1 Directs RNA Polymerase II
696 Nuclear Import. *Mol. Cell.* **42**, 261–266 (2011).

Seidel et al.

697 88. R. Peláez, P. Fernández-García, P. Herrero, F. Moreno, Nuclear import of the yeast hexokinase
698 2 protein requires α/β -importin-dependent pathway. *J. Biol. Chem.* **287**, 3518–3529 (2012).

699 89. F. A. Gonzales-Zubiate, E. K. Okuda, J. P. C. Da Cunha, C. C. Oliveira, Identification of
700 karyopherins involved in the nuclear import of RNA exosome subunit Rrp6 in *Saccharomyces*
701 *cerevisiae*. *J. Biol. Chem.* **292**, 12267–12284 (2017).

702 90. T. Makhnevych, C. Ptak, C. P. Lusk, J. D. Aitchison, R. W. Wozniak, The role of karyopherins
703 in the regulated sumoylation of septins. *J. Cell Biol.* **177**, 39–49 (2007).

704 91. K. Streckfuss-Bömeke, F. Schulze, B. Herzog, E. Scholz, G. H. Braus, Degradation of
705 *Saccharomyces cerevisiae* transcription factor Gcn4 requires a C-terminal nuclear localization
706 signal in the cyclin Pcl5. *Eukaryot. Cell.* **8**, 496–510 (2009).

707 92. G. Cingolani, C. Petosa, K. Weis, C. W. Müller, Structure of importin- β bound to the IBB
708 domain of importin- α . *Nature* **399**, 221–229 (1999).

709 93. S. W. Ha, D. Ju, Y. Xie, Nuclear import factor Srp1 and its associated protein Sts1 couple
710 ribosome-bound nascent polypeptides to proteasomes for cotranslational degradation. *J. Biol.*
711 *Chem.* **289**, 2701–2710 (2014).

712 94. J. Carvalho, P. G. Bertram, S. R. Wente, X. F. S. Zheng, Phosphorylation Regulates the
713 Interaction between Gln3p and the Nuclear Import Factor Srp1p. *J. Biol. Chem.* **276**, 25359–
714 25365 (2001).

715 95. M. Marfori, T. G. Lonhienne, J. K. Forwood, B. Kobe, Structural Basis of High-Affinity
716 Nuclear Localization Signal Interactions with Importin- α . *Traffic* **13**, 532–548 (2012).

717 96. S. M. G. Dias, K. F. Wilson, K. S. Rojas, A. L. B. Ambrosio, R. A. Cerione, The molecular
718 basis for the regulation of the cap-binding complex by the importins. *Nat. Struct. Mol. Biol.* **16**,
719 930–937 (2009).

720 97. H. F. Hofbauer, M. Gecht, S. C. Fischer, A. Seybert, A. S. Frangakis, E. H. K. Stelzer, R.
721 Covino, G. Hummer, R. Ernst, The molecular recognition of phosphatidic acid by an
722 amphipathic helix in Opi1. *J. Cell Biol.* **217**, 3109–3126 (2018).

723 98. E. K. Fredrickson, S. V. C. Candadai, C. H. Tam, R. G. Gardner, Means of self-preservation:
724 How an intrinsically disordered ubiquitin-protein ligase averts self-destruction. *Mol. Biol. Cell.*
725 **24**, 1041–1052 (2013).

726 99. E. Krissinel, K. Henrick, Inference of Macromolecular Assemblies from Crystalline State. *J.*
727 *Mol. Biol.* **372**, 774–797 (2007).

728 100. S. Malhotra, A. P. Joseph, J. Thiyyagalingam, M. Topf, Assessment of protein–protein
729 interfaces in cryo-EM derived assemblies. *Nat. Commun.* **12** (2021), doi:10.1038/s41467-021-
730 23692-x.

731 101. M. D. Winn, C. C. Ballard, K. D. Cowtan, E. J. Dodson, P. Emsley, P. R. Evans, R. M.
732 Keegan, E. B. Krissinel, A. G. W. Leslie, A. McCoy, S. J. McNicholas, G. N. Murshudov, N.
733 S. Pannu, E. A. Potterton, H. R. Powell, R. J. Read, A. Vagin, K. S. Wilson, Overview of the
734 CCP4 suite and current developments. *Acta Crystallogr. Sect. D Biol. Crystallogr.* **67**, 235–242
735 (2011).

736 102. M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, E. Lindah, Gromacs: High
737 performance molecular simulations through multi-level parallelism from laptops to
738 supercomputers. *SoftwareX* **1–2**, 19–25 (2015).

739

740