bioRxiv preprint doi: https://doi.org/10.1101/2022.11.02.514828; this version posted November 3, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1 DIFFERENTIATION IS ACCOMPANIED BY A
2 PROGRESSIVE LOSS IN TRANSCRIPTIONAL MEMORY

s Camille Fourneaux®!, Laétitia Racine®?, Catherine Koering®!, Sébastien
+ Dussurgey®?, Elodie Vallin!, Alice Moussy?, Romuald Parmentier?, Fanny
s Brunard!, Daniel Stockholm? Laurent Modolo!, Franck Picard!, Olivier
s Gandrillon’*, Andras Paldi? and Sandrine Gonin-Giraud”!.

7 1 - Laboratory of Biology and Modelling of the Cell, Université de Lyon,
s Ecole Normale Supérieure de Lyon, CNRS, UMR5239, Université Claude
o Bernard Lyon 1, Lyon, France.

10 2 - Ecole Pratique des Hautes Etudes, PSL Research University, UMRS938,
u  CRSA, Paris, France.

12 3- Univ Lyon, ENS de Lyon, Inserm, CNRS SFR Biosciences US8 UAR3444,UCBL,
13 50 Avenue Tony Garnier, F-69007 Lyon, France.

1 4 - Inria Center Grenoble Rhone-Alpes, Equipe Dracula, Villeurbanne, France.
15

16 * Those authors contributed equally. € Those authors contributed equally.
17 % Corresponding author: sandrine.giraud@ens-lyon.fr


https://doi.org/10.1101/2022.11.02.514828
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.02.514828; this version posted November 3, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

» Abstract

19 Cell differentiation requires the integration of two opposite processes, a stabi-
20 lizing cellular memory, especially at the transcriptional scale, and a burst of
a1 gene expression variability which follows the differentiation induction. There-
» fore, the actual capacity of a cell to undergo phenotypic change during a dif-
23 ferentiation process relies upon a modification in this balance which favors
2 change-inducing gene expression variability. However, there are no exper-
»s imental data providing insight on how fast the transcriptomes of identical
s cells would diverge on the scale of the very first two cell divisions during the
o7 differentiation process.

28 In order to quantitatively address this question, we developed different
2 experimental methods to recover the transcriptomes of related cells, after one
s and two divisions, while preserving the information about their lineage at
a1 the scale of a single cell division. We analyzed the transcriptomes of related
2 cells from two differentiation biological systems (human CD34+ cells and
13 T2EC chicken primary erythrocytic progenitors) using two different single-
1 cell transcriptomics technologies (sc-RT-qPCR and scRNA-seq).

35 We identified that the gene transcription profiles of differentiating sister-
s cells are more similar to each-other than to those of non related cells of the
i same type, sharing the same environment and undergoing similar biologi-
;s cal processes. More importantly, we observed greater discrepancies between
w0 differentiating sister-cells than between self-renewing sister-cells. Further-
» more, a continuous increase in this divergence from first generation to second
s generation was observed when comparing differentiating cousin-cells to self
2 renewing cousin-cells.

I Our results are in favor of a continuous and gradual erasure of transcrip-
s tional memory during the differentiation process.
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+ Introduction

s During cell division, the mother-cell endures a period of transient instability
s — the mitosis — which is accompanied by dramatic cellular and epigenomic
s reorganizations [1]. The close to equal partitioning of the cellular content,
s together with active mechanisms, such as the conservation of gene transcrip-
so tion profiles after division by chromatin-related epigenetic mechanisms, or
51 the long half-life of proteins ensure the overall phenotypic similarity of the
2 sibling cells [2-4]. As a consequence, the resulting sister-cells regain immedi-
53 ately after the division many of the structural and functional features of the
s maternal cell. The phenotypic stability of clonal cell lines is largely founded
55 on this phenomenon frequently called “cellular memory”.

56 A small number of studies have addressed the question of the preservation
sz of cellular memory through division using different approaches ranging from
s microfluidics combined with scRNA-seq [5], to time-lapse microscopy of re-
5o porter genes expression [6, 7], to a dedicated procedure called MemorySeq [8].
s Those studies have been focused on self-renewing cells, such as mouse ES cells
s1 or melanoma cell line. In all cases, the authors concluded to the existence of
2 a transcriptional memory defined by the heritability of gene expression levels
63 in a gene-specific manner, extending up to two or more generations. This
s transcriptional memory impacts subsets of genes called “memory genes”, the
s expression of which is uncorrelated in a population of cells but correlated in
e sister-cells. Those genes are highly dependent on the cell system used for
&7 the investigation. Beyond their actual function, the fact that related cells
s harbour correlated expression for those genes is a read-out for this transcrip-
s tional memory and demonstrates the existence of a constraint imposed to
70 the cells gene expression profile at division.

7 On the other hand, all cellular processes are subjected to stochastic molec-
72 ular fluctuations which will favor the decorrelation of the sister-cells pheno-
73 types and increase the transcriptional heterogeneity in a clonal population of
72 siblings. For example, relaxation experiments demonstrated on various cell
75 systems that after two weeks of culture under stable conditions, the expres-
7 sion level of specific genes in a selected homogeneous cell clone becomes as
77 heterogeneous as it was in the original population the founder cell derived
7 from [9]. Moreover, the capacity of a cell clone to reconstitute the heterogene-
7o ity of the original population over time has been observed in many instances
o in normal or pathological cell types [4, 8, 10].

81 During the process of differentiation, this whole delicate balance be-
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&2 tween the two opposing forces of the stabilizing cellular memory and change-
&z inducing gene expression fluctuations has to be somehow revisited. In-
sa deed, differentiating cells undergo substantial morphological and functional
ss changes.

86 Although differentiation usually takes place over several cell cycles, there
&7 is a critical transition period characterized by stochastic gene expression and
ss rapid morphological fluctuations. A large range of experimental studies have
g0 indeed demonstrated, that the first step in cell differentiation is the rapid
o and transient increase of the variability in gene expression in response to the
o stimuli inducing the differentiation, both in vitro [11-19] and in vivo [20, 21].
o An important unresolved question is therefore to understand how the
o3 dynamic stability and the capacity of differentiation are integrated into a
o single process. In the present study we aimed to investigate the dynamic
s balance of stability/instability in dividing cells that undergo the first steps
o6 of differentiation. To do this, we measured the resemblance of the sister-cells
o7 by comparing their transcriptomes.

%8 We formulated 3 hypotheses on the possible evolution of transcriptional
o memory upon differentiation induction (Figure 1). To illustrate those hy-
wo potheses, cells in a self-renewing state are positioned in a gene expression
1 space (grey sphere). Assuming the existence of transcriptional memory in
12 our self-renewing cells after mitosis, like in other cell models, sister-cells start
103 in roughly at the same position in that space (blue family tree). Then, upon
104 differentiation induction (red family tree), we can postulate the following
105 three hypotheses:

106 e The maintenance of memory hypothesis: the transcriptional memory
107 overrules the expression variability resulting in related cells following
108 roughly the same path in the gene expression space toward the differ-
109 entiated state (hypothesis 1), or

110 e The progressive erasure of memory hypothesis: the memory is grad-
1m ually erased, translated in our projection to differentiating sister-cells
112 starting to follow roughly the same path and progressively bifurcating
113 from each other, and even more after one more cell division (hypothesis
114 2), or

115 e The instantaneous erasure of memory hypothesis: the variability of
116 gene expression pushes the balance and takes over the transcriptional
17 memory, leading each differentiating sister-cell to follow a completely
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118 different path from the beginning of the differentiation process (hy-
pothesis 3).

1

=
©

120 In order to distinguish between those different scenarios, it is necessary
21 to quantitatively evaluate, at the single-cell level, the similarity of the gene
122 expression profiles of sister-cells shortly after the division under self-renewing
123 versus under differentiation-promoting conditions.

124 Therefore, we developed two strategies to isolate cells while preserving
15 their precise lineage information after one (generation 1) and two (genera-
s tion 2) divisions, a manual one and a FACS-based one. Then, in order to
127 assess the genericity and robustness of our findings, we compared two differ-
125 ent cell differentiation models (human CD34+ cells and T2EC chicken pri-
120 mary erythrocytic progenitors) and for the T2EC model two cellular states:
130 self-renewing and differentiating. We used two different single-cell transcrip-
1 tomics methods: a highly sensitive targeted quantification method, sc-RT-
12 qPCR and a whole-transcriptome approach, scRNA-seq.

133 We obtained qualitatively very similar results using the two cell types and
14 the two single-cell measurement technologies. First, after one cell division
135 (generation 1) in both models, and in both states for the T2EC model, we
13 detected a transcriptional memory demonstrated by the sister-cells display-
137 ing more transcriptomic similarity between each other than two randomly
s selected cells. Second, using the T2EC model, which allows to compare
130 sister-cells induce to differentiate to sister-cells in self-renewing state, we
1o also observed that this transcriptome similarity decreased during the differ-
w1 entiation process as compared to the self-renewing cells. Interestingly, this
12 effect was even more pronounced one division later (generation 2), when in-
w3 terrogating cousin-cells. Altogether our results point toward a continuous
s gradual loss of transcriptional memory during the differentiation sequence.

« Results

s Cellular models of differentiation

17 To consolidate our results we used two different cell differentiation models.
us  As a first model, we used primary human cord blood derived CD34+ cells.
us  These cells are believed to be a mixture of so-called multipotent progeni-
150 tors and stem cells that retains the capacity to differentiate into various cell
151 types. Under ez vivo conditions, the CD34+ cells, unless stimulated, are
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12 stopped in the cell cycle and survive only a few days. When stimulated with
153 a mixture of cytokines, they re-enter the cell cycle and will differentiate into
15« two different committed progenitors [15]. Briefly, by 24hrs after stimulation,
155 a burst in transcription produces a mixed transcription profile called “mul-
15 tilineage primed” state [11] and by the end of the first cell cycle (between
15740 and 60hrs), cells with two different transcription profiles emerge in the
158 population [15, 22]. However, this first fate-decision is a highly dynamic and
150 fluctuating process which is more complex than a simple binary switch be-
160 tween 2 options [15]. In the present work, we investigated by sc-RT-qPCR
11 the transcriptional profile of couples of CD34+ sister-cells derived from the
12 first cell division after the cytokines stimulation.

163 As a second model, we used chicken primary erythrocytic progenitors
16e called T2EC [23]. Contrary to the human cord blood CD34+ cells, these
165 cells can be maintained in a self-renewing state in wvitro under appropriate
166 culture conditions [24]. They can be induced to differentiate at will into
17 mature erythrocytes by a change of medium [24]. The T2EC cells undergo
s a simple “switch”: they leave the self-renewing phase and enter a differenti-
160 ation trajectory without bifurcation toward different end point phenotypes.
o This model allows a direct comparison of related cells in two different states:
i self-renewing and during differentiation. Furthermore, a previous study on
12 this model had highlighted a critical point of cell commitment, 24hrs post-
173 differentiation induction characterized by the rise in gene expression vari-
17 ability, measured with entropy [25]. Thus, we focused on the first steps of
s T2EC differentiation and investigated the transcriptional profile of couples
e of generation 1 sister-cells in both cellular states and families of generation
177 2 sisters and cousin-cells in both state by a scRNA-seq approach [26].

s Cells isolation
19 Isolation of first generation cells

1o We achieved the technical challenge to isolate related cells following their
w1 first and second division (generation 1 sister-cells and generation 2 sisters
12 and cousin-cells). The usual molecular tagging or barcoding lineage trac-
13 ing approaches could not be used in our case since these approaches allow
18« retrieval and analysis of cells belonging to the same clones at later stages,
155 but not at the scale of one cell division [27]. For our investigation, a direct
15 observation of the dividing cells and individual isolation of the generation 1
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187 sister-cells, and generation 2 sisters and cousin-cells were necessary. Further-
188 more the use of primary cells, with a short life span, precluded the possibility
189 to genetically engineer reporter systems.

190 We first developed two different methods to recover generation 1 sister-
w1 cells, depending upon the cellular model at hand: a manual one and a
12 cytometry-based method. Those original strategies are presented below and
13 in Figure 2. The technical details are explained in the Methods section.

194 Human CD34+ cells were grown during 24hrs in a standard 96-well plate
105 before being isolated into single cells, using a Smart Aliquotor device in which
ws individual cells still share the same medium. Isolated mother-cells were then
17 cultured for 24 to 48hrs in the device to allow one cell division. The wells were
108 regularly inspected to detect this first division. Then, the resulting sister-
199 cells were isolated manually under a microscope using a pressure controlled
200 microcapillary and recovered in lysis buffer for further processing. The cells
200 transcriptomes were analyzed by single-cell quantitative RT-PCR using the
200 Fluidigm system as described here [15].

203 T2EC mother-cells were isolated after CFSE - carboxifluorescein diac-
204 etate succinimidyl ester - staining using CellenOne ®)low-pressure cell sorter
2s and plated in a 384-well plate. Cell doublets, resulting from the first division,
206 were identified using an inverted microscope. The two cells were then isolated
207 using an FACS Aria cytometer and recovered directly in tubes containing ly-
208 sis buffer and scRNA-seq primers, for which the cell barcodes sequences were
200 known in advance. scRNA-seq libraries were then constructed as previously
20 described here [28] and sequenced.

211 Successfully recovering the two sister-cells using FACS is perse a remark-
a1z able achievement, as this method usually requires hundreds of cells to start
213 with, whereas the initial population here consisted of two cells. To achieve
2 this, we first used the CFSE fluorescence intensity to ensure that the objects
25 isolated were indeed cells (Figure S1 A-B for self-renewing medium and C-D
z6 for differentiating medium). CFSE stably binds to the amine groups present
217 in cytoplasmic proteins, conferring stable fluorescence intensity to the cell.
218 As total protein content is supposed to be relatively equally distributed be-
20 tween sister-cells during cell division, so is the fluorescence intensity [29, 30].
220  We used this specification to validate that the two cells isolated were actu-
21 ally sister-cells. We evaluated the CFSE intensity correlation between pairs
22 of sister-cells, and compared it to intensity correlation values of randomly
23 paired cells from the same dataset (Figure S1 E-F for self-renewing cells and
»¢  G-H for differentiating cells). Outstandingly, CFSE correlation values be-

7
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»s  tween self-renewing sister-cells and differentiating sister-cells were extremely
26 high (0.91 and 0.95 Figure S1 E and G, respectively), whereas for randomly
27 paired-cells, CFSE correlation values dropped between -0.07 for self-renewing
»s cells and 0.18 for differentiating cells (Figure S1 F and H, respectively) indi-
29 cating no correlation. Those results validated that our general strategy did
20 allow to retrieve accurately generation 1 sister-cells. The same procedure
2 was applied to generation 1 T2EC mother-cells in proliferating phase and in
222 differentiation by sorting the mother-cells either in self-renewing medium or
213 in differentiation-promoting medium.

234

235 We further analyzed the T2EC scRNA-seq data quality and reproducibil-
26 ity by characterizing the observed biological process applying UMAP dimen-
27 sional reduction and projection method (see Methods). As expected, the cells
2 separated based on their differentiation state (Figure S2 A). This observation
230 was validated by a differential expression analysis between the two groups
20 (self-renewing and differentiating cells - Figure S2 B). Genes involved in early
2 erythrocytes maturation, inhibition of differentiation such as ID2 known to
22 be an erythropoiesis inhibitor in mice [31], FTH1 and TMSB/X known to
23 be expressed in human erythroid progenitors [32] were up-regulated in self-
aa renewing cells while HBBA, HBAD, HBA1, genes involved in hemoglobin
us complex and TALI, erythroid differentiation factor, were up-regulated in
26 differentiating cells, as previously described [28].

27 Isolation of second generation cells

us  Using the T2EC model, we then developed another FACS sorting methodol-
29 0gy to retrieve generation 2 sisters and cousin-cells, that is to say the 4 cells
0 resulting from two divisions, both in self-renewing state or in differentiation
1 state. To record cells genealogies, we used different cell-tracers to achieve
2 fluorescent barcoding of cells families and we stained the cells sequentially to
53 retrieve both cousins relationships and sisters relationships within different
25 families (Figure 3).
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255 Briefly, a small number of mother-cells was stained such as every mother-
6 cell carried a unique fluorescent barcode. Each fluorescent barcode consist in
27 a combination of CTY and CFSE at different intensities, leading to 6 different
s barcodes. This barcode is passed along to the mother cells progeny over two
0 cell generations to allow a good discrimination of cells families. One mother
0 cell from each barcode was isolated by FACS in a single well of a culture
1 plate. After the first cell division, another cell-tracer was added to discrimi-
x2  nate sister-cells within the cousin groups. After the second cell division, the
23 cells (generation 2) were sorted in lysis buffer containing scRNA-seq primers
2 of known sequence and the relationships between the cells were recovered us-
%5 ing a clustering script developed in our team. Details of the methodology are
x6 presented in figure 3 and in the Methods section. Further viability analysis
7 was performed and showed that the staining strategy did not compromise
2 cells physiology (Figure S3).

269

270 Using first generation methodologies, we successfully collected 86 CD34+
o cells, 60 self-renewing T2EC cells and 64 differentiating T2EC cells encom-
a2 passing respectively 43, 30 and 32 couples of generation 1 sister-cells. With
o3 the second-generation original fluorescent barcoding approach, we collected
ze 8 families of generation 2 self-renewing T2EC cells (32 cells) and 5 families
25 of generation 2 differentiating T2EC cells (20 cells).

x Strategy to evaluate transcriptomic similarities between
- related cells

s We used the Manhattan distance as a metric to evaluate transcriptomic sim-
279 ilarities between cells. Manhattan distance is a robust geometric distance
20 and is less sensitive to data sparsity, which is inherent to single-cell tran-
21 scriptomics data [33].

282 We anticipated how the distance comparisons would result for each of the
23 hypotheses developed in the introduction.
284 In the case of hypothesis 1, maintenance of memory, there will be no more

285 transcriptional differences between self-renewing than between differentiating
a6 sister-cells. This hypothesis would imply that at the first cell generation,
27 differentiating sister-cells would present a similar distance between each other
s compared to self-renewing sister-cells. And at the second generation, there
20 would be no difference either between differentiating sister-cells compared to
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200 self-renewing sister-cells nor between differentiating cousin-cells compared to
201 self-renewing cousin-cells.

202 In the case of hypothesis 2, gradual erasure of memory, there will be a
203 continuous and gradual increase in the sister-to-sister differences as differen-
20 tiation proceeds. Meaning, at the first generation, differentiating sister-cells
25 would present a greater distance compared to self-renewing sister-cells. At
26 the second generation, this distance would increase and would be supported
207 by (1) second-generation differentiating sister-cells presenting a greater dis-
208 tance compared to second generation self renewing sister-cells and (2) second
200 generation differentiating cousin-cells presenting a greater distance compared
300 to self renewing cousin-cells.

301 In the case of hypothesis 3, instantaneous erasure of memory, there will be
52 very strong transcriptional differences between self-renewing and differentiat-
503 ing sister-cells at the beginning of the differentiation process, with no evolu-
50 tion of those differences thereafter. That is, at the first generation, differenti-
w05 ating sister-cells would present an substantial greater distance between each
306 Other compared self-renewing sister-cells. At the second generation, differen-
so7  tiating sister-cells cells would display a similar or smaller distance compared
w8 to self-renewing sister-cells and differentiating cousin-cells would present a
500 similar or slightly greater distance compared to self renewing cousin-cells.

20 'Transcriptomic similarities between generation 1 sister-
= cells after one division

sz We started by assessing whether or not generation 1 sister-cells displayed
si3 more similar global gene expression levels compared to non related cells. Here
s non related cells correspond to cells which don’t originate from a common
a5 mother-cell. The Manhattan distances were computed between the gene
a6 expression vectors of each cell. Gene expression vectors for the 43 couples of
a1z CD34+4 sister-cells were composed of 83 genes after quality control and data
us  filtering (see Methods). Those genes were either selected for their known
n0 function in the early differentiation of hematopoietic cells (64% of them) or
2o randomly chosen (36%) to provide an assessment of the overall transcriptional
s state of the genome. For the 62 couples of T2EC sister-cells gene expression
2 vectors, we retained 1177 genes after data filtering and normalization of
23 scCRNA-seq data (see Methods). We performed the analysis by computing
s the Manhattan distances between generation 1 sisters and randomly selected

10
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»s non related cell pairs from the same pool of cells (Figure 4 A and B).

326 Mean distances were then compared between the two groups (generation 1
27 sisters and non related cells) for both CD34+ and T2EC cells. For the latter,
»s both self-renewing and differentiating cells were analyzed separately. For
19 both models and in both biological conditions, mean Manhattan distances
10 between generation 1 sister-cells were always significantly smaller than the
s mean distances between non related cells (Figure 4 A and B - Wilcoxon test
s for CD34+ cells pvalue = 6.5.107°, Student t-test for self-renewing T2EC cells
5 pvalue = 7.047.1077 and for differentiating T2EC cells pvalue = 1.415.107%).
334 To ensure that the difference in mean distance observed between gener-
15 ation 1 sisters and non related cells was not an artefact due to difference in
16 sample size, we performed a randomization experiment by bootstrap. Briefly,
337 43 non related CD34+ cell pairs, 30 non related self-renewing T2EC cell pairs
18 and 32 non related differentiating T2EC cell pairs were randomly drawn from
539 the corresponding groups 1000 times. The mean distance was calculated for
s each pair and plotted on the histograms shown on figure 4 C, D and E. For
s both models, and for T2EC in both biological conditions, the mean distance
2 between generation 1 sister-cells was never part of the non related cells mean
s distances distribution. Those results strongly suggest that the observed dif-
sa  ference was genuine and not due to sampling bias.

5 This is a clear indication that the gene transcription profiles of generation
us 1 sister-cells in both experimental models are more similar to each-other than
w7 to those of non related cells of the same type sharing the same environment
us and undergoing similar biological processes.

349 Those results also highlight that differentiating sister-cells from genera-
0 tion 1 display a form of transcriptional memory, which complements previous
1 studies demonstrating a transcriptional memory in self-renewing sister-cells.
2 Focusing on the T2EC model, for which we compared related cells in two cel-
33 lular states (self-renewing and differentiating), although the difference was
3 borderline non statistically significant (pvalue = 0.06), our results point to-
s ward a decrease in transcriptome similarity during differentiation as shown
6 by a higher mean distance value for generation 1 differentiating T2EC sister-
7 cells compared to self-renewing T2EC sister-cells. We wondered whether or
38 not the sister-to-sister cell distance will continue to increase as the differen-
30 tiation proceeds in the T2EC cells, one generation later.

11
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w (eneration 2 cells transcriptomes continue to diverge
. during differentiation

w2 We generated a second dataset consisting of generation 2 T2EC sisters and
33 cousin-cells (after two cell divisions) using the methodology described above.
34 As scRNA-seq requires the lysis of the cell under investigation, generation 1
s data and generation 2 data consist of different cell families and thus cannot be
w6 compared to each other so both dataset were treated and analyzed separately
37 (see Methods).

368 The second generation dataset was composed of 4 cousin-cells per family
30 (8 families of cells in self-renewing and 5 families of cells in differentiation con-
w0 dition), and within the 4 cousins, they consisted of two couples of sister-cells.
sn After data filtering and normalization, we retained 983 genes for subsequent
sz analysis.

373 Comparison of mean Manhattan distances from those data showed that
s when comparing conditions, in line with previous results described after one
ss  cell generation in figure 4, generation 2 differentiating sister-cells were less
srs  close to each other than generation 2 self-renewing sister-cells, although not
w7 significantly so (Figure 5).

378 Interestingly, generation 2 differentiating cousin-cells were statistically
so further apart from the generation 2 self-renewing cousin-cells. Indeed, the
;0 average Manhattan distance between generation 2 differentiating cousin-cells
;1 was statistically greater than that of generation 2 self-renewing cousin-cells
;2 further confirming a decrease in transcriptome similarity during the differen-
3 tiation process (Student t-test pvalue = 0.002218).

384 Finally, generation 2 sister-cells, regardless of their biological condition
w5 (self-renewing or differentiating for 48hrs), were always closer to each other
3 than randomly paired cells (Figure 5 - Student t-test for self-renewing T2EC
37 cells pvalue = 0.0146 and for differentiating T2EC cells pvalue = 0.003503).
s Furthermore, the mean Manhattan distances of the generation 2 cousin-cells
;9 were also statistically smaller than those of non related cells for both biologi-
30 cal conditions, indicating a proximity of transcriptomes which persisted after
;1 one more cell generation in both conditions, observed separately (Student t-
32 test for self-renewing T2EC cells pvalue = 0.00002313 and for differentiating
33 T2EC cells pvalue = 0.003912).
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» Identification of genes subject to transcriptional mem-
35 OTYy

s We expected that the transcriptomic similarities observed may concern a
so7 subset of genes, the “memory genes”, the expression of which would be vari-
38 able across couples of cells but correlated within couples of sister-cells. Thus,
0 we applied a “gene-wise” approach to identify genes subjected to transcrip-
wo tional memory using a linear model with random effect and a mixed effects
w1 model. For CD34+ cells, memory genes were identified including a sisterhood
w2 random effect to capture between-sisters correlation. For T2EC cells, the ex-
w3 pression of each gene was modeled by an additive model combining a fixed
ws condition effect (differentiating or not) to account for difference in expres-
w5 sion levels and a sisterhood random effect capturing sister-cells correlation.
ws  Memory genes were selected by testing for the random effect with a likelihood
w7 ratio test comparing the model with and without the sisterhood effect. The
ws  test was performed on each gene followed by a Benjamini-Hochberg p-value
w0 adjustment for multiple testing [34]. As a negative control, we performed the
a0 same test on randomly paired cells, and detected no memory gene (Figure
411 6)

a2 We detected 10 genes with significant correlation between-sisters in CD34+
a3 cells and 55 genes in T2EC cells (cf. Supplement Table S1 for CD34+ and
s for T2EC). In CD34+ cells, memory genes were involved in diverse functions,
a5 including stemness (GATA1,CD38, CD133), differentiation and proliferation
ss (CD74, ERG, KIT), metabolism (BCAT1, HK1), cytoskeleton (ACTB) and
a7 tRNA splicing (C220rf28). In T2EC, memory genes were involved in ery-
ss  thropoietic differentiation (HBBA, HBA1, HBAD, which are hemoglobin sub-
a0 units, or RHAG membrane channel component involved in carbon dioxide
20 transport), chromosome structure (SMC2, H2AFZ), ribosomes and trans-
m lation (RPS13, RPL22L1, UBA52, EEF1A1) and metabolism (GAPDH,
w22 LDHA). One should note that LDHA was previoulsy found to also be in-
23 volved in the erythroid differentiation process [25].

424 We computed again and compared the Manhattan distances for the T2EC
a5 cells between sisters and non related cells using as a vector only the 55 mem-
ws ory genes (Figure 7). As a result, the difference in within-distance between
s« sister-cells and non related cells, in both biological conditions (self-renewing
»s and differentiating), was even more pronounce than when computing the
20 Manhattan distances using all 1177 genes of the scRNA-seq dataset (see
a0 above), further confirming that the identified genes are the ones imprinted
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a1 by the transcriptional memory.

432 To validate our findings, we also checked if these memory genes were
13 not only genes associated high mRNA half-life. We crossed our gene list to
ss  a previously published dataset which evaluated half-life duration of genes
s during T2EC differentiation using RT-qPCR [35]. We were able to compare
a6 the half-life duration of 6 memory genes and found that 4 of them have a
s relatively long half-life but 2 of them have a quite short half-life (Figure
ss 8A). Furthermore, other genes with longer half-life were not identified by the
130 model as memory genes. Thus, half-life duration could not be the only cause
w0 of memory.

aa1 We also questioned the relationship between the level of expression of a
w2 gene and its belonging to the memory genes class. 1000 bootstrap distri-
w3 bution analysis of the abundance of the 55 memory genes compared to the
us abundance of 55 randomly drawn genes showed an enrichment for higher
ws abundance of the 55 memory genes (Figure 8B - kolmogorov-Smirnov test
ws pvalue = 0.01672). We therefore can not exclude that part of the memory
a7 is due to high level expression for at least some memory genes and could
ws  be related to synthesis and degradation dynamics. However, this result was
uo  expected because to prevent false correlation that would be due to high num-
w0 bers of zeros in expression value of lowly expressed genes between sister-cells,
i1 we selected genes with mid to high-level of expression in our scRNA-seq data
2 set (see Methods). Finally, we didn’t regress cell-cycle effects on our data,
»s3 due to the fact that cell-cycle is not as well described in chicken cells as it
w0 1s in mammalian cells, and thus cannot exclude that the sister-to-sister re-
»ss  semblance may, in part, be a consequence of the sister-cells being at similar
s state in the cell-cycle. However, while we found a GO term “cell-cycle” en-
ss7 - richment in the 1177 selected genes, no cell-cycle related genes were identified
w3 as memory genes, leading us to believe that cell-cycle is not the main driver
a0 of this transcriptional memory.
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w IDiscussion

w1 In the present study, we questioned the interplay between the transcriptional
w2 memory and the gene expression variability which characterizes differentia-
463 tion processes.

464 We developed two experimental frameworks to recover sister-cells (Gener-
s ation 1) and one experimental framework to recover cousin-cells (Generation
w6 2) transcriptomes while preserving the information about their lineage at the
a7 resolution of the cell division. We analyzed the transcriptomes of related cells
ws  from two different cell differentiation systems using two different single-cell
w0 transcriptomics technologies.

470 Comparison of global transcriptomic state, using Manhattan distances,
w  showed that differentiating generation 1 sister-cells (both CD34+ cells and
w2 T2EC cells) transcriptomes are globally significantly more similar between
a3 each other than between non related cells.

a7 In our controlled differentiation model (T2EC cells), we observed after
w5 one cell division (generation 1), a greater mean distance for differentiating
as  sister-cells compared to self-renewing sister-cells. Moreover, the difference
wr  becomes significant after a second division (generation 2), showed by dif-
as ferentiating cousin-cells presenting a significantly higher distance than self-
a0 renewing cousin-cells. Those results showed that during cell differentiation,
w0 related cells deviates faster from each other than during self-renewing divi-
a1 sions.

482 Mixed models further highlighted that some genes have their expression
w3 statistically correlated between sister-cells while none were found between
a2 non related cells. We qualified those genes as “memory genes” and obtained
w5 evidence that they weight out the transcriptomic resemblance observed be-
ss  tween sisters and cousin-cells. However, the mechanisms leading to a more
w7 correlated expression between related cells for those genes remain to be in-
w3 vestigated.

489 In the introduction, we formulated 3 hypothesis on the possible evolu-
w0 tion of the transcriptional memory upon differentiation induction (Figure
s 1). Our results therefore support the second hypothesis: upon differentia-
w2 tion induction, transcriptional memory is continuously and gradually erased
w3 eventually reconstituting, at the clonal scale, the variability observed in the
204 initial population.

405 While our experimental methods allow to preserve genealogical cell infor-
w6 mation for two generations, everything happening later is presently out of
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a7 reach. We therefore are currently developing a microfluidics-based approach,
w8 consisting in a microfluidics chip coupled to scRNA-seq, which could be used
w9 on non-adherent cells to investigate cellular memory for several (more than 2)
so0 generations. Recently, a study based on a complex cell-tracking system com-
so0  bining time-lapse microscopy, antibody-based cell isolation and scRNA-seq
sz on robotically-isolated cells has been used to address the question of asy-
s0s metric division [36]. While the question is different from ours, the approach
sa could be considered to investigate longer genealogies but it would require
sos complex equipments and antibodies against chicken cells in order to track
s division.

507 In order to explain the existence of memory genes as we (this work) and
ss  others [5-8] have described, one need to assume that a significant fraction of
so0 those mechanisms must “survive” the mitosis, i.e. be transmitted through the
s dramatic epigenomic and cellular rearrangements involved in the cell division
su process. If one assumes that the GRN state is essentially characterized by
s12 protein quantities, then it is easy to see that it will be pass through, at least
s for the proteins with a sufficiently long half life [15]. Reestablishment of the
s epigenetic marks [37] and of genomic structure [38] after a division process
sis have also been documented.

516 It has recently been described that the persistence of a low level of tran-
s17 - scription throughout the mitosis might at least partly explain how transcrip-
si8 tional memory can be maintained. It would be interesting in that regard, to
s19 - assess the overlap between our memory genes and these genes for which the
s20 mitotic transcription can be detected using UEseq in mitotic chromosomes
521 [39]

522 Differentiating division is a specific challenge since at each division a
23 subtle combination of changes and stability must be imposed. In this respect
s2 one can see the bookmarking process [40] as a stabilizing process, whereas
55 the increase in gene expression variability [11-19] will affect the GRN state
s26 and therefore will tend to modify gene expression burst parameters. In fact,
s27 at the single cell level, gene expression is in essence a probabilistic process
s that is characterized by a given burst frequency and burst size [41]. The
s mechanisms regulating this bursting process are still a matter of debate [42,
s 43], but are usually thought to involve: 1) the state of the underlying Gene
sn  Regulatory Network (GRN) [44]; 2) the state of the chromatin, a.k.a. the
s2  epigenetic marks [7, 8], and 3) the genomic 3D state [45]. Of course none of
533 these mechanisms operate in isolation and more integrated mechanisms, like
s the metabolism, are also key players in the burst properties of transcription
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s (see e.g. [46]).

536 It is interesting to note that our two model systems do behave quite
s37  differently in regard to the division process. The initial stages of T2EC
38 erythrocytic differentiation have been shown to result in an increase of the
s proliferation rate due to a shortening of the G1 period [23]. This is in sharp
ss0 contrast with the observation that the CD34+ first division occurs after an
se« unusually long cell cycle that lasts on average more than 55 hrs [15]. It
s22 could therefore be that the molecular mechanisms linking cell division and
sa3  differentiation might be quite different in the two cell types, although the final
saa - Tesult will be similar: cellular memory will show a high level of robustness in
sss  front of the cellular state change associated with the differentiation process.
546 Finally, it is tempting to speculate that the observed burst in entropy
se7  at the beginning of the differentiation sequence is helping the differentiating
sis cells to overcome a memory process that is meant to prevent changes in
sa0  cellular identity.
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= Material and methods

1 Cell culture

ss2. Human hematopoietic CD34+ cells were purified from umbilical cord blood
53 from three anonymous healthy donors. First, mononuclear cells were isolated
ss¢ by density centrifugation using Ficoll (Biocoll, Merck Millipore). CD34-+
sss  cells were then enriched by immunomagnetic beads using the AutoMACSpro
sss  (Miltenyi Biotec). Cells were frozen in 90% fetal bovine serum (Eurobio)
ss7. 10% dimethylsulfoxide (Sigma) and stored in liquid nitrogen. After thawing,
sss cells were grown in prestimulation medium made of Xvivo (Lonza) supple-
ss0. mented with penicillin/streptomycin (respectively 100U/mL and 100pg/mL
se0 - Gibco, Thermo Scientific), 50 ng/ml h-FLT3-ligand, 25 ng/ml h-SCF, 25
s ng/ml h-TPO, 10 ng/ml h-IL3 (Miltenyi) final concentration as previously
s described [15]. Cells were cultured in a 96-well plate at 185 000 cells/mL
s during 24hrs in a humidified 5% CO2 incubator at 37°C before proceeding
se«  to mother cells isolation.

sss  Cell population mortality was assessed by counting dead and living cells from
sss the different time points and conditions after Trypan blue staining and using
ss7 a Malassez cell.

568

se0 ' T2EC cells were extracted from 19-days-old SPAFAS white leghorn chicken’s
s0 embryos’ bone marrow (INRA, Tours, France). Cells were grown in LM1
sn medium (a-MEM, 10% Fetal bovine serum (FBS), 1 mM HEPES, 100 nM
s2 [3- mercaptoethanol, 100 U/ mL penicillin and streptomycin, 5 ng/mL TGF-
s5 «, 1 ng/mL TGF-f and 1 mM dexamethasone) as previously described [23].
st T2EC cells differentiation was induced by removing LM1 medium and placing
s5 the cells into DM17 medium (a-MEM, 10% fetal bovine serum (FBS), 1 mM
s.s  Hepes, 100 nM [S-mercaptoethanol, 100 U/mL penicillin and streptomycin,
s7 10 ng/mL insulin and 5% anemic chicken serum [24]).

= Manual strategy for CD34-} sister-cells isolation

s.v - Mother cells were isolated using a SmartAliquotor (iBioChips). It consists
ss0  of a polydimethylsiloxane chip divided into 100 wells (2uL per well, 1.8mm
et of diameter) connected by microchannels to an insertion hole in the center.
ss2 ' T'his system allows to physically isolate cells while sharing the same medium.
ses 200uL of cell suspension at 1000 cells/mL were injected in the chip through
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s« the injection plug and cells were randomly divided into the wells. Air bubbles
sss  were removed with sterile tips. Using a standard confocal microscope, wells
sss containing lonely cells were listed. 20mL of prestimulation medium (see Cell
se7 - culture part for composition) were added to avoid evaporation and cells were
s incubated at 37°C in a humidified 5% atmosphere during 24 to 48hrs. Listed
ss0  wells were regularly checked with standard confocal microscope to identify
so0 cell division. Sister-cells were manually collected under biological safety cab-
so1 inet to keep sterile conditions and avoid impurities to fall in the culture dish.
s2 A micromanipulator connected to a flexible microfluidic capillary filled with
s PBS and ending in a 2ulL glass microcapillary was used. Individual collected
s0 cells were immediately inserted into 5ul of lysis buffer (Triton 4% (Sigma),
s0s RNaseOUT Recombinant Ribonuclease Inhibitor 0.4U/pL (Thermo Scien-
sos tific), Nuclease free water (Thermo Scientific), Spikes 1 and 4 (Fluidigm C1
sor  Standard RNA Assays)) and kept on dry ice to preserve RNA. Particular
s0s attention has been given to preserve cells integrity. Samples were kept at
so0 -20°C until further sc-RT-qPCR analysis.

« FACS-oriented strategy for T2EC sister-cells isolation

s Mother cells were stained using CFSE (Cell Trace CFSE Cell Proliferation
s> kit Thermofisher), 5x10° cells were placed in a 60mm plate in 5mL of culture
s0s medium mixed with 5yl of CFSE at 5 mM (final concentration 5uM) and
s0a incubated at 37°C for 30min. Cells were then centrifuged at 20°C, 1500rpm
s0s for bmin. Medium was discarded and cells were resuspended in 5mL fresh
s medium. CFSE stained mother cells were then isolated using the CellenONE
v X1 (CELLENION) at CELLENION core facility (Lyon, France). A gating
s based only on morphological criteria (diameter, elongation and circularity)
s00  was performed to select single living cells. Selected single cells were sorted
s0 in a 384-well plate containing 10uL of culture medium (either self-renewing
s medium LM1 or differentiation-inducing medium DM17). The plate was then
sz kept in an incubator under 5% CO2, 37°C for at least 20hrs to allow one cell
o3 division. Fach well of the 384-well plate was manually checked under a regu-
12 lar inverted microscope to identify cells that had undergone one cell division
a5 (presence of cell doublets). Each doublet was then harvested and placed
s16 in a FACS polypropylene tube containing 80uL of warm culture medium.
sz 'Tubes containing cell doublets were kept at room temperature throughout
s1s  the sorting process and were briefly vortex immediately before loading into
s19  the sorter. Prior settings consisted in analysing the CFSE positive popula-
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20 tion, the CFSE negative population and the culture medium. No fluorescent
ez signal was ever detected in medium or in negative population (Figure S1 A-B
62 self-renewing medium and C-D differentiation medium) indicating that only
623 cells of interest ever gave CFSE positive signal. Cells were sorted at 20 PSI
62 through a 100 pm nozzle on an FACS Ariall (BD). Gating was performed on
s FSC-A/SSC-A to capture live cells, SSC-H /SSC-A to capture single cells,
s2s and CFSE positive cells with yield, purity and phase mask of 32, 0, 0 respec-
7 tively. Those parameters were chosen because cell density being very low
e2s (2 cells per tube), the probability of the two cells being in two consecutive
20 drops was extremely low. Furthermore, those parameters are very conserva-
30 tives and thus probability of the cell not being sorted is also very low. Cells
s were isolated in 4uli of lysis buffer in PCR tubes containing cell barcode
22 primers. Tubes were frozen in dry ice directly after sorting to prevent any
33 degradation of the samples.

s« FACS-oriented strategy for T2EC cousin-cells isolation
s3s Fluorescent barcoding for lineage tracing

3 On the first day, 1x10° mother cells were labelled with 0.5uM CTV (Cell
v Trace Violet Cell Proliferation kit Thermofisher) for 20min at 37°C in PBS,
38 then bmL of medium was added for 5min to dilute the fluorescent molecules.
30 The cells were centrifuged for 5min at 1500rpm at 20°C, resuspended and then
s separated into 6 tubes (2x10° cells per tube) and resuspended in 1mL per
s tube. Each sample was labelled with a different concentration of CFSE (3-
s2 point range of 5uM, 2.187uM and 0.312uM) plus or minus CTY (10puM - Cell
s Trace Yellow Cell Proliferation kit Thermofisher) for 30min at 37°C in PBS.
sas  Each condition was centrifuged for 5min at 1500rpm at 20°C and resuspended
sss in ImL of fresh medium. The different concentrations and combinations were
sas  Optimised so that even after two cell divisions, the barcodes will be different
sa7  enough to differentiate the cell clones. Cells were plated in a 6-well plate
s and kept in culture conditions until sorting (in an incubator 37°C, 5% CO2).
sao  Cells were were stored at 37°C throughout the sorting process and sorted
eso at 20 PSI through a 100 ym nozzle on an FACS Ariall (BD). The sorting
51 strategy was done using single-labelled cell populations (CFSE, CTY, CTV
2 and negative), then gating was performed on FSC-A/SSC-A to capture live
es3 cells, SSC-H /SSC-A to capture single cells, and CTV positive cells. One
ese cell from each subgroup (6 cells total) was isolated in a well of a 96-well
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s plate which contained 500 non-labelled feeder cells in either self-renewing
56 medium or differentiating medium through a 100pm nozzle with yield, purity
7 and phase mask of 0, 32, 16 respectively (single-cell mask). A well then
s contained 6 mother cells, each one labelled with a unique fluorescent barcode
0 and the feeder cells. The plate was then put back in culture conditions (in
0 an incubator 37°C, 5% CO2).

661 CTFR (Cell Trace Far Red Proliferation kit Thermofisher) labelling was
sz performed 20hrs after mother cells sorting, in the plate, so that the cells had
63 time to divide once. The staining was made as heterogeneous as possible,
s thanks to the feeder cells but also by using very low concentrations of dye
s and for a very short amount of time. Indeed, 0.37uM of CTFR (Cell Trace
s Far Red Cell Proliferation kit Thermofisher) was added to each sample (in
s7 approximately 50uLs of medium), and then 100uL of medium was added to
s dilute the dye. The plate was centrifuged for 5min at 200G, then 120uL
o0 O0f medium was removed and 50uL. of new medium added to each labelled
eo  well. This heterogeneous CTFR staining will allow to discriminate the next
er1  division meaning within the 4 cousin-cells, how they are paired two by two.
sz Indeed, each daughter-cell will receive a unique intensity of CTFR dye which
3 will be discriminating after one more cell division. Cells were kept in culture
e conditions for an additional 20hrs (in an incubator 37°C, 5% CO2).

675 On the third day, after the second division, the content of the wells con-
76 taining the cousin-cells were transferred into polypropylene FACS tubes and
ez briefly vortexed immediately before loading into the sorter. The sorting
s strategy was done using single-labelled cell populations (CFSE, CTY, CTV,
sv  CTFR and negative), then gating was performed on FSC-A/SSC-A to cap-
ss0 ture live cells, SSC-H /SSC-A to capture single cells, and CTV positive cor-
1 responding to the second division peak and exclude feeder cells. Cells were
s sorted on a FACS Ariall (BD) at 20 PSI through a 100um nozzle with yield,
3 purity and phase mask of 32, 16, 0 respectively, in PCR tubes containing ly-
ss« sis buffer (0.2% Triton (Sigma Aldrich), 0.4 U/uL RNaseOUT (Thermofisher
ess Scientific), 400nM RT primers (Sigma Aldrich)) and scRNA-seq primers. The
ses Huorescent intensities for CFSE, CTY and CTFR were recorded for each cell
7 to further reconstruct relationships between the cells using our clustering
ees algorithm.
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sss  Cousin-cells identification

s0 Clustering was performed using the R mclust package [47] (version 5.4.10 -
so1  https://gitbio.ens-lyon.fr/LBMC/sbdm/sister-cells commit 76615c6e). This
sz clustering script finds the genealogical relationships between cells in two
03 steps. First, cousin-cells are grouped together by their fluorescent barcode,
sa determined by the CTFE and CTY fluorescent intensity values. Thus, if two,
s0s three or four cells have the same CFSE and CTY intensities levels they will
s0s be considered as cousins. In a second step, we select the groups for which the
so7 4 cousin-cells were sorted in the plate, then the program identifies the two
s pairs of sisters within the 4 cousins. To do this, the median CTFR intensity
0o is calculated, then the two cells that have intensity values higher than the
70 median are matched, and the other two that have lower intensity values are
701 matched together. Finally, when sorting, we used an index sorting option,
702 which allows us to know in which well of the plate each cell was sorted. With
703 this position information, our analysis program returns the position of the
704 retained cells, i.e. the cells belonging to the cousin groups for which the 4
05 cells were successfully isolated in the lysis plate.

w sc-RT-qPCR data generation
7 sc-RT-qPCR . one step

708 Lysed cells were heated at 65°C during 3 minutes for hybridization with
w0 RT primer and immediately transferred into ice. 7uli of RT-PCR mix (Su-
70 perscript III RT/platinium Taq 0,1uL (Invitrogen), Reverse and Forward
7u primers and spikes at 1,33uM final concentration and homemade 2X reaction
72 Mix (120mM Tris SO4 pH=9, 2.4 mM MGSO4, 36mM (NH4)2504, 0.4mM
73 ANTP)) were added to each well before launching of reverse transcription
na and PCR run on thermocycler (Program : 50°C 15min - 95°C 2min - 20
75 cycles 95°C 15sec/60°C 4min - Hold 4°C). 3uL of exonuclease mix (Exonu-
ns clease I 1.6U/mL (NEB), Exonuclease buffer 1X (NEB), Nuclease free water
77 (Thermo Scientific)) were added and samples were incubated for a digestion
ns run on thermocycler (Program : 37°C 30min - 80°C 10min). Pre-amplified
70 samples were diluted five times in TE low EDTA (10mM Tris, 0.1mM EDTA,
70 pH=8) and kept at -20°C for one night before qPCR.
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21 qPCR with Fluidigm Biomark technology

22 3,15uLs of pre-amplified samples were distributed into a 96-well plate and
73 3,85uLs of PCR mix (Sso EvaGreen Supermix with Low ROX (Bio-Rad)+
7¢ 20X DNA binding dye sample loading reagent) were added to each well.
75 Simultaneously, a 96-well plate with primer mix (forward and reverse primers
726 and spike at 2uM final concentration, 2X Assay Loading readent, TE low
727 EDTA) was prepared. The microfluidigm chip was primed with injection oil
78 using the IFC Controller HX (Fluidigm). 5ulL of primers and 5uL of samples
720 were loaded in the dedicated wells of the chip. Air bubbles were removed
720 with a needle. Samples and primers were mixed in the IFC Controller HX
7 (Fluidigm) with the loading program. The chip was then transferred in
72 the Biomark HD system (Fluidigm) for gPCR with "HE 96x96 PCR+Melt
733 v2.pcl” thermal cycling protocol with auto exposure.

72 Quality control and Normalization

735 Ct values obtained from the Biomark HD System (Fluidigm) were exported
736 as excel files and quality control was manually done. For each gene, ”failed”
73 quality control readings identified by the Fluidigm software were removed.
73 Four negative controls (mix of water and lysis buffer) were used to detect
720 unwanted amplification and the associated genes were also removed. Fi-
720 mally, two externally added controls (spike 1 and spike 4, Fluidigm) were
1 used to control amplification consistency. Filtered data frame was then im-
72 ported into R (version 4.2.0) for normalization to remove amplification bias
73 (https://gitbio.ens-lyon.fr/LBMC/sbdm/sister-cells commit 45a65972). For
74 each cell, expression values were calculated by subtracting the gene Ct value
75 from the geometric mean of Ct values from spike 1 and spike 4 of the cor-
s responding well. Then, an arbitrary differential cycle threshold value of -22
7z for null signal (corresponding to a Ct value of 30) was assigned for all genes
ns  with a Ct value less than -22.

n SCRINA-seq data generation
70 SCRNA-seq libraries preparation

71 Subsequently to sister or cousin-cells isolation, we performed single cell RNA
52 sequencing (scRNA-seq) using a modified version of the Mars-seq protocol
753 [26] published here [28]. This specific protocol of scRNA-seq allowed us to
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7 know in advance which cell barcode would be carried by each cell and thus
75 preserving the genealogy information of the cells. Briefly, Reverse Transcrip-
6 tion (RT) was performed so every mRNA of the cells were tagged with a
757 combination of unique cell barcode and a 8pb random UMIs sequence for
758 further demultiplexing. After barcoding, all mRNA were pooled and second
70 DNA strand were synthetized. Amplification was done over night using In
0 Vitro Transcription (IVT) to obtain a more linear amplification. A second
71 barcode was added by RT to identify plates. Libraries were amplified by
2 PCR and Illumina primers were added.

763 Sequencing

76 Libraries were sequenced on a Next500 sequencer (Illumina) with a custom
765 paired-end protocol (130pb on readl and 20pb on read2) and a depth of 200
76 000 raw reads per cell.

77 Data preprocessing

s Fastq files were pre-processed through a bio-informatics pipeline developed
760 in our team on the Nextflow platform [48], available here https://gitbio.ens-
70 lyon.fr/LBMC/sbdm/mars_seq and published here [28]. Briefly, the first step
1 removed Illumina adaptors. The second step de-multiplexed the sequences
72 according to their plate barcodes. Then, all sequences containing at least
73 4T following the cell barcode sequence and UMI sequence were kept. Using
772 UMItools whitelist, the cell barcodes and UMI sequences were extracted
75 from the reads. The cDNA sequences were then mapped on the reference
76 transcriptome (Gallus GallusGRCG6A.95 from Ensembl) and UMIs were
777 counted. Finally, a count matrix was generated for each plate.

s Quality control and data filtering

7o All analysis were carried out using R software (version 4.1.2; [49]) and are

780 available on the following git repository https://gitbio.ens-lyon.fr/LBMC/sbdm /sister-
71 cells. For the sister-cells dataset, cells were filtered based on several criteria:

72 reads number, genes number, counts number and ERCC content. For each

73 criteria the cut off values were determined based on SCONE [50] pipeline

7« and were calculated as follows:

s  Mean(parameter) - 3*sd(parameter)

76 We then removed orphan cells, meaning cells which sister was not present
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77 in the dataset. After filtering, we kept 60 undifferentiated cells (30 couples)
s and 64 differentiating cells (32 couples). For the cousin-cells dataset we per-
780 formed the same filtering strategy and kept only cell groups which contained
0 the 4 cousin-cells. After filtering we kept 32 undifferentiated cells (8 groups
91 of cousins) and 20 differentiating cells (5 groups of cousins). Based on [51]
72 work, genes were kept in the data set if in mean present in every cell. After
703 applying this filter, we kept 1177 and 983 genes for the sister-cells dataset
7« and the cousin-cells dataset respectively.

70 INormalization

796 Filtered matrix were normalized using SCTransform from Seurat package
o7 (version 1.6 [52] - https://gitbio.ens-lyon.fr/LBMC/sbdm/sister-cells commit
98 94baaca7 and 94f13467) and were corrected for batch effect, day of isolation
790 effect, medium effect and sequencing depth effect. Both datasets (sister-cells
so and cousin-cells) were processed independently.

o Bioinformatics analysis on R

sz All analysis were carried out using R software [49] (version 4.1.2 for T2EC
so3 and version 4.2.0 for CD34+). Plots were performed ggplot2 package (version
sor 3.3.6).

s0s Dimensional reduction

sos  UMAP dimension-reduction and visualization were performed using UMAP
sor  package (version 0.2.8.0; [53]).

ss Manhattan distance computation

g0 Distances were computed on normalized matrix between all cells using dist
s function from R software. Distances between sister-cells were extracted and
s compare to the same number of randomly chosen distances of non related
sz cells. 1000 bootstraps were performed this way. Mean comparison was
a1z performed using Student t-test or Wilcoxon test when Student t-test was
s not applicable (https://gitbio.ens-lyon.fr/LBMC/sbdm/sister-cells commit
a5 8417545d and 45a65972).
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s16  Linear model with random variable and Mixed effects model

g1z Linear model with random variable and Mixed effects model analysis were

s1s  performed using Ime4 R package (version 1.1-29 - https://gitbio.ens-lyon.fr/LBMC/sbdm/sister-
g0 cells commit ¢24fad72). The models were defined as followed:

s20 Mixed effect Model definition :

Y=pl+p2+e
g2 Linear Model with random variable definition :
Y =p2+e

822

s23 where Y is the mean expression of each gene, pl is the fixed effect and p2 is
g2« the random effect. Here, pl corresponds to the biological condition and can
s take two values (undifferentiated and differentiating) and p2 is the sorority
g6 effect. Two sister-cells have the same discrete value. And e is the error of
g2 the model. Null models are the above model but without the random effect
ss €.g. the sorority effect. Genes were selected based on a significant adjusted
220 BH p-value after performing a likelihood ratio test between the model and
s the null model.
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Figure 1: Hypotheses on transcriptional memory during a differentiation
process.

Self-renewing cells (blue cells) are compared to differentiating cells (red cells)
after one and two divisions.
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Figure 3: On day 1, a population of mother cells was stained using CTV.
The CTV positive population was split into 6 subgroups, each group was
barcoded with a unique combination of CFSE and CTY concentration to
achieve fluorescent barcoding (6 different barcodes). One mother cell from
each group was then recovered and pooled together in a well to be cultured
for around 24hrs (6 mother cells with a unique fluorescent barcode). At day
2, after the first division, a fourth dye, CTFR, was added to stain sister-cells
with a different intensity in order to be able to discriminate the cells rela-
tionship after the next division. On day 3, cells which underwent 2 divisions,
determined by the intensity of CTV, were sorted into single-cells and fluores-
cent intensities were recorded for CTY, CFSE and CTFR signals. Finally,
a dedicated script was used to infer the relationships of cells based on the
fluorescent intensities (see Methods).
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Figure 4: Manhattan distances comparison between generation 1 sister-cells
and non related cells.
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Figure 4: (A) Boxplot of Manhattan distances between the generation 1
CD344. CD34+ sister-cells (43 couples) are in orange and CD34+ non re-
lated cells (3612 couples) in green. Manhattan distances were computed
using all the 83 selected genes. Statistical comparison was performed using
Wilcoxon test. (B) Boxplot of Manhattan distances between generation 1
T2EC sisters and non related cells. Manhattan distances were computed
between all cells from the same biological conditions using all the 1177 se-
lected genes. Self-renewing sister-cells (30 couples) are in light orange and
self-renewing non related cells (1740 couples) in light green, differentiating
sister-cells (32 couples) are in orange and differentiating non related cells
(1984 couples) in green. Statistical comparison was performed using Stu-
dent t-test. (C) Histograms of mean Manhattan distances of 1000 random
draws of distances between 43 CD34+ non related cell pairs (green), com-
pared to the mean distance between the 43 CD34+ generation 1 sister-cells
pairs (orange line). (D) Histograms of mean Manhattan distances of 1000
random draws of distances between 30 T2EC self-renewing non related cell
pairs (light green histogram), compare to the mean distance between the 30
T2EC self-renewing generation 1 sister-cells pairs (light orange line). (E)
Histograms of mean Manhattan distances of 1000 random draws of distances
between 32 T2EC differentiating non related cell pairs (Green histogram),
compare to the mean distance between the 32 T2EC differentiating genera-
tion 1 sister-cells pairs (orange line).
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Figure 5: Manhattan distances comparison between generation 2 sisters,
cousins and non related T2EC cells.

Boxplot of Manhattan distances between generation 2 sisters, cousins and
non related T2EC cells. Manhattan distances were computed between all
cells (32 self-renewing and 20 differentiating cells) from the same biological
condition using the 983 selected genes. Self-renewing generation 2 sister-
cells (16 pairs) are presented in light blue, self-renewing generation 2 cousin-
cells (32 pairs) are in medium blue and self-renewing non related cells (448
pairs) are in dark blue. Differentiating generation 2 sister-cells (10 pairs) are
in yellow, differentiating generation 2 cousin-cells (20 pairs) are in orange
and differentiating non related cells (160 pairs) are in brown. Statistical
comparisons were performed using Student t-test.
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Figure 6: Density plot of genes intra-class correlation in generation 1 sister-
cells and randomly paired CD34+ cells (A) and T2EC cells (B).

Identification of memory genes using a linear model with random effect
(CD34+) and mixed effect model (T2EC). Memory genes are in dark green
(11 genes for the 86 CD34+ cells, 55 genes for the 104 T2EC cells, and non
significant genes are in light green (72 for CD34+ cells, 1022 for T2EC cells);

no memory genes were identified when cells were randomly paired (orange
curve).
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Figure 7: Manhattan distances comparison between generation 1 sisters
and non related T2EC cells using the memory genes.

The Manhattan distances were computed between all cells from the same bi-
ological conditions using all the 55 memory genes. Self-renewing sister-cells
(30 couples) are in light orange and self-renewing non related cells (1740 cou-
ples) in light green, differentiating sister-cells (32 couples) are in orange and
differentiating non related cells (1984 couples) in green. Statistical compari-
son was performed using Wilcoxon test.
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Figure 8: T2EC Memory genes characteristics.

(A) mRNA half-life of memory genes and other genes present in the scRNA-
seq dataset evaluated at 24hrs post differentiation induction ([35]) vs their
Intra Class Correlation value extracted from the mixed effects model. (B)
Cumulative empirical distribution graph of transcripts abundance of the 55
Memory genes in the dataset compared to total genes (1177) of scRNA-seq
data.
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