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Abstract18

Cell differentiation requires the integration of two opposite processes, a stabi-19

lizing cellular memory, especially at the transcriptional scale, and a burst of20

gene expression variability which follows the differentiation induction. There-21

fore, the actual capacity of a cell to undergo phenotypic change during a dif-22

ferentiation process relies upon a modification in this balance which favors23

change-inducing gene expression variability. However, there are no exper-24

imental data providing insight on how fast the transcriptomes of identical25

cells would diverge on the scale of the very first two cell divisions during the26

differentiation process.27

In order to quantitatively address this question, we developed different28

experimental methods to recover the transcriptomes of related cells, after one29

and two divisions, while preserving the information about their lineage at30

the scale of a single cell division. We analyzed the transcriptomes of related31

cells from two differentiation biological systems (human CD34+ cells and32

T2EC chicken primary erythrocytic progenitors) using two different single-33

cell transcriptomics technologies (sc-RT-qPCR and scRNA-seq).34

We identified that the gene transcription profiles of differentiating sister-35

cells are more similar to each-other than to those of non related cells of the36

same type, sharing the same environment and undergoing similar biologi-37

cal processes. More importantly, we observed greater discrepancies between38

differentiating sister-cells than between self-renewing sister-cells. Further-39

more, a continuous increase in this divergence from first generation to second40

generation was observed when comparing differentiating cousin-cells to self41

renewing cousin-cells.42

Our results are in favor of a continuous and gradual erasure of transcrip-43

tional memory during the differentiation process.44
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Introduction45

During cell division, the mother-cell endures a period of transient instability46

– the mitosis – which is accompanied by dramatic cellular and epigenomic47

reorganizations [1]. The close to equal partitioning of the cellular content,48

together with active mechanisms, such as the conservation of gene transcrip-49

tion profiles after division by chromatin-related epigenetic mechanisms, or50

the long half-life of proteins ensure the overall phenotypic similarity of the51

sibling cells [2–4]. As a consequence, the resulting sister-cells regain immedi-52

ately after the division many of the structural and functional features of the53

maternal cell. The phenotypic stability of clonal cell lines is largely founded54

on this phenomenon frequently called “cellular memory”.55

A small number of studies have addressed the question of the preservation56

of cellular memory through division using different approaches ranging from57

microfluidics combined with scRNA-seq [5], to time-lapse microscopy of re-58

porter genes expression [6, 7], to a dedicated procedure called MemorySeq [8].59

Those studies have been focused on self-renewing cells, such as mouse ES cells60

or melanoma cell line. In all cases, the authors concluded to the existence of61

a transcriptional memory defined by the heritability of gene expression levels62

in a gene-specific manner, extending up to two or more generations. This63

transcriptional memory impacts subsets of genes called “memory genes”, the64

expression of which is uncorrelated in a population of cells but correlated in65

sister-cells. Those genes are highly dependent on the cell system used for66

the investigation. Beyond their actual function, the fact that related cells67

harbour correlated expression for those genes is a read-out for this transcrip-68

tional memory and demonstrates the existence of a constraint imposed to69

the cells gene expression profile at division.70

On the other hand, all cellular processes are subjected to stochastic molec-71

ular fluctuations which will favor the decorrelation of the sister-cells pheno-72

types and increase the transcriptional heterogeneity in a clonal population of73

siblings. For example, relaxation experiments demonstrated on various cell74

systems that after two weeks of culture under stable conditions, the expres-75

sion level of specific genes in a selected homogeneous cell clone becomes as76

heterogeneous as it was in the original population the founder cell derived77

from [9]. Moreover, the capacity of a cell clone to reconstitute the heterogene-78

ity of the original population over time has been observed in many instances79

in normal or pathological cell types [4, 8, 10].80

During the process of differentiation, this whole delicate balance be-81
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tween the two opposing forces of the stabilizing cellular memory and change-82

inducing gene expression fluctuations has to be somehow revisited. In-83

deed, differentiating cells undergo substantial morphological and functional84

changes.85

Although differentiation usually takes place over several cell cycles, there86

is a critical transition period characterized by stochastic gene expression and87

rapid morphological fluctuations. A large range of experimental studies have88

indeed demonstrated, that the first step in cell differentiation is the rapid89

and transient increase of the variability in gene expression in response to the90

stimuli inducing the differentiation, both in vitro [11–19] and in vivo [20, 21].91

An important unresolved question is therefore to understand how the92

dynamic stability and the capacity of differentiation are integrated into a93

single process. In the present study we aimed to investigate the dynamic94

balance of stability/instability in dividing cells that undergo the first steps95

of differentiation. To do this, we measured the resemblance of the sister-cells96

by comparing their transcriptomes.97

We formulated 3 hypotheses on the possible evolution of transcriptional98

memory upon differentiation induction (Figure 1). To illustrate those hy-99

potheses, cells in a self-renewing state are positioned in a gene expression100

space (grey sphere). Assuming the existence of transcriptional memory in101

our self-renewing cells after mitosis, like in other cell models, sister-cells start102

in roughly at the same position in that space (blue family tree). Then, upon103

differentiation induction (red family tree), we can postulate the following104

three hypotheses:105

• The maintenance of memory hypothesis: the transcriptional memory106

overrules the expression variability resulting in related cells following107

roughly the same path in the gene expression space toward the differ-108

entiated state (hypothesis 1), or109

• The progressive erasure of memory hypothesis: the memory is grad-110

ually erased, translated in our projection to differentiating sister-cells111

starting to follow roughly the same path and progressively bifurcating112

from each other, and even more after one more cell division (hypothesis113

2), or114

• The instantaneous erasure of memory hypothesis: the variability of115

gene expression pushes the balance and takes over the transcriptional116

memory, leading each differentiating sister-cell to follow a completely117
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different path from the beginning of the differentiation process (hy-118

pothesis 3).119

In order to distinguish between those different scenarios, it is necessary120

to quantitatively evaluate, at the single-cell level, the similarity of the gene121

expression profiles of sister-cells shortly after the division under self-renewing122

versus under differentiation-promoting conditions.123

Therefore, we developed two strategies to isolate cells while preserving124

their precise lineage information after one (generation 1) and two (genera-125

tion 2) divisions, a manual one and a FACS-based one. Then, in order to126

assess the genericity and robustness of our findings, we compared two differ-127

ent cell differentiation models (human CD34+ cells and T2EC chicken pri-128

mary erythrocytic progenitors) and for the T2EC model two cellular states:129

self-renewing and differentiating. We used two different single-cell transcrip-130

tomics methods: a highly sensitive targeted quantification method, sc-RT-131

qPCR and a whole-transcriptome approach, scRNA-seq.132

We obtained qualitatively very similar results using the two cell types and133

the two single-cell measurement technologies. First, after one cell division134

(generation 1) in both models, and in both states for the T2EC model, we135

detected a transcriptional memory demonstrated by the sister-cells display-136

ing more transcriptomic similarity between each other than two randomly137

selected cells. Second, using the T2EC model, which allows to compare138

sister-cells induce to differentiate to sister-cells in self-renewing state, we139

also observed that this transcriptome similarity decreased during the differ-140

entiation process as compared to the self-renewing cells. Interestingly, this141

effect was even more pronounced one division later (generation 2), when in-142

terrogating cousin-cells. Altogether our results point toward a continuous143

gradual loss of transcriptional memory during the differentiation sequence.144

Results145

Cellular models of differentiation146

To consolidate our results we used two different cell differentiation models.147

As a first model, we used primary human cord blood derived CD34+ cells.148

These cells are believed to be a mixture of so-called multipotent progeni-149

tors and stem cells that retains the capacity to differentiate into various cell150

types. Under ex vivo conditions, the CD34+ cells, unless stimulated, are151
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stopped in the cell cycle and survive only a few days. When stimulated with152

a mixture of cytokines, they re-enter the cell cycle and will differentiate into153

two different committed progenitors [15]. Briefly, by 24hrs after stimulation,154

a burst in transcription produces a mixed transcription profile called “mul-155

tilineage primed” state [11] and by the end of the first cell cycle (between156

40 and 60hrs), cells with two different transcription profiles emerge in the157

population [15, 22]. However, this first fate-decision is a highly dynamic and158

fluctuating process which is more complex than a simple binary switch be-159

tween 2 options [15]. In the present work, we investigated by sc-RT-qPCR160

the transcriptional profile of couples of CD34+ sister-cells derived from the161

first cell division after the cytokines stimulation.162

As a second model, we used chicken primary erythrocytic progenitors163

called T2EC [23]. Contrary to the human cord blood CD34+ cells, these164

cells can be maintained in a self-renewing state in vitro under appropriate165

culture conditions [24]. They can be induced to differentiate at will into166

mature erythrocytes by a change of medium [24]. The T2EC cells undergo167

a simple “switch”: they leave the self-renewing phase and enter a differenti-168

ation trajectory without bifurcation toward different end point phenotypes.169

This model allows a direct comparison of related cells in two different states:170

self-renewing and during differentiation. Furthermore, a previous study on171

this model had highlighted a critical point of cell commitment, 24hrs post-172

differentiation induction characterized by the rise in gene expression vari-173

ability, measured with entropy [25]. Thus, we focused on the first steps of174

T2EC differentiation and investigated the transcriptional profile of couples175

of generation 1 sister-cells in both cellular states and families of generation176

2 sisters and cousin-cells in both state by a scRNA-seq approach [26].177

Cells isolation178

Isolation of first generation cells179

We achieved the technical challenge to isolate related cells following their180

first and second division (generation 1 sister-cells and generation 2 sisters181

and cousin-cells). The usual molecular tagging or barcoding lineage trac-182

ing approaches could not be used in our case since these approaches allow183

retrieval and analysis of cells belonging to the same clones at later stages,184

but not at the scale of one cell division [27]. For our investigation, a direct185

observation of the dividing cells and individual isolation of the generation 1186
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sister-cells, and generation 2 sisters and cousin-cells were necessary. Further-187

more the use of primary cells, with a short life span, precluded the possibility188

to genetically engineer reporter systems.189

We first developed two different methods to recover generation 1 sister-190

cells, depending upon the cellular model at hand: a manual one and a191

cytometry-based method. Those original strategies are presented below and192

in Figure 2. The technical details are explained in the Methods section.193

Human CD34+ cells were grown during 24hrs in a standard 96-well plate194

before being isolated into single cells, using a Smart Aliquotor device in which195

individual cells still share the same medium. Isolated mother-cells were then196

cultured for 24 to 48hrs in the device to allow one cell division. The wells were197

regularly inspected to detect this first division. Then, the resulting sister-198

cells were isolated manually under a microscope using a pressure controlled199

microcapillary and recovered in lysis buffer for further processing. The cells200

transcriptomes were analyzed by single-cell quantitative RT-PCR using the201

Fluidigm system as described here [15].202

T2EC mother-cells were isolated after CFSE - carboxifluorescein diac-203

etate succinimidyl ester - staining using CellenOne ®low-pressure cell sorter204

and plated in a 384-well plate. Cell doublets, resulting from the first division,205

were identified using an inverted microscope. The two cells were then isolated206

using an FACS Aria cytometer and recovered directly in tubes containing ly-207

sis buffer and scRNA-seq primers, for which the cell barcodes sequences were208

known in advance. scRNA-seq libraries were then constructed as previously209

described here [28] and sequenced.210

Successfully recovering the two sister-cells using FACS is perse a remark-211

able achievement, as this method usually requires hundreds of cells to start212

with, whereas the initial population here consisted of two cells. To achieve213

this, we first used the CFSE fluorescence intensity to ensure that the objects214

isolated were indeed cells (Figure S1 A-B for self-renewing medium and C-D215

for differentiating medium). CFSE stably binds to the amine groups present216

in cytoplasmic proteins, conferring stable fluorescence intensity to the cell.217

As total protein content is supposed to be relatively equally distributed be-218

tween sister-cells during cell division, so is the fluorescence intensity [29, 30].219

We used this specification to validate that the two cells isolated were actu-220

ally sister-cells. We evaluated the CFSE intensity correlation between pairs221

of sister-cells, and compared it to intensity correlation values of randomly222

paired cells from the same dataset (Figure S1 E-F for self-renewing cells and223

G-H for differentiating cells). Outstandingly, CFSE correlation values be-224
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tween self-renewing sister-cells and differentiating sister-cells were extremely225

high (0.91 and 0.95 Figure S1 E and G, respectively), whereas for randomly226

paired-cells, CFSE correlation values dropped between -0.07 for self-renewing227

cells and 0.18 for differentiating cells (Figure S1 F and H, respectively) indi-228

cating no correlation. Those results validated that our general strategy did229

allow to retrieve accurately generation 1 sister-cells. The same procedure230

was applied to generation 1 T2EC mother-cells in proliferating phase and in231

differentiation by sorting the mother-cells either in self-renewing medium or232

in differentiation-promoting medium.233

234

We further analyzed the T2EC scRNA-seq data quality and reproducibil-235

ity by characterizing the observed biological process applying UMAP dimen-236

sional reduction and projection method (see Methods). As expected, the cells237

separated based on their differentiation state (Figure S2 A). This observation238

was validated by a differential expression analysis between the two groups239

(self-renewing and differentiating cells - Figure S2 B). Genes involved in early240

erythrocytes maturation, inhibition of differentiation such as ID2 known to241

be an erythropoiesis inhibitor in mice [31], FTH1 and TMSB4X known to242

be expressed in human erythroid progenitors [32] were up-regulated in self-243

renewing cells while HBBA, HBAD, HBA1, genes involved in hemoglobin244

complex and TAL1, erythroid differentiation factor, were up-regulated in245

differentiating cells, as previously described [28].246

Isolation of second generation cells247

Using the T2EC model, we then developed another FACS sorting methodol-248

ogy to retrieve generation 2 sisters and cousin-cells, that is to say the 4 cells249

resulting from two divisions, both in self-renewing state or in differentiation250

state. To record cells genealogies, we used different cell-tracers to achieve251

fluorescent barcoding of cells families and we stained the cells sequentially to252

retrieve both cousins relationships and sisters relationships within different253

families (Figure 3).254

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 3, 2022. ; https://doi.org/10.1101/2022.11.02.514828doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.02.514828
http://creativecommons.org/licenses/by-nc-nd/4.0/


Briefly, a small number of mother-cells was stained such as every mother-255

cell carried a unique fluorescent barcode. Each fluorescent barcode consist in256

a combination of CTY and CFSE at different intensities, leading to 6 different257

barcodes. This barcode is passed along to the mother cells progeny over two258

cell generations to allow a good discrimination of cells families. One mother259

cell from each barcode was isolated by FACS in a single well of a culture260

plate. After the first cell division, another cell-tracer was added to discrimi-261

nate sister-cells within the cousin groups. After the second cell division, the262

cells (generation 2) were sorted in lysis buffer containing scRNA-seq primers263

of known sequence and the relationships between the cells were recovered us-264

ing a clustering script developed in our team. Details of the methodology are265

presented in figure 3 and in the Methods section. Further viability analysis266

was performed and showed that the staining strategy did not compromise267

cells physiology (Figure S3).268

269

Using first generation methodologies, we successfully collected 86 CD34+270

cells, 60 self-renewing T2EC cells and 64 differentiating T2EC cells encom-271

passing respectively 43, 30 and 32 couples of generation 1 sister-cells. With272

the second-generation original fluorescent barcoding approach, we collected273

8 families of generation 2 self-renewing T2EC cells (32 cells) and 5 families274

of generation 2 differentiating T2EC cells (20 cells).275

Strategy to evaluate transcriptomic similarities between276

related cells277

We used the Manhattan distance as a metric to evaluate transcriptomic sim-278

ilarities between cells. Manhattan distance is a robust geometric distance279

and is less sensitive to data sparsity, which is inherent to single-cell tran-280

scriptomics data [33].281

We anticipated how the distance comparisons would result for each of the282

hypotheses developed in the introduction.283

In the case of hypothesis 1, maintenance of memory, there will be no more284

transcriptional differences between self-renewing than between differentiating285

sister-cells. This hypothesis would imply that at the first cell generation,286

differentiating sister-cells would present a similar distance between each other287

compared to self-renewing sister-cells. And at the second generation, there288

would be no difference either between differentiating sister-cells compared to289
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self-renewing sister-cells nor between differentiating cousin-cells compared to290

self-renewing cousin-cells.291

In the case of hypothesis 2, gradual erasure of memory, there will be a292

continuous and gradual increase in the sister-to-sister differences as differen-293

tiation proceeds. Meaning, at the first generation, differentiating sister-cells294

would present a greater distance compared to self-renewing sister-cells. At295

the second generation, this distance would increase and would be supported296

by (1) second-generation differentiating sister-cells presenting a greater dis-297

tance compared to second generation self renewing sister-cells and (2) second298

generation differentiating cousin-cells presenting a greater distance compared299

to self renewing cousin-cells.300

In the case of hypothesis 3, instantaneous erasure of memory, there will be301

very strong transcriptional differences between self-renewing and differentiat-302

ing sister-cells at the beginning of the differentiation process, with no evolu-303

tion of those differences thereafter. That is, at the first generation, differenti-304

ating sister-cells would present an substantial greater distance between each305

other compared self-renewing sister-cells. At the second generation, differen-306

tiating sister-cells cells would display a similar or smaller distance compared307

to self-renewing sister-cells and differentiating cousin-cells would present a308

similar or slightly greater distance compared to self renewing cousin-cells.309

Transcriptomic similarities between generation 1 sister-310

cells after one division311

We started by assessing whether or not generation 1 sister-cells displayed312

more similar global gene expression levels compared to non related cells. Here313

non related cells correspond to cells which don’t originate from a common314

mother-cell. The Manhattan distances were computed between the gene315

expression vectors of each cell. Gene expression vectors for the 43 couples of316

CD34+ sister-cells were composed of 83 genes after quality control and data317

filtering (see Methods). Those genes were either selected for their known318

function in the early differentiation of hematopoietic cells (64% of them) or319

randomly chosen (36%) to provide an assessment of the overall transcriptional320

state of the genome. For the 62 couples of T2EC sister-cells gene expression321

vectors, we retained 1177 genes after data filtering and normalization of322

scRNA-seq data (see Methods). We performed the analysis by computing323

the Manhattan distances between generation 1 sisters and randomly selected324
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non related cell pairs from the same pool of cells (Figure 4 A and B).325

Mean distances were then compared between the two groups (generation 1326

sisters and non related cells) for both CD34+ and T2EC cells. For the latter,327

both self-renewing and differentiating cells were analyzed separately. For328

both models and in both biological conditions, mean Manhattan distances329

between generation 1 sister-cells were always significantly smaller than the330

mean distances between non related cells (Figure 4 A and B - Wilcoxon test331

for CD34+ cells pvalue = 6.5.10−5, Student t-test for self-renewing T2EC cells332

pvalue = 7.047.10−7 and for differentiating T2EC cells pvalue = 1.415.10−4).333

To ensure that the difference in mean distance observed between gener-334

ation 1 sisters and non related cells was not an artefact due to difference in335

sample size, we performed a randomization experiment by bootstrap. Briefly,336

43 non related CD34+ cell pairs, 30 non related self-renewing T2EC cell pairs337

and 32 non related differentiating T2EC cell pairs were randomly drawn from338

the corresponding groups 1000 times. The mean distance was calculated for339

each pair and plotted on the histograms shown on figure 4 C, D and E. For340

both models, and for T2EC in both biological conditions, the mean distance341

between generation 1 sister-cells was never part of the non related cells mean342

distances distribution. Those results strongly suggest that the observed dif-343

ference was genuine and not due to sampling bias.344

This is a clear indication that the gene transcription profiles of generation345

1 sister-cells in both experimental models are more similar to each-other than346

to those of non related cells of the same type sharing the same environment347

and undergoing similar biological processes.348

Those results also highlight that differentiating sister-cells from genera-349

tion 1 display a form of transcriptional memory, which complements previous350

studies demonstrating a transcriptional memory in self-renewing sister-cells.351

Focusing on the T2EC model, for which we compared related cells in two cel-352

lular states (self-renewing and differentiating), although the difference was353

borderline non statistically significant (pvalue = 0.06), our results point to-354

ward a decrease in transcriptome similarity during differentiation as shown355

by a higher mean distance value for generation 1 differentiating T2EC sister-356

cells compared to self-renewing T2EC sister-cells. We wondered whether or357

not the sister-to-sister cell distance will continue to increase as the differen-358

tiation proceeds in the T2EC cells, one generation later.359
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Generation 2 cells transcriptomes continue to diverge360

during differentiation361

We generated a second dataset consisting of generation 2 T2EC sisters and362

cousin-cells (after two cell divisions) using the methodology described above.363

As scRNA-seq requires the lysis of the cell under investigation, generation 1364

data and generation 2 data consist of different cell families and thus cannot be365

compared to each other so both dataset were treated and analyzed separately366

(see Methods).367

The second generation dataset was composed of 4 cousin-cells per family368

(8 families of cells in self-renewing and 5 families of cells in differentiation con-369

dition), and within the 4 cousins, they consisted of two couples of sister-cells.370

After data filtering and normalization, we retained 983 genes for subsequent371

analysis.372

Comparison of mean Manhattan distances from those data showed that373

when comparing conditions, in line with previous results described after one374

cell generation in figure 4, generation 2 differentiating sister-cells were less375

close to each other than generation 2 self-renewing sister-cells, although not376

significantly so (Figure 5).377

Interestingly, generation 2 differentiating cousin-cells were statistically378

further apart from the generation 2 self-renewing cousin-cells. Indeed, the379

average Manhattan distance between generation 2 differentiating cousin-cells380

was statistically greater than that of generation 2 self-renewing cousin-cells381

further confirming a decrease in transcriptome similarity during the differen-382

tiation process (Student t-test pvalue = 0.002218).383

Finally, generation 2 sister-cells, regardless of their biological condition384

(self-renewing or differentiating for 48hrs), were always closer to each other385

than randomly paired cells (Figure 5 - Student t-test for self-renewing T2EC386

cells pvalue = 0.0146 and for differentiating T2EC cells pvalue = 0.003503).387

Furthermore, the mean Manhattan distances of the generation 2 cousin-cells388

were also statistically smaller than those of non related cells for both biologi-389

cal conditions, indicating a proximity of transcriptomes which persisted after390

one more cell generation in both conditions, observed separately (Student t-391

test for self-renewing T2EC cells pvalue = 0.00002313 and for differentiating392

T2EC cells pvalue = 0.003912).393
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Identification of genes subject to transcriptional mem-394

ory395

We expected that the transcriptomic similarities observed may concern a396

subset of genes, the “memory genes”, the expression of which would be vari-397

able across couples of cells but correlated within couples of sister-cells. Thus,398

we applied a “gene-wise” approach to identify genes subjected to transcrip-399

tional memory using a linear model with random effect and a mixed effects400

model. For CD34+ cells, memory genes were identified including a sisterhood401

random effect to capture between-sisters correlation. For T2EC cells, the ex-402

pression of each gene was modeled by an additive model combining a fixed403

condition effect (differentiating or not) to account for difference in expres-404

sion levels and a sisterhood random effect capturing sister-cells correlation.405

Memory genes were selected by testing for the random effect with a likelihood406

ratio test comparing the model with and without the sisterhood effect. The407

test was performed on each gene followed by a Benjamini-Hochberg p-value408

adjustment for multiple testing [34]. As a negative control, we performed the409

same test on randomly paired cells, and detected no memory gene (Figure410

6).411

We detected 10 genes with significant correlation between-sisters in CD34+412

cells and 55 genes in T2EC cells (cf. Supplement Table S1 for CD34+ and413

for T2EC). In CD34+ cells, memory genes were involved in diverse functions,414

including stemness (GATA1,CD38, CD133 ), differentiation and proliferation415

(CD74, ERG, KIT ), metabolism (BCAT1, HK1 ), cytoskeleton (ACTB) and416

tRNA splicing (C22orf28 ). In T2EC, memory genes were involved in ery-417

thropoietic differentiation (HBBA, HBA1, HBAD, which are hemoglobin sub-418

units, or RHAG membrane channel component involved in carbon dioxide419

transport), chromosome structure (SMC2, H2AFZ ), ribosomes and trans-420

lation (RPS13, RPL22L1, UBA52, EEF1A1 ) and metabolism (GAPDH,421

LDHA). One should note that LDHA was previoulsy found to also be in-422

volved in the erythroid differentiation process [25].423

We computed again and compared the Manhattan distances for the T2EC424

cells between sisters and non related cells using as a vector only the 55 mem-425

ory genes (Figure 7). As a result, the difference in within-distance between426

sister-cells and non related cells, in both biological conditions (self-renewing427

and differentiating), was even more pronounce than when computing the428

Manhattan distances using all 1177 genes of the scRNA-seq dataset (see429

above), further confirming that the identified genes are the ones imprinted430
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by the transcriptional memory.431

To validate our findings, we also checked if these memory genes were432

not only genes associated high mRNA half-life. We crossed our gene list to433

a previously published dataset which evaluated half-life duration of genes434

during T2EC differentiation using RT-qPCR [35]. We were able to compare435

the half-life duration of 6 memory genes and found that 4 of them have a436

relatively long half-life but 2 of them have a quite short half-life (Figure437

8A). Furthermore, other genes with longer half-life were not identified by the438

model as memory genes. Thus, half-life duration could not be the only cause439

of memory.440

We also questioned the relationship between the level of expression of a441

gene and its belonging to the memory genes class. 1000 bootstrap distri-442

bution analysis of the abundance of the 55 memory genes compared to the443

abundance of 55 randomly drawn genes showed an enrichment for higher444

abundance of the 55 memory genes (Figure 8B - kolmogorov-Smirnov test445

pvalue = 0.01672). We therefore can not exclude that part of the memory446

is due to high level expression for at least some memory genes and could447

be related to synthesis and degradation dynamics. However, this result was448

expected because to prevent false correlation that would be due to high num-449

bers of zeros in expression value of lowly expressed genes between sister-cells,450

we selected genes with mid to high-level of expression in our scRNA-seq data451

set (see Methods). Finally, we didn’t regress cell-cycle effects on our data,452

due to the fact that cell-cycle is not as well described in chicken cells as it453

is in mammalian cells, and thus cannot exclude that the sister-to-sister re-454

semblance may, in part, be a consequence of the sister-cells being at similar455

state in the cell-cycle. However, while we found a GO term “cell-cycle” en-456

richment in the 1177 selected genes, no cell-cycle related genes were identified457

as memory genes, leading us to believe that cell-cycle is not the main driver458

of this transcriptional memory.459
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Discussion460

In the present study, we questioned the interplay between the transcriptional461

memory and the gene expression variability which characterizes differentia-462

tion processes.463

We developed two experimental frameworks to recover sister-cells (Gener-464

ation 1) and one experimental framework to recover cousin-cells (Generation465

2) transcriptomes while preserving the information about their lineage at the466

resolution of the cell division. We analyzed the transcriptomes of related cells467

from two different cell differentiation systems using two different single-cell468

transcriptomics technologies.469

Comparison of global transcriptomic state, using Manhattan distances,470

showed that differentiating generation 1 sister-cells (both CD34+ cells and471

T2EC cells) transcriptomes are globally significantly more similar between472

each other than between non related cells.473

In our controlled differentiation model (T2EC cells), we observed after474

one cell division (generation 1), a greater mean distance for differentiating475

sister-cells compared to self-renewing sister-cells. Moreover, the difference476

becomes significant after a second division (generation 2), showed by dif-477

ferentiating cousin-cells presenting a significantly higher distance than self-478

renewing cousin-cells. Those results showed that during cell differentiation,479

related cells deviates faster from each other than during self-renewing divi-480

sions.481

Mixed models further highlighted that some genes have their expression482

statistically correlated between sister-cells while none were found between483

non related cells. We qualified those genes as “memory genes” and obtained484

evidence that they weight out the transcriptomic resemblance observed be-485

tween sisters and cousin-cells. However, the mechanisms leading to a more486

correlated expression between related cells for those genes remain to be in-487

vestigated.488

In the introduction, we formulated 3 hypothesis on the possible evolu-489

tion of the transcriptional memory upon differentiation induction (Figure490

1). Our results therefore support the second hypothesis: upon differentia-491

tion induction, transcriptional memory is continuously and gradually erased492

eventually reconstituting, at the clonal scale, the variability observed in the493

initial population.494

While our experimental methods allow to preserve genealogical cell infor-495

mation for two generations, everything happening later is presently out of496

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 3, 2022. ; https://doi.org/10.1101/2022.11.02.514828doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.02.514828
http://creativecommons.org/licenses/by-nc-nd/4.0/


reach. We therefore are currently developing a microfluidics-based approach,497

consisting in a microfluidics chip coupled to scRNA-seq, which could be used498

on non-adherent cells to investigate cellular memory for several (more than 2)499

generations. Recently, a study based on a complex cell-tracking system com-500

bining time-lapse microscopy, antibody-based cell isolation and scRNA-seq501

on robotically-isolated cells has been used to address the question of asy-502

metric division [36]. While the question is different from ours, the approach503

could be considered to investigate longer genealogies but it would require504

complex equipments and antibodies against chicken cells in order to track505

division.506

In order to explain the existence of memory genes as we (this work) and507

others [5–8] have described, one need to assume that a significant fraction of508

those mechanisms must “survive” the mitosis, i.e. be transmitted through the509

dramatic epigenomic and cellular rearrangements involved in the cell division510

process. If one assumes that the GRN state is essentially characterized by511

protein quantities, then it is easy to see that it will be pass through, at least512

for the proteins with a sufficiently long half life [15]. Reestablishment of the513

epigenetic marks [37] and of genomic structure [38] after a division process514

have also been documented.515

It has recently been described that the persistence of a low level of tran-516

scription throughout the mitosis might at least partly explain how transcrip-517

tional memory can be maintained. It would be interesting in that regard, to518

assess the overlap between our memory genes and these genes for which the519

mitotic transcription can be detected using UEseq in mitotic chromosomes520

[39].521

Differentiating division is a specific challenge since at each division a522

subtle combination of changes and stability must be imposed. In this respect523

one can see the bookmarking process [40] as a stabilizing process, whereas524

the increase in gene expression variability [11–19] will affect the GRN state525

and therefore will tend to modify gene expression burst parameters. In fact,526

at the single cell level, gene expression is in essence a probabilistic process527

that is characterized by a given burst frequency and burst size [41]. The528

mechanisms regulating this bursting process are still a matter of debate [42,529

43], but are usually thought to involve: 1) the state of the underlying Gene530

Regulatory Network (GRN) [44]; 2) the state of the chromatin, a.k.a. the531

epigenetic marks [7, 8], and 3) the genomic 3D state [45]. Of course none of532

these mechanisms operate in isolation and more integrated mechanisms, like533

the metabolism, are also key players in the burst properties of transcription534
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(see e.g. [46]).535

It is interesting to note that our two model systems do behave quite536

differently in regard to the division process. The initial stages of T2EC537

erythrocytic differentiation have been shown to result in an increase of the538

proliferation rate due to a shortening of the G1 period [23]. This is in sharp539

contrast with the observation that the CD34+ first division occurs after an540

unusually long cell cycle that lasts on average more than 55 hrs [15]. It541

could therefore be that the molecular mechanisms linking cell division and542

differentiation might be quite different in the two cell types, although the final543

result will be similar: cellular memory will show a high level of robustness in544

front of the cellular state change associated with the differentiation process.545

Finally, it is tempting to speculate that the observed burst in entropy546

at the beginning of the differentiation sequence is helping the differentiating547

cells to overcome a memory process that is meant to prevent changes in548

cellular identity.549
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Material and methods550

Cell culture551

Human hematopoietic CD34+ cells were purified from umbilical cord blood552

from three anonymous healthy donors. First, mononuclear cells were isolated553

by density centrifugation using Ficoll (Biocoll, Merck Millipore). CD34+554

cells were then enriched by immunomagnetic beads using the AutoMACSpro555

(Miltenyi Biotec). Cells were frozen in 90% fetal bovine serum (Eurobio)556

10% dimethylsulfoxide (Sigma) and stored in liquid nitrogen. After thawing,557

cells were grown in prestimulation medium made of Xvivo (Lonza) supple-558

mented with penicillin/streptomycin (respectively 100U/mL and 100µg/mL559

- Gibco, Thermo Scientific), 50 ng/ml h-FLT3-ligand, 25 ng/ml h-SCF, 25560

ng/ml h-TPO, 10 ng/ml h-IL3 (Miltenyi) final concentration as previously561

described [15]. Cells were cultured in a 96-well plate at 185 000 cells/mL562

during 24hrs in a humidified 5% CO2 incubator at 37°C before proceeding563

to mother cells isolation.564

Cell population mortality was assessed by counting dead and living cells from565

the different time points and conditions after Trypan blue staining and using566

a Malassez cell.567

568

T2EC cells were extracted from 19-days-old SPAFAS white leghorn chicken’s569

embryos’ bone marrow (INRA, Tours, France). Cells were grown in LM1570

medium (α-MEM, 10% Fetal bovine serum (FBS), 1 mM HEPES, 100 nM571

β- mercaptoethanol, 100 U/ mL penicillin and streptomycin, 5 ng/mL TGF-572

α, 1 ng/mL TGF-β and 1 mM dexamethasone) as previously described [23].573

T2EC cells differentiation was induced by removing LM1 medium and placing574

the cells into DM17 medium (α-MEM, 10% fetal bovine serum (FBS), 1 mM575

Hepes, 100 nM β-mercaptoethanol, 100 U/mL penicillin and streptomycin,576

10 ng/mL insulin and 5% anemic chicken serum [24]).577

Manual strategy for CD34+ sister-cells isolation578

Mother cells were isolated using a SmartAliquotor (iBioChips). It consists579

of a polydimethylsiloxane chip divided into 100 wells (2µL per well, 1.8mm580

of diameter) connected by microchannels to an insertion hole in the center.581

This system allows to physically isolate cells while sharing the same medium.582

200µL of cell suspension at 1000 cells/mL were injected in the chip through583
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the injection plug and cells were randomly divided into the wells. Air bubbles584

were removed with sterile tips. Using a standard confocal microscope, wells585

containing lonely cells were listed. 20mL of prestimulation medium (see Cell586

culture part for composition) were added to avoid evaporation and cells were587

incubated at 37°C in a humidified 5% atmosphere during 24 to 48hrs. Listed588

wells were regularly checked with standard confocal microscope to identify589

cell division. Sister-cells were manually collected under biological safety cab-590

inet to keep sterile conditions and avoid impurities to fall in the culture dish.591

A micromanipulator connected to a flexible microfluidic capillary filled with592

PBS and ending in a 2µL glass microcapillary was used. Individual collected593

cells were immediately inserted into 5µL of lysis buffer (Triton 4% (Sigma),594

RNaseOUT Recombinant Ribonuclease Inhibitor 0.4U/µL (Thermo Scien-595

tific), Nuclease free water (Thermo Scientific), Spikes 1 and 4 (Fluidigm C1596

Standard RNA Assays)) and kept on dry ice to preserve RNA. Particular597

attention has been given to preserve cells integrity. Samples were kept at598

-20°C until further sc-RT-qPCR analysis.599

FACS-oriented strategy for T2EC sister-cells isolation600

Mother cells were stained using CFSE (Cell Trace CFSE Cell Proliferation601

kit Thermofisher), 5x105 cells were placed in a 60mm plate in 5mL of culture602

medium mixed with 5µL of CFSE at 5 mM (final concentration 5µM) and603

incubated at 37°C for 30min. Cells were then centrifuged at 20°C, 1500rpm604

for 5min. Medium was discarded and cells were resuspended in 5mL fresh605

medium. CFSE stained mother cells were then isolated using the CellenONE606

X1 (CELLENION) at CELLENION core facility (Lyon, France). A gating607

based only on morphological criteria (diameter, elongation and circularity)608

was performed to select single living cells. Selected single cells were sorted609

in a 384-well plate containing 10µL of culture medium (either self-renewing610

medium LM1 or differentiation-inducing medium DM17). The plate was then611

kept in an incubator under 5% CO2, 37°C for at least 20hrs to allow one cell612

division. Each well of the 384-well plate was manually checked under a regu-613

lar inverted microscope to identify cells that had undergone one cell division614

(presence of cell doublets). Each doublet was then harvested and placed615

in a FACS polypropylene tube containing 80µL of warm culture medium.616

Tubes containing cell doublets were kept at room temperature throughout617

the sorting process and were briefly vortex immediately before loading into618

the sorter. Prior settings consisted in analysing the CFSE positive popula-619
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tion, the CFSE negative population and the culture medium. No fluorescent620

signal was ever detected in medium or in negative population (Figure S1 A-B621

self-renewing medium and C-D differentiation medium) indicating that only622

cells of interest ever gave CFSE positive signal. Cells were sorted at 20 PSI623

through a 100 µm nozzle on an FACS AriaII (BD). Gating was performed on624

FSC-A/SSC-A to capture live cells, SSC-H /SSC-A to capture single cells,625

and CFSE positive cells with yield, purity and phase mask of 32, 0, 0 respec-626

tively. Those parameters were chosen because cell density being very low627

(2 cells per tube), the probability of the two cells being in two consecutive628

drops was extremely low. Furthermore, those parameters are very conserva-629

tives and thus probability of the cell not being sorted is also very low. Cells630

were isolated in 4µL of lysis buffer in PCR tubes containing cell barcode631

primers. Tubes were frozen in dry ice directly after sorting to prevent any632

degradation of the samples.633

FACS-oriented strategy for T2EC cousin-cells isolation634

Fluorescent barcoding for lineage tracing635

On the first day, 1x106 mother cells were labelled with 0.5µM CTV (Cell636

Trace Violet Cell Proliferation kit Thermofisher) for 20min at 37°C in PBS,637

then 5mL of medium was added for 5min to dilute the fluorescent molecules.638

The cells were centrifuged for 5min at 1500rpm at 20°C, resuspended and then639

separated into 6 tubes (2x105 cells per tube) and resuspended in 1mL per640

tube. Each sample was labelled with a different concentration of CFSE (3-641

point range of 5µM, 2.187µM and 0.312µM) plus or minus CTY (10µM - Cell642

Trace Yellow Cell Proliferation kit Thermofisher) for 30min at 37°C in PBS.643

Each condition was centrifuged for 5min at 1500rpm at 20°C and resuspended644

in 1mL of fresh medium. The different concentrations and combinations were645

optimised so that even after two cell divisions, the barcodes will be different646

enough to differentiate the cell clones. Cells were plated in a 6-well plate647

and kept in culture conditions until sorting (in an incubator 37°C, 5% CO2).648

Cells were were stored at 37°C throughout the sorting process and sorted649

at 20 PSI through a 100 µm nozzle on an FACS AriaII (BD). The sorting650

strategy was done using single-labelled cell populations (CFSE, CTY, CTV651

and negative), then gating was performed on FSC-A/SSC-A to capture live652

cells, SSC-H /SSC-A to capture single cells, and CTV positive cells. One653

cell from each subgroup (6 cells total) was isolated in a well of a 96-well654
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plate which contained 500 non-labelled feeder cells in either self-renewing655

medium or differentiating medium through a 100µm nozzle with yield, purity656

and phase mask of 0, 32, 16 respectively (single-cell mask). A well then657

contained 6 mother cells, each one labelled with a unique fluorescent barcode658

and the feeder cells. The plate was then put back in culture conditions (in659

an incubator 37°C, 5% CO2).660

CTFR (Cell Trace Far Red Proliferation kit Thermofisher) labelling was661

performed 20hrs after mother cells sorting, in the plate, so that the cells had662

time to divide once. The staining was made as heterogeneous as possible,663

thanks to the feeder cells but also by using very low concentrations of dye664

and for a very short amount of time. Indeed, 0.37µM of CTFR (Cell Trace665

Far Red Cell Proliferation kit Thermofisher) was added to each sample (in666

approximately 50µL of medium), and then 100µL of medium was added to667

dilute the dye. The plate was centrifuged for 5min at 200G, then 120µL668

of medium was removed and 50µL of new medium added to each labelled669

well. This heterogeneous CTFR staining will allow to discriminate the next670

division meaning within the 4 cousin-cells, how they are paired two by two.671

Indeed, each daughter-cell will receive a unique intensity of CTFR dye which672

will be discriminating after one more cell division. Cells were kept in culture673

conditions for an additional 20hrs (in an incubator 37°C, 5% CO2).674

On the third day, after the second division, the content of the wells con-675

taining the cousin-cells were transferred into polypropylene FACS tubes and676

briefly vortexed immediately before loading into the sorter. The sorting677

strategy was done using single-labelled cell populations (CFSE, CTY, CTV,678

CTFR and negative), then gating was performed on FSC-A/SSC-A to cap-679

ture live cells, SSC-H /SSC-A to capture single cells, and CTV positive cor-680

responding to the second division peak and exclude feeder cells. Cells were681

sorted on a FACS AriaII (BD) at 20 PSI through a 100µm nozzle with yield,682

purity and phase mask of 32, 16, 0 respectively, in PCR tubes containing ly-683

sis buffer (0.2% Triton (Sigma Aldrich), 0.4 U/µL RNaseOUT (Thermofisher684

Scientific), 400nM RT primers (Sigma Aldrich)) and scRNA-seq primers. The685

fluorescent intensities for CFSE, CTY and CTFR were recorded for each cell686

to further reconstruct relationships between the cells using our clustering687

algorithm.688
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Cousin-cells identification689

Clustering was performed using the R mclust package [47] (version 5.4.10 -690

https://gitbio.ens-lyon.fr/LBMC/sbdm/sister-cells commit 76615c6e). This691

clustering script finds the genealogical relationships between cells in two692

steps. First, cousin-cells are grouped together by their fluorescent barcode,693

determined by the CTFE and CTY fluorescent intensity values. Thus, if two,694

three or four cells have the same CFSE and CTY intensities levels they will695

be considered as cousins. In a second step, we select the groups for which the696

4 cousin-cells were sorted in the plate, then the program identifies the two697

pairs of sisters within the 4 cousins. To do this, the median CTFR intensity698

is calculated, then the two cells that have intensity values higher than the699

median are matched, and the other two that have lower intensity values are700

matched together. Finally, when sorting, we used an index sorting option,701

which allows us to know in which well of the plate each cell was sorted. With702

this position information, our analysis program returns the position of the703

retained cells, i.e. the cells belonging to the cousin groups for which the 4704

cells were successfully isolated in the lysis plate.705

sc-RT-qPCR data generation706

sc-RT-qPCR one step707

Lysed cells were heated at 65°C during 3 minutes for hybridization with708

RT primer and immediately transferred into ice. 7µL of RT-PCR mix (Su-709

perscript III RT/platinium Taq 0,1µL (Invitrogen), Reverse and Forward710

primers and spikes at 1,33µM final concentration and homemade 2X reaction711

Mix (120mM Tris SO4 pH=9, 2.4 mM MGSO4, 36mM (NH4)2SO4, 0.4mM712

dNTP)) were added to each well before launching of reverse transcription713

and PCR run on thermocycler (Program : 50°C 15min - 95°C 2min - 20714

cycles 95°C 15sec/60°C 4min - Hold 4°C). 3µL of exonuclease mix (Exonu-715

clease I 1.6U/mL (NEB), Exonuclease buffer 1X (NEB), Nuclease free water716

(Thermo Scientific)) were added and samples were incubated for a digestion717

run on thermocycler (Program : 37°C 30min - 80°C 10min). Pre-amplified718

samples were diluted five times in TE low EDTA (10mM Tris, 0.1mM EDTA,719

pH=8) and kept at -20°C for one night before qPCR.720
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qPCR with Fluidigm Biomark technology721

3,15µL of pre-amplified samples were distributed into a 96-well plate and722

3,85µL of qPCR mix (Sso EvaGreen Supermix with Low ROX (Bio-Rad)+723

20X DNA binding dye sample loading reagent) were added to each well.724

Simultaneously, a 96-well plate with primer mix (forward and reverse primers725

and spike at 2µM final concentration, 2X Assay Loading readent, TE low726

EDTA) was prepared. The microfluidigm chip was primed with injection oil727

using the IFC Controller HX (Fluidigm). 5µL of primers and 5µL of samples728

were loaded in the dedicated wells of the chip. Air bubbles were removed729

with a needle. Samples and primers were mixed in the IFC Controller HX730

(Fluidigm) with the loading program. The chip was then transferred in731

the Biomark HD system (Fluidigm) for qPCR with ”HE 96x96 PCR+Melt732

v2.pcl” thermal cycling protocol with auto exposure.733

Quality control and Normalization734

Ct values obtained from the Biomark HD System (Fluidigm) were exported735

as excel files and quality control was manually done. For each gene, ”failed”736

quality control readings identified by the Fluidigm software were removed.737

Four negative controls (mix of water and lysis buffer) were used to detect738

unwanted amplification and the associated genes were also removed. Fi-739

nally, two externally added controls (spike 1 and spike 4, Fluidigm) were740

used to control amplification consistency. Filtered data frame was then im-741

ported into R (version 4.2.0) for normalization to remove amplification bias742

(https://gitbio.ens-lyon.fr/LBMC/sbdm/sister-cells commit 45a65972). For743

each cell, expression values were calculated by subtracting the gene Ct value744

from the geometric mean of Ct values from spike 1 and spike 4 of the cor-745

responding well. Then, an arbitrary differential cycle threshold value of -22746

for null signal (corresponding to a Ct value of 30) was assigned for all genes747

with a Ct value less than -22.748

scRNA-seq data generation749

scRNA-seq libraries preparation750

Subsequently to sister or cousin-cells isolation, we performed single cell RNA751

sequencing (scRNA-seq) using a modified version of the Mars-seq protocol752

[26] published here [28]. This specific protocol of scRNA-seq allowed us to753
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know in advance which cell barcode would be carried by each cell and thus754

preserving the genealogy information of the cells. Briefly, Reverse Transcrip-755

tion (RT) was performed so every mRNA of the cells were tagged with a756

combination of unique cell barcode and a 8pb random UMIs sequence for757

further demultiplexing. After barcoding, all mRNA were pooled and second758

DNA strand were synthetized. Amplification was done over night using In759

Vitro Transcription (IVT) to obtain a more linear amplification. A second760

barcode was added by RT to identify plates. Libraries were amplified by761

PCR and Illumina primers were added.762

Sequencing763

Libraries were sequenced on a Next500 sequencer (Illumina) with a custom764

paired-end protocol (130pb on read1 and 20pb on read2) and a depth of 200765

000 raw reads per cell.766

Data preprocessing767

Fastq files were pre-processed through a bio-informatics pipeline developed768

in our team on the Nextflow platform [48], available here https://gitbio.ens-769

lyon.fr/LBMC/sbdm/mars seq and published here [28]. Briefly, the first step770

removed Illumina adaptors. The second step de-multiplexed the sequences771

according to their plate barcodes. Then, all sequences containing at least772

4T following the cell barcode sequence and UMI sequence were kept. Using773

UMItools whitelist, the cell barcodes and UMI sequences were extracted774

from the reads. The cDNA sequences were then mapped on the reference775

transcriptome (Gallus GallusGRCG6A.95 from Ensembl) and UMIs were776

counted. Finally, a count matrix was generated for each plate.777

Quality control and data filtering778

All analysis were carried out using R software (version 4.1.2; [49]) and are779

available on the following git repository https://gitbio.ens-lyon.fr/LBMC/sbdm/sister-780

cells. For the sister-cells dataset, cells were filtered based on several criteria:781

reads number, genes number, counts number and ERCC content. For each782

criteria the cut off values were determined based on SCONE [50] pipeline783

and were calculated as follows:784

Mean(parameter) - 3*sd(parameter)785

We then removed orphan cells, meaning cells which sister was not present786
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in the dataset. After filtering, we kept 60 undifferentiated cells (30 couples)787

and 64 differentiating cells (32 couples). For the cousin-cells dataset we per-788

formed the same filtering strategy and kept only cell groups which contained789

the 4 cousin-cells. After filtering we kept 32 undifferentiated cells (8 groups790

of cousins) and 20 differentiating cells (5 groups of cousins). Based on [51]791

work, genes were kept in the data set if in mean present in every cell. After792

applying this filter, we kept 1177 and 983 genes for the sister-cells dataset793

and the cousin-cells dataset respectively.794

Normalization795

Filtered matrix were normalized using SCTransform from Seurat package796

(version 1.6 [52] - https://gitbio.ens-lyon.fr/LBMC/sbdm/sister-cells commit797

945aaca7 and 94f13467) and were corrected for batch effect, day of isolation798

effect, medium effect and sequencing depth effect. Both datasets (sister-cells799

and cousin-cells) were processed independently.800

Bioinformatics analysis on R801

All analysis were carried out using R software [49] (version 4.1.2 for T2EC802

and version 4.2.0 for CD34+). Plots were performed ggplot2 package (version803

3.3.6).804

Dimensional reduction805

UMAP dimension-reduction and visualization were performed using UMAP806

package (version 0.2.8.0; [53]).807

Manhattan distance computation808

Distances were computed on normalized matrix between all cells using dist809

function from R software. Distances between sister-cells were extracted and810

compare to the same number of randomly chosen distances of non related811

cells. 1000 bootstraps were performed this way. Mean comparison was812

performed using Student t-test or Wilcoxon test when Student t-test was813

not applicable (https://gitbio.ens-lyon.fr/LBMC/sbdm/sister-cells commit814

8417545d and 45a65972).815

25

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 3, 2022. ; https://doi.org/10.1101/2022.11.02.514828doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.02.514828
http://creativecommons.org/licenses/by-nc-nd/4.0/


Linear model with random variable and Mixed effects model816

Linear model with random variable and Mixed effects model analysis were817

performed using lme4 R package (version 1.1-29 - https://gitbio.ens-lyon.fr/LBMC/sbdm/sister-818

cells commit c24fa472). The models were defined as followed:819

Mixed effect Model definition :820

Y = p1 + p2 + e

Linear Model with random variable definition :821

Y = p2 + e

822

where Y is the mean expression of each gene, p1 is the fixed effect and p2 is823

the random effect. Here, p1 corresponds to the biological condition and can824

take two values (undifferentiated and differentiating) and p2 is the sorority825

effect. Two sister-cells have the same discrete value. And e is the error of826

the model. Null models are the above model but without the random effect827

e.g. the sorority effect. Genes were selected based on a significant adjusted828

BH p-value after performing a likelihood ratio test between the model and829

the null model.830
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Figure 1: Hypotheses on transcriptional memory during a differentiation
process.
Self-renewing cells (blue cells) are compared to differentiating cells (red cells)
after one and two divisions.
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Figure 2: General workflows developed to generate, follow and separate
generation 1 sister-cells from CD34+ (A - manual strategy) or T2EC (B -
cytometry-based strategy) mother cells. See text and Methods for details.
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Figure 3: General labelling strategy for generation 2 T2EC cells identifica-
tion
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Figure 3: On day 1, a population of mother cells was stained using CTV.
The CTV positive population was split into 6 subgroups, each group was
barcoded with a unique combination of CFSE and CTY concentration to
achieve fluorescent barcoding (6 different barcodes). One mother cell from
each group was then recovered and pooled together in a well to be cultured
for around 24hrs (6 mother cells with a unique fluorescent barcode). At day
2, after the first division, a fourth dye, CTFR, was added to stain sister-cells
with a different intensity in order to be able to discriminate the cells rela-
tionship after the next division. On day 3, cells which underwent 2 divisions,
determined by the intensity of CTV, were sorted into single-cells and fluores-
cent intensities were recorded for CTY, CFSE and CTFR signals. Finally,
a dedicated script was used to infer the relationships of cells based on the
fluorescent intensities (see Methods).
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Figure 4: (A) Boxplot of Manhattan distances between the generation 1
CD34+. CD34+ sister-cells (43 couples) are in orange and CD34+ non re-
lated cells (3612 couples) in green. Manhattan distances were computed
using all the 83 selected genes. Statistical comparison was performed using
Wilcoxon test. (B) Boxplot of Manhattan distances between generation 1
T2EC sisters and non related cells. Manhattan distances were computed
between all cells from the same biological conditions using all the 1177 se-
lected genes. Self-renewing sister-cells (30 couples) are in light orange and
self-renewing non related cells (1740 couples) in light green, differentiating
sister-cells (32 couples) are in orange and differentiating non related cells
(1984 couples) in green. Statistical comparison was performed using Stu-
dent t-test. (C) Histograms of mean Manhattan distances of 1000 random
draws of distances between 43 CD34+ non related cell pairs (green), com-
pared to the mean distance between the 43 CD34+ generation 1 sister-cells
pairs (orange line). (D) Histograms of mean Manhattan distances of 1000
random draws of distances between 30 T2EC self-renewing non related cell
pairs (light green histogram), compare to the mean distance between the 30
T2EC self-renewing generation 1 sister-cells pairs (light orange line). (E)
Histograms of mean Manhattan distances of 1000 random draws of distances
between 32 T2EC differentiating non related cell pairs (Green histogram),
compare to the mean distance between the 32 T2EC differentiating genera-
tion 1 sister-cells pairs (orange line).
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Figure 5: Manhattan distances comparison between generation 2 sisters,
cousins and non related T2EC cells.
Boxplot of Manhattan distances between generation 2 sisters, cousins and
non related T2EC cells. Manhattan distances were computed between all
cells (32 self-renewing and 20 differentiating cells) from the same biological
condition using the 983 selected genes. Self-renewing generation 2 sister-
cells (16 pairs) are presented in light blue, self-renewing generation 2 cousin-
cells (32 pairs) are in medium blue and self-renewing non related cells (448
pairs) are in dark blue. Differentiating generation 2 sister-cells (10 pairs) are
in yellow, differentiating generation 2 cousin-cells (20 pairs) are in orange
and differentiating non related cells (160 pairs) are in brown. Statistical
comparisons were performed using Student t-test.
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Figure 7: Manhattan distances comparison between generation 1 sisters
and non related T2EC cells using the memory genes.
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seq dataset evaluated at 24hrs post differentiation induction ([35]) vs their
Intra Class Correlation value extracted from the mixed effects model. (B)
Cumulative empirical distribution graph of transcripts abundance of the 55
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data.
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