

¹ DIFFERENTIATION IS ACCOMPANIED BY A
² PROGRESSIVE LOSS IN TRANSCRIPTIONAL MEMORY

³ Camille Fourneaux^{*,1}, Laëtitia Racine^{*,2}, Catherine Koering^{&,1}, Sébastien
⁴ Dussurgey^{&,3}, Elodie Vallin¹, Alice Moussy², Romuald Parmentier², Fanny
⁵ Brunard¹, Daniel Stockholm², Laurent Modolo¹, Franck Picard¹, Olivier
⁶ Gandrillon^{1,4}, Andras Paldi² and Sandrine Gonin-Giraud^{%,1}.

⁷ 1 - Laboratory of Biology and Modelling of the Cell, Université de Lyon,
⁸ Ecole Normale Supérieure de Lyon, CNRS, UMR5239, Université Claude
⁹ Bernard Lyon 1, Lyon, France.

¹⁰ 2 - Ecole Pratique des Hautes Etudes, PSL Research University, UMRS938,
¹¹ CRSA, Paris, France.

¹² 3 - Univ Lyon, ENS de Lyon, Inserm, CNRS SFR Biosciences US8 UAR3444, UCBL,
¹³ 50 Avenue Tony Garnier, F-69007 Lyon, France.

¹⁴ 4 - Inria Center Grenoble Rhône-Alpes, Equipe Dracula, Villeurbanne, France.

¹⁵

¹⁶ * Those authors contributed equally. & Those authors contributed equally.

¹⁷ % Corresponding author: sandrine.giraud@ens-lyon.fr

¹⁸ Abstract

¹⁹ Cell differentiation requires the integration of two opposite processes, a stabilizing cellular memory, especially at the transcriptional scale, and a burst of
²⁰ gene expression variability which follows the differentiation induction. Therefore,
²¹ the actual capacity of a cell to undergo phenotypic change during a differentiation
²² process relies upon a modification in this balance which favors
²³ change-inducing gene expression variability. However, there are no experimental
²⁴ data providing insight on how fast the transcriptomes of identical
²⁵ cells would diverge on the scale of the very first two cell divisions during the
²⁶ differentiation process.

²⁷ In order to quantitatively address this question, we developed different
²⁸ experimental methods to recover the transcriptomes of related cells, after one
²⁹ and two divisions, while preserving the information about their lineage at
³⁰ the scale of a single cell division. We analyzed the transcriptomes of related
³¹ cells from two differentiation biological systems (human CD34+ cells and
³² T2EC chicken primary erythrocytic progenitors) using two different single-cell
³³ transcriptomics technologies (sc-RT-qPCR and scRNA-seq).

³⁴ We identified that the gene transcription profiles of differentiating sister-cells
³⁵ are more similar to each-other than to those of non related cells of the
³⁶ same type, sharing the same environment and undergoing similar biological
³⁷ processes. More importantly, we observed greater discrepancies between
³⁸ differentiating sister-cells than between self-renewing sister-cells. Furthermore,
³⁹ a continuous increase in this divergence from first generation to second
⁴⁰ generation was observed when comparing differentiating cousin-cells to self
⁴¹ renewing cousin-cells.

⁴² Our results are in favor of a continuous and gradual erasure of transcriptional
⁴³ memory during the differentiation process.

45 Introduction

46 During cell division, the mother-cell endures a period of transient instability
47 – the mitosis – which is accompanied by dramatic cellular and epigenomic
48 reorganizations [1]. The close to equal partitioning of the cellular content,
49 together with active mechanisms, such as the conservation of gene transcrip-
50 tion profiles after division by chromatin-related epigenetic mechanisms, or
51 the long half-life of proteins ensure the overall phenotypic similarity of the
52 sibling cells [2–4]. As a consequence, the resulting sister-cells regain immedi-
53 ately after the division many of the structural and functional features of the
54 maternal cell. The phenotypic stability of clonal cell lines is largely founded
55 on this phenomenon frequently called “cellular memory”.

56 A small number of studies have addressed the question of the preservation
57 of cellular memory through division using different approaches ranging from
58 microfluidics combined with scRNA-seq [5], to time-lapse microscopy of re-
59 porter genes expression [6, 7], to a dedicated procedure called MemorySeq [8].
60 Those studies have been focused on self-renewing cells, such as mouse ES cells
61 or melanoma cell line. In all cases, the authors concluded to the existence of
62 a transcriptional memory defined by the heritability of gene expression levels
63 in a gene-specific manner, extending up to two or more generations. This
64 transcriptional memory impacts subsets of genes called “memory genes”, the
65 expression of which is uncorrelated in a population of cells but correlated in
66 sister-cells. Those genes are highly dependent on the cell system used for
67 the investigation. Beyond their actual function, the fact that related cells
68 harbour correlated expression for those genes is a read-out for this transcrip-
69 tional memory and demonstrates the existence of a constraint imposed to
70 the cells gene expression profile at division.

71 On the other hand, all cellular processes are subjected to stochastic molec-
72 ular fluctuations which will favor the decorrelation of the sister-cells pheno-
73 types and increase the transcriptional heterogeneity in a clonal population of
74 siblings. For example, relaxation experiments demonstrated on various cell
75 systems that after two weeks of culture under stable conditions, the expres-
76 sion level of specific genes in a selected homogeneous cell clone becomes as
77 heterogeneous as it was in the original population the founder cell derived
78 from [9]. Moreover, the capacity of a cell clone to reconstitute the heterogene-
79 ity of the original population over time has been observed in many instances
80 in normal or pathological cell types [4, 8, 10].

81 During the process of differentiation, this whole delicate balance be-

82 between the two opposing forces of the stabilizing cellular memory and change-
83 inducing gene expression fluctuations has to be somehow revisited. In-
84 deed, differentiating cells undergo substantial morphological and functional
85 changes.

86 Although differentiation usually takes place over several cell cycles, there
87 is a critical transition period characterized by stochastic gene expression and
88 rapid morphological fluctuations. A large range of experimental studies have
89 indeed demonstrated, that the first step in cell differentiation is the rapid
90 and transient increase of the variability in gene expression in response to the
91 stimuli inducing the differentiation, both *in vitro* [11–19] and *in vivo* [20, 21].

92 An important unresolved question is therefore to understand how the
93 dynamic stability and the capacity of differentiation are integrated into a
94 single process. In the present study we aimed to investigate the dynamic
95 balance of stability/instability in dividing cells that undergo the first steps
96 of differentiation. To do this, we measured the resemblance of the sister-cells
97 by comparing their transcriptomes.

98 We formulated 3 hypotheses on the possible evolution of transcriptional
99 memory upon differentiation induction (Figure 1). To illustrate those hy-
100 potheses, cells in a self-renewing state are positioned in a gene expression
101 space (grey sphere). Assuming the existence of transcriptional memory in
102 our self-renewing cells after mitosis, like in other cell models, sister-cells start
103 in roughly at the same position in that space (blue family tree). Then, upon
104 differentiation induction (red family tree), we can postulate the following
105 three hypotheses:

- 106 • The maintenance of memory hypothesis: the transcriptional memory
107 overrules the expression variability resulting in related cells following
108 roughly the same path in the gene expression space toward the differ-
109 entiated state (hypothesis 1), or
- 110 • The progressive erasure of memory hypothesis: the memory is grad-
111 ually erased, translated in our projection to differentiating sister-cells
112 starting to follow roughly the same path and progressively bifurcating
113 from each other, and even more after one more cell division (hypothesis
114 2), or
- 115 • The instantaneous erasure of memory hypothesis: the variability of
116 gene expression pushes the balance and takes over the transcriptional
117 memory, leading each differentiating sister-cell to follow a completely

118 different path from the beginning of the differentiation process (hy-
119 pothesis 3).

120 In order to distinguish between those different scenarios, it is necessary
121 to quantitatively evaluate, at the single-cell level, the similarity of the gene
122 expression profiles of sister-cells shortly after the division under self-renewing
123 versus under differentiation-promoting conditions.

124 Therefore, we developed two strategies to isolate cells while preserving
125 their precise lineage information after one (generation 1) and two (genera-
126 tion 2) divisions, a manual one and a FACS-based one. Then, in order to
127 assess the genericity and robustness of our findings, we compared two differ-
128 ent cell differentiation models (human CD34+ cells and T2EC chicken pri-
129 mary erythrocytic progenitors) and for the T2EC model two cellular states:
130 self-renewing and differentiating. We used two different single-cell transcrip-
131 toomics methods: a highly sensitive targeted quantification method, sc-RT-
132 qPCR and a whole-transcriptome approach, scRNA-seq.

133 We obtained qualitatively very similar results using the two cell types and
134 the two single-cell measurement technologies. First, after one cell division
135 (generation 1) in both models, and in both states for the T2EC model, we
136 detected a transcriptional memory demonstrated by the sister-cells display-
137 ing more transcriptomic similarity between each other than two randomly
138 selected cells. Second, using the T2EC model, which allows to compare
139 sister-cells induce to differentiate to sister-cells in self-renewing state, we
140 also observed that this transcriptome similarity decreased during the differ-
141 entiation process as compared to the self-renewing cells. Interestingly, this
142 effect was even more pronounced one division later (generation 2), when in-
143 terrogating cousin-cells. Altogether our results point toward a continuous
144 gradual loss of transcriptional memory during the differentiation sequence.

145 Results

146 Cellular models of differentiation

147 To consolidate our results we used two different cell differentiation models.
148 As a first model, we used primary human cord blood derived CD34+ cells.
149 These cells are believed to be a mixture of so-called multipotent progeni-
150 tors and stem cells that retains the capacity to differentiate into various cell
151 types. Under *ex vivo* conditions, the CD34+ cells, unless stimulated, are

152 stopped in the cell cycle and survive only a few days. When stimulated with
153 a mixture of cytokines, they re-enter the cell cycle and will differentiate into
154 two different committed progenitors [15]. Briefly, by 24hrs after stimulation,
155 a burst in transcription produces a mixed transcription profile called “mul-
156 tilineage primed” state [11] and by the end of the first cell cycle (between
157 40 and 60hrs), cells with two different transcription profiles emerge in the
158 population [15, 22]. However, this first fate-decision is a highly dynamic and
159 fluctuating process which is more complex than a simple binary switch be-
160 tween 2 options [15]. In the present work, we investigated by sc-RT-qPCR
161 the transcriptional profile of couples of CD34+ sister-cells derived from the
162 first cell division after the cytokines stimulation.

163 As a second model, we used chicken primary erythrocytic progenitors
164 called T2EC [23]. Contrary to the human cord blood CD34+ cells, these
165 cells can be maintained in a self-renewing state *in vitro* under appropriate
166 culture conditions [24]. They can be induced to differentiate at will into
167 mature erythrocytes by a change of medium [24]. The T2EC cells undergo
168 a simple “switch”: they leave the self-renewing phase and enter a differenti-
169 ation trajectory without bifurcation toward different end point phenotypes.
170 This model allows a direct comparison of related cells in two different states:
171 self-renewing and during differentiation. Furthermore, a previous study on
172 this model had highlighted a critical point of cell commitment, 24hrs post-
173 differentiation induction characterized by the rise in gene expression vari-
174 ability, measured with entropy [25]. Thus, we focused on the first steps of
175 T2EC differentiation and investigated the transcriptional profile of couples
176 of generation 1 sister-cells in both cellular states and families of generation
177 2 sisters and cousin-cells in both state by a scRNA-seq approach [26].

178 Cells isolation

179 Isolation of first generation cells

180 We achieved the technical challenge to isolate related cells following their
181 first and second division (generation 1 sister-cells and generation 2 sisters
182 and cousin-cells). The usual molecular tagging or barcoding lineage trac-
183 ing approaches could not be used in our case since these approaches allow
184 retrieval and analysis of cells belonging to the same clones at later stages,
185 but not at the scale of one cell division [27]. For our investigation, a direct
186 observation of the dividing cells and individual isolation of the generation 1

187 sister-cells, and generation 2 sisters and cousin-cells were necessary. Furthermore
188 the use of primary cells, with a short life span, precluded the possibility
189 to genetically engineer reporter systems.

190 We first developed two different methods to recover generation 1 sister-
191 cells, depending upon the cellular model at hand: a manual one and a
192 cytometry-based method. Those original strategies are presented below and
193 in Figure 2. The technical details are explained in the Methods section.

194 Human CD34+ cells were grown during 24hrs in a standard 96-well plate
195 before being isolated into single cells, using a Smart Aliquotor device in which
196 individual cells still share the same medium. Isolated mother-cells were then
197 cultured for 24 to 48hrs in the device to allow one cell division. The wells were
198 regularly inspected to detect this first division. Then, the resulting sister-
199 cells were isolated manually under a microscope using a pressure controlled
200 microcapillary and recovered in lysis buffer for further processing. The cells
201 transcriptomes were analyzed by single-cell quantitative RT-PCR using the
202 Fluidigm system as described here [15].

203 T2EC mother-cells were isolated after CFSE - carboxifluorescein diacetate
204 succinimidyl ester - staining using CellenOne \textcircled{R} low-pressure cell sorter
205 and plated in a 384-well plate. Cell doublets, resulting from the first division,
206 were identified using an inverted microscope. The two cells were then isolated
207 using an FACS Aria cytometer and recovered directly in tubes containing lysis
208 buffer and scRNA-seq primers, for which the cell barcodes sequences were
209 known in advance. scRNA-seq libraries were then constructed as previously
210 described here [28] and sequenced.

211 Successfully recovering the two sister-cells using FACS is *per se* a remarkable
212 achievement, as this method usually requires hundreds of cells to start
213 with, whereas the initial population here consisted of two cells. To achieve
214 this, we first used the CFSE fluorescence intensity to ensure that the objects
215 isolated were indeed cells (Figure S1 A-B for self-renewing medium and C-D
216 for differentiating medium). CFSE stably binds to the amine groups present
217 in cytoplasmic proteins, conferring stable fluorescence intensity to the cell.
218 As total protein content is supposed to be relatively equally distributed between
219 sister-cells during cell division, so is the fluorescence intensity [29, 30].
220 We used this specification to validate that the two cells isolated were actually
221 sister-cells. We evaluated the CFSE intensity correlation between pairs
222 of sister-cells, and compared it to intensity correlation values of randomly
223 paired cells from the same dataset (Figure S1 E-F for self-renewing cells and
224 G-H for differentiating cells). Outstandingly, CFSE correlation values be-

225 between self-renewing sister-cells and differentiating sister-cells were extremely
226 high (0.91 and 0.95 Figure S1 E and G, respectively), whereas for randomly
227 paired-cells, CFSE correlation values dropped between -0.07 for self-renewing
228 cells and 0.18 for differentiating cells (Figure S1 F and H, respectively) indicating
229 no correlation. Those results validated that our general strategy did
230 allow to retrieve accurately generation 1 sister-cells. The same procedure
231 was applied to generation 1 T2EC mother-cells in proliferating phase and in
232 differentiation by sorting the mother-cells either in self-renewing medium or
233 in differentiation-promoting medium.

234

235 We further analyzed the T2EC scRNA-seq data quality and reproducibility by characterizing the observed biological process applying UMAP dimensional reduction and projection method (see Methods). As expected, the cells
236 separated based on their differentiation state (Figure S2 A). This observation
237 was validated by a differential expression analysis between the two groups
238 (self-renewing and differentiating cells - Figure S2 B). Genes involved in early
239 erythrocytes maturation, inhibition of differentiation such as *ID2* known to
240 be an erythropoiesis inhibitor in mice [31], *FTH1* and *TMSB4X* known to
241 be expressed in human erythroid progenitors [32] were up-regulated in self-
242 renewing cells while *HBBA*, *HBAD*, *HBA1*, genes involved in hemoglobin
243 complex and *TAL1*, erythroid differentiation factor, were up-regulated in
244 differentiating cells, as previously described [28].

247 **Isolation of second generation cells**

248 Using the T2EC model, we then developed another FACS sorting methodology to retrieve generation 2 sisters and cousin-cells, that is to say the 4 cells
249 resulting from two divisions, both in self-renewing state or in differentiation
250 state. To record cells genealogies, we used different cell-tracers to achieve
251 fluorescent barcoding of cells families and we stained the cells sequentially to
252 retrieve both cousins relationships and sisters relationships within different
253 families (Figure 3).

255 Briefly, a small number of mother-cells was stained such as every mother-
256 cell carried a unique fluorescent barcode. Each fluorescent barcode consist in
257 a combination of CTY and CFSE at different intensities, leading to 6 different
258 barcodes. This barcode is passed along to the mother cells progeny over two
259 cell generations to allow a good discrimination of cells families. One mother
260 cell from each barcode was isolated by FACS in a single well of a culture
261 plate. After the first cell division, another cell-tracer was added to discrimi-
262 nate sister-cells within the cousin groups. After the second cell division, the
263 cells (generation 2) were sorted in lysis buffer containing scRNA-seq primers
264 of known sequence and the relationships between the cells were recovered us-
265 ing a clustering script developed in our team. Details of the methodology are
266 presented in figure 3 and in the Methods section. Further viability analysis
267 was performed and showed that the staining strategy did not compromise
268 cells physiology (Figure S3).

269

270 Using first generation methodologies, we successfully collected 86 CD34+
271 cells, 60 self-renewing T2EC cells and 64 differentiating T2EC cells encom-
272 passing respectively 43, 30 and 32 couples of generation 1 sister-cells. With
273 the second-generation original fluorescent barcoding approach, we collected
274 8 families of generation 2 self-renewing T2EC cells (32 cells) and 5 families
275 of generation 2 differentiating T2EC cells (20 cells).

276 **Strategy to evaluate transcriptomic similarities between**
277 **related cells**

278 We used the Manhattan distance as a metric to evaluate transcriptomic sim-
279 ilarities between cells. Manhattan distance is a robust geometric distance
280 and is less sensitive to data sparsity, which is inherent to single-cell tran-
281 scriptomics data [33].

282 We anticipated how the distance comparisons would result for each of the
283 hypotheses developed in the introduction.

284 In the case of hypothesis 1, maintenance of memory, there will be no more
285 transcriptional differences between self-renewing than between differentiating
286 sister-cells. This hypothesis would imply that at the first cell generation,
287 differentiating sister-cells would present a similar distance between each other
288 compared to self-renewing sister-cells. And at the second generation, there
289 would be no difference either between differentiating sister-cells compared to

290 self-renewing sister-cells nor between differentiating cousin-cells compared to
291 self-renewing cousin-cells.

292 In the case of hypothesis 2, gradual erasure of memory, there will be a
293 continuous and gradual increase in the sister-to-sister differences as differen-
294 tiation proceeds. Meaning, at the first generation, differentiating sister-cells
295 would present a greater distance compared to self-renewing sister-cells. At
296 the second generation, this distance would increase and would be supported
297 by (1) second-generation differentiating sister-cells presenting a greater dis-
298 tance compared to second generation self renewing sister-cells and (2) second
299 generation differentiating cousin-cells presenting a greater distance compared
300 to self renewing cousin-cells.

301 In the case of hypothesis 3, instantaneous erasure of memory, there will be
302 very strong transcriptional differences between self-renewing and differentiat-
303 ing sister-cells at the beginning of the differentiation process, with no evolu-
304 tion of those differences thereafter. That is, at the first generation, differentiat-
305 ing sister-cells would present an substantial greater distance between each
306 other compared self-renewing sister-cells. At the second generation, differen-
307 tiating sister-cells cells would display a similar or smaller distance compared
308 to self-renewing sister-cells and differentiating cousin-cells would present a
309 similar or slightly greater distance compared to self renewing cousin-cells.

310 **Transcriptomic similarities between generation 1 sister- 311 cells after one division**

312 We started by assessing whether or not generation 1 sister-cells displayed
313 more similar global gene expression levels compared to non related cells. Here
314 non related cells correspond to cells which don't originate from a common
315 mother-cell. The Manhattan distances were computed between the gene
316 expression vectors of each cell. Gene expression vectors for the 43 couples of
317 CD34+ sister-cells were composed of 83 genes after quality control and data
318 filtering (see Methods). Those genes were either selected for their known
319 function in the early differentiation of hematopoietic cells (64% of them) or
320 randomly chosen (36%) to provide an assessment of the overall transcriptional
321 state of the genome. For the 62 couples of T2EC sister-cells gene expression
322 vectors, we retained 1177 genes after data filtering and normalization of
323 scRNA-seq data (see Methods). We performed the analysis by computing
324 the Manhattan distances between generation 1 sisters and randomly selected

325 non related cell pairs from the same pool of cells (Figure 4 A and B).

326 Mean distances were then compared between the two groups (generation 1
327 sisters and non related cells) for both CD34+ and T2EC cells. For the latter,
328 both self-renewing and differentiating cells were analyzed separately. For
329 both models and in both biological conditions, mean Manhattan distances
330 between generation 1 sister-cells were always significantly smaller than the
331 mean distances between non related cells (Figure 4 A and B - Wilcoxon test
332 for CD34+ cells $pvalue = 6.5 \cdot 10^{-5}$, Student t-test for self-renewing T2EC cells
333 $pvalue = 7.047 \cdot 10^{-7}$ and for differentiating T2EC cells $pvalue = 1.415 \cdot 10^{-4}$).

334 To ensure that the difference in mean distance observed between genera-
335 tion 1 sisters and non related cells was not an artefact due to difference in
336 sample size, we performed a randomization experiment by bootstrap. Briefly,
337 43 non related CD34+ cell pairs, 30 non related self-renewing T2EC cell pairs
338 and 32 non related differentiating T2EC cell pairs were randomly drawn from
339 the corresponding groups 1000 times. The mean distance was calculated for
340 each pair and plotted on the histograms shown on figure 4 C, D and E. For
341 both models, and for T2EC in both biological conditions, the mean distance
342 between generation 1 sister-cells was never part of the non related cells mean
343 distances distribution. Those results strongly suggest that the observed dif-
344 ference was genuine and not due to sampling bias.

345 This is a clear indication that the gene transcription profiles of generation
346 1 sister-cells in both experimental models are more similar to each-other than
347 to those of non related cells of the same type sharing the same environment
348 and undergoing similar biological processes.

349 Those results also highlight that differentiating sister-cells from genera-
350 tion 1 display a form of transcriptional memory, which complements previous
351 studies demonstrating a transcriptional memory in self-renewing sister-cells.
352 Focusing on the T2EC model, for which we compared related cells in two cel-
353 lular states (self-renewing and differentiating), although the difference was
354 borderline non statistically significant ($pvalue = 0.06$), our results point to-
355 ward a decrease in transcriptome similarity during differentiation as shown
356 by a higher mean distance value for generation 1 differentiating T2EC sister-
357 cells compared to self-renewing T2EC sister-cells. We wondered whether or
358 not the sister-to-sister cell distance will continue to increase as the differen-
359 tiation proceeds in the T2EC cells, one generation later.

360 **Generation 2 cells transcriptomes continue to diverge**
361 **during differentiation**

362 We generated a second dataset consisting of generation 2 T2EC sisters and
363 cousin-cells (after two cell divisions) using the methodology described above.
364 As scRNA-seq requires the lysis of the cell under investigation, generation 1
365 data and generation 2 data consist of different cell families and thus cannot be
366 compared to each other so both dataset were treated and analyzed separately
367 (see Methods).

368 The second generation dataset was composed of 4 cousin-cells per family
369 (8 families of cells in self-renewing and 5 families of cells in differentiation con-
370 dition), and within the 4 cousins, they consisted of two couples of sister-cells.
371 After data filtering and normalization, we retained 983 genes for subsequent
372 analysis.

373 Comparison of mean Manhattan distances from those data showed that
374 when comparing conditions, in line with previous results described after one
375 cell generation in figure 4, generation 2 differentiating sister-cells were less
376 close to each other than generation 2 self-renewing sister-cells, although not
377 significantly so (Figure 5).

378 Interestingly, generation 2 differentiating cousin-cells were statistically
379 further apart from the generation 2 self-renewing cousin-cells. Indeed, the
380 average Manhattan distance between generation 2 differentiating cousin-cells
381 was statistically greater than that of generation 2 self-renewing cousin-cells
382 further confirming a decrease in transcriptome similarity during the differen-
383 tiation process (Student t-test pvalue = 0.002218).

384 Finally, generation 2 sister-cells, regardless of their biological condition
385 (self-renewing or differentiating for 48hrs), were always closer to each other
386 than randomly paired cells (Figure 5 - Student t-test for self-renewing T2EC
387 cells pvalue = 0.0146 and for differentiating T2EC cells pvalue = 0.003503).
388 Furthermore, the mean Manhattan distances of the generation 2 cousin-cells
389 were also statistically smaller than those of non related cells for both biologi-
390 cal conditions, indicating a proximity of transcriptomes which persisted after
391 one more cell generation in both conditions, observed separately (Student t-
392 test for self-renewing T2EC cells pvalue = 0.00002313 and for differentiating
393 T2EC cells pvalue = 0.003912).

394 **Identification of genes subject to transcriptional mem-
395 ory**

396 We expected that the transcriptomic similarities observed may concern a
397 subset of genes, the “memory genes”, the expression of which would be vari-
398 able across couples of cells but correlated within couples of sister-cells. Thus,
399 we applied a “gene-wise” approach to identify genes subjected to transcri-
400 tional memory using a linear model with random effect and a mixed effects
401 model. For CD34+ cells, memory genes were identified including a sisterhood
402 random effect to capture between-sisters correlation. For T2EC cells, the ex-
403 pression of each gene was modeled by an additive model combining a fixed
404 condition effect (differentiating or not) to account for difference in expres-
405 sion levels and a sisterhood random effect capturing sister-cells correlation.
406 Memory genes were selected by testing for the random effect with a likelihood
407 ratio test comparing the model with and without the sisterhood effect. The
408 test was performed on each gene followed by a Benjamini-Hochberg p-value
409 adjustment for multiple testing [34]. As a negative control, we performed the
410 same test on randomly paired cells, and detected no memory gene (Figure
411 6).

412 We detected 10 genes with significant correlation between-sisters in CD34+
413 cells and 55 genes in T2EC cells (cf. Supplement Table S1 for CD34+ and
414 for T2EC). In CD34+ cells, memory genes were involved in diverse functions,
415 including stemness (*GATA1*, *CD38*, *CD133*), differentiation and proliferation
416 (*CD74*, *ERG*, *KIT*), metabolism (*BCAT1*, *HK1*), cytoskeleton (*ACTB*) and
417 tRNA splicing (*C22orf28*). In T2EC, memory genes were involved in ery-
418 thropoietic differentiation (*HBBA*, *HBA1*, *HBAD*, which are hemoglobin sub-
419 units, or *RHAG* membrane channel component involved in carbon dioxide
420 transport), chromosome structure (*SMC2*, *H2AFZ*), ribosomes and trans-
421 lation (*RPS13*, *RPL22L1*, *UBA52*, *EEF1A1*) and metabolism (*GAPDH*,
422 *LDHA*). One should note that *LDHA* was previously found to also be in-
423 volved in the erythroid differentiation process [25].

424 We computed again and compared the Manhattan distances for the T2EC
425 cells between sisters and non related cells using as a vector only the 55 mem-
426 ory genes (Figure 7). As a result, the difference in within-distance between
427 sister-cells and non related cells, in both biological conditions (self-renewing
428 and differentiating), was even more pronounced than when computing the
429 Manhattan distances using all 1177 genes of the scRNA-seq dataset (see
430 above), further confirming that the identified genes are the ones imprinted

431 by the transcriptional memory.

432 To validate our findings, we also checked if these memory genes were
433 not only genes associated high mRNA half-life. We crossed our gene list to
434 a previously published dataset which evaluated half-life duration of genes
435 during T2EC differentiation using RT-qPCR [35]. We were able to compare
436 the half-life duration of 6 memory genes and found that 4 of them have a
437 relatively long half-life but 2 of them have a quite short half-life (Figure
438 8A). Furthermore, other genes with longer half-life were not identified by the
439 model as memory genes. Thus, half-life duration could not be the only cause
440 of memory.

441 We also questioned the relationship between the level of expression of a
442 gene and its belonging to the memory genes class. 1000 bootstrap distri-
443 bution analysis of the abundance of the 55 memory genes compared to the
444 abundance of 55 randomly drawn genes showed an enrichment for higher
445 abundance of the 55 memory genes (Figure 8B - kolmogorov-Smirnov test
446 pvalue = 0.01672). We therefore can not exclude that part of the memory
447 is due to high level expression for at least some memory genes and could
448 be related to synthesis and degradation dynamics. However, this result was
449 expected because to prevent false correlation that would be due to high num-
450 bers of zeros in expression value of lowly expressed genes between sister-cells,
451 we selected genes with mid to high-level of expression in our scRNA-seq data
452 set (see Methods). Finally, we didn't regress cell-cycle effects on our data,
453 due to the fact that cell-cycle is not as well described in chicken cells as it
454 is in mammalian cells, and thus cannot exclude that the sister-to-sister re-
455 semblance may, in part, be a consequence of the sister-cells being at similar
456 state in the cell-cycle. However, while we found a GO term "cell-cycle" en-
457 richment in the 1177 selected genes, no cell-cycle related genes were identified
458 as memory genes, leading us to believe that cell-cycle is not the main driver
459 of this transcriptional memory.

460 Discussion

461 In the present study, we questioned the interplay between the transcriptional
462 memory and the gene expression variability which characterizes differentia-
463 tion processes.

464 We developed two experimental frameworks to recover sister-cells (Gener-
465 ation 1) and one experimental framework to recover cousin-cells (Generation
466 2) transcriptomes while preserving the information about their lineage at the
467 resolution of the cell division. We analyzed the transcriptomes of related cells
468 from two different cell differentiation systems using two different single-cell
469 transcriptomics technologies.

470 Comparison of global transcriptomic state, using Manhattan distances,
471 showed that differentiating generation 1 sister-cells (both CD34+ cells and
472 T2EC cells) transcriptomes are globally significantly more similar between
473 each other than between non related cells.

474 In our controlled differentiation model (T2EC cells), we observed after
475 one cell division (generation 1), a greater mean distance for differentiating
476 sister-cells compared to self-renewing sister-cells. Moreover, the difference
477 becomes significant after a second division (generation 2), showed by dif-
478 ferentiating cousin-cells presenting a significantly higher distance than self-
479 renewing cousin-cells. Those results showed that during cell differentiation,
480 related cells deviates faster from each other than during self-renewing divi-
481 sions.

482 Mixed models further highlighted that some genes have their expression
483 statistically correlated between sister-cells while none were found between
484 non related cells. We qualified those genes as “memory genes” and obtained
485 evidence that they weight out the transcriptomic resemblance observed be-
486 tween sisters and cousin-cells. However, the mechanisms leading to a more
487 correlated expression between related cells for those genes remain to be in-
488 vestigated.

489 In the introduction, we formulated 3 hypothesis on the possible evolu-
490 tion of the transcriptional memory upon differentiation induction (Figure
491 1). Our results therefore support the second hypothesis: upon differentia-
492 tion induction, transcriptional memory is continuously and gradually erased
493 eventually reconstituting, at the clonal scale, the variability observed in the
494 initial population.

495 While our experimental methods allow to preserve genealogical cell infor-
496 mation for two generations, everything happening later is presently out of

497 reach. We therefore are currently developing a microfluidics-based approach,
498 consisting in a microfluidics chip coupled to scRNA-seq, which could be used
499 on non-adherent cells to investigate cellular memory for several (more than 2)
500 generations. Recently, a study based on a complex cell-tracking system com-
501 bining time-lapse microscopy, antibody-based cell isolation and scRNA-seq
502 on robotically-isolated cells has been used to address the question of asy-
503 metric division [36]. While the question is different from ours, the approach
504 could be considered to investigate longer genealogies but it would require
505 complex equipments and antibodies against chicken cells in order to track
506 division.

507 In order to explain the existence of memory genes as we (this work) and
508 others [5–8] have described, one need to assume that a significant fraction of
509 those mechanisms must “survive” the mitosis, i.e. be transmitted through the
510 dramatic epigenomic and cellular rearrangements involved in the cell division
511 process. If one assumes that the GRN state is essentially characterized by
512 protein quantities, then it is easy to see that it will be pass through, at least
513 for the proteins with a sufficiently long half life [15]. Reestablishment of the
514 epigenetic marks [37] and of genomic structure [38] after a division process
515 have also been documented.

516 It has recently been described that the persistence of a low level of tran-
517 scription throughout the mitosis might at least partly explain how transcrip-
518 tional memory can be maintained. It would be interesting in that regard, to
519 assess the overlap between our memory genes and these genes for which the
520 mitotic transcription can be detected using UEseq in mitotic chromosomes
521 [39].

522 Differentiating division is a specific challenge since at each division a
523 subtle combination of changes and stability must be imposed. In this respect
524 one can see the bookmarking process [40] as a stabilizing process, whereas
525 the increase in gene expression variability [11–19] will affect the GRN state
526 and therefore will tend to modify gene expression burst parameters. In fact,
527 at the single cell level, gene expression is in essence a probabilistic process
528 that is characterized by a given burst frequency and burst size [41]. The
529 mechanisms regulating this bursting process are still a matter of debate [42,
530 43], but are usually thought to involve: 1) the state of the underlying Gene
531 Regulatory Network (GRN) [44]; 2) the state of the chromatin, a.k.a. the
532 epigenetic marks [7, 8], and 3) the genomic 3D state [45]. Of course none of
533 these mechanisms operate in isolation and more integrated mechanisms, like
534 the metabolism, are also key players in the burst properties of transcription

535 (see e.g. [46]).

536 It is interesting to note that our two model systems do behave quite
537 differently in regard to the division process. The initial stages of T2EC
538 erythrocytic differentiation have been shown to result in an increase of the
539 proliferation rate due to a shortening of the G1 period [23]. This is in sharp
540 contrast with the observation that the CD34+ first division occurs after an
541 unusually long cell cycle that lasts on average more than 55 hrs [15]. It
542 could therefore be that the molecular mechanisms linking cell division and
543 differentiation might be quite different in the two cell types, although the final
544 result will be similar: cellular memory will show a high level of robustness in
545 front of the cellular state change associated with the differentiation process.

546 Finally, it is tempting to speculate that the observed burst in entropy
547 at the beginning of the differentiation sequence is helping the differentiating
548 cells to overcome a memory process that is meant to prevent changes in
549 cellular identity.

550 Material and methods

551 Cell culture

552 Human hematopoietic CD34+ cells were purified from umbilical cord blood
553 from three anonymous healthy donors. First, mononuclear cells were isolated
554 by density centrifugation using Ficoll (Biocoll, Merck Millipore). CD34+
555 cells were then enriched by immunomagnetic beads using the AutoMACSpro
556 (Miltenyi Biotec). Cells were frozen in 90% fetal bovine serum (Eurobio)
557 10% dimethylsulfoxide (Sigma) and stored in liquid nitrogen. After thawing,
558 cells were grown in prestimulation medium made of Xvivo (Lonza) supple-
559 mented with penicillin/streptomycin (respectively 100U/mL and 100µg/mL
560 - Gibco, Thermo Scientific), 50 ng/ml h-FLT3-ligand, 25 ng/ml h-SCF, 25
561 ng/ml h-TPO, 10 ng/ml h-IL3 (Miltenyi) final concentration as previously
562 described [15]. Cells were cultured in a 96-well plate at 185 000 cells/mL
563 during 24hrs in a humidified 5% CO₂ incubator at 37°C before proceeding
564 to mother cells isolation.

565 Cell population mortality was assessed by counting dead and living cells from
566 the different time points and conditions after Trypan blue staining and using
567 a Malassez cell.

568

569 T2EC cells were extracted from 19-days-old SPAFAS white leghorn chicken's
570 embryos' bone marrow (INRA, Tours, France). Cells were grown in LM1
571 medium (α-MEM, 10% Fetal bovine serum (FBS), 1 mM HEPES, 100 nM
572 β- mercaptoethanol, 100 U/ mL penicillin and streptomycin, 5 ng/mL TGF-
573 α, 1 ng/mL TGF-β and 1 mM dexamethasone) as previously described [23].
574 T2EC cells differentiation was induced by removing LM1 medium and placing
575 the cells into DM17 medium (α-MEM, 10% fetal bovine serum (FBS), 1 mM
576 Hepes, 100 nM β-mercaptoethanol, 100 U/mL penicillin and streptomycin,
577 10 ng/mL insulin and 5% anemic chicken serum [24]).

578 Manual strategy for CD34+ sister-cells isolation

579 Mother cells were isolated using a SmartAliquotor (iBioChips). It consists
580 of a polydimethylsiloxane chip divided into 100 wells (2µL per well, 1.8mm
581 of diameter) connected by microchannels to an insertion hole in the center.
582 This system allows to physically isolate cells while sharing the same medium.
583 200µL of cell suspension at 1000 cells/mL were injected in the chip through

584 the injection plug and cells were randomly divided into the wells. Air bubbles
585 were removed with sterile tips. Using a standard confocal microscope, wells
586 containing lonely cells were listed. 20mL of prestimulation medium (see Cell
587 culture part for composition) were added to avoid evaporation and cells were
588 incubated at 37°C in a humidified 5% atmosphere during 24 to 48hrs. Listed
589 wells were regularly checked with standard confocal microscope to identify
590 cell division. Sister-cells were manually collected under biological safety cab-
591 inet to keep sterile conditions and avoid impurities to fall in the culture dish.
592 A micromanipulator connected to a flexible microfluidic capillary filled with
593 PBS and ending in a 2 μ L glass microcapillary was used. Individual collected
594 cells were immediately inserted into 5 μ L of lysis buffer (Triton 4% (Sigma),
595 RNaseOUT Recombinant Ribonuclease Inhibitor 0.4U/ μ L (Thermo Scien-
596 tific), Nuclease free water (Thermo Scientific), Spikes 1 and 4 (Fluidigm C1
597 Standard RNA Assays)) and kept on dry ice to preserve RNA. Particular
598 attention has been given to preserve cells integrity. Samples were kept at
599 -20°C until further sc-RT-qPCR analysis.

600 **FACS-oriented strategy for T2EC sister-cells isolation**

601 Mother cells were stained using CFSE (Cell Trace CFSE Cell Proliferation
602 kit ThermoFisher), 5x10⁵ cells were placed in a 60mm plate in 5mL of culture
603 medium mixed with 5 μ L of CFSE at 5 mM (final concentration 5 μ M) and
604 incubated at 37°C for 30min. Cells were then centrifuged at 20°C, 1500rpm
605 for 5min. Medium was discarded and cells were resuspended in 5mL fresh
606 medium. CFSE stained mother cells were then isolated using the CellenONE
607 X1 (CELLENION) at CELLENION core facility (Lyon, France). A gating
608 based only on morphological criteria (diameter, elongation and circularity)
609 was performed to select single living cells. Selected single cells were sorted
610 in a 384-well plate containing 10 μ L of culture medium (either self-renewing
611 medium LM1 or differentiation-inducing medium DM17). The plate was then
612 kept in an incubator under 5% CO₂, 37°C for at least 20hrs to allow one cell
613 division. Each well of the 384-well plate was manually checked under a regu-
614 lar inverted microscope to identify cells that had undergone one cell division
615 (presence of cell doublets). Each doublet was then harvested and placed
616 in a FACS polypropylene tube containing 80 μ L of warm culture medium.
617 Tubes containing cell doublets were kept at room temperature throughout
618 the sorting process and were briefly vortex immediately before loading into
619 the sorter. Prior settings consisted in analysing the CFSE positive popula-

620 tion, the CFSE negative population and the culture medium. No fluorescent
621 signal was ever detected in medium or in negative population (Figure S1 A-B
622 self-renewing medium and C-D differentiation medium) indicating that only
623 cells of interest ever gave CFSE positive signal. Cells were sorted at 20 PSI
624 through a 100 μm nozzle on an FACS AriaII (BD). Gating was performed on
625 FSC-A/SSC-A to capture live cells, SSC-H /SSC-A to capture single cells,
626 and CFSE positive cells with yield, purity and phase mask of 32, 0, 0 respec-
627 tively. Those parameters were chosen because cell density being very low
628 (2 cells per tube), the probability of the two cells being in two consecutive
629 drops was extremely low. Furthermore, those parameters are very conserva-
630 tives and thus probability of the cell not being sorted is also very low. Cells
631 were isolated in 4 μL of lysis buffer in PCR tubes containing cell barcode
632 primers. Tubes were frozen in dry ice directly after sorting to prevent any
633 degradation of the samples.

634 FACS-oriented strategy for T2EC cousin-cells isolation

635 Fluorescent barcoding for lineage tracing

636 On the first day, 1x10⁶ mother cells were labelled with 0.5 μM CTV (Cell
637 Trace Violet Cell Proliferation kit ThermoFisher) for 20min at 37°C in PBS,
638 then 5mL of medium was added for 5min to dilute the fluorescent molecules.
639 The cells were centrifuged for 5min at 1500rpm at 20°C, resuspended and then
640 separated into 6 tubes (2x10⁵ cells per tube) and resuspended in 1mL per
641 tube. Each sample was labelled with a different concentration of CFSE (3-
642 point range of 5 μM , 2.187 μM and 0.312 μM) plus or minus CTY (10 μM - Cell
643 Trace Yellow Cell Proliferation kit ThermoFisher) for 30min at 37°C in PBS.
644 Each condition was centrifuged for 5min at 1500rpm at 20°C and resuspended
645 in 1mL of fresh medium. The different concentrations and combinations were
646 optimised so that even after two cell divisions, the barcodes will be different
647 enough to differentiate the cell clones. Cells were plated in a 6-well plate
648 and kept in culture conditions until sorting (in an incubator 37°C, 5% CO₂).
649 Cells were stored at 37°C throughout the sorting process and sorted
650 at 20 PSI through a 100 μm nozzle on an FACS AriaII (BD). The sorting
651 strategy was done using single-labelled cell populations (CFSE, CTY, CTV
652 and negative), then gating was performed on FSC-A/SSC-A to capture live
653 cells, SSC-H /SSC-A to capture single cells, and CTV positive cells. One
654 cell from each subgroup (6 cells total) was isolated in a well of a 96-well

655 plate which contained 500 non-labelled feeder cells in either self-renewing
656 medium or differentiating medium through a 100 μ m nozzle with yield, purity
657 and phase mask of 0, 32, 16 respectively (single-cell mask). A well then
658 contained 6 mother cells, each one labelled with a unique fluorescent barcode
659 and the feeder cells. The plate was then put back in culture conditions (in
660 an incubator 37°C, 5% CO₂).

661 CTFR (Cell Trace Far Red Proliferation kit ThermoFisher) labelling was
662 performed 20hrs after mother cells sorting, in the plate, so that the cells had
663 time to divide once. The staining was made as heterogeneous as possible,
664 thanks to the feeder cells but also by using very low concentrations of dye
665 and for a very short amount of time. Indeed, 0.37 μ M of CTFR (Cell Trace
666 Far Red Cell Proliferation kit ThermoFisher) was added to each sample (in
667 approximately 50 μ L of medium), and then 100 μ L of medium was added to
668 dilute the dye. The plate was centrifuged for 5min at 200G, then 120 μ L
669 of medium was removed and 50 μ L of new medium added to each labelled
670 well. This heterogeneous CTFR staining will allow to discriminate the next
671 division meaning within the 4 cousin-cells, how they are paired two by two.
672 Indeed, each daughter-cell will receive a unique intensity of CTFR dye which
673 will be discriminating after one more cell division. Cells were kept in culture
674 conditions for an additional 20hrs (in an incubator 37°C, 5% CO₂).

675 On the third day, after the second division, the content of the wells con-
676 taining the cousin-cells were transferred into polypropylene FACS tubes and
677 briefly vortexed immediately before loading into the sorter. The sorting
678 strategy was done using single-labelled cell populations (CFSE, CTY, CTV,
679 CTFR and negative), then gating was performed on FSC-A/SSC-A to cap-
680 ture live cells, SSC-H /SSC-A to capture single cells, and CTV positive cor-
681 responding to the second division peak and exclude feeder cells. Cells were
682 sorted on a FACS AriaII (BD) at 20 PSI through a 100 μ m nozzle with yield,
683 purity and phase mask of 32, 16, 0 respectively, in PCR tubes containing ly-
684 sis buffer (0.2% Triton (Sigma Aldrich), 0.4 U/ μ L RNaseOUT (ThermoFisher
685 Scientific), 400nM RT primers (Sigma Aldrich)) and scRNA-seq primers. The
686 fluorescent intensities for CFSE, CTY and CTFR were recorded for each cell
687 to further reconstruct relationships between the cells using our clustering
688 algorithm.

689 **Cousin-cells identification**

690 Clustering was performed using the R mclust package [47] (version 5.4.10 -
691 <https://gitbio.ens-lyon.fr/LBMC/sbdm/sister-cells> commit 76615c6e). This
692 clustering script finds the genealogical relationships between cells in two
693 steps. First, cousin-cells are grouped together by their fluorescent barcode,
694 determined by the CTFE and CTY fluorescent intensity values. Thus, if two,
695 three or four cells have the same CFSE and CTY intensities levels they will
696 be considered as cousins. In a second step, we select the groups for which the
697 4 cousin-cells were sorted in the plate, then the program identifies the two
698 pairs of sisters within the 4 cousins. To do this, the median CTFR intensity
699 is calculated, then the two cells that have intensity values higher than the
700 median are matched, and the other two that have lower intensity values are
701 matched together. Finally, when sorting, we used an index sorting option,
702 which allows us to know in which well of the plate each cell was sorted. With
703 this position information, our analysis program returns the position of the
704 retained cells, i.e. the cells belonging to the cousin groups for which the 4
705 cells were successfully isolated in the lysis plate.

706 **sc-RT-qPCR data generation**

707 **sc-RT-qPCR one step**

708 Lysed cells were heated at 65°C during 3 minutes for hybridization with
709 RT primer and immediately transferred into ice. 7 μ L of RT-PCR mix (Su-
710 perscript III RT/platinium Taq 0,1 μ L (Invitrogen), Reverse and Forward
711 primers and spikes at 1,33 μ M final concentration and homemade 2X reaction
712 Mix (120mM Tris SO4 pH=9, 2.4 mM MGSO4, 36mM (NH4)2SO4, 0.4mM
713 dNTP)) were added to each well before launching of reverse transcription
714 and PCR run on thermocycler (Program : 50°C 15min - 95°C 2min - 20
715 cycles 95°C 15sec/60°C 4min - Hold 4°C). 3 μ L of exonuclease mix (Exonu-
716 clease I 1.6U/mL (NEB), Exonuclease buffer 1X (NEB), Nuclease free water
717 (Thermo Scientific)) were added and samples were incubated for a digestion
718 run on thermocycler (Program : 37°C 30min - 80°C 10min). Pre-amplified
719 samples were diluted five times in TE low EDTA (10mM Tris, 0.1mM EDTA,
720 pH=8) and kept at -20°C for one night before qPCR.

721 qPCR with Fluidigm Biomark technology

722 3,15 μ L of pre-amplified samples were distributed into a 96-well plate and
723 3,85 μ L of qPCR mix (Sso EvaGreen Supermix with Low ROX (Bio-Rad)+
724 20X DNA binding dye sample loading reagent) were added to each well.
725 Simultaneously, a 96-well plate with primer mix (forward and reverse primers
726 and spike at 2 μ M final concentration, 2X Assay Loading reagent, TE low
727 EDTA) was prepared. The microfluidigm chip was primed with injection oil
728 using the IFC Controller HX (Fluidigm). 5 μ L of primers and 5 μ L of samples
729 were loaded in the dedicated wells of the chip. Air bubbles were removed
730 with a needle. Samples and primers were mixed in the IFC Controller HX
731 (Fluidigm) with the loading program. The chip was then transferred in
732 the Biomark HD system (Fluidigm) for qPCR with "HE 96x96 PCR+Melt
733 v2.pcl" thermal cycling protocol with auto exposure.

734 Quality control and Normalization

735 Ct values obtained from the Biomark HD System (Fluidigm) were exported
736 as excel files and quality control was manually done. For each gene, "failed"
737 quality control readings identified by the Fluidigm software were removed.
738 Four negative controls (mix of water and lysis buffer) were used to detect
739 unwanted amplification and the associated genes were also removed. Fi-
740 nally, two externally added controls (spike 1 and spike 4, Fluidigm) were
741 used to control amplification consistency. Filtered data frame was then im-
742 ported into R (version 4.2.0) for normalization to remove amplification bias
743 (<https://gitbio.ens-lyon.fr/LBMC/sbdm/sister-cells> commit 45a65972). For
744 each cell, expression values were calculated by subtracting the gene Ct value
745 from the geometric mean of Ct values from spike 1 and spike 4 of the cor-
746 responding well. Then, an arbitrary differential cycle threshold value of -22
747 for null signal (corresponding to a Ct value of 30) was assigned for all genes
748 with a Ct value less than -22.

749 scRNA-seq data generation

750 scRNA-seq libraries preparation

751 Subsequently to sister or cousin-cells isolation, we performed single cell RNA
752 sequencing (scRNA-seq) using a modified version of the Mars-seq protocol
753 [26] published here [28]. This specific protocol of scRNA-seq allowed us to

754 know in advance which cell barcode would be carried by each cell and thus
755 preserving the genealogy information of the cells. Briefly, Reverse Transcrip-
756 tion (RT) was performed so every mRNA of the cells were tagged with a
757 combination of unique cell barcode and a 8pb random UMIs sequence for
758 further demultiplexing. After barcoding, all mRNA were pooled and second
759 DNA strand were synthetized. Amplification was done over night using In
760 Vitro Transcription (IVT) to obtain a more linear amplification. A second
761 barcode was added by RT to identify plates. Libraries were amplified by
762 PCR and Illumina primers were added.

763 **Sequencing**

764 Libraries were sequenced on a Next500 sequencer (Illumina) with a custom
765 paired-end protocol (130pb on read1 and 20pb on read2) and a depth of 200
766 000 raw reads per cell.

767 **Data preprocessing**

768 Fastq files were pre-processed through a bio-informatics pipeline developed
769 in our team on the Nextflow platform [48], available here <https://gitbio.ens->
770 [lyon.fr/LBMC/sbdm/mars_seq](https://gitbio.ens-lyon.fr/LBMC/sbdm/mars_seq) and published here [28]. Briefly, the first step
771 removed Illumina adaptors. The second step de-multiplexed the sequences
772 according to their plate barcodes. Then, all sequences containing at least
773 4T following the cell barcode sequence and UMI sequence were kept. Using
774 UMItools whitelist, the cell barcodes and UMI sequences were extracted
775 from the reads. The cDNA sequences were then mapped on the reference
776 transcriptome (Gallus GallusGRCG6A.95 from Ensembl) and UMIs were
777 counted. Finally, a count matrix was generated for each plate.

778 **Quality control and data filtering**

779 All analysis were carried out using R software (version 4.1.2; [49]) and are
780 available on the following git repository <https://gitbio.ens-lyon.fr/LBMC/sbdm/sister->
781 cells. For the sister-cells dataset, cells were filtered based on several criteria:
782 reads number, genes number, counts number and ERCC content. For each
783 criteria the cut off values were determined based on SCONE [50] pipeline
784 and were calculated as follows:
785 $\text{Mean}(\text{parameter}) - 3 * \text{sd}(\text{parameter})$
786 We then removed orphan cells, meaning cells which sister was not present

787 in the dataset. After filtering, we kept 60 undifferentiated cells (30 couples)
788 and 64 differentiating cells (32 couples). For the cousin-cells dataset we per-
789 formed the same filtering strategy and kept only cell groups which contained
790 the 4 cousin-cells. After filtering we kept 32 undifferentiated cells (8 groups
791 of cousins) and 20 differentiating cells (5 groups of cousins). Based on [51]
792 work, genes were kept in the data set if in mean present in every cell. After
793 applying this filter, we kept 1177 and 983 genes for the sister-cells dataset
794 and the cousin-cells dataset respectively.

795 **Normalization**

796 Filtered matrix were normalized using SCTransform from Seurat package
797 (version 1.6 [52] - <https://gitbio.ens-lyon.fr/LBMC/sbdm/sister-cells> commit
798 945aaca7 and 94f13467) and were corrected for batch effect, day of isolation
799 effect, medium effect and sequencing depth effect. Both datasets (sister-cells
800 and cousin-cells) were processed independently.

801 **Bioinformatics analysis on R**

802 All analysis were carried out using R software [49] (version 4.1.2 for T2EC
803 and version 4.2.0 for CD34+). Plots were performed ggplot2 package (version
804 3.3.6).

805 **Dimensional reduction**

806 UMAP dimension-reduction and visualization were performed using UMAP
807 package (version 0.2.8.0; [53]).

808 **Manhattan distance computation**

809 Distances were computed on normalized matrix between all cells using dist
810 function from R software. Distances between sister-cells were extracted and
811 compare to the same number of randomly chosen distances of non related
812 cells. 1000 bootstraps were performed this way. Mean comparison was
813 performed using Student t-test or Wilcoxon test when Student t-test was
814 not applicable (<https://gitbio.ens-lyon.fr/LBMC/sbdm/sister-cells> commit
815 8417545d and 45a65972).

816 **Linear model with random variable and Mixed effects model**

817 Linear model with random variable and Mixed effects model analysis were
818 performed using lme4 R package (version 1.1-29 - <https://gitbio.ens-lyon.fr/LBMC/sbdc/sister-cells/commit/c24fa472>). The models were defined as followed:
819
820 Mixed effect Model definition :

$$Y = p1 + p2 + e$$

821 Linear Model with random variable definition :

$$Y = p2 + e$$

822
823 where Y is the mean expression of each gene, p1 is the fixed effect and p2 is
824 the random effect. Here, p1 corresponds to the biological condition and can
825 take two values (undifferentiated and differentiating) and p2 is the sorority
826 effect. Two sister-cells have the same discrete value. And e is the error of
827 the model. Null models are the above model but without the random effect
828 e.g. the sorority effect. Genes were selected based on a significant adjusted
829 BH p-value after performing a likelihood ratio test between the model and
830 the null model.

831 **Figures**

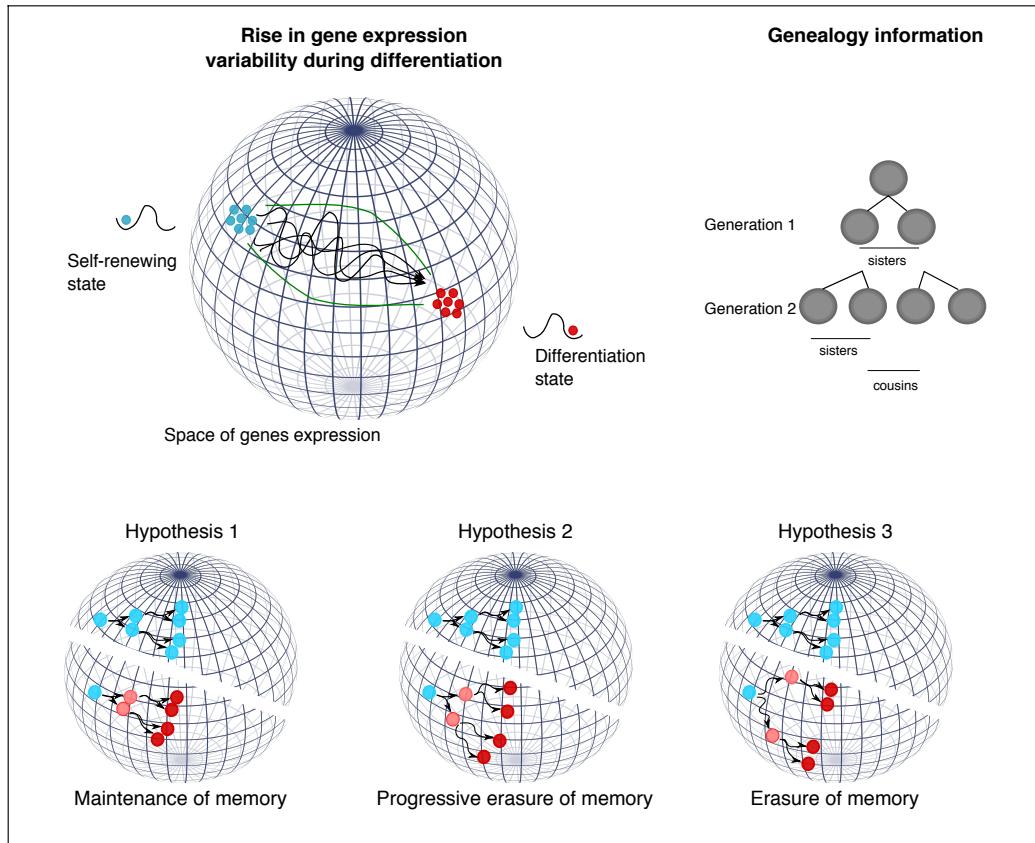


Figure 1: Hypotheses on transcriptional memory during a differentiation process.

Self-renewing cells (blue cells) are compared to differentiating cells (red cells) after one and two divisions.

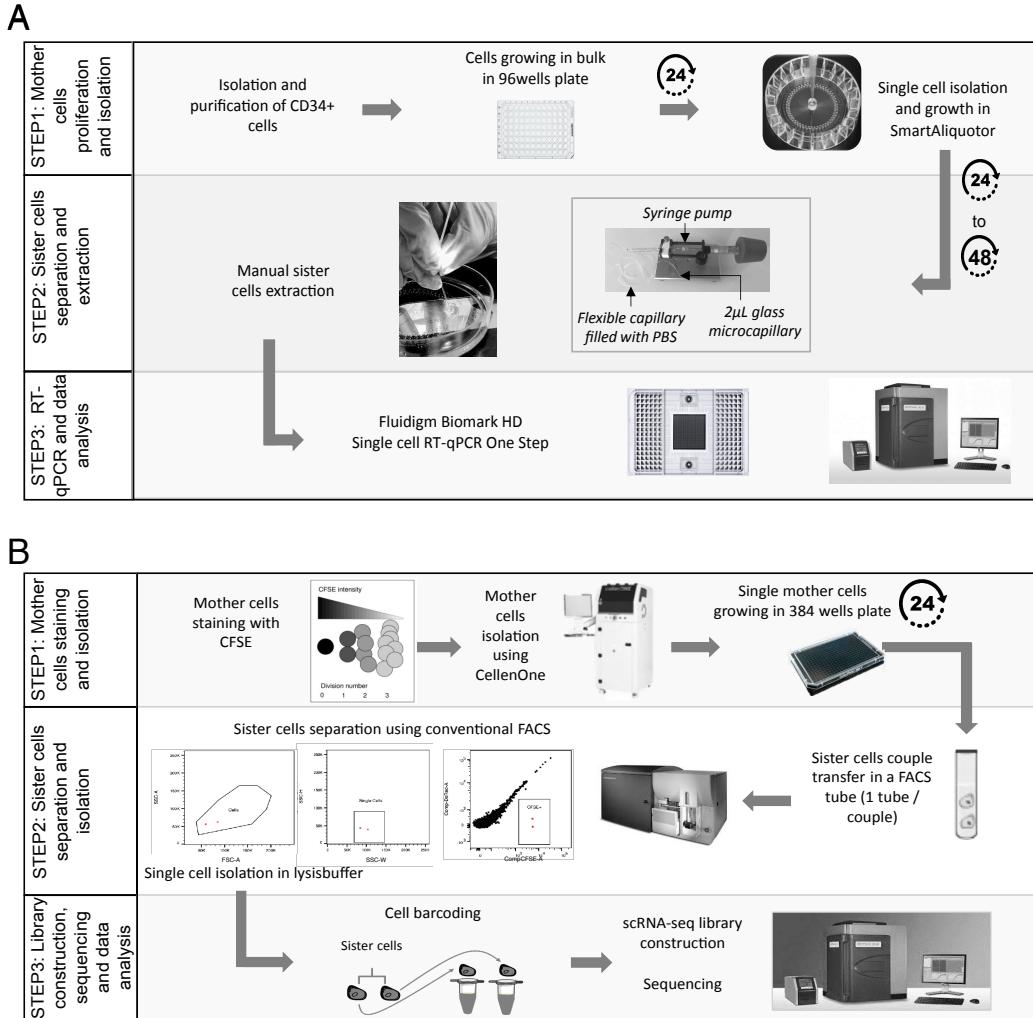


Figure 2: General workflows developed to generate, follow and separate generation 1 sister-cells from CD34+ (A - manual strategy) or T2EC (B - cytometry-based strategy) mother cells. See text and Methods for details.

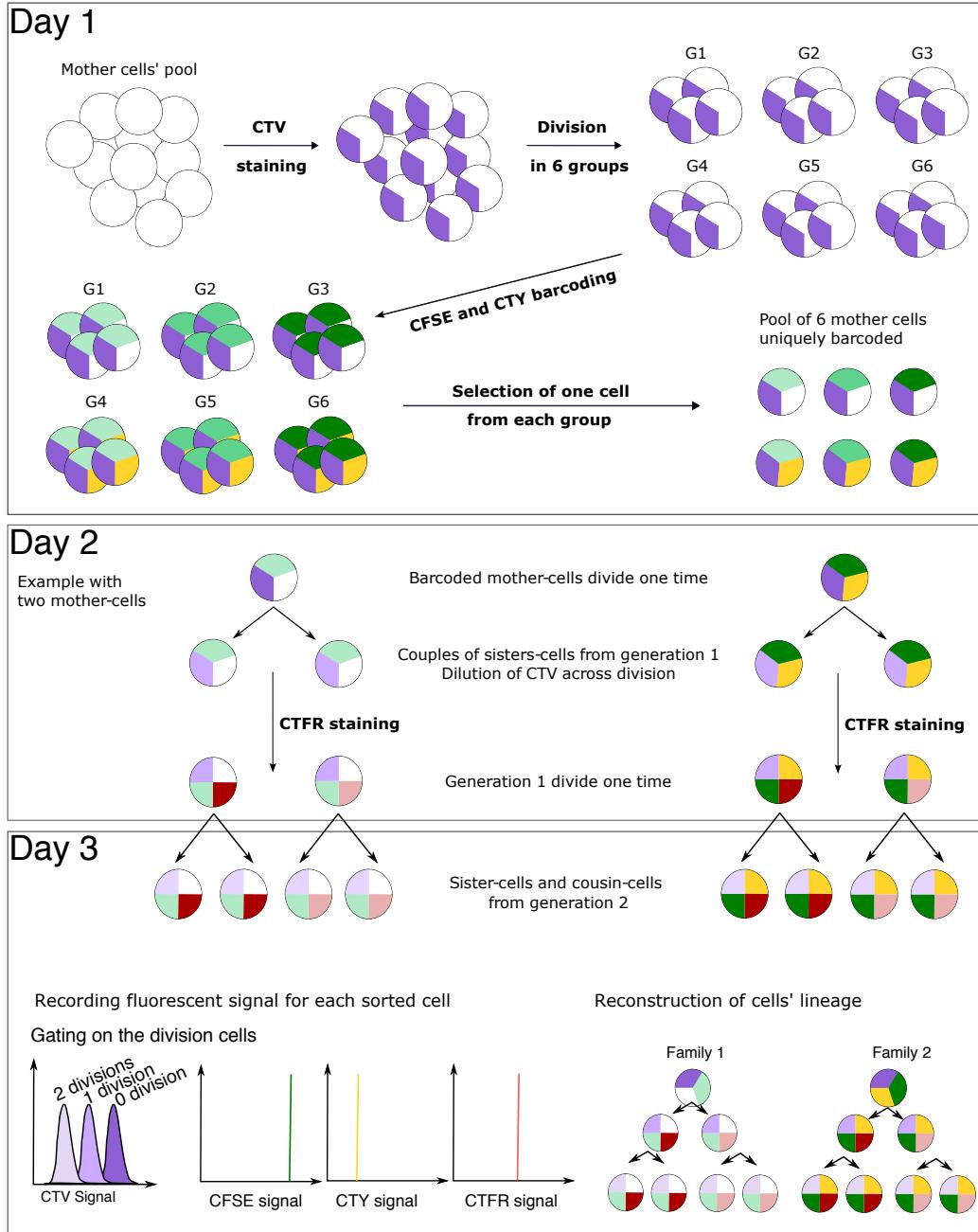


Figure 3: General labelling strategy for generation 2 T2EC cells identification

Figure 3: On day 1, a population of mother cells was stained using CTV. The CTV positive population was split into 6 subgroups, each group was barcoded with a unique combination of CFSE and CTY concentration to achieve fluorescent barcoding (6 different barcodes). One mother cell from each group was then recovered and pooled together in a well to be cultured for around 24hrs (6 mother cells with a unique fluorescent barcode). At day 2, after the first division, a fourth dye, CTFR, was added to stain sister-cells with a different intensity in order to be able to discriminate the cells relationship after the next division. On day 3, cells which underwent 2 divisions, determined by the intensity of CTV, were sorted into single-cells and fluorescent intensities were recorded for CTY, CFSE and CTFR signals. Finally, a dedicated script was used to infer the relationships of cells based on the fluorescent intensities (see Methods).

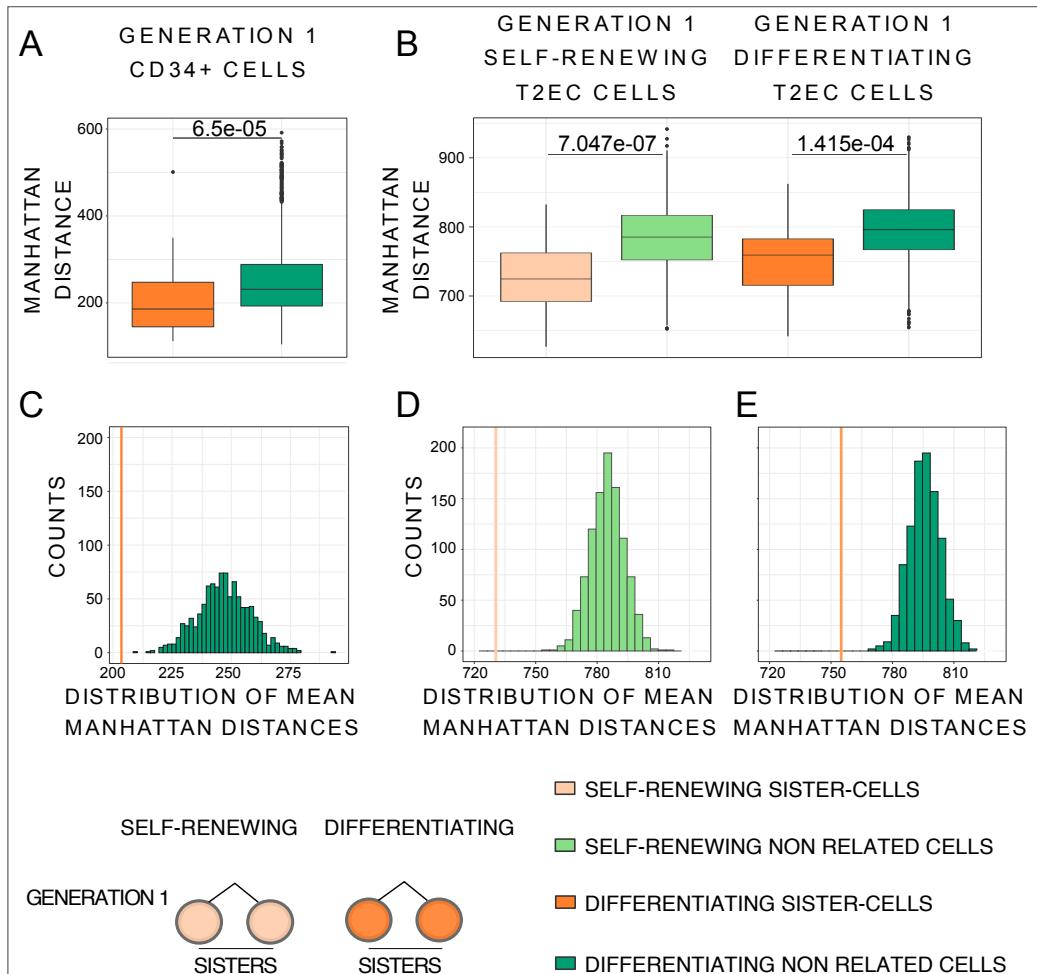


Figure 4: Manhattan distances comparison between generation 1 sister-cells and non related cells.

Figure 4: (A) Boxplot of Manhattan distances between the generation 1 CD34+. CD34+ sister-cells (43 couples) are in orange and CD34+ non related cells (3612 couples) in green. Manhattan distances were computed using all the 83 selected genes. Statistical comparison was performed using Wilcoxon test. (B) Boxplot of Manhattan distances between generation 1 T2EC sisters and non related cells. Manhattan distances were computed between all cells from the same biological conditions using all the 1177 selected genes. Self-renewing sister-cells (30 couples) are in light orange and self-renewing non related cells (1740 couples) in light green, differentiating sister-cells (32 couples) are in orange and differentiating non related cells (1984 couples) in green. Statistical comparison was performed using Student t-test. (C) Histograms of mean Manhattan distances of 1000 random draws of distances between 43 CD34+ non related cell pairs (green), compared to the mean distance between the 43 CD34+ generation 1 sister-cells pairs (orange line). (D) Histograms of mean Manhattan distances of 1000 random draws of distances between 30 T2EC self-renewing non related cell pairs (light green histogram), compare to the mean distance between the 30 T2EC self-renewing generation 1 sister-cells pairs (light orange line). (E) Histograms of mean Manhattan distances of 1000 random draws of distances between 32 T2EC differentiating non related cell pairs (Green histogram), compare to the mean distance between the 32 T2EC differentiating generation 1 sister-cells pairs (orange line).

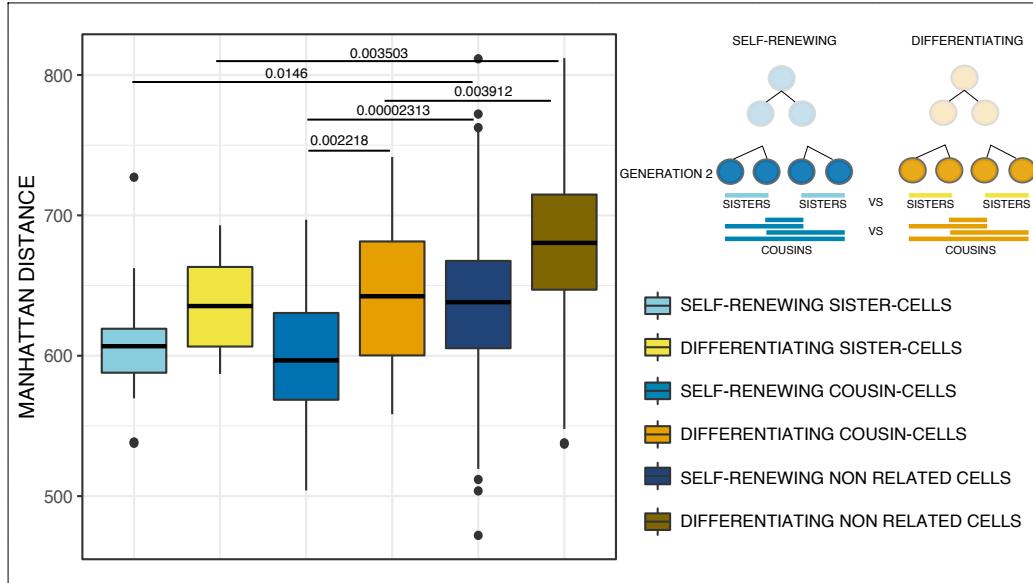


Figure 5: Manhattan distances comparison between generation 2 sisters, cousins and non related T2EC cells.

Boxplot of Manhattan distances between generation 2 sisters, cousins and non related T2EC cells. Manhattan distances were computed between all cells (32 self-renewing and 20 differentiating cells) from the same biological condition using the 983 selected genes. Self-renewing generation 2 sister-cells (16 pairs) are presented in light blue, self-renewing generation 2 cousin-cells (32 pairs) are in medium blue and self-renewing non related cells (448 pairs) are in dark blue. Differentiating generation 2 sister-cells (10 pairs) are in yellow, differentiating generation 2 cousin-cells (20 pairs) are in orange and differentiating non related cells (160 pairs) are in brown. Statistical comparisons were performed using Student t-test.

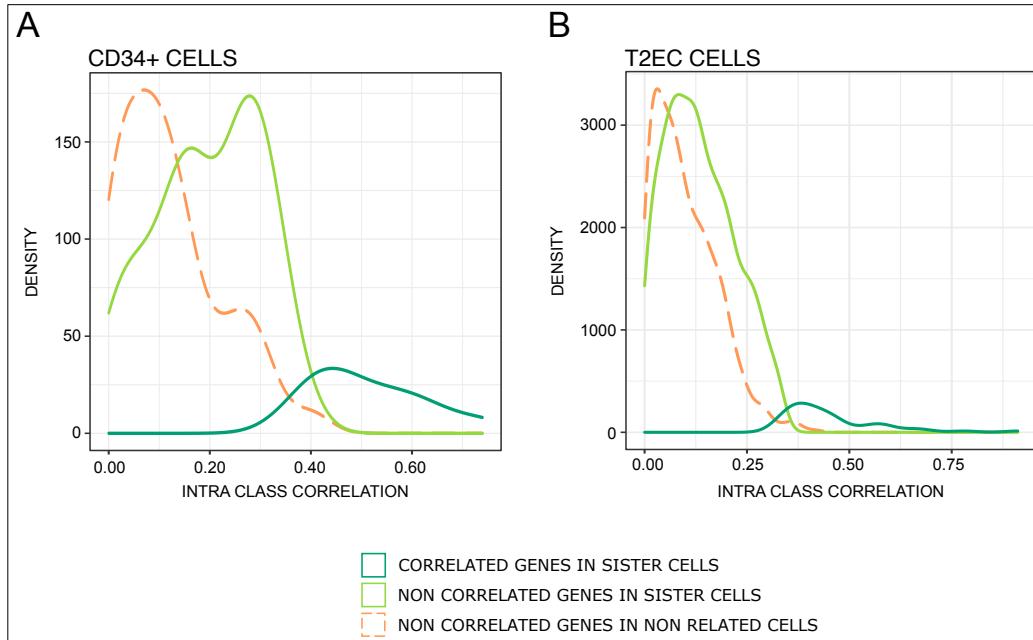


Figure 6: Density plot of genes intra-class correlation in generation 1 sister-cells and randomly paired CD34+ cells (A) and T2EC cells (B).

Identification of memory genes using a linear model with random effect (CD34+) and mixed effect model (T2EC). Memory genes are in dark green (11 genes for the 86 CD34+ cells, 55 genes for the 104 T2EC cells, and non significant genes are in light green (72 for CD34+ cells, 1022 for T2EC cells); no memory genes were identified when cells were randomly paired (orange curve).

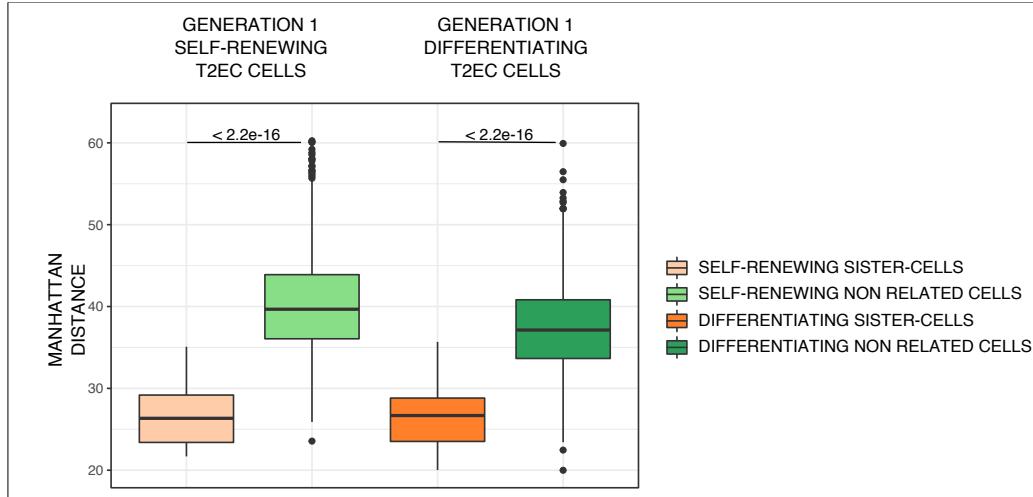


Figure 7: Manhattan distances comparison between generation 1 sisters and non related T2EC cells using the memory genes.

The Manhattan distances were computed between all cells from the same biological conditions using all the 55 memory genes. Self-renewing sister-cells (30 couples) are in light orange and self-renewing non related cells (1740 couples) in light green, differentiating sister-cells (32 couples) are in orange and differentiating non related cells (1984 couples) in green. Statistical comparison was performed using Wilcoxon test.

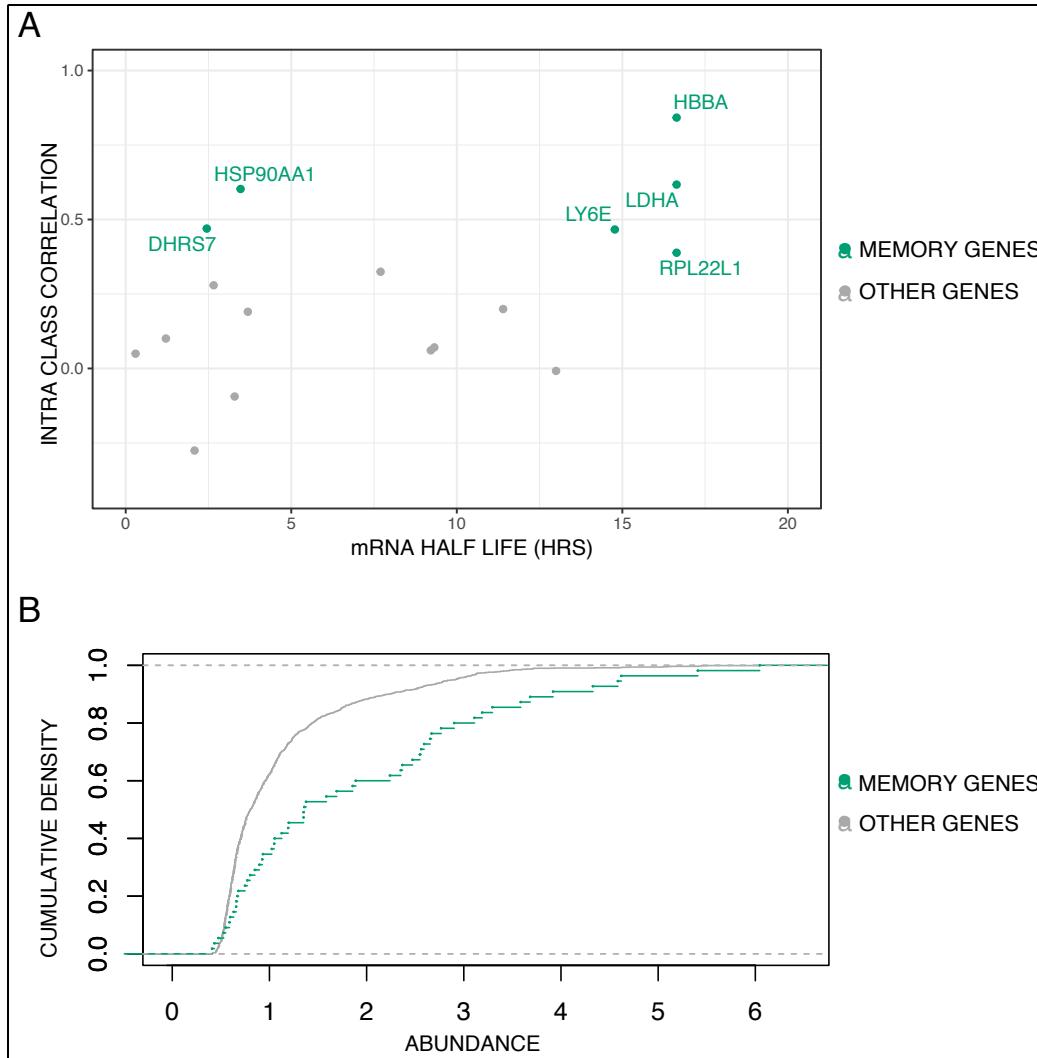


Figure 8: T2EC Memory genes characteristics.

(A) mRNA half-life of memory genes and other genes present in the scRNA-seq dataset evaluated at 24hrs post differentiation induction ([35]) vs their Intra Class Correlation value extracted from the mixed effects model. (B) Cumulative empirical distribution graph of transcripts abundance of the 55 Memory genes in the dataset compared to total genes (1177) of scRNA-seq data.

832 Acknowledgements

833 We gratefully thank all members of SBDM team for very fruitfull discussions,
834 suggestions and commentaries on our project. We thank the computational center of IN2P3 (Villeurbanne/France) and Pôle Scientifique de
835 Modélisation Numérique (PSMN, Ecole Normale Supérieure de Lyon) where
836 computations were performed. We thank the BioSyL Federation and the
837 LabEx Ecofect (ANR-11-LABX-0048) of the University of Lyon for inspiring
838 scientific events. We acknowledge the contributions of the CELPHEDIA
839 Infrastructure (<http://www.celphedia.eu/>), especially the center AniRA in
840 Lyon.
841

842 Declarations

843 Ethics approval and consent to participate

844 Human cord blood (UCB) was collected from placentas and/or umbilical
845 cords obtained from AP-HP, Hôpital Saint-Louis, Unité de Thérapie Cellu-
846 laire, CRB-Banque de Sang de Cordon, Paris, France (Authorization num-
847 ber: AC-2016-2759) or from Centre Hospitalier Sud Francilien, Evry, France
848 in accordance with international ethical principles and French national law
849 (bioethics lawnn°2011-814) under declaration N° DC-201-1655 to the French
850 Ministry of Research and Higher Studies.

851 Consent for publication

852 Not applicable

853 Availability of data and materials

854 Data tables are supplied as supplements files. scRNA-seq data are avail-
855 able in SRA repository under the BioProject accession PRJNA882056 and
856 BioSample accessions SAMN30926136 and SAMN30926137. Embargo will
857 be released upon publication.
858 R codes are available at : <https://gitbio.ens-lyon.fr/LBMC/sbdm/sister-cells>
859 Embargo will be released upon publication.

860 Competing interests

861 The authors declare that they have no competing interests.

862 Funding

863 This work was supported by funding from the French agency ANR (SinCity;
864 ANR-17-CE12-0031).

865 References

- 866 1. Miura, H. & Hiratani, I. Cell cycle dynamics and developmental dy-
867 namics of the 3D genome: toward linking the two timescales. *Curr Opin*
868 *Genet Dev* **73**, 101898. ISSN: 1879-0380 0959-437X (2022).
- 869 2. Sigal, A., Milo, R., Cohen, A., Geva-Zatorsky, N., Klein, Y., Liron, Y.,
870 Rosenfeld, N., Danon, T., Perzov, N. & Alon, U. Variability and memory
871 of protein levels in human cells. *Nature* **444**, 643–646. ISSN: 0028-0836,
872 1476-4687 (Nov. 2006).
- 873 3. Schwahnässer, B., Wolf, J., Selbach, M. & Busse, D. Synthesis and
874 degradation jointly determine the responsiveness of the cellular pro-
875 teome: Insights & Perspectives. *BioEssays* **35**, 597–601. ISSN: 02659247
876 (July 2013).
- 877 4. Corre, G., Stockholm, D., Arnaud, O., Kaneko, G., Viñuelas, J., Yam-
878 agata, Y., Neildez-Nguyen, T. M. A., Kupiec, J.-J., Beslon, G., Gan-
879 drillon, O. & Paldi, A. Stochastic Fluctuations and Distributed Con-
880 trol of Gene Expression Impact Cellular Memory. *PLoS ONE* **9** (ed
881 MacArthur, B. D.) e115574. ISSN: 1932-6203 (Dec. 22, 2014).
- 882 5. Kimmerling, R. J., Lee Szeto, G., Li, J. W., Genshaft, A. S., Kazer,
883 S. W., Payer, K. R., de Riba Borrajo, J., Blainey, P. C., Irvine, D. J.,
884 Shalek, A. K. & Manalis, S. R. A microfluidic platform enabling single-
885 cell RNA-seq of multigenerational lineages. *Nat Commun* **7**, 10220 (2016).
- 886 6. Phillips, N. E., Mandic, A., Omidi, S., Naef, F. & Suter, D. M. Memory
887 and relatedness of transcriptional activity in mammalian cell lineages.
888 *Nature Communications* **10**, 1208. ISSN: 2041-1723 (2019).
- 889 7. Muramoto, T., Muller, I., Thomas, G., Melvin, A. & Chubb, J. R.
890 Methylation of H3K4 Is required for inheritance of active transcrip-
891 tional states. *Curr Biol* **20**, 397–406. ISSN: 1879-0445 0960-9822 (2010).
- 892 8. Shaffer, S. M., Emert, B. L., Reyes Hueros, R. A., Cote, C., Harmange,
893 G., Schaff, D. L., Sizemore, A. E., Gupte, R., Torre, E., Singh, A., Bas-
894 sett, D. S. & Raj, A. Memory Sequencing Reveals Heritable Single-Cell
895 Gene Expression Programs Associated with Distinct Cellular Behaviors.
896 en. *Cell* **182**, 947–959.e17. ISSN: 00928674 (Aug. 2020).

897 9. Chang, H. H., Hemberg, M., Barahona, M., Ingber, D. E. & Huang, S.
898 Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. en. *Nature* **453**, 544–547. ISSN: 0028-0836, 1476-4687 (May
899 2008).

901 10. Kalmar, T., Lim, C., Hayward, P., Munoz-Descalzo, S., Nichols, J.,
902 Garcia-Ojalvo, J. & Martinez Arias, A. Regulated fluctuations in nanog
903 expression mediate cell fate decisions in embryonic stem cells. *PLoS Biol*
904 **7**, e1000149. ISSN: 1545-7885 (2009).

905 11. Hu, M., Krause, D., Greaves, M., Sharkis, S., Dexter, M., Heyworth, C.
906 & Enver, T. Multilineage gene expression precedes commitment in the
907 hemopoietic system. *Genes & Development* **11**, 774–785. ISSN: 0890-
908 9369 (Mar. 15, 1997).

909 12. Pina, C., Fugazza, C., Tipping, A. J., Brown, J., Soneji, S., Teles,
910 J., Peterson, C. & Enver, T. Inferring rules of lineage commitment
911 in haematopoiesis. *Nature Cell Biology* **14**, 287–294. ISSN: 1465-7392,
912 1476-4679 (Mar. 2012).

913 13. Mojtahedi, M., Skupin, A., Zhou, J., Castaño, I. G., Leong-Quong,
914 R. Y. Y., Chang, H., Trachana, K., Giuliani, A. & Huang, S. Cell Fate
915 Decision as High-Dimensional Critical State Transition. en. *PLOS Biology* **14**. Number: 12, e2000640. ISSN: 1545-7885 (Dec. 2016).

916 14. Richard, A., Boullu, L., Herbach, U., Bonnafoux, A., Morin, V., Vallin,
917 E., Guillemin, A., Papili Gao, N., Gunawan, R., Cosette, J., Arnaud,
918 O., Kupiec, J.-J., Espinasse, T., Gonin-Giraud, S. & Gandrillon, O.
919 Single-Cell-Based Analysis Highlights a Surge in Cell-to-Cell Molecular
920 Variability Preceding Irreversible Commitment in a Differentiation
921 Process. en. *PLOS Biology* **14** (ed Teichmann, S. A.) e1002585. ISSN:
922 1545-7885 (Dec. 2016).

923 15. Moussy, A., Cosette, J., Parmentier, R., da Silva, C., Corre, G., Richard,
924 A., Gandrillon, O., Stockholm, D. & Páldi, A. Integrated time-lapse
925 and single-cell transcription studies highlight the variable and dynamic
926 nature of human hematopoietic cell fate commitment. en. *PLOS Biology*
927 **15** (ed Huang, S.) e2001867. ISSN: 1545-7885 (July 2017).

928 16. Gao, M., Ling, M., Tang, X., Wang, S., Xiao, X., Qiao, Y., Yang, W.
929 & Yu, R. *Comparison of High-Throughput Single-Cell RNA Sequencing*
930 *Data Processing Pipelines* en. preprint (Feb. 2020).

932 17. Moris, N., Edri, S., Seyres, D., Kulkarni, R., Domingues, A. F., Balayo, T., Frontini, M. & Pina, C. Histone Acetyltransferase KAT2A Stabilizes
933 Pluripotency with Control of Transcriptional Heterogeneity. *Stem Cells*
934 **36**, 1828–1838. ISSN: 1066-5099 1066-5099 (2018).

936 18. Guillemin, A., Duchesne, R., Crauste, F., Gonin-Giraud, S. & Gandrillon, O. Drugs modulating stochastic gene expression affect the ery-
937 throid differentiation process. *PLOS ONE* **14**, e0225166 (2019).

939 19. Stumpf, P. S., Smith, R. C. G., Lenz, M., Schuppert, A., Müller, F.-J.,
940 Babtie, A., Chan, T. E., Stumpf, M. P., Please, C. P., Howison, S. D.,
941 Arai, F. & MacArthur, B. D. Stem Cell Differentiation as a Non-Markov
942 Stochastic Process. *Cell Systems* **5**, 268–282 (2017).

943 20. Dussiau, C., Boussaroque, A., Gaillard, M., Bravetti, C., Zaroili, L.,
944 Knosp, C., Friedrich, C., Asquier, P., Willems, L., Quint, L., Bouscary,
945 D., Fontenay, M., Espinasse, T., Plesa, A., Sujobert, P., Gandrillon,
946 O. & Kosmider, O. Hematopoietic differentiation is characterized by a
947 transient peak of entropy at a single-cell level. *BMC Biology* **20**, 60.
948 ISSN: 1741-7007 (2022).

949 21. Toh, K., Saunders, D., Verd, B. & Steventon, B. Zebrafish Neuromesodermal
950 Progenitors Undergo a Critical State Transition in vivo. *bioRxiv*,
951 2022.02.25.481986 (2022).

952 22. Parmentier, R., Moussy, A., Chantalat, S., Racine, L., Sudharshan, R.,
953 Papili Gao, N., Stockholm, D., Corre, G., Fourel, G., Deleuze, J., Gu-
954 nawan, R. & Paldi, A. Global genome decompaction leads to stochastic
955 activation of gene expression as a first step toward fate commitment in
956 human hematopoietic stem cells. *bioRxiv* (2021).

957 23. Gandrillon, O., Schmidt, U., Beug, H. & Samarut, J. TGF-Beta cooper-
958 ates with TGF-Alpha to induce the self-renewal of normal erythrocytic
959 progenitors: evidence for an autocrine mechanism. *The EMBO Journal*
960 **18**, 2764–2781. ISSN: 0261-4189, 1460-2075 (May 17, 1999).

961 24. Gandrillon, O. & Samarut, J. Role of the different RAR isoforms in
962 controlling the erythrocytic differentiation sequence. Interference with
963 the v-erbA and p135gag-myb-ets nuclear oncogenes. *Oncogene* **16**, 563–
964 74 (1998).

965 25. Richard, A., Vallin, E., Romestaing, C., Roussel, D., Gandrillon, O. &
966 Gonin-Giraud, S. Erythroid differentiation displays a peak of energy
967 consumption concomitant with glycolytic metabolism rearrangements.
968 *PLoS One* **14**, e0221472. ISSN: 1932-6203 1932-6203 (2019).

969 26. Jaitin, D. A., Kenigsberg, E., Keren-Shaul, H., Elefant, N., Paul, F.,
970 Zaretsky, I., Mildner, A., Cohen, N., Jung, S., Tanay, A. & Amit, I.
971 Massively Parallel Single-Cell RNA-Seq for Marker-Free Decomposition
972 of Tissues into Cell Types. *Science* **343**, 776–779. ISSN: 0036-8075, 1095-
973 9203 (Feb. 14, 2014).

974 27. Woodworth, M. B., Girsakis, K. M. & Walsh, C. A. Building a lineage
975 from single cells: genetic techniques for cell lineage tracking. *Nature
976 Reviews Genetics* **18**, 230–244. ISSN: 1471-0056, 1471-0064 (Apr. 2017).

977 28. Zreika, S., Fourneaux, C., Vallin, E., Modolo, L., Seraphin, R., Moussy,
978 A., Ventre, E., Bouvier, M., Ozier-Lafontaine, A., Bonnaffoux, A., Pi-
979 card, F., Gandrillon, O. & Gonin-Giraud, S. Evidence for close molecu-
980 lar proximity between reverting and undifferentiated cells. *BMC Biology*
981 **20**, 155. ISSN: 1741-7007 (2022).

982 29. Terrén, I., Orrantia, A., Vitallé, J., Zenarruzabeitia, O. & Borrego, F.
983 in *Methods in Enzymology* 239–255 (Elsevier, 2020). ISBN: 978-0-12-
984 818673-2.

985 30. Parish, C. R. Fluorescent dyes for lymphocyte migration and prolifera-
986 tion studies. *Immunology and Cell Biology* **77**, 499–508. ISSN: 08189641
987 (Dec. 1999).

988 31. Kim, W., Klarmann, K. D. & Keller, J. R. Gfi-1 regulates the ery-
989 throid transcription factor network through Id2 repression in murine
990 hematopoietic progenitor cells. *Blood* **124**, 1586–1596 (Sept. 4, 2014).

991 32. Da Cunha, A. F., Brugnerotto, A. F., Duarte, A. d. S. S., Lanaro, C.,
992 Costa, G. G. L., Saad, S. T. O. & Costa, F. F. Global gene expression
993 reveals a set of new genes involved in the modification of cells dur-
994 ing erythroid differentiation: Modification of cells during erythroid dif-
995 ferentiation. *Cell Proliferation* **43**, 297–309. ISSN: 09607722, 13652184
996 (Apr. 28, 2010).

997 33. Aggarwal, C. C., Hinneburg, A. & Keim, D. A. *On the Surprising Behavior*
998 *of Distance Metrics in High Dimensional Space in Database Theory*
999 — *ICDT 2001* (eds Van den Bussche, J. & Vianu, V.) (Springer Berlin
1000 Heidelberg, Berlin, Heidelberg, 2001), 420–434. ISBN: 978-3-540-44503-
1001 6.

1002 34. Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: A
1003 Practical and Powerful Approach to Multiple Testing. *Journal of the*
1004 *Royal Statistical Society. Series B (Methodological)* **57**, 289–300. ISSN:
1005 00359246 (1995).

1006 35. Bonnaffoux, A., Herbach, U., Richard, A., Guillemin, A., Gonin-Giraud,
1007 S., Gros, P.-A. & Gandrillon, O. WASABI: a dynamic iterative frame-
1008 work for gene regulatory network inference. en. *BMC Bioinformatics*
1009 **20**, 220. ISSN: 1471-2105 (Dec. 2019).

1010 36. Wehling, A., Loeffler, D., Zhang, Y., Kull, T., Donato, C., Szczerba,
1011 B., Camargo Ortega, G., Lee, M., Moor, A., Gottgens, B., Aceto, N. &
1012 Schroeder, T. Combining single-cell tracking and omics improves blood
1013 stem cell fate regulator identification. *Blood* **140**, 1482–1495. ISSN: 1528-
1014 0020 0006-4971 (2022).

1015 37. Wang, F. & Higgins, J. M. Histone modifications and mitosis: counter-
1016 marks, landmarks, and bookmarks. *Trends Cell Biol* **23**, 175–84. ISSN:
1017 1879-3088 0962-8924 (2013).

1018 38. Goloski, R., Sanders, J. T. & McCord, R. P. Genome organization
1019 during the cell cycle: unity in division. *Wiley Interdiscip Rev Syst Biol*
1020 *Med* **9**. ISSN: 1939-005X 1939-005X (2017).

1021 39. Palozola, K. C., Donahue, G. & Zaret, K. S. EU-RNA-seq for in vivo
1022 labeling and high throughput sequencing of nascent transcripts. *STAR*
1023 *Protoc* **2**, 100651. ISSN: 2666-1667 2666-1667 (2021).

1024 40. Kadauke, S., Udagama, M. I., Pawlicki, J. M., Achtman, J. C., Jain,
1025 D. P., Cheng, Y., Hardison, R. C. & Blobel, G. A. Tissue-specific mitotic
1026 bookmarking by hematopoietic transcription factor GATA1. *Cell* **150**,
1027 725–37. ISSN: 1097-4172 0092-8674 (2012).

1028 41. Suter, D. M., Molina, N., Gatfield, D., Schneider, K., Schibler, U. &
1029 Naef, F. Mammalian genes are transcribed with widely different bursting
1030 kinetics. *Science* **332**, 472–4. ISSN: 1095-9203 0036-8075 (2011).

1031 42. Tunnacliffe, E. & Chubb, J. R. What Is a Transcriptional Burst? *Trends Genet* **36**, 288–297. ISSN: 0168-9525 0168-9525 (2020).

1032

1033 43. Rodriguez, J. & Larson, D. R. Transcription in Living Cells: Molecular Mechanisms of Bursting. *Annu Rev Biochem* **89**, 189–212. ISSN: 1545-4509 0066-4154 (2020).

1034

1035

1036 44. Pedraza, J. M. & van Oudenaarden, A. Noise propagation in gene networks. *Science* **307**, 1965–9 (2005).

1037

1038 45. Kim, S. & Shendure, J. Mechanisms of Interplay between Transcription Factors and the 3D Genome. *Mol Cell* **76**, 306–319. ISSN: 1097-4164 1097-2765 (2019).

1039

1040

1041 46. Martin-Martin, N., Carracedo, A. & Torrano, V. Metabolism and Transcription in Cancer: Merging Two Classic Tales. *Front Cell Dev Biol* **5**, 119. ISSN: 2296-634X 2296-634X (2017).

1042

1043

1044 47. Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using Gaussian finite mixture models. *The R Journal* **8**, 289–317 (2016).

1045

1046

1047 48. Di Tommaso, P., Chatzou, M., Floden, E. W., Barja, P. P., Palumbo, E. & Notredame, C. Nextflow enables reproducible computational workflows. *Nature Biotechnology* **35**, 316–319. ISSN: 1087-0156, 1546-1696 (Apr. 2017).

1048

1049

1050

1051 49. R Core Team. *R: A Language and Environment for Statistical Computing* R Foundation for Statistical Computing (Vienna, Austria, 2021).

1052

1053 50. Cole, M. B., Risso, D., Wagner, A., DeTomaso, D., Ngai, J., Purdom, E., Dudoit, S. & Yosef, N. Performance Assessment and Selection of Normalization Procedures for Single-Cell RNA-Seq. *Cell Systems* **8**, 315–328.e8. ISSN: 24054712 (Apr. 2019).

1054

1055

1056

1057 51. Breda, J., Zavolan, M. & van Nimwegen, E. Bayesian inference of gene expression states from single-cell RNA-seq data. *Nature Biotechnology* **39**, 1008–1016. ISSN: 1087-0156, 1546-1696 (Aug. 2021).

1058

1059

1060 52. Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. *bioRxiv* (Mar. 18, 2019).

1061

1062

1063 53. Becht, E., McInnes, L., Healy, J., Dutertre, C.-A., Kwok, I. W. H.,
1064 Ng, L. G., Ginhoux, F. & Newell, E. W. Dimensionality reduction for
1065 visualizing single-cell data using UMAP. *Nature Biotechnology* **37**, 38–
1066 44. ISSN: 1087-0156, 1546-1696 (Jan. 2019).