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Highlights 
 The first report on building a single-cell multi-omics atlas with joint chromatin

accessibility and gene expression measurements from the same cells during the
development of mouse secondary palate.

● Application of optimal transport calculated fate probabilities to different terminal
states and recovered continuous landscapes during mouse secondary palate
development.

● By linking cis-regulatory DNA elements to target genes, we characterized a
series of transcription factors governing the differentiation of cranial neural crest-
derived multipotent cells to the anterior and posterior palatal mesenchymal
trajectories, respectively.

● Transcription factors Shox2 and Dlx1/2 exhibited top regulatory roles for the
anterior and posterior palatal mesenchymal trajectories, respectively, showing
significant enrichment in both motif accessibility and gene expression.
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SUMMARY 
The abnormal perturbation in gene regulation during palatogenesis may lead to cleft 
palate, a major congenital birth defect in humans and mice. However, a comprehensive 
multi-omic map of the developing secondary palate at single-cell resolution is lacking. In 
this study, we performed single-cell multiome sequencing and profiled chromatin 
accessibility and gene expression simultaneously within the same cells (n = 36,154) 
isolated from mouse secondary palate across embryonic days (E) 12.5, E13.5, E14.0, 
and E14.5. Application of optimal transport reconstructed five trajectories, representing 
continuous differentiation of multipotent cells into different subpopulations in later 
stages. By linking open chromatin signals to gene expression changes, we discovered a 
list of lineage-determining transcription factors, such as Shox2 for the anterior and 
Dlx1/2 for the posterior palatal mesenchymal trajectories. In conclusion, this study 
charted epigenetic and transcriptional dynamics during palatogenesis, which provides a 
valuable resource for the community and facilitate future research in cleft palate. 

 

Keywords: Single-cell multiome sequencing, Cell fate decision, Palatogenesis, Gene 
expression, Gene regulation  
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INTRODUCTION 
The development of the secondary palate in both humans and mice is a dynamic, 
complex, and highly orchestrated three-dimensional process, involving vertical 
outgrowth, horizontal elevation, and fusion of palatal shelves (Bush and Jiang, 2012). 
Specifically, it begins around embryonic day (E) 12.5 in mice, when the palatal shelves 
initially arise from the lateral side of maxillary processes (Li et al., 2017). The palatal 
shelves grow vertically downward along with the tongue (E12.5-E13.5) and elevate to 
the horizontal position (E14.0). Following the elevation, the bilateral palatal shelves 
grow towards the midline and fuse into the intact palate (E14.5-E16.5) (Bush and Jiang, 
2012; Li et al., 2017). 

The whole process of palatogenesis is programmed by the precise control of 
gene expression by transcription factors (TFs) through binding to the accessible cis-
regulatory DNA elements (CREs) of the target genes (Latchman, 1997). Abnormal 
perturbations may lead to cleft palate (CP), a major congenital birth defect in humans 
with a significant long-term impact on patients’ life quality (Dixon et al., 2011; Suzuki et 
al., 2016). Numerous efforts have aimed to uncover and annotate the CP-associated 
genes (Butali et al., 2019; Cai et al., 2017; Xu et al., 2021; Yan et al., 2020a), as well as 
the underlying regulatory mechanisms by integrating gene and microRNA expression 
data profiled from bulk tissue (Li et al., 2019a; Yan et al., 2020b; Yan et al., 2022). 
Beyond bulk tissue level, single-cell RNA-sequencing (scRNA-seq) technologies have 
been applied to study the palate and revealed large heterogeneity within the tissue. 
Recently, Han et al. mapped cell types and characterized lineage commitment by 
generating and analyzing time-series scRNA-seq data of the soft palate (Han et al., 
2021). Another study defined the expression profiles of subpopulations in the fusing 
upper lip and primary palate at single-cell resolution (Li et al., 2019b).  

While scRNA-seq reveals the transcriptional state differences between cells with 
high resolution, yet it provides little insight into the upstream regulations that drive such 
change (Chen et al., 2019). Single-cell epigenome assays, such as single-cell assay for 
transposase-accessible chromatin with sequencing (scATAC-seq), capture open 
chromatin signals and decipher the regulation status (Buenrostro et al., 2015). 
Computational approaches have been developed to integrate independent scRNA-seq 
and scATAC-seq datasets of the same tissue (Stuart et al., 2019). However, inferring 
“anchors” between datasets may not fully recapitulate the true molecular processes 
(Chen et al., 2019). More recently, single-cell multi-omics technologies have emerged 
as a powerful approach to accurately deciphering regulation status. They profile gene 
expression and chromatin accessibility simultaneously within the same cells. The 
epigenetic changes at the DNA level can be directly linked to transcriptomic changes at 
the RNA level to reveal the interplay between regulatory DNA sequences and the 
expression of target genes. Several multi-omics technologies, such as sci-CAR (Cao et 
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al., 2018), Paired-seq (Zhu et al., 2019), SNARE-seq (Chen et al., 2019), and scCAT-
seq (Liu et al., 2019), have been developed and applied to several tissue types, 
including human cerebral cortex (Trevino et al., 2021), human lung cancer (Liu et al., 
2019), mouse kidney (Cao et al., 2018), and mouse embryos (Argelaguet et al., 2022). 
However, a comprehensive multi-omic map of gene expression and its regulation during 
the development of mouse secondary palate at single-cell resolution is still lacking. 

In this study, we performed single-cell multiome sequencing (10x Multiome) and 
profiled the transcriptome and epigenome simultaneously within the same cells isolated 
from the developing mouse secondary palate spanning four critical developmental 
stages. A total of eight major cell types were identified, which were defined by canonical 
marker gene expression. By mapping open chromatin signals to gene expression 
changes, we discovered a list of cell-type specific regulators with enriched motif 
accessibility, as well as gene expression. We then focused on cranial neural crest 
(CNC)-derived multipotent cells, reconstructed five developmental trajectories, and 
uncovered a list of lineage-determining TFs that control the differentiation of each 
trajectory. This work represents the first report that building a single-cell multi-omic atlas 
of the developing mouse secondary palate. Insights into transcriptome and epigenome 
changes will increase our understanding of the underlying molecular processes and 
provides a valuable resource for the community. 

RESULTS 
Single-cell multiome assays dissect transcriptome and epigenome changes of the 
developing mouse secondary palate 

The mouse secondary palate development mainly occurs between E12.5 and E14.5 
(Figure 1A). To dissect gene regulation at the cellular level in the developing mouse 
secondary palate, we performed single-cell multiome sequencing using the 10x 
Chromium Single Cell Multiome platform and generated single-nucleus RNA-seq 
(snRNA-seq) and single-nucleus ATAC-seq (snATAC-seq) libraries from the same cells 
at E12.5 (n=2), E13.5 (n=3), E14.0 (n=2), and E14.5 (n=2) (Figure 1A). Jointly applying 
filters on both assays resulted in 36,154 cells with high-quality measurements across 
36,155 genes and 123,807 accessible peaks representing potential CREs (Figure S1A, 
Table S1). The majority of cells had both high transcriptional start site (TSS) enrichment 
scores and a large number of fragments (Figure S1B). In addition, we observed 
nucleosome binding pattern (Figure S1C, top) and enrichment of chromatin 
accessibility around TSS compared to the flanking regions (Figure S1C, bottom). 
Together, these data suggested high snATAC-assay quality. Furthermore, biological 
replicates from the same developmental stage were highly correlated for both RNA 
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(Figure S1D, top, coefficients = 1, p-values < 2.2x10-16) and ATAC measurements 
(Figure S1D, bottom, coefficients = 1, p-values < 2.2x10-16).  

Unsupervised dimension reductions based on gene expression (snRNA-seq) or 
chromatin accessibility (snATAC-seq) profiles revealed similar structures (STAR 
Methods). Within each distinct cluster, cells from E12.5 showed strong overlap with cells 
from later time points that occupied the borders of each cluster, suggesting an increase 
of complexity with palate development (Figure 1B). Individual cells of the biological 
replicates for each stage showed strong overlaps with each other (Figure S1E).  

Next, we performed clustering analysis followed by cell type annotation. 
Compared to scRNA-seq, there is limited knowledge of cell-type specific open 
chromatin regions. Therefore, cell type annotation is more challenging in scATAC-seq 
data(Cusanovich et al., 2018). The frequently used computational approach involves 
cross-modality integration and label transfer from reference scRNA-seq data(Baek and 
Lee, 2020). Here, single-cell multi-omics technologies eliminates the need for inferring 
relationships in silico, which allows direct annotation of scATAC-seq-based clusters 
using scRNA-seq labels. We observed distinct clusters in both RNA and ATAC data, 
representing eight major cell types (Figure 1C). Each cell type was defined by 
canonical marker gene expressions, including CNC-derived mesenchymal cells (Prrx1, 
n=28,529, 78.91%), epithelial cells (Krt14, Epcam, n=5,866, 16.23%), endothelial 
(Cdh5, Cldn5, n=714, 1.97%), myeloid (Lyz2, n=397, 1.10%), glial cells (Plp1, Sox10, 
n=307, 0.85%), myogenic progenitors (Myod1, n=200, 0.55%), neuronal (Tubb3, Stmn2, 
n=113, 0.31%) and myocytes (Myf5, n=28, 0.08%) (Figure 1D,  Figure S2A). We then 
quantified the gene activity score, a metric defined by aggregating accessible chromatin 
regions intersecting the gene body and promoters in snATAC-seq data. The above-
mentioned markers, which showed cell type-specific expression, also exhibited similar 
patterns of chromatin accessibility in corresponding clusters (Figure 1E). We then 
examined cell type frequencies and found that each cluster included cells from all time 
points without strong bias for earlier or later stages (Figure 1F). 

To further corroborate our inferred cell type identities, we downloaded a recently 
published scRNA-seq dataset of the developing mouse soft palate (Han et al., 2021). 
Following normalization and dimension reduction, we projected the soft palate data into 
our scRNA-seq manifold using canonical correlation analysis (Stuart et al., 2019) (STAR 
Methods) and observed high agreement between cell type annotations (Figure S2B-C).  

Direct linking of open chromatin signals to gene expression discovers cell type-
specific regulators 

Paired RNA and ATAC measurements within the same cells reveal both the 
transcriptional state and the upstream DNA regulatory element activities, which allow 
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direct mapping of epigenetic gene regulation to gene expression. We aimed to identify 
TFs with both enriched accessibility and expression profiles for a specific cell type, 
representing putative regulators for that cell type. Towards this end, we first conducted 
differential gene expression analysis between cell types and identified 6,573 
differentially expressed genes (DEGs) (adjusted p-value < 0.05, log Fold change > 0.1, 
min.pct > 0.1). To find regulatory elements for each DEG, we conducted CRE-gene 
linkage analysis by calculating the Pearson correlation coefficient (PCC) between CRE 
accessibility and gene expression while accounting for CRE size and fragment count 
(STAR Methods). Positively linked CRE-gene pairs may represent enhancer-gene 
interactions. A total of 15,018 pairs were identified, including 12,596 CREs significantly 
linked to 3,787 cell type-specific genes (Figure 2A, score > 0, adjusted p-value < 0.05). 
Each cell-type specific gene was linked to a median of three CREs (min=1, max=28, 
mean=3.966). For example, in CNC-derived mesenchymal cells, Twist1 expression was 
linked to 15 CREs. Of these locus chr12:33957146-33958061 was the most significant 
one (score = 0.315, adjusted p-value = 1.70×10-8). Both the expression level of Twist1 
and accessibility of the CRE chr12:33957146-33958061 were increased in CNC-derived 
mesenchymal cells compared to all other cell types (Figure 2B). Genome browser 
visualization of the Twist1 locus revealed that chr12:33957146-33958061 partially 
overlaps the transcription start site of Twist1. Therefore, chr12:33957146-33958061 
most likely acts as an enhancer that upregulates the expression of Twist1 in CNC-
derived mesenchymal cells (Figure 2B). Another exemplary CRE-gene pair was Tie1 
and locus chr4:118489480-118490171, showing significant enrichment in endothelial 
cells (score = 0.369, adjusted p-value = 3.88×10-14, Figure S3).  

To nominate TFs that control each major cell type, we identified enriched motifs 
of these CREs. The following criteria were applied to define cell-type specific regulatory 
TFs: (1) TF expression was enriched at the RNA level, and (2) TF binding motif 
accessibility was enriched in the ATAC measurements. In total, we discovered 81 
putative regulators for the eight major cell types (adjusted RNA p-value < 0.05 & 
adjusted motif p-value < 0.05, Table 1). For example, both the RNA expression of 
Twist2 (RNA.p-value < 2.22×10-16) and chromatin accessibility of the Twist2 binding 
motif MA0633.1 (motif.p-value = 4.91×10-18) were enriched in CNC-derived 
mesenchymal cells (Figure 2C). In endothelial cells, we found enrichment of both the 
expression of the Foxo1 (RNA.p-value < 2.22×10-16) and the accessibility of the its 
binding motif MA0480.1 (motif.p-value = 4.91×10-18). 

CNC-derived mesenchymal subpopulations correspond to in vivo anatomical 
locations 

To understand the heterogeneity within CNC-derived mesenchymal cells, we isolated 
this cluster and conducted an independent analysis, including normalization, clustering, 
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and dimension reduction (Figure 3A, left panel). In the dimension-reduced data 
manifold, we observed a continuous progression from E12.5 to E14.5 (Figure 3A, S4A). 
The cells from the early stage (E12.5), which resided near the middle of the low-
dimensional space, were more homogeneous compared to cells from later stages. Cells 
from the late stage (E14.5) represented differentiated cells residing at the edge of the 
embedding. Cell subtype annotation was conducted through extensive manual curation 
of marker genes. We identified seven subtypes characterized by specific gene 
expression signatures (Figure 3A, right panels). For example, anterior palatal 
mesenchymal cells exhibited high expression of short stature homeobox 2 (Shox2) (Li 
and Ding, 2007) and ALX Homeobox 1 (Alx1) ( Figure S4B). Chondrogenic cells were 
characterized by high expression of Sox9 and Col12a1 (Izu et al., 2011) while 
osteoblasts had high expression of Runx2 and Sp7 (Yuan et al., 2020).  Dental 
mesenchymal cells exhibited high expression of Dlx2, Sostdc1 (Munne et al., 2009), 
and Tfap2b (Woodruff et al., 2021). Posterior palatal mesenchymal cells had high 
expression of Tbx22 and Wnt16 (Han et al., 2021). A list of progenitor-related genes 
was highly expressed in cluster 5, such as Dach1, Lmo4, Hmgb2, Hmgb3, and Runx1t1 
(adjusted p-values < 2.2x10-16). Gene Set Enrichment Analysis (GSEA) suggested 
these genes were significantly associated with regulation of stem cell proliferation (GO: 
0072091, FDR = 2.58×10-3, enrichment ratio = 92.87; FDR: false discovery rate) and 
enriched in neural progenitor cells (FDR = 2.68×10-3, enrichment ratio = 13.97) (Figure 
S4C). Thus, cluster 5 was annotated as CNC-derived multipotent cells.  

Of note, gene expression patterns aligned with in vivo anatomical locations 
(Figure 3B). For example, Shox2 and Msx1 were specifically expressed in anterior 
regions while Meox2 and Tbx22 expression were restricted to posterior regions (Smith 
et al., 2013). Osr2 and Fgf10 exhibited expression in lateral regions while Fgf7 and Dlx5 
were expressed in medial regions (Lan et al., 2004). Even though expression patterns 
of Shox2 and Meox2 have been well studied, the majority of region-specific genes we 
found in this study have not been well characterized in the developing palate (Table 2). 

To validate the in vivo identities of subpopulations, we conducted RNAscope in 
situ hybridization. The top five subpopulation-specific genes were selected, that is 
Shox2, Satb2, Inhba, Cyp26b1, and Nrp1 for the anterior subpopulation, Meox2, 
Prickle1, Sim2, Efnb2, and Trps1 for the posterior subpopulation (Figure 3C, D). It was 
found that Shox2, Satb2, and Nrp1 were expressed mainly in the anterior to the middle 
region. The expression of Cyp26b1 was restricted to the anterior region and Inhba was 
restricted to beneath the epithelial layer in the anterior region. In addition, Meox2, 
Prikle1, and Efnb2 were expressed in the entire posterior region. Sim2 and Trps1 were 
expressed only in the anterior half of the posterior region of the developing secondary 
palate. These gene expression patterns were also validated with quantitative reverse-
transcription polymerase chain reaction (qRT-PCR) (Figure 3E).  
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For further validation, we performed bulk RNA sequencing using anterior (n=3) 
and posterior regions (n=3) of the developing secondary palate at E14.0. We observed 
consistent expression patterns in bulk RNA-seq and scRNA-seq data. The majority of 
upregulated genes (75/86, 87.21%) in the scRNA-seq anterior cluster were found to 
also be upregulated in the bulk RNA-seq anterior tissue (Figure 3F). Fisher’s Exact test 
revealed significant enrichment between scRNA-seq DEGs and bulk RNA-seq DEGs 
(odds ratio = 1354.47, p-value < 2.2x10-16). For example, Shox2 was significantly higher 
expressed in the anterior (bulk RNA-seq adjusted p-value = 9.12x10-49, scRNA-seq 
adjusted p-value < 2.20x10-16), while Meox2 exhibited higher expression in the posterior 
region (bulk RNA-seq adjusted p-value = 1.69x10-94, scRNA-seq p-value < 2.20x10-16, 
Figure 3G). In addition, we conducted principal component analysis (PCA) using the 
scRNA-seq DEGs and projected the bulk RNA-seq data into this PC space. As 
expected, bulk samples from different locations clustered with corresponding scRNA-
seq transcriptomes (Figure 3H). Overall, these results validated our subtype 
annotations of CNC-derived mesenchymal cells. 

 

Reconstruction of CNC-derived mesenchymal trajectories by optimal transport 
reveals lineage-determining transcription factors 

As chondrocytes originate from the pterygoid plate anlage and are not considered as 
part of the secondary palate (Han et al., 2021), we excluded them from downstream 
analysis (Figure 4A). Single-cell data from discrete time points can be considered 
“snapshots” of the underlying continuous developmental process (Luecken and Theis, 
2019). To connect static “snapshots” into a “movie” and computationally reconstruct the 
molecular dynamics during the differentiation of CNC-derived mesenchymal cells, we 
applied Wadding-Optimal Transport (WOT) (Lange et al., 2022; Schiebinger et al., 
2019), an algorithm designed for trajectory analysis of time series scRNA-seq data. 
WOT connects adjacent time points by finding the most probable cell transition paths 
using the mathematical theory of optimal transport (Kantorovitch, 1958; Monge, 1781). 
Simulated random walks based on the WOT-derived cell transition matrix showed that 
most trajectories started from CNC-derived multipotent cells (black dots) and terminated 
at various subpopulations at late stages (yellow dots) (Figure 4B, left panel). We then 
quantified the terminal state likelihood of each cell and defined those with high 
likelihoods as terminal state cells (Figure 4B, right panel). Next, we computed the 
probabilities that an early cell would transition towards any terminal state cells. Overall, 
we discovered five trajectories, representing the continuous differentiation of multipotent 
cells into (1) anterior palatal mesenchymal cells, (2) posterior palatal mesenchymal 
cells, (3) dental mesenchymal cells, (4) osteoblasts, and (5) perimysial cells (Figure 4C, 
Figure S5). We also calculated diffusion pseudotime (Haghverdi et al., 2016) and found 
consistent results (STAR Methods) ( Figure S6A). 
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To validate inferred trajectories, we calculated RNA velocity, a measure to 
predict future states of individual cells based on the stratification of spliced and 
unspliced mRNAs (La Manno et al., 2018). As shown in Figure 4D, the directed 
dynamic information based on RNA velocity was consistent with inferred trajectories. 
The RNA velocities pointed away from the cells at E12.5 in the middle of the embedding 
towards later time points at the border of the embedding (Figure 4D). To more 
granularly resolve these velocity predictions, we applied CellRank, which infers initial 
and terminal states probabilities for each cell based on RNA velocity (Lange et al., 
2022). Consistent with WOT-derived trajectories, CellRank found high initial state 
probabilities in CNC-derived multipotent cells and high terminal state probabilities in the 
late-stage subpopulations (Figure S6B). To eliminate potential bias caused by 
developmental stages, we repeated the analysis restricted to cells from E12.5 only and 
observed consistent results (Figure S6C). 

We next investigated both gene expression and regulation dynamics of each 
trajectory. We first focused on the anterior palatal mesenchymal trajectory (Figure 4E-
H). Cells with large diffusion pseudotime values tended to be derived from late stages 
with high terminal state likelihood (Figure S7A). To pinpoint the driver genes for this 
trajectory, we conducted an association test between the expression level of each gene 
and fate probability. Those with significant positive correlations were defined as driver 
genes. We identified a total of 556 driver genes (correlation > 0.05 and adjusted p-value 
< 0.05). The top hits included Shox2 (correlation = 0.468, adjusted p-value < 2.2x10-16), 
Foxd2os (correlation = 0.391, adjusted p-value < 2.2x10-16), and Foxd2 (correlation = 
0.333, adjusted p-value < 2.2x10-16, Figure S7B). To further investigate when and how 
these driver genes were regulated along the trajectory, we extracted 7,240 cells with 
high probabilities to differentiate towards the anterior trajectory (fate probability > 75% 
quantile) and ordered them by diffusion pseudotime. We then performed CRE-gene 
linkage analysis as described above and connected expression trajectories with 
chromatin accessibility dynamics. Out of 984 CRE-gene linkages, 428 (43.49%) were 
significantly linked (correlation > 0 and adjusted p-value < 0.05). We observed 
consistent gene expression and chromatin accessibility dynamics along the anterior 
trajectory (Figure 4E). 

Using k-means clustering, these driver genes were divided into three groups, 
showing high expression at the start, middle, and end stages of the anterior trajectory, 
respectively (Figure 4F). The genes that were upregulated at the start of the anterior 
trajectory were enriched in mesenchymal cell proliferation (enrichment ratio = 16.71, 
adjusted p-value = 0.036), roof of mouth development (enrichment ratio = 12.73, 
adjusted p-value = 0.022), and chromatin remodeling (enrichment ratio = 9.90, adjusted 
p-value = 0.035, Figure 4G). The genes upregulated at the middle of the trajectory were 
enriched in mesenchymal cell proliferation (enrichment ratio = 11.14, adjusted p-value  = 
2.28x10-3) and response to fibroblast growth factor (enrichment ratio = 5.74, adjusted p-
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value  = 0.027) while the genes upregulated at the end of the trajectory were associated 
with the roof of mouth development (enrichment ratio = 7.49, adjusted p-value  = 
1.04x10-6) and anatomical structure arrangement (enrichment ratio = 10.49, adjusted p-
value  = 4.58x10-3). By applying the motif enrichment test and setting multiple criteria, 
we characterized a list of lineage-determining TFs that control the anterior trajectory, 
such as Shox2 at the early stage (motif adjusted p-value = 6.09x10-3, motif fold change 
= 4.21, gene adjusted p-value < 2.2x10-16, gene fate correlation = 0.47), Foxl2 at the 
middle stage, and Nr2e1 at the late stage of the trajectory (Figure 4H). 

We then applied analogous approach to the posterior palatal mesenchymal 
trajectory and identified 586 driver genes. Among them, 216 genes were significantly 
regulated by 353 CREs (Figure 4I), including Col25a1 (correlation = 0.518, adjusted p-
value < 2.2x10-16), Meox2 (correlation = 0.496, adjusted p-value < 2.2x10-16), and 
Inpp4b (correlation = 0.400, adjusted p-value < 2.2x10-16) (Figure S7C). Pathway 
enrichment analysis of these genes revealed the involvement of neuron-related 
pathways in the early stage, mesenchymal development (enrichment ratio = 5.42, 
adjusted p-value = 1.37x10-4), and tissue migration (enrichment ratio = 3.57, adjusted p-
value = 4.09x10-4) in the intermediate and late stages of the trajectory (Figure 4J, K). 
Transcription factor Dlx1 showed early regulatory roles for the posterior trajectory (motif 
adjusted p-value = 8.53x10-3, motif fold change = 4.78, gene p-value = 2.18x10-4, gene 
fate correlation = 0.02, Figure 4L). 

To further validate these predictions, we first examined the odds ratio distribution 
of fate probabilities towards anterior versus posterior trajectories. As expected, Shox2-
positive cells had high probabilities to differentiate towards the anterior palatal 
mesenchymal trajectory (Figure 5A, left panel) while Meox2-positive cells had high fate 
probabilities towards the posterior trajectory (Figure 5B, left panel). Those terminally 
differentiated cells at E14.5 emerged from the multipotent cells at the early stage 
(E12.5) (Figure 5AB, right panels). In addition, we observed a significant negative 
correlation of fate probabilities between the anterior and posterior trajectories (PCC Rho 
= -0.427, p-value < 2.2x10-16, Figure 5C). For example, the top driver gene for anterior 
trajectory Shox2 was negatively correlated with the posterior trajectory (correlation = -
0.333, adjusted p-value < 2.2x10-16). Meox2, a top driver gene for the posterior 
trajectory, was negatively correlated with the anterior trajectory (correlation = -0.288, 
adjusted p-value < 2.2x10-16). The osteoblast and dental mesenchymal trajectory 
shared a list of driver genes, exhibiting high fate probabilities of both trajectories, such 
as Runx2 and Zfpm2 (Figure 5D). Collectively, these data validated the inferred 
trajectories and driver genes. 

 

Epithelium is differentiated into oral, nasal, and dental epithelium 
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We then focused on epithelial cells and annotated the subtypes using markers from 
previous publications (Figure 6A, left panel). Clusters 0 and 1 were labeled as 
undifferentiated epithelium with positive expression of Trp63 and negative expression of 
Keratins. Clusters 2 and 7 were characterized by high expression of dental epithelium 
markers, such as Fst, Fgf9, and Jag2 (Mitsiadis et al., 2010). Clusters 4 and 8, 
annotated as nasal epithelium, exhibited co-expression of cilia- and flagella-associated 
protein genes (Cfap299 and Cfap47)(Ahn et al., 2021) and Keratins (Krt15). Clusters 3 
and 11 had high expression of Krt19, which is a periderm-specific gene (Richardson et 
al., 2014) (Figure 6A, right panels). Cluster 6 specifically expressed Shh and was 
annotated as the oral epithelium of the palatal rugae (Sagai et al., 2017). 

We next performed trajectory analysis of main subtypes as described above. As 
expected, the random walks mainly started from the undifferentiated epithelium and end 
in different terminal states (Figure 6B, left panel). We identified three trajectories, from 
undifferentiated epithelium to (1) dental epithelium, (2) nasal epithelium, and (3) oral 
epithelium (Figure 6B, right panel), validated by RNA velocity analysis (Figure 6C). 
We then identified driver genes for each trajectory, such as Ccdc146 (correlation = 
0.733, adjusted p-value < 2.2x10-16) for nasal epithelium trajectory, Fras1 (correlation = 
0.618, adjusted p-value < 2.2x10-16) for dental epithelium trajectory, and Erbb4 
(correlation = 0.697, adjusted p-value < 2.2x10-16) for oral epithelium trajectory (Figure 
6D). We noticed that driver genes of the oral epithelium trajectory had negative fate 
correlations to the other two trajectories, such as Nkain3 (correlationoral = 0.777, 
correlationnasal = -0.317, correlationdental = -0.605, adjusted p-values < 2.2x10-16) (Figure 
6D). GSEA revealed enrichment of cilium related pathways (enrichment ratio = 15.13, 
adjusted p-value < 2.2x10-16) for nasal epithelium trajectory, odontogenesis (enrichment 
ratio = 6.14, adjusted p-value = 2.06x10-4) for dental epithelium trajectory, membrane 
development (enrichment ratio = 13.93, adjusted p-value = 7.24x10-4) for oral epithelium 
trajectory, respectively (Figure 6E). Subsequent motif enrichment analysis pinpointed 
the regulatory role of Smad2::Smad3 for dental epithelium trajectory (motif adjusted p-
value = 3.32x10-7, Smad3 gene p-value = 1.10x10-7, Smad2 gene p-value = 0.13), Klf1 
for nasal epithelium trajectory, and Sox6 for oral epithelium trajectory (Figure 6F). 

 

DISCUSSION 
Dynamic gene expression patterns, driven by the dynamic activity of transcription 
factors (TFs) and accessibility of their binding sites [e.g., cis-regulatory elements 
(CREs)], underlie the formation of the secondary palate. Single-cell multi-omics 
technology generates paired gene expression and chromatin accessibility 
measurements, which paves the way for accurately tracking gene regulation dynamics. 
In this study, we generated time-series single-cell multi-omic datasets of the mouse 
secondary palate from E12.5 to E14.5 to dissect lineage-determining TFs that govern 
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the developmental process. Our study is the first that profiled multiple modalities of 
developing mouse secondary palate within the same cells at single-cell resolution.  

Cell type annotation is challenging due to the lack of reference datasets and the 
general rareness of data for secondary palate development. Automated cell type 
annotation approaches on scRNA-seq data, such as SingleR (Aran et al., 2019) and 
deCS (Pei et al., 2022), are not applicable. In this study, cell types were defined through 
extensive manual curation of marker genes, which were validated using an independent 
scRNA-seq dataset taken from a similar tissue (Han et al., 2021). We discovered 
subpopulations in CNC-derived mesenchymal cells that aligh with the in vivo anatomical 
locations, which were validated by our experiments, including in situ hybridization, 
quantitative RT-PCR, and bulk RNA sequencing. The established cell types and 
subtype-specific gene expression profiles, together with the chromatin accessibility 
profiles, can be used as the reference and facilitate cell type annotations in future 
analyses. 

Pseudotemporal ordering of cells from time-series scRNA-seq datasets requires 
integration of time information, where traditional approaches are not applicable (Tran 
and Bader, 2020). In this study, we applied the Wadding-Optimal Transport algorithm 
(Schiebinger et al., 2019) to connect cells between adjacent time points and 
reconstructed five trajectories, demonstrating the continuous developmental landscape 
of cell states. We identified 556 and 586 driver genes for anterior and posterior palatal 
mesenchymal trajectories, respectively, with supporting evidence from previous 
publications. For example, Meox2 was a driver gene for the posterior palatal trajectory 
and it was previously reported that Meox2-null and heterozygous knockout mice 
exhibited posterior cleft palate due to post-fusion breakdown of palatal shelves (Jin and 
Ding, 2006). Msx1, a driver gene for dental mesenchymal trajectory, was shown to 
regulate the cell proliferation of dental mesenchymal cells(Feng et al., 2013) and tooth 
morphogenesis (Chen et al., 1996). Runt-related transcription factor 2 (Runx2) is known 
to regulate tooth and bone formation during the differentiation of CNC-derived cells 
(James et al., 2006), which exhibited high fate correlations to both dental and osteoblast 
trajectories in our study.  

By connecting open chromatin signals indicative of accessible CREs at the DNA 
level with gene expression at the RNA level, we identified a list of TFs that control each 
trajectory by binding to CREs to regulate the expression of the above-mentioned driver 
genes. Consistent with our results, Shox2 null mice exhibited cleft palate that were 
confined to the anterior region (Hilliard et al., 2005; Yu et al., 2005). Importantly, the 
posterior palate in Shox2 null mice was intact, underscoring the gene expression and 
regulation differences along the anterior-posterior axis of the palate. Another key 
regulator during the middle of the anterior palatal trajectory, Runx1, was reported to 
regulate the fusion and its deficiency caused cleft in the anterior palate 
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(Charoenchaikorn et al., 2009; Sarper et al., 2018). Dlx1 and Dlx2 were identified as the 
top regulators for the posterior palatal mesenchymal trajectory. Concordant with our 
findings, a previous study showed that Dlx1/2 double knockout mice developed cleft 
palate due to the vertical growth failure of posterior palatal shelves (Jeong et al., 2012). 

Although our study revealed dynamic gene regulation programs, it has limitations 
in explaining the three-dimensional processes, such as the reorientation of palatal 
shelves. Therefore, it would be interesting to integrate with spatial information, such as 
10x Genomics Visium technology that overlay gene expression data with the 
morphological context in tissues (Saltz et al., 2018), to reveal spatial expression 
patterns and elucidate the mechanisms of palatal elevation and reorientation at the 
molecular level. Single-cell proteome data can also be integrated to quantify the 
downstream protein levels during development (Brunner et al., 2022). Furthermore, in 
vivo validations in developing mouse embryos are needed to confirm the regulatory role 
of identified lineage-determining TFs, such as the knockout of specific TFs or lineage 
tracing experiments. Computation approaches that identify driving TFs in scRNA-seq 
data (Simon et al., 2020) can also be employed to validate the results. Future studies 
may involve the application of constructed landscapes to related diseases. For example, 
chromatin accessibility profiles of cell types can be used to train a deep learning model 
to predict noncoding mutations in cleft palate and prioritize de novo genetic variants.  

Overall, we built a single-cell multi-omics atlas of the developing mouse 
secondary palate covering four developmental stages by simultaneously profiling gene 
expression and chromatin accessibility from the same cells. The optimal transport-
based approach connected adjacent time points and recovered continuous landscapes 
during development. Constructed five trajectories represented continuous differentiation 
of CNC-derived multipotent mesenchymal cells to terminally differentiated 
subpopulations. By linking open chromatin signals to gene expression, we characterized 
a list of lineage-determining transcription factors, including Shox2 for the anterior palatal 
mesenchymal trajectory and Dlx1/2 for the posterior palatal mesenchymal trajectory. In 
conclusion, our study charted epigenetic and transcriptional dynamics during 
palatogenesis and provided a valuable resource for the community to facilitate future 
research of cleft palate.  
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Figure titles and legends 
Figure 1. Single-cell multiome assays dissect transcriptome and epigenome 
changes of the developing mouse secondary palate. (A) Schematic plot depicts the 
development of mouse secondary palate (purple) spanning embryonic day (E) 12.5 
(n=2), E13.5 (n=3), E14.0 (n=2), and E14.5 (n=2). The isolated nuclei are subjected to 
10x Chromium Multiome sequencing to profile snRNA-seq and snATAC-seq 
simultaneously within the same cells. (B) Uniform manifold approximation and 
projection (UMAP) visualization of 36,154 cells based on RNA assay (left) or ATAC 
assay (right). Each dot represents one cell and is colored by the developmental stage. 
(C) Same UMAP visualization as panel B colored by annotated cell types. (D, E) Dot 
plot illustrates marker gene expression (x-axis) (D) and gene activity (E) (x-axis) across 
cell types (y-axis). Dot size is proportional to the percent of expressed cells. Colors 
indicate low (grey) to high (blue) expression. (F) Stacked bar plot shows cell type 
frequencies in each sample. Colors represent cell types. 

 

Figure 2. Direct linking of open chromatin signals to gene expression discovers 
cell type-specific regulators of secondary palate formation. (A) Heatmap shows 
normalized chromatin accessibility (left) and gene expression (right) of 15,018 
significantly linked cis-regulatory elements (CREs)-gene pairs. Each row represents a 
positively linked pair of CREs and genes. Bar on the top represents major cell types. (B) 
Left: Genome Browser visualization of aggregated chromatic accessibility at the chr12: 
33.96-33.97 (Mb) locus for each major cell type, coupled with Twist1 gene expression. 
Arcs at the bottom denote positively linked CRE-Twist1 pairs. The linkage between 
Twist1 and chr12:33957146-33958061 is highlighted with blue dotted box. Right: 
Boxplots show the expression level of Twist1 (top) and accessibility of the linked CRE 
chr12:33957146-33958061 (middle) across cell types. Scatter plot shows the significant 
correlation between Twist1 expression and chr12:33957146-33958061 accessibility 
(bottom). (C) UMAP visualizations illustrate the multimodal profiling of Twist2 including 
gene expression (left), gene activity (middle), and Twist2 binding motif MA0633.1 
activity (right). The position weight matrix of the MA0633.1 motif is embedded in the 
bottom right corner.  

 

Figure 3. CNC-derived mesenchymal subpopulations correspond to in vivo 
anatomical locations. (A) Left: UMAP visualization of the whole dataset with CNC-
derived mesenchymal cells highlighted in blue. Right: Independent UMAP visualizations 
of CNC-derived mesenchymal cells colored by developmental stage, cluster, and cell 
subtype, respectively. (B) Feature plot shows the expression of representative genes in 
the anterior, posterior, lateral, and medial, respectively. (C) Anatomical mouse embryo 
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images outline gene expression patterns by RNAscope in situ hybridization. (D) 
Microscope images (100 μm) show expression patterns for each gene by in situ 
hybridization. (E) Bar plot shows quantitative RT-PCR of genes in anterior (red bars) 
and posterior (blue bars) regions. ***p<0.001. (F) Volcano plot shows the log2 Fold 
Change and negative log10 of adjusted p-values for each gene in the bulk RNA-seq 
dataset and colored by significance in the single cell RNA-seq dataset. (G) Boxplot 
shows the expression of two representative DEGs, Shox2 and Meox2, at the bulk level 
(left) and single-cell level (right). (H) Scatter plot shows the projection of bulk RNA-seq 
data into the PCA space defined by scRNA-seq data. Color represents anterior (red) or 
posterior (blue). As expected, bulk samples from different locations clustered with 
corresponding scRNA-seq samples.   

 

Figure 4. Reconstruction of CNC-derived mesenchymal trajectories by Optimal 
Transport reveals lineage-determining transcription factors. (A) UMAP 
visualization of CNC-derived mesenchymal subpopulations with chondrocytes being 
removed. (B) UMAP visualization colored by (left) WOT-based random walks and (right) 
terminal states. The random walks are based on the WOT-derived cell-cell transition 
matrix. Black dots represent the start points of the trajectory while yellow dots represent 
endpoints. (C) UMAP visualizations show fate probabilities to each trajectory. Cells are 
colored by probabilities (Yellow: high, Dark brown: low). (D) UMAP visualization with 
streamlines and arrows shows RNA velocity-derived information. Each point represents 
one cell and is colored by the developmental stage. Streamlines and arrows represent 
the future directions for each cell. (E) Heatmap shows paired chromatin accessibility 
and gene expression (rows) for the anterior trajectory (columns). Each row represents a 
putative pair of genes and linked regulatory elements. Bars on the top represent 
diffusion pseudotime, fate probabilities to the anterior palatal mesenchymal trajectory, 
terminal state likelihood, and developmental stage. Columns are ordered by diffusion 
pseudotime. (F) Scatter plot with fitted lines shows the expression pattern for each 
group of driver genes along the trajectory. (G) Dot plot shows enriched pathways (y-
axis) for each driver gene group (x-axis). Dot is scaled by enrichment ratio and colored 
by significance. (H) Dot plot shows enriched motifs (y-axis) at different stages of the 
anterior trajectory (x-axis). Dot is scaled by motif enrichment ratio and colored by 
significance. The position weight matrix of one representative motif Shox2 is included.  
(I-L) Similar visualizations to panels E-H for the posterior palatal mesenchymal 
trajectory. 

 

Figure 5. Driver genes for the anterior trajectory show negative fate correlations 
to the posterior trajectory, which validate the inferences. (A) Dot plot shows the 
distribution of log odds of fate probabilities to anterior versus posterior trajectories (y-
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axis) in each cell across the developmental stage (x-axis). Each dot represents one cell 
and is colored by Shox2 expression (left) or cell types (right). Cells with positive 
expression of Shox2 also exhibited high fate probabilities to anterior compared to the 
posterior trajectory. (B) Similar visualization to panel A for log odds of fate probabilities 
to posterior versus anterior trajectories. Each dot represents one cell and is colored by 
Meox2 expression (left) or cell types (right). Cells with positive expression of Meox2 
also exhibited high fate probabilities to anterior compared to the posterior trajectory. (C) 
Scatter plot shows fate correlations to anterior (x-axis) and posterior (y-axis) trajectories 
of each gene. Defined driver genes for each trajectory are highlighted in the plot. (D) 
Scatter plot shows fate correlations to osteoblast (x-axis) and dental mesenchymal (y-
axis) trajectories of each gene. Genes in green have similar fate correlations to both 
trajectories. 

 

Figure 6. Epithelium is differentiated into the oral, nasal, and dental epithelium.  
(A) Left: UMAP visualization of the whole dataset with epithelium highlighted in blue. 
Right: Independent UMAP visualizations of epithelium colored by developmental stage, 
cluster, and cell subtype, respectively. (B) UMAP visualization colored by (left) WOT-
based random walks and (right) terminal states. The random walks were based on the 
cell-cell transition matrix. Black dots represent start points and yellow dots represent 
endpoints. (C) UMAP visualization with streamlines and arrows showing RNA velocity-
derived information. Each point represents one cell and is colored by developmental 
stage (left) or velocity confidence (right). Streamlines and arrows represent the future 
directions for each cell. (D) Scatter plot shows fate correlations to the dental epithelium 
(x-axis) and nasal epithelium (y-axis) trajectories of each gene. Defined driver genes for 
each trajectory are highlighted in the plot. Blue: dental epithelium trajectory, Red: nasal 
epithelium trajectory, Green: oral epithelium trajectory. (E) Dot plot shows enriched 
pathways (y-axis) of driver genes for each trajectory (x-axis). Dot is scaled by 
enrichment ratio and colored by significance. (F) Dot plot shows enriched motifs (y-axis) 
for each trajectory (x-axis). Dot is scaled by motif enrichment ratio and colored by 
significance. The position weight matrix of representative motifs Smad2::Smad3, Klf1, 
and Sox6 are included. 
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Tables 
 
Table 1. Summary of top five putative regulators for each major cell type. 

Major cell type Gene symbol RNA.p-value Motif Motif.p-value 
CNC-derived mesenchymal Twist2 3.00E-241 MA0633.1 0 
CNC-derived mesenchymal Lhx8 0 MA0705.1 2.01E-61 
CNC-derived mesenchymal Foxf1 2.97E-192 MA1606.1 5.41E-133 
CNC-derived mesenchymal Shox2 6.76E-211 MA0720.1 1.72E-73 
CNC-derived mesenchymal Tcf3 2.01E-05 MA0092.1 2.03E-257 
Epithelial Sox2 0 MA0142.1 2.94E-88 
Epithelial Sox6 2.16E-225 MA0515.1 2.05E-197 
Epithelial Smad3 1.38E-144 MA1622.1 8.26E-215 
Epithelial Klf12 1.00E-09 MA0742.1 0 
Epithelial Runx1 2.58E-233 MA0002.2 1.30E-36 
Endothelial Foxo1 8.90E-145 MA0480.1 4.91E-18 
Endothelial Nr2f6 7.22E-07 MA0677.1 3.08E-113 
Endothelial Sox17 0 MA0078.1 9.56E-30 
Endothelial Nr5a2 7.58E-145 MA0505.1 5.63E-37 
Endothelial Esrrg 1.69E-15 MA0643.1 1.39E-57 
Myeloid Runx1 6.16E-104 MA0002.2 1.24E-08 
Myeloid Nfe2l2 1.67E-65 MA0150.2 5.29E-29 
Myeloid Arnt 4.92E-4 MA0004.1 9.49E-21 
Myeloid Bach1 7.34E-3 MA0591.1 3.27E-23 
Myeloid Nr4a2 1.72E-3 MA0160.1 5.49E-22 
Myogenic precursors Tcf12 2.09E-06 MA0521.1 1.73E-115 
Myogenic precursors Tcf21 3.08E-68 MA0832.1 5.97E-105 
Myogenic precursors Plagl1 2.07E-16 MA1615.1 1.68E-3 
Myogenic precursors Arx 3.20E-63 MA0874.1 7.88E-06 
Myogenic precursors Nobox 3.38E-4 MA0125.1 4.40E-06 
Glial Sox5 8.83E-146 MA0087.1 1.65E-4 
Glial Nr4a2 5.35E-48 MA0160.1 2.39E-42 
Glial Creb5 1.91E-63 MA0840.1 3.30E-22 
Glial Dlx1 1.64E-138 MA0879.1 1.23E-4 
Glial Rxra 3.49E-4 MA0065.2 3.97E-52 
Neuronal Arid3b 1.37E-06 MA0601.1 3.29E-05 
Neuronal Hmx2 5.68E-177 MA0897.1 8.05E-3 
Neuronal Zic1 1.03E-06 MA1628.1 8.96E-3 
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Table 2. Summary of marker genes in anterior and posterior subpopulations. 

Subpopulation Gene symbol Average log2 
(fold change) 

Adjusted  
p-value Cleft related gene 

Anterior Shox2 2.48 2.84E-124 True 
Anterior Satb2 1.74 2.49E-105 True 
Anterior Zfhx4 1.66 4.80E-79 False 
Anterior Adgrl2 1.21 3.45E-73 False 
Anterior Alx1 1.21 1.20E-62 True 
Anterior 2700069I18Rik 1.05 5.86E-56 False 
Anterior Eya1 1.24 2.00E-54 True 
Anterior Thsd4 1.27 6.39E-54 False 
Anterior Mme 1.23 6.44E-50 False 
Anterior Slit2 1.60 2.81E-47 False 
Anterior Sox5 1.28 7.45E-46 True 
Anterior Ror1 0.91 6.19E-40 False 
Anterior Asb4 1.13 6.69E-39 False 
Anterior Six1 0.86 9.30E-39 True 
Anterior Msx1 0.66 1.71E-34 True 
Posterior Meox2 1.67 1.10E-110 True 
Posterior Dach1 2.17 4.02E-107 False 
Posterior Pcdh9 2.45 2.59E-97 False 
Posterior Col25a1 2.20 6.60E-95 False 
Posterior Inpp4b 2.60 6.64E-90 False 
Posterior Prickle1 1.47 1.77E-85 True 
Posterior Sim2 1.23 3.38E-78 True 
Posterior Lmo4 1.73 4.50E-75 False 
Posterior Pcdh15 3.10 1.09E-73 False 
Posterior Cdh18 1.97 6.17E-68 False 
Posterior Hs3st5 1.49 2.58E-64 False 
Posterior Efnb2 1.15 7.93E-64 True 
Posterior Tmtc2 1.58 1.15E-61 False 
Posterior Fhod3 1.45 7.66E-61 False 
Posterior Pam 1.22 3.93E-50 False 
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STAR METHODS 
RESOURCE AVAILABILITY 

Lead contact 
Further information and requests for resources and analysis should be directed to and 
will be fulfilled by the lead contact, Dr. Zhongming Zhao 
(zhongming.zhao@uth.tmc.edu). 
 
Data and code availability 

We are in process of data deposition at GEO and will update the accession number 
once finished. Previously published soft palate data that were reanalyzed in this study is 
available under accession codes GSE155928. All R and Python scripts supporting the 
findings of this paper are available upon request. 

 
EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Tissue preparation, dissociation, and nuclei extraction  

Palatal shelves were isolated from time-mated C57BL/6J mice (000664, Jackson 
Laboratory) at E12.5, E13.5, E14.0, and E14.5. All mice were maintained in the animal 
facility of UTHealth under the 12 hours light/dark cycle and access to food/water ad 
libitum. The protocol was approved by the Animal Welfare Committee (AWC) and the 
Institutional Animal Care and Use Committee (IACUC) of UTHealth (AWC 19-0079). 

Single-cell suspensions were prepared from pooled paired secondary palatal 
shelves of three embryos at E12.5, two embryos at E13.5, and one embryo at E14.0 
and E14.5, respectively. The micro-dissected palatal shelves were treated with 0.25% 
trypsin and 0.05% EDTA (150 μL) for 5 min at 37 °C with gentle agitation (300 rpm). 
The dissociated cell mixtures were then suspended with 300 μL Dulbecco’s Modified 
Eagle’s Medium (DMEM, Millipore Sigma) supplemented with heat-inactivated 10% fetal 
bovine serum (FBS).The cells were centrifuged at 500 g for 5 min at 4 °C and the cell 
pellets were resuspended and incubated with chilled 300 μL of 0.1x lysis buffer [10 mM 
Tris-HCl pH 7.4, 10 mM NaCl, 3 mM MgCl2, 1% BSA, 1mM DTT, 1U/μL RNase inhibitor, 
0.01% Tween-20, 0.01% Nonidet P40 Substitute, and 0.001 % Digitonin] for 3 min on 
ice, followed by stopped with chilled 300 μL wash buffer [10 mM Tris-HCl pH 7.4, 10 
mM NaCl, 3 mM MgCl2, 1% BSA, 1 mM DTT, 1U/μL RNase inhibitor, and 0.1% Tween-
20]. The cells were then collected by centrifuge at 500 g for 5 min at 4 °C, rinsed with 
200 μL wash buffer twice, and re-suspended in Diluted Nuclei Buffer [1x Nuclei 
Resuspension Buffer, 1 mM DTT, and 1U/μL RNase inhibitor]. Isolated single-cell nuclei 
were filtered using a cell strainer (40 μm pore size) and inspected under a microscope 
to ensure they were successfully dissociated into single cell level for subsequent 
sequencing. 
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Single-cell multiome data generation 

The single cell libraries were constructed by following the 10x Genomics Chromium 
Next GEM Single Cell Multiome ATAC + Gene Expression protocol (CG000338). Briefly, 
nuclei suspensions were incubated with a transposase, which fragmented the DNA in 
open regions of the chromatin and added the adapter sequences to the ends of the 
DNA fragments. The transposed nuclei were loaded onto Chromium Next GEM Chip J 
(PN-1000234, 10xGenomics, Pleasanton, CA) with partitioning oil and barcoded single-
cell gel beads, followed by PCR amplification. The ATAC library and the gene 
expression library were then prepared separately. The quality of the libraries was 
examined using Agilent High Sensitive DNA Kit (#5067-4626) by Agilent Bioanalyzer 
2100 (Agilent Technologies, Santa Clara, USA). The library concentrations were 
determined by qPCR using Collibri Library Quantification kit (#A38524500, Thermo 
Fisher Scientific) on a QuantStudio3 (ThermoFisher Scientific). We then pooled the 
libraries evenly and performed the paired-end sequencing on an Illumina NextSeq 550 
System (Illumina, Inc., USA) using High Output Kit v2.5 (#20024907, Illumina, Inc., 
USA). 

 

METHOD DETAILS 

Single-cell multiome data processing 

The 10x Genomics Cell Ranger ARC (v2.0.0) pipeline was used to process the 
multiome data. Raw sequencing data were first converted to fastq format using 
‘cellranger-arc mkfastq’. The raw files of RNA-seq and ATAC-seq libraries from the 
same sample were aligned to the UCSC mouse genome (mm10) and quantified using 
‘cellranger-arc count’. Samples were aggregated using ‘cellranger-arc aggr’ to 
normalize the sequencing depth.  

The raw RNA count matrix and ATAC fragment data were further processed 
using R packages Seurat (v4.0.3) (Hao et al., 2021) and Signac(v1.5.0) (Stuart et al., 
2021), respectively. Filtering based on RNA-assay metrics (200< nCount_RNA < 
100,000, nFeature_RNA < 7,500, percent.mt < 20) and ATAC-assay metrics (200 < 
nCount_ATAC < 100,000, nucleosome_signal < 2, TSS.enrichment > 1) resulted in 
37,329 cells. The average depth is 73,521 reads per cell, yielding an average of 2,472 
genes per cell.  

The gene expression count matrix was normalized using SCTransform. Principal 
component (PC) analysis was based on the top 3,000 highly variable features. Uniform 
Manifold Approximation and Projection (UMAP) visualization was constructed using the 
first 30 PCs. 
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For the ATAC data, peak calling was performed using MACS2 package (Zhang 
et al., 2008) with CallPeaks function in Signac (version1.5.0). Peaks that overlapped 
with genomic blacklist regions for the mm10 genome were removed (Amemiya et al., 
2019). Each peak represents one potential cis-regulatory DNA element (CRE). The 
CRE count matrix was then normalized using Latent Semantic Indexing (LSI), including 
term-frequency (TF) inverse-document frequency (IDF), and Singular value 
decomposition (SVD). The first LSI component is removed from the downstream 
analysis as it was highly correlated with sequencing depth.  

The gene activity was quantified using GeneActivity function in Signac 
(version1.5.0), which aggregated chromatin accessibility intersecting the gene body and 
promoter regions. 

  

Projection of external scRNA-seq dataset onto our scRNA-seq manifold 

To validate the annotated major cell types, we downloaded a scRNA-seq dataset of 
mouse soft palate, which is the posterior third of the palate, from a recent publication 
(Han et al., 2021). SCTransform normalization was conducted, followed by PC analysis. 
The first 30 PCs were used to find anchors between these two datasets using 
FindTransferAnchors function in the Seurat package. The RunUMAP function was used 
to calculate the UMAP coordinates of our dataset with parameters stored in the object 
(return.model = TRUE). The MapQuery function was then used to calculate the 
coordinates of the external dataset using the same ‘uwot’ model parameters. 

 

In-situ hybridization 

The E14.5 C57BL/6J mouse embryos (n=6) were dissected from a time-pregnant 
mother and fixed in 4% paraformaldehyde overnight at 4 °C, dehydrated in a graded 
ethanol series, and embedded in paraffin. Paraffin sections were cut at 4 µm thickness 
under RNase-free conditions. In situ hybridization was performed using the RNAscope 
2.5 Assay platform (ACD, 322360) using specific probes for Cyp26b1 (ACD, 454241), 
Efnb2 (ACD, 477671), Inhba (ACD, 455871), Meox2 (ACD, 823191), Nrp1 (ACD, 
471621), Prickle1 (ACD, 832641), Satb2 (ACD, 413261), Shox2 (ACD, 579051), Sim2 
(ACD, 1110401), and Trps1 (ACD, 879001). The color images were obtained under a 
light microscope (BX43, Olympus).  

 

Quantitative RT-PCR 

The anterior (n=6) and posterior (n=6) palatal shelves were microdissected from E14.5 
C57BL/6J mouse embryos for qRT-PCR. Total RNAs isolated from each region were 
collected using the QIAshredder and RNeasy mini extraction kit (QIAGEN), as 
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previously described (Suzuki et al., 2015). Gapdh was used as an internal 
housekeeping gene control. The PCR primers used in this study are listed in Table S2.  

 

Bulk RNA-seq analysis 

The anterior (n=3) and posterior (n=3) palatal shelves of E14.0 C57BL/6J mice were 
isolated and subjected to bulk RNA sequencing. The raw sequenced files were mapped 
to the mouse reference genome mm10 using HISAT2 (Zhang et al., 2021). StringTie 
(Shumate et al., 2022) was used to quantify the counts. We then used R package 
DESeq2 (version 1.30.1) to perform the differential gene expression tests (Love et al., 
2014). To project the bulk RNA-seq data into the scRNA principal component space, 
count matrices from both datasets were first integrated and normalized using voom 
function in the R package limma (version 3.46.0). We performed PCA independently 
using normalized scRNA data. The normalized bulk RNA-seq data were then projected 
into the scRNA space using identical principal component gene loadings. 

 

CRE-gene linkage analysis 

We identified CRE-to-gene links using LinkPeaks function in Signac (Stuart et al., 2021) 
based on the approach originally described by SHARE-seq (Ma et al., 2020). The 
Pearson correlation coefficient was calculated between gene expression and CRE 
accessibility. Only CREs within a certain distance (bp) from the gene TSS were included 
in the model (default: 5x105). The GC content, overall accessibility, and CRE size were 
included in the model as covariates to correct the bias. Benjamini-Hochberg method 
was used to adjust p-values (Benjamini and Hochberg, 1995). Only high-confidence 
CRE-gene links with adjusted p-value < 0.05 and coefficients > 0 were retained for 
downstream analysis. 

 

DNA sequence motif enrichment analysis 

A total of 196 position weight matrices for Mus musculus (species code 10090) were 
loaded from the JASPAR 2020 database (Fornes et al., 2020) using getMatrixSet 
function in TFBSTools package (version 1.32.0). For a set of differentially accessible 
CREs, we applied FindMotifs function with default parameters to find enriched motifs. 
Meanwhile, to facilitate the visualization of motif activity, we calculated the motif activity 
matrix using ChromVAR (version 1.16.0) (Schep et al., 2017). 

 

WOT-based terminal state likelihood analysis 
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The Wadding-Optimal Transport (WOT) was employed to reconstruct the trajectories 
(Schiebinger et al., 2019). Specifically, for a cell at time ti, WOT traced its most likely 
ancestors and descendants to recover the trajectories by calculating the transition 
probabilities to cells at time ti+1 and ti-1. We imported WOTKernel from 
cellrank.external.kernels for the following analysis (Lange et al., 2022). The growth rates 
were estimated using the predefined gene proliferation set. The cell-cell transition matrix 
between adjacent time-points was then calculated using compute_transition_matrix 
function with default parameters (growth_iters=3, growth_rate_key="growth_rate_init", 
last_time_point="connectivities"). The random walks were simulated (n_sims=300). To 
compute the macrostates, a Generalized Perron Cluster Cluster Analysis (GPCCA) 
estimator was initialized with WOT connectivity kernel(Reuter et al., 2018). The inferred 
macrostates were set as terminal states of five trajectories. The fate probabilities to 
each terminal state were computed per cell using compute_absorption_probabilities 
function with default parameters (solver="gmres"). To identify driver genes, we 
computed the correlation between the fate probabilities and gene expression for each 
trajectory using compute_lineage_drivers function. Multiple testing correction was 
controlled by the Benjamini-Hochberg method (Benjamini and Hochberg, 1995). Only 
the genes with adjusted p-values less than 0.05 and correlations greater than 0.05 were 
considered driver genes. 

 

Diffusion pseudotime estimation 

We used the built-in function of the Python package Scanpy (version 1.9.1) to estimate 
the diffusion pseudotime(Haghverdi et al., 2016; Wolf et al., 2018). Specifically, the raw 
count matrix was loaded in as an AnnData object, followed by standard preprocessing. 
The neighborhood graph was calculated using sc.pp.neighbors function with default 
parameters (random_state=0). We specified a random cell in CNC-derived multipotent 
cells (cluster 5) as the root cell. The diffusion pseudotime was then estimated using 
scanpy.tl.dpt function. 

 

RNA velocity and CellRank analysis 

The possorted bam files from Cellranger output were passed to velocyto (version: 
0.17.15) (La Manno et al., 2018) to estimate the RNA velocities of single cells. The 
generated loom file contained data matrices of spliced and unspliced reads and was 
further processed by scVelo (version 0.2.4)(Bergen et al., 2020). Seurat-processed 
gene expression count matrix and UMAP coordinates were converted to “AnnData” 
object and merged with the velocyto-derived object using scVelo.utils.merge function. 
The merged dataset was filtered using the scVelo.pp.filter_and_normalize with default 
parameters (min_shared_counts = 10, n_top_genes = 2,000) and the moments were 
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computed using scVelo.pp.moments. The velocity was then calculated using 
scVelo.tl.velocity (mode=stochastic). The estimated velocity vectors were projected and 
visualized in previously calculated embedding.  

The initial and terminal state likelihood based on RNA velocity information was 
estimated using cellrank.tl.terminal_states and cellrank.tl.initial_states functions with 
default parameters (weight_connectivities=0.3). 

 

Trajectory analysis 

To identify how and when driver genes were expressed and regulated along each 
trajectory, we extracted cells with high fate probabilities (fate probability > 75% 
quantile). The extracted cells were then ordered by diffusion pseudotime. The driver 
genes were cut into three groups based on quantiles. For each group of driver genes, 
we conducted gene set enrichment analysis using the R package WebGestalt (version 
0.4.4) (Liao et al., 2019). The non-redundant Gene Ontology (GO) Biological Process 
terms were used for pathway annotations. The minimum number of genes in the 
pathways was set to 5 and the maximum was set to 500. The Benjamini-Hochberg 
method was used to adjust p-values (Benjamini and Hochberg, 1995). Those pathways 
with adjusted p-values less than 0.05 were considered statistically enriched. We also 
performed CRE-gene linkage analysis and motif enrichment analysis as described 
above. 
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Supplemental information 
Supplemental figures and tables can be found in separated pdf file.  
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Figure 6
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Supplemental Figure 1. Data quality of scATAC-seq and scRNA-seq libraries. (A) Violin plot show the distribution 
of (left) scRNA-seq and (right) scATAC-seq quality metrics , including the number of reads, number of genes, and 
mitochondrial (MT) gene fraction per cell, the number of fragments, nucleosome signal, and transcription start site 
(TSS) enrichment per cell in each developmental stage. E: embryonic day. (B) Scatter plot show scATAC-seq cell 
thresholding on TSS enrichment (y-axis) and the number of fragments (x-axis). Dashed lines represent filtering thresh-
olds. Color represent density. (C) Top: Plot shows the normalized fragment count in each positive rekative to TSS (bp) 
for each sample. Bottom: Density plot show the distribution of fragment size for each sample. (D) Correlogram shows 
the correlation between samples in RNA assay (top) or ATAC assay (bottom). (E) UMAP visualization based on RNA 
assay (top) or ATAC assay (bottom) represent cells colored by each sample and split by developmental stage.
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Supplemental Figure 2. Comparison with external scRNA-seq dataset validate our cell type annotations. (A) 
Feature plot show marker gene expression in each major cell type. Marker genes and cell types were annotated on top 
of each plot. (B) Projection of external data from Han et al. 2021 into our snRNA-seq manifold, showing alignment of 
major cell types. (C) Correlogram shows the correlation between cell type annotations in our dataset (row) and annota-
tions from Han et al. 2021 (columns). Each dot represents the correlation between one paired cell type and is colored 
from low (red) to high (blue).
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Supplemental Figure 3. Visualization displaying positively peak-gene linkage specifically in Endothelial cells. 
Left: Genome Browser visualization of aggregated chromatic accessibility at the chr4:118489600-118490000 locus for 
each major cell type, coupled with Tie1 gene expression. Arcs at the bottom denotes linkage between Tie1 and 
Chr4:118489480-118490171. 
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Supplemental Figure 4. Cell subtype annotations for CNC-derived mesenchymal cells. (A) UMAP visualization 
corlored by developmental stage. (B) Feature plot of marker genes of each subtype of CNC-derived mesenchymal cells. 
(C) Barplot shows enriched gene ontology (GO) Biological Process pathways (left) and cell types (right) for cluster 5.
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Supplemental Figure 5. Trajectory analysis revealed the continuous differentiation of CNC-derived multipotent 
cells into different terminal states. (A) Trajectory 1: anterior palatal mesenchymal cells, (B) Trajectory 2: posterior 
palatal mesenchymal cells, (C) Trajectory 3: dental mesenchymal cells, (D) Trajectory 4: osteoblast, (E) Trajectory 5: 
perimysial cells. Each dot represent a cell and is colored by fate probabilities to each trajctory (high: yellow, low: dark 
brown).
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Supplemental Figure 6. CellRank based on RNA velocity validated the inferred trajectories. (A) UMAP visualiza-
tion shows inferred diffusion pseudotime. (B) UMAP visualization shows (left) CellRank-derived initial stages and (right) 
terminals states. (C) UMAP visualization of CNC-derived mesenchymal cells from E12.5 only, colored with (left) RNA 
velocity information, (middle) CellRank derived initial states, and (right) CellRank derived terminal states.
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Supplemental Figure 7. Driver genes were identified for each trajectory. (A) UMAP visualization showing anterior 
trajectory, colored by (left) diffusion pseudotime, (middle) fate probabilities to anterior trajectory, and (right) terminal 
state likelihood. (B-C) Feature plot show expression pattern of top driver genes for (B) anterior and (C) posterior trajec-
tory. Each dot represent a cell and is colored by gene expression (yellow: high, dark brown: low). Gene name, adjusted 
p-value, and correlation with fate probabilities was annotated on top of each plot. �
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Supplemental Table 1. Quality control metrics for ATAC and GEX libraries in each sample. 

Library 

ATAC Per Library Metrics GEX Per Library Metrics # of cells 
before 

preprocessi
ng 

# of cells 
after 

preprocess
ing 

Total # of 
read pairs 

# of read 
pairs per 

cell 

% of 
reads 
kept 

Total # of 
read pairs 

# of read 
pairs per 

cell 

% of 
reads 
kept 

E12_5_1 253,080,554 37,571 52.90% 175,630,078 26,073 90.00% 6,736 6,348 

E12_5_2 201,627,408 34,267 61.40% 144,278,831 24,520 100.00% 5,884 5,498 

E13_5_1 189,257,170 86,616 80.60% 176,962,262 80,989 41.50% 2,185 1,693 

E13_5_2 217,328,102 89,141 41.00% 156,982,892 64,390 46.60% 2,438 2,226 

E13_5_3 209,954,979 43,397 55.40% 174,273,262 36,021 70.50% 4,838 4,527 

E14_0_1 194,201,004 40,602 100.00
% 156,955,815 32,815 96.30% 4,783 4,496 

E14_0_2 232,945,189 53,342 72.50% 168,557,694 38,598 69.40% 4,367 4,112 

E14_5_1 173,222,784 37,388 90.70% 192,325,131 41,512 57.80% 4,633 3,889 

E14_5_4 206,644,325 54,308 45.50% 153,505,067 40,342 65.70% 3,805 3,365 
#: number, %: percent 
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Supplemental Table 2. PCR primers for quantitative RT-PCR experiments. 

Gene Forward primer Reverse primer 

Cyp26b1 AATTCCATTGGCGACATCCACC GGTAGCTCTCAAGTGCCTCATG 

Efnb2 CCAACAAGACGTCCAGAGCTAG CCACTTCGGAACCCAGGAGATT 

Inhba GTAAAGTGGGGGAGAACGGG TTAAGCCCATTTCCTCGGCC 

Meox2 GTGGCAGCAAAAGGAAAAGCGAC GGCAAATTCTGCCTCTAGTTCTC 

Nrp1 CGGAGGAATGTTCTGTCGCTATG GGATAGAACGCCTGAAGAGGAG 

Prickle1 AACAGCTCCTGTACCAGTTGCC CTTCCTCTGAGCACTGAACACC 

Satb2 GGGCTAGTGTGTCTCAAGCTG GAAGTTCTGCATGGCCCTCAG 

Shox2 CTATCCAGACGCTTTCATGCGC ACTGGCTAGCGGCTCCTATAAG 

Sim2 CGGAGATCAAGCTCCACAGCAA CGATCAGGTCTTGTGGCTCATAG 

Trps1 CAACCGTTCTGTGCTTTCTGGC GTGTTGCCTTGGCAATCTGGAG 

Gapdh AACTTTGGCATTGTGGAAGG ACACATTGGGGGTAGGAACA 
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