

1 **Hippocampal collagen as a potential target for post-surgical**
2 **treatment; effects of whole-body vibration and exercise**

3 Noa Keijzer¹, Klaske Oberman¹, Tamás Oroszi^{1,2}, Csaba Nyakas³, Eddy A van der Zee¹ and Regien G
4 Schoemaker^{1,4}

5 ¹: Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES),
6 University of Groningen, the Netherlands

7 ²: Research Center for Molecular Exercise Science, Hungarian University of Sports Science, Budapest,
8 Hungary

9 ³: Behavioral Physiology Research Laboratory, Health Science Faculty, Semmelweis University,
10 Budapest, Hungary

11 ⁴: University Medical Center Groningen, the Netherlands

12

13 Short title: Hippocampal collagen loss after surgery potential target for treatment

14

15 Corresponding author:

16 Dr. Regien G. Schoemaker

17 Department of Neurobiology GELIFES

18 University of Groningen

19 Nijenborgh 7

20 9747 AG Groningen

21 The Netherlands

22 E-mail: r.g.schoemaker@umcg.nl

23 Tel 31503632299/3162260502

24 Abstract

25 Peripheral surgery may evoke neuroinflammation, associated with neuronal damage and
26 consequently mental health problems. However, anti-inflammatory treatment showed limited
27 therapeutic efficacy. Preservation of neuron integrity during neuroinflammation, by targeting their
28 protective collagen sheet, may provide an alternative strategy. Whole-body vibration (WBV) and
29 exercise combine anti-inflammatory and collagen-increasing effects in the periphery. The present
30 study aimed to explore the therapeutic efficacy of postoperative WBV and exercise on hippocampal
31 neuroinflammation and collagen expression.

32 Three months old male Wistar rats underwent abdominal surgery. Starting from one day after
33 surgery, rats were submitted to WBV (10 min, once or twice daily, 30 Hz), running exercise (30 min,
34 daily), or pseudo WBV/exercise, for two weeks. Rats were sacrificed and brain tissue was collected
35 and processed for (immuno)histochemistry. Hippocampal microglia activity, total collagen content,
36 and expression of fibrous and non-fibrous collagen subtypes were analysed.

37 Surgery was associated with increased microglia activity in the CA1 area, which was only partly
38 reversed by the interventions. Surgery specifically reduced total collagen expression in the CA1 area,
39 which was restored by both WBV and exercise. Collagen I was absent in the hippocampal granular
40 layers. The surgery-induced decrease in collagen III expression in the CA1 area was not affected by
41 either WBV or exercise. However, surgery increased collagen III in the CA2 (ns), CA3 and DG. Exercise,
42 and to a lower extent WBV, seemed to (partly) reverse this effect. Collagen IV expression was not
43 altered by surgery, but increased by WBV. No significant effects were observed on collagen VI
44 expression.

45 WBV as well as exercise restored the surgery-induced declined collagen expression, while partly
46 reversing microglia activation in the CA1 area. Moreover, effects on collagen appeared to be
47 subtype- and region-specific, with overall similar effects of WBV and exercise. Nevertheless, the
48 neuroprotective potential of postoperatively altered brain collagen needs further investigation.

49 **Introduction**

50 Most people undergo surgery at least once during their life (1). Postoperative complications may
51 develop after surgery, including hippocampal neuroinflammation, which could be associated with
52 cognitive decline and a reduction in patients' quality of life (2,3). Although aging and previous
53 inflammatory episodes are acknowledged as risk factors, the pathophysiology of this complication is
54 rather unknown (4,5). Most evidence points to a key role for peripheral inflammation and the
55 subsequent induction of neuroinflammation. According to this hypothesis, surgery-induced
56 activation of the native immune system, required for wound healing, can become derailed and is
57 reflected in the brain as neuroinflammation, associated with neuronal dysfunction (6,7). Despite the
58 acknowledged role of neuroinflammation and promising experimental studies (4,6,8,9), the
59 therapeutic potential of anti-inflammatory treatment in the clinic remains poor (10,11).

60 An alternative strategy may aim at protecting the neurons from the damaging effects of
61 neuroinflammation, rather than, or in combination with, interference of the inflammatory response.
62 A good candidate target could be provided by the net-like structures around the cell body and
63 dendrites of neurons, known as perineuronal nets (PNNs), which protect the neurons against
64 oxidative stress and neurotoxins (12,13). The function of these PNNs in neuronal functions associated
65 with cognitive performance was elegantly reviewed by Wingert and Sorg (14). These specialized
66 substructures of the brain extracellular matrix (ECM) consist of low amounts of fibrous collagens,
67 including type I and III (12). Non-fibrous collagen IV has further been discovered in the vascular
68 basement membrane, another substructure of the brain ECM, that is important for regulating blood-
69 brain barrier (BBB) permeability (15,16). The basal lamina, which comprises a part of the vascular
70 basement membrane, also surrounds PNNs to provide structural support and neuronal protection
71 (17,18). As for collagen VI, a neuroprotective role has previously been described under normal
72 physiological conditions (19), but increased expressions were found upon neuronal injury (20). Since
73 collagen seems essential for preserving brain health, we hypothesized that in addition to the

74 induction of neuroinflammation, certain types of surgery may disrupt the PNNs, potentially leading
75 to a loss of neuronal protection against neuroinflammation-associated neuronal damage.
76 Therapeutic prevention of this surgery-induced loss then may preserve neuronal protection and
77 counteract the potentially detrimental effects of neuroinflammation (21).

78 Exercise is widely associated with improved physical as well as mental health. It combines anti-
79 inflammatory effects (22) to effects on PNNs (23); increased PNN expression around motor neurons,
80 but declined expression in the hippocampal CA1 area after exercise. Although exercise may provide a
81 beneficial intervention after surgery, not all patients will be capable of performing exercise after
82 their surgical procedure. A less physically straining intervention may be worthwhile. Whole-body
83 vibration (WBV), a specific type of sensory stimulation, in which controlled mechanical vibrations are
84 transmitted to the body and brain via an oscillating platform, may potentially increase brain collagen
85 (24). WBV has been indicated as a passive alternative for conditions in which patients are unable or
86 unmotivated to perform physical exercise, such as during recovery from surgery (25,26). If needed,
87 WBV can even be applied while patients remain in bed and even in an intensive care unit (27).
88 Researchers already demonstrated that WBV enhanced angiogenesis, associated with improved
89 wound healing and lower systemic inflammation, via upregulation of fibrous proteins in diabetic mice
90 (28). Moreover, WBV showed to increase collagen gene expression in the rat patellar tendon (29).
91 Furthermore, WBV promoted an anti-inflammatory response in elderly subjects, similar to that of
92 physical exercise (30), and improved cognitive function in rats (31).

93 Therefore, since WBV may share the positive effects of exercise but with less physical effort, the aim
94 of the present study was to explore the effects of WBV compared to exercise started shortly after
95 abdominal surgery in rats, regarding neuroinflammation and collagen expression in the
96 hippocampus.

97 **Materials and methods**

98 **Animals**

99 Three months old male Wistar rats (Janvier, Saint-Isle, France) were group housed (3-4 animals per
100 cage) until the moment of surgery, in climatized rooms ($22 \pm 2^\circ\text{C}$; $50 \pm 10\%$ humidity, and reversed
101 12-12 hours (h) light-dark cycle). After the surgical procedure, animals were housed individually.
102 Water and food (standard rodent chow: RMHB/2180, Arie Block BV, Woerden, NL) were available ad
103 libitum. All procedures were approved by the National Competent Authority (CCD) and the local
104 ethical animal welfare committee (IvD) of the University of Groningen, The Netherlands.

105 **Study design**

106 The present study is a follow-up of the study of Oroszi et al. (32). For details about the animals and
107 the protocol, we kindly refer to this original study. Briefly, three months old male Wistar rats were
108 randomly divided into four groups (n=16 each): 1) non-surgery control, 2) surgery control (+ pseudo
109 WBV/exercise), 3) surgery + WBV and 4) surgery + exercise. Major abdominal surgery consisted of
110 the implantation of a radio telemetry transmitter (33) or standard abdominal surgery; the latter was
111 previously shown to induce neuroinflammation and cognitive decline (34). Non-surgery controls
112 received the same handling, but did not undergo anaesthesia or surgery. Apart from a difference in
113 body weight loss shortly after surgery, no differences in behaviour or neuroinflammation were
114 observed between these two types of surgery, therefore surgery groups were pooled (32). Starting
115 one day after surgery, rats were submitted to either two weeks of WBV, exercise (treadmill running),
116 or pseudo WBV/exercise in the dark (active) phase. On post-operative day 14, animals were deeply
117 anesthetized with pentobarbital (90 mg/kg) and transcardially perfused with cold saline containing
118 Heparin (2 IE/ml). Brains were collected and processed for further histological analyses.

119 **Interventions**

120 **Whole-body vibration (WBV)**

121 WBV was performed using a low-intensity vibration device with a frequency of 30 Hz and an
122 amplitude of 50-200 microns (MarodyneLiV – Low Intensity Vibration; BTT Health GmbH; Germany).
123 This is in adherence to the newly reported guidelines for WBV studies in animals (35). While on the
124 first post-surgical day, WBV was started with one 10 minutes (min) session, WBV on days 2-6
125 consisted of two 10 min sessions per day. To avoid interference with behavioral testing during the
126 second post-surgical week, sessions were reduced to once daily and performed after the behavioral
127 testing procedures. After the behavioral test week, animals returned to WBV sessions twice daily
128 until sacrifice.

129 **Running exercise**

130 The exercise was performed by running on a treadmill (Home-made, University of Groningen, The
131 Netherlands) for 30 min daily, starting one day after the surgery. Training started at a low speed (5-
132 10 m/min) and was gradually increased to the aimed speed of 18 m/min, which would reflect
133 approximately 65% of the maximum oxygen uptake (36).

134 **Pseudo WBV/Running exercise**

135 Pseudo-treated rats were subjected to a combined pseudo WBV and pseudo running exercise
136 treatment in order to serve as a control for both interventions, based on our previous experiments.
137 This consisted of daily alternating twice 10 min (once 10 min during the testing phase) on the
138 vibration plate without vibration or 30 min on the turned-off treadmill.

139 **Histology**

140 **Tissue preparation**

141 Brains were collected and post-fixed in 4% paraformaldehyde solution for two days, and washed
142 with 0.01M phosphate-buffered saline (PBS) for three consecutive days. For cryopreservation, brains

143 were dehydrated for one day with a 30% sucrose solution before freezing with liquid nitrogen, and
144 stored at -80 °C. Coronal sections (25 µm) of the dorsal hippocampus were freshly cut and collected
145 directly on Superfrost™ Plus Microscope Slides, or stored free-floating in 0.01M PBS + 0.1% Natrium
146 Azide at 4°C for later use.

147 **Ionized binding adaptor protein-1 (IBA-1) immunostaining**

148 Microglia activity was used as a measure of hippocampal neuroinflammation, as previously described
149 elsewhere (37). Microglia were immunohistochemically visualized by incubating the free-floating
150 dorsal hippocampal sections with a rabbit-anti-ionized binding adaptor protein-1 primary antibody
151 (IBA-1; Wako, Neuss, Germany, 1:2500) in 2% bovine serum albumin and 0.1% Triton X-100 for three
152 days at 4°C, followed by incubation with a goat anti-rabbit secondary antibody (Jackson, Wet Grove, USA,
153 1:500) for 1 h at room temperature. Individual images of the cornu ammonis (CA)1, CA2, CA3, CA4,
154 dentate gyrus (DG) inner blade (DGib), DG outer blade (DGob), and Hilus areas were taken at 200x
155 magnification. Image-Pro Plus 6.0 (Media Cybernetics, Rockville, USA) was used to obtain microglia
156 morphology parameters. Microglia were analysed regarding the density (number per high power
157 field), coverage (%), cell size (pixels), cell body size (pixels), and dendritic processes size (pixels).
158 Microglia activity was calculated as cell body size per total cell size (%) (37). Values of the DGib and
159 DGob regions were averaged resulting in the DG area value.

160 **Sirius Red/Fast Green histochemical staining**

161 Freshly cut dorsal hippocampal sections were collected on Superfrost™ Plus Microscope Slides and
162 allowed to dry before staining of total collagen as described in detail elsewhere (34). Briefly, dried
163 sections were incubated for 30 min with 0.1% Sirius red (Sigma-Aldrich), followed by 30 min
164 incubation with 0.1% Fast green (Sigma-Aldrich), both dissolved in saturated picric acid. Staining
165 steps were followed by rinsing in 0.01M hydrochloric acid for 1 min (2x), tap water for 1 min (2x), and
166 in demi water for 1 min (2x) and cover-slipped. Stained sections were automatically scanned using a
167 Nanoozometer 2.0-HT digital slide scanner (Hamamatsu, Japan). Individual images were taken of the

168 CA1a, CA1b, CA2, CA3, CA4, DGib and DGob at 40x magnification. The area of total collagen in a
169 predetermined area of interest in the granular layer was quantified and expressed as a percentage
170 coverage (Image-Pro Plus 6.0, Media Cybernetics, Rockville, USA). Values of the CA1a/CA1b and
171 DGib/DGob regions were averaged resulting in the CA1 and DG area, respectively.

172 **Collagen I, III, IV, and VI immunostaining**

173 Free-floating dorsal hippocampal sections were incubated for 5 min in demi water at 37 °C, followed
174 by treatment with 0.5 mg pepsin/ml (Roche) for 18 min at 37 °C. Sections were then treated for 30
175 min with 0.3% H₂O₂ and incubated with rabbit anti-collagen I (Abcam, ab270993, 1:2000), mouse
176 anti-collagen III (Abcam, ab6310, 1:2000), rabbit anti-collagen IV (Abcam, ab6586, 1:2500) or rabbit
177 anti-collagen VI (Novus Biologicals, NB120-6588, 1:100) in 1% bovine serum albumin and 0.1% Triton
178 X-100 for three days at 4°C. Next, sections were incubated for 2 h with a goat-anti-rabbit (Jackson
179 ImmunoResearch, 1:500) or goat-anti-mouse (Jackson ImmunoResearch, 1:500) secondary antibody,
180 followed by a 1 h incubation with avidin-biotin-peroxidase complex (Vectastain® Elite ABC-HRP Kit,
181 1:500). Labelling was visualized using a 3,3'-Diaminobenzidine solution (Sigma-Aldrich) activated by
182 0.1% H₂O₂. Sections were mounted onto microscope slides using a 1% gelatin/0.05% aluin solution
183 and submitted to a dehydration process (70% ethanol for 5 min, 100% ethanol for 5 min (2x), 70%
184 ethanol/30% xylene for 5 min, 30% ethanol/70% xylene for 5 min and 100% xylene for 5 min (3x) and
185 covered. All dilutions were made in 0.01M PBS and all sections were washed 3-6 times with 0.01M
186 PBS between staining steps. Negative control staining was performed by replacing the primary
187 antibodies with 0.01M PBS. For positive control, positive staining of blood vessels and meninges was
188 used. Collagen III expression was scored manually as presence/absence due to the weak staining
189 signal in the CA1a, CA1b, CA2, CA3, CA4, DGib and DGob regions and converted in percentages (%).
190 For collagen IV and VI, stained sections were scanned using the Nanozoomer 2.0-HT digital slide
191 scanner and individual images of the CA1a, CA1b, CA2, CA3, CA4, DGib, and DGob were taken at 40x
192 magnification. The optical density (OD) was measured (ImageJ 2.1.0, USA) and corrected for the
193 background staining. The average OD in each hippocampal area was taken as a measure for collagen

194 IV and VI expressions. For all stainings, values of the CA1a/CA1b and DGib/DGob regions were
195 averaged resulting in the CA1 and DG area, respectively.

196 **Statistical analysis**

197 All statistical analyses were performed using IBM SPSS Statistical Software version 27.0.1 (IBM SPSS
198 Statistics, Armonk, NY). Data outside twice the standard deviation of its group were regarded as
199 outliers and omitted from further statistical analyses (max 2 per group). A Shapiro-Wilk test was
200 performed to test for normality and a Levene's test to verify the homogeneity of variances. A one-
201 way ANOVA analysis followed by a Least Significant Difference (LSD) post hoc test was done for
202 normally distributed data with an equal variance, to discover surgery and intervention-related
203 differences. Otherwise, a Kruskal Wallis test and Mann-Whitney test were performed to reveal group
204 differences. Differences among groups were considered statistically significant at $p < 0.05$ (*).
205 Relevant tendencies (one-way ANOVA: $p < 0.15$, LSD post hoc: $p < 0.05$ or $p < 0.01$) were also
206 mentioned (# or ##). Figures were prepared using GraphPad Prism (version 5.00 for Windows,
207 GraphPad Software, San Diego, California, USA) and data in the figures and tables are expressed as
208 mean \pm SEM per group.

209 **Results**

210 **General**

211 Before surgery, rats weighed on average 369 ± 4 grams without differences between the
212 experimental groups. From the initial 64 rats (16 per group), 3 rats died around the surgical
213 procedure, resulting in the following experimental groups: 1) non-surgery control (n=14), 2) surgery
214 control (+ pseudo WBV/exercise) (n=16), 3) surgery + WBV (n=16) and 4) surgery + exercise (n=15).
215 All surgery rats lost significant weight, but without the effects of interventions (data not shown).

216 **Effects on hippocampal microglia activity and morphology**

217 To assess the effects on hippocampal neuroinflammation, an IBA-1 staining was performed as shown
218 in Fig 1. Fig 1A displays the photomicrographs of the CA1 region of the four experimental groups.
219 Results of microglia activity are shown in Fig 1B for the CA1, and Figs 1C-G for the other hippocampal
220 areas. Analyses of differences between groups showed a tendency for microglia activation in the CA1
221 area after surgery ($p = 0.131$; post hoc analyses $p < 0.020$) (Fig 1B), but not in the other hippocampal
222 areas. WBV and exercise interventions only partly affected hippocampal microglia activity in this
223 area, as results did not appear significantly different from non-surgery. No significant differences
224 were observed in other hippocampal areas (Figs 1C-G). Underlying measurements of microglial
225 morphology are presented in Table 1. These data support the absence of effects on microglia
226 morphology by surgery or interventions in hippocampal areas, other than CA1.

227 **Effects on hippocampal total collagen**

228 The effect of abdominal surgery followed by two weeks of pseudo WBV/exercise, WBV or exercise
229 intervention on total hippocampal collagen was determined with a Sirius red/Fast green
230 histochemical staining, as shown in Fig 2. The upper left panel shows a representative
231 photomicrograph of the hippocampus, indicating positive Sirius red staining of blood vessels (arrows)
232 and meninges, and a Sirius red positive signal in the granular layers of the hippocampus (Fig 2A).

233 Collagen was mainly observed around the neuronal cell bodies in the hippocampal granular layer.
234 Measurements of the percentage of total collagen expression per hippocampal area are presented in
235 the other panels (Figs 2B-F). Surgery significantly reduced collagen expression in the CA1 area (Fig
236 2B), but not in other areas (Figs 2C-F). Postoperative WBV and exercise both significantly recovered
237 this declined collagen expression in the CA1. In the CA3 area, a tendency towards reduced total
238 collagen expression was observed after exercise intervention, but not after WBV, when compared to
239 surgery controls (Fig 2D).

240 **Effects on hippocampal fibrillar collagen I and III**

241 Immunohistochemical staining of hippocampal collagen I demonstrated a clear presence of fibrillar
242 collagen I in the meninges and blood vessels. However, no staining was observed in or around the
243 neurons in the hippocampal granular layers (data not shown). Fibrillar collagen III, although clearly
244 present in blood vessels (arrows) and meninges, showed low expression around the neurons in the
245 different granular layer regions, hampering accurate quantification (Fig 3A). Therefore, the
246 presence/absence of collagen III expression was scored per hippocampal area (Figs 3B-F). In the CA1
247 area, collagen III was significantly less present after surgery compared to non-surgery controls, but
248 this was not affected by either intervention. In contrast, surgery induced a significant rise in collagen
249 III presence in the CA3 and DG areas. In the CA2 area, a similar, but not significant increase, was
250 observed, which was completely normalized by WBV. Moreover, two weeks of postoperative running
251 exercise significantly decreased collagen III presence in the CA2 and CA3 areas.

252 **Effects on hippocampal non-fibrillar collagen IV and VI**

253 Effects of the abdominal surgery or WBV and exercise interventions on non-fibrillar collagen
254 subtypes were obtained from measurements of collagen IV and VI expressions. Hippocampal
255 collagen IV expression is illustrated in Fig 4A and quantified in Figs 4B-F. Responses seemed uniform
256 in the different hippocampal areas; defined as no significant effects of abdominal surgery on
257 hippocampal collagen IV expression while postoperative WBV, but not running exercise, seemed to

258 increase collagen IV expression in all regions compared to non-surgery controls and surgery controls.

259 However, these findings only reached statistical significance in the CA2 and CA3 areas.

260 Similar to collagen IV, no effect of surgery was observed on collagen VI expression in the

261 hippocampal areas (Fig 5). Moreover, neither intervention significantly affected collagen VI

262 expression, although a tendency towards an increase was observed after exercise in the CA1 area (Fig

263 5B).

264 **Discussion**

265 **General**

266 Post-surgical mental complications may be attributed to neuronal damage, associated with
267 neuroinflammation. In addition to inhibiting neuroinflammation, neuroprotection after surgery may
268 be obtained by preserving the protective collagen sheets around neurons; the PNNs. Since WBV and
269 exercise share anti-inflammatory and collagen-increasing effects in the peripheral part of the body,
270 the aim of the present study was to investigate the effects of WBV and exercise on the hippocampus
271 after surgery. Indeed, in addition to induction of neuroinflammation, surgery decreased total
272 collagen expression in the CA1 area of the hippocampus. Whereas two weeks of postoperative WBV
273 or exercise only partly reversed hippocampal neuroinflammation, both interventions significantly
274 prevented the surgery-induced decrease in total hippocampal collagen. Other hippocampal areas
275 were not significantly affected. A more detailed investigation of the expression of collagen subtypes
276 revealed a region-specific and mixed response of fibrillar and nonfibrillar collagen subtypes. Hence,
277 our data indicate that hippocampal collagen can be quantified and seemed sensitive to the effects of
278 surgery as well as to the effects of WBV and exercise. The contribution of the different subtypes of
279 collagen to neuroprotection as well as more general hippocampal functions are subjects for follow-
280 up studies.

281 **WBV and exercise**

282 The aim of the present study was to compare WBV to exercise early after surgery. WBV and exercise
283 share systemic effects, including increased muscle strength (38–40), and improved wound healing, as
284 well as effects on the brain, such as increased neurotrophic factors (41,42), and cognitive
285 improvement (31,43,44). As reviewed by Alam and coworkers (45), WBV is regarded as a
286 neuromuscular training method to be used as an alternative to conventional training and therapy.
287 WBV was reported to reduce brain damage and brain inflammatory markers, with increased brain-

288 derived neurotrophic factor and improved functional activity after transient brain ischemia in middle-
289 aged female rats (41). These studies support the potential of WBV as an alternative for exercise in
290 the early phases after surgery.

291 **Effects on neuroinflammation**

292 Effects on neuroinflammation were determined based on changes in microglia morphology; microglia
293 activity was calculated as cell body to cell size ratio (37). Microglia activation is associated with
294 increased cell body size at the expense of processes (46,47). Our previous studies indicated that
295 abdominal surgery in young healthy male rats would increase microglia activity, predominantly in the
296 CA1 area of the hippocampus (4,34,48). In the present study, CA1 microglia activation after surgery
297 did not reach statistical significance, however, an increase of over 30% is comparable to our previous
298 findings. Although previous research indicated that WBV and exercise share anti-inflammatory
299 effects (30), in the present study, both interventions only partly restored CA1 microglia activity. This
300 may relate to the duration and/or intensity of the interventions.

301 **Effects on hippocampal collagen**

302 **Total collagen**

303 In the brain, collagen is essential for the stabilization of brain ECM structures, such as PNNs and the
304 vascular basement membrane together with the basal lamina, to provide protection of neurons.
305 These PNNs mainly cover the cell body and dendrites and play an important role in learning, memory
306 and information processing in health as well as disease (12). More specifically, it may affect synaptic
307 morphology and function. Loss of PNNs is often seen in neurodegenerative diseases, as reviewed by
308 Bonneh-Barkay and Wiley (49). Moreover, PNNs around hippocampal interneurons can resist
309 destruction by activated microglia (21). In the hippocampus, particularly the CA1, CA3, and DG
310 regions are essential for memory encoding, retrieval of complete memories from partial information
311 and spatial pattern separation (50,51). Overall, the CA1 area comprises the primary output of the

312 hippocampus to other brain regions (52). In our previous studies (34,48), surgery-induced
313 hippocampal neuroinflammation and decreased neurogenesis were associated with a hippocampus-
314 associated decline in short-term and long-term spatial memory. As anticipated, in our present study,
315 total collagen expression was found to be decreased after surgery in the CA1 area, as one of the early
316 hippocampal areas affected by surgery and inflammation (48), but not in the other hippocampal
317 areas. This decreased collagen in the CA1 may then be regarded as a surgery-associated loss of
318 neuroprotection (12). WBV and exercise specifically restored total collagen in the hippocampal CA1
319 region, which could be regarded as preservation of neuroprotection. On the other hand, in the
320 hippocampal CA2 area, PNNs have been described to restrict synaptic plasticity (53). In the present
321 study, exercise seemed to decrease collagen in the CA3 area. If collagen levels may reflect synaptic
322 plasticity, as described for the CA2 (53), the reduction of collagen by exercise may then be speculated
323 as an improvement of synaptic plasticity. In our previous study, the effects of surgery and reversal by
324 WBV and exercise were observed on cognitive flexibility, rather than on short-term and long-term
325 memory (32). If indeed total hippocampal collagen may reflect aspects of the PNNs function, such as
326 restriction of plasticity during adulthood, this may have played a role in the effects on cognitive
327 flexibility (14). Additional behavioral tests, for instance on pattern completion as a test for CA3
328 function (54), could shed more light on potential associations between brain collagen, neuronal
329 function and consequently behavior (55).

330 **Fibrillar collagen I and III**

331 In mammals, the fibrous collagens I, II, III, V, and XI are mainly present, with collagen I and III making
332 up 95% of total body collagen (56). Whereas both types are important for structural support of the
333 ECM, collagen III is mainly associated with injury and wound healing (57). Under healthy physiological
334 conditions, collagen I and III can be found in a 4:1 ratio, which shifts towards an increase in collagen
335 III during pathological states characterized by tissue damage in the body (58). In the brain, still little is
336 known about collagen presence and function due to the long-standing belief that collagen is absent
337 in the mammalian central nervous system (CNS) (59). However, Hubert et al. have provided a review

338 on the function of several collagen types during the development of the CNS, but also during
339 pathological states in both animals and mammals (60). Although collagen I is the most abundant
340 protein in the mammalian body (56) and turned out to be present in the brain blood vessels and
341 meninges, collagen I appeared virtually absent in the hippocampus in the present study. Similar to
342 total collagen, a declined collagen III presence was observed in the CA1 area after surgery. Based on
343 the responses to injury in the body (58), an increased rather than decreased collagen III expression
344 after surgery may be anticipated. However, an elevated presence was observed in the hippocampal
345 CA2, CA3 and DG regions after surgery. If indeed collagen III expression reflects tissue damage (58),
346 this may suggest that these latter areas were more affected by neuronal injury. The hippocampal CA2
347 region is essential for social memory (61) and Zhang et al. (62) recently demonstrated that elderly
348 patients who underwent anaesthesia and cardiac surgery developed social cognitive dysfunction,
349 indicating that social memory may be affected. For the hippocampal CA3 region, the most important
350 functions are the rapid encoding of memory (63) and retrieval of complete memories (64).
351 Postoperative WBV and physical exercise both reversed the surgery-induced increased presence of
352 collagen III in the CA2 and CA3 region, potentially suggesting repair and a neuroprotective effect.
353 With WBV being less physically demanding than exercise, WBV may provide a relevant alternative for
354 patients who are not capable of performing exercise shortly after surgery.

355 **Non-fibrillar collagen IV and VI**

356 In contrast to fibrous collagens, non-fibrous collagens are expressed at much lower levels in the
357 body. Their main function is to adjust structural characteristics, such as the shape and fibre thickness
358 of collagen I, or to connect fibre groups to each other or surrounding tissue (65). Given that collagen
359 IV is essential for BBB integrity (15,16), may indicate that a decrease in collagen IV permits BBB
360 leakage. In contrast to a study from Cao et al. in which four hours isoflurane anaesthesia decreased
361 collagen IV in brain blood vessels leading to BBB disruptions (66), isoflurane anaesthesia and
362 abdominal surgery did not decrease hippocampal collagen IV expressions in the present study.
363 However, Cao et al. measured collagen IV expression immediately after anaesthesia, while in our

364 study, measurements were performed two weeks after anaesthesia and surgery. Therefore, collagen
365 IV levels might already be recovered and not contribute to any further long-term BBB leakage after
366 surgery as seen previously (67). Nevertheless, our finding that postoperative WBV increased
367 hippocampal CA2 and CA3 collagen IV levels and a relevant tendency was observed in the DG, could
368 be regarded as a potential neuroprotective effect of WBV. In addition to its essential role in
369 maintaining BBB integrity, the vascular basement membrane is an important contributor to the
370 development of brain blood vessels (68). Cavaglia et al. previously demonstrated that the rat
371 microvessel density was higher in the hippocampal CA3 region compared to the CA1 region (69),
372 indicating hippocampal area-specific differences in capillary density, which may be reflected in area-
373 specific differences in collagen IV expression responses to WBV. As for exercise, Davis et al.
374 demonstrated that running exercise (30 min daily for a total of 3 weeks) increased collagen IV
375 expression and reduced its loss after stroke in rat cortex and striatum basal lamina, hence, indicating
376 improved BBB integrity and basal lamina function (70). Accordingly, in the present study, exercise
377 may have induced a slight, but not significant, increase in CA3 collagen IV expression. Longer exercise
378 intervention may be needed to induce a significant effect. Collagen VI, which was previously
379 demonstrated to have a neuroprotective role under physiological conditions (19), and expression
380 was shown to increase upon neuronal injury (20), showed no significant differences in expression in
381 the different hippocampal areas after abdominal surgery or after either intervention. These findings
382 may implicate that the rats did not display severe hippocampal neuronal injury two weeks after
383 surgery, as was hypothesized. Accordingly, microglia activation was only observed in the CA1 area,
384 and in general agreement with our previous findings (4,34,48).

385 **Conclusions**

386 Results indicate that surgery, in addition to the induction of microglia activation, may decline
387 collagen expression in the hippocampus (CA1). This neuroinflammation combined with a loss of
388 neuroprotection may facilitate neuronal damage. Although only partly restoring neuroinflammation,

389 both exercise as well as WBV normalized collagen expression after surgery. The functional
390 consequences of these area-specific and collagen subtype-specific effects for neuroprotection and
391 subsequent behaviour responses need further investigation. Nevertheless, since WBV shared effects
392 seen with exercise, WBV may provide a promising intervention for patients not capable or motivated
393 to perform exercise, either as replacement or step-up to exercise.

394 **Acknowledgments**

395 We thank Kunja Slopsema for her technical support and master student Eleni Gkotski for her help in
396 the microglia analysis. Erjan Hilbrands and Jacko Duker from the Department of Pathology at the
397 University Medical Center Groningen are also greatly appreciated for digital scanning of the stained
398 sections.

399

400 Figure legends:

401 **Fig 1. Microglia activity in rat hippocampal areas (mean \pm SEM).** A: Representative images of
402 microglia staining in the hippocampal CA1 area in the different experimental groups. B-G: Microglia
403 activity, measured as the ratio between cell body size and total cell size in the hippocampal CA1, CA2,
404 CA3, CA4, DG and Hilus region. #: relevant tendency (one-way ANOVA: $p < 0.150$, LSD post hoc: $p <$
405 0.05) between indicated groups. Non-surgery control ($n = 9-10$), surgery control (+ pseudo
406 WBV/exercise) ($n = 14-15$), surgery + WBV ($n = 14-15$) and surgery + exercise ($n = 11-12$). CA: Cornu
407 Ammonis, DG: Dentate Gyrus, WBV: Whole-body vibration.

408 **Fig 2. Representative photomicrograph of Sirius red/Fast green stained hippocampus and**
409 **identified areas, as well as quantification of hippocampal total collagen (mean \pm SEM).** A: Sirius
410 Red/Fast Green staining was performed to visualize hippocampal total collagen in the CA1, CA2, CA3,
411 CA4 and DG areas. Positive-stained blood vessels are indicated with arrows. The area of total
412 collagen (%) was quantified in predetermined areas of interest (B-F). *: significant ($p < 0.05$)
413 difference between indicated groups. #: relevant tendency (one-way ANOVA: $p < 0.150$, LSD post
414 hoc: $p < 0.05$) between indicated groups. Non-surgery control ($n = 12-13$), surgery control (+ pseudo
415 WBV/exercise) ($n = 16$), surgery + WBV ($n = 13-15$) and surgery + exercise ($n = 12-13$). CA: Cornu
416 Ammonis, DG: Dentate Gyrus, WBV: Whole-body vibration.

417

418 **Fig 3. Representative photomicrograph of a hippocampus stained for collagen III and quantification**
419 **of hippocampal collagen III presence (mean \pm SEM).** A: Representative image of
420 immunohistochemical collagen III staining in the hippocampus. Positive-stained blood vessels are
421 indicated with arrows. B-F: The presence of collagen III was manually scored in the CA1, CA2, CA3,
422 CA4 and DG granular layer. *: significant ($p < 0.05$) or **: significant ($p < 0.01$) difference between
423 indicated groups. Non-surgery control ($n = 14$), surgery control (+ pseudo WBV/exercise) ($n = 16$),
424 surgery + WBV ($n = 16$) and surgery + exercise ($n = 15$). CA: Cornu Ammonis, DG: Dentate Gyrus,
425 WBV: Whole-body vibration.

426 **Fig 4. Representative photomicrograph of a hippocampus stained for collagen IV and quantification**
427 **of hippocampal collagen IV expression (mean \pm SEM).** A: An immunohistochemical collagen IV
428 staining showed clear presence of collagen IV in the CA1, CA2, CA3, CA4 and DG granular layer.
429 Positive-stained blood vessels are indicated with arrows. B-F: Collagen IV expressions were quantified
430 by measuring the OD in the individual hippocampal areas. *: significant ($p < 0.05$) or **: significant (p
431 < 0.01) between indicated groups. #: relevant tendency (one-way ANOVA: $p < 0.150$, LSD post hoc: p
432 < 0.05). Non-surgery control ($n = 13-14$), surgery control (+ pseudo WBV/exercise) ($n = 15-16$),
433 surgery + WBV ($n = 15-16$) and surgery + exercise ($n = 15-16$). CA: Cornu Ammonis, DG: Dentate
434 Gyrus, OD: Optical Density, WBV: Whole-body vibration.

435

436 **Fig 5. Representative photomicrograph of a hippocampus stained for collagen VI and quantification**
437 **of hippocampal collagen VI expression (mean \pm SEM).** A: An immunohistochemical collagen VI
438 staining showed clear presence of collagen VI in the CA1, CA2, CA3, CA4 and DG areas. A positive-
439 stained blood vessel is indicated with an arrow. B-F: Quantification of collagen VI expression by
440 measuring the OD in the individual hippocampal areas. ##: relevant tendency (one-way ANOVA: $p <$
441 0.150 , LSD post hoc: $p < 0.01$). Non-surgery control ($n = 8-10$), surgery control (+ pseudo
442 WBV/exercise) ($9-11$), surgery + WBV ($n = 5-8$), surgery + exercise ($n = 9-10$). CA: Cornu Ammonis,
443 DG: Dentate Gyrus, OD: Optical Density, WBV: Whole-body vibration.

444

445 Table legend:

446 **Table 1. Microglia morphology characteristics in the different rat hippocampal areas; CA1, CA2,**

447 **CA3, CA4 and DG (mean \pm SEM).** The density (number per high power field), coverage (%), cell size

448 (pixels), cell body size (pixels) and dendritic processes size (pixels) of the microglia images are shown.

449 **: significant ($p < 0.01$) difference compared to surgery control. #: relevant tendency (one-way

450 ANOVA: $p < 0.150$, LSD post hoc: $p < 0.05$). Differences and relevant tendencies are presented bold.

451 CA: Cornu Ammonis, DG: Dentate Gyrus.

452

453 Table 1:

	Characteristics	Non-surgery control (n=9-10)	Surgery control (n=14-15)	Surgery + WBV (n=14-15)	Surgery + exercise (n=11-12)
CA1	Density	13 ± 1	15 ± 1	15 ± 1	14 ± 0.4
	Coverage	14.8 ± 0.8	13.9 ± 0.5	14.0 ± 0.6	12.9 ± 0.6
	Cell size	11599 ± 687	9527 ± 697 (#)	9415 ± 627 (#)	9744 ± 594
	Cell body size	439 ± 14	478 ± 23	429 ± 15	434 ± 16
	Dendritic area	11160 ± 685	9039 ± 693 (#)	8970 ± 638 (#)	9296 ± 592
CA2	Density	14 ± 1	14 ± 1	14 ± 1	14 ± 1
	Coverage	13.6 ± 0.8	14.5 ± 0.6	14.2 ± 0.5	14.0 ± 0.4
	Cell size	9734 ± 477	11686 ± 699	10681 ± 469	10474 ± 695
	Cell body size	440 ± 20	432 ± 13	423 ± 16	453 ± 18
	Dendritic area	9290 ± 473	11263 ± 698	10279 ± 476	10020 ± 700
CA3	Density	14 ± 1	14 ± 1	14 ± 1	15 ± 1
	Coverage	13.4 ± 0.7	14.3 ± 0.4	13.4 ± 0.5	13.4 ± 0.4
	Cell size	9159 ± 567	10251 ± 535	9439 ± 413	9713 ± 510
	Cell body size	406 ± 15	419 ± 10	395 ± 10	394 ± 10
	Dendritic area	8744 ± 573	9838 ± 536	9044 ± 413	9310 ± 514
CA4	Density	21 ± 1	23 ± 1	23 ± 1	23 ± 2
	Coverage	12.6 ± 0.2	12.9 ± 0.5	13.2 ± 0.4	12.9 ± 0.5
	Cell size	5961 ± 287	5940 ± 268	6049 ± 352	6013 ± 309
	Cell body size	404 ± 9	414 ± 10	407 ± 10	393 ± 6
	Dendritic area	5549 ± 280	5526 ± 266	5642 ± 352	5390 ± 230
	Density	14 ± 0.2	15 ± 1	15 ± 1	15 ± 1
	Coverage	13.1 ± 0.4	13.2 ± 0.5	13.6 ± 0.3	13.6 ± 0.5

DG	Cell size	9434 ± 367	9106 ± 329	9746 ± 461	9957 ± 503
	Cell body size	385 ± 17	394 ± 11	396 ± 13	376 ± 14
	Dendritic area	9031 ± 365	8530 ± 287	9350 ± 462	9581 ± 505
Hilus	Density	34 ± 3	39 ± 2	38 ± 3	42 ± 2
	Coverage	10.3 ± 1.0	9.3 ± 0.5	11.7 ± 0.3 (**)	10.7 ± 0.5
	Cell size	2934 ± 312	2670 ± 168	3284 ± 262	2752 ± 163
	Cell body size	389 ± 10	373 ± 12	395 ± 18	380 ± 13
	Dendritic area	2531 ± 306	2297 ± 165	2876 ± 250	2379 ± 164

454

455

456 **References**

457 1. Gawande A. Two Hundred Years of Surgery. *N Engl J Med.* 2012 May 3;366(18):1716–23.

458 2. Evered L, Scott DA, Silbert B. Cognitive decline associated with anesthesia and surgery in the
459 elderly: Does this contribute to dementia prevalence? Vol. 30, *Current Opinion in Psychiatry*.
460 Lippincott Williams and Wilkins; 2017. p. 220–6.

461 3. Skvarc DR, Berk M, Byrne LK, Dean OM, Dodd S, Lewis M, et al. Post-Operative Cognitive
462 Dysfunction: An exploration of the inflammatory hypothesis and novel therapies. Vol. 84,
463 *Neuroscience and Biobehavioral Reviews*. Elsevier Ltd; 2018. p. 116–33.

464 4. Hovens IB, van Leeuwen BL, Nyakas C, Heineman E, van der Zee EA, Schoemaker RG. Prior
465 infection exacerbates postoperative cognitive dysfunction in aged rats. *Am J Physiol Integr
466 Comp Physiol.* 2015 Jul 15;309(2):R148–59.

467 5. Luo AL, Yan J, Tang X Le, Zhao YL, Zhou BY, Li SY. Postoperative cognitive dysfunction in the
468 aged: the collision of neuroinflammaging with perioperative neuroinflammation.
469 *Inflammopharmacology.* 2019;27(1):27–37.

470 6. Feng X, Valdarcos M, Uchida Y, Lutrin D, Maze M, Koliwad SK. Microglia mediate
471 postoperative hippocampal inflammation and cognitive decline in mice. *JCI insight.* 2017 Apr
472 6;2(7):e91229.

473 7. Saxena S, Maze M. Impact on the brain of the inflammatory response to surgery. Vol. 47,
474 *Presse Medicale.* Elsevier Masson SAS; 2018. p. e73–81.

475 8. Fidalgo AR, Cibelli M, White JPM, Nagy I, Maze M, Ma D. Systemic inflammation enhances
476 surgery-induced cognitive dysfunction in mice. *Neurosci Lett.* 2011 Jul 1;498(1):63–6.

477 9. Cao XZ, Ma H, Wang JK, Liu F, Wu BY, Tian AY, et al. Postoperative cognitive deficits and
478 neuroinflammation in the hippocampus triggered by surgical trauma are exacerbated in aged
479 rats. *Prog Neuro-Psychopharmacology Biol Psychiatry*. 2010 Dec 1;34(8):1426–32.

480 10. Kluger MT, Skarin M, Collier J, Rice DA, McNair PJ, Seow MY, et al. Steroids to reduce the
481 impact on delirium (STRIDE): a double-blind, randomised, placebo-controlled feasibility trial of
482 pre-operative dexamethasone in people with hip fracture. *Anaesthesia*. 2021 Aug
483 1;76(8):1031–41.

484 11. Danielson M, Reinsfelt B, Westerlind A, Zetterberg H, Blennow K, Ricksten SE. Effects of
485 methylprednisolone on blood-brain barrier and cerebral inflammation in cardiac surgery-a
486 randomized trial. *J Neuroinflammation*. 2018 Sep 27;15(1).

487 12. Krishnaswamy VR, Benbenishty A, Blinder P, Sagi I. Demystifying the extracellular matrix and
488 its proteolytic remodeling in the brain: structural and functional insights. Vol. 76, *Cellular and*
489 *Molecular Life Sciences*. Birkhauser Verlag AG; 2019. p. 3229–48.

490 13. Testa D, Prochiantz A, Di Nardo AA. Perineuronal nets in brain physiology and disease. Vol. 89,
491 *Seminars in Cell and Developmental Biology*. Elsevier Ltd; 2019. p. 125–35.

492 14. Wingert JC, Sorg BA. Impact of Perineuronal Nets on Electrophysiology of Parvalbumin
493 Interneurons, Principal Neurons, and Brain Oscillations: A Review. *Front Synaptic Neurosci*.
494 2021 May 10;13.

495 15. Paulsson M. Basement membrane proteins: structure, assembly, and cellular interactions. *Crit
496 Rev Biochem Mol Biol*. 1992;27(1–2):93–127.

497 16. Thomsen MS, Birkelund S, Burkhardt A, Stensballe A, Moos T. Synthesis and deposition of
498 basement membrane proteins by primary brain capillary endothelial cells in a murine model
499 of the blood–brain barrier. *J Neurochem*. 2017 Mar 1;140(5):741–54.

500 17. Reichardt LF, Tomaselli KJ. EXTRACELLULAR MATRIX MOLECULES AND THEIR RECEPTORS:

501 Functions in Neural Development. *Annu Rev Neurosci.* 1991;14:531.

502 18. Giamanco KA, Morawski M, Matthews RT. Perineuronal net formation and structure in
503 aggrecan knockout mice. *Neuroscience.* 2010 Nov;170(4):1314–27.

504 19. Cescon M, Chen P, Castagnaro S, Gregorio I, Bonaldo P. Lack of collagen VI promotes
505 neurodegeneration by impairing autophagy and inducing apoptosis during aging. *Aging*
506 (Albany NY). 2016;8(5):1083–101.

507 20. Cheng JS, Dubal DB, Kim DH, Legleiter J, Cheng IH, Yu GQ, et al. Collagen VI protects neurons
508 against A β toxicity. *Nat Neurosci.* 2009 Feb;12(2):119–21.

509 21. Schüppel K, Brauer K, Härtig W, Grosche J, Earley B, Leonard BE, et al. Perineuronal nets of
510 extracellular matrix around hippocampal interneurons resist destruction by activated
511 microglia in trimethyltin-treated rats. *Brain Res.* 2002 Dec 27;958(2):448–53.

512 22. Gleeson M, Bishop NC, Stensel DJ, Lindley MR, Mastana SS, Nimmo MA. The anti-
513 inflammatory effects of exercise: mechanisms and implications for the prevention and
514 treatment of disease. *Nat Rev Immunol* 2011 119. 2011 Aug 5;11(9):607–15.

515 23. Smith CC, Mauricio R, Nobre L, Marsh B, Wüst RCI, Rossiter HB, et al. Differential regulation of
516 perineuronal nets in the brain and spinal cord with exercise training. *Brain Res Bull.* 2015 Feb
517 1;111:20–6.

518 24. Regterschot GRH, Van Heuvelen MJG, Zeinstra EB, Fuermaier ABM, Tucha L, Koerts J, et al.
519 Whole body vibration improves cognition in healthy young adults. *PLoS One.* 2014 Jun 20;9(6).

520 25. Sitjà-Rabert M, Rigau D, Fort Vanmeerhaeghe A, Romero-Rodríguez D, Bonastre Subirana M,
521 Bonfill X. Efficacy of whole body vibration exercise in older people: a systematic review.
522 *Disabil Rehabil.* 2012 Jun 6;34(11):883–93.

523 26. Oroszi T, van Heuvelen MJG, Nyakas C, van der Zee EA. Vibration detection: Its function and

524 recent advances in medical applications. F1000Research. 2020;9.

525 27. Sañudo B, Seixas A, Gloeckl R, Rittweger J, Rawer R, Taiar R, et al. Potential Application of
526 Whole Body Vibration Exercise For Improving The Clinical Conditions of COVID-19 Infected
527 Individuals: A Narrative Review From the World Association of Vibration Exercise Experts
528 (WAVex) Panel. Int J Environ Res Public Health. 2020 May;17(10).

529 28. Weinheimer-Haus EM, Judex S, Ennis WJ, Koh TJ. Low-intensity vibration improves
530 angiogenesis and wound healing in diabetic mice. PLoS One. 2014 Mar 11;9(3).

531 29. Keller B V., Davis ML, Thompson WR, Dahmers LE, Weinhold PS. Varying whole body vibration
532 amplitude differentially affects tendon and ligament structural and material properties. J
533 Biomech. 2013 May 31;46(9):1496–500.

534 30. Rodriguez-Miguel P, Fernandez-Gonzalo R, Collado PS, Almar M, Martinez-Florez S, de Paz
535 JA, et al. Whole-body vibration improves the anti-inflammatory status in elderly subjects
536 through toll-like receptor 2 and 4 signaling pathways. Mech Ageing Dev. 2015 Sep 1;150:12–9.

537 31. Boerema AS, Heesterbeek M, Boersma SA, Schoemaker R, Vries EFJ de, Heuvelen MJG van, et
538 al. Beneficial Effects of Whole Body Vibration on Brain Functions in Mice and Humans. Dose-
539 Response. 2018 Oct 1;16(4).

540 32. Oroszi T, Oberman K, Nyakas C, van Leeuwen B, van der Zee EA, de Boer SF, et al. Whole body
541 vibration, an alternative for exercise to improve recovery from surgery? Brain, Behav Immun -
542 Heal. 2022 Dec 1;26:100521.

543 33. Sgoifo A, Stilli D, Medici D, Gallo P, Aimi B, Musso E. Electrode Positioning for Reliable
544 Telemetry ECG Recordings During Social Stress in Unrestrained Rats. Physiol Behav. 1996 Dec
545 1;60(6):1397–401.

546 34. Hovens I, van Leeuwen B, Mariani M, Kraneveld A, Schoemaker R. Postoperative cognitive
547 dysfunction and neuroinflammation; Cardiac surgery and abdominal surgery are not the

548 same. *Brain Behav Immun.* 2016 May 1;54:178–93.

549 35. Van Heuvelen MJG, Rittweger J, Judex S, Sañudo B, Seixas A, Fuermaier ABM, et al. Reporting
550 Guidelines for Whole-Body Vibration Studies in Humans, Animals and Cell Cultures: A
551 Consensus Statement from an International Group of Experts. *Biology (Basel)*. 2021 Oct
552 1;10(10).

553 36. Høydal MA, Wisløff U, Kemi OJ, Ellingsen Ø. Running speed and maximal oxygen uptake in rats
554 and mice: Practical implications for exercise training. *Eur J Prev Cardiol.* 2007;14(6):753–60.

555 37. Hovens IB, Nyakas C, Schoemaker RG. A novel method for evaluating microglial activation
556 using ionized calcium-binding adaptor protein-1 staining: cell body to cell size ratio.
557 *Neuroimmunol Neuroinflammation.* 2014 Aug 28;1(2):82–8.

558 38. Annino G, Iellamo F, Palazzo F, Fusco A, Lombardo M, Campoli F, et al. Acute changes in
559 neuromuscular activity in vertical jump and flexibility after exposure to whole body vibration.
560 *Med (United States)*. 2017 Aug 1;96(33).

561 39. Cariati I, Bonanni R, Annino G, Scimeca M, Bonanno E, D'Arcangelo G, et al. Dose-Response
562 Effect of Vibratory Stimulus on Synaptic and Muscle Plasticity in a Middle-Aged Murine
563 Model. *Front Physiol.* 2021 Jun 11;12.

564 40. Beaudart C, Dawson A, Shaw SC, Harvey NC, Kanis JA, Binkley N, et al. Nutrition and physical
565 activity in the prevention and treatment of sarcopenia: systematic review. *Osteoporos Int.*
566 2017 Jun 1;28(6):1817–33.

567 41. Raval AP, Schatz M, Bhattacharya P, d'Adesky N, Rundek T, Dietrich WD, et al. Whole Body
568 Vibration Therapy after Ischemia Reduces Brain Damage in Reproductively Senescent Female
569 Rats. *Int J Mol Sci.* 2018 Sep 13;19(9).

570 42. Mee-Inta O, Zhao ZW, Kuo YM. Physical Exercise Inhibits Inflammation and Microglial
571 Activation. *Cells* 2019, Vol 8, Page 691. 2019 Jul 9;8(7):691.

572 43. Keijser JN, van Heuvelen MJG, Nyakas C, Tóth K, Schoemaker RG, Zeinstra E, et al. WHOLE
573 BODY VIBRATION IMPROVES ATTENTION AND MOTOR PERFORMANCE IN MICE DEPENDING
574 ON THE DURATION OF THE WHOLE-BODY VIBRATION SESSION. *African J Tradit Complement*
575 *Altern Med AJTCAM*. 2017;14(4):128–34.

576 44. Cardoso ALBD, Sá-Caputo DC, Asad NR, van Heuvelen MJ, van der Zee EA, Ribeiro-Carvalho A,
577 et al. Beneficial effects of whole-body vibration exercise for brain disorders in experimental
578 studies with animal models: a systematic review. *Behav Brain Res*. 2022 Aug 5;431:113933.

579 45. Alam MM, Khan AA, Farooq M. Effect of whole-body vibration on neuromuscular
580 performance: A literature review. *Work*. 2018 Jan 1;59(4):571–83.

581 46. Kreutzberg GW. Microglia: a sensor for pathological events in the CNS. *Trends Neurosci*.
582 1996;19(8):312–8.

583 47. Helmut K, Hanisch UK, Noda M, Verkhratsky A. Physiology of microglia. *Physiol Rev*. 2011
584 Apr;91(2):461–553.

585 48. Hovens IB, Schoemaker RG, Van Der Zee EA, Van Leeuwen BL. Unraveling the Role of
586 Neuroinflammation in Surgery-induced Cognitive Impairment. *Proc Meas Behav*. 2014;

587 49. Bonneh-Barkay D, Wiley CA. Brain extracellular matrix in neurodegeneration. *Brain Pathol*.
588 2009 Oct;19(4):573–85.

589 50. Nakazawa K, McHugh TJ, Wilson MA, Tonegawa S. NMDA receptors, place cells and
590 hippocampal spatial memory. Vol. 5, *Nature Reviews Neuroscience*. Nature Publishing Group;
591 2004. p. 361–72.

592 51. Leutgeb JK, Leutgeb S, Moser MB, Moser EI. Pattern separation in the dentate gyrus and CA3
593 of the hippocampus. *Science* (80-). 2007 Feb 16;315(5814):961–6.

594 52. Basu J, Siegelbaum S. The Corticohippocampal Circuit, Synaptic Plasticity, and Memory. *Cold*

595 Spring Harb Perspect Biol. 2015 Nov 1;7(11).

596 53. Carstens KE, Phillips ML, Pozzo-Miller L, Weinberg RJ, Dudek SM. Perineuronal Nets Suppress
597 Plasticity of Excitatory Synapses on CA2 Pyramidal Neurons. *J Neurosci*. 2016 Jun
598 6;36(23):6312.

599 54. Stevenson RF, Reagh ZM, Chun AP, Murray EA, Yassa MA. Pattern Separation and Source
600 Memory Engage Distinct Hippocampal and Neocortical Regions during Retrieval. *J Neurosci*.
601 2020 Jan 1;40(4):843.

602 55. Foster TC, DeFazio RA, Bizon JL. Characterizing cognitive aging of spatial and contextual
603 memory in animal models. *Front Aging Neurosci*. 2012;4(SEP).

604 56. Yamakoshi Y. Dental and Oral Biology, Biochemistry. In: Reference Module in Biomedical
605 Sciences. Elsevier; 2014.

606 57. Xue M, Jackson CJ. Extracellular Matrix Reorganization During Wound Healing and Its Impact
607 on Abnormal Scarring. *Adv Wound Care*. 2015 Mar;4(3):119–36.

608 58. Friedman DW, Boyd CD, Norton P, Greco RS, Boyarsky AH, Mackenzie JW, et al. Increases in
609 type III collagen gene expression and protein synthesis in patients with inguinal hernias. *Ann
610 Surg*. 1993;218(6):754–60.

611 59. Gallyas F. Silver staining of collagen and reticulin fibres and cerebral capillaries by means of
612 physical development. *J Microsc*. 1970 Apr 1;91(2):119–24.

613 60. Hubert T, Grimal S, Carroll P, Fichard-Carroll A. Collagens in the developing and diseased
614 nervous system. *Cell Mol Life Sci*. 2009;66(7):1223–38.

615 61. Hitti FL, Siegelbaum SA. The hippocampal CA2 region is essential for social memory. *Nat* 2014
616 5087494. 2014 Feb 23;508(7494):88–92.

617 62. Zhang D, Ying J, Ma X, Gao Z, Chen H, Zhu S, et al. Social Cognitive Dysfunction in Elderly

618 Patients After Anesthesia and Surgery. *Front Psychol.* 2020 Sep 24;0:2568.

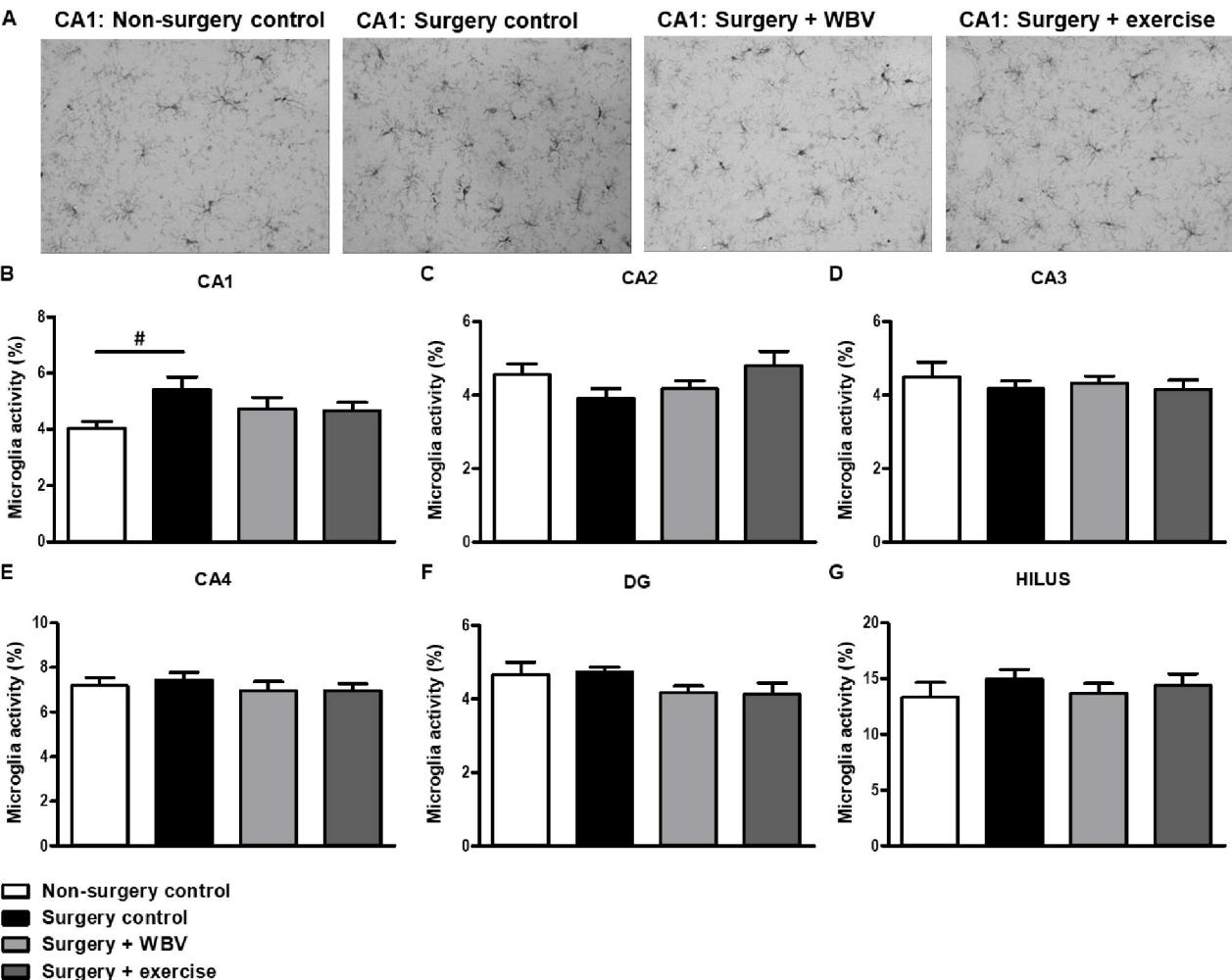
619 63. Rebola N, Carta M, Mulle C. Operation and plasticity of hippocampal CA3 circuits: implications
620 for memory encoding. *Nat Rev Neurosci.* 2017 Apr 1;18(4):209–21.

621 64. Nakazawa K, Sun LD, Quirk MC, Rondi-Reig L, Wilson MA, Tonegawa S. Hippocampal CA3
622 NMDA receptors are crucial for memory acquisition of one-time experience. *Neuron.* 2003
623 Apr 24;38(2):305–15.

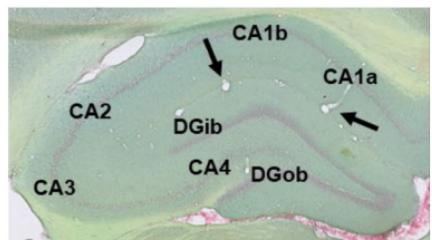
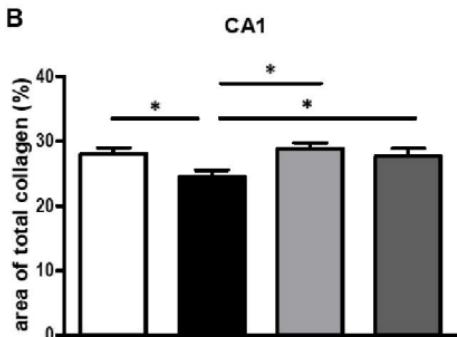
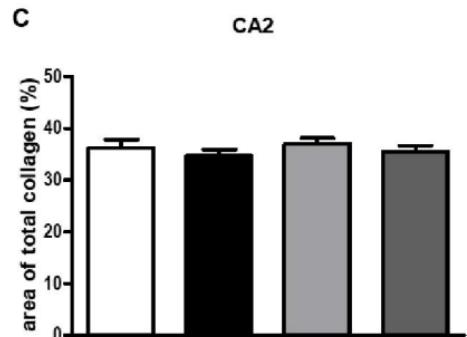
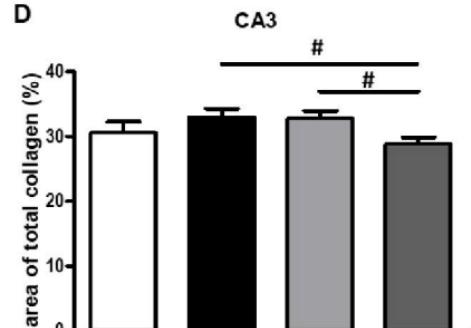
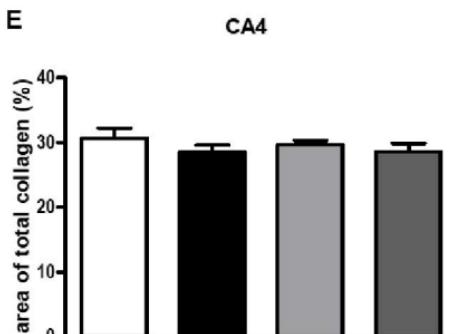
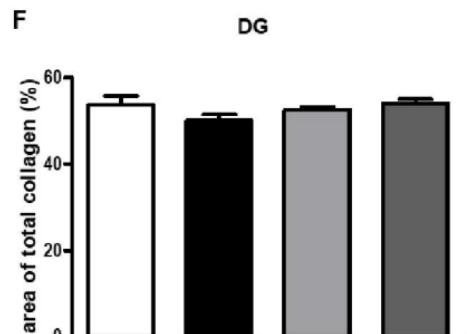
624 65. Muncie JM, Weaver VM. The Physical and Biochemical Properties of the Extracellular Matrix
625 Regulate Cell Fate. *Curr Top Dev Biol.* 2018 Jan 1;130:1–37.

626 66. Cao Y, Li Z, Li H, Ni C, Li L, Yang N, et al. Hypoxia-inducible factor-1 α is involved in isoflurane-
627 induced blood-brain barrier disruption in aged rats model of POCD. *Behav Brain Res.* 2018 Feb
628 26;339:39–46.

629 67. Wang B, Li S, Cao X, Dou X, Li J, Wang L, et al. Blood-brain Barrier Disruption Leads to
630 Postoperative Cognitive Dysfunction. *Curr Neurovasc Res.* 2017 Oct 10;14(4).


631 68. Khoshnoodi J, Pedchenko V, Hudson BG. Mammalian collagen IV. Vol. 71, *Microscopy*
632 *Research and Technique.* *Microsc Res Tech;* 2008. p. 357–70.

633 69. Cavaglia M, Dombrowski SM, Drazba J, Vasanji A, Bokesch PM, Janigro D. Regional variation in
634 brain capillary density and vascular response to ischemia. *Brain Res.* 2001 Aug 10;910(1–
635 2):81–93.







636 70. Davis W, Mahale S, Carranza A, Cox B, Hayes K, Jimenez D, et al. Exercise pre-conditioning
637 ameliorates blood–brain barrier dysfunction in stroke by enhancing basal lamina.
638 [https://doi.org/101179/016164107X204701.](https://doi.org/101179/016164107X204701) 2013 Jun;29(4):382–7.

639

Figure 1

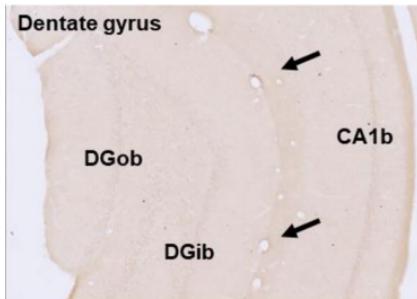
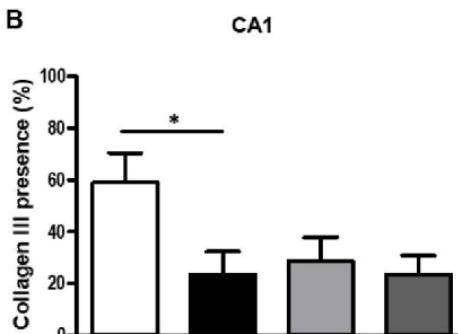
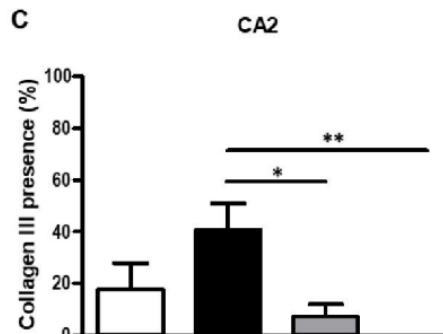
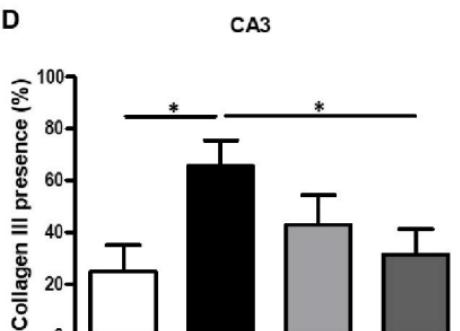
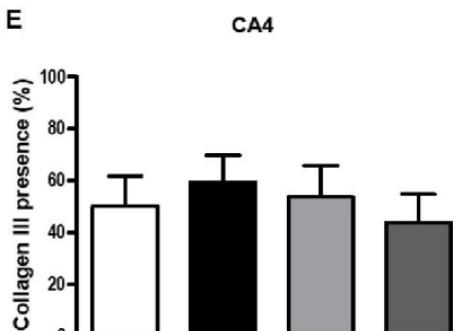
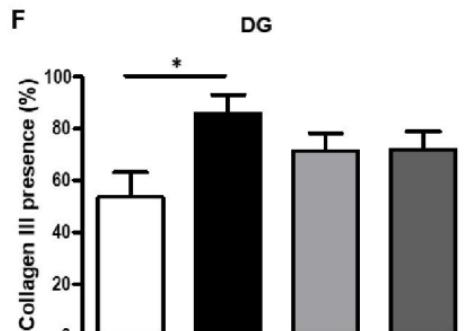







Figure 2

A**B****C****D****E****F**

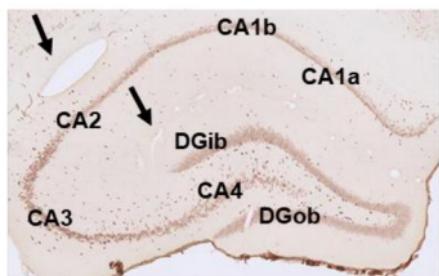
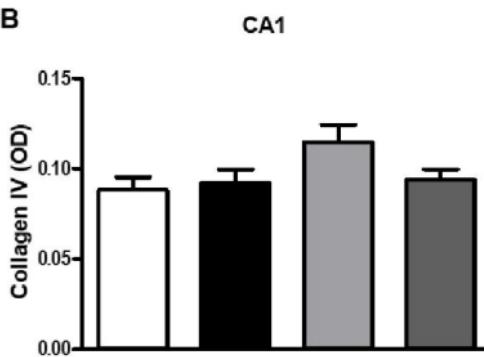
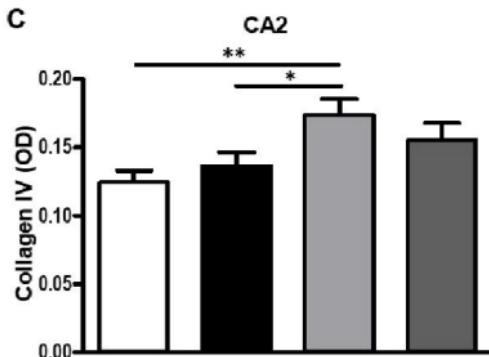
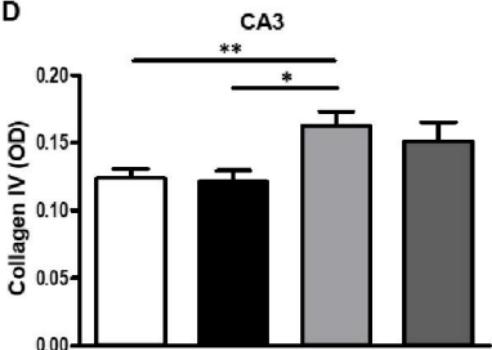
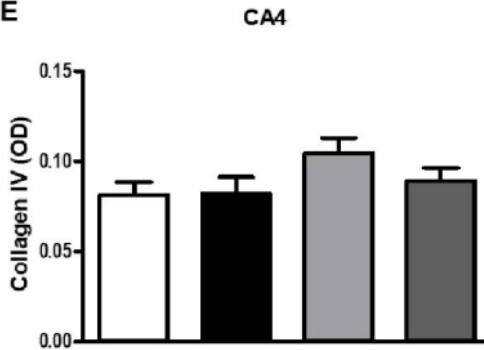
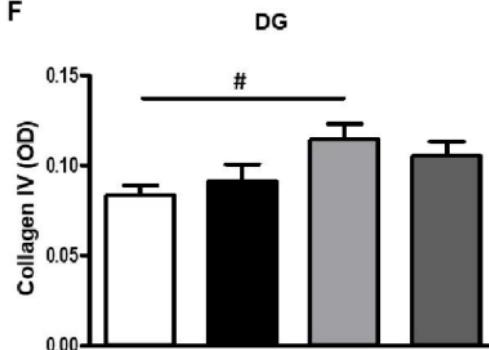






- Non-surgery control
- Surgery control
- Surgery + WBV
- Surgery + exercise

Figure 3

A**B****C****D****E****F**

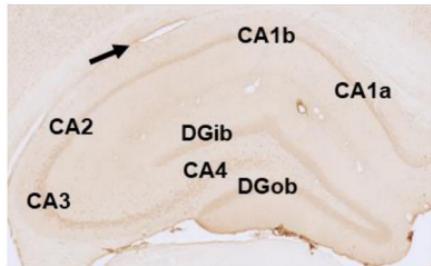
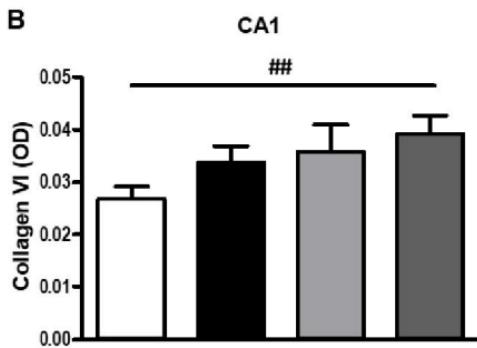
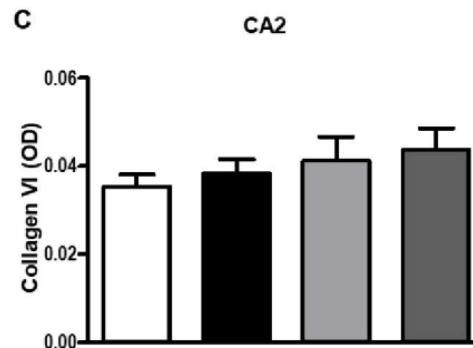
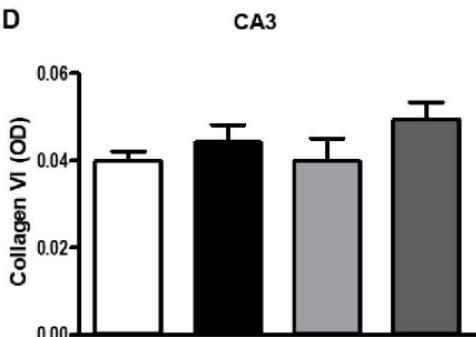
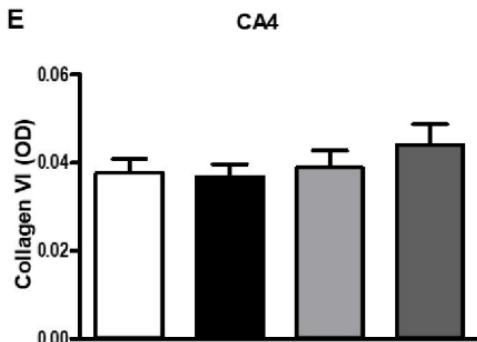
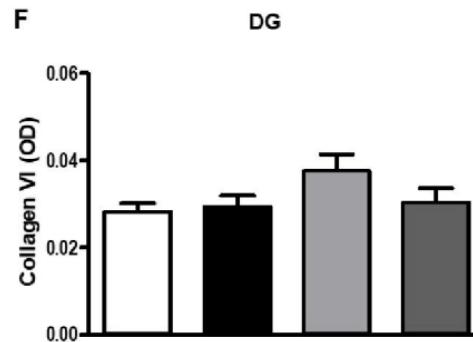






- Non-surgery control
- Surgery control
- Surgery + WBV
- Surgery + exercise

Figure 4

A**B****C****D****E****F**

- Non-surgery control
- Surgery control
- Surgery + WBV
- Surgery + exercise

Figure 5

A**B****C****D****E****F**

- Non-surgery control
- Surgery control
- Surgery + WBV
- Surgery + exercise