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ABSTRACT

3D chromatin structure has been shown to play a role in regulating gene transcription during biological transitions. 
While our understanding of loop formation and maintenance is rapidly improving, much less is known about the 
mechanisms driving changes in looping and the impact of differential looping on gene transcription. One limitation 
has been a lack of well powered differential looping data sets. To address this, we conducted a deeply sequenced 
Hi-C time course of megakaryocyte development comprising 4 biological replicates and 6 billion reads per time point. 
Statistical analysis revealed 1,503 differential loops. Gained loops were enriched for AP-1 occupancy and correlated 
with increased expression of genes at their anchors. Lost loops were characterized by increases in expression of 
genes within the loop boundaries. Linear modeling revealed that changes in histone H3 K27 acetylation, chromatin 
accessibility, and JUN binding in between the loop anchors were as predictive of changes in loop strength as changes 
to CTCF and/or cohesin occupancy at loop anchors. Finally, we built linear models and found that incorporating the 
dynamics of enhancer acetylation and loop strength increased accuracy of gene expression predictions.

INTRODUCTION

The three dimensional (3D) organization of chromatin is 
thought to play an important role in transcriptional reg-
ulation and has been implicated in many biological pro-
cesses, including cellular differentiation and response 
to external stimuli1. While several types of 3D chromatin 
structures exist, chromatin loops are of particular interest 
as they are thought to regulate gene expression by bring-
ing distal regulatory elements (e.g. enhancers) into close 
physical proximity with gene promoters via point to point 
interactions. Indeed, loop anchors are typically enriched 
for enhancers and promoters and correlate with differ-
ences in gene expression2–4. Aberrations to chromatin 
looping are associated with a variety of human diseases 
and developmental disorders such as Cornelia de Lange 
syndrome5, polydactyly6,7, and cancer8,9. While the basic 
mechanisms of loop formation have been established, 
major questions remain regarding the mechanisms driv-
ing differential looping during biological development 
and their functional impact.

The vast majority of chromatin loops are thought to 
form through a process called loop extrusion, in which 
the cohesin complex is loaded onto DNA and reels in 

chromatin until it reaches convergently bound CTCF 
proteins10. In specific cell types and biological condi-
tions chromatin loops can form through non-canonical 
mechanisms including phase separation8,11,12 or binding 
of lineage-specific factors like LDB18,11,12. While chro-
matin loops have been shown to change over cellular 
transitions, the mechanisms that govern these structural 
changes, and the impact of these changes on gene ex-
pression, remain poorly understood13,14.

The relationship between looping and gene expres-
sion is even less clear. Cell type specific loops correlate 
with differential expression patterns, supporting a role 
for loops in gene regulation15–17. Moreover, forced loop-
ing between enhancers and promoters at select loci has 
been shown to activate transcription18,19. However, sev-
eral recent studies have called the role of loops in reg-
ulating gene expression into question. Live cell imaging 
of looping between SOX2 and an enhancer known to 
regulate its expression showed no correlation between 
enhancer-promoter proximity and gene transcription20. 
In another study, rapid and thorough degradation of co-
hesin led to a complete removal of cohesin-driven loops 
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in human cancer cells with only a minor impact on gene 
expression14. In summary, the degree to which chromatin 
looping regulates gene expression is still unresolved.
One impediment to answering these questions is that 
identifying differential loops between cells and conditions 
remains challenging. Due to the depth of sequencing 
required for Hi-C data sets, the statistical requirements 
of differential analysis, and the cost of DNA sequencing, 
most existing differential looping studies lack the sta-
tistical power to adequately identify differential loops. 
And without comprehensive and rigorously defined sets 
of differential loops, it is challenging to determine what 
mechanisms drive differential looping and what tran-
scriptional impact they have. 

To address this gap, we generated a deeply sequenced 
Hi-C data set characterizing the differentiation of K562 
cells into a megakaryocyte-like state. By sequencing over 
18 billion reads across three timepoints and four biolog-
ical replicates, we achieved a statistical power of roughly 
0.932 and identified 1,503 differential loops. Generation 
and intersection with accompanying maps of chromatin 
accessibility, histone acetylation, transcription factor (TF) 
binding, and gene expression revealed insights into both 
the mechanisms and the functional impacts of differen-
tial looping during cellular differentiation. Interestingly, 
we find that regulatory features both at and between loop 
anchors correlate with changes in loop strength. Finally, 
we show that incorporating H3 K27 acetylation and chro-
matin looping dynamics into linear models in addition to 
promoter acetylation improves predictions of changes in 
gene expression.

RESULTS

Differentiation of K562 cells induces large-scale 
changes to 3D chromatin structure across multiple 
scales
To understand how 3D chromatin structures change 
over cellular differentiation, we performed a deeply 
sequenced, 3 timepoint Hi-C time course tracking the 
differentiation of K562 cells into a megakaryocyte-like 
state21. We treated K562 cells with  phorbol 12-myrisate 
13-acetate (PMA), which has been shown to induce a 
megakaryocyte-like phenotype21,22, for 0, 6, and 72h. We 
confirmed differentiation using qPCR for ITGB3, a mega-
karyocyte marker23 (Fig S1A). As K562 cells differentiate 
into a megakaryocyte-like state, they lose their potential 
to differentiate into erythroid cells. We confirmed this with 
qPCR for KLF1, an erythroid marker, which decreases 
in expression over differentiation24 (Fig S1B). We then 
performed in situ Hi-C on four biological replicates and 
sequenced them to a depth of roughly 6 billion reads per 

time point (Table S1). We generated Hi-C contact maps 
using the Juicer pipeline15, identified compartments 
using the EigenVector package25, topologically associ-
ating domains (TADs) using arrowhead15, and chromatin 
loops using SIP26 (Fig S1C). Replicates exhibited high 
similarity as measured by principal component analysis 
(PCA) (Fig S1D).

Visual inspection of the data revealed clear chang-
es at multiple scales including nuclear compartments, 
TADs, and chromatin loops (Fig 1A-C). To assess the se-
quencing depth and replicates required to achieve suf-
ficient statistical power, we analyzed our data set using 
the RNASeqPower package27. Using our dispersion of 
0.0019 and median sequencing depth of 38 counts per 
million (CPM) per loop, the statistical power to detect 
2-fold changes was 0.932, which is generally considered 
to be well-powered28 (Fig 1D). We used the dispersion 
from our Hi-C data to model predicted statistical power 
across multiple different sequencing depths and num-
bers of replicates (Fig 1D). Holding sequencing depth 
per replicate constant, we found that decreasing to 3 or 
2 replicates reduced the power estimates to 0.762 and 
0.416 respectively. To determine how this increase in 
power translated into the number of differential loops, we 
subsampled our data to multiple depths and analyzed it 
with 2, 3, or all 4 replicates (Fig 1E). Using our full data 
set of four biological replicates (~900 million reads per 
replicate) we identified 1,503 differential loops using 
DESeq229 with a log-2 fold change (LFC) greater than 1.5 
(adjusted p-value < 0.05) compared to only 698 and 45 
identified with 3 or 2 replicates respectively (Fig 1E). This 
underscores how critical sequencing depth is in the sen-
sitivity to detect differential loops. Finally, we confirmed 
the quality of these differential loops through aggregate 
peak analysis15 (APA), showing that gained loops have 
higher contact at 72 vs 0 h, and lost loops have higher 
contact at 0 vs 72 h (Fig 1F).

Genes at the anchors of gained, but not lost, loops ex-
hibit concordant changes in expression
To assess the potential transcriptional impacts of differ-
ential loops, we performed RNA-seq across 8 time points 
(0, 0.5, 1.5, 3, 6, 24, 48, and 72 h) in K562 cells treated with 
PMA. DESeq2 analysis identified 3,190 differential genes 
(adjusted p-value < 0.05, LFC > 2) which were grouped 
into 6 clusters using k-means clustering (Fig 2A). The 
biggest and most unique changes were observed at 6 
and 72 hours (1,619 differential, 527 unique genes after 
6 h; 1,925 differential, 236 unique genes after 72 h), 
which coincide exactly with our selected Hi-C timepoints. 
Consistent with the differentiation of these cells into a 
megakaryocyte-like state, the upregulated genes were 
enriched for Gene Ontology (GO) terms relating to cell 
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differentiation, cell adhesion, and morphogenesis, and 
pathways including focal adhesion, hematopoietic cell 
lineage, and regulation of actin cytoskeleton (Fig S2A-
B). Upregulated genes include megakaryocyte markers 
VWF, FLI1, and ITGB3, further supporting acquisition of a 
megakaryocyte-like phenotype.

To determine the relationship between differential 
loops and gene transcription, we intersected the pro-
moters of differential genes with differential loop calls 
(Fig 2B). We found that 9% (126 of 1,503) of differential 
loop anchors overlapped a differential gene promoter. 
Interestingly, 93% (75 out of 81) of gained loops that 
overlapped a differential gene promoter showed the 
same direction of change as the gene (p = 2.91 x 10-16, 
binomial test) (Fig 2C). This is consistent with our previ-

ous work in macrophages30,31 and suggests that gained 
loops are relevant in increasing transcription of genes at 
their anchors. Upregulated genes found at the anchors 
of gained loops include TGFB1 and THBS1, both of which 
are megakaryocyte-related32,33. An example of a gained 
loop with a concordant increase in gene expression is 
present at the INHBA locus (Fig 2D). 

In contrast, lost loops that overlapped a differential 
gene promoter showed no such concordant behavior, 
with only 33% (15 out of 45) exhibiting the same direc-
tional change as the gene (p = 0.04, binomial test) (Fig 2C). 
These findings again agree with our previous work in mac-
rophages30,31, where we did not see a significant decrease 
in expression of genes at lost loop anchors, suggesting 
that loss of looping is not sufficient to decrease transcrip-

Figure 1. Deeply sequenced Hi-C experiments provide sensitive detection of differential chromatin loops.  
(A) 20 Mb region on chromosome 7 at 100kb resolution comparing K562s at 0h (top) to differentiated megakaryocytes at 72h (bottom). Sig-
nal tracks show compartmental eigenvector calls (light blue = compartment A, dark blue = compartment B). The arrow points to qualitative 
changes in compartmentalization. (B) Zoom in of a 1.6 Mb region of chromosome 7 at 25 kb resolution. TAD calls are indicated by ranges be-
low the Hi-C map for each cell type (dark blue = cell type specific, gray = shared across cell types). (C) Zoom in of a 690 kb region in figure B 
at 10 kb resolution showing a region with differential loops. Arches indicate loop calls (dark blue = cell type specific, gray = shared across cell 
types). (D) Statistical power modeled across various theoretical sequencing depths at 2, 3, and 4 biological replicates. Red line indicates the 
median sequencing depth per loop (CPM: counts per million). (E) Actual number of differential loops called at multiple different subsampled 
sequencing depths for different numbers of replicates (M: millions). (F) Aggregate peak analysis for all loops, gained loops, and lost loops.

0

85

0

175

0

175

All
Loops

Gained
Loops

Lost
Loops

0
72

A B C

F

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100

Sequencing Depth (CPM)

Po
w

er

0

500

1000

1500

100 300 500 700 900

Sequencing Depth/replicate (M)

To
ta

l D
iff

er
en

tia
l L

oo
ps

3 reps

2 reps

4 reps

3 reps

2 reps

4 reps

D E

0

400

730,000,000 bp 50,000,000 bp

0

900

754,490,000 bp 56,130,000 bp

0

275

754,660,000 bp 55,350,000 bp

0

72

0

72

0

72

0

72

0

72

0

72

100 kb res 25 kb res 10 kb res

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 1, 2022. ; https://doi.org/10.1101/2022.10.31.514600doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.31.514600
http://creativecommons.org/licenses/by-nc-nd/4.0/


4

tional output30,31. This is also consistent with work by Rao 
et al that found almost no change in gene transcription fol-
lowing virtually complete abrogation of loop-extrusion14. 
Taken together, this suggests that loss of looping is gen-
erally not sufficient to induce a decrease in transcriptional 

output of genes at loop anchors. The anti-concordance 
we observed at loop anchors was also observed when 
looking at genes found between loop anchors. 45% of lost 
loops (228 out of 503) had a differential gene between 
their anchors, 64% of which (146 out of 228) overlapped 

Figure 2. Gene expression and chromatin accessibility changes at differential loops.
(A) RNA-seq normalized counts for all differential genes. Clusters are indicated by bars on the right side of the heatmap. Line plots show the 
mean expression per cluster. (B) Pie charts showing the proportion of differential loops (left) and genes (right). (C) Concordance analysis for 
the 126 differential loops that had a differential gene promoter at an anchor. Asterisks represent p < 0.05 (binomial test). (D) Example region 
of a gained loop with an increased gene at the INHBA locus. (E) ATAC-seq normalized counts for all differential peaks. Clusters indicated by 
bars on the right side of the heatmap. Line plots show the mean expression per cluster. (F) Pie charts showing the proportion of differential 
loops (left) and ATAC peaks (right). (G) Concordance analysis for the 647 differential loops that had a differential ATAC peak at a promoter. 
Asterisks represent p < 0.05 (binomial test). (H) TF motif enrichment analysis on all ATAC peaks at all loops (top), concordant gained ATAC 
peaks at gained loop anchors (middle), and concordant lost ATAC peaks at lost loop anchors (bottom). 
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a gene that was increasing (p = 2.69 x 10-5, binomial test) 
(Fig S2C). Genes that overlapped the interior of lost loops 
were expressed at significantly higher levels compared 
to genes within gained loops  (p = 1.85 x 10-23, Wilcoxon 
rank sum test) (Fig S2D). This also agrees with our work in 
macrophages30,31 showing that extremely high expression 
of genes within loop boundaries was associated with a 
weakening of the loop, suggesting that high transcription 
at loop interiors might antagonize loop extrusion. Indeed, 
several other studies provide evidence that transcription 
can serve as a barrier to and/or interfere with loop extru-
sion34–36.

Gained loops are associated with increased accessi-
bility at AP-1 motifs 
To assess which TFs were involved in loop based regu-
lation, we mapped chromatin accessibility using ATAC-
seq in K562 cells treated with PMA for 0, 6, and 72 h. 
Differential chromatin accessibility analysis with DESeq2 
revealed 37,609 differential peaks (adjusted p-value, LFC 
> 2), which we grouped into 4 clusters based on whether 
the peak reached maximal or minimal normalized counts 
at 6 or 72h (Fig 2E). As was the case with gene expres-
sion, differential chromatin accessibility peaks were 
highly concordant at the anchors of gained, but not lost, 
loops (Fig 2F-G). 

To understand the mechanisms driving differential 
looping we performed TF motif enrichment on various 
sets of ATAC peaks at loops anchors (Fig 2H). As expected 
CTCF was the most enriched motif at ATAC peaks overlap-
ping all loop anchors, which is consistent with its known 
role in loop formation and maintenance. In contrast, peaks 
of gained chromatin accessibility at gained loop anchors 
were highly enriched for Activator Protein 1 (AP-1) fam-
ily members. This is consistent with our previous work 
showing the enrichment of AP-1 at the anchors of gained 
loops during macrophage development30. Peaks of de-
creased chromatin accessibility at lost loop anchors were 
enriched for Gata family members, albeit to a far lesser 
degree compared to the enrichments observed at all or 
gained loops. GATA TFs have a well established role in me-
diating cell fate decisions in myeloid cell development37–39. 

Differential looping is associated with chromatin fea-
tures both at and between loop anchors
To gain further insight into the mechanisms driving dif-
ferential looping, we generated matched CUT&RUN data-
sets for multiple TFs and histone modifications. Due to 
the enrichment of AP-1 motifs at the anchors of gained 
loops, we performed CUT&RUN for JUN, a member of the 
AP-1 family. We also targeted histone H3 K27 acetylation, 
which is commonly used to identify putative enhancers, 
and CTCF and RAD21, proteins with known roles in DNA 

looping. For each assay, we performed differential anal-
ysis and compared how each differential feature corre-
sponds to differential looping (Fig S3A-D). For all fea-
tures, we observed statistically significant concordance 
at gained loop anchors (Fig 3A-B). With the notable 
exception of RNA, all features were also concordant at 
lost loop anchors, albeit to a lesser degree.

Investigating these trends more closely revealed two 
prominent features. First, while all features increased 
at gained loop anchors, some exhibited bigger chang-
es than others. Surprisingly, the canonical mediators of 
chromatin looping, CTCF and RAD21, increased by only 
1.26- and 1.23-fold respectively at gained loop anchors. 
In contrast, histone H3 K27ac increased nearly 14-fold 
at gained loop anchors (median = 13.86-fold). Chroma-
tin accessibility and JUN binding increased by modest 
amounts, 1.72- and 2.16-fold respectively. Second, while 
increased signals were observed at gained loop anchors, 
they were also observed between loop anchors. For ex-
ample chromatin accessibility and histone H3 K27ac 
peaks within the boundaries of gained loops increased 
by 2.99- and 11.52-fold respectively.

Examples of these trends are evident at the TBX3 lo-
cus (Fig 3C). Gained enhancer-promoter looping is asso-
ciated with increases in CTCF and RAD21 occupancy at 
loop anchors as well as large gains in chromatin accessi-
bility and JUN occupancy at, between, and even beyond 
loop boundaries. Expression of TBX3 itself, a TF known to 
regulate developmental transitions40, increases by over 
50 fold. Taken together these results suggest that differ-
ential looping may involve more than just alterations to 
CTCF and RAD21 occupancy. They may also be mediated 
by chromatin modifying proteins and condition-specific 
TF binding events that act both at loop anchors and with-
in the loop interior.

Changes in chromatin features predict changes in 
chromatin looping

To explore this further and determine which chromatin 
features are the most predictive of changes in chroma-
tin looping, we investigated how changes in each feature 
correlated with changes in looping (Fig 4A). Despite the 
relatively small fold change of CTCF peaks at differential 
loop anchors, we found that CTCF occupancy changes 
had the highest correlation (R2 = 0.189) with loop log2 
fold-change (Fig 4A), consistent with the role of CTCF in 
the formation and maintenance of loops. However, chang-
es to multiple features in the loop “interior”—the region in 
between the two anchors—also strongly exhibited strong 
correlations with differential looping. Interior chromatin 
accessibility, histone H3 K27 acetylation, and JUN occu-
pancy had correlations of 0.175, 0.154, 0.127, followed by 
anchor RAD21 occupancy (R2 = 0.117). Several features 
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exhibited very slight negative correlations including inte-
rior gene expression and CTCF occupancy, which is con-
sistent with each of these having the ability to antagonize 
loop extrusions as previously described13,34,41. In addition 
to correlations with changes in looping, many of the fea-
tures are highly correlated with each other (Fig S4).  

Given the relationships between changes in looping 
and multiple features both at and between loop anchors, 
we next asked if we could build a better model to predict 
differential looping using multiple features simultaneous-
ly.  We used the caret package to perform LASSO regres-
sion42,43. We selected 1,127 differential loops and 2,254 
non-differential loops that were matched for distance 
and contact frequency as our training set and held out 
376 differential loops and 752 non-differential loops as a 
testing set to evaluate our model. We then used LASSO 
with 10 cross-validations to generate a predictive mod-

el using various sets of features (Fig 4A) and evaluated 
it by applying it to our test set. Using all anchor features 
improved the correlation to R2 = 0.279, far higher than us-
ing the best single feature alone (CTCF anchor max, R2 
= 0.189; Fig 4B). Surprisingly, using only interior features 
yielded an even more accurate model with an R2 of 0.317 
(Fig 4B).  Combining all features at both the anchors and 
interiors produced the strongest predictions with an R2 
of 0.405 (Fig 4B-C). Further, the model accurately pre-
dicted the signs of 91% of gained loops and 72% of lost 
loops. The predictive power of histone H3 K27 acetyla-
tion, chromatin accessibility, and JUN occupancy is sur-
prising, and especially so given that the highest correla-
tions were observed within loop boundaries rather than 
at anchors themselves. This may suggest that epigenetic 
changes between anchor sites play a significant role in 
modulating loop strength.

Figure 3. Changes in chromatin features are correlated with changes in looping.
(A) Intersections of each feature at the lotop anchors and interior for gained, static, and lost loops (dark blue = anchor, light blue = interior). 
All plots are on the same scale for the y-axis, showing log2(fold-change). Wilcoxon rank sum test was performed for each feature to com-
pare gained/lost anchors to static anchors and gained/lost interiors to static interiors, asterisks represent p < 0.05. (B) Median unshrunken 
log2(fold-change) of each dataset at gained loops (left), and lost loops (right). Asterisks represent p < 0.05, dots represent p > 0.05. (C) 600 
kb region around a loop at the TBX3 locus at 10 kb resolution. The arrow is pointing to the gained loop. Signal tracks for ATAC-seq, H3K27ac, 
Jun, CTCF, Rad21, and RNA for K562s at 0h and differentiated megakaryocytes at 72h show increased occupancy for all features. Gray bars 
indicate 10 kb loop anchors. 
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Changes in and histone acetylation and chromatin 
structure predict changes in gene expression 
Predicting gene expression patterns from chromatin fea-
tures is a long standing and difficult problem in the field 
of gene regulation. Recent advances have been made 
by incorporating both 2D (e.g. histone H3 K27 acetyla-
tion) and 3D (e.g. Hi-C contacts) features into the Activ-
ity-By-Contact model of gene regulation44. This model 
has been successful in assigning enhancers to their tar-
get genes but has typically been applied to resting cells 
rather than biological transitions. A notable exception is 
Beagan et al. that correlated changes to ABC score to 
changes in gene expression45 albeit at only a handful of 
genomic loci. We leveraged this approach to determine if 
chromatin dynamics could help predict changes in gene 
expression in a genome-wide fashion.

To evaluate our ability to predict changes in gene ex-
pression we built and evaluated four linear models. In the 
first model, changes in gene expression were predicted 
based solely on changes in promoter H3 K27ac which 
performed well with an R2 of 0.401 (Fig 5A). In the second 
model, adding information from the nearest enhancer 
slightly decreased the predictive power (Wilcoxon rank 
sum test on permutations, p = 1.99 x 10-6;  median R2 = 
0.401; Fig 5B). In contrast, in the third model, by combin-
ing H3 K27ac information from both the promoter and 
enhancers that were physically looped to the promoter, 
the R2 increased significantly to 0.421 (Wilcoxon rank 
sum test on permutations, p = 1.99 x 10-122; Fig 5B). We 

then calculated a modified ABC score (see methods) by 
taking the product of loop strength and distal enhancer 
activity for each looped enhancer-promoter pair, sum-
ming across all enhancers that were looped to each gene, 
and then calculating the fold-change. Finally, the last lin-
ear model built using both promoter histone H3 K27ac 
and change in ABC score increased the R2 even further to 
0.467 (Fig 5D), a significant improvement compared to all 
other models (Wilcoxon rank sum test on permutations, 
p = 1.95 x 10-182; Fig 5E-F). The improvement was even 
more drastic when building and applying the model to 
specifically differential genes and differential loops. For 
the models built on differential genes and loops, R2 val-
ues improve from  0.674 (promoter only model) to 0.763 
for the promoter plus ABC score model (Fig S5A-E). 
These findings suggest that alterations to both enhancer 
activity and contact frequency can tune transcriptional 
programs during cellular differentiation.

DISCUSSION

Collection and integration of deeply sequenced Hi-C and 
other genomic data characterizing the differentiation of 
K562 cells into a megakaryocyte-like state strengthened 
previous findings and provided novel observations into 
the mechanisms and impacts of changes to 3D chromatin 
structure. Our results confirmed canonical roles for CTCF 
and RAD21 in loop establishment and were consistent 

​​Figure 4. Changes in chromatin features predict changes in chromatin looping. 
(A) R2 multiplied by the sign of association for all possible features correlated individually against changes in all loops in the model (top). 
Heatmap (bottom) is a legend where the feature, position, and measure for each bar are reported. (features: A = ATAC, K = H3K27ac, J = 
JUN, C = CTCF, R = RAD21, T = RNA; position: A = anchor, I = interior; measure: M = max, S = sum). (B) R2 values calculated for the anchor 
only, interior only, or all feature models. (C) Scatterplot showing the predicted loop fold-change vs actual loop fold-change for the testing 
dataset for looping. (Gray = static loops, teal = gained loops, maroon = lost loops, R2 calculated for all loops included in the testing dataset). 
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with chromatin looping playing a role in transcriptional 
activation and/or enhancement; however, these results 
also revealed strong correlations between differential 
looping and other regulatory features including chromatin 
accessibility, histone H3 K27 acetylation, and AP-1 occu-
pancy and found a lack and/or anti-correlation of gene 
expression at lost loops. Intriguingly, differential looping 
correlated with transcriptional and regulatory features 
both at and between loop boundaries. In many cases, the 
correlations with internal features were stronger than the 
correlation with anchor signals. These results raise fur-
ther questions regarding the mechanisms driving differ-
ential looping and point to previously underappreciated 
roles of molecules other than CTCF and cohesin.

The correlation between gained loops and the expres-
sion genes at their anchors agrees with many previous 
studies and supports the role of chromatin looping in 
gene activation. The increased predictive power when 
incorporating acetylation dynamics of looped enhancers 
and the dynamics of loop strength itself further empha-

size this point.  In contrast, loss of looping does not coin-
cide with decreased expression of anchor genes. In fact, 
more genes were increasing in expression than decreas-
ing at the anchors of lost loops. This is consistent with our 
previous studies of macrophage development and activa-
tion, neither of which identified a decrease in expression 
at lost loop anchors30,31. Taken together, this suggests that 
while loops may be involved in transcriptional activation, 
loss of looping alone may not be sufficient for transcrip-
tional repression or decreased expression. This agrees 
well with previous studies involving rapid depletion of co-
hesin and subsequent global loss of loop extrusion-driven 
loops. Rao et al14 found that loop elimination did not sub-
stantially alter gene transcription—as measured directly 
using PRO-seq—in human colorectal cancer (HCT-116) 
cells. In contrast, loop disruption does inhibit activation 
of proinflammatory transcription in macrophages treat-
ed with LPS46 (a bacterial cell wall component commonly 
used as a model for inflammatory activation), again sug-
gesting that loops do play a role in gene activation. While 

​​Figure 5. Changes in gene expression are explained by combined proximal and distal enhancer activity and loop strength.
Scatter plots showing predicted gene-fold change vs actual gene fold-change based on (A) promoter H3K27 ac LFC alone, (B) promoter 
H3K27ac LFC and the nearest enhancer to the promoter’s LFC, (C) promoter H3K27ac LFC and distal looped H3K27ac, and (D) promoter 
H3K27ac LFC and the modified ABC LFC (dark gray = differential gene, light gray = static gene). (E) R2 for each model calculated based on 
1000 permutations of splitting data into training and testing sets. Wilcoxon rank sum test was performed to compare each group to the 
promoter only model, asterisks represent p < 0.05. (F) Estimates for each term in each model were calculated based on 1000 permutations 
of splitting the data into training and testing sets.  
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it is difficult to fully reconcile these findings, the evidence 
seems to be mounting that while increased looping can 
play a role in gene activation, events beyond loop dis-
ruption are required to decrease expression levels. One 
possible explanation is that looping imparts some sort of 
regulatory memory that is not erased as soon as the loop 
is disrupted. Similar mechanisms (e.g. the kiss-and-run 
mechanism)47 have been suggested before. While these 
trends are coming into focus, more functional studies are 
required to understand the exact role of chromatin loop-
ing in gene activation and repression.

Our data also support the theory that loop loss may 
be a result, rather than cause, of changes in gene tran-
scription. Differential genes within lost loops are signifi-
cantly biased towards increased expression. And those 
increased genes tend to be fairly highly expressed. We 
observed this exact same phenomena in macrophages 
responding to LPS31. This is consistent with transcription 
occurring at a high level between loop boundaries being 
antagonistic to loop extrusion, something that is easy 
to imagine given that both involve fairly large molecular 
complexes traversing the same stretch of DNA. Indeed 
several previous studies have suggested that transcrip-
tion can act as a molecular barrier to the loop extrusion 
process34–36.

Interestingly, we revealed that changes to multiple 
other chromatin features (i.e. chromatin accessibility, 
histone H3 K27 acetlyation, and AP-1 occupancy) are 
roughly as predictive as changes to known loop extru-
sion-related proteins CTCF and RAD21. The correlation 
between looping and these other features was strongest 
for features within the loop interior which may provide 
clues into the nature of this relationship. One intriguing 
possibility is that increased accessibility, histone H3 
K27 acetylation, and AP-1 binding might play a role in 
increasing the efficiency or rate of cohesin loading. This 
seems consistent with previous findings that suggested 
that cohesin loading takes place preferentially at active 
gene promoters4 which are also associated with histone 
acetylation, TF binding, and chromatin accessibility. It is 
important to acknowledge that we can not rule out the 
possibility that all of these internal changes are the re-
sult, rather than cause, of differential looping events.

Despite the intriguing findings presented here, several 
limitations of this study must be considered when inter-
preting the data and speculating about their meaning. 
First, this study is largely correlative. While intersecting the 
results of this study can provide important mechanistic in-
sights, several of the results raise new questions that must 
be addressed by future functional experiments. Second, 
in contrast to our previous work31, this time-course lacked 
the temporal resolution to put regulatory and transcrip-
tional events in temporal order, which makes it difficult 

to infer the direction of causality between any two fea-
tures. This was a conscious decision as the current cost 
of sequencing makes it unfeasible to acquire deeply se-
quenced data sets across deeply sampled time courses; 
however, this is likely to change soon as sequencing costs 
continue to decrease48,49. Finally, while this study encom-
passed a broad number of regulatory features—including 
ATAC-seq, which when combined with motif analysis can 
provide insights into the binding patterns of hundreds of 
TFs—there are a vast number of other features that likely 
influence looping (e.g. DNA methylation) for which we are 
not measuring nor explicitly accounting for.

Despite these limitations, these findings improve our 
understanding of how different trans regulators and epi-
genetic features govern changes in looping, as well as 
our understanding of the relationship between looping 
and gene expression. The deeply sequenced nature of 
this differential Hi-C analysis offers a uniquely well-pow-
ered dataset with which to explore a pressing number of 
biological questions. Moverover, this data was acquired 
in one of the most widely studied human cell lines (K562) 
for which hundreds of publicly available genome-wide 
data sets are already available. As such, this study pro-
vides a valuable new resource for future studies of chro-
matin biology. 
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METHODS

K562 culture and differentiation
K562 were cultured in RPMI media (Corning, cat # 10-040-
CV) with 10% fetal bovine serum (FBS) (Gibco, cat # 
26140079) and 1% penicillin-streptomycin (PS) (Gibco, 
cat # 15140122). For megakaryocyte differentiation, 
K562 were plated in either 6-well plates (RNA-seq, ATAC-
seq) or T-175 flasks (Hi-C, CUT&RUN) at a density of 1 x 
105 cells/mL and treated with 25 nM PMA (Sigma-Aldrich, 
cat # P1585-1MG). After 24h, the cells become semi-ad-
herent. Cells were provided with fresh media and PMA 
after 24h and 48h. Cells were collected without treatment 
or after 6 or 72h. For all treatments and library prepara-
tions, K562s were thawed and immediately split into two 
T-25 flasks to create biological replicates. 

Crosslinking
Cells were cultured in T-175 flasks containing 10 x 106 
cells for Hi-C and 5 x 106 cells for CUT&RUN at 1 x 105 
cells/mL. The collection protocol differs for where the 
cells are at during the differentiation. For suspended 
cells (0h and 6h): Media was centrifuged at 300 x g for 
5 min. Cells are in suspension for 0h and 6h. Suspended 
cells were collected and spun down 300 x g for 5 min. 
Pellets were resuspended in 10 mL of 1% formaldehyde 
(Thermo Fisher Scientific, cat # 28908) in RPMI for 10 
min with rotation. For semi-adherent cells (72h): The sus-
pended cells were harvested and centrifuged for 300 x 
g for 5 min. Pelleted cells were resuspended in 10 mL of 
1% formaldehyde, and added to the adherent cells in the 
T-175 flask to crosslink all cells at once, where they were 
put on the shaker for 10 min (from here, the protocol is the 
same for all time points). Cells were quenched with cold 
glycine for 5 min (Invitrogen, cat # 15527013) to a final 
concentration of 2.0 M for 5 min. Cells were then centri-
fuged at 562 x g, resuspended in cold PBS (Corning, cat # 

21040CV), and split into 3 tubes of approximately 3 x 106 
cells each (HiC) or 10 tubes of approximately 5 x 105 each 
(CUT&RUN). Cells were spun again at 562 x g for 5 min 
and washed again with cold PBS, then aspirated and flash 
frozen in liquid nitrogen, and stored at -80ºC. 

In situ Hi-C library preparation
Four treatments (biological replicates) were performed. 
For each treatment, either two or three frozen pellets (3 
x 106 each) were used to generate technical replicates (3 
technical replicates for the first two biological replicates 
and 2 technical replicates for the last two biological 
replicates). Libraries were generated according to the 
protocol as described in Rao et al15. Briefly, crosslinked 
we lysed the cells, isolated nuclei, and used MboI (New 
England Biolabs, cat # R0147L) to digest chromatin over-
night. The fragment ends were biotinylated, proximity 
ligated, and reverse crosslinked. Quantification of shear-
ing DNA was achieved with Qubit (dsDNA Broad Range 
(BR) assay) (Thermo Fisher Scientific, cat # Q32850). 
We then sheared the samples on a Covaris LE 220 (duty 
factor 25, PIP 500, 200 cycles/burst, 90 seconds). 2% 
of each sample was run on a 2% agarose gel to confirm 
fragmentation. Size selection with AMPure XP beads 
(Beckman Coulter, cat # A63881) was then performed 
to select for DNA fragments between 300 and 500 bp. 
Biotinylated chromatin was pulled down with streptavidin 
beads. Biotin was then removed from unligated ends and 
the libraries were end repaired. We added the Illumina 
TruSeq Nano (Set A) (Illumina, cat # 20015960) indices to 
each sample in a combination appropriate for pooling and 
amplified using 9 cycles of PCR. Final quantification was 
achieved using Qubit (dsDNA High Sensitivity (HS) assay) 
(Thermo Fisher Scientific, cat # Q32851) and Tapestation 
(D1000 screentape) (Agilent, cat # 5067-5584). Libraries 
were pooled to 10 nM and sequenced across 7 Illumina 
NovaSeq S4 lanes (Novogene, 150-bp paired-end). 

RT-qPCR 
We extracted RNA from 5 x 105 cells using the QIA-
GEN RNeasy Mini kit (Qiagen, cat # 74014) with DNase 
I treatment (Qiagen, cat # 79254) and quantified with 
a Qubit Broad Range assay (Thermo Fisher Scientific, 
cat # Q32850). Reverse transcription into cDNA was 
performed with the iScript cDNA synthesis kit (Bio-
Rad, cat # 1708891). qPCR was performed with the 
TaqMan reagents using probes for ITGB3, KLF1, and 
GAPDH (Thermo Fisher Scientific, cat # Hs01001469, 
Hs00610592, Hs02786624). 

RNA-seq library preparation
We extracted RNA from 5 x 105 cells using the QIAGEN 
RNeasy Mini kit with DNase I treatment. To confirm qual-
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ity of libraries, we checked RNA integrity numbers with a 
Tapestation RNA screentape (Agilent, cat # 5067-5577) 
and confirmed them all to be above 9.7. We determined 
the concentration of all RNA samples with the Qubit Broad 
Range assay (Thermo Fisher Scientific, cat # Q10211). 

The KAPA RNA HyperPrep kit with RiboErase (HMR) 
(Kapa Biosciences, cat # KK8560) was used for library 
preparation. Illumina TruSeq adapters (Illumina, cat # 
20015960) were diluted and 0.0075 nmol was added to 
each sample. We determined library concentration and 
fragments size with Qubit (dsDNA HS assay) and Tapes-
tation (D1000 screentape). Libraries from each timepoint 
were pooled at 10 nM and each biological replicate was 
sequenced on an Illumina NextSeq 500 (75-bp paired-
end, high output kit).

ATAC-seq library preparation
We used the Omni ATAC-seq protocol as described in 
Corces et al50 with some adjustments to perform ATAC-
seq. Two treatments (biological replicates) were per-
formed. For untreated and 6h, cells were harvested and 
centrifuged at 500 x g for 5 min. For semi-adherent 72h 
cells, all of the floating cells were harvested. Adherent 
cells in each well were washed with 2 mL PBS, lifted with 
500 µL 0.5 M EDTA for 5 min, and quenched with 3 mL 
of RPMI before combining with the floating cells.  5 x 105 
cells were used for library preparation. Illumina Nextera 
XT indices (Illumina, cat # FC-131-1001) (3.75 µL/sample) 
were used for PCR. 

After 5 PCR cycles, 5% of each sample was used in 
qPCR to determine how many more cycles were neces-
sary. We found that 4-7 cycles were sufficient for final 
amplification. AMPure XP beads were used to perform 
a final cleanup (0.5X followed immediately by 1.3X) and 
quantified with the Qubit (ds DNA HS assay). The con-
centration in molarity of samples was determined by the 
KAPA Library Quantification Kit (Kapa Biosystems, cat # 
4854). Each replicate was pooled to 4 nM and sequenced 
separately on an Illumina NextSeq 500 (75-bp paired-
end, high output kit).

CUT&RUN library preparation
We generated CUT&RUN libraries following existing pro-
tocols51, but modified for the use of crosslinked cells. 
Cells were centrifuged at 500 x g at 4ºC for 10 min. For 
H3 K27ac, 0.5 µL of 1:10 diluted antibody (Abcam, cat 
# ab4729) was added to each sample. For CTCF, 0.5µL 
of 1:10 diluted antibody (Thermo Fisher Scientific, cat # 
MA5-31344) was added to each sample. For JUN, 2.08 µL 
of stock antibody (Thermo Fisher Scientific, cat # MA5-
15172) was added to each sample. For RAD21, 0.625 µL 
of stock antibody (Abcam, cat # ab992) was added to each 
sample. We then added 5 µL of KAPA Unique Dual-In-
dexed Adapters (Roche, cat # 08861919702) diluted 

to 750 nM. Libraries from each timepoint for H3 K27ac, 
CTCF, and JUN were pooled to 6 nM, and sequenced on 
an Illumina NextSeq 500 (75-bp paired-end, high output 
kit). RAD21 libraries from each timepoint were pooled to 
9 nM, and were sequenced on an Illumina NextSeq 500 
(75-bp paired-end, high output kit).

Hi-C data processing and calling compartments, do-
mains, and loops 
We processed our Hi-C data using a modified version of 
the Juicer pipeline (version 1.9.8)15. Hi-C contact maps 
were generated at 5, 10, 25, 50, 100, 200, 250, 500, 1000, 
and 2500 kb resolution for each individual technical 
replicate that was sequenced. This was for 4 biological 
replicates, 3 timepoints, and 2-3 technical replicates 
each, totaling 30 unique samples. Additionally, all of 
the samples for each timepoint were merged to create 
merged Hi-C maps. All samples and replicates across all 
timepoints were also merged to create a “Mega” map. 

Compartments were identified using the EigenVector 
R package at a 10 kb resolution25.  

TADs were identified using the arrowhead command 
within the Juicer pipeline at 25 kb resolution. Cell type 
specific TADs were identified by merging with the mari-
ner R package and using the denovo function. 

Loops were called from the merged timepoint Hi-C 
files and Mega map with SIP26 (version 1.6.1). The settings 
“-g 2 -5 2000 -fdr 0.05” were used both on the timepoint 
and the Mega map. Loops were merged in R with mariner 
using the mergeBedpe function, providing a list of 33,914 
loops. 

A count matrix was prepared using mariner52, where 
unnormalized counts at each loop pixel from each tech-
nical replicate were extracted. 

The compartment, TAD, and loop-level Hi-C maps 
were SCALE normalized and visualized with plotgarden-
er53 at 100, 10, and 5kb resolutions respectively. 

Differential loop and aggregate peak analysis
DESeq2 was used to identify differential loops using the 
count matrix prepared as described above. Loops with a 
median count of 5 counts or less were filtered out. Counts 
from the technical replicates from each biological repli-
cate were summed together and the design “~rep + time” 
was used, with a reduced design of “~rep” used to form a 
likelihood ratio test (LRT). Apeglm was used to calculate 
log-2 fold changes for each loop, comparing both 6 and 
72h to 0h. Loops were deemed significant if they had an 
adjusted p-value < 0.05 and a log-2 fold change > 1.5. 

Aggregate peak analysis (APA) was performed with 
mariner. For all, gained, and lost loops, the loop pixel and 
10 pixels around the loop were extracted with SCALE 
normalization at 10 kb resolution. 
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Hi-C Power Analysis
Power analysis was performed with the RNAPower pack-
age27. Dispersion was calculated from the differential 
loop analysis in DESeq2 as described above, where the 
minimum dispersion value was used. Power was mod-
eled across various theoretical sequencing depths and 
replicates for identifying a log-2 fold change of 2  with a 
p-value of 0.05. The rnapower function was used with an 
alpha of 0.05/33914 and a cv of the square root of the 
dispersion value.

We subsampled our Hi-C data from the merged_nod-
ups files to approximate sequencing depths of 100, 300, 
500, and 700M per biological replicate. We then repeated 
our differential loop analysis using the subsampled data 
for either 2, 3, or 4 replicates using all of the same param-
eters and loop calls. 

RNA-seq processing
Fastq quality was assessed using the FastQC and Mul-

tiQC tools (FastQC version 0.11.5, MultiQC version 1.5)54,55. 
Fastq files were trimmed with Trim Galore! (version 0.4.3) 
and quantified with Salmon (version 1.4.0) to the hg38 ge-
nome56,57. Alignment was performed using HISAT2 (ver-
sion 2.1.0), which generated BAM files that were indexed 
using samtools (version 1.9)58,59. The BAM files for each 
timepoint’s two biological replicates were merged using 
samtools and converted to bigwigs using deeptools (ver-
sion 3.0.1)60 for easy visualization of signal tracks. Reads 
were summarized into a format compatible with DESeq2 
using txImport (r version 3.3.1, tximport version 1.2.0)29,61. 

Differential gene analysis 
DESeq2 was again used to identify differential genes. 
The txi file was used as input, and the DESeqDataSet-
FromTximport was used with “~rep + time” as the design. 
A reduced design of “~rep” was used to form an LRT, as 
previously for peak analysis. Shrunken log-2 fold change 
values were calculated for each gene by comparing the 
counts at each time point to 0h with apeglm62. Significant 
genes had an adjusted p-value < 0.05 and a log-2 fold 
change > 2. 

The DESeq2 dataset was normalized with variance 
stabilized transformation. We then filtered for differen-
tial genes and calculated Z-scores based on standard 
deviation and mean. Replicates were then averaged, and 
kmeans clustering was used to identify 6 temporal clus-
tered based on the vectors of Z-scores. 

ATAC-seq processing and peak calling
Adapters were trimmed and low quality reads were filtered 
out using Trim Galore! (version 0.4.3)56. BWA mem (ver-
sion 0.7.17) was used to align reads to the hg38 genome 
and sorted using Samtools (version 1.9)59. PicardTools 

(version 2.10.3) was used to remove duplicate reads63. 
Mitochondrial reads were filtered out with Samtools 
idxstats59. For each timepoint, biological replicates were 
merged and indexed with Samtools. We called peaks 
were called on the merged files using MACS2 with the fol-
lowing parameters: -f BAM -q 0.01 -g hs --nomodel --shift 
100 --extsize 200 --keep-dup all -B --SPMR (version 
2.1.1.20160309)64. A comprehensive peak list was gen-
erated by merging peaks across all time points (181,136 
peaks). For each peak across all biological replicates 
independently, counts were extracted with bedtools mul-
ticov, which was the input for differential peak analysis65. 
Signal tracks were generated from merged time points 
with deeptools (version 3.0.1) for visualization60. 

CUT&RUN processing peak calling
Adapters were trimmed off and low quality reads were 
filtered out with Trim Galore! (Version 0.4.3)56. BWA mem 
(version 0.7.17) was used to align reads to the hg38 
genome, sorted with Samtools (version 1.9), and filtered 
for duplicates with PicardTools (version 2.10.3)59,63. Sam-
tools was again used to index all BAM files. For each 
timepoint, biological replicates were merged and indexed 
with Samtools. We called peaks on the merged files using 
MACS2 with the following parameters: -f BAM -q 0.01 -g 
hs --nomodel --shift 0 --extsize 200 --keep-dup all -B 
--SPMR (version 2.1.1.20160309)64. A comprehensive 
peak list was generated for each antibody by merging 
peaks across all time points (X, Y, Z peaks for X, Y, Z data-
sets). For each biological replicate independently, counts 
were extracted with bedtools multicov, which was the 
input for differential peak analysis65. Signal tracks were 
generated from merged time points with deeptools (ver-
sion 3.0.1) for visualization60. 

Differential ATAC-seq and CUT&RUN Peak Analysis 
DESeq2 was again used to identify differential peaks 
from ATAC-seq and all CUT&RUN data. The count matrix 
generated in the ATAC-seq and CUT&RUN processing 
was used as the input with the function DESeqDataSet-
FromMatrix. We used “~rep + time” as the design and a 
reduced design of  “rep” to form an LRT. Apeglm was used 
to calculate shrunken log-2 fold-changes for each peak 
for each dataset62. Significant peaks had an adjusted 
p-value of < 0.05 and an absolute log-2 fold change > 2. 
Peaks were clustered into up early, up mid, up late, down 
early, down mid, and down late by determining whether 
their max/min value was at 0, 6, or 72h. 

Gene Ontology and KEGG Pathway Enrichment Analysis 
We used the HOMER function findMotifs.pl on each of 
our 6 gene clusters to identify enriched gene ontology 
terms and KEGG pathways with default settings66. For GO 
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Terms, the biological_process.txt file was used and for 
KEGG pathways, the kegg.txt file was used. 

Motif Enrichment Analysis 
We used the HOMER function findMotifsGenome.pl for all 
motif enrichment66. For motifs at the anchors of all loops, 
we intersected all ATAC peaks with all loop anchors. For 
motifs at the anchors of gained loops, we intersected all 
differential gained ATAC peaks with gained loop anchors. 
For motifs at the anchors of lost loops, we intersected all 
differential lost ATAC peaks with lost loop anchors. For 
each motif enrichment, all ATAC peaks were used as the 
background. The default parameters were used with the 
following adjustments: -size given.  

Genomic Intersections 
The GenomicRanges and InteractionSet R packages 
were used to perform all genomic intersections67. Loop 
bedpe files were converted into GInteractions objects 
and were intersected with the coordinates for ATAC, H3 
K27ac, JUN, CTCF, RAD21 peaks and genes with subset-
ByOverlaps. The unshrunken fold-changes as calculated 
by DESeq2 analysis were extracted from each of the 
peaks that overlapped a loop anchor. 

Chromatin Looping Linear Model
The count matrices from previous analysis were again 
used to generate the data for the linear model. We 
used loop counts, peak counts from ATAC-seq and all 
CUT&RUN data, and transcripts per million (TPM) per 10 
kb bin from RNA-seq. For all loops, each of these counts 
was extracted from both the anchors and each anchor 
individually. In the case of multiple peaks intersecting 
with loops, the sum of all peaks was recorded. We also 
recorded the maximum values from extracting counts 
from bigwig files instead. A final anchor measure was 
calculated by taking the product of signal (either sum 
or max) at both of the anchors for each loop. All interior 
measures were normalized to the length of the loop.

We added a pseudocount of 1000 to the entire data-
frame (which is roughly 0.04 times the average count val-
ue) and then calculated the log(fold-change) between 72h 
and 0h. This “delta” matrix was then scaled, and DESeq2 
log-2 fold-changes were used for looping. Our model 
consisted of all differential loops and twice as many static 
loops matched for distance and contact. Matched static 
loops were generated from the matchRanges68 function 
within the nullranges Bioconductor package. 75% of the 
dataset was used for training and the remaining 25% was 
reserved for testing. 

Each feature was tested against loop LFC with the 
base R function lm to determine R2 values. The sign of 
correlation was determined with the cor function. LASSO 
regression was used to find a sparse model combining 
features, calling glmnet42 within the caret R package43. 
We trained the LASSO model on the training set, using an-
chor features only. We evaluated selected LASSO models 
on the test set using R2. This was repeated again for all 
interior features, and with all anchor and interior features 
combined.The R2 was calculated with the cor function. 
This was repeated for all interior features, and again re-
peated with all anchor and interior features combined. 

Gene Expression Linear Model 
We used the lm function within the stats R package to 
model how gene expression changes correlate with 
changes in changes in proximal and distal acetylation, 
and looping. We used the GenomicRanges function sub-
setByOverlaps and linkOverlaps to determine which dif-
ferential genes had promoter H3 K27ac and were looped 
to a distal H3 K27ac peak67, identifying 332 genes, and 
included 332 static genes matched for expression. We 
also identified the nearest enhancer with the nearest 
function of GenomicRanges. For proximal and distal H3 
K27ac, we extracted the counts and calculated log2(-
fold-change). For genes that had multiple enhancers, we 
took the sum of the counts at 0h and 72h and then cal-
culated log2(fold-change). For the ABC score, we scaled 
all enhancer and loop counts to be between 1 and 100 
to ensure that both factors were contributing equally to 
the interaction despite differences in sequencing depth. 
For each enhancer-promoter pair, we multiplied the nor-
malized distal enhancer counts by the normalized loop 
strength counts, then calculated log2(fold-change). 
For genes with multiple enhancer-promoter pairs, we 
summed the multiplied score at 0h and 72h and then cal-
culated log2(fold-change). 

The first model only used changes in promoter acetyl-
ation to predict changes in gene expression. The follow-
ing three models used promoter acetylation in addition 
to either nearest enhancer, distal enhancer, or the inter-
action between distal enhancers and loops. We trained 
on 60% of the data and tested on the remaining 40%. The 
predict function was used to predict on the testing data-
set from the trained model and cor was used to calculate 
R2 values. For R2 and coefficient estimate calculations, 
we performed 1000 permutations of splitting the data 
into testing and training datasets. 
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SUPPLEMENTAL FIGURES

​​Figure S1. Confirmation of megakaryocyte differentiation and de-
tection of loops. 
qPCR analysis of (A) ITGB3 and (B) KLF1 over megakaryocyte differ-
entiation at 0, 6, and 72h. Two biological replicates and 4 technical 
replicates were collected, normalized to GAPDH levels, and log2(-
fold-change) was calculated relative to 0h. (C) Number of loops iden-
tified with SIP after 0, 6, or 72h of differentiation, after merging all 
timepoints together into the Mega map, and merging all timepoints 
together with mariner. (D) PCA plot showing similarities in loop 
counts between replicates and timepoints.  
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​​Figure S2. Megakaryocyte pathway enrichment and interior gene expression. 
(A) Top 50 GO terms for upregulated genes from RNA-seq. (B) Top 50 KEGG Pathways for upregulated genes from RNA-seq. (C) Concor-
dance analysis for the 475 differential loops that had a differential gene promoter between their anchors. Binomial test performed for each 
comparison, *asterisks represent p < 0.05. (D) Expression of genes located between the anchors of gained and lost loops, *asterisk rep-
resents p < 0.05. (TPM: transcripts per million).
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​​Figure S3. Differential chromatin and transcription factor binding events. 
Heatmaps showing normalized counts for (A) H3K27ac, (B) Jun, (C) CTCF, and (D) Rad21. Clusters are indicated by the bars on the right side 
of each heatmap, p < 0.05, log2(fold-change) > 2.
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​​Figure S4. Correlation of genomic features. 
Correlation heatmap showing the individual correlations of each of the features (top) and legend representing which feature is represented 
(bottom). 
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​​Figure S5. Changes in gene expression at differential loops are explained by combined proximal and distal enhancer activity and loop 
strength. Scatter plots showing predicted gene-fold change vs actual gene fold-change for genes that are at the anchors of differential 
loops based on (A) promoter H3K27 ac LFC alone, (B) promoter H3K27ac LFC and the nearest enhancer to the promoter’s FC, (C) promoter 
H3K27ac FC and distal looped H3K27ac, and (D) promoter H3K27ac LFC and the LFC of the product of distal looped H3K27ac and loop 
strength (red = differential gene, gray = static gene). (E) R2 for each model calculated based on 1000 permutations of splitting data into 
training and testing sets. Wilcoxon rank sum test was performed to compare each group to the promoter only model, *asterisk represents 
p < 0.05.
.
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