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ABSTRACT

3D chromatin structure has been shown to play a role in regulating gene transcription during biological transitions.
While our understanding of loop formation and maintenance is rapidly improving, much less is known about the
mechanisms driving changes in looping and the impact of differential looping on gene transcription. One limitation
has been a lack of well powered differential looping data sets. To address this, we conducted a deeply sequenced
Hi-C time course of megakaryocyte development comprising 4 biological replicates and 6 billion reads per time point.
Statistical analysis revealed 1,503 differential loops. Gained loops were enriched for AP-1 occupancy and correlated
with increased expression of genes at their anchors. Lost loops were characterized by increases in expression of
genes within the loop boundaries. Linear modeling revealed that changes in histone H3 K27 acetylation, chromatin
accessibility, and JUN binding in between the loop anchors were as predictive of changes inloop strength as changes
to CTCF and/or cohesin occupancy at loop anchors. Finally, we built linear models and found that incorporating the

dynamics of enhancer acetylation and loop strength increased accuracy of gene expression predictions.

INTRODUCTION

The three dimensional (3D) organization of chromatin is
thought to play an important role in transcriptional reg-
ulation and has been implicated in many biological pro-
cesses, including cellular differentiation and response
to external stimuli'. While several types of 3D chromatin
structures exist, chromatin loops are of particular interest
as they are thought to regulate gene expression by bring-
ing distal regulatory elements (e.g. enhancers) into close
physical proximity with gene promoters via point to point
interactions. Indeed, loop anchors are typically enriched
for enhancers and promoters and correlate with differ-
ences in gene expression?* Aberrations to chromatin
looping are associated with a variety of human diseases
and developmental disorders such as Cornelia de Lange
syndrome?, polydactyly®’, and cancer®®. While the basic
mechanisms of loop formation have been established,
major questions remain regarding the mechanisms driv-
ing differential looping during biological development
and their functional impact.

The vast majority of chromatin loops are thought to
form through a process called loop extrusion, in which
the cohesin complex is loaded onto DNA and reels in

chromatin until it reaches convergently bound CTCF
proteins™. In specific cell types and biological condi-
tions chromatin loops can form through non-canonical
mechanisms including phase separation®''2 or binding
of lineage-specific factors like LDB18"'2, While chro-
matin loops have been shown to change over cellular
transitions, the mechanisms that govern these structural
changes, and the impact of these changes on gene ex-
pression, remain poorly understood?4,

The relationship between looping and gene expres-
sion is even less clear. Cell type specific loops correlate
with differential expression patterns, supporting a role
for loops in gene regulation"”, Moreover, forced loop-
ing between enhancers and promoters at select loci has
been shown to activate transcription'®'®, However, sev-
eral recent studies have called the role of loops in reg-
ulating gene expression into question. Live cell imaging
of looping between SOX2 and an enhancer known to
regulate its expression showed no correlation between
enhancer-promoter proximity and gene transcription.
In another study, rapid and thorough degradation of co-
hesin led to a complete removal of cohesin-driven loops
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in human cancer cells with only a minor impact on gene
expression’. In summary, the degree to which chromatin
looping regulates gene expression is still unresolved.
One impediment to answering these questions is that
identifying differentialloops between cells and conditions
remains challenging. Due to the depth of sequencing
required for Hi-C data sets, the statistical requirements
of differential analysis, and the cost of DNA sequencing,
most existing differential looping studies lack the sta-
tistical power to adequately identify differential loops.
And without comprehensive and rigorously defined sets
of differential loops, it is challenging to determine what
mechanisms drive differential looping and what tran-
scriptional impact they have.

To address this gap, we generated a deeply sequenced
Hi-C data set characterizing the differentiation of K562
cellsinto a megakaryocyte-like state. By sequencing over
18 billion reads across three timepoints and four biolog-
ical replicates, we achieved a statistical power of roughly
0.932 and identified 1,503 differential loops. Generation
and intersection with accompanying maps of chromatin
accessibility, histone acetylation, transcription factor (TF)
binding, and gene expression revealed insights into both
the mechanisms and the functional impacts of differen-
tial looping during cellular differentiation. Interestingly,
we find that regulatory features both at and between loop
anchors correlate with changes in loop strength. Finally,
we show that incorporating H3 K27 acetylation and chro-
matin looping dynamics into linear models in addition to
promoter acetylation improves predictions of changesin
gene expression.

RESULTS

Differentiation of K562 cells induces large-scale
changes to 3D chromatin structure across multiple
scales

To understand how 3D chromatin structures change
over cellular differentiation, we performed a deeply
sequenced, 3 timepoint Hi-C time course tracking the
differentiation of K562 cells into a megakaryocyte-like
state?'. We treated K562 cells with phorbol 12-myrisate
13-acetate (PMA), which has been shown to induce a
megakaryocyte-like phenotype?'?2, for O, 6, and 72h. We
confirmed differentiation using gPCR for ITGB3, a mega-
karyocyte marker?® (Fig S1A). As K562 cells differentiate
into a megakaryocyte-like state, they lose their potential
to differentiate into erythroid cells. We confirmed this with
gPCR for KLF1, an erythroid marker, which decreases
in expression over differentiation?* (Fig S1B). We then
performed in situ Hi-C on four biological replicates and
sequenced them to a depth of roughly 6 billion reads per

time point (Table S1). We generated Hi-C contact maps
using the Juicer pipeline’, identified compartments
using the EigenVector package?®, topologically associ-
ating domains (TADs) using arrowhead', and chromatin
loops using SIP? (Fig S1C). Replicates exhibited high
similarity as measured by principal component analysis
(PCA) (Fig S1D).

Visual inspection of the data revealed clear chang-
es at multiple scales including nuclear compartments,
TADs, and chromatin loops (Fig 1A-C). To assess the se-
quencing depth and replicates required to achieve suf-
ficient statistical power, we analyzed our data set using
the RNASeqgPower package?’. Using our dispersion of
0.0019 and median sequencing depth of 38 counts per
million (CPM) per loop, the statistical power to detect
2-fold changes was 0.932, which is generally considered
to be well-powered?® (Fig 1D). We used the dispersion
from our Hi-C data to model predicted statistical power
across multiple different sequencing depths and num-
bers of replicates (Fig 1D). Holding sequencing depth
per replicate constant, we found that decreasing to 3 or
2 replicates reduced the power estimates to 0.762 and
0.416 respectively. To determine how this increase in
power translated into the number of differential loops, we
subsampled our data to multiple depths and analyzed it
with 2, 3, or all 4 replicates (Fig 1E). Using our full data
set of four biological replicates (~900 million reads per
replicate) we identified 1,503 differential loops using
DESeq22°® with a log-2 fold change (LFC) greater than 1.5
(adjusted p-value < 0.05) compared to only 698 and 45
identified with 3 or 2 replicates respectively (Fig 1E). This
underscores how critical sequencing depth is in the sen-
sitivity to detect differential loops. Finally, we confirmed
the quality of these differential loops through aggregate
peak analysis™ (APA), showing that gained loops have
higher contact at 72 vs O h, and lost loops have higher
contactat O vs 72 h (Fig 1F).

Genes at the anchors of gained, but not lost, loops ex-
hibit concordant changes in expression

To assess the potential transcriptional impacts of differ-
ential loops, we performed RNA-seq across 8 time points
(0,0.5,1.5,3,6,24,48,and 72 h) in K562 cells treated with
PMA. DESeq?2 analysis identified 3,190 differential genes
(adjusted p-value < 0.05, LFC > 2) which were grouped
into 6 clusters using k-means clustering (Fig 2A). The
biggest and most unique changes were observed at 6
and 72 hours (1,619 differential, 527 unique genes after
6 h; 1,925 differential, 236 unique genes after 72 h),
which coincide exactly with our selected Hi-C timepoints.
Consistent with the differentiation of these cells into a
megakaryocyte-like state, the upregulated genes were
enriched for Gene Ontology (GO) terms relating to cell
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Figure 1. Deeply sequenced Hi-C experiments provide sensitive detection of differential chromatin loops.

(A) 20 Mb region on chromosome 7 at 100kb resolution comparing K562s at Oh (top) to differentiated megakaryocytes at 72h (bottom). Sig-
nal tracks show compartmental eigenvector calls (light blue = compartment A, dark blue = compartment B). The arrow points to qualitative
changes in compartmentalization. (B) Zoom in of a 1.6 Mb region of chromosome 7 at 25 kb resolution. TAD calls are indicated by ranges be-
low the Hi-C map for each cell type (dark blue = cell type specific, gray = shared across cell types). (C) Zoom in of a 690 kb region in figure B
at 10 kb resolution showing a region with differential loops. Arches indicate loop calls (dark blue = cell type specific, gray = shared across cell
types). (D) Statistical power modeled across various theoretical sequencing depths at 2, 3, and 4 biological replicates. Red line indicates the
median sequencing depth per loop (CPM: counts per million). (E) Actual number of differential loops called at multiple different subsampled
sequencing depths for different numbers of replicates (M: millions). (F) Aggregate peak analysis for all loops, gained loops, and lost loops.

differentiation, cell adhesion, and morphogenesis, and
pathways including focal adhesion, hematopoietic cell
lineage, and regulation of actin cytoskeleton (Fig S2A-
B). Upregulated genes include megakaryocyte markers
VWEF, FLI1, and ITGBS3, further supporting acquisition of a
megakaryocyte-like phenotype.

To determine the relationship between differential
loops and gene transcription, we intersected the pro-
moters of differential genes with differential loop calls
(Fig 2B). We found that 9% (126 of 1,503) of differential
loop anchors overlapped a differential gene promoter.
Interestingly, 93% (75 out of 81) of gained loops that
overlapped a differential gene promoter showed the
same direction of change as the gene (p = 2.91 x 1076,
binomial test) (Fig 2C). This is consistent with our previ-

ous work in macrophages?®®?®' and suggests that gained
loops are relevant in increasing transcription of genes at
their anchors. Upregulated genes found at the anchors
of gained loops include TGFB1 and THBS 1, both of which
are megakaryocyte-related®?®, An example of a gained
loop with a concordant increase in gene expression is
present at the INHBA locus (Fig 2D).

In contrast, lost loops that overlapped a differential
gene promoter showed no such concordant behavior,
with only 33% (15 out of 45) exhibiting the same direc-
tional change as the gene (p = 0.04, binomial test) (Fig 2C).
These findings again agree with our previous work in mac-
rophages®3', where we did not see a significant decrease
in expression of genes at lost loop anchors, suggesting
thatloss of looping is not sufficient to decrease transcrip-
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Figure 2. Gene expression and chromatin accessibility changes at differential loops.

(A) RNA-seq normalized counts for all differential genes. Clusters are indicated by bars on the right side of the heatmap. Line plots show the
mean expression per cluster. (B) Pie charts showing the proportion of differential loops (left) and genes (right). (C) Concordance analysis for
the 126 differential loops that had a differential gene promoter at an anchor. Asterisks represent p < 0.05 (binomial test). (D) Example region
of a gained loop with an increased gene at the INHBA locus. (E) ATAC-seq normalized counts for all differential peaks. Clusters indicated by
bars on the right side of the heatmap. Line plots show the mean expression per cluster. (F) Pie charts showing the proportion of differential
loops (left) and ATAC peaks (right). (G) Concordance analysis for the 647 differential loops that had a differential ATAC peak at a promoter.
Asterisks represent p < 0.05 (binomial test). (H) TF motif enrichment analysis on all ATAC peaks at all loops (top), concordant gained ATAC
peaks at gained loop anchors (middle), and concordant lost ATAC peaks at lost loop anchors (bottom).

tional output®®3. This is also consistent with work by Rao output of genes at loop anchors. The anti-concordance

et al that found almost no change in gene transcriptionfol-  we observed at loop anchors was also observed when
lowing virtually complete abrogation of loop-extrusion™. looking at genes found between loop anchors. 45% of lost
Taken together, this suggests that loss of looping is gen- loops (228 out of 503) had a differential gene between

erally not sufficient to induce a decrease in transcriptional ~ their anchors, 64% of which (146 out of 228) overlapped
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a gene that was increasing (p = 2.69 x 1075, binomial test)
(Fig S2C). Genes that overlapped the interior of lost loops
were expressed at significantly higher levels compared
to genes within gained loops (p = 1.85 x 10-23, Wilcoxon
rank sum test) (Fig S2D). This also agrees with our work in
macrophages®®?' showing that extremely high expression
of genes within loop boundaries was associated with a
weakening of the loop, suggesting that high transcription
atloop interiors might antagonize loop extrusion. Indeed,
several other studies provide evidence that transcription
can serve as a barrier to and/or interfere with loop extru-
sion34-3¢,

Gained loops are associated with increased accessi-
bility at AP-1 motifs

To assess which TFs were involved in loop based regu-
lation, we mapped chromatin accessibility using ATAC-
seq in K562 cells treated with PMA for O, 6, and 72 h.
Differential chromatin accessibility analysis with DESeq2
revealed 37,609 differential peaks (adjusted p-value, LFC
> 2), which we grouped into 4 clusters based on whether
the peak reached maximal or minimal normalized counts
at 6 or 72h (Fig 2E). As was the case with gene expres-
sion, differential chromatin accessibility peaks were
highly concordant at the anchors of gained, but not lost,
loops (Fig 2F-G).

To understand the mechanisms driving differential
looping we performed TF motif enrichment on various
sets of ATAC peaks at loops anchors (Fig 2H). As expected
CTCF was the most enriched motif at ATAC peaks overlap-
ping all loop anchors, which is consistent with its known
role inloop formation and maintenance. In contrast, peaks
of gained chromatin accessibility at gained loop anchors
were highly enriched for Activator Protein 1 (AP-1) fam-
ily members. This is consistent with our previous work
showing the enrichment of AP-1 at the anchors of gained
loops during macrophage development®°. Peaks of de-
creased chromatin accessibility at lost loop anchors were
enriched for Gata family members, albeit to a far lesser
degree compared to the enrichments observed at all or
gainedloops. GATA TFs have a well established role in me-
diating cell fate decisions in myeloid cell development®-°,

Differential looping is associated with chromatin fea-
tures both at and between loop anchors

To gain further insight into the mechanisms driving dif-
ferential looping, we generated matched CUT&RUN data-
sets for multiple TFs and histone modifications. Due to
the enrichment of AP-1 motifs at the anchors of gained
loops, we performed CUT&RUN for JUN, a member of the
AP-1 family. We also targeted histone H3 K27 acetylation,
which is commonly used to identify putative enhancers,
and CTCF and RAD21, proteins with known roles in DNA

looping. For each assay, we performed differential anal-
ysis and compared how each differential feature corre-
sponds to differential looping (Fig S3A-D). For all fea-
tures, we observed statistically significant concordance
at gained loop anchors (Fig 3A-B). With the notable
exception of RNA, all features were also concordant at
lost loop anchors, albeit to a lesser degree.

Investigating these trends more closely revealed two
prominent features. First, while all features increased
at gained loop anchors, some exhibited bigger chang-
es than others. Surprisingly, the canonical mediators of
chromatin looping, CTCF and RAD21, increased by only
1.26- and 1.23-fold respectively at gained loop anchors.
In contrast, histone H3 K27ac increased nearly 14-fold
at gained loop anchors (median = 13.86-fold). Chroma-
tin accessibility and JUN binding increased by modest
amounts, 1.72- and 2.16-fold respectively. Second, while
increased signals were observed at gained loop anchors,
they were also observed between loop anchors. For ex-
ample chromatin accessibility and histone H3 K27ac
peaks within the boundaries of gained loops increased
by 2.99- and 11.52-fold respectively.

Examples of these trends are evident at the TBX3 lo-
cus (Fig 3C). Gained enhancer-promoter looping is asso-
ciated with increases in CTCF and RAD21 occupancy at
loop anchors as well as large gains in chromatin accessi-
bility and JUN occupancy at, between, and even beyond
loop boundaries. Expression of TBX3 itself, a TF known to
regulate developmental transitions*°, increases by over
50 fold. Taken together these results suggest that differ-
ential looping may involve more than just alterations to
CTCF and RAD21 occupancy. They may also be mediated
by chromatin modifying proteins and condition-specific
TF binding events that act both at loop anchors and with-
in the loop interior.

Changes in chromatin features predict changes in
chromatin looping

To explore this further and determine which chromatin
features are the most predictive of changes in chroma-
tin looping, we investigated how changes in each feature
correlated with changes in looping (Fig 4A). Despite the
relatively small fold change of CTCF peaks at differential
loop anchors, we found that CTCF occupancy changes
had the highest correlation (R? = 0.189) with loop log2
fold-change (Fig 4A), consistent with the role of CTCF in
the formation and maintenance of loops. However, chang-
es to multiple features in the loop “interior"—the regionin
between the two anchors—also strongly exhibited strong
correlations with differential looping. Interior chromatin
accessibility, histone H3 K27 acetylation, and JUN occu-
pancy had correlations 0f 0.175,0.154, 0.127, followed by
anchor RAD21 occupancy (R? = 0.117). Several features
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Figure 3. Changes in chromatin features are correlated with changes in looping.

(A) Intersections of each feature at the lotop anchors and interior for gained, static, and lost loops (dark blue = anchor, light blue = interior).
All plots are on the same scale for the y-axis, showing log2(fold-change). Wilcoxon rank sum test was performed for each feature to com-
pare gained/lost anchors to static anchors and gained/lost interiors to static interiors, asterisks represent p < 0.05. (B) Median unshrunken
log2(fold-change) of each dataset at gained loops (left), and lost loops (right). Asterisks represent p < 0.05, dots represent p > 0.05. (C) 600
kb region around a loop at the TBX3 locus at 10 kb resolution. The arrow is pointing to the gained loop. Signal tracks for ATAC-seq, H3K27ac,
Jun, CTCF, Rad21, and RNA for K562s at Oh and differentiated megakaryocytes at 72h show increased occupancy for all features. Gray bars

indicate 10 kb loop anchors.

exhibited very slight negative correlations including inte-
rior gene expression and CTCF occupancy, which is con-
sistent with each of these having the ability to antagonize
loop extrusions as previously described'3*4, In addition
to correlations with changes in looping, many of the fea-
tures are highly correlated with each other (Fig S4).
Given the relationships between changes in looping
and multiple features both at and between loop anchors,
we next asked if we could build a better model to predict
differential looping using multiple features simultaneous-
ly. We used the caret package to perform LASSO regres-
sion*?43, We selected 1,127 differential loops and 2,254
non-differential loops that were matched for distance
and contact frequency as our training set and held out
376 differential loops and 752 non-differential loops as a
testing set to evaluate our model. We then used LASSO
with 10 cross-validations to generate a predictive mod-

el using various sets of features (Fig 4A) and evaluated
it by applying it to our test set. Using all anchor features
improved the correlation to R? = 0.279, far higher than us-
ing the best single feature alone (CTCF anchor max, R?
= 0.189; Fig 4B). Surprisingly, using only interior features
yielded an even more accurate model with an R? of 0.317
(Fig 4B). Combining all features at both the anchors and
interiors produced the strongest predictions with an R?
of 0.405 (Fig 4B-C). Further, the model accurately pre-
dicted the signs of 91% of gained loops and 72% of lost
loops. The predictive power of histone H3 K27 acetyla-
tion, chromatin accessibility, and JUN occupancy is sur-
prising, and especially so given that the highest correla-
tions were observed within loop boundaries rather than
at anchors themselves. This may suggest that epigenetic
changes between anchor sites play a significant role in
modulating loop strength.
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Figure 4. Changes in chromatin features predict changes in chromatin looping.

(A) Rz multiplied by the sign of association for all possible features correlated individually against changes in all loops in the model (top).
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dataset for looping. (Gray = static loops, teal = gained loops, maroon = lost loops, R? calculated for all loops included in the testing dataset).
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Changes in and histone acetylation and chromatin
structure predict changes in gene expression
Predicting gene expression patterns from chromatin fea-
tures is a long standing and difficult problem in the field
of gene regulation. Recent advances have been made
by incorporating both 2D (e.g. histone H3 K27 acetyla-
tion) and 3D (e.g. Hi-C contacts) features into the Activ-
ity-By-Contact model of gene regulation*’. This model
has been successful in assigning enhancers to their tar-
get genes but has typically been applied to resting cells
rather than biological transitions. A notable exception is
Beagan et al. that correlated changes to ABC score to
changes in gene expression* albeit at only a handful of
genomic loci. We leveraged this approach to determine if
chromatin dynamics could help predict changes in gene
expression in a genome-wide fashion.

To evaluate our ability to predict changes in gene ex-
pression we built and evaluated four linear models. In the
first model, changes in gene expression were predicted
based solely on changes in promoter H3 K27ac which
performed well with an R2 of 0.401 (Fig 5A). In the second
model, adding information from the nearest enhancer
slightly decreased the predictive power (Wilcoxon rank
sum test on permutations, p = 1.99 x 106, median R? =
0.401; Fig 5B). In contrast, in the third model, by combin-
ing H3 K27ac information from both the promoter and
enhancers that were physically looped to the promoter,
the R? increased significantly to 0.421 (Wilcoxon rank
sum test on permutations, p = 1.99 x 10", Fig 5B). We

then calculated a modified ABC score (see methods) by
taking the product of loop strength and distal enhancer
activity for each looped enhancer-promoter pair, sum-
ming across all enhancers that were looped to each gene,
and then calculating the fold-change. Finally, the last lin-
ear model built using both promoter histone H3 K27ac
and change in ABC score increased the R? even further to
0.467 (Fig 5D), a significant improvement compared to all
other models (Wilcoxon rank sum test on permutations,
p = 1.95 x 10'®2 Fig 5E-F). The improvement was even
more drastic when building and applying the model to
specifically differential genes and differential loops. For
the models built on differential genes and loops, R? val-
ues improve from 0.674 (promoter only model) to 0.763
for the promoter plus ABC score model (Fig S5A-E).
These findings suggest that alterations to both enhancer
activity and contact frequency can tune transcriptional
programs during cellular differentiation.

DISCUSSION

Collection and integration of deeply sequenced Hi-C and
other genomic data characterizing the differentiation of
K562 cells into a megakaryocyte-like state strengthened
previous findings and provided novel observations into
the mechanisms and impacts of changes to 3D chromatin
structure. Our results confirmed canonical roles for CTCF
and RAD21 in loop establishment and were consistent


https://doi.org/10.1101/2022.10.31.514600
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.31.514600; this version posted November 1, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A Agene ~ Apromoter B Agene ~ Apromoter + Anearest enhancer E
*
R2 =0.401 R2 =0.401 *
nearest
1or ; 10 enhancer | 0.50 |- .
i J s )
® promoter o promoter @ 0451
c 5 c 5
o} o}
8 8 —
il o 0.40 -
2 2
0 o
T 0 90
;t) E 035}
' Promoter ° ° . o
-5} -5} Nearest Enh o . o o
—% (3 Eg 16 Js 6 16 Looped Enh o ° o ®
Actual Gene LFC Actual Gene LFC “ABC °© °© °© o
C Agene ~ Apromoter + Alooped enhancers D Agene ~ Apromoter + A(”ABC”) F
R? = 0.421 R? = 0.467 0751
10} 10|
(@) O promoter g
5 I 5 -\ g o050
® A © =
c 5| - promoter looped c 5 loop a
8 Lt D enhancer B strength pol
kel kel x ac>
2 L looped o 025
o ~a o enhancer 5
g 0p--- e A4 B Op---e A R R Q
s o? D . O
) i ' E1
0.00 | ]
St i L L St i L Promoter Pro Nearest Pro Distal Pro “ABC”
- 1 - 1
5 0 5 0 5 0 0 Promoter Nearest Looped “ABC”
Actual Gene LFC Actual Gene LFC Model Model Model Model

Figure 5. Changes in gene expression are explained by combined proximal and distal enhancer activity and loop strength.

Scatter plots showing predicted gene-fold change vs actual gene fold-change based on (A) promoter H3K27 ac LFC alone, (B) promoter
H3K27ac LFC and the nearest enhancer to the promoter's LFC, (C) promoter H3K27ac LFC and distal looped H3K27ac, and (D) promoter
H3K27ac LFC and the modified ABC LFC (dark gray = differential gene, light gray = static gene). (E) R? for each model calculated based on
1000 permutations of splitting data into training and testing sets. Wilcoxon rank sum test was performed to compare each group to the
promoter only model, asterisks represent p < 0.05. (F) Estimates for each term in each model were calculated based on 1000 permutations

of splitting the data into training and testing sets.

with chromatin looping playing a role in transcriptional
activation and/or enhancement; however, these results
also revealed strong correlations between differential
looping and otherregulatory features including chromatin
accessibility, histone H3 K27 acetylation, and AP-1 occu-
pancy and found a lack and/or anti-correlation of gene
expression at lost loops. Intriguingly, differential looping
correlated with transcriptional and regulatory features
both at and between loop boundaries. In many cases, the
correlations with internal features were stronger than the
correlation with anchor signals. These results raise fur-
ther questions regarding the mechanisms driving differ-
ential looping and point to previously underappreciated
roles of molecules other than CTCF and cohesin.

The correlation between gained loops and the expres-
sion genes at their anchors agrees with many previous
studies and supports the role of chromatin looping in
gene activation. The increased predictive power when
incorporating acetylation dynamics of looped enhancers
and the dynamics of loop strength itself further empha-

size this point. In contrast, loss of looping does not coin-
cide with decreased expression of anchor genes. In fact,
more genes were increasing in expression than decreas-
ing atthe anchors of lost loops. This is consistent with our
previous studies of macrophage development and activa-
tion, neither of which identified a decrease in expression
atlostloop anchors®®?’, Taken together, this suggests that
while loops may be involved in transcriptional activation,
loss of looping alone may not be sufficient for transcrip-
tional repression or decreased expression. This agrees
well with previous studies involving rapid depletion of co-
hesin and subsequent global loss of loop extrusion-driven
loops. Rao et al'* found that loop elimination did not sub-
stantially alter gene transcription—as measured directly
using PRO-seq—in human colorectal cancer (HCT-116)
cells. In contrast, loop disruption does inhibit activation
of proinflammatory transcription in macrophages treat-
ed with LPS“¢ (a bacterial cell wall component commonly
used as a model for inflammatory activation), again sug-
gesting that loops do play a role in gene activation. While


https://doi.org/10.1101/2022.10.31.514600
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.31.514600; this version posted November 1, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

itis difficult to fully reconcile these findings, the evidence
seems to be mounting that while increased looping can
play a role in gene activation, events beyond loop dis-
ruption are required to decrease expression levels. One
possible explanation is that looping imparts some sort of
regulatory memory that is not erased as soon as the loop
is disrupted. Similar mechanisms (e.g. the kiss-and-run
mechanism)*” have been suggested before. While these
trends are coming into focus, more functional studies are
required to understand the exact role of chromatin loop-
ing in gene activation and repression.

Our data also support the theory that loop loss may
be a result, rather than cause, of changes in gene tran-
scription. Differential genes within lost loops are signifi-
cantly biased towards increased expression. And those
increased genes tend to be fairly highly expressed. We
observed this exact same phenomena in macrophages
responding to LPS3'. This is consistent with transcription
occurring at a high level between loop boundaries being
antagonistic to loop extrusion, something that is easy
to imagine given that both involve fairly large molecular
complexes traversing the same stretch of DNA. Indeed
several previous studies have suggested that transcrip-
tion can act as a molecular barrier to the loop extrusion
process3436,

Interestingly, we revealed that changes to multiple
other chromatin features (i.e. chromatin accessibility,
histone H3 K27 acetlyation, and AP-1 occupancy) are
roughly as predictive as changes to known loop extru-
sion-related proteins CTCF and RAD21. The correlation
between looping and these other features was strongest
for features within the loop interior which may provide
clues into the nature of this relationship. One intriguing
possibility is that increased accessibility, histone H3
K27 acetylation, and AP-1 binding might play a role in
increasing the efficiency or rate of cohesin loading. This
seems consistent with previous findings that suggested
that cohesin loading takes place preferentially at active
gene promoters* which are also associated with histone
acetylation, TF binding, and chromatin accessibility. It is
important to acknowledge that we can not rule out the
possibility that all of these internal changes are the re-
sult, rather than cause, of differential looping events.

Despite the intriguing findings presented here, several
limitations of this study must be considered when inter-
preting the data and speculating about their meaning.
First, this study is largely correlative. While intersecting the
results of this study can provide important mechanistic in-
sights, several of the results raise new questions that must
be addressed by future functional experiments. Second,
in contrast to our previous work®’, this time-course lacked
the temporal resolution to put regulatory and transcrip-
tional events in temporal order, which makes it difficult

to infer the direction of causality between any two fea-
tures. This was a conscious decision as the current cost
of sequencing makes it unfeasible to acquire deeply se-
quenced data sets across deeply sampled time courses;
however, this is likely to change soon as sequencing costs
continue to decrease*®“®, Finally, while this study encom-
passed a broad number of regulatory features—including
ATAC-seq, which when combined with motif analysis can
provide insights into the binding patterns of hundreds of
TFs—there are a vast number of other features that likely
influence looping (e.g. DNA methylation) for which we are
not measuring nor explicitly accounting for.

Despite these limitations, these findings improve our
understanding of how different trans regulators and epi-
genetic features govern changes in looping, as well as
our understanding of the relationship between looping
and gene expression. The deeply sequenced nature of
this differential Hi-C analysis offers a uniquely well-pow-
ered dataset with which to explore a pressing number of
biological questions. Moverover, this data was acquired
in one of the most widely studied human cell lines (K562)
for which hundreds of publicly available genome-wide
data sets are already available. As such, this study pro-
vides a valuable new resource for future studies of chro-
matin biology.
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METHODS

K562 culture and differentiation

K562 were cultured in RPMI media (Corning, cat # 10-040-
CV) with 10% fetal bovine serum (FBS) (Gibco, cat #
26140079) and 1% penicillin-streptomycin (PS) (Gibco,
cat # 15140122). For megakaryocyte differentiation,
K562 were plated in either 6-well plates (RNA-seq, ATAC-
seq) or T-175 flasks (Hi-C, CUT&RUN) at a density of 1 x
108 cells/mL and treated with 25 nM PMA (Sigma-Aldrich,
cat # P1585-1MGQ). After 24h, the cells become semi-ad-
herent. Cells were provided with fresh media and PMA
after 24h and 48h. Cells were collected without treatment
or after 6 or 72h. For all treatments and library prepara-
tions, K562s were thawed and immediately split into two
T-25 flasks to create biological replicates.

Crosslinking

Cells were cultured in T-175 flasks containing 10 x 10°
cells for Hi-C and 5 x 108 cells for CUT&RUN at 1 x 10°
cells/mL. The collection protocol differs for where the
cells are at during the differentiation. For suspended
cells (Oh and 6h): Media was centrifuged at 300 x g for
5 min. Cells are in suspension for Oh and 6h. Suspended
cells were collected and spun down 300 x g for 5 min.
Pellets were resuspended in 10 mL of 1% formaldehyde
(Thermo Fisher Scientific, cat # 28908) in RPMI for 10
min with rotation. For semi-adherent cells (72h): The sus-
pended cells were harvested and centrifuged for 300 x
g for 5 min. Pelleted cells were resuspended in 10 mL of
1% formaldehyde, and added to the adherent cells in the
T-175 flask to crosslink all cells at once, where they were
put on the shaker for 10 min (from here, the protocolis the
same for all time points). Cells were quenched with cold
glycine for 5 min (Invitrogen, cat # 15527013) to a final
concentration of 2.0 M for 5 min. Cells were then centri-
fuged at 562 x g, resuspended in cold PBS (Corning, cat #
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21040CV), and splitinto 3 tubes of approximately 3 x 108
cells each (HiC) or 10 tubes of approximately 5 x 10°each
(CUT&RUN). Cells were spun again at 562 x g for 5 min
and washed again with cold PBS, then aspirated and flash
frozen in liquid nitrogen, and stored at -80°C.

In situ Hi-C library preparation

Four treatments (biological replicates) were performed.
For each treatment, either two or three frozen pellets (3
x 108 each) were used to generate technical replicates (3
technical replicates for the first two biological replicates
and 2 technical replicates for the last two biological
replicates). Libraries were generated according to the
protocol as described in Rao et al'®. Briefly, crosslinked
we lysed the cells, isolated nuclei, and used Mbol (New
England Biolabs, cat # R0147L) to digest chromatin over-
night. The fragment ends were biotinylated, proximity
ligated, and reverse crosslinked. Quantification of shear-
ing DNA was achieved with Qubit (dsDNA Broad Range
(BR) assay) (Thermo Fisher Scientific, cat # Q32850).
We then sheared the samples on a Covaris LE 220 (duty
factor 25, PIP 500, 200 cycles/burst, 90 seconds). 2%
of each sample was run on a 2% agarose gel to confirm
fragmentation. Size selection with AMPure XP beads
(Beckman Coulter, cat # A63881) was then performed
to select for DNA fragments between 300 and 500 bp.
Biotinylated chromatin was pulled down with streptavidin
beads. Biotin was then removed from unligated ends and
the libraries were end repaired. We added the lllumina
TruSeq Nano (Set A) (lllumina, cat # 20015960) indices to
each sample ina combination appropriate for pooling and
amplified using 9 cycles of PCR. Final quantification was
achieved using Qubit (dsDNA High Sensitivity (HS) assay)
(Thermo Fisher Scientific, cat # Q32851) and Tapestation
(D1000 screentape) (Agilent, cat # 5067-5584). Libraries
were pooled to 10 nM and sequenced across 7 lllumina
NovaSeq S4 lanes (Novogene, 150-bp paired-end).

RT-qPCR

We extracted RNA from 5 x 10° cells using the QIA-
GEN RNeasy Mini kit (Qiagen, cat # 74014) with DNase
| treatment (Qiagen, cat # 79254) and quantified with
a Qubit Broad Range assay (Thermo Fisher Scientific,
cat # Q32850). Reverse transcription into cDNA was
performed with the iScript cDNA synthesis kit (Bio-
Rad, cat # 1708891). gPCR was performed with the
TagMan reagents using probes for ITGB3, KLF1, and
GAPDH (Thermo Fisher Scientific, cat # Hs01001469,
Hs00610592, Hs02786624).

RNA-seq library preparation
We extracted RNA from 5 x 10° cells using the QIAGEN
RNeasy Mini kit with DNase | treatment. To confirm qual-
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ity of libraries, we checked RNA integrity numbers with a
Tapestation RNA screentape (Agilent, cat # 5067-5577)
and confirmed them all to be above 9.7. We determined
the concentration of all RNA samples with the Qubit Broad
Range assay (Thermo Fisher Scientific, cat # Q10211).

The KAPA RNA HyperPrep kit with RiboErase (HMR)
(Kapa Biosciences, cat # KK8560) was used for library
preparation. lllumina TruSeq adapters (lllumina, cat #
20015960) were diluted and 0.0075 nmol was added to
each sample. We determined library concentration and
fragments size with Qubit (dsDNA HS assay) and Tapes-
tation (D1000 screentape). Libraries from each timepoint
were pooled at 10 nM and each biological replicate was
sequenced on an lllumina NextSeq 500 (75-bp paired-
end, high output kit).

ATAC-seq library preparation

We used the Omni ATAC-seq protocol as described in
Corces et al®® with some adjustments to perform ATAC-
seq. Two treatments (biological replicates) were per-
formed. For untreated and 6h, cells were harvested and
centrifuged at 500 x g for 5 min. For semi-adherent 72h
cells, all of the floating cells were harvested. Adherent
cells in each well were washed with 2 mL PBS, lifted with
500 pyL 0.5 M EDTA for 5 min, and quenched with 3 mL
of RPMI before combining with the floating cells. 5 x 10°
cells were used for library preparation. lllumina Nextera
XT indices (lllumina, cat # FC-131-1001) (3.75 pL/sample)
were used for PCR.

After 5 PCR cycles, 5% of each sample was used in
gPCR to determine how many more cycles were neces-
sary. We found that 4-7 cycles were sufficient for final
amplification. AMPure XP beads were used to perform
a final cleanup (0.5X followed immediately by 1.3X) and
quantified with the Qubit (ds DNA HS assay). The con-
centration in molarity of samples was determined by the
KAPA Library Quantification Kit (Kapa Biosystems, cat #
4854). Eachreplicate was pooled to 4 nM and sequenced
separately on an lllumina NextSeq 500 (75-bp paired-
end, high output kit).

CUT&RUN library preparation

We generated CUT&RUN libraries following existing pro-
tocols®', but modified for the use of crosslinked cells.
Cells were centrifuged at 500 x g at 4°C for 10 min. For
H3 K27ac, 0.5 pL of 1:10 diluted antibody (Abcam, cat
# ab4729) was added to each sample. For CTCF, 0.5pL
of 1:10 diluted antibody (Thermo Fisher Scientific, cat #
MA5-31344) was added to each sample. For JUN, 2.08 uL
of stock antibody (Thermo Fisher Scientific, cat # MA5-
15172) was added to each sample. For RAD21, 0.625 pL
of stockantibody (Abcam, cat #ab992) was added to each
sample. We then added 5 pL of KAPA Unique Dual-In-
dexed Adapters (Roche, cat # 08861919702) diluted
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to 750 nM. Libraries from each timepoint for H3 K27ac,
CTCF, and JUN were pooled to 6 nM, and sequenced on
an lllumina NextSeq 500 (75-bp paired-end, high output
kit). RAD21 libraries from each timepoint were pooled to
9 nM, and were sequenced on an lllumina NextSeq 500
(75-bp paired-end, high output kit).

Hi-C data processing and calling compartments, do-
mains, and loops

We processed our Hi-C data using a modified version of
the Juicer pipeline (version 1.9.8)'. Hi-C contact maps
were generated at 5, 10, 25, 50, 100, 200, 250, 500, 1000,
and 2500 kb resolution for each individual technical
replicate that was sequenced. This was for 4 biological
replicates, 3 timepoints, and 2-3 technical replicates
each, totaling 30 unique samples. Additionally, all of
the samples for each timepoint were merged to create
merged Hi-C maps. All samples and replicates across all
timepoints were also merged to create a "Mega” map.

Compartments were identified using the EigenVector
R package at a 10 kb resolution?®.

TADs were identified using the arrowhead command
within the Juicer pipeline at 25 kb resolution. Cell type
specific TADs were identified by merging with the mari-
ner R package and using the denovo function.

Loops were called from the merged timepoint Hi-C
files and Mega map with SIP2¢ (version 1.6.1). The settings
“-g 2 -5 2000 -fdr 0.05" were used both on the timepoint
and the Mega map. Loops were merged in R with mariner
using the mergeBedpe function, providing a list of 33,914
loops.

A count matrix was prepared using mariner®2, where
unnormalized counts at each loop pixel from each tech-
nical replicate were extracted.

The compartment, TAD, and loop-level Hi-C maps
were SCALE normalized and visualized with plotgarden-
ers at 100, 10, and 5kb resolutions respectively.

Differential loop and aggregate peak analysis
DESeq?2 was used to identify differential loops using the
count matrix prepared as described above. Loops with a
median count of 5 counts or less were filtered out. Counts
from the technical replicates from each biological repli-
cate were summed together and the design “~rep + time"
was used, with a reduced design of “~rep"” used to form a
likelihood ratio test (LRT). Apeglm was used to calculate
log-2 fold changes for each loop, comparing both 6 and
72h to Oh. Loops were deemed significant if they had an
adjusted p-value < 0.05 and a log-2 fold change > 1.5.
Aggregate peak analysis (APA) was performed with
mariner. For all, gained, and lost loops, the loop pixel and
10 pixels around the loop were extracted with SCALE
normalization at 10 kb resolution.
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Hi-C Power Analysis

Power analysis was performed with the RNAPower pack-
age?. Dispersion was calculated from the differential
loop analysis in DESeq2 as described above, where the
minimum dispersion value was used. Power was mod-
eled across various theoretical sequencing depths and
replicates for identifying a log-2 fold change of 2 with a
p-value of 0.05. The rnapower function was used with an
alpha of 0.05/33914 and a cv of the square root of the
dispersion value.

We subsampled our Hi-C data from the merged_nod-
ups files to approximate sequencing depths of 100, 300,
500, and 700M per biological replicate. We then repeated
our differential loop analysis using the subsampled data
for either 2, 3, or 4 replicates using all of the same param-
eters and loop calls.

RNA-seq processing

Fastq quality was assessed using the FastQC and Mul-
tiQC tools (FastQC version 0.11.5, MultiQC version 1.5)54%5,
Fastq files were trimmed with Trim Galore! (version 0.4.3)
and quantified with Salmon (version 1.4.0) to the hg38 ge-
nome?®®57, Alignment was performed using HISAT2 (ver-
sion 2.1.0), which generated BAM files that were indexed
using samtools (version 1.9)%%°, The BAM files for each
timepoint's two biological replicates were merged using
samtools and converted to bigwigs using deeptools (ver-
sion 3.0.1)%° for easy visualization of signal tracks. Reads
were summarized into a format compatible with DESeq?2
using txImport (r version 3.3.1, tximport version 1.2.0)2°#¢1,

Differential gene analysis

DESeq2 was again used to identify differential genes.
The txi file was used as input, and the DESeqDataSet-
FromTximport was used with “~rep + time" as the design.
A reduced design of "~rep” was used to form an LRT, as
previously for peak analysis. Shrunken log-2 fold change
values were calculated for each gene by comparing the
counts at each time point to Oh with apeglm®2. Significant
genes had an adjusted p-value < 0.05 and a log-2 fold
change > 2.

The DESeq2 dataset was normalized with variance
stabilized transformation. We then filtered for differen-
tial genes and calculated Z-scores based on standard
deviation and mean. Replicates were then averaged, and
kmeans clustering was used to identify 6 temporal clus-
tered based on the vectors of Z-scores.

ATAC-seq processing and peak calling

Adapters were trimmed and low quality reads were filtered
out using Trim Galore! (version 0.4.3)%. BWA mem (ver-
sion 0.7.17) was used to align reads to the hg38 genome
and sorted using Samtools (version 1.9)%°. PicardTools
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(version 2.10.3) was used to remove duplicate reads®:.
Mitochondrial reads were filtered out with Samtools
idxstats®. For each timepoint, biological replicates were
merged and indexed with Samtools. We called peaks
were called on the merged files using MACS2 with the fol-
lowing parameters: -f BAM -q 0.01 -g hs --nomodel --shift
100 --extsize 200 --keep-dup all -B --SPMR (version
2.1.1.20160309)%4. A comprehensive peak list was gen-
erated by merging peaks across all time points (181,136
peaks). For each peak across all biological replicates
independently, counts were extracted with bedtools mul-
ticov, which was the input for differential peak analysis®.
Signal tracks were generated from merged time points
with deeptools (version 3.0.1) for visualization®.

CUT&RUN processing peak calling

Adapters were trimmed off and low quality reads were
filtered out with Trim Galore! (Version 0.4.3)%. BWA mem
(version 0.7.17) was used to align reads to the hg38
genome, sorted with Samtools (version 1.9), and filtered
for duplicates with PicardTools (version 2.10.3)%%%3, Sam-
tools was again used to index all BAM files. For each
timepoint, biological replicates were merged and indexed
with Samtools. We called peaks on the merged files using
MACS?2 with the following parameters: -f BAM -q 0.01 -g
hs --nomodel --shift O --extsize 200 --keep-dup all -B
--SPMR (version 2.1.1.20160309)%4. A comprehensive
peak list was generated for each antibody by merging
peaks across all time points (X, Y, Z peaks for X, Y, Z data-
sets). For each biological replicate independently, counts
were extracted with bedtools multicov, which was the
input for differential peak analysis®. Signal tracks were
generated from merged time points with deeptools (ver-
sion 3.0.1) for visualization®®.

Differential ATAC-seq and CUT&RUN Peak Analysis
DESeq@2 was again used to identify differential peaks
from ATAC-seq and all CUT&RUN data. The count matrix
generated in the ATAC-seq and CUT&RUN processing
was used as the input with the function DESeqDataSet-
FromMatrix. We used “~rep + time" as the design and a
reduced design of “rep” to forman LRT. Apeglm was used
to calculate shrunken log-2 fold-changes for each peak
for each dataset®. Significant peaks had an adjusted
p-value of < 0.05 and an absolute log-2 fold change > 2.
Peaks were clustered into up early, up mid, up late, down
early, down mid, and down late by determining whether
their max/min value was at 0, 6, or 72h.

Gene Ontology and KEGG Pathway Enrichment Analysis
We used the HOMER function findMotifs.pl on each of
our 6 gene clusters to identify enriched gene ontology
terms and KEGG pathways with default settings®. For GO
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Terms, the biological_process.ixt file was used and for
KEGG pathways, the kegg.txt file was used.

Motif Enrichment Analysis

We used the HOMER function findMotifsGenome.pl for all
motif enrichment®. For motifs at the anchors of all loops,
we intersected all ATAC peaks with all loop anchors. For
motifs at the anchors of gained loops, we intersected all
differential gained ATAC peaks with gained loop anchors.
For motifs at the anchors of lost loops, we intersected all
differential lost ATAC peaks with lost loop anchors. For
each motif enrichment, all ATAC peaks were used as the
background. The default parameters were used with the
following adjustments: -size given.

Genomic Intersections

The GenomicRanges and InteractionSet R packages
were used to perform all genomic intersections®’. Loop
bedpe files were converted into GInteractions objects
and were intersected with the coordinates for ATAC, H3
K27ac, JUN, CTCF, RAD21 peaks and genes with subset-
ByOverlaps. The unshrunken fold-changes as calculated
by DESeq2 analysis were extracted from each of the
peaks that overlapped a loop anchor.

Chromatin Looping Linear Model

The count matrices from previous analysis were again
used to generate the data for the linear model. We
used loop counts, peak counts from ATAC-seq and all
CUT&RUN data, and transcripts per million (TPM) per 10
kb bin from RNA-seq. For all loops, each of these counts
was extracted from both the anchors and each anchor
individually. In the case of multiple peaks intersecting
with loops, the sum of all peaks was recorded. We also
recorded the maximum values from extracting counts
from bigwig files instead. A final anchor measure was
calculated by taking the product of signal (either sum
or max) at both of the anchors for each loop. All interior
measures were normalized to the length of the loop.

We added a pseudocount of 1000 to the entire data-
frame (which is roughly 0.04 times the average count val-
ue) andthen calculated the log(fold-change) between 72h
and Oh. This “delta” matrix was then scaled, and DESeq2
log-2 fold-changes were used for looping. Our model
consisted of all differential loops and twice as many static
loops matched for distance and contact. Matched static
loops were generated from the matchRanges®® function
within the nullranges Bioconductor package. 75% of the
dataset was used for training and the remaining 25% was
reserved for testing.
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Each feature was tested against loop LFC with the
base R function Im to determine R? values. The sign of
correlation was determined with the cor function. LASSO
regression was used to find a sparse model combining
features, calling glmnet*? within the caret R package*.
We trained the LASSO model on the training set, using an-
chor features only. We evaluated selected LASSO models
on the test set using R% This was repeated again for all
interior features, and with all anchor and interior features
combined.The R? was calculated with the cor function.
This was repeated for all interior features, and again re-
peated with all anchor and interior features combined.

Gene Expression Linear Model

We used the Im function within the stats R package to
model how gene expression changes correlate with
changes in changes in proximal and distal acetylation,
and looping. We used the GenomicRanges function sub-
setByOverlaps and linkOverlaps to determine which dif-
ferential genes had promoter H3 K27ac and were looped
to a distal H3 K27ac peak®’, identifying 332 genes, and
included 332 static genes matched for expression. We
also identified the nearest enhancer with the nearest
function of GenomicRanges. For proximal and distal H3
K27ac, we extracted the counts and calculated log2(-
fold-change). For genes that had multiple enhancers, we
took the sum of the counts at Oh and 72h and then cal-
culated log2(fold-change). For the ABC score, we scaled
all enhancer and loop counts to be between 1 and 100
to ensure that both factors were contributing equally to
the interaction despite differences in sequencing depth.
For each enhancer-promoter pair, we multiplied the nor-
malized distal enhancer counts by the normalized loop
strength counts, then calculated log2(fold-change).
For genes with multiple enhancer-promoter pairs, we
summed the multiplied score at Oh and 72h and then cal-
culated log2(fold-change).

The first model only used changes in promoter acetyl-
ation to predict changes in gene expression. The follow-
ing three models used promoter acetylation in addition
to either nearest enhancer, distal enhancer, or the inter-
action between distal enhancers and loops. We trained
on 60% of the data and tested on the remaining 40%. The
predict function was used to predict on the testing data-
set from the trained model and cor was used to calculate
R? values. For R? and coefficient estimate calculations,
we performed 1000 permutations of splitting the data
into testing and training datasets.
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Figure S1. Confirmation of megakaryocyte differentiation and de-
tection of loops.

gPCR analysis of (A) ITGB3 and (B) KLF1 over megakaryocyte differ-
entiation at 0, 6, and 72h. Two biological replicates and 4 technical
replicates were collected, normalized to GAPDH levels, and log2(-
fold-change) was calculated relative to Oh. (C) Number of loops iden-
tified with SIP after O, 6, or 72h of differentiation, after merging all
timepoints together into the Mega map, and merging all timepoints
together with mariner. (D) PCA plot showing similarities in loop
counts between replicates and timepoints.
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Figure S2. Megakaryocyte pathway enrichment and interior gene expression.

(A) Top 50 GO terms for upregulated genes from RNA-seq. (B) Top 50 KEGG Pathways for upregulated genes from RNA-seq. (C) Concor-
dance analysis for the 475 differential loops that had a differential gene promoter between their anchors. Binomial test performed for each
comparison, *asterisks represent p < 0.05. (D) Expression of genes located between the anchors of gained and lost loops, *asterisk rep-

resents p < 0.05. (TPM: transcripts per million).
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Figure S3. Differential chromatin and transcription factor binding events.
Heatmaps showing normalized counts for (A) H3K27ac, (B) Jun, (C) CTCF, and (D) Rad21. Clusters are indicated by the bars on the right side
of each heatmap, p < 0.05, log2(fold-change) > 2.
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Figure S4. Correlation of genomic features.
Correlation heatmap showing the individual correlations of each of the features (top) and legend representing which feature is represented
(bottom).
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Figure S5. Changes in gene expression at differential loops are explained by combined proximal and distal enhancer activity and loop
strength. Scatter plots showing predicted gene-fold change vs actual gene fold-change for genes that are at the anchors of differential
loops based on (A) promoter H3K27 ac LFC alone, (B) promoter H3K27ac LFC and the nearest enhancer to the promoter's FC, (C) promoter
H3K27ac FC and distal looped H3K27ac, and (D) promoter H3K27ac LFC and the LFC of the product of distal looped H3K27ac and loop
strength (red = differential gene, gray = static gene). (E) R2 for each model calculated based on 1000 permutations of splitting data into
training and testing sets. Wilcoxon rank sum test was performed to compare each group to the promoter only model, *asterisk represents

p <0.05.

18


https://doi.org/10.1101/2022.10.31.514600
http://creativecommons.org/licenses/by-nc-nd/4.0/

