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Abstract 

Many genetic studies contain rich information on longitudinal phenotypes that require 

powerful analytical tools for optimal analysis. Genetic analysis of longitudinal data that 

incorporates temporal variation is important for understanding the genetic architecture and 

biological variation of complex diseases. Most of the existing methods assume that the 

contribution of genetic variants is constant over time and fail to capture the dynamic pattern of 

disease progression. However, the relative influence of genetic variants on complex traits 

fluctuates over time. In this study, we propose a retrospective varying coefficient mixed model 

association test, RVMMAT, to detect time-varying genetic effect on longitudinal binary traits. 

We model dynamic genetic effect using smoothing splines, estimate model parameters by 

maximizing a double penalized quasi-likelihood function, design a joint test using a Cauchy 

combination method, and evaluate statistical significance via a retrospective approach to 

achieve robustness to model misspecification. Through simulations, we illustrated that the 

retrospective varying-coefficient test was robust to model misspecification under different 

ascertainment schemes and gained power over the association methods assuming constant 

genetic effect. We applied RVMMAT to a genome-wide association analysis of longitudinal 

measure of hypertension in the Multi-Ethnic Study of Atherosclerosis. Pathway analysis 

identified two important pathways related to G-protein signaling and DNA damage. Our results 

demonstrated that RVMMAT could detect biologically relevant loci and pathways in a genome 

scan and provided insight into the genetic architecture of hypertension. 
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1 INTRODUCTION 

Genome-wide association studies (GWAS) have successfully identified thousands of 

susceptible loci underlying human diseases and complex traits. Many epidemiological studies, 

such as Framingham Heart Study (FHS) and Women’s Health Initiative (WHI), have collected 

and measured health conditions and phenotypic traits on study participants over the years. Such 

studies provide rich resources for the investigation of genetic architecture and biological 

variations of complex disorders. In recent years, more and more genetic studies have exploited 

genetic data from human biobanks and extracted health information from electronic health 

record (EHR) data to gain better understanding of the genetic mechanism over the course of 

complex diseases. 

Traditional genetic association analyses on single time point measure fail to capture 

phenotypic variation over time and may lose statistical power to identify disease-related 

variants. Thus, genetic studies with longitudinal phenotypes require powerful analytical tools 

for optimal analysis. Statistical methods that account for dependence structure among 

observations from the same subject have been developed in GWAS to make full use of 

longitudinal data, such as mixed effects models (Furlotte, Eskin and Eyheramendy, 2012; 

Sikorska et al., 2013; Wu et al., 2019), generalized estimating equations (GEEs) (Sitlani et al., 

2015; Wu et al., 2019), growth mixture models (Das et al., 2011; Londono et al., 2013), and 

empirical Bayes models (Meirelles et al., 2013). Most of these methods assume that genetic 

contribution is constant over time. However, disease development and progression is a 

complicated process that changes over time. Windows of susceptibility and critical periods 

across the lifespan exist in disease onset and development. Studies have shown that genetic 

influence on the trait variations fluctuates with the passage of time (Bryois et al., 2017; Chu, 

Li and Reimherr, 2016; Gong and Zou, 2012; Liu, Li and Wu, 2014; Wang, Li and Huang, 
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2008). Modeling time-varying genetic effects is essential to identify and validate causal genetic 

loci that are associated with time-dependent variation of disease progression. 

Varying coefficient models are a class of generalized regression models in which the 

coefficients are allowed to vary smoothly with the value of other variables (Hastie and 

Tibshirani, 1993). They are semi-parametric models that explore dynamic pattern in the data 

to improve model fitting (Fan and Zhang, 2008), reduce model bias by specifying the 

coefficients as smooth nonparametric functions (Lu and Zhang, 2009), and overcome the 

“curse of dimensionality” in the nonparametric estimation of multiple regression problems 

(Eubank et al., 2004). There are several approaches to estimate time-varying coefficients in 

varying coefficient models, including kernel-local polynomial smoothing (Fan and Zhang, 

1999; Hoover et al., 1998; Kauermann and Tutz, 1999; Wu, Chiang and Hoover, 1998), 

polynomial spline (Huang and Shen, 2004; Huang, Wu and Zhou, 2002, 2004), and smoothing 

spline (Chiang, Rice and Wu, 2001; Hastie and Tibshirani, 1993; Zhang, 2004). Other 

statistical methods have been developed to model dependency in longitudinal data, such as 

GEE (Liang and Zeger, 1986) and Gaussian copula (Joe, 2014). Models allowing for time-

varying covariate effects include semiparametric regression with GEE (Lin and Carroll, 2000), 

and time-varying copula models (Kürüm et al., 2018; Kürüm et al., 2016). 

Varying coefficient models have been used for two types of applications in longitudinal 

GWAS. The first application focuses on feature selection for longitudinal outcomes with 

ultrahigh-dimensional predictors such as single nucleotide polymorphisms (SNPs). As 

computational burden is a major concern when handling millions of SNPs simultaneously in a 

model, feature screening becomes an efficient solution to filter out unimportant SNPs. Feature 

screening in varying coefficient models has been developed based on conditional Pearson 

correlation (Liu et al., 2014), extended B-splines (Fan, Ma and Dai, 2014), modified weighted 

least squares estimation (Chu et al., 2016) and functional regression with group penalty 
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(Marchetti-Bowick et al., 2016) to retain important SNPs associated with continuous and 

binary traits (Chu et al., 2020; Xia, Yang and Li, 2016). The second application focuses on the 

detection of time-varying effect of quantitative trait nucleotide, such as functional GWAS (Das 

et al., 2011; Li et al., 2015; Ning et al., 2017). These methods fit the model at each SNP 

separately and use likelihood ratio tests to determine statistical significance, thus can be 

computationally intensive to analyze genome-wide SNPs, especially for binary outcomes. For 

large GWAS, score tests are popular and computational efficient because they only fit the null 

model once for all SNPs. However, current score test-based methods commonly treat the 

effects of genetic variants as constant over time and are not able to capture the dynamic 

contribution to disease progression. 

Motivated by a genome-wide association analysis of longitudinal measure of hypertension 

in the Multi-Ethnic Study of Atherosclerosis (MESA), we developed a retrospective varying 

coefficient mixed model association test, RVMMAT, to detect time-varying genetic effect on 

longitudinal binary traits. We model dynamic genetic effect using smoothing splines, estimate 

model parameters by maximizing a double penalized quasi-likelihood function, design a joint 

test using a Cauchy combination method, and evaluate significance of the test via a 

retrospective approach in which genotypes are treated as random conditional on the phenotype 

and covariates. Retrospective association tests have been shown to be robust to the trait model 

misspecification and improve statistical power (Hayeck et al., 2015; Jiang, Mbatchou and 

McPeek, 2015; Wu et al., 2019; Wu and McPeek, 2018). In RVMMAT, flexible assumptions 

on the effect function increased power to detect genetic variants associated with dynamic traits. 

The validity of RVMMAT does not depend on the variance estimation in the trait model due 

to the tuning parameters in penalty terms. For comparison, we also developed VMMAT, a 

prospective varying coefficient mixed model association test. We conducted simulation studies 

to evaluate the type I error and power of RVMMAT and VMMAT, and compared them with 
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the existing association methods. The results demonstrated that the retrospective varying-

coefficient test had better control of type I error when the trait model was misspecified, and 

was robust to various ascertainment schemes. Moreover, the retrospective varying-coefficient 

test was more powerful than the prospective test. We applied RVMMAT and VMMAT to the 

genome-wide association analysis of longitudinal measure of hypertension in MESA and 

identified hypertension-related genetic loci and pathways. 

 

2 METHODS 

Suppose a binary trait is measured over time on a sample of 𝑛𝑛 subjects. We have their 

genome-wide measures of genetic variation and a set of covariates. The covariates are allowed 

to be static variables such as sex or dynamic variables such as body weight. Let 𝑿𝑿𝑖𝑖𝑖𝑖 and 𝑌𝑌𝑖𝑖𝑖𝑖, 

𝑖𝑖 = 1, … ,𝑛𝑛 , 𝑗𝑗 = 1, … ,𝑚𝑚𝑖𝑖 , denote the 𝑝𝑝 -dimensional covariate vector and the binary trait 

measured on subject 𝑖𝑖 at time 𝑡𝑡𝑖𝑖𝑖𝑖. Here, the measurement time and length are allowed to be 

different for different subjects. We let 𝑿𝑿 = �𝑿𝑿1,1, … ,𝑿𝑿1,𝑚𝑚1 , … ,𝑿𝑿𝑛𝑛,1, … ,𝑿𝑿𝑛𝑛,𝑚𝑚𝑛𝑛�
𝑇𝑇

 denote the 

𝑁𝑁 × 𝑝𝑝 covariate matrix and 𝒀𝒀 = �𝑌𝑌1,1, … ,𝑌𝑌1,𝑚𝑚1 , … ,𝑌𝑌𝑛𝑛,1, … ,𝑌𝑌𝑛𝑛,𝑚𝑚𝑛𝑛�
𝑇𝑇
 denote the outcome vector 

of length 𝑁𝑁, where 𝑁𝑁 = ∑ 𝑚𝑚𝑖𝑖
𝑛𝑛
𝑖𝑖=1  is the total number of observations. We focus on the problem 

of testing time-varying genetic effect between a genetic variant and the longitudinal binary trait. 

Let 𝑮𝑮 denote the genotype vector of the 𝑛𝑛 subjects at the variant to be tested, where 𝐺𝐺𝑖𝑖 = 0, 1 

or 2, depending on whether subject 𝑖𝑖 has 0, 1 or 2 copies of minor allele at the variant. 

2.1 GLMM with varying coefficients 

We consider a generalized linear mixed model (GLMM) with varying coefficients, 

specified as 

𝑔𝑔�𝜇𝜇𝑖𝑖𝑖𝑖� = 𝛾𝛾0�𝑡𝑡𝑖𝑖𝑖𝑖� + 𝐺𝐺𝑖𝑖𝛾𝛾1�𝑡𝑡𝑖𝑖𝑖𝑖� + 𝑿𝑿𝑖𝑖𝑖𝑖𝑇𝑇 𝜷𝜷 + 𝑎𝑎𝑖𝑖 + 𝑟𝑟𝑖𝑖𝑖𝑖,   𝑖𝑖 = 1, … ,𝑛𝑛;  𝑗𝑗 = 1, … ,𝑚𝑚𝑖𝑖,          (1) 
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where 𝜇𝜇𝑖𝑖𝑖𝑖 = 𝐸𝐸�𝑌𝑌𝑖𝑖𝑖𝑖  � 𝐺𝐺𝑖𝑖 ,𝑿𝑿𝑖𝑖𝑖𝑖 ,𝑎𝑎𝑖𝑖, 𝑟𝑟𝑖𝑖𝑖𝑖� is the mean of the response 𝑌𝑌𝑖𝑖𝑖𝑖  at time 𝑡𝑡𝑖𝑖𝑖𝑖  for subject 𝑖𝑖 , 

given his/her genotype, covariates, and random effects 𝑎𝑎𝑖𝑖 and 𝑟𝑟𝑖𝑖𝑖𝑖, 𝛾𝛾0(𝑡𝑡) and 𝛾𝛾1(𝑡𝑡) are smooth 

nonparametric functions of time 𝑡𝑡 representing a time-varying intercept and a time-varying 

genetic effect of the tested variant, 𝜷𝜷 is the effects of the covariates, and 𝑔𝑔(⋅) is the link 

function. For binary traits, we use the logit link function. The correlations among repeated 

measurements are captured by two random effects: 𝑎𝑎𝑖𝑖 is the subject random effect and 𝑟𝑟𝑖𝑖𝑖𝑖 is 

the subject-specific time-dependent random effect (Wang et al., 2017; Wu et al., 2019). We 

assume that 𝑎𝑎𝑖𝑖  are independent and 𝑎𝑎𝑖𝑖 ∼ 𝑁𝑁(0,𝜎𝜎𝑎𝑎2) . The vector of time-dependent random 

effects 𝒓𝒓𝑖𝑖 = (𝑟𝑟𝑖𝑖,1, … , 𝑟𝑟𝑖𝑖,𝑚𝑚𝑖𝑖)  is assumed to follow a multivariate normal distribution, 𝒓𝒓𝑖𝑖 ∼

𝑀𝑀𝑀𝑀𝑀𝑀(𝟎𝟎,𝜎𝜎𝑟𝑟2𝑹𝑹𝑖𝑖), where the correlation matrix 𝑹𝑹𝑖𝑖 is modeled by an AR(1) structure in which 𝜏𝜏 

is the unknown parameter. Given the random effects 𝑎𝑎𝑖𝑖 and 𝑟𝑟𝑖𝑖𝑖𝑖, the response 𝑌𝑌𝑖𝑖𝑖𝑖 are assumed 

to be independent. When both functions 𝛾𝛾0(𝑡𝑡) and 𝛾𝛾1(𝑡𝑡) are constants, Model (1) reduces to a 

standard GLMM in (Wu et al., 2019). 

Following (Lin and Zhang, 1999; Zhang, 2004), we estimate 𝛾𝛾0(𝑡𝑡)  and 𝛾𝛾1(𝑡𝑡)  by 

maximizing the following double penalized quasi-likelihood (DPQL) function: 

𝑙𝑙𝑑𝑑𝑑𝑑{𝛾𝛾0(⋅),𝛾𝛾1(⋅),𝜷𝜷,𝜎𝜎𝑎𝑎2,𝜎𝜎𝑟𝑟2, 𝜏𝜏} = −
1
2
�𝐷𝐷𝑖𝑖𝑖𝑖�𝑌𝑌𝑖𝑖𝑖𝑖 , 𝜇𝜇𝑖𝑖𝑖𝑖�
𝑖𝑖,𝑗𝑗

−
1

2𝜎𝜎𝑎𝑎2
𝒂𝒂𝑇𝑇𝒂𝒂 −

1
2𝜎𝜎𝑟𝑟2

𝒓𝒓𝑇𝑇𝑹𝑹−1𝒓𝒓 

−𝜆𝜆0
2 ∫ �𝛾𝛾0

(ℎ0)(𝑡𝑡)�
2
𝑑𝑑𝑑𝑑 − 𝜆𝜆1

2 ∫ �𝛾𝛾1
(ℎ1)(𝑡𝑡)�

2
𝑑𝑑𝑑𝑑,              (2) 

where 𝒂𝒂 = (𝑎𝑎1, … ,𝑎𝑎𝑛𝑛)𝑇𝑇 , 𝒓𝒓 = (𝒓𝒓1, … , 𝒓𝒓𝑛𝑛)𝑇𝑇  are the two vectors of random effects, 𝑹𝑹 =

diag{𝑹𝑹1, … ,𝑹𝑹𝑛𝑛}  is a block diagonal matrix, 𝐷𝐷𝑖𝑖𝑖𝑖�𝑌𝑌𝑖𝑖𝑖𝑖 , 𝜇𝜇𝑖𝑖𝑖𝑖� = −2∫
𝑌𝑌𝑖𝑖𝑖𝑖−𝑢𝑢
𝑢𝑢(1−𝑢𝑢)𝑑𝑑𝑑𝑑

𝜇𝜇𝑖𝑖𝑖𝑖
𝑌𝑌𝑖𝑖𝑖𝑖

 is the 

conditional deviance function of binary outcome 𝑌𝑌𝑖𝑖𝑖𝑖 given random effects 𝑎𝑎𝑖𝑖 and 𝑟𝑟𝑖𝑖𝑖𝑖, 𝜆𝜆𝑘𝑘 (𝑘𝑘 =

0, 1) are tuning parameters that control the smoothness of 𝛾𝛾𝑘𝑘(𝑡𝑡), and ℎ𝑘𝑘 are positive integers 

for the derivative order of 𝛾𝛾𝑘𝑘(𝑡𝑡). 
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The maximizers for the nonparametric functions 𝛾𝛾𝑘𝑘(𝑡𝑡) in the DPQL function of Eq. (2) are 

smoothing splines of order 2ℎ𝑘𝑘 (Wahba, 1990). Let 0 < 𝑡𝑡10 < ⋯ < 𝑡𝑡𝑚𝑚0 < 1 be the 𝑚𝑚 distinct 

knots of 𝑡𝑡𝑖𝑖𝑖𝑖, the smoothing splines can be expressed as 

𝛾𝛾𝑘𝑘(𝑡𝑡) = �𝑐𝑐𝑘𝑘𝑘𝑘𝐹𝐹𝑘𝑘𝑘𝑘(𝑡𝑡)
ℎ𝑘𝑘

𝑠𝑠=1

+ �𝑑𝑑𝑘𝑘𝑘𝑘𝑉𝑉𝑘𝑘(𝑡𝑡, 𝑡𝑡𝑙𝑙0)
𝑚𝑚

𝑙𝑙=1

,     𝑘𝑘 = 0, 1, 

where 𝐹𝐹𝑘𝑘𝑘𝑘(𝑡𝑡) is a polynomial of order 𝑠𝑠 − 1 (e.g., 𝐹𝐹𝑘𝑘𝑘𝑘(𝑡𝑡) = 𝑡𝑡(𝑠𝑠−1)/(𝑠𝑠 − 1)!, 𝑠𝑠 = 1, … , ℎ𝑘𝑘 ), 

and 𝑉𝑉𝑘𝑘(𝑡𝑡1, 𝑡𝑡2) = 1
[(ℎ𝑘𝑘−1)!]2 ∫ (𝑡𝑡1 − 𝑢𝑢)+

ℎ𝑘𝑘−11
0 (𝑡𝑡2 − 𝑢𝑢)+

ℎ𝑘𝑘−1𝑑𝑑𝑑𝑑  with 𝑢𝑢+ = max{𝑢𝑢, 0} . We denote 

𝒄𝒄𝑘𝑘 = �𝑐𝑐𝑘𝑘,1, … , 𝑐𝑐𝑘𝑘,ℎ𝑘𝑘�
𝑇𝑇

, 𝒅𝒅𝑘𝑘 = (𝑑𝑑𝑘𝑘1, … ,𝑑𝑑𝑘𝑘𝑘𝑘)𝑇𝑇 , and 𝜸𝜸𝑘𝑘 = (𝛾𝛾𝑘𝑘(𝑡𝑡10), … , 𝛾𝛾𝑘𝑘(𝑡𝑡𝑚𝑚0 ))𝑇𝑇  for 𝑘𝑘 = 0, 1 . 

Then 𝜸𝜸𝑘𝑘 can be expressed as 

𝜸𝜸𝑘𝑘 = 𝑭𝑭𝑘𝑘𝒄𝒄𝑘𝑘 + 𝑽𝑽𝑘𝑘𝒅𝒅𝑘𝑘, 

where 𝑭𝑭𝑘𝑘  is an 𝑚𝑚 × ℎ𝑘𝑘  matrix with its (𝑙𝑙, 𝑠𝑠)th entry equal to 𝐹𝐹𝑘𝑘𝑘𝑘(𝑡𝑡𝑙𝑙0), and 𝑽𝑽𝑘𝑘  is a positive 

definite matrix with the (𝑙𝑙, 𝑠𝑠)th entry equal to 𝑉𝑉𝑘𝑘(𝑡𝑡𝑙𝑙0, 𝑡𝑡𝑠𝑠0). Similar to Eq. (5) in (Zhang, 2004), 

the DPQL function of Eq. (2) becomes 

𝑙𝑙𝑑𝑑𝑑𝑑{𝛾𝛾0(⋅),𝛾𝛾1(⋅),𝜷𝜷,𝜎𝜎𝑎𝑎2,𝜎𝜎𝑟𝑟2, 𝜏𝜏} = −
1
2
�𝐷𝐷𝑖𝑖𝑖𝑖�𝑌𝑌𝑖𝑖𝑖𝑖 , 𝜇𝜇𝑖𝑖𝑖𝑖�
𝑖𝑖,𝑗𝑗

−
1

2𝜎𝜎𝑎𝑎2
𝒂𝒂𝑇𝑇𝒂𝒂 −

1
2𝜎𝜎𝑟𝑟2

𝒓𝒓𝑇𝑇𝑹𝑹−1𝒓𝒓 

−𝜆𝜆0
2
𝒅𝒅0𝑇𝑇𝑽𝑽0𝒅𝒅0 −

𝜆𝜆1
2
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If we treat 𝒅𝒅𝑘𝑘  in 𝜸𝜸𝑘𝑘  as random effects distributed as 𝒅𝒅𝑘𝑘 ∼ 𝑁𝑁(𝟎𝟎,𝜃𝜃𝑘𝑘𝑽𝑽𝑘𝑘−1)  for 𝑘𝑘 = 0, 1 , 

where 𝜃𝜃𝑘𝑘 = 𝜆𝜆𝑘𝑘−1, it follows that the maximizers of Eq. (3) can be obtained by fitting the GLMM 

representation of Model (1), expressed in a matrix form as 

𝑔𝑔(𝝁𝝁) = 𝑴𝑴𝑭𝑭0𝒄𝒄0 + 𝜟𝜟𝐺𝐺𝑴𝑴𝑭𝑭1𝒄𝒄1 + 𝑿𝑿𝑿𝑿 + 𝑴𝑴𝑽𝑽0𝒅𝒅0 + 𝜟𝜟𝐺𝐺𝑴𝑴𝑽𝑽1𝒅𝒅1 + 𝑩𝑩𝑩𝑩 + 𝒓𝒓,               (4) 

where 𝑴𝑴 is an 𝑁𝑁 × 𝑚𝑚 incidence matrix mapping 𝑡𝑡𝑖𝑖𝑖𝑖 to the 𝑚𝑚 distinct knots 𝑡𝑡10, … , 𝑡𝑡𝑚𝑚0 , 𝑩𝑩 is an 

𝑁𝑁 × 𝑛𝑛  design matrix mapping the subject-level genotype vector 𝑮𝑮 to a measurement-level 

genotype vector 𝑩𝑩𝑩𝑩, with its (𝑙𝑙, 𝑖𝑖)th entry 𝐵𝐵𝑙𝑙𝑙𝑙 = 1 if the 𝑙𝑙th entry of 𝒀𝒀 is a measurement on 

subject 𝑖𝑖  and 0 otherwise, and 𝜟𝜟𝐺𝐺 = diag{𝑩𝑩𝑩𝑩} = diag{𝐺𝐺1, … ,𝐺𝐺1, … ,𝐺𝐺𝑛𝑛, … ,𝐺𝐺𝑛𝑛}  is an 𝑁𝑁 -
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dimentional diagonal matrix of the genotypes for the 𝑛𝑛  subjects. Model (4) is a specific 

implementation of the GLMM with varying coefficients in (Zhang, 2004). Here, the tuning 

parameters 𝜆𝜆0 and 𝜆𝜆1 in the DPQL function of Eq. (2) are re-parameterized as 𝜃𝜃0 and 𝜃𝜃1, and 

treated as the unknown variance component parameters in Model (4). 

2.2 Varying coefficient mixed model association test 

To test time-varying genetic effect between the variant and the trait, we test 𝐻𝐻0: 𝛾𝛾1(𝑡𝑡) = 0 

in Model (1), which is equivalent to test 𝐻𝐻0: 𝒄𝒄1 = 𝟎𝟎 and 𝜃𝜃1 = 0 in Model (4). The reduced 

GLMM under the null hypothesis specifies that 

𝑔𝑔(𝝁𝝁0) = 𝑴𝑴𝑭𝑭0𝒄𝒄0 + 𝑿𝑿𝑿𝑿 + 𝑴𝑴𝑽𝑽0𝒅𝒅0 + 𝑩𝑩𝑩𝑩 + 𝒓𝒓,                                (5) 

where 𝝁𝝁0 = 𝐸𝐸(𝒀𝒀 | 𝑭𝑭0,𝑿𝑿,𝒅𝒅0,𝒂𝒂, 𝒓𝒓). 

If we test 𝐻𝐻0: 𝒄𝒄1 = 𝟎𝟎 under the assumption that 𝜃𝜃1 = 0, a score test can be constructed as 

𝑇𝑇𝑓𝑓 = �𝑼𝑼0(𝒄𝒄1)�
𝑇𝑇
�Var�𝑼𝑼0(𝒄𝒄1)��

−1
𝑼𝑼0(𝒄𝒄1),                                  (6) 

where 𝑼𝑼0(𝒄𝒄1) = (𝜟𝜟𝐺𝐺𝑴𝑴𝑭𝑭1)𝑇𝑇(𝒀𝒀 − 𝝁𝝁�0) is the score function for 𝒄𝒄1  and 𝝁𝝁�0 = 𝑔𝑔−1�𝑴𝑴𝑭𝑭0𝒄𝒄�0 +

𝑿𝑿𝜷𝜷� + 𝑴𝑴𝑽𝑽0𝒅𝒅�0 + 𝑩𝑩𝒂𝒂� + 𝒓𝒓�� is a vector of fitted values under Model (5), which can be obtained 

using the penalized quasi-likelihood method (Breslow and Clayton, 1993). For binary traits, 

we used a bias correction procedure (Lin and Breslow, 1996; Lin and Zhang, 1999; Zhang, 

2004) to produce less biased variance component estimates. Given the genotype and covariates, 

the variance of the score 𝑼𝑼0(𝒄𝒄1) under 𝐻𝐻0 is 

Var�𝑼𝑼0(𝒄𝒄1)� = (𝜟𝜟𝐺𝐺𝑴𝑴𝑭𝑭1)𝑇𝑇𝑷𝑷𝜟𝜟𝐺𝐺𝑴𝑴𝑭𝑭1, 

where 𝑷𝑷 = 𝚿𝚿−1 −𝚿𝚿−1𝑿𝑿𝐹𝐹(𝑿𝑿𝐹𝐹𝑇𝑇𝚿𝚿−1𝑿𝑿𝐹𝐹)−1𝑿𝑿𝐹𝐹𝑇𝑇𝚿𝚿−1 , 𝑿𝑿𝐹𝐹 = (𝑴𝑴𝑭𝑭0,𝑿𝑿)  and 𝚿𝚿 = 𝚪𝚪�0−1 +

𝜃𝜃�0𝑴𝑴𝑽𝑽0𝑴𝑴𝑇𝑇 + 𝜎𝜎�𝑎𝑎2𝑩𝑩𝑩𝑩𝑇𝑇 + 𝜎𝜎�𝑟𝑟2𝑹𝑹� . Here, 𝚪𝚪 = diag�𝜇𝜇1,1�1 − 𝜇𝜇1,1�, … , 𝜇𝜇1,𝑚𝑚1�1 −

𝜇𝜇1,𝑚𝑚1�, … , 𝜇𝜇𝑛𝑛,1�1 − 𝜇𝜇𝑛𝑛,1�, … , 𝜇𝜇𝑛𝑛,𝑚𝑚𝑛𝑛�1 − 𝜇𝜇𝑛𝑛,𝑚𝑚𝑛𝑛�� is an 𝑁𝑁-dimensional diagonal matrix, and 𝚪𝚪�0 

and 𝑹𝑹� are 𝚪𝚪 and 𝑹𝑹 evaluated under Model (5). Under the null hypothesis, the 𝑇𝑇𝑓𝑓 test statistic 

has an asymptotic 𝜒𝜒2 distribution with ℎ1 degrees of freedom. 
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On the other hand, if we test 𝐻𝐻0: 𝜃𝜃1 = 0 under the assumption that 𝒄𝒄1 = 𝟎𝟎, a variance 

component score test can be constructed as 

𝑇𝑇𝑣𝑣𝑣𝑣 = (𝒀𝒀 − 𝝁𝝁�0)𝑇𝑇𝜟𝜟𝐺𝐺𝑴𝑴𝑽𝑽1𝑴𝑴𝑇𝑇𝜟𝜟𝐺𝐺(𝒀𝒀 − 𝝁𝝁�0).                                (7) 

Under the null hypothesis, 𝑇𝑇𝑣𝑣𝑣𝑣  asymptotically follows a mixture of 𝜒𝜒2  distribution, 

𝑇𝑇𝑣𝑣𝑣𝑣~∑ 𝜉𝜉𝑙𝑙𝜒𝜒1,𝑙𝑙
2𝑚𝑚

𝑙𝑙=1 , where (𝜉𝜉1, … , 𝜉𝜉𝑚𝑚) are the eigenvalues of the matrix 𝑽𝑽1
1/2𝑴𝑴𝑇𝑇𝜟𝜟𝐺𝐺𝑷𝑷𝜟𝜟𝐺𝐺𝑴𝑴𝑽𝑽1

1/2 

and 𝜒𝜒1,𝑙𝑙
2  are independent 𝜒𝜒12  variables. The p-value of 𝑇𝑇𝑣𝑣𝑣𝑣  can be evaluated by a moment-

matching method (Liu, Tang and Zhang, 2009). 

We propose a joint test for testing 𝐻𝐻0: 𝒄𝒄1 = 𝟎𝟎 and 𝜃𝜃1 = 0 using a Cauchy combination test 

(Liu and Xie, 2020) that combines the test of fixed effect, 𝑇𝑇𝑓𝑓 , and the test of variance 

component, 𝑇𝑇𝑣𝑣𝑣𝑣 , which we named as Varying-coefficient Mixed Model Association Test 

(VMMAT). Specifically, the VMMAT test statistic is 

𝑇𝑇VMMAT = 1
2
�tan��0.5 − 𝑝𝑝𝑓𝑓�𝜋𝜋� + tan{(0.5 − 𝑝𝑝𝑣𝑣𝑣𝑣)𝜋𝜋}�,                        (8) 

where 𝑝𝑝𝑓𝑓  and 𝑝𝑝𝑣𝑣𝑣𝑣  are p-values of 𝑇𝑇𝑓𝑓  and 𝑇𝑇𝑣𝑣𝑣𝑣 . Under the null hypothesis, 𝑇𝑇VMMAT 

asymptotically follows a Cauchy distribution. Its p-value can be approximated by 𝑝𝑝VMMAT =

0.5 − arctan(𝑇𝑇VMMAT)/𝜋𝜋. 

The asymptotic null distributions of 𝑇𝑇𝑓𝑓 and 𝑇𝑇𝑣𝑣𝑣𝑣 are based on the GLMM of Eq. (4) which 

is an equivalent representation of the GLMM with varying coefficients using smoothing splines. 

Because parameters are estimated from the DPQL function of Eq. (2) with two penalty terms, 

the estimated variance can be larger than that from the model without penalties. Therefore, the 

null distributions of the score tests, 𝑇𝑇𝑓𝑓 and 𝑇𝑇𝑣𝑣𝑣𝑣, as well as the combined test, 𝑇𝑇VMMAT, depend 

on the tuning parameter values. We further assessed the null distribution of VMMAT through 

type I error experiments in simulation studies. 

2.3 Retrospective varying coefficient mixed model association test 
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Retrospective association tests have been shown to be robust to the trait model 

misspecification and improve statistical power (Hayeck et al., 2015; Jiang et al., 2015; Wu et 

al., 2019; Wu and McPeek, 2018). In that follows, we introduce a new varying-coefficient test, 

RVMMAT (Retrospective Varying-coefficient Mixed Model Association Test), for testing 

time-varying genetic effect between the variant and the trait. RVMMAT also uses a Cauchy 

combination test to combine two tests: a test for 𝐻𝐻0: 𝒄𝒄1 = 𝟎𝟎 under the constraint 𝜃𝜃1 = 0 and a 

test for 𝐻𝐻0: 𝜃𝜃1 = 0 under the constraint 𝒄𝒄1 = 𝟎𝟎. In contrast to the two prospective tests, 𝑇𝑇𝑓𝑓 and 

𝑇𝑇𝑣𝑣𝑣𝑣, in VMMAT, the two tests for testing fixed effect and variance component in RVMMAT 

are based on a retrospective model of the genotype given the trait and covariates, such that the 

analysis is less dependent on the correct specification of the phenotype model. We assume that 

under the null hypothesis of no time-varying genetic effect between the variant and the trait, 

the quasi-likelihood model of the genotype 𝑮𝑮 conditional on the phenotype 𝒀𝒀 and covariates 𝑿𝑿 

is 

𝐸𝐸0(𝑮𝑮 | 𝒀𝒀,𝑿𝑿) = 2𝑝𝑝𝟏𝟏𝑛𝑛,     Var0(𝑮𝑮 | 𝒀𝒀,𝑿𝑿) = 𝜎𝜎𝑔𝑔2𝚽𝚽,                              (9) 

where 𝑝𝑝 is the minor allele frequency (MAF) of the tested variant, 𝟏𝟏𝑛𝑛 is a vector of length 𝑛𝑛 

with every element equals to 1, 𝜎𝜎𝑔𝑔2  is an unknown variance parameter, and 𝚽𝚽 is an 𝑛𝑛 × 𝑛𝑛 

genetic relationship matrix (GRM) representing the overall genetic similarity between samples 

due to population structure, which can be estimated using genome-wide data. 

When we test 𝐻𝐻0: 𝒄𝒄1 = 𝟎𝟎  under the assumption that 𝜃𝜃1 = 0 , the same score function 

𝑼𝑼0(𝒄𝒄1) is considered. Because the vector of null phenotypic residuals 𝒀𝒀 − 𝝁𝝁�0, obtained by 

fitting Model (5), is orthogonal to the column space of 𝑿𝑿𝐹𝐹 = (𝑴𝑴𝑴𝑴0,𝑿𝑿), then the null mean 

model of 𝑮𝑮 in Eq. (9) ensures that 

𝐸𝐸0(𝑼𝑼0(𝒄𝒄1) | 𝒀𝒀,𝑿𝑿) = 𝐸𝐸0[(𝜟𝜟𝐺𝐺𝑴𝑴𝑭𝑭1)𝑇𝑇(𝒀𝒀 − 𝝁𝝁�0) | 𝒀𝒀,𝑿𝑿] = 2𝑝𝑝(𝑴𝑴𝑭𝑭1)𝑇𝑇(𝒀𝒀− 𝝁𝝁�0) = 𝟎𝟎, 
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if ℎ1 ≤ ℎ0. In practice, we commonly use smoothing splines of the same order for 𝛾𝛾0(𝑡𝑡) and 

𝛾𝛾1(𝑡𝑡) in Model (1). Thus, we consider the score function 𝑼𝑼0(𝒄𝒄1) and construct a score test 

under the retrospective model of Eq. (9), given by 

𝑇𝑇𝑓𝑓𝑅𝑅 = �𝑼𝑼0(𝒄𝒄1)�
𝑇𝑇[Var0(𝑼𝑼0(𝒄𝒄1) | 𝒀𝒀,𝑿𝑿)]−1𝑼𝑼0(𝒄𝒄1).                                  (10) 

Here, the variance of 𝑼𝑼0(𝒄𝒄1) is evaluated by 

Var0(𝑼𝑼0(𝒄𝒄1) | 𝒀𝒀,𝑿𝑿) = Var0((𝜟𝜟𝐺𝐺𝑴𝑴𝑭𝑭1)𝑇𝑇(𝒀𝒀 − 𝝁𝝁�0) | 𝒀𝒀,𝑿𝑿) = Var0((𝜟𝜟𝑅𝑅𝑴𝑴𝑭𝑭1)𝑇𝑇𝑩𝑩𝑩𝑩 | 𝒀𝒀,𝑿𝑿)

= 𝜎𝜎�𝑔𝑔2(𝜟𝜟𝑅𝑅𝑴𝑴𝑭𝑭1)𝑇𝑇𝑩𝑩𝚽𝚽𝑩𝑩𝑇𝑇𝜟𝜟𝑅𝑅𝑴𝑴𝑭𝑭1, 

where 𝜟𝜟𝑅𝑅 = diag{𝒀𝒀 − 𝝁𝝁�0} = diag��𝑌𝑌1,1 − 𝜇̂𝜇0;1,1�, … , �𝑌𝑌1,𝑚𝑚1 − 𝜇̂𝜇0;1,𝑚𝑚1�, … , �𝑌𝑌𝑛𝑛,1 −

𝜇̂𝜇0;𝑛𝑛,1�, … , �𝑌𝑌𝑛𝑛,𝑚𝑚𝑛𝑛 − 𝜇̂𝜇0;𝑛𝑛,𝑚𝑚𝑛𝑛�� is an 𝑁𝑁-dimentional diagonal matrix of the phenotypic residuals. 

Under Hardy-Weinberg equilibrium, the variance of the genotype is estimated by 𝜎𝜎�𝑔𝑔2 = 2𝑝̂𝑝(1 −

𝑝̂𝑝), where 𝑝̂𝑝 is the sample MAF of the tested variant. Under the null hypothesis, the 𝑇𝑇𝑓𝑓𝑅𝑅 test 

statistic has an asymptotic 𝜒𝜒2 distribution with ℎ1 degrees of freedom. 

If we test 𝐻𝐻0: 𝜃𝜃1 = 0  under the assumption that 𝒄𝒄1 = 𝟎𝟎 , a retrospective variance 

component score test under Model (9) can be constructed as 

𝑇𝑇𝑣𝑣𝑣𝑣𝑅𝑅 = (𝑩𝑩𝑩𝑩)𝑇𝑇𝜟𝜟𝑅𝑅𝑴𝑴𝑽𝑽1𝑴𝑴𝑇𝑇𝜟𝜟𝑅𝑅𝑩𝑩𝑩𝑩 = (𝒀𝒀 − 𝝁𝝁�0)𝑇𝑇𝜟𝜟𝐺𝐺𝑴𝑴𝑽𝑽1𝑴𝑴𝑇𝑇𝜟𝜟𝐺𝐺(𝒀𝒀 − 𝝁𝝁�0),        (11) 

which has the same form as the prospective variance component test 𝑇𝑇𝑣𝑣𝑣𝑣. However, under the 

null hypothesis, given the trait and covariates, 𝑇𝑇𝑣𝑣𝑣𝑣𝑅𝑅  asymptotically follows a mixture of 𝜒𝜒2 

distribution, 𝑇𝑇𝑣𝑣𝑣𝑣𝑅𝑅~∑ 𝜁𝜁𝑙𝑙𝜒𝜒1,𝑙𝑙
2𝑚𝑚

𝑙𝑙=1 , where (𝜁𝜁1, … , 𝜁𝜁𝑚𝑚)  are the eigenvalues of the matrix 

𝜎𝜎�𝑔𝑔2𝑽𝑽1
1/2𝑴𝑴𝑇𝑇𝜟𝜟𝑅𝑅𝑩𝑩𝚽𝚽𝑩𝑩𝑇𝑇𝜟𝜟𝑅𝑅𝑴𝑴𝑽𝑽1

1/2. 

The RVMMAT test statistic is defined by combining the two retrospective tests, 𝑇𝑇𝑓𝑓𝑅𝑅 and 

𝑇𝑇𝑣𝑣𝑣𝑣𝑅𝑅 , expressed as 

𝑇𝑇RVMMAT = 1
2
�tan��0.5 − 𝑝𝑝𝑓𝑓𝑅𝑅�𝜋𝜋� + tan{(0.5 − 𝑝𝑝𝑣𝑣𝑣𝑣𝑅𝑅 )𝜋𝜋}�,                        (12) 

where 𝑝𝑝𝑓𝑓𝑅𝑅  and 𝑝𝑝𝑣𝑣𝑣𝑣𝑅𝑅  are p-values of 𝑇𝑇𝑓𝑓𝑅𝑅  and 𝑇𝑇𝑣𝑣𝑣𝑣𝑅𝑅 . Under the null hypothesis, 𝑇𝑇RVMMAT 

asymptotically follows a Cauchy distribution. 
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The asymptotic null distributions of 𝑇𝑇𝑓𝑓𝑅𝑅 and 𝑇𝑇𝑣𝑣𝑣𝑣𝑅𝑅  are based on the retrospective model of Eq. 

(9) in which genotypes are treated as random conditional on the phenotype and covariates. 

Therefore, the estimated variance in the trait model due to the tuning parameters in penalty 

terms does not impact the null distributions of the retrospective score tests, 𝑇𝑇𝑓𝑓𝑅𝑅 and 𝑇𝑇𝑣𝑣𝑣𝑣𝑅𝑅 , as well 

as the combined test, 𝑇𝑇RVMMAT. We also assessed the null distribution of RVMMAT through 

type I error experiments in simulation studies. 

 

3 SIMULATION STUDIES 

We conducted simulation studies to assess the type I error and power of VMMAT and 

RVMMAT, and compared them to a Gaussian copula method with weighted scores that allows 

for heterogenous genetic effect (Nikoloulopoulos, Joe and Chaganty, 2011) and the two 

association tests that assume constant genetic effect, GMMAT (Chen et al., 2016) and 

RGMMAT (Wu et al., 2019). In all simulations, VMMAT and RVMMAT were implemented 

with cubic smoothing splines. The Gaussian copula method was implemented with a binomial 

marginal model with the logit link function and an AR(1) structure in the Gaussian copula 

correlation matrix (Nikoloulopoulos et al., 2011). VMMAT and RVMMAT are designed to 

detect time-varying genetic effect between a genetic variant and the longitudinal binary trait. 

Because we test one variant at a time, these methods tend to have limited power for rare variants 

and are more appropriate for common variants. The performance of all methods was evaluated 

on common variants in simulation studies. We considered two trait models and three 

ascertainment schemes to evaluate the robustness of VMMAT and RVMMAT in the presence 

of model misspecification and ascertainment. 

3.1 Simulation settings 

To generate genotypes, we first simulated 10,000 chromosomes over a 1 Mb region using 

a coalescent model to mimic the recombination rates and linkage disequilibrium (LD) pattern 
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of the European population (Schaffner et al., 2005; Shlyakhter, Sabeti and Schaffner, 2014). 

We then randomly selected 1,000 non-causal SNPs with MAF > 0.05. In addition, we simulated 

two causal SNPs that were assumed to influence the trait value with epistasis. In each 

simulation setting, we generated 1,000 sets of binary phenotypes at five time points for a given 

sample size. In the type I error experiments, for each phenotype dataset, we tested the time-

varying genetic effect at the 1,000 non-causal SNPs. In total, 106  test results across 1,000 

phenotype datasets were used for the type I error assessment. In the power simulations, we 

tested time-varying genetic effect at the first of the two causal SNPs and evaluated power using 

1,000 simulated phenotype datasets. In all tests considered, the genotypes at the untested SNPs 

were not included as covariates in the model. 

We simulated binary phenotypes under two types of trait models at five time points, in 

which the two unlinked causal SNPs were assumed to influence phenotype through an epistatic 

interaction. The first type is a logistic mixed model, specified by: 

𝑌𝑌𝑖𝑖𝑖𝑖|𝑿𝑿𝑖𝑖𝑖𝑖 ,𝐺𝐺𝑖𝑖(1),𝐺𝐺𝑖𝑖(2),𝑎𝑎𝑖𝑖, 𝑟𝑟𝑖𝑖𝑖𝑖 ∼ Bernoulli(𝜇𝜇𝑖𝑖𝑖𝑖), 

logit�𝜇𝜇𝑖𝑖𝑖𝑖� = −1.9 + 0.2𝑗𝑗 + 𝛾𝛾1�𝑡𝑡𝑖𝑖𝑖𝑖�𝕀𝕀{𝐺𝐺𝑖𝑖(1)>0,𝐺𝐺𝑖𝑖(2)>0} + 0.5𝑋𝑋𝑖𝑖𝑖𝑖(1) + 0.5𝑋𝑋𝑖𝑖(2) + 𝑎𝑎𝑖𝑖 + 𝑟𝑟𝑖𝑖𝑖𝑖, 

𝑖𝑖 = 1, … ,𝑛𝑛;    𝑗𝑗 = 1, … ,5, 

where 𝛾𝛾1�𝑡𝑡𝑖𝑖𝑖𝑖� is a function encoding the effect of the causal SNPs, 𝐺𝐺𝑖𝑖(1)  and 𝐺𝐺𝑖𝑖(2)  are the 

genotypes of subject 𝑖𝑖 at the two causal SNPs, 𝕀𝕀{𝐺𝐺𝑖𝑖(1)>0,𝐺𝐺𝑖𝑖(2)>0} is an indicator function that 

takes value 1 when subject 𝑖𝑖 has at least one copy of the minor allele at both causal SNPs, 𝑋𝑋𝑖𝑖𝑖𝑖(1) 

is a continuous, time-varying covariate generated from a multivariant normal distribution with 

a compound symmetry correlation matrix where the correlation is 0.5, 𝑋𝑋𝑖𝑖(2) is a binary, time-

invariant covariate taking values 0 or 1 with a probability of 0.5, 𝑎𝑎𝑖𝑖 and 𝑟𝑟𝑖𝑖𝑖𝑖 are the subject-level 

time-independent and time-dependent random effects, respectively. We assumed 𝑎𝑎𝑖𝑖 ∼

𝑁𝑁(0,  𝜎𝜎𝑎𝑎2)  and 𝒓𝒓𝑖𝑖 = (𝑟𝑟𝑖𝑖1, … , 𝑟𝑟𝑖𝑖5) ∼ 𝑀𝑀𝑀𝑀𝑀𝑀(𝟎𝟎,𝜎𝜎𝑟𝑟2𝑹𝑹) , where 𝑹𝑹  is a 5 × 5  correlation matrix 
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specified by the AR(1) structure with a correlation coefficient 𝜏𝜏. The two causal SNPs were 

assumed to be unlinked with MAFs 0.1 and 0.5, respectively. The variance components were 

set to 𝜎𝜎𝑎𝑎2 = 𝜎𝜎𝑟𝑟2 = 0.64 and 𝜏𝜏 = 0.7. 

The second type of trait model is a liability threshold model in which an underlying 

continuous liability determines the binary outcome value based on a threshold. Specifically, 

the phenotype 𝑌𝑌𝑖𝑖𝑖𝑖 is determined by 

𝑌𝑌𝑖𝑖𝑖𝑖 = 1 if 𝐿𝐿𝑖𝑖𝑖𝑖 > 0, 

with 𝐿𝐿𝑖𝑖𝑖𝑖 = −1.8 + 0.2𝑗𝑗 + 𝛾𝛾1�𝑡𝑡𝑖𝑖𝑖𝑖�𝕀𝕀{𝐺𝐺𝑖𝑖(1)>0,𝐺𝐺𝑖𝑖(2)>0} + 0.5𝑋𝑋𝑖𝑖𝑖𝑖(1) + 0.5𝑋𝑋𝑖𝑖(2) + 𝑎𝑎𝑖𝑖 + 𝑟𝑟𝑖𝑖𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖, 

where 𝐿𝐿𝑖𝑖𝑖𝑖  is the underlying liability for subject 𝑖𝑖  at time 𝑡𝑡𝑖𝑖𝑖𝑖 , and 𝑒𝑒𝑖𝑖𝑖𝑖 ∼ 𝑁𝑁(0,𝜎𝜎𝑒𝑒2) represents 

independent noise, with 𝜎𝜎𝑒𝑒2 = 1.96. All other parameters are the same as those in the logistic 

mixed model. 

In both trait models, we specified the intercept as a linear function of time 𝑡𝑡𝑖𝑖𝑖𝑖 = 𝑗𝑗, and the 

genetic effect as a logistic function 𝛾𝛾1�𝑡𝑡𝑖𝑖𝑖𝑖� = 𝛾𝛾
�1+𝛾𝛾exp�8−2.4𝑡𝑡𝑖𝑖𝑖𝑖��

 (Gong and Zou, 2012). For the 

type I error assessment, the effect of the causal SNPs was set to 𝛾𝛾 = 0.6 in 𝛾𝛾1�𝑡𝑡𝑖𝑖𝑖𝑖�. For the 

power evaluation, we considered a range of values for 𝛾𝛾, where 𝛾𝛾 = 0.6, 0.63, 0.66, and 0.69. 

At the given parameter values, the prevalence of the event of interest ranges from 23.68% to 

40.56% over time. The proportion of the phenotypic variance explained by the two causal SNPs 

ranges from 0.01% to 2.99% in the logistic mixed model and from 0.01% to 1.36% in the 

liability threshold model. 

We considered three sampling designs as in (Wu et al., 2019). In the “random” sampling, 

samples contain 2,000 subjects randomly selected from the population regardless of their 

phenotypes. In the “baseline” sampling, samples contain 1,000 case subjects and 1,000 control 

subjects based on their outcome value at baseline only. In the “sum” sampling, subjects were 

stratified into three strata based on the total count of events of the subject over time, where 
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subjects in stratum 1 never experienced the event of interest, i.e., ∑ 𝑌𝑌𝑖𝑖𝑖𝑖 = 0𝑗𝑗 , subjects in stratum 

2 sometimes experienced the event, i.e., 0 < ∑ 𝑌𝑌𝑖𝑖𝑖𝑖 < 𝑛𝑛𝑖𝑖𝑗𝑗 , and subjects in stratum 3 always 

experienced the event, i.e., ∑ 𝑌𝑌𝑖𝑖𝑖𝑖 = 𝑛𝑛𝑖𝑖𝑗𝑗 . We oversampled subjects with response variation over 

the course of the study and selected 100, 1,800, and 100 subjects from the three strata 

(Schildcrout et al., 2018). 

3.2 Simulation results 

To assess type I error, we tested time-varying genetic effect at unlinked and unassociated 

SNPs. Empirical type I error was calculated as the proportion of simulations in which the p-

value of the SNP is less than the nominal level 𝛼𝛼, for 𝛼𝛼 = 0.01, 0.001, and 0.0001. Table 1 

gives the empirical type I error rates of RVMMAT and VMMAT, based on 106 replicates, 

under two trait models and three sampling designs. In most simulations, the type I error of 

RVMMAT was within the 95% confidence interval of the nominal levels. In contrast, the type 

I error of VMMAT in all simulation settings was much lower than the nominal level when 𝛼𝛼 = 

0.01, 0.001, and 0.0001. It is well recognized that the DPQL approach underestimates variance 

components when data are sparse such as binary data (Lin and Zhang, 1999; Zhang, 2004). 

Even with bias correction, parameters estimated from the DPQL function with penalty terms 

depend on the tuning parameter values. Thus, the prospective variance of the score 𝑼𝑼0(𝒄𝒄1) 

tends to be overestimated, producing a conservative test statistic. However, the retrospective 

variance of the score 𝑼𝑼0(𝒄𝒄1) does not depend on the estimation of variance components due to 

the tuning parameters in penalty terms so that the test statistic is less biased. These results 

suggest that the retrospective RVMMAT test had much better control of type I error and was 

robust to trait model misspecification and ascertainment, whereas the prospective VMMAT 

test was overly conservative. 

To compare power, we considered four parameter values for 𝛾𝛾 to determine time-varying 

genetic effect at the two causal SNPs and tested between the trait and the first causal SNP. 
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Empirical power was calculated at the significance level 10−3 , based on 1,000 replicates. 

Figure 1 demonstrates the power results of the five methods, RVMMAT, VMMAT, Copula, 

RGMMAT and GMMAT, under two trait models and three sampling designs. In all simulation 

settings, the two varying-coefficient tests consistently had higher power than the association 

tests assuming constant gene effect. The Gaussian copula method with heterogenous genetic 

effect had lower power than RVMMAT and VMMAT, while performed better than RGMMAT 

and GMMAT. Moreover, within the same type of tests, the retrospective test was more 

powerful than the prospective test. Both RVMMAT and VMMAT had similar power across 

the three sampling designs. In contrast, Copula, RGMMAT and GMMAT had lower power 

under the sum sampling in both trait models. The power gain of the varying-coefficient tests 

was more prominent over the association tests assuming constant genetic effect in the presence 

of ascertainment. These results suggest that RVMMAT was the most powerful test and 

outperformed the association tests assuming constant genetic effect. 

 

4 APPLICATION TO MESA DATA 

We applied our proposed methods to a genome-wide association analysis of hypertension 

in MESA (Bild et al., 2002). MESA is a large longitudinal study of subclinical cardiovascular 

disease (CVD) whose primary objective is to understand the pathogenesis of atherosclerosis 

and other CVD. We analyzed longitudinal hypertension assessed at five time points on 6,429 

participants. Among them, 39.3% are white, 26.1% are African American, 22.5% are Hispanic, 

and 12.1% are Asian. The proportion of case subjects at each time point ranges from 44.6% 

(𝑛𝑛 = 2,864) to 59.5% (𝑛𝑛 = 2,608), and the missing rate at each time point ranges from 0 to 

31.6%. 

Samples were genotyped using the Affymetrix Human SNP Array 6.0. After data cleaning, 

there were 6,428 subjects available for genotype imputation. We applied IMPUTE2 (Howie, 
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Donnelly and Marchini, 2009) for imputation, using the 1000 Genomes Phase 3 data as a 

reference panel. Subjects who did not meet either of the following criteria were excluded: (1) 

proportion of successfully imputed SNPs > 95% and (2) empirical inbreeding coefficient < 

0.05. Based on the above criteria, 6,424 subjects were retained in the downstream analysis, 

with 3,057 males and 3,367 females, of whom 2,527 are white, 1,673 are African American, 

1,449 are Hispanic, and 775 are Asian. There are 2,227 subjects who had no hypertension 

during the study period, 1,807 subjects who were sometimes hypertensive, i.e., exhibited 

response variation, and 2,390 subjects who were always hypertensive over the course of the 

study. We then tested Hardy-Weinberg equilibrium at each SNP within each population. SNPs 

met all of the following quality-control conditions were included in the analysis: (1) call rate > 

95%, (2) Hardy-Weinberg 𝜒𝜒2 statistic p-value > 10−6, and (3) MAF > 1%. Taken together, a 

final set of 6,155,404 SNPs were examined in the downstream analysis. 

4.1 Analysis of time-varying genetic effect 

We performed genome-wide tests of time-varying genetic effect on hypertension using 

RVMMAT and VMMAT with cubic smoothing splines in the MESA sample. Age at baseline, 

sex, and the top ten principal components (PCs) were included as time-invariant covariates in 

the analysis. The top ten PCs were calculated using the LD pruned SNPs with MAF > 0.05 to 

control for population structure. Since hypertension was assessed in year 2000, 2002, 2004, 

2005 and 2010, we coded time at the five time points as 0, 0.2, 0.4, 0.5 and 1, respectively. We 

also applied the Gaussian copula method with heterogenous genetic effect, adjusting for the 

same covariates. To compare the performance of the varying-coefficient tests with the 

association tests assuming constant genetic effect, we applied RGMMAT and GMMAT to the 

analysis of hypertension, adjusting for age at baseline, sex, time, and the top ten PCs. 

The two retrospective tests, RVMMAT and RGMMAT, showed no evidence of inflation 

in the quantile-quantile (Q-Q) plot. The genomic control inflation factors were 0.905 and 0.976, 
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respectively. The prospective VMMAT test was overly conservative, with a genomic control 

factor of 0.774, consistent with the observed deflation in the type I error simulations. The 

genomic control inflation factor was 0.838 for GMMAT. 

None of the SNPs reached genome-wide significance at the p-value threshold of 5 × 10−8 

that is widely used in GWAS. Table 2 reports the top SNPs for which at least one of the tests 

gives a p-value < 5 × 10−7. The smallest p-values of these eight SNPs were mostly generated 

by RVMMAT, except at the last two SNPs. VMMAT generated much larger p-values than 

RVMMAT due to its conservativeness, while RGMMAT and GMMAT had comparable results. 

The Gaussian copula method produced p-values comparable to VMMAT, except at the last two 

SNPs. A cluster of six SNPs in LD (𝑟𝑟2 > 0.97), rs145659245, rs58265184, rs57719815, 

rs60197637, rs61327798, and rs142890225, located at 4p15, showed time-varying genetic 

effect on hypertension by RVMMAT (p-value = 6.78 × 10−8  −  2.85 × 10−7 ). Figure 2A 

demonstrated the estimated genetic effect over time at these SNPs where the estimated effect 

at each time point was obtained by using the observed trait values at that time point only. A 

strait line was used to connect the estimated values at two adjacent time points. We observed 

an increasing and then decreasing trend in genetic effects on hypertension across the five time 

points. However, RGMMAT and GMMAT lost power and generated large p-values by 

assuming constant genetic effect. These SNPs are in an intron of the gene PROM1, encoding a 

pentaspan transmembrane glycoprotein, which was reported to be associated with pulse 

pressure (Evangelou et al., 2018). The smallest p-value for rs374012917, located on 

chromosome 17, was generated by the Gaussian copula method (p-value = 1.02 × 10−7). As 

the estimated genetic effects at the five time points were relatively stable for this SNP (Figure 

2B), RGMMAT and GMMAT generated slightly larger p-values. There was also evidence of 

association between hypertension and rs72930733 (p-value = 2.55 × 10−7 ). Although 

RVMMAT did not give the smallest p-value for this SNP, its p-value was slightly larger than 
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that of RGMMAT, mostly due to the increasing trend in genetic effect (Figure 2B). This SNP 

is in an intron of the gene WDR7, located at 18q21. Two hypertension GWAS identified an 

association between WDR7 and systolic blood pressure (Evangelou et al., 2018; Kichaev et al., 

2019). 

We further assessed the model fitting of cubic smoothing splines on the top SNPs in Table 

2 using deviance and goodness-of-fit p-value. All p-values were large, suggesting that there 

was no evidence of lack of fit (Table 3). We also checked the deviance residuals of the cubic 

smoothing splines model applied to the top SNPs. The deviance residuals range from -2.46 to 

2.19, suggesting that cubic smoothing splines fit the data adequately. 

4.2 Pathway analysis 

We then performed functional pathway analysis using the MetaCoreTM software to identify 

enriched pathways related to hypertension. The top SNPs for which at least one of the tests had 

a p-value < 2 × 10−4 were included in the analysis. Fisher’s exact test was used to determine 

whether the SNP list was enriched for a functional pathway. At the false discovery rate (FDR) 

< 0.05, we identified two significant pathways that were associated with G-protein signaling 

and DNA damage. The first one is the G-protein signaling pathway related to Rac1 activation 

(p-value = 6.12 × 10−5 , FDR = 1.65 × 10−2 ). Rac1 participates in the control of blood 

pressure through multiple mechanisms in the arterial wall and the central nervous system 

(Loirand and Pacaud, 2010). Importantly, a role for Rac1 in atherosclerosis and cardiac 

hypertrophy has been established in response to the administration of statins in clinical trials 

(Maack et al., 2003). Animal studies indicated that Rac1 is essential for endothelium-dependent 

vasomotor response, the redox state of blood vessels and homeostasis of blood pressure 

(Moustafa-Bayoumi et al., 2003; Satoh et al., 2006; Sawada et al., 2008). The second pathway 

is the DNA damage pathway related to the ataxia-telangiectasia mutated (ATM) kinase 

activation (p-value = 4.98 × 10−4 , FDR = 4.48 × 10−2 ). Emerging evidence has 
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demonstrated that accumulated DNA damage and subsequent repair pathways play a crucial 

role in the initiation and progression of cardiovascular disorders, such as atherosclerosis and 

maladaptive cardiac hypertrophy (Shah et al., 2018; Shah and Mahmoudi, 2015; Uryga, Gray 

and Bennett, 2016; Wu et al., 2022). ATM-mediated phosphorylation plays cardinal roles in 

response to genomic stress to preserve cellular homeostasis. DNA double-strand breaks trigger 

ATM activation which mediates DNA damage response and regulate cardiac remodeling, 

inflammation, and systolic function, eventually promoting heart failure development (Shiloh 

and Ziv, 2013; Uziel et al., 2003). 

 

5 DISCUSSION 

In genome-wide association analysis of longitudinal traits, modeling time-varying genetic 

effect can increase power for the detection of genes underlying the development and 

progression of complex diseases. In this study, we developed RVMMAT, a GLMM-based, 

retrospective varying-coefficient association testing method for longitudinal binary traits. 

RVMMAT extends the existing association methods assuming constant effect over time to 

testing of time-varying effect on binary traits. RVMMAT is constructed based on the trait 

model allowing for time-varying genetic effect. The variance of the test statistics is assessed 

retrospectively by considering the conditional distribution of the genotype at the variant of 

interest, given phenotype and covariate information, under the null hypothesis of no association. 

RVMMAT has the following features: (1) it is computationally feasible for genetic studies with 

millions of variants, (2) it has well-controlled type I error in the presence of ascertainment and 

trait model misspecification, and (3) it can easily be fitted as a GLMM model using popular 

software such as R and SAS. We also propose VMMAT, a prospective varying-coefficient 

association test, for performance comparison. 
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Our simulation results demonstrated that RVMMAT maintained correct type I error under 

different trait models and ascertainment schemes, whereas VMMAT was overly conservative 

due to the biased estimation of variance in the penalized trait model. We further demonstrated 

that the retrospective RVMMAT test achieved the highest power among the five tests under all 

the trait models and ascertainment schemes considered in the simulations. Application of 

RVMMAT to the MESA longitudinal hypertension data identified three novel genes that were 

associated with hypertension. Among them, two genes are known to be associated with systolic 

blood pressure and pulse pressure. Moreover, we identified two significant pathways associated 

with longitudinal hypertension: the G-protein signaling pathway related to Rac1 activation, and 

the DNA damage pathway related to ATM activation. Given the established role for Rac1 and 

ATM in atherosclerosis and cardiac hypertrophy, our findings suggest that RVMMAT can 

provide enhanced statistical power in detecting biologically relevant genetic loci that are 

associated with trait dynamics. A better understanding of temporal variation of trait values and 

time-varying genetic contribution may shed light on the genetic mechanisms influencing the 

temporal trend of diseases and complex traits. 

The RVMMAT and VMMAT methods are designed for single-variant association analysis 

of longitudinal binary traits. However, single-variant association tests suffer from restricted 

power to detect association for rare variants in whole-genome sequencing studies. As many 

variants influence complex traits collectively, assessing joint effects from multiple variants by 

aggregating weak signals at the gene or pathway level holds great promise for the identification 

of novel genes underlying disease risks. To extend RVMMAT to rare variant analysis with 

longitudinal binary data, we could design a linear statistic or a quadratic statistic that combines 

the test allowing for time-varying genetic effect at each variant in a gene region. Such statistics 

are likely to better calibrate the fluctuation of genetic contributions to the trait values over time. 
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Additionally, our current model can easily be extended to analyze nominal, ordinal and count 

data. 
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Table 1. Empirical type I error of RVMMAT and VMMAT, based on 106 replicates 

Test Nominal 
Level 

Logistic Mixed Model Liability Threshold Model 
Random Baseline Sum Random Baseline Sum 

RVMMAT 
0.01 9.90 × 10

-3
 1.01 × 10

-2
 9.97 × 10

-3
 1.02 × 10

-2
 9.70 × 10

-3
 1.00 × 10

-2
 

0.001 9.52 × 10
-4

 9.92 × 10
-4

 9.17 × 10
-4

 1.04 × 10
-3

 1.00 × 10
-3

 1.03 × 10
-3

 

0.0001 9.80 × 10
-5

 1.08 × 10
-4

 9.40 × 10
-5

 1.00 × 10
-4

 1.01 × 10
-4

 1.13 × 10
-4

 

VMMAT 
0.01 5.77 × 10

-3
 6.45 × 10

-3
 6.91 × 10

-3
 5.73 × 10

-3
 6.26 × 10

-3
 7.20 × 10

-3
 

0.001 4.34 × 10
-4

 5.14 × 10
-4

 5.33 × 10
-4

 4.73 × 10
-4

 5.10 × 10
-4

 6.68 × 10
-4

 

0.0001 3.70 × 10
-5

 4.40 × 10
-5

 5.70 × 10
-5

 2.90 × 10
-5

 5.00 × 10
-5

 4.60 × 10
-5

 
Rates outside of the 95% confidence interval are in bold. 
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Table 2. SNPs with p-value < 5×10−7 in at least one of the tests in the MESA data 
Chr Gene Region SNP Position MAF RVMMAT VMMAT Copula RGMMAT GMMAT 

4 PROM1 rs145659245 16,060,553 0.013 6.78 × 10
-8

 4.19 × 10
-6

 9.77 × 10
-6

 7.67 × 10
-4

 1.78 × 10
-3

 
  rs58265184 16,061,151 0.014 2.18 × 10

-7
 7.70 × 10

-5
 2.79 × 10

-5
 2.51 × 10

-3
 4.85 × 10

-3
 

  rs57719815 16,063,652 0.013 2.85 × 10
-7

 8.04 × 10
-5

 3.09 × 10
-5

 1.65 × 10
-3

 3.27 × 10
-3

 
  rs60197637 16,063,659 0.013 2.85 × 10

-7
 8.04 × 10

-5
 3.09 × 10

-5
 1.65 × 10

-3
 3.27 × 10

-3
 

  rs61327798 16,063,661 0.013 2.85 × 10
-7

 8.04 × 10
-5

 3.09 × 10
-5

 1.65 × 10
-3

 3.27 × 10
-3

 
  rs142890225 16,065,544 0.013 2.85 × 10

-7
 8.04 × 10

-5
 3.10 × 10

-5
 1.65 × 10

-3
 3.27 × 10

-3
 

17 LRRC37B rs374012917 30,403,054 0.038 2.21 × 10
-5

 1.95 × 10
-4

 1.02 × 10
-7

 2.31 × 10
-6

 4.95 × 10
-6

 
18 WDR7 rs72930733 54,641,870 0.011 1.80 × 10

-6
 7.06 × 10

-5
 7.72 × 10

-6
 2.55 × 10

-7
 4.63 × 10

-6
 

The smallest p-values among the five tests at the given SNPs are in bold. 
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Table 3. Assessment of model fitting with cubic smoothing splines at the top SNPs in the 
MESA data 

Chr Gene Region SNP Position MAF Deviance Goodness-of-fit 
P-value 

4 PROM1 rs145659245 16,060,553 0.013 10467.93 1 
  rs58265184 16,061,151 0.014 10468.13 1 
  rs57719815 16,063,652 0.013 10469.79 1 
  rs60197637 16,063,659 0.013 10469.79 1 
  rs61327798 16,063,661 0.013 10469.79 1 
  rs142890225 16,065,544 0.013 10469.79 1 

17 LRRC37B rs374012917 30,403,054 0.038 10495.83 1 
18 WDR7 rs72930733 54,641,870 0.011 10493.05 1 
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Figure 1. Empirical power of RVMMAT, VMMAT, Copula, RGMMAT and GMMAT. Power 
is based on 1,000 replicates at five time points with 𝛼𝛼 = 10−3. In the upper panel, trait is 
simulated under the logistic mixed model; in the lower panel, trait is simulated under the 
liability threshold model. Power results are demonstrated in samples of 2,000 individuals 
according to three ascertainment schemes: random, baseline, and sum. 
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Figure 2. Estimated genetic effect of the top 8 SNPs on hypertension at each of the five time 
points. (A) six SNPs on chromosome 4; (B) two SNPs on chromosomes 17 and 18, respectively. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 1, 2022. ; https://doi.org/10.1101/2022.10.31.514543doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.31.514543
http://creativecommons.org/licenses/by-nc-nd/4.0/

