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Abstract

Many genetic studies contain rich information on longitudinal phenotypes that require
powerful analytical tools for optimal analysis. Genetic analysis of longitudinal data that
incorporates temporal variation is important for understanding the genetic architecture and
biological variation of complex diseases. Most of the existing methods assume that the
contribution of genetic variants is constant over time and fail to capture the dynamic pattern of
disease progression. However, the relative influence of genetic variants on complex traits
fluctuates over time. In this study, we propose a retrospective varying coefficient mixed model
association test, RVMMAT, to detect time-varying genetic effect on longitudinal binary traits.
We model dynamic genetic effect using smoothing splines, estimate model parameters by
maximizing a double penalized quasi-likelihood function, design a joint test using a Cauchy
combination method, and evaluate statistical significance via a retrospective approach to
achieve robustness to model misspecification. Through simulations, we illustrated that the
retrospective varying-coefficient test was robust to model misspecification under different
ascertainment schemes and gained power over the association methods assuming constant
genetic effect. We applied RVMMAT to a genome-wide association analysis of longitudinal
measure of hypertension in the Multi-Ethnic Study of Atherosclerosis. Pathway analysis
identified two important pathways related to G-protein signaling and DN A damage. Our results
demonstrated that RVMMAT could detect biologically relevant loci and pathways in a genome

scan and provided insight into the genetic architecture of hypertension.
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1 INTRODUCTION

Genome-wide association studies (GWAS) have successfully identified thousands of
susceptible loci underlying human diseases and complex traits. Many epidemiological studies,
such as Framingham Heart Study (FHS) and Women’s Health Initiative (WHI), have collected
and measured health conditions and phenotypic traits on study participants over the years. Such
studies provide rich resources for the investigation of genetic architecture and biological
variations of complex disorders. In recent years, more and more genetic studies have exploited
genetic data from human biobanks and extracted health information from electronic health
record (EHR) data to gain better understanding of the genetic mechanism over the course of
complex diseases.

Traditional genetic association analyses on single time point measure fail to capture
phenotypic variation over time and may lose statistical power to identify disease-related
variants. Thus, genetic studies with longitudinal phenotypes require powerful analytical tools
for optimal analysis. Statistical methods that account for dependence structure among
observations from the same subject have been developed in GWAS to make full use of
longitudinal data, such as mixed effects models (Furlotte, Eskin and Eyheramendy, 2012;
Sikorska et al., 2013; Wu et al., 2019), generalized estimating equations (GEEs) (Sitlani et al.,
2015; Wu et al., 2019), growth mixture models (Das et al., 2011; Londono et al., 2013), and
empirical Bayes models (Meirelles et al., 2013). Most of these methods assume that genetic
contribution is constant over time. However, disease development and progression is a
complicated process that changes over time. Windows of susceptibility and critical periods
across the lifespan exist in disease onset and development. Studies have shown that genetic
influence on the trait variations fluctuates with the passage of time (Bryois et al., 2017; Chu,

Li and Reimherr, 2016; Gong and Zou, 2012; Liu, Li and Wu, 2014; Wang, Li and Huang,
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2008). Modeling time-varying genetic effects is essential to identify and validate causal genetic
loci that are associated with time-dependent variation of disease progression.

Varying coefficient models are a class of generalized regression models in which the
coefficients are allowed to vary smoothly with the value of other variables (Hastie and
Tibshirani, 1993). They are semi-parametric models that explore dynamic pattern in the data
to improve model fitting (Fan and Zhang, 2008), reduce model bias by specifying the
coefficients as smooth nonparametric functions (Lu and Zhang, 2009), and overcome the
“curse of dimensionality” in the nonparametric estimation of multiple regression problems
(Eubank et al., 2004). There are several approaches to estimate time-varying coefficients in
varying coefficient models, including kernel-local polynomial smoothing (Fan and Zhang,
1999; Hoover et al., 1998; Kauermann and Tutz, 1999; Wu, Chiang and Hoover, 1998),
polynomial spline (Huang and Shen, 2004; Huang, Wu and Zhou, 2002, 2004), and smoothing
spline (Chiang, Rice and Wu, 2001; Hastie and Tibshirani, 1993; Zhang, 2004). Other
statistical methods have been developed to model dependency in longitudinal data, such as
GEE (Liang and Zeger, 1986) and Gaussian copula (Joe, 2014). Models allowing for time-
varying covariate effects include semiparametric regression with GEE (Lin and Carroll, 2000),
and time-varying copula models (Kiiriim et al., 2018; Kiiriim et al., 2016).

Varying coefficient models have been used for two types of applications in longitudinal
GWAS. The first application focuses on feature selection for longitudinal outcomes with
ultrahigh-dimensional predictors such as single nucleotide polymorphisms (SNPs). As
computational burden is a major concern when handling millions of SNPs simultaneously in a
model, feature screening becomes an efficient solution to filter out unimportant SNPs. Feature
screening in varying coefficient models has been developed based on conditional Pearson
correlation (Liu et al., 2014), extended B-splines (Fan, Ma and Dai, 2014), modified weighted

least squares estimation (Chu et al., 2016) and functional regression with group penalty
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(Marchetti-Bowick et al., 2016) to retain important SNPs associated with continuous and
binary traits (Chu et al., 2020; Xia, Yang and Li, 2016). The second application focuses on the
detection of time-varying effect of quantitative trait nucleotide, such as functional GWAS (Das
et al., 2011; Li et al., 2015; Ning et al., 2017). These methods fit the model at each SNP
separately and use likelihood ratio tests to determine statistical significance, thus can be
computationally intensive to analyze genome-wide SNPs, especially for binary outcomes. For
large GWAS, score tests are popular and computational efficient because they only fit the null
model once for all SNPs. However, current score test-based methods commonly treat the
effects of genetic variants as constant over time and are not able to capture the dynamic
contribution to disease progression.

Motivated by a genome-wide association analysis of longitudinal measure of hypertension
in the Multi-Ethnic Study of Atherosclerosis (MESA), we developed a retrospective varying
coefficient mixed model association test, RVMMAT, to detect time-varying genetic effect on
longitudinal binary traits. We model dynamic genetic effect using smoothing splines, estimate
model parameters by maximizing a double penalized quasi-likelihood function, design a joint
test using a Cauchy combination method, and evaluate significance of the test via a
retrospective approach in which genotypes are treated as random conditional on the phenotype
and covariates. Retrospective association tests have been shown to be robust to the trait model
misspecification and improve statistical power (Hayeck et al., 2015; Jiang, Mbatchou and
McPeek, 2015; Wu et al., 2019; Wu and McPeek, 2018). In RVMMAT, flexible assumptions
on the effect function increased power to detect genetic variants associated with dynamic traits.
The validity of RVMMAT does not depend on the variance estimation in the trait model due
to the tuning parameters in penalty terms. For comparison, we also developed VMMAT, a
prospective varying coefficient mixed model association test. We conducted simulation studies

to evaluate the type I error and power of RVMMAT and VMMAT, and compared them with
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the existing association methods. The results demonstrated that the retrospective varying-
coefficient test had better control of type I error when the trait model was misspecified, and
was robust to various ascertainment schemes. Moreover, the retrospective varying-coefficient
test was more powerful than the prospective test. We applied RVMMAT and VMMAT to the
genome-wide association analysis of longitudinal measure of hypertension in MESA and

identified hypertension-related genetic loci and pathways.

2 METHODS

Suppose a binary trait is measured over time on a sample of n subjects. We have their
genome-wide measures of genetic variation and a set of covariates. The covariates are allowed
to be static variables such as sex or dynamic variables such as body weight. Let X;; and V;;,
i=1,..,n,j=1,..,m;, denote the p-dimensional covariate vector and the binary trait

measured on subject i at time t;;. Here, the measurement time and length are allowed to be
. . . T
different for different subjects. We let X = (X1,1’ v Ximyr - X1 ...,Xn,mn) denote the

N X p covariate matrix and ¥ = (Ym, e Yimgs oo Yo1s v Yn‘mn)T denote the outcome vector
of length N, where N = )}I_; m; is the total number of observations. We focus on the problem
of testing time-varying genetic effect between a genetic variant and the longitudinal binary trait.
Let G denote the genotype vector of the n subjects at the variant to be tested, where G; = 0, 1
or 2, depending on whether subject i has 0, 1 or 2 copies of minor allele at the variant.
2.1 GLMM with varying coefficients

We consider a generalized linear mixed model (GLMM) with varying coefficients,

specified as

g(l"'l]) = VO(tl]) + Glyl(tl]) +X’Zﬁ + a; +7"i]', i = 1, e, ] = 1, -, Mg, (1)
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where y;; = E(Yij | Gi, Xij, ai,rl-j) is the mean of the response Y;; at time t;; for subject i,

given his/her genotype, covariates, and random effects a; and r;;, yo () and y, (t) are smooth
nonparametric functions of time t representing a time-varying intercept and a time-varying
genetic effect of the tested variant, B is the effects of the covariates, and g(-) is the link
function. For binary traits, we use the logit link function. The correlations among repeated
measurements are captured by two random effects: a; is the subject random effect and 7;; is
the subject-specific time-dependent random effect (Wang et al., 2017; Wu et al., 2019). We
assume that a; are independent and a; ~ N(0,02). The vector of time-dependent random
effects r; = (131, .-, Tim,;) 18 assumed to follow a multivariate normal distribution, r; ~
MVN(0, 62R;), where the correlation matrix R; is modeled by an AR(1) structure in which 7
is the unknown parameter. Given the random effects a; and r;;, the response Y;; are assumed
to be independent. When both functions y,(t) and y,(t) are constants, Model (1) reduces to a
standard GLMM in (Wu et al., 2019).

Following (Lin and Zhang, 1999; Zhang, 2004), we estimate y,(t) and y,(t) by

maximizing the following double penalized quasi-likelihood (DPQL) function:

1 1
ldp{yO(')r V1(')' Br O-(%) O-TZJ T} = _EZ DLJ(YL]I .u'l]) - ﬁa’ra - 20_72 TTR_lr
Lj
A 2 2 2
—ff {Vo(h")(t)} dt — 71 ) {yl(hl)(t)} dt, (2)

where a = (ay,...,a,)T, r = (ry,...,7,)T are the two vectors of random effects, R =

diag{R,, ...,R,} is a block diagonal matrix, Dij(lfij,uij)=—2f£i.j%du is the
ij =

conditional deviance function of binary outcome Y;; given random effects a; and 7;;, Ay (k =
0, 1) are tuning parameters that control the smoothness of ¥, (t), and h;, are positive integers

for the derivative order of y;, (t).
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The maximizers for the nonparametric functions y; (t) in the DPQL function of Eq. (2) are

smoothing splines of order 2h; (Wahba, 1990). Let 0 < t¥ < --- < t3, < 1 be the m distinct

knots of t;, the smoothing splines can be expressed as
hi m
V() = Z cksFis@®) + ) digVie(t, 1), k=0,1,
s=1 =1

where Fys(t) is a polynomial of order s — 1 (e.g., Fis(t) = tC D /(s = 1), s =1,..., h),

and Vi (ty,t;) = mfol(tl — W)™ (¢, — )™ 'du with u, = max{u, 0}. We denote

cr = (cr1, ...,ck,hk)T, d, = (dg, o, de) T, and Y = e (£D), oo, Vi (€))7 for k =0,1.
Then y, can be expressed as

Yi = Frep +Vidy,
where F), is an m X hj, matrix with its (I, s)th entry equal to Fj(t), and Vy is a positive
definite matrix with the (1, s)th entry equal to V, (t7, t2). Similar to Eq. (5) in (Zhang, 2004),

the DPQL function of Eq. (2) becomes

1 1 1
Lap Vo), 11, 8,0, 0,7 = =5 Dyy(Viy b)) = 5 @7 a - "Ry
e a r
i,j
~2dlVod, —2dlV,d (3)
2 oY o%o 2 1¥1™%1-

If we treat dj, in ¥ as random effects distributed as dj, ~ N(0,8,V:?) for k =0,1,
where 8, = 3%, it follows that the maximizers of Eq. (3) can be obtained by fitting the GLMM
representation of Model (1), expressed in a matrix form as

g(u) = MFycy + A;MF.c, + XB + MV,d, + A;MV,d, + Ba +, 4)
where M is an N X m incidence matrix mapping ¢;; to the m distinct knots t9,...,t%, Bis an
N X n design matrix mapping the subject-level genotype vector G to a measurement-level
genotype vector BG, with its (I, i)th entry B;; = 1 if the lth entry of ¥ is a measurement on

subject i and 0 otherwise, and 4, = diag{BG} = diag{G,, ..., G4, ..., Gy, ..., G} is an N -
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dimentional diagonal matrix of the genotypes for the n subjects. Model (4) is a specific
implementation of the GLMM with varying coefficients in (Zhang, 2004). Here, the tuning
parameters A, and A; in the DPQL function of Eq. (2) are re-parameterized as 6, and 6,, and
treated as the unknown variance component parameters in Model (4).
2.2 Varying coefficient mixed model association test
To test time-varying genetic effect between the variant and the trait, we test Hy: y1(t) = 0
in Model (1), which is equivalent to test Hy: ¢; = 0 and 8; = 0 in Model (4). The reduced
GLMM under the null hypothesis specifies that
g(uy) = MFyco + XB +MV,d, + Ba +, (5)
where gy = E(Y | Fy, X, dy, a,1).
If we test Hy: ¢; = 0 under the assumption that 8; = 0, a score test can be constructed as
Ty = (Uo(en) Var(Us(en)] Ug(en), (6)
where Uy(c,) = (AgMF,)T(Y — i) is the score function for ¢; and fiy = g~1(MFy¢, +
XB +MV,d, + Ba + f‘) is a vector of fitted values under Model (5), which can be obtained
using the penalized quasi-likelihood method (Breslow and Clayton, 1993). For binary traits,
we used a bias correction procedure (Lin and Breslow, 1996; Lin and Zhang, 1999; Zhang,
2004) to produce less biased variance component estimates. Given the genotype and covariates,
the variance of the score Uy(c,) under H, is
Var(Uoy(cy)) = (AgMF)TPAGMF,,
where P =% 1 —-W X (XIw-1x,)"'Xfw-! | X,=(MFy,X) and W=T;1+
oMV M" + 62BBT + 6?R . Here, I = diag{ps1(1 — p11), s lam, (1 —
Uim 1), e Iln,1(1 - yn,l), e ,un'mn(l - yn,mn)} is an N-dimensional diagonal matrix, and T
and R are T and R evaluated under Model (5). Under the null hypothesis, the T test statistic

has an asymptotic y? distribution with h; degrees of freedom.
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On the other hand, if we test Hy: 8; = 0 under the assumption that ¢; = 0, a variance
component score test can be constructed as
Tye = (Y — ﬁo)TAGleMTAG(Y — Ro). (7)
Under the null hypothesis, T, asymptotically follows a mixture of y? distribution,
Tye~ Xi21&1x%,, where (&4, ..., &) are the eigenvalues of the matrix Vi’MTAPA MV
and )(12,1 are independent y? variables. The p-value of T, can be evaluated by a moment-
matching method (Liu, Tang and Zhang, 2009).
We propose a joint test for testing Hy: ¢; = 0 and 8; = 0 using a Cauchy combination test
(Liu and Xie, 2020) that combines the test of fixed effect, T, and the test of variance
component, T,., which we named as Varying-coefficient Mixed Model Association Test

(VMMAT). Specifically, the VMMAT test statistic is

TyMMAT = %[tan{(O.S — pf)n} + tan{(0.5 — pvc)n}], (8)
where pr and p,. are p-values of T; and T,.. Under the null hypothesis, Tymmar
asymptotically follows a Cauchy distribution. Its p-value can be approximated by pymmaTt =
0.5 — arctan(Typmat) /T

The asymptotic null distributions of Ty and T, are based on the GLMM of Eq. (4) which
is an equivalent representation of the GLMM with varying coefficients using smoothing splines.
Because parameters are estimated from the DPQL function of Eq. (2) with two penalty terms,
the estimated variance can be larger than that from the model without penalties. Therefore, the
null distributions of the score tests, Tr and T, as well as the combined test, Typmmar, depend
on the tuning parameter values. We further assessed the null distribution of VMMAT through
type I error experiments in simulation studies.

2.3 Retrospective varying coefficient mixed model association test
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Retrospective association tests have been shown to be robust to the trait model
misspecification and improve statistical power (Hayeck et al., 2015; Jiang et al., 2015; Wu et
al., 2019; Wu and McPeek, 2018). In that follows, we introduce a new varying-coefficient test,
RVMMAT (Retrospective Varying-coefficient Mixed Model Association Test), for testing
time-varying genetic effect between the variant and the trait. RVMMAT also uses a Cauchy
combination test to combine two tests: a test for Hy: ¢; = 0 under the constraint 6; = 0 and a
test for Hy: 6; = 0 under the constraint ¢; = 0. In contrast to the two prospective tests, Tr and
T,c, in VMMAT, the two tests for testing fixed effect and variance component in RVMMAT
are based on a retrospective model of the genotype given the trait and covariates, such that the
analysis is less dependent on the correct specification of the phenotype model. We assume that
under the null hypothesis of no time-varying genetic effect between the variant and the trait,
the quasi-likelihood model of the genotype G conditional on the phenotype ¥ and covariates X
is

Eo(G|Y,X) =2pl,, Vary(G|Y,X)=o0;P, 9)
where p is the minor allele frequency (MAF) of the tested variant, 1,, is a vector of length n
with every element equals to 1, ng 1S an unknown variance parameter, and ® is an n X n
genetic relationship matrix (GRM) representing the overall genetic similarity between samples
due to population structure, which can be estimated using genome-wide data.

When we test Hy: ¢; = 0 under the assumption that 8; = 0, the same score function
U,(c,) is considered. Because the vector of null phenotypic residuals ¥ — fi,, obtained by
fitting Model (5), is orthogonal to the column space of X = (MF,, X), then the null mean
model of G in Eq. (9) ensures that

Eq(Uo(cy) 1Y, X) = Eo[(AcMF )T (Y — fiy) | Y, X] = ZP(MF1)T(Y — ) =0,
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if hy < hy. In practice, we commonly use smoothing splines of the same order for y,(t) and
y1(t) in Model (1). Thus, we consider the score function U,(c;) and construct a score test

under the retrospective model of Eq. (9), given by

TF = (Uo(ep)' [Varg(Uo(ey) |V, X)] U ey). (10)
Here, the variance of U(c,) is evaluated by
Vary(Uo(cy) | ¥, X) = Varo((AcMF)" (Y — fiy) | Y,X) = Var,((AxkMF,)"BG | Y, X)
= 6;(AxMF,)"B®B" A MF,,
where A = diag{Y — fio} = diag{(Y11 — fo;11), ) (Y1,m1 - ﬁ0;1,m1)’ s (Vg —
ﬂo;m): s (Yn,mn — ﬁo;n,mn)} is an N-dimentional diagonal matrix of the phenotypic residuals.
Under Hardy-Weinberg equilibrium, the variance of the genotype is estimated by 65 = 2p(1 —
p), where p is the sample MAF of the tested variant. Under the null hypothesis, the TfR test
statistic has an asymptotic y? distribution with h; degrees of freedom.
If we test Hy: 64 = 0 under the assumption that ¢; = 0, a retrospective variance
component score test under Model (9) can be constructed as
Tch = (BG)TARMV1MTARBG =Y - ﬁo)TAGMV1MTAG(Y — Ro), (1)
which has the same form as the prospective variance component test T,,.. However, under the
null hypothesis, given the trait and covariates, T,X. asymptotically follows a mixture of y?
distribution, TjR~Y7%,{xt; ., where ({y,...,{p) are the eigenvalues of the matrix
62V, *M" AxB®B" A MV,
The RVMMAT test statistic is defined by combining the two retrospective tests, TfR and

TR, expressed as
1
TrymmaT = 5 [tan{(0.5 — p}?)n} + tan{(0.5 — pX)n}], (12)
where pf and pf are p-values of T and Tf . Under the null hypothesis, Trymmar

asymptotically follows a Cauchy distribution.
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The asymptotic null distributions of TfR and TR are based on the retrospective model of Eq.
(9) in which genotypes are treated as random conditional on the phenotype and covariates.
Therefore, the estimated variance in the trait model due to the tuning parameters in penalty

terms does not impact the null distributions of the retrospective score tests, TfR and TR, as well

as the combined test, Trymmar- We also assessed the null distribution of RVMMAT through

type I error experiments in simulation studies.

3 SIMULATION STUDIES

We conducted simulation studies to assess the type I error and power of VMMAT and
RVMMAT, and compared them to a Gaussian copula method with weighted scores that allows
for heterogenous genetic effect (Nikoloulopoulos, Joe and Chaganty, 2011) and the two
association tests that assume constant genetic effect, GMMAT (Chen et al., 2016) and
RGMMAT (Wu et al., 2019). In all simulations, VMMAT and RVMMAT were implemented
with cubic smoothing splines. The Gaussian copula method was implemented with a binomial
marginal model with the logit link function and an AR(1) structure in the Gaussian copula
correlation matrix (Nikoloulopoulos et al., 2011). VMMAT and RVMMAT are designed to
detect time-varying genetic effect between a genetic variant and the longitudinal binary trait.
Because we test one variant at a time, these methods tend to have limited power for rare variants
and are more appropriate for common variants. The performance of all methods was evaluated
on common variants in simulation studies. We considered two trait models and three
ascertainment schemes to evaluate the robustness of VMMAT and RVMMAT in the presence
of model misspecification and ascertainment.
3.1 Simulation settings

To generate genotypes, we first simulated 10,000 chromosomes over a 1 Mb region using

a coalescent model to mimic the recombination rates and linkage disequilibrium (LD) pattern
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of the European population (Schaffner et al., 2005; Shlyakhter, Sabeti and Schaftner, 2014).
We then randomly selected 1,000 non-causal SNPs with MAF > 0.05. In addition, we simulated
two causal SNPs that were assumed to influence the trait value with epistasis. In each
simulation setting, we generated 1,000 sets of binary phenotypes at five time points for a given
sample size. In the type I error experiments, for each phenotype dataset, we tested the time-
varying genetic effect at the 1,000 non-causal SNPs. In total, 10° test results across 1,000
phenotype datasets were used for the type I error assessment. In the power simulations, we
tested time-varying genetic effect at the first of the two causal SNPs and evaluated power using
1,000 simulated phenotype datasets. In all tests considered, the genotypes at the untested SNPs
were not included as covariates in the model.

We simulated binary phenotypes under two types of trait models at five time points, in
which the two unlinked causal SNPs were assumed to influence phenotype through an epistatic
interaction. The first type is a logistic mixed model, specified by:

Yii1Xij, Gic1), Giz), @i, 735 ~ Bernoulli(u;),

lOglt(ﬂU) =—-19+ 02] + )/1(tij)H{Gi(1)>0'Gi(2)>0} + OSXL](l) + OSXL(Z) + a; + rij'

where yl(tij) is a function encoding the effect of the causal SNPs, G;(;) and G;(,) are the
genotypes of subject i at the two causal SNPs, H{Gi(1)>0'Gi(z)>0} is an indicator function that
takes value 1 when subject i has at least one copy of the minor allele at both causal SNPs, X; ;1)

is a continuous, time-varying covariate generated from a multivariant normal distribution with

a compound symmetry correlation matrix where the correlation is 0.5, X;(,) is a binary, time-
invariant covariate taking values 0 or 1 with a probability of 0.5, a; and r;; are the subject-level
time-independent and time-dependent random effects, respectively. We assumed a; ~

N(0, 62) and 1; = (171, ...,7is) ~ MVN(0,02R) , where R is a 5 X 5 correlation matrix
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specified by the AR(1) structure with a correlation coefficient t. The two causal SNPs were
assumed to be unlinked with MAFs 0.1 and 0.5, respectively. The variance components were
setto 02 = 02 = 0.64and 7 = 0.7.

The second type of trait model is a liability threshold model in which an underlying
continuous liability determines the binary outcome value based on a threshold. Specifically,
the phenotype V;; is determined by

Y;j =1ifL;; >0,
with Li; = —1.8 + 0.2) + v1(ij) (g, ,,>0,6:)>0) + 0-5Xijy + 0.5Xi2) + a; + 15 + ey,
where L;; is the underlying liability for subject i at time t;;, and e;; ~ N (0, 02) represents
independent noise, with g5 = 1.96. All other parameters are the same as those in the logistic
mixed model.

In both trait models, we specified the intercept as a linear function of time ¢;; = j, and the

genetic effect as a logistic function y; (tl- j) = EF v (); YT (Gong and Zou, 2012). For the
Aty

type I error assessment, the effect of the causal SNPs was set to y = 0.6 in yl(ti ]-). For the
power evaluation, we considered a range of values for y, where y = 0.6, 0.63, 0.66, and 0.69.
At the given parameter values, the prevalence of the event of interest ranges from 23.68% to
40.56% over time. The proportion of the phenotypic variance explained by the two causal SNPs
ranges from 0.01% to 2.99% in the logistic mixed model and from 0.01% to 1.36% in the
liability threshold model.

We considered three sampling designs as in (Wu et al., 2019). In the “random” sampling,
samples contain 2,000 subjects randomly selected from the population regardless of their
phenotypes. In the “baseline” sampling, samples contain 1,000 case subjects and 1,000 control
subjects based on their outcome value at baseline only. In the “sum” sampling, subjects were

stratified into three strata based on the total count of events of the subject over time, where
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subjects in stratum 1 never experienced the event of interest, i.e., Y.; ¥;; = 0, subjects in stratum
2 sometimes experienced the event, i.e., 0 < X;Y;; <n;, and subjects in stratum 3 always
experienced the event, i.e., },; ¥;; = n;. We oversampled subjects with response variation over
the course of the study and selected 100, 1,800, and 100 subjects from the three strata
(Schildcrout et al., 2018).
3.2 Simulation results

To assess type I error, we tested time-varying genetic effect at unlinked and unassociated
SNPs. Empirical type I error was calculated as the proportion of simulations in which the p-
value of the SNP is less than the nominal level a, for « = 0.01, 0.001, and 0.0001. Table 1
gives the empirical type I error rates of RVMMAT and VMMAT, based on 10 replicates,
under two trait models and three sampling designs. In most simulations, the type I error of
RVMMAT was within the 95% confidence interval of the nominal levels. In contrast, the type
I error of VMMAT in all simulation settings was much lower than the nominal level when a =
0.01, 0.001, and 0.0001. It is well recognized that the DPQL approach underestimates variance
components when data are sparse such as binary data (Lin and Zhang, 1999; Zhang, 2004).
Even with bias correction, parameters estimated from the DPQL function with penalty terms
depend on the tuning parameter values. Thus, the prospective variance of the score Uy(c;)
tends to be overestimated, producing a conservative test statistic. However, the retrospective
variance of the score U,(c;) does not depend on the estimation of variance components due to
the tuning parameters in penalty terms so that the test statistic is less biased. These results
suggest that the retrospective RVMMAT test had much better control of type I error and was
robust to trait model misspecification and ascertainment, whereas the prospective VMMAT
test was overly conservative.

To compare power, we considered four parameter values for y to determine time-varying

genetic effect at the two causal SNPs and tested between the trait and the first causal SNP.
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Empirical power was calculated at the significance level 1073, based on 1,000 replicates.
Figure 1 demonstrates the power results of the five methods, RVMMAT, VMMAT, Copula,
RGMMAT and GMMAT, under two trait models and three sampling designs. In all simulation
settings, the two varying-coefficient tests consistently had higher power than the association
tests assuming constant gene effect. The Gaussian copula method with heterogenous genetic
effect had lower power than RVMMAT and VMMAT, while performed better than RGMMAT
and GMMAT. Moreover, within the same type of tests, the retrospective test was more
powerful than the prospective test. Both RVMMAT and VMMAT had similar power across
the three sampling designs. In contrast, Copula, RGMMAT and GMMAT had lower power
under the sum sampling in both trait models. The power gain of the varying-coefficient tests
was more prominent over the association tests assuming constant genetic effect in the presence
of ascertainment. These results suggest that RVMMAT was the most powerful test and

outperformed the association tests assuming constant genetic effect.

4 APPLICATION TO MESA DATA

We applied our proposed methods to a genome-wide association analysis of hypertension
in MESA (Bild et al., 2002). MESA is a large longitudinal study of subclinical cardiovascular
disease (CVD) whose primary objective is to understand the pathogenesis of atherosclerosis
and other CVD. We analyzed longitudinal hypertension assessed at five time points on 6,429
participants. Among them, 39.3% are white, 26.1% are African American, 22.5% are Hispanic,
and 12.1% are Asian. The proportion of case subjects at each time point ranges from 44.6%
(n = 2,864) to 59.5% (n = 2,608), and the missing rate at each time point ranges from 0 to
31.6%.

Samples were genotyped using the Affymetrix Human SNP Array 6.0. After data cleaning,

there were 6,428 subjects available for genotype imputation. We applied IMPUTE2 (Howie,
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Donnelly and Marchini, 2009) for imputation, using the 1000 Genomes Phase 3 data as a
reference panel. Subjects who did not meet either of the following criteria were excluded: (1)
proportion of successfully imputed SNPs > 95% and (2) empirical inbreeding coefficient <
0.05. Based on the above criteria, 6,424 subjects were retained in the downstream analysis,
with 3,057 males and 3,367 females, of whom 2,527 are white, 1,673 are African American,
1,449 are Hispanic, and 775 are Asian. There are 2,227 subjects who had no hypertension
during the study period, 1,807 subjects who were sometimes hypertensive, i.e., exhibited
response variation, and 2,390 subjects who were always hypertensive over the course of the
study. We then tested Hardy-Weinberg equilibrium at each SNP within each population. SNPs
met all of the following quality-control conditions were included in the analysis: (1) call rate >
95%, (2) Hardy-Weinberg y? statistic p-value > 107°, and (3) MAF > 1%. Taken together, a
final set of 6,155,404 SNPs were examined in the downstream analysis.
4.1 Analysis of time-varying genetic effect

We performed genome-wide tests of time-varying genetic effect on hypertension using
RVMMAT and VMMAT with cubic smoothing splines in the MESA sample. Age at baseline,
sex, and the top ten principal components (PCs) were included as time-invariant covariates in
the analysis. The top ten PCs were calculated using the LD pruned SNPs with MAF > 0.05 to
control for population structure. Since hypertension was assessed in year 2000, 2002, 2004,
2005 and 2010, we coded time at the five time points as 0, 0.2, 0.4, 0.5 and 1, respectively. We
also applied the Gaussian copula method with heterogenous genetic effect, adjusting for the
same covariates. To compare the performance of the varying-coefficient tests with the
association tests assuming constant genetic effect, we applied RGMMAT and GMMAT to the
analysis of hypertension, adjusting for age at baseline, sex, time, and the top ten PCs.

The two retrospective tests, RVMMAT and RGMMAT, showed no evidence of inflation

in the quantile-quantile (Q-Q) plot. The genomic control inflation factors were 0.905 and 0.976,
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respectively. The prospective VMMAT test was overly conservative, with a genomic control
factor of 0.774, consistent with the observed deflation in the type I error simulations. The
genomic control inflation factor was 0.838 for GMMAT.

None of the SNPs reached genome-wide significance at the p-value threshold of 5 X 1078
that is widely used in GWAS. Table 2 reports the top SNPs for which at least one of the tests
gives a p-value < 5 X 1077, The smallest p-values of these eight SNPs were mostly generated
by RVMMAT, except at the last two SNPs. VMMAT generated much larger p-values than
RVMMAT due to its conservativeness, while RGMMAT and GMMAT had comparable results.
The Gaussian copula method produced p-values comparable to VMMAT, except at the last two
SNPs. A cluster of six SNPs in LD (7% > 0.97), rs145659245, rs58265184, rs57719815,
rs60197637, rs61327798, and rs142890225, located at 4pl15, showed time-varying genetic
effect on hypertension by RVMMAT (p-value = 6.78 x 1078 — 2.85 x 10~7). Figure 2A
demonstrated the estimated genetic effect over time at these SNPs where the estimated effect
at each time point was obtained by using the observed trait values at that time point only. A
strait line was used to connect the estimated values at two adjacent time points. We observed
an increasing and then decreasing trend in genetic effects on hypertension across the five time
points. However, RGMMAT and GMMAT lost power and generated large p-values by
assuming constant genetic effect. These SNPs are in an intron of the gene PROM1, encoding a
pentaspan transmembrane glycoprotein, which was reported to be associated with pulse
pressure (Evangelou et al., 2018). The smallest p-value for rs374012917, located on
chromosome 17, was generated by the Gaussian copula method (p-value = 1.02 X 1077). As
the estimated genetic effects at the five time points were relatively stable for this SNP (Figure
2B), RGMMAT and GMMAT generated slightly larger p-values. There was also evidence of
association between hypertension and rs72930733 (p-value = 2.55 x 1077 ). Although

RVMMAT did not give the smallest p-value for this SNP, its p-value was slightly larger than
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that of RGMMAT, mostly due to the increasing trend in genetic effect (Figure 2B). This SNP
is in an intron of the gene WDR?7, located at 18q21. Two hypertension GWAS identified an
association between WDR?7 and systolic blood pressure (Evangelou et al., 2018; Kichaev et al.,
2019).

We further assessed the model fitting of cubic smoothing splines on the top SNPs in Table
2 using deviance and goodness-of-fit p-value. All p-values were large, suggesting that there
was no evidence of lack of fit (Table 3). We also checked the deviance residuals of the cubic
smoothing splines model applied to the top SNPs. The deviance residuals range from -2.46 to
2.19, suggesting that cubic smoothing splines fit the data adequately.
4.2 Pathway analysis

We then performed functional pathway analysis using the MetaCore™ software to identify
enriched pathways related to hypertension. The top SNPs for which at least one of the tests had
a p-value < 2 X 10~* were included in the analysis. Fisher’s exact test was used to determine
whether the SNP list was enriched for a functional pathway. At the false discovery rate (FDR)
< 0.05, we identified two significant pathways that were associated with G-protein signaling
and DNA damage. The first one is the G-protein signaling pathway related to Racl activation
(p-value = 6.12 X 107>, FDR = 1.65 x 1072). Racl participates in the control of blood
pressure through multiple mechanisms in the arterial wall and the central nervous system
(Loirand and Pacaud, 2010). Importantly, a role for Racl in atherosclerosis and cardiac
hypertrophy has been established in response to the administration of statins in clinical trials
(Maack et al., 2003). Animal studies indicated that Racl1 is essential for endothelium-dependent
vasomotor response, the redox state of blood vessels and homeostasis of blood pressure
(Moustafa-Bayoumi et al., 2003; Satoh et al., 2006; Sawada et al., 2008). The second pathway
is the DNA damage pathway related to the ataxia-telangiectasia mutated (ATM) kinase

activation (p-value =4.98 x 10™* , FDR = 4.48 x 1072 ). Emerging evidence has


https://doi.org/10.1101/2022.10.31.514543
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.31.514543; this version posted November 1, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

demonstrated that accumulated DNA damage and subsequent repair pathways play a crucial
role in the initiation and progression of cardiovascular disorders, such as atherosclerosis and
maladaptive cardiac hypertrophy (Shah et al., 2018; Shah and Mahmoudi, 2015; Uryga, Gray
and Bennett, 2016; Wu et al., 2022). ATM-mediated phosphorylation plays cardinal roles in
response to genomic stress to preserve cellular homeostasis. DNA double-strand breaks trigger
ATM activation which mediates DNA damage response and regulate cardiac remodeling,
inflammation, and systolic function, eventually promoting heart failure development (Shiloh

and Ziv, 2013; Uziel et al., 2003).

5 DISCUSSION

In genome-wide association analysis of longitudinal traits, modeling time-varying genetic
effect can increase power for the detection of genes underlying the development and
progression of complex diseases. In this study, we developed RVMMAT, a GLMM-based,
retrospective varying-coefficient association testing method for longitudinal binary traits.
RVMMAT extends the existing association methods assuming constant effect over time to
testing of time-varying effect on binary traits. RVMMAT is constructed based on the trait
model allowing for time-varying genetic effect. The variance of the test statistics is assessed
retrospectively by considering the conditional distribution of the genotype at the variant of
interest, given phenotype and covariate information, under the null hypothesis of no association.
RVMMAT has the following features: (1) it is computationally feasible for genetic studies with
millions of variants, (2) it has well-controlled type I error in the presence of ascertainment and
trait model misspecification, and (3) it can easily be fitted as a GLMM model using popular
software such as R and SAS. We also propose VMMAT, a prospective varying-coefficient

association test, for performance comparison.
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Our simulation results demonstrated that RVMMAT maintained correct type I error under
different trait models and ascertainment schemes, whereas VMMAT was overly conservative
due to the biased estimation of variance in the penalized trait model. We further demonstrated
that the retrospective RVMMAT test achieved the highest power among the five tests under all
the trait models and ascertainment schemes considered in the simulations. Application of
RVMMAT to the MESA longitudinal hypertension data identified three novel genes that were
associated with hypertension. Among them, two genes are known to be associated with systolic
blood pressure and pulse pressure. Moreover, we identified two significant pathways associated
with longitudinal hypertension: the G-protein signaling pathway related to Racl activation, and
the DNA damage pathway related to ATM activation. Given the established role for Racl and
ATM in atherosclerosis and cardiac hypertrophy, our findings suggest that RVMMAT can
provide enhanced statistical power in detecting biologically relevant genetic loci that are
associated with trait dynamics. A better understanding of temporal variation of trait values and
time-varying genetic contribution may shed light on the genetic mechanisms influencing the
temporal trend of diseases and complex traits.

The RVMMAT and VMMAT methods are designed for single-variant association analysis
of longitudinal binary traits. However, single-variant association tests suffer from restricted
power to detect association for rare variants in whole-genome sequencing studies. As many
variants influence complex traits collectively, assessing joint effects from multiple variants by
aggregating weak signals at the gene or pathway level holds great promise for the identification
of novel genes underlying disease risks. To extend RVMMAT to rare variant analysis with
longitudinal binary data, we could design a linear statistic or a quadratic statistic that combines
the test allowing for time-varying genetic effect at each variant in a gene region. Such statistics

are likely to better calibrate the fluctuation of genetic contributions to the trait values over time.
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Additionally, our current model can easily be extended to analyze nominal, ordinal and count

data.
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Table 1. Empirical type I error of RVMMAT and VMMAT, based on 10 replicates

Test Nominal Logistic Mixed Model Liability Threshold Model
Level Random Baseline Sum Random Baseline Sum
0.01 9.90x10°  1.01x10° 9.97x10° 1.02x10° 9.70x10" 1.00x 10"
RVMMAT 0,001 952x10°  9.92x10° 9.17x10°  1.04x10°  1.00x10° 1.03x10
0.0001  9.80x10° 1.08x10° 9.40x10° 1.00x10  1.01x10" 1.13x10"
0.01 577x10°  645x10°  691x10° 573x10°  626x10° 7.20x 10"
VMMAT 0,001 434107 514x107 533x107 473x10°  510x10" 6.68x 10"

00001  370x10°  440x10° 570x10° 2.90x10°  5.00x10° 4.60 x 10"
Rates outside of the 95% confidence interval are in bold.
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Table 2. SNPs with p-value < 5x1077 in at least one of the tests in the MESA data

Chr Gene Region  SNP Posiion MAF RVMMAT VMMAT Copula RGMMAT GMMAT
4 PROMI 15145659245 16,060,553 0.013 678 x 10° 4.19x 10" 9.77x10° 7.67x 10" 1.78 x 10
rs58265184 16,061,151 0.014 2.18x 107 7.70x10° 2.79x10° 251 x10° 4.85x10"
1s57719815 16,063,652 0.013 2.85x 107 8.04x10° 3.09x10° 1.65x10° 327x10"
rs60197637 16,063,659 0.013 2.85x10° 8.04x10° 3.09x10° 1.65x10° 3.27x10°
1s61327798 16,063,661 0.013 2.85x10° 8.04x10° 3.09x10° 1.65x10° 3.27x10°
rs142890225 16,065,544 0.013 2.85x10° 8.04x10° 3.10x10° 1.65x10° 3.27x10°
17 LRRC37B 1s374012917 30,403,054 0.038 2,21x10'5 1,95x10‘4 1,02x10'7 2_31x10‘6 4,95x10'6
18  WDR7 1572930733 54,641,870 0.011 1.80x10° 7.06x 10 7.72x10° 2.55x10" 4.63 x 10"

The smallest p-values among the five tests at the given SNPs are in bold.
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Table 3. Assessment of model fitting with cubic smoothing splines at the top SNPs in the

MESA data
Chr  Gene Region SNP Position MAF Deviance ~ Codness-of-fit
P-value
4 PROM1 rs145659245 16,060,553 0.013 10467.93 1
1s58265184 16,061,151 0.014 10468.13 1
1s57719815 16,063,652 0.013 10469.79 1
rs60197637 16,063,659 0.013 10469.79 1
1s61327798 16,063,661 0.013 10469.79 1
1s142890225 16,065,544 0.013 10469.79 1
rs374012917 30,403,054 0.038 10495.83 1
rs72930733 54,641,870 0.011 10493.05 1
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Figure 1. Empirical power of RVMMAT, VMMAT, Copula, RGMMAT and GMMAT. Power
is based on 1,000 replicates at five time points with @ = 1073. In the upper panel, trait is
simulated under the logistic mixed model; in the lower panel, trait is simulated under the
liability threshold model. Power results are demonstrated in samples of 2,000 individuals
according to three ascertainment schemes: random, baseline, and sum.
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Figure 2. Estimated genetic effect of the top 8 SNPs on hypertension at each of the five time
points. (A) six SNPs on chromosome 4; (B) two SNPs on chromosomes 17 and 18, respectively.
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