

1 **A Biophysical Basis for Learning and Transmitting Sensory Predictions**

2
3 Salomon Z. Muller¹, LF Abbott^{1,2} and Nathaniel B. Sawtell¹

4
5 ¹Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University,
6 New York, NY 10027

7 ²Department of Physiology and Cellular Biophysics, Columbia University, New York, NY
8 10027

9
10 **Abstract**

11 Homeostatic (anti-Hebbian) forms of synaptic are effective at eliminating “prediction
12 errors” that signal the differences between predicted and actual sensory input. However,
13 such mechanisms appear to preclude the possibility of transmitting the resulting
14 predictions to downstream circuits, severely limiting their utility. Using modeling
15 and recordings from the electrosensory lobe of mormyrid fish, we reveal interactions
16 between axonal and dendritic spikes that support both the learning *and* transmission of
17 predictions. We find that sensory input modulates the rate of dendritic spikes by adjusting
18 the amplitude of backpropagating axonal action potentials. Homeostatic plasticity
19 counteracts these effects through changes in the underlying membrane potential, allowing
20 the dendritic spike rate to be restored to equilibrium while simultaneously transmitting
21 predictions through modulation of the axonal spike rate. These results reveal how two
22 types of spikes dramatically enhance the computational power of single neurons in support
23 of an ethologically relevant multi-layer computation.

24
25
26 **Introduction**

27 The synaptic plasticity associated with learning is typically Hebbian or similar to Hebbian in that
28 changes induced by plasticity lead to further plasticity (Abbott and Nelson, 2000; Caporale and
29 Dan, 2008). This instability is what drives learning-related changes in neural responses, but it
30 must be countered by some form of synaptic regulation that keeps synaptic strengths bounded
31 (Miller and Mackay, 1994). In contrast, homeostatic forms of plasticity compensate for changing
32 inputs by returning neural response back to an equilibrium point and hence do not require
33 additional regulation (Bell et al., 1997c; Roberts and Bell, 2002; Turrigiano, 2017). Although
34 the intrinsic stability of homeostatic plasticity is a powerful feature, it has generally been
35 assumed to limit the utility of this form of plasticity for the transmission of learned signals.

36
37 Homeostatic forms of synaptic plasticity have been studied extensively in cerebellum-like
38 sensory structures, where they play a critical role in the adaptive cancellation of self-generated
39 sensory stimuli (Bell et al., 1997a; Bell et al., 2008). Cerebellum-like sensory structures combine
40 input from peripheral sensory receptors--e.g. electroreceptors in the case of the electrosensory

41 lobe (ELL) of teleost fish and auditory nerve fibers in the case of the mammalian dorsal cochlear
42 nucleus (DCN)--with massive input from a mossy fiber-granule cell-parallel fiber system similar
43 to that of the cerebellum. Granule cells convey a rich variety of information including: motor
44 corollary discharge, proprioception, input from other sensory modalities, and feedback from
45 higher processing stages within the same sensory modality. Numerous lines of evidence from *in*
46 *vitro* and *in vivo* recording studies indicate that homeostatic (anti-Hebbian) forms of plasticity at
47 parallel fiber synapses drive postsynaptic firing to a constant equilibrium rate by forming
48 negative images of sensory input patterns that are predictable based on granule cell input (Bell,
49 1981; Bell et al., 1997c; Bodznick et al., 1999; Harvey-Girard et al., 2010; Kennedy et al., 2014).
50 While computational models based on these results elegantly explain how homeostatic plasticity
51 cancels predictable, self-generated sensory input within individual neurons (Kennedy et al.,
52 2014; Roberts and Bell, 2000), there is a disconnect between these models and the actual
53 circuitry and function of cerebellum-like structures. For both the ELL of mormyrid fish and the
54 mammalian DCN, the major site of anti-Hebbian plasticity is at an intermediate stage of
55 processing at parallel fiber synapses onto interneurons that inhibit output neurons (Bell et al.,
56 1997c; Fujino and Oertel, 2003; Meek et al., 1996; Tzounopoulos et al., 2004). Homeostatic
57 plasticity that maintains postsynaptic firing rate at a constant equilibrium rate would seemingly
58 preclude interneurons from transmitting learned signals to the critical output stage of the
59 network. This problem is not specific to the ELL, but would confront any system that relies on
60 homeostatic plasticity to predict sensory input (Hertag and Sprekeler, 2020; Keller and Mrsic-
61 Flogel, 2018).

62
63 A recent study of interneurons in the mormyrid ELL, known as medium ganglion (MG) cells,
64 shows that this seeming paradox is resolved by the separate axonal and dendritic spikes found in
65 these neurons (Muller et al., 2019). Consistent with prior experiments and modeling, the effects
66 of self-generated sensory input on dendritic spike rate were cancelled by negative images.
67 Unexpectedly, however, negative images were encoded in the axonal spike rate of MG cells
68 (Figure 1A). The axonal transmission of negative images supports multi-layer computation in
69 the ELL by enabling homeostatic plasticity at intermediate layer synapses between granule cells
70 and MG cells to aid in cancelling predictable sensory input at the output layer of the ELL.
71 However, these findings are puzzling from a biophysical standpoint: because granule cell input is
72 sculpted by homeostatic plasticity to cancel predictable sensory input, the net input to the MG
73 cell should be constant, and both dendritic and axonal spike rates should be unmodulated.

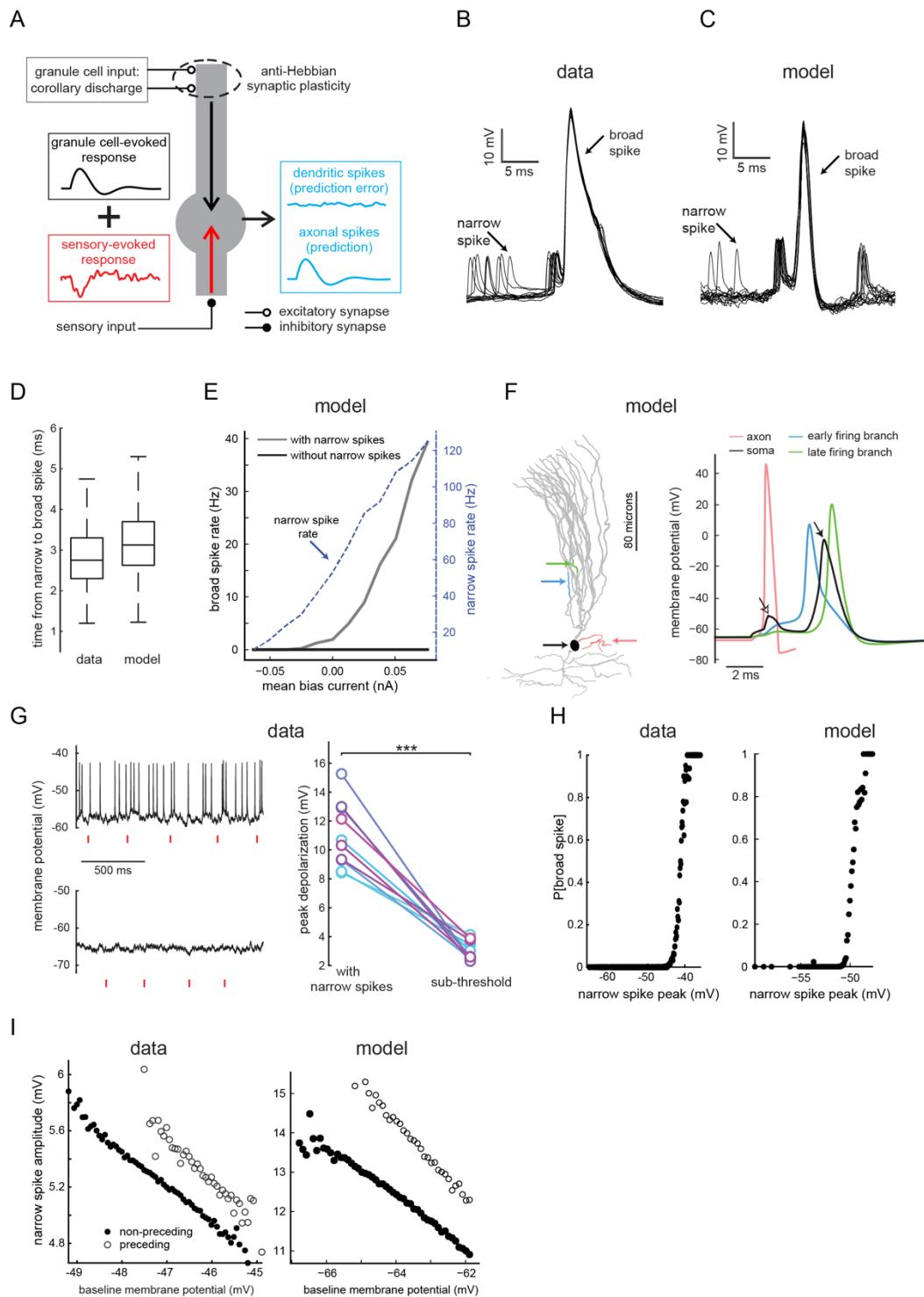
74
75 Here we combine *in vivo* intracellular recordings with biophysical modeling to show that this
76 puzzle is resolved at the biophysical level by interactions between inhibitory synaptic input,
77 backpropagating axonal action potentials, and dendritic spikes. Specifically, we demonstrate: (1)
78 that backpropagating axonal action potential evoke dendritic spikes in MG cells and (2) that
79 sensory inhibition (or disinhibition) can selectively modulate the rate of dendritic spikes by
80 controlling backpropagating spike amplitude. These interactions allow homeostatic plasticity to

81 maintain a constant dendritic spike rate by enforcing cancellation while simultaneously inducing
82 modulations in axonal spike rate that transmit sensory predictions. Our modeling work is based
83 on a multi-compartment neuronal model, but the basic results are recapitulated in a model with
84 only somatic and axonal compartments. Thus the mechanism we describe does not require
85 dendritic computation, but relies instead on an electrotonically distant spike initiation site in the
86 axon—a common feature of neurons that, to our knowledge, has not been previously connected
87 to learning.

88

89 **Results**

90


91 **Dendritic spikes are triggered by backpropagating axonal spikes**

92 MG cells fire two types of sodium channel-dependent action potentials known as broad and
93 narrow spikes (Figure 1B). Broad spikes are likely initiated in the proximal apical dendrites,
94 have a high threshold, and are emitted at low rates, while narrow spikes are likely initiated in the
95 axon, have a low threshold, and are emitted at high rates (Bell et al., 1997b; Engelmann et al.,
96 2008; Grant et al., 1998). Broad spikes induce long-term depression at granule-MG cell synapses
97 (Bell et al., 1997c; Han et al., 2000). Given their critical role in plasticity induction, we sought to
98 determine what factors control broad spike firing *in vivo*. Confirming prior studies (Bell et al.,
99 1997b; Grant et al., 1998; Sawtell et al., 2007), we found that broad spikes are invariably
100 preceded by a narrow spike at a characteristic interval of ~3 ms (Figure 1B,D and Figure 1-figure
101 supplement 1A-B). This observation, by itself, does not indicate that narrow spikes play a causal
102 role in evoking broad spikes, as preceding narrow spikes could arise simply because broad spikes
103 have a higher threshold than narrow spikes. To further evaluate this question, we examined a
104 previously developed multi-compartment MG cell model that recapitulates critical features of
105 MG cell responses described above (Figure 1A, *right*) (Muller et al., 2019). This model is
106 reduced, containing a minimal set of voltage-gated and synaptic conductances (Materials and
107 methods), which makes it amenable to detailed analysis. The model is tuned to produce observed
108 broad and narrow spike rates, but no fine-tuning of parameters is required to produce the results
109 we report. In fact, as we show later, the basic effects can be reproduced in a further reduced
110 model.

111

112 When input currents were adjusted in the model to evoke the ~50 Hz narrow spike firing and ~2
113 Hz broad spike firing seen *in vivo*, broad spikes in the model cell were always preceded by a
114 narrow spike at an interval of ~3 ms (Figure 1C-D and Figure 1-figure supplement 1B). Blocking
115 narrow spikes by turning off active conductances in the axonal compartment abolished broad
116 spike firing over a range of input strengths (Figure 1E), while injecting a brief spike-like
117 depolarizing current into the soma (with active conductances in the axon turned off) evoked
118 broad spikes after a similar delay (Figure 1-figure supplement 1C). These results confirm a
119 causal role for narrow spikes in evoking broad spikes in the model. Monitoring the voltage at
120 various locations revealed that even though axonal depolarization resulting from the narrow

121 spike is highly attenuated by the time it reaches the soma (Figure 1F, *open arrowhead*), it
122 nevertheless spreads passively into the proximal apical dendrites where it activates voltage-gated
123 sodium and potassium channels to evoke a local dendritic spike (Figure 1F, *blue*). Depolarization
124 from the local dendritic spike then propagates into other apical branches leading to additional
125 spike initiations at multiple sites throughout the apical dendrite. These local dendritic spikes sum
126 to produce a broad somatic spike after a delay of several milliseconds from the triggering narrow
127 spike (Figure 1F, *filled arrowhead* and Video). Characteristics of putative apical dendritic MG
128 cell recordings *in vivo* are consistent with the model; narrow spikes are smaller and broad spikes
129 are narrower in comparison with somatic recordings (Figure 1-figure supplement 1D-E).

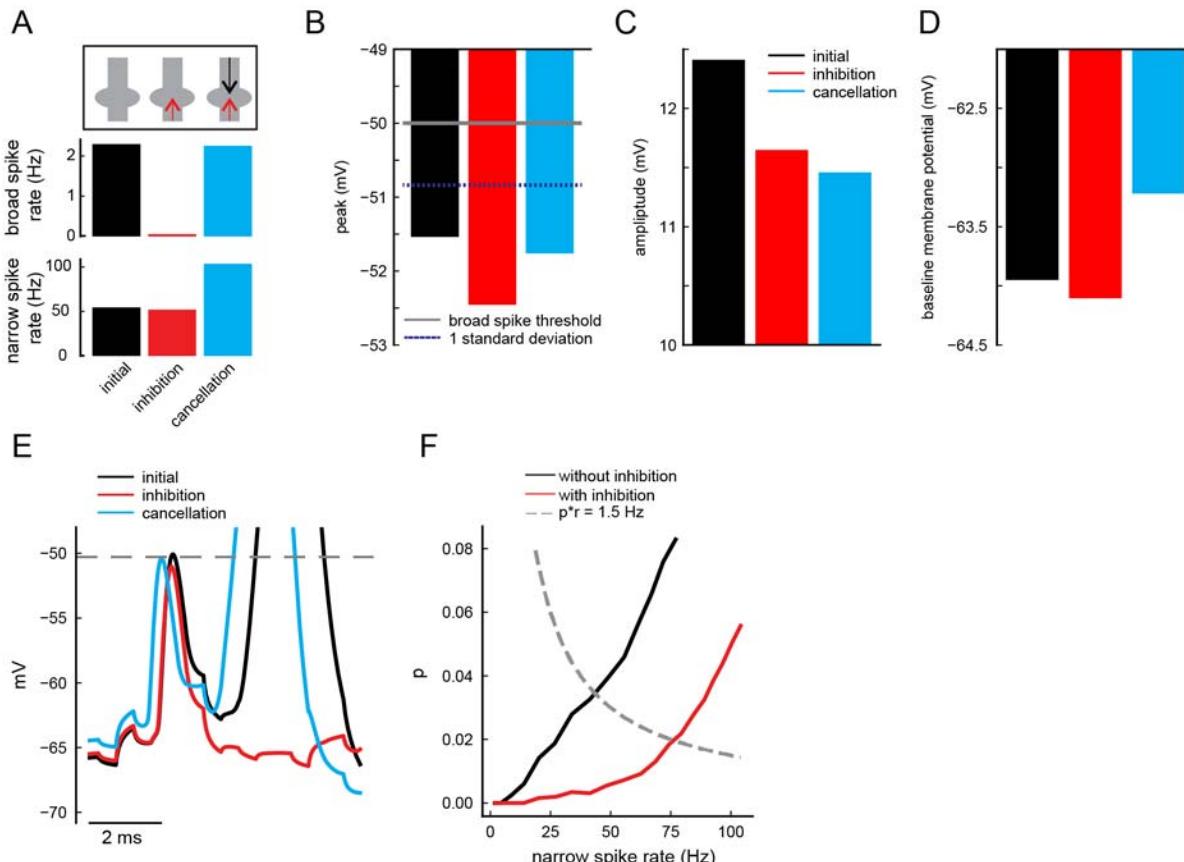
130
131
132
133
134
135
136
137

Figure 1. Backpropagating narrow spikes evoke broad spikes (A) Schematic of negative image formation and transmission in MG cells. Electrosensory input containing both self-generated signals (arising from fish's own electric organ discharge) and external signals (arising from prey) (red) is relayed to the basilar dendrites of MG cells via inhibitory and excitatory interneurons (not shown). Anti-Hebbian plasticity at granule cell synapses creates negative images of self-generated signals (black trace) based on motor corollary discharge signals (as well as other types of information) conveyed by granule cells. Granule cell input cancels the effects of self-generated sensory input on dendritic spikes (blue trace, top) but modulates axonal spikes (blue trace, bottom). (B-C) Overlaid

138 intracellular voltage traces from an example MG cell recorded *in vivo* (**B**), (and see Figure 1-figure supplement 1D)
139 and the model cell (**C**). (**D**) Interval between peaks of narrow and broad spikes in recorded (n=17) and model MG
140 cells. (**E**) Effect of eliminating narrow spikes on broad spike firing in the model. Narrow-spike F-I curve is also
141 shown. (**F**) Left, neurolucida reconstruction of an MG cell used to build the multi-compartment model. Arrows
142 indicate the sites of the membrane voltage recordings depicting the process of broad spike initiation (right). Open
143 and filled arrows indicate somatically recorded narrow and broad spikes, respectively. Voltage trace from the axon
144 is truncated for clarity (omitted portion shows that broad spikes trigger an additional axonal spike). (**G**) Left,
145 membrane potential fluctuations in an MG cell recorded with no bias current (top) and with hyperpolarizing bias
146 current to prevent narrow spiking (bottom). Red lines indicate the times of the fish's electric organ discharge
147 command. Right, peak depolarization amplitudes (relative to baseline) are substantially larger with narrow spikes
148 intact (n=10 p< 0.001). (**H**) Left, example MG cell recording illustrating the relationship between broad spike
149 probability and the peak of the narrow spike immediately preceding the broad spike. Additional examples are shown
150 in Figure 1-figure supplement 1F-G. Right, same display for the model cell. (**I**) Narrow spike amplitude depends on
151 the baseline membrane potential (i.e. the point from which the spike arises) but for any given baseline membrane
152 potential, narrow spikes that precede broad spikes have, on average, a larger amplitude. Left panel shows one
153 example MG cell (and see Figure 1-figure supplement 1H-K) and right panel shows results from the model cell.
154 Each circle represents the average amplitude for the given baseline membrane potential.

155
156 Several lines of evidence suggest a causal role for backpropagating narrow spike in evoking
157 broad spikes *in vivo* through a process similar to that described in the model. First, eliminating
158 narrow spikes with hyperpolarizing current or a sodium channel blocker in the recording pipette
159 revealed that peak somatic depolarization due to narrow spikes is much greater than that due to
160 subthreshold input alone (Figure 1G). Second, *in vivo* (as in the model), the probability of
161 evoking a broad spike depends strongly on the membrane potential at the peak of the recorded
162 narrow spike (Figure 1H and Figure 1-figure supplement 1G). Third, *in vivo* (as in the model),
163 narrow spikes that immediately precede a broad spike not only arise from more depolarized
164 potentials (as would be expected based on the higher threshold for broad spikes) but also exhibit
165 larger amplitudes than narrow spikes not preceding a broad spike (Figure 1I and Figure 1-figure
166 supplement 1H-K). It is difficult to see why this would be the case if the narrow spike were not
167 causal. We also observed that the amplitude of backpropagating narrow spikes depends on the
168 baseline membrane potential, an effect seen in other systems (Grace and Bunney, 1983),
169 presumably due to the voltage-dependence of the membrane conductance.

170


171

172 A biophysical model of negative image formation and transmission

173 We next examined how sensory input affects broad and narrow spike firing in the multi-
174 compartment model. *In vivo* studies have revealed two sub-classes of MG cells: BS- cells, in
175 which the broad spike rate is decreased by sensory input, and BS+ cells, in which the broad spike
176 rate is increased (presumably through dis-inhibition). While for simplicity we focus on modeling
177 BS- cells, the mechanisms we describe can also explain responses in BS+ cells (Figure 2-figure
178 supplement 1). For clarity, we consider constant sensory input, but we have verified that all the
179 results we report apply to time-dependent sensory inputs matching those *in vivo* (Figure 2-figure
180 supplement 3). Adding constant inhibitory input to basilar dendritic compartments potently

181 reduces the broad spike firing rate with little effect on the rate of narrow spikes (Figure 2A,
182 *inhibition*), consistent with prior *in vivo* recordings (Muller et al., 2019). Measuring membrane
183 potential values in the somatic compartment of the model revealed that inhibition results in
184 narrow spikes reaching less depolarized levels at their peaks (Figure 2B, *red* and Figure 2-figure
185 supplement 2b), so that the broad spike threshold is rarely crossed (Figure 2B, *dashed line*). The
186 increased conductance due to the inhibitory input reduces the peak membrane potential by
187 attenuating the passive spread of the narrow spike from the axon initial segment, as seen in the
188 small reduction in the amplitude of the narrow spike at the soma (~0.75 mv; Figure 2C, E, *red*
189 and Figure 2-figure supplement 2C; Appendix 1). The effects of inhibitory input on the baseline
190 membrane potential and the narrow spike rate are negligible because the narrow spike threshold
191 (~-64 mV) is near the reversal potential for inhibition (-65 mV in the model) (Figure 3A).

192
193 Next, we examined the central question of how negative image formation affects broad and
194 narrow spikes. The dynamics of anti-Hebbian spike timing-dependent plasticity acting on
195 realistic granule cell inputs have been extensively characterized and modeled (Bell et al., 1997c;
196 Kennedy et al., 2014; Roberts and Bell, 2000). Because the focus here is on the consequences of
197 these well-characterized plasticity dynamics on narrow and broad spike firing (rather than on the
198 plasticity mechanism itself), we simply reproduce the known effect of this plasticity in our
199 model. In other words, we set the strengths of excitatory conductances onto apical dendrites to
200 cancel the effects of inhibition on the broad spike rate_(Figure 2A, *cancellation*), which is
201 precisely what the anti-Hebbian plasticity does. Sensory input temporarily lowers the broad spike
202 rate but mimicking synaptic plasticity returns this rate back to its equilibrium value by restoring
203 the membrane potential at the peak of the backpropagating narrow spike close to its baseline
204 value (Figure 2B, *cyan* and Figure 2-figure supplement 2b). Critically, however, the reduction of
205 the backpropagating narrow spike amplitude caused by inhibition is not reversed (Figure 2C,
206 *cyan* and Figure 2-figure supplement 2C). Instead, restoration of the broad spike rate requires an
207 additional depolarization of the underlying membrane potential that assures that the peak of the
208 attenuated narrow spike reaches the threshold for broad spike firing (Figure 2D, E, *cyan* and
209 Figure 2-figure supplement 2D). This baseline depolarization drives narrow spike firing, thereby
210 transmitting the negative image to downstream neurons (Figure 2A, *cancellation*).
211

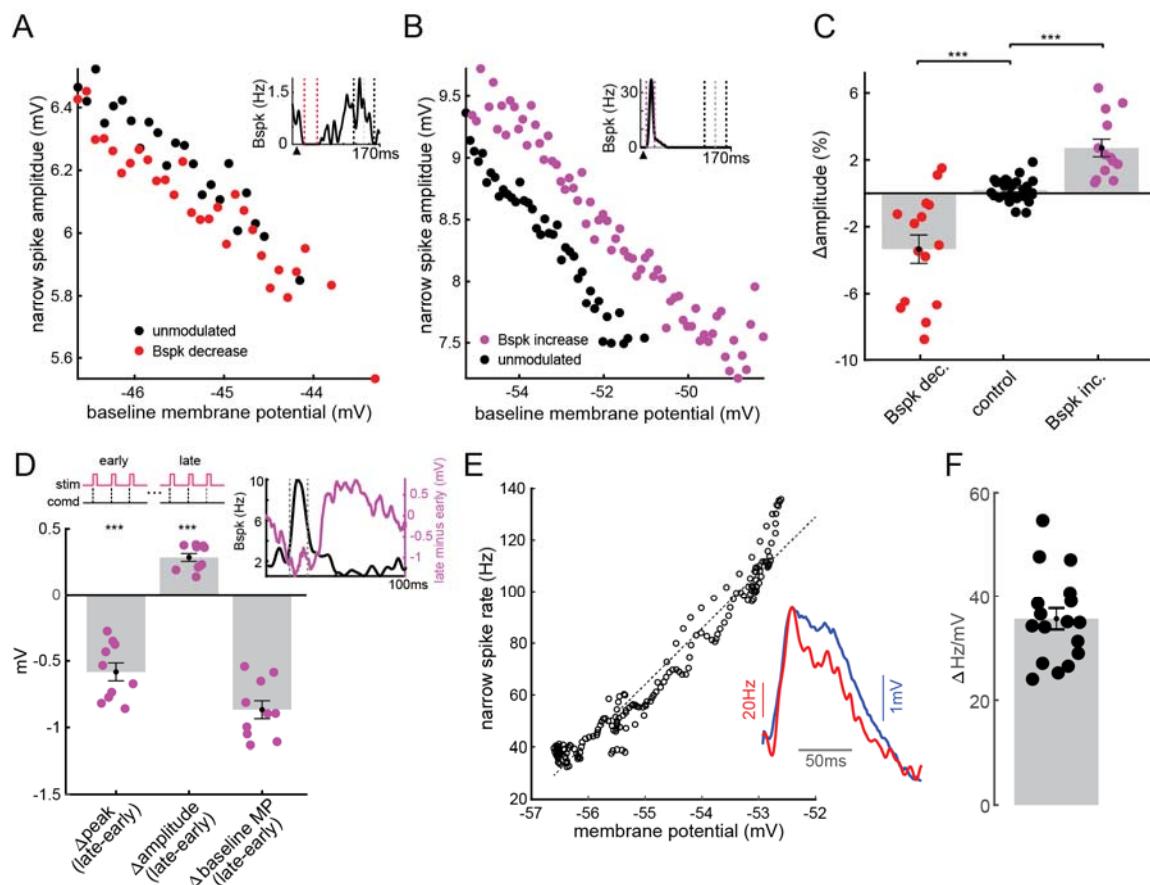
212
213

214 **Figure 2. Biophysical model of negative image formation and transmission.** (A) Narrow and broad spike rates
215 under three conditions used to simulate the formation and transmission of negative images in the model (see main
216 text). To simplify model analysis, we use step-like changes in sensory and corollary discharge input rather than
217 simulating the temporal response profiles observed *in vivo* (Figure 2-figure supplement 3). This is equivalent to
218 plotting the peak of the responses schematized in Figure 1A. (B) Peak membrane potential of backpropagating
219 narrow spikes for the input conditions shown in (A). Gray line indicates the broad spike threshold and the distance
220 from the gray line to the dashed blue line is one standard deviation from the mean (which is similar across all three
221 conditions). (C) Backpropagating narrow spike amplitudes for the input conditions shown in (A). (D) Baseline
222 membrane potentials for the input conditions shown in (A). (E) Example voltage traces from the model illustrating
223 how membrane potential depolarization (cyan) allows narrow spikes to cross the threshold for evoking a broad spike
224 (dashed line), despite the reduction in narrow spike amplitude due to inhibition (red). (F) Inhibition (red) reduces
225 probability of evoking a broad spike (p), such that an increase in narrow spike rate is required to restore the broad
226 spike rate to equilibrium (dashed line). This increase is proportional to the negative image. Equilibria for the two
227 conditions are where the dashed and solid curves cross.
228

229 An equivalent computational explanation for this phenomenon can be constructed by expressing
230 the broad spike rate, R_{bs} , as the product of two factors, the probability of a narrow spike evoking
231 a broad spike, p , and the rate of narrow spikes, R_{ns} ; $R_{bs} = p \cdot R_{ns}$. The factor p reflects the
232 functional coupling between backpropagating narrow spikes and broad spikes (similar to the
233 “safety factor” described in classical studies of initial segment-somatodendritic spike coupling
234 (Coombs et al., 1957a, b; Fuortes et al., 1957; Renshaw, 1942). Sensory input selectively affects
235 the broad spike rate by reducing the value of p . (While narrow spike peak voltage is the

236 dominant factor affecting p (Figure 1H), other factors may also contribute (Figure 2-figure
237 supplement 4)). Specifically, suppose that the broad spike rate $R_{bs} = p \cdot r_{ns}$ is at its equilibrium
238 value in the absence of sensory input, with $p = p_0$. Introducing inhibition due to sensory input
239 reduces p causing the broad spike rate to decrease. Synaptic plasticity restores the broad spike
240 rate by returning $p \cdot r_{ns}$ and thus R_{bs} back to its equilibrium value (Figure 2F, dashed line).
241 However, through this process p is not restored to its previous value p_0 , but instead remains
242 smaller than p_0 . Thus, the restoration of the broad spike rate requires a compensatory increase in
243 r_{ns} , the narrow spike rate (Figure 2F).

244


245 **Negative image formation and transmission *in vivo***

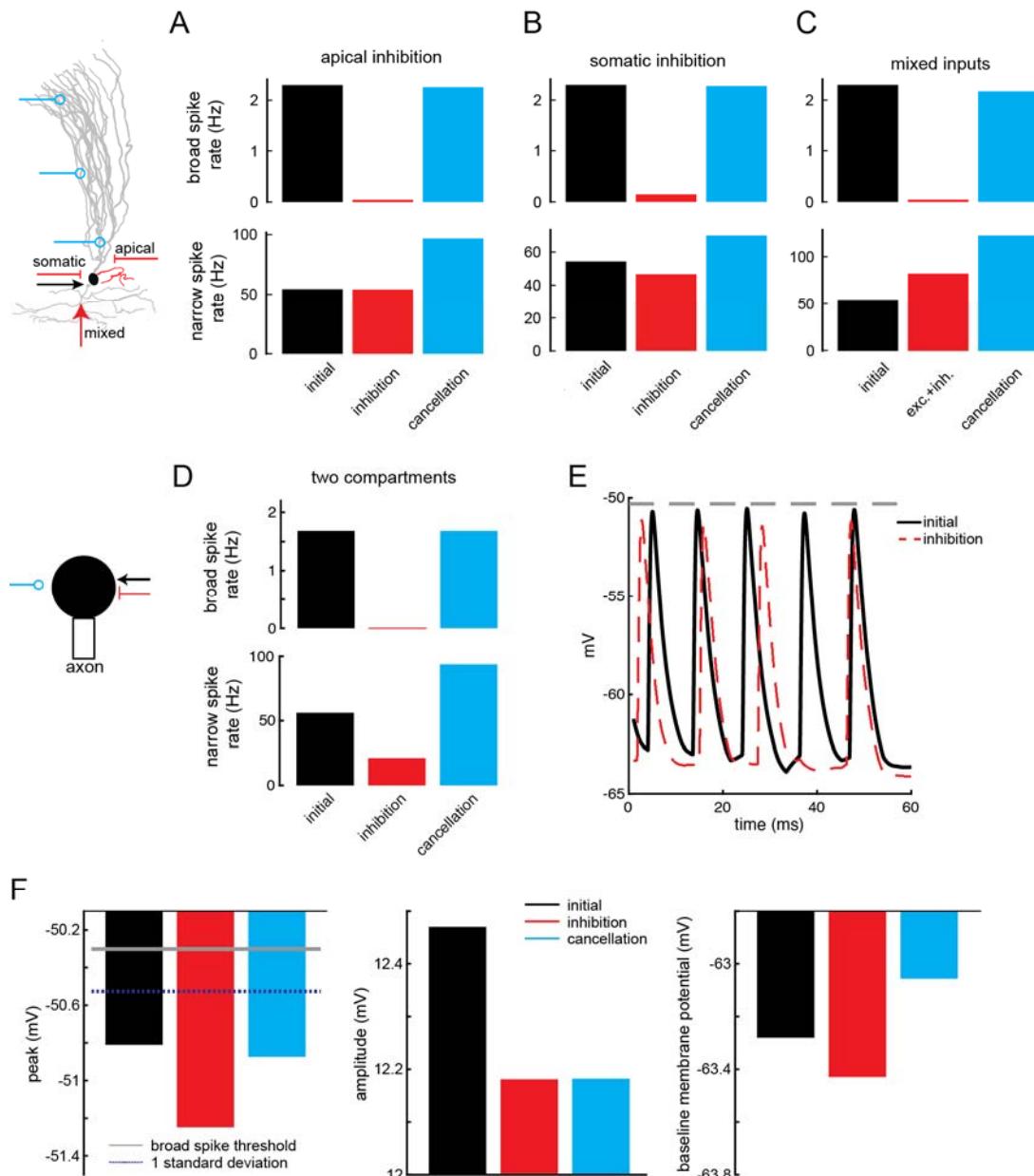
246 The model makes two key predictions regarding negative image generation and transmission that
247 we tested *in vivo*: (1) sensory input modifies narrow spike amplitude and (2) synaptic plasticity
248 restores the broad-spike rate in the presence of sensory input by modifying the baseline
249 membrane potential rather than by reversing the effects of sensory input on the amplitude of
250 backpropagating narrow spikes. Comparing narrow spike amplitudes in time windows when
251 broad spike firing was modulated by an electrosensory stimulus versus control windows revealed
252 that sensory stimuli that suppressed broad spiking reduced the amplitude of backpropagating
253 narrow spikes, while stimuli that enhanced broad spiking increased this amplitude (Figure 3A-C
254 and Figure 3-figure supplement 1). The former corresponds to BS- cells, while the latter
255 corresponds to BS+ cells in which both the sign of the broad spike response to the sensory input
256 and the negative image are reversed.

257

258 To test prediction 2 concerning the changes in baseline membrane potential, we examined
259 narrow spike amplitudes during the learning of negative images induced by pairing an
260 electrosensory stimulus with the motor command that discharges the electric organ (Bell, 1981).
261 This analysis was only possible for BS+ cells because of the much faster time-course of
262 cancellation in these cells (Muller et al., 2019). As expected, cancellation of sensory-evoked
263 increases in broad spike firing was driven by a temporally-specific hyperpolarization of the
264 underlying membrane potential (Figure 3D, inset). Importantly, sensory-evoked changes in
265 narrow spike amplitude were not reversed as negative images formed, a critical feature for our
266 model of negative image transmission (Figure 3D). In fact, the amplitude of backpropagating
267 narrow spikes actually increased due to the prominent inverse correlation of the narrow spike
268 amplitude and the baseline membrane potential (Figure 1I). This effect amplifies the mechanism
269 identified in the model, leading to even more robust negative image transmission by narrow
270 spikes (Figure 3-figure supplement 2). Defining ΔAmp as the change in narrow spike amplitude
271 due to sensory input and S as the slope of the relationship between narrow spike amplitude and
272 the baseline membrane potential, the negative image is equal to $-\Delta\text{Amp}/(1+S)$. Our data suggest
273 a value for S of $\sim-4.1\%$ (Figure 3-figure supplement 2) which corresponds to -0.62 mV for a
274 typical 15 mV narrow spike recorded in the soma. Hence, the negative image generated by a 3%
275 narrow spike amplitude change is expected to be $0.45\text{mV}/(1-0.62) = 1.2$ mV. Based on measured

276 dependence of narrow spike firing rate on membrane potential (Figure 3E, F), this amounts to a
277 ~40 Hz change in narrow spike rate, consistent with the magnitude of negative images recorded
278 *in vivo*.

279
280 **Figure 3. Negative image formation and transmission *in vivo*.** (A) Example BS- MG cell illustrating a decrease in
281 the backpropagating narrow spike amplitude in a time window when broad spike firing is transiently decreased by
282 an electrosensory stimulus (red) compared to a window in which the broad spike rate is not modulated (black). Inset here and in (B) identifies these analysis windows. (B) Example BS+ MG cell illustrating an increase in the
283 backpropagating narrow spike amplitude in a time window when broad spike firing was transiently increased by an
284 electrosensory stimulus (magenta). (C) Summary of the effects of sensory stimuli on narrow spike amplitude across
285 MG cells ($n = 15$ decrease, $n = 13$ increase, $p < 0.001$). Middle bar (control) shows results of analysis comparing
286 amplitudes in two windows in which broad spike rates were not modulated (the two windows are separated by the
287 gray dashed line in insets A-B). (D) Changes in membrane potential at the peak of the narrow spike (Δ_{peak}), narrow
288 spike amplitude ($\Delta_{\text{amplitude}}$), and the baseline membrane potential preceding narrow spikes ($\Delta_{\text{baseline MP}}$) during
289 pairing (~4 minutes) of an electrosensory stimulus with the electric organ discharge motor command (comd) to
290 induce negative image formation and sensory cancellation in BS+ cells ($n = 10$). Inset right, traces from an example
291 cell illustrating the initial sensory-evoked increase in broad spike firing (black) along with the resulting change in
292 the membrane potential, which forms an approximate negative image of the effects of the paired sensory input on
293 broad spike firing (magenta). Inset left, illustration of the pairing paradigm. (E) Narrow spike rate versus membrane
294 potential plotted for one example cell. Dashed line is the linear fit. Inset, trial-averaged membrane potential (with
295 spike removed) and corresponding narrow spike rate for the same cell. (F) Average sensitivity of narrow spikes to
296 membrane potential changes across MG cells ($n=17$) calculated based on the range of the curves shown in E.
297
298


299 **Axonal, but not dendritic, compartmentalization is required for MG cell function**

300 The differential effect of sensory input on broad and narrow spikes might suggest that spatial
301 targeting of synaptic inputs onto MG cells is essential for learning and transmitting negative
302 images. We tested this by varying the location of the sensory input in the model. Surprisingly,
303 inhibition onto the proximal apical dendrites (Figure 4A) or soma (Figure 4B) yielded similar
304 model performance as inhibition onto basilar dendrites (Figure 2A). In both cases, sensory input
305 robustly decreased broad spike firing with little effect on narrow spike firing (Figure 4A, B,
306 *inhibition*), and the addition of excitatory input to the apical dendrites cancelled the effects of
307 sensory input on the broad spike rate while simultaneously modulating narrow spike output
308 (Figure 4A, B, *cancellation*). Furthermore, if a mixture of excitatory and inhibitory input is
309 delivered to the basilar dendrites, narrow spike firing rate is also increased while broad spike
310 firing decreased (Figure 4C), matching prior *in vivo* observations (Muller et al., 2019). These
311 results suggest that neither spatially segregated synaptic inputs nor dendritic
312 compartmentalization are strictly required for differential control over broad and narrow spikes.
313

314 To test this further, we constructed a simple conductance-based integrate-and-fire model with
315 only two compartments representing an axon and soma. Remarkably, the same qualitative results
316 described for the morphologically realistic multi-compartment model were reproduced by the
317 attenuation of the backpropagating axonal narrow spike in the somatic compartment (Figure 4D-
318 F). While this result in no way excludes important functional roles for the numerous
319 morphological, synaptic, and biophysical specializations of real MG cells, it suggests that the
320 essential biophysical requirements for continual learning and signal transmission are surprisingly
321 minimal.
322

323 **Discussion**

324 Learning is typically associated with Hebbian forms of plasticity with homeostatic plasticity
325 playing a stabilizing role by enforcing a return to equilibrium. Here we identified biophysical
326 mechanisms that allow homeostatic synaptic plasticity to transmit learned signals. Using *in vivo*
327 recordings and biophysical modeling we showed that sensory input modulates the rate of
328 dendritic spikes by adjusting the amplitude of backpropagating axonal action potentials.
329 Homeostatic plasticity counteracts these effects through changes in the underlying membrane
330 potential, allowing the dendritic spike rate to be restored to equilibrium while simultaneously
331 transmitting predictions through modulation of the axonal spike rate. The core requirements of
332 the mechanism we describe--separate axonal and somatodendritic action potentials and an
333 electronically distant site of axonal spike initiation—are found in many classes of neurons
334 (Grace and Bunney, 1983; Häusser et al., 1995; Llinás et al., 1968; Spencer and Kandel, 1961;
335 Spruston et al., 1995; Stuart and Sakmann, 1994), suggesting that roles for homeostatic plasticity
336 in learning may be more widespread than is currently appreciated.
337

Figure 4. Negative image formation and transmission does not require dendritic compartmentalization. (A-B) Inhibition onto proximal apical dendrites (A) or soma (B) (indicated by the arrows, left) results in the formation and transmission of negative images in the model. (C) A mixture of excitatory and inhibitory inputs decreases the rate of broad spikes while increasing narrow spike firing. Cancellation of broad spike inhibition results in a further increase of narrow spike firing. (D) Formation and transmission of negative images can also be achieved in a simplified two-compartment model. (E) Trace from the two compartment model showing the reduction of backpropagating narrow spike amplitude by inhibitory input. (F) Mechanism of negative image formation and transmission in the two compartment model is the same as in the realistic model (cf. Figure 2B-D).

350 An action potential that arrives at the soma highly attenuated might seem an unlikely candidate
351 for impacting dendrites. We find, to the contrary, that the small size of backpropagating axonal
352 spikes in MG cells makes them susceptible to modulation and therefore an ideal candidate for
353 flexibly controlling dendritic events. Importantly, the amplitude of backpropagating action
354 potentials is highly sensitive to synaptic input (Llinas et al., 1968; Renshaw, 1942; Tsubokawa
355 and Ross, 1996), much more sensitive than rates of action potential generation. This provides a
356 mechanism for precise and, importantly, differential control of axonal and dendritic spikes that
357 supports their separate functions. Whereas discussion of neuronal compartmentalization typically
358 focuses on dendritic structure (London and Häusser, 2005; Major et al., 2013; Stuart and
359 Spruston, 2015), our work provides a case in which the separation of the axon from the soma and
360 dendrites is the essential element. While in our models this compartmentalization is based on a
361 high resistance between axonal and somatic compartments, additional specializations (and
362 potential sites of regulation) are likely to exist in real cells. For example, studies of medium
363 superior olive neurons in the mammalian auditory brainstem provide evidence that the precise
364 subcellular localization and inactivation properties of voltage gated sodium channels contribute
365 to electrical isolation of the axon initial segment from the soma and dendrites (Ko et al., 2016;
366 Scott et al., 2010).

367
368 Our results do not, of course, rule out important functions for MG cell dendrites or for additional
369 biophysical specializations not included in our simplified models. Indeed, studies of a zone of
370 the ELL involved in active electrolocation suggest that corollary discharge-driven inhibition of
371 broad spikes is targeted to the putative site of broad spike initiation in the proximal apical
372 dendrites (Sawtell et al., 2007) (Figure 3-figure supplement 3). Additional important questions
373 for future studies are the anatomical basis for the dis-inhibitory circuit presumed to underlie
374 sensory-evoked excitation of broad spikes in BS+ cells and the anatomical organization and
375 functional role of recurrent connections between MG cells.

376
377 Both similarities and differences relevant to the present findings are found amongst the various
378 vertebrate cerebellum-like structures. Homeostatic (anti-Hebbian) forms of plasticity at parallel
379 fiber synapses are present in all cerebellum-like structures that have been thus far examined
380 (Bell, 2002; Bell et al., 2008). In contrast, the presence of such plasticity at synapses onto the
381 spiny apical dendrites of GABAergic Purkinje or Purkinje-like cells has only been described for
382 the cerebellum, the mormyrid ELL, and the mammalian dorsal cochlear nucleus (DCN). In
383 structures lacking Purkinje-like cells, such as the dorsal octavolateral nucleus of sharks and rays
384 and the ELL of South American weakly electric, sensory cancellation may be a simpler one-
385 stage process mediated by homeostatic plasticity at parallel fiber synapses onto glutamatergic
386 output neurons (Bol et al., 2011; Nelson and Paulin, 1995). Cartwheel cells in the mammalian
387 DCN, on the other hand, exhibit a number of similarities with MG cells, including firing distinct
388 axonal and dendritic spikes (Kim and Trussell, 2007; Zhang and Oertel, 1993). While prior work
389 has provided evidence for the cancellation of self-generated sounds in output cells of the DCN

390 (Singla et al., 2017), possible roles for anti-Hebbian plasticity at parallel fiber synapses onto
391 cartwheel cells remain to be investigated (Tzounopoulos et al., 2004). The possible
392 computational advantages of performing sensory cancellation in two-stages, as opposed to one,
393 also remain to be elucidated.

394

395 Roles for homeostatic plasticity in transmitting learned signals may extend beyond cerebellum-
396 like structures. Anti-Hebbian spike timing-dependent plasticity, similar to that at granule-MG
397 cell synapses, has been documented at synapses in the striatum (Perez et al., 2022) and neocortex
398 (Letzkus et al., 2006; Ruan et al., 2014). While homeostatic plasticity of inhibitory synapses onto
399 pyramidal cells has been hypothesized to underlie responses to prediction errors in sensory
400 cortical neurons (Hertag and Sprekeler, 2020; Keller and Mrsic-Flogel, 2018), less is known
401 about the mechanisms for transmitting predictions between cortical layers or regions. MG cells
402 play an analogous role by transmitting learned predictions across processing stages of the ELL.
403 Many cortical neurons fire distinct axonal and dendritic spikes, suggesting the possibility that
404 mechanism similar to those described here may allow homeostatic plasticity to contribute to
405 predictive processing in the cerebral cortex.

406

407 Materials and methods

408 *Experimental model and subject details*

409 Male and female Mormyrid fish (7-12 cm in length) of the species *Gnathonemus petersii* were
410 used in these experiments. Fish were housed in 60 gallon tanks in groups of 5-20. Water
411 conductivity was maintained between 40-65 microsiemens. All experiments performed in this
412 study adhere to the American Physiological Society's *Guiding Principles in the Care and Use of*
413 *Animals* and were approved by the Institutional Animal Care and Use Committee of Columbia
414 University.

415

416 For surgery to expose the brain for recording, fish were anesthetized (MS:222, 1:25,000) and
417 held against a foam pad. Skin on the dorsal surface of the head was removed and a long-lasting
418 local anesthetic (0.75% Bupivacaine) was applied to the wound margins. A plastic rod was
419 cemented to the anterior portion of the skull to secure the head. The posterior portion of the skull
420 overlying the ELL was removed and the valvula cerebelli was reflected laterally to expose the
421 eminentia granularis posterior (EGp) and the molecular layer of the ELL, facilitating whole-cell
422 recordings from the ventrolateral zone of the ELL. Gallamine triethiodide (Flaxedil) was given
423 at the end of the surgery (~20 µg/cm of body length) and the anesthetic was removed. Aerated
424 water was passed over the fish's gills for respiration. Paralysis blocks the effect of
425 electromotoneurons on the electric organ, preventing the EOD, but the motor command signal
426 that would normally elicit an EOD continues to be emitted at a rate of 2 to 5 Hz.

427

428 *Electrophysiology*

429 The EOD motor command signal was recorded with a Ag-AgCl electrode placed over the electric
430 organ. The command signal is the synchronized volley of electromotoneurons that would
431 normally elicit an EOD in the absence of neuromuscular blockade. The command signal lasts
432 about 3 ms and consists of a small negative wave followed by three larger biphasic waves. Onset
433 of EOD command was defined as the negative peak of the first large biphasic wave in the
434 command signal. For pairing experiments, the EOD mimic was presented 4.5 ms following EOD
435 command onset. Recordings were started ~1 hour after paralysis.

436

437 Methods for *in vivo* whole-cell recordings were the same as in prior studies of the mormyrid ELL
438 (Muller et al., 2019; Sawtell, 2010). Briefly, electrodes (8-15 MΩ) were filled with an internal
439 solution containing, in mM: K-gluconate (122); KCl (7); HEPES (10); Na2GTP (0.4); MgATP
440 (4); EGTA (0.5), and 0.5-1% biocytin (pH 7.2, 280-290 mOsm). No correction was made for
441 liquid junction potentials. Membrane potentials were recorded and filtered at 10 kHz (Axoclamp
442 2B amplifier, Axon Instruments) and digitized at 20 kHz (CED micro1401 hardware and Spike2
443 software; Cambridge Electronics Design, Cambridge, UK). Only cells with stable membrane
444 potentials more hyperpolarized than -40 mV and broad spike amplitudes >40 mV were analyzed.
445 In contrast to broad spikes, narrow spike amplitude varied across recordings from ~15 mV
446 (similar to values obtained from somatic recordings *in vitro*) to indistinguishable from
447 subthreshold synaptic events. The latter, which were typically obtained at more superficial
448 recording depths corresponding to the ELL molecular layer, were classified as putative apical
449 dendritic recordings (see figure supplement 1D).

450

451 ***Electrosensory stimulation***

452 The EOD mimic was a 0.2 ms duration square pulse delivered between an electrode in the
453 stomach and another positioned near the electric organ in the tail. The amplitude was 25-50 μA at
454 the output of the stimulus isolation unit (stomach electrode negative). Recordings from
455 ampullary afferents showed that firing rate modulations evoked by this mimic are within the
456 range of those induced by the fish's natural EOD (Bell and Russell, 1978). We use the terms
457 sensory input or sensory response to refer to the effect of the mimicked electric field on the ELL.
458 Because we do not include prey-like electric fields the sensory input we discuss is entirely
459 predictable on the basis of the EOD command signal and is therefore entirely uninformative to
460 and 'unwanted' by the fish. Thus, we consider a situation where the ELL attempts to cancel *all* of
461 its sensory input. It is important to appreciate that, in a natural setting, the mechanisms we
462 analyze would only cancel the predictable self-generated component of the sensory input,
463 leaving the unpredictable inputs of interest to the fish intact. To isolate responses to sensory
464 versus corollary discharge we analyzed periods in which sensory stimuli were delivered
465 independent of the EOD motor command. In some cases, sensory responses were isolated from
466 periods in which the sensory stimuli were paired with the EOD motor command by off-line
467 subtraction of responses to the EOD motor command alone.

468

469 **Quantification and Statistical Analysis**

470 Data were analyzed off-line using Spike2 (Cambridge Electronic Design) and custom Matlab
471 code (Mathworks, Natick, MA). Biophysical model analysis was performed using custom
472 Python3 code. Non-parametric tests were used for testing statistical significance. Unless
473 otherwise indicated, we used the two-sided Wilcoxon rank sum test for unpaired samples and
474 the Wilcoxon signed ranks test for paired samples. Differences were considered significant at P
475 < 0.05 . 3 stars indicate a $P < 0.001$.

476

477 **Biophysical model**

478 The compartmental model was based on a morphological reconstructed MG cell and consisted of
479 78 compartments further divided to 230 segments (Muller et al., 2019). Simulation of cell
480 activity was done using NEURON software and Python 3 wrapper (Carnevale and Hines, 2006).
481 Voltage gated Na⁺ and K⁺ channels inserted in the apical dendrites and axon are Hodgkin-
482 Huxley type channels. Temperature was set to 20° Celsius. The attenuation of axonal spikes in
483 the model arises simply due to the resistance between axonal and somatodendritic compartments.
484 Voltage-gated channel conductances were adjusted (see **Table 1**) to achieve the higher spike
485 threshold for broad versus narrow spikes that is observed experimentally.

486

487

	g_l (S/cm ²)	leakage reversal potential (mV)	axial resistance (Ω cm)	capacitance (μ F/cm ²)	\bar{g}_{Na} (S/cm ²)	\bar{g}_K (S/cm ²)
axon	0.0003	-65	100	1	4	0.5
AIS	0.0003	-65	100	1	0.168	0.05
apical	0.0003	-65	100	1	0.1	0.008
rest	0.0003	-65	100	1	0	0

488

489 **Table 1. Values of biophysical parameters for the different compartments.** ‘Rest’ includes the soma, the
490 somatic-connected apical compartment and all basal dendrite compartments. g_l is leakage conductance. \bar{g}_{Na} and \bar{g}_K
491 are the maximal conductances of the sodium and potassium channels, respectively.

492

493 To drive baseline spiking in the model cell (the condition we term *initial*), we injected Gaussian
494 current noise into the soma (0.5 ms timesteps) with a standard deviation chosen to evoke \sim 50 Hz
495 narrow spike firing and \sim 2 Hz broad spike firing. To drive excitatory and inhibitory responses
496 we added AMPA and GabaA synaptic channels (Destexhe et al., 1994). Reversal potential of the
497 AMPA and GabaA channel are 0 mV and -65 mV, respectively. The AMPA excitatory input was
498 inserted into all apical dendrite compartments (49 compartments 175 segments). The AMPA and
499 GabaA inputs were constant, in which each relevant compartment received a synaptic input with
500 timing onset $\sim \mathcal{N}(t_i, 5^2)$ where $t_i = 10 \cdot i$. For basal dendrites inhibition (21 compartments (45

501 segments), conductance was 0.1 μS and excitatory conductance was 7.65e-5 μS . For somatic
502 inhibition, conductance was 0.04 μS and excitatory conductance was 1.85e-5 μS . For apical
503 inhibition, conductance was 0.01 μS and excitatory conductance was 7.1e-5 μS . Apical
504 inhibition was inserted into proximal apical compartments (11 compartments (19 segments))
505 defined as those whose center is within 100 μm of the center of the soma.

506

507 **Two compartment model**

508 Conductance based integrate-and-fire model was used for the two compartment model (Fig 4d).
509 The equations for somatic and axonal membrane potential are:

510

$$511 c_m \dot{v}_s = -g_l(v_s - E_l) - g_i(v_s - E_i) - g_e(v_s - E_e) - g_c(v_s - v_a(t)) + I_e$$

$$512 c_m \dot{v}_a = -g_l(v_a - E_l) - g_c(v_a - v_s(t))$$

513

514 Where g_l is the leakage conductance, g_c is the intercompartment conductance and g_i and g_e are
515 the inhibitory and excitatory conductances respectively. I_e is external current (with Gaussian
516 noise) and is set to produce \sim 50 Hz narrow spike and \sim 2 Hz broad spike rates. When the axon
517 reaches the threshold for axonal spike, a spike shape plus a refractory period is imposed in the
518 axon. Broad spike rate was determined by the number of times the backpropagating axonal spike
519 reached a high threshold in the soma (this threshold was defined as the 97th percentile of the
520 backpropagating spike-peak in the *initial* period).

521

522 **Measuring narrow spike amplitude differences**

523 Quantifying narrow spike amplitude differences induced by sensory input is complicated by the
524 strong dependence of narrow spike amplitude on baseline membrane potential observed *in vivo*
525 (negative slope in Figure 1I). To account for this effect, we fit the slope of the relationship
526 between narrow spike amplitude and baseline membrane potential and report the difference
527 across conditions in the bias of these slopes. Similarly, to measure difference between expected
528 and actual amplitude (figure supplement 6A) we first fit a slope to the relationship between
529 amplitude and baseline membrane potential and then measure the distance from the fit.

530

531 We hypothesize (figure supplement 1H-I) that the attenuation of backpropagating narrow spike
532 amplitude is linearly proportional to the amplitude:

533

$$AMP_2 = (1 - A)AMP_1$$

534

535 Then if we divide by average recorded mean we have the following equality:

536

$$\frac{AMP_1^{\text{evoke}} - AMP_1^{\text{non-evoke}}}{\text{mean}(AMP_1)} = \frac{(1-A)AMP_1^{\text{evoke}} - (1-A)AMP_1^{\text{non-evoke}}}{(1-A)\text{mean}(AMP_1)} = \frac{AMP_2^{\text{evoke}} - AMP_2^{\text{non-evoke}}}{\text{mean}(AMP_2)}$$

537
538 The average narrow spike amplitude differs widely across recordings (see figure supplement
539 1D), presumably due to recording location in the soma versus the proximal apical dendrites.
540 Hence, to compare differences in narrow spike amplitude evoked by sensory stimuli across
541 recordings we report the percentage change in narrow spike amplitude relative to the average
542 narrow spike amplitude for each cell. The same reasoning applies to analysis of the relationship
543 between amplitude and baseline membrane potential across different cells (figure supplement
544 7A).

545
546 **F-I curve for narrow spikes**
547 The fit between membrane potential and spike rate is approximately linear (see example in
548 Figure 3E). To minimize the effect of outliers we quantify the change in rate/mV as:

549
550
$$\frac{\max(N_{\text{spk rate}}) - \min(N_{\text{spk rate}})}{\max(MP) - \min(MP)}$$

551
552
553 **Measuring effect of sensory input on amplitude**
554 Recorded amplitude of *in vivo* narrow spikes may change over the course of the recording (as
555 the quality of the recording changes). Therefore, we measured amplitude differences in relation
556 to a control window within same recording period. Changes in amplitude from the first to the
557 second half of the recorded period (Figure 3d) was measured as the change in amplitude
558 relative to the control window within each half of the recording.

559
560 **Data and code availability**
561 Model code is available at: <http://modeldb.yale.edu/267596>, password: abbottsaawtell
562 Data and data code is available at:
563 <https://datadryad.org/stash/share/5oEoH42oOWfSQ07fLc3mMla92CdzcXE8wYSKvvV-HhE>

564
565 **Acknowledgements**
566 This work was supported by grants from the NIH (NS075023) and Irma T. Hirsch Trust to N.B.S.,
567 by a grant from the NIH (NS118448) to N.B.S. and L.F.A., and by a grant from the Swartz
568 Foundation to S.Z.M. L.F.A. was further supported by the Gatsby and Simons Foundations and
569 by NSF NeuroNex Award DBI-1707398.

570
571 Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University,
572 New York, NY 10027
573 Salomon Z. Muller, L.F. Abbott and Nathaniel B. Sawtell
574
575 Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10027

576 L.F. Abbott

577

578 **Contributions**

579 N.B.S., S.Z.M., and L.F.A. conceived of the project and designed the experiments. N.B.S.
580 performed the experiments. S.Z.M. and N.B.S. analyzed the data. S.Z.M. and L.F.A. performed
581 the modeling. N.B.S., L.F.A. and S.Z.M. wrote the manuscript.

582

583 **Competing financial interests**

584 The authors declare no competing financial interests

585

586 **Corresponding author**

587 Correspondence to: Nathaniel Sawtell, ns2635@columbia.edu

588

589

590 **References**

591

592 Abbott, L.F., and Nelson, S.B. (2000). Synaptic plasticity: taming the beast. *Nat Neurosci* 3,
593 1178-1183.

594 Bell, C., Bodznick, D., Montgomery, J., and Bastian, J. (1997a). The generation and subtraction
595 of sensory expectations within cerebellum-like structures. *Brain, Behavior and Evolution* 50, 17-
596 31.

597 Bell, C.C. (1981). An efference copy modified by reafferent input. *Science* 214, 450-453.

598 Bell, C.C. (2002). Evolution of Cerebellum-Like Structures. *Brain Behav Evol* 59, 312-326.

599 Bell, C.C., Caputi, A., and Grant, K. (1997b). Physiology and plasticity of morphologically
600 identified cells in the mormyrid electrosensory lobe. *J Neurosci* 17, 6409-6422.

601 Bell, C.C., Han, V., and Sawtell, N.B. (2008). Cerebellum-like structures and their implications for
602 cerebellar function. *Annu Rev Neurosci* 31, 1-24.

603 Bell, C.C., Han, V.Z., Sugawara, S., and Grant, K. (1997c). Synaptic plasticity in a cerebellum-like
604 structure depends on temporal order. *Nature* 387, 278-281.

605 Bell, C.C., and Russell, C.J. (1978). Effect of electric organ discharge on ampullary receptors in a
606 mormyrid. *Brain Res* 145, 85-96.

607 Bodznick, D., Montgomery, J.C., and Carey, M. (1999). Adaptive mechanisms in the
608 elasmobranch hindbrain. *J Exp Biol* 202, 1357-1364.

609 Bol, K., Marsat, G., Harvey-Girard, E., Longtin, A., and Maler, L. (2011). Frequency-tuned
610 cerebellar channels and burst-induced LTD lead to the cancellation of redundant sensory
611 inputs. *J Neurosci* 31, 11028-11038.

612 Caporale, N., and Dan, Y. (2008). Spike timing-dependent plasticity: a Hebbian learning rule.
613 *Annu Rev Neurosci* 31, 25-46.

614 Carnevale, N.T., and Hines, M.L. (2006). The NEURON book (Cambridge, UK ; New York:
615 Cambridge University Press).

616 Coombs, J.S., Curtis, D.R., and Eccles, J.C. (1957a). The generation of impulses in motoneurones.
617 *J Physiol* 139, 232-249.

618 Coombs, J.S., Curtis, D.R., and Eccles, J.C. (1957b). The interpretation of spike potentials of
619 motoneurones. *J Physiol* **139**, 198-231.

620 Destexhe, A., Mainen, Z.F., and Sejnowski, T.J. (1994). An Efficient Method for Computing
621 Synaptic Conductances Based on a Kinetic-Model of Receptor-Binding. *Neural Computation* **6**,
622 14-18.

623 Engelmann, J., van den, B.E., Bacelo, J., de Ruijters, M., Kuwana, S., Sugawara, Y., and Grant, K.
624 (2008). Dendritic backpropagation and synaptic plasticity in the mormyrid electrosensory lobe. *J
625 Physiol Paris* **102**, 233-245.

626 Fujino, K., and Oertel, D. (2003). Bidirectional synaptic plasticity in the cerebellum-like
627 mammalian dorsal cochlear nucleus. *Proc Nat Acad Sci U S A* **100**, 265-270.

628 Fuortes, M.G., Frank, K., and Becker, M.C. (1957). Steps in the production of motoneuron
629 spikes. *J Gen Physiol* **40**, 735-752.

630 Grace, A.A., and Bunney, B.S. (1983). Intracellular and Extracellular Electrophysiology of Nigral
631 Dopaminergic-Neurons .2. Action-Potential Generating Mechanisms and Morphological
632 Correlates. *Neuroscience* **10**, 317-+.

633 Grant, K., Sugawara, S., Gomez, L., Han, V.Z., and Bell, C.C. (1998). The Mormyrid Electrosensory
634 Lobe *In Vitro*: Physiology and Pharmacology of Cells and Circuits. *J Neurosci* **18**, 6009-6025.

635 Han, V.Z., Grant, G., and Bell, C.C. (2000). Reversible associative depression and nonassociative
636 potentiation at a parallel fiber synapse. *Neuron* **27**, 611-622.

637 Harvey-Girard, E., Lewis, J., and Maler, L. (2010). Burst-induced anti-Hebbian depression acts
638 through short-term synaptic dynamics to cancel redundant sensory signals. *J Neurosci* **30**, 6152-
639 6169.

640 Hausser, M., Stuart, G., Racca, C., and Sakmann, B. (1995). Axonal inhibition and active dendritic
641 propagation of action potentials in substantia nigra neurons. *Neuron* **15**, 637-647.

642 Hertag, L., and Sprekeler, H. (2020). Learning prediction error neurons in a canonical
643 interneuron circuit. *Elife* **9**.

644 Keller, G.B., and Mrsic-Flogel, T.D. (2018). Predictive Processing: A Canonical Cortical
645 Computation. *Neuron* **100**, 424-435.

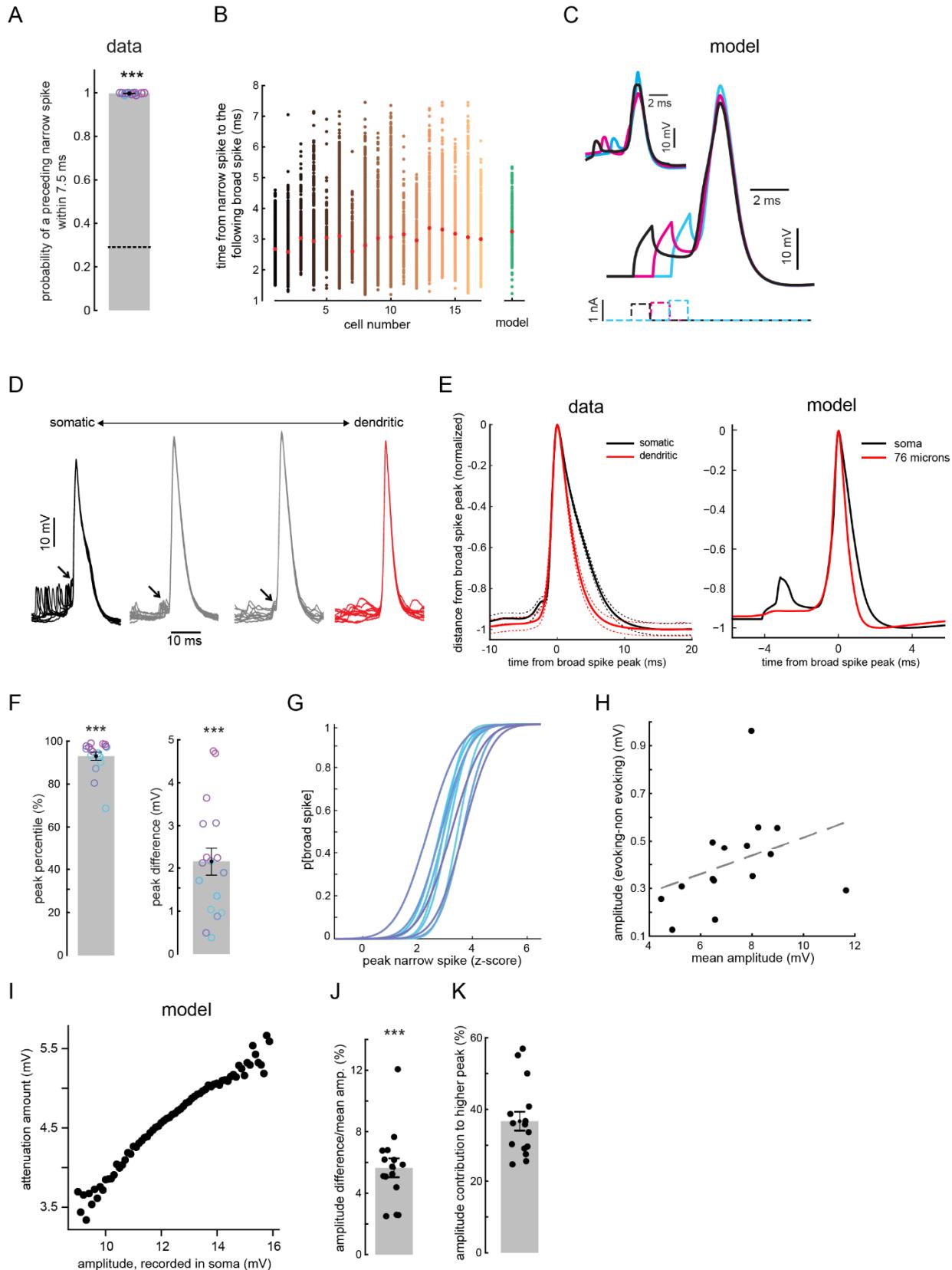
646 Kennedy, A., Wayne, G., Kaifosh, P., Alvina, K., Abbott, L.F., and Sawtell, N.B. (2014). A temporal
647 basis for predicting the sensory consequences of motor commands in an electric fish. *Nat
648 Neurosci* **17**, 416-422.

649 Kim, Y., and Trussell, L.O. (2007). Ion channels generating complex spikes in cartwheel cells of
650 the dorsal cochlear nucleus. *J Neurophysiol* **97**, 1705-1725.

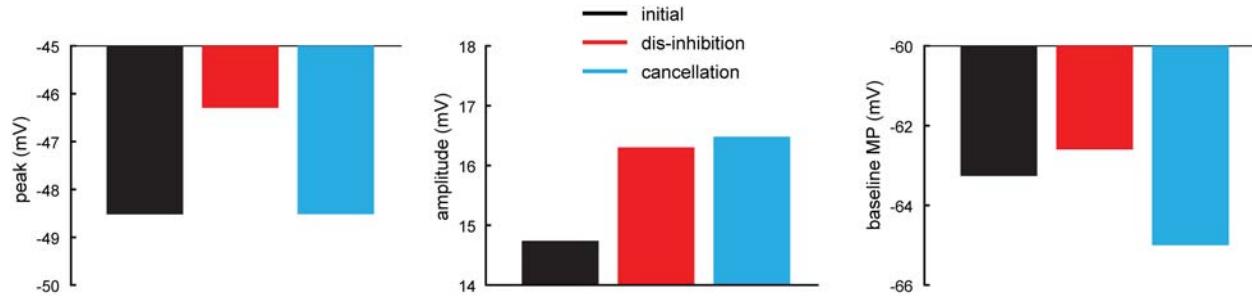
651 Ko, K.W., Rasband, M.N., Meseguer, V., Kramer, R.H., and Golding, N.L. (2016). Serotonin
652 modulates spike probability in the axon initial segment through HCN channels. *Nat Neurosci* **19**,
653 826-834.

654 Letzkus, J.J., Kampa, B.M., and Stuart, G.J. (2006). Learning rules for spike timing-dependent
655 plasticity depend on dendritic synapse location. *J Neurosci* **26**, 10420-10429.

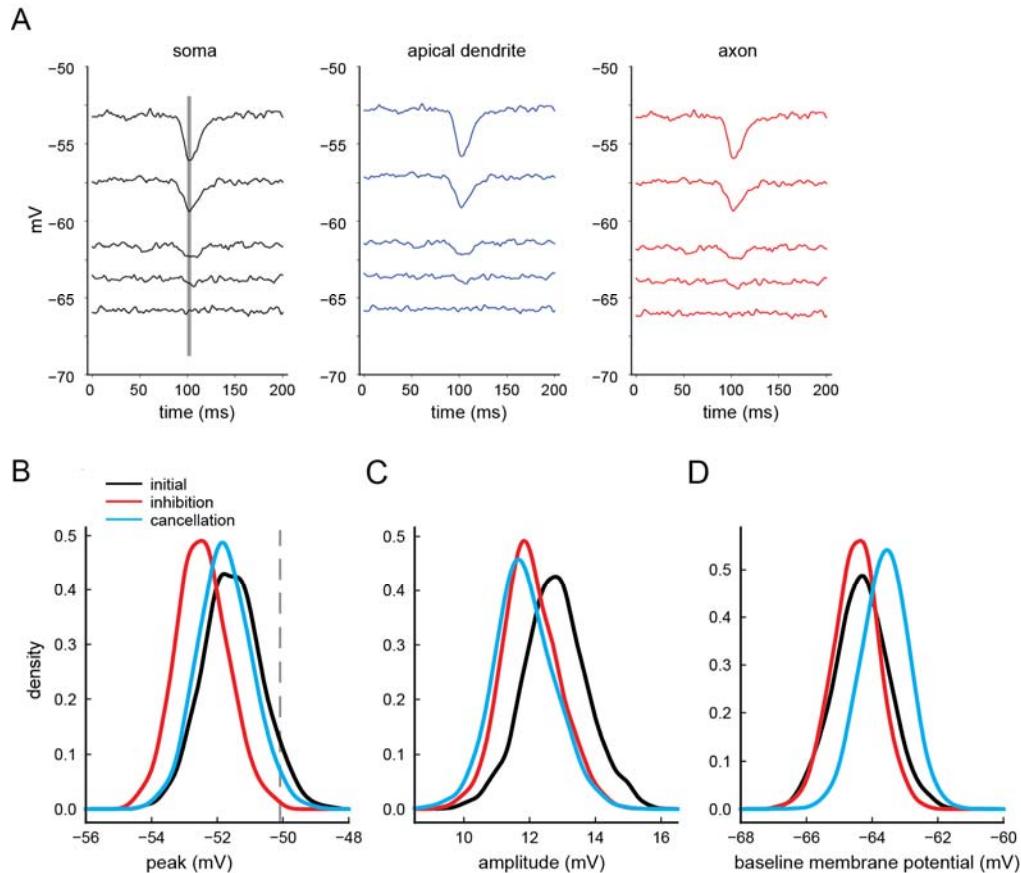
656 Llinas, R., Nicholson, C., Freeman, J.A., and Hillman, D.E. (1968). Dendritic spikes and their
657 inhibition in alligator Purkinje cells. *Science* **160**, 1132-1135.

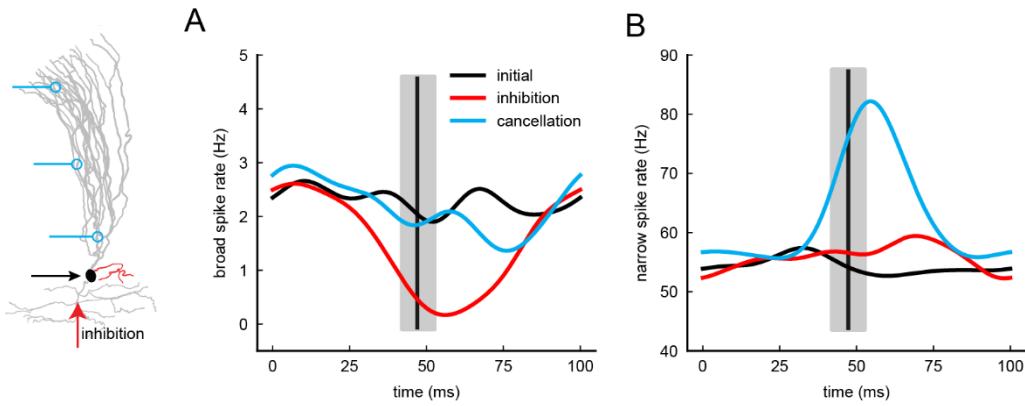

658 London, M., and Hausser, M. (2005). Dendritic computation. *Annu Rev Neurosci* **28**, 503-532.

659 Major, G., Larkum, M.E., and Schiller, J. (2013). Active properties of neocortical pyramidal
660 neuron dendrites. *Annu Rev Neurosci* **36**, 1-24.

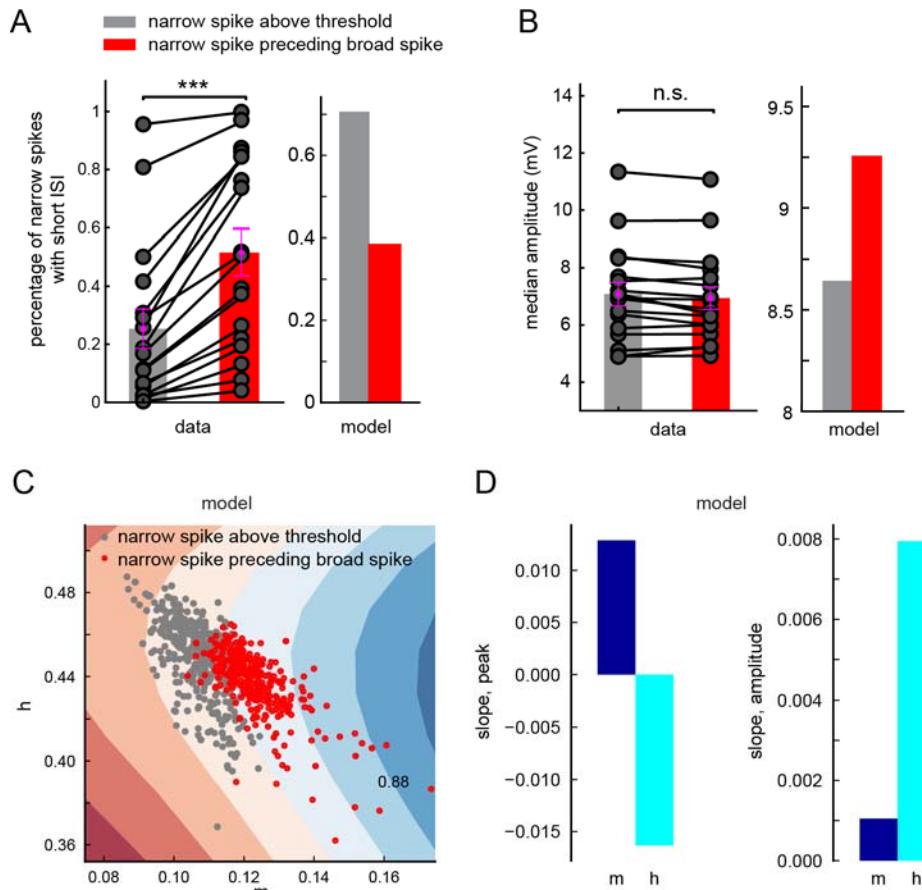

661 Meek, J., Grant, K., Sugawara, S., Hafmans, T.G.M., Veron, M., and Denizot, J.P. (1996).
662 Interneurons of the ganglionic layer in the mormyrid electrosensory lateral line lobe:
663 morphology, immunocytochemistry, and synaptology. *J Comp Neurol* 375, 43-65.
664 Miller, K.D., and Mackay, D.J.C. (1994). The Role of Constraints in Hebbian Learning. *Neural*
665 *Computation* 6, 100-126.
666 Muller, S.Z., Zadina, A.N., Abbott, L.F., and Sawtell, N.B. (2019). Continual learning in a multi-
667 layer network in an electric fish. *Cell* 179, 1382-1392.
668 Nelson, M.E., and Paulin, M.G. (1995). Neural simulations of adaptive reafference suppression
669 in the elasmobranch electrosensory system. *J Comp Physiol [A]* 177, 723-736.
670 Perez, S., Cui, Y., Vignoud, G., Perrin, E., Mendes, A., Zheng, Z., Touboul, J., and Venance, L.
671 (2022). Striatum expresses region-specific plasticity consistent with distinct memory abilities.
672 *Cell Rep* 38, 110521.
673 Renshaw, B. (1942). Effects of presynaptic volleys on spread of impulses over the soma of the
674 motoneuron. *Journal of Neurophysiology* 5, 235-243.
675 Roberts, P.D., and Bell, C.C. (2000). Computational consequences of temporally asymmetric
676 learning rules: II. sensory image cancellation. *J Comput Neurosci* 9, 67-83.
677 Roberts, P.D., and Bell, C.C. (2002). Spike timing dependent synaptic plasticity in biological
678 systems. *Biol Cybern* 87, 392-403.
679 Ruan, H., Saur, T., and Yao, W.D. (2014). Dopamine-enabled anti-Hebbian timing-dependent
680 plasticity in prefrontal circuitry. *Front Neural Circuits* 8, 38.
681 Sawtell, N.B. (2010). Multimodal integration in granule cells as a basis for associative plasticity
682 and sensory prediction in a cerebellum-like circuit. *Neuron* 66, 573-584.
683 Sawtell, N.B., Williams, A., and Bell, C.C. (2007). Central control of dendritic spikes shapes the
684 responses of Purkinje-like cells through spike timing-dependent synaptic plasticity. *J Neurosci*
685 27, 1552-1565.
686 Scott, L.L., Mathews, P.J., and Golding, N.L. (2010). Perisomatic voltage-gated sodium channels
687 actively maintain linear synaptic integration in principal neurons of the medial superior olive. *J*
688 *Neurosci* 30, 2039-2050.
689 Singla, S., Dempsey, C., Warren, R., Enikolopov, A.G., and Sawtell, N.B. (2017). A cerebellum-like
690 circuit in the auditory system cancels responses to self-generated sounds. *Nat Neurosci* 20, 943-
691 950.
692 Spencer, W.A., and Kandel, E.R. (1961). Electrophysiology of Hippocampal Neurons: Iv. Fast
693 Prepotentials. *J Neurophysiol* 24, 272-285.
694 Spruston, N., Schiller, Y., Stuart, G., and Sakmann, B. (1995). Activity-dependent action potential
695 invasion and calcium influx into hippocampal CA1 dendrites. *Science* 268, 297-300.
696 Stuart, G.J., and Sakmann, B. (1994). Active propagation of somatic action potentials into
697 neocortical pyramidal cell dendrites. *Nature* 367, 69-72.
698 Stuart, G.J., and Spruston, N. (2015). Dendritic integration: 60 years of progress. *Nat Neurosci*
699 18, 1713-1721.
700 Tsubokawa, H., and Ross, W.N. (1996). IPSPs modulate spike backpropagation and associated
701 $[Ca^{2+}]_i$ changes in the dendrites of hippocampal CA1 pyramidal neurons. *J Neurophysiol* 76,
702 2896-2906.
703 Turrigiano, G.G. (2017). The dialectic of Hebb and homeostasis. *Philos Trans R Soc Lond B Biol*
704 *Sci* 372.

705 Tzounopoulos, T., Kim, Y., Oertel, D., and Trussell, L.O. (2004). Cell-specific, spike timing-
706 dependent plasticities in the dorsal cochlear nucleus. *Nat Neurosci* 7, 719-725.
707 Zhang, S., and Oertel, D. (1993). Cartwheel and superficial stellate cells of the dorsal cochlear
708 nucleus of mice: intracellular recordings in slices. *J Neurophysiol* 69, 1384-1397.
709


710 **Supplemental Figures**

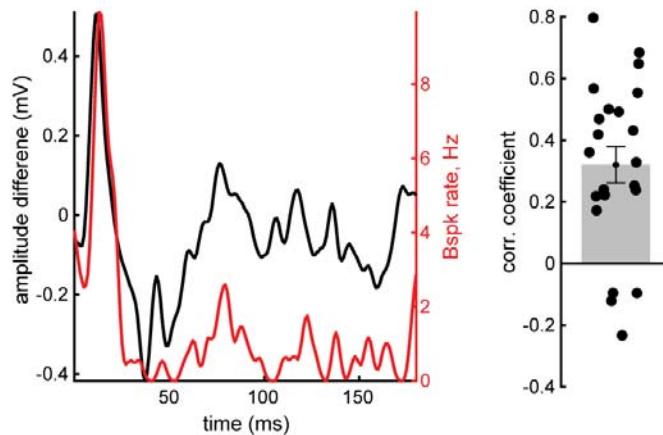

712 **Figure 1-figure supplement 1. Narrow spikes contribute to evoking broad spikes.** (A) Broad spikes are nearly
713 always preceded by a narrow spike within a brief interval. Average chance level is indicated by the dashed line
714 ($n=17$, $p < 0.001$). (B) Distribution of times from the peak of a preceding narrow spike to the peak of the following
715 broad spike in data ($n = 17$) versus the model. Red star denotes the mean. (C) Injecting a brief depolarizing current
716 into the model soma (with active conductances in the axon turned off) evokes broad spikes at similar delays to those
717 observed between narrow and broad spikes (inset). The latency of the evoked broad spike is inversely proportional
718 to the strength of the depolarizing current (bottom dashed lines). (D) Overlaid traces aligned to occurrence of a
719 broad spike for putative somatic (left) versus dendritic (right) MG cell recordings. Recordings with narrow spikes ≥ 4
720 mV were classified as putative somatic (left) and those with narrow spikes not clearly indistinguishable from
721 synaptic potentials were classified as putative dendritic (right). Many recordings exhibited narrow spikes with
722 intermediate amplitudes, as expected for a passively backpropagating axonal spike. Narrow spikes preceded broad
723 spikes (arrow) in all cases in which they were detectable. In dendritic recordings broad spikes often arose directly
724 from the underlying membrane potential, similar to late firing dendritic branches in the model (*green trace* in Figure
725 1F). (E) Broad spike waveforms are narrower in putative dendritic versus putative somatic recordings (width at half
726 height: 3.1 ms, $n = 11$ for dendritic versus 4.1 ms, $n = 17$ for somatic recordings, $p < 0.001$). Dashed lines indicate
727 SEM. Broad spikes were also wider in the soma in the model (right) due to summation of broad spikes from multiple
728 apical dendritic branches. (F) The membrane potential peak reached by narrow spikes preceding broad spikes is in
729 the top 10 percentile of all narrow spikes (left bar, $n=17$, $p < 0.001$), and the average peak difference between evoking
730 and non-evoking narrow spikes is ~ 2.2 mV (right bar, $n=17$, $p < 0.001$). (G) Preceding narrow spike peak strongly
731 predicts probability of evoking a broad spike forming a typical logistic curve ($n=10$). (H) The size of the difference
732 between the amplitude of narrow spikes preceding broad spikes and non-preceding narrow spikes depends on
733 average recorded narrow spike amplitude ($n=15$). (I) In the model, spatial attenuation of the backpropagating narrow
734 spike depends on the amplitude recorded in the soma, with larger spikes exhibiting greater attenuation. This explains
735 why average recorded narrow spike amplitude affects the size of the amplitude difference between preceding and
736 non-preceding narrow spikes (see Materials and methods). (J) Amplitude of narrow spikes preceding broad spikes
737 are larger than non-preceding narrow spikes by $\sim 5.5\%$ ($n=15$, $p < 0.001$) (see Materials and methods as to why we
738 use this measure). (K) The more depolarized peak of preceding narrow spikes is due both to larger amplitude and to
739 a more depolarized underlying membrane potential (Figure 1I), with amplitude contributing to $\sim 35\%$ of the
740 difference ($n=15$).
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756
757
Figure 2-figure supplement 1. Formation and transmission of negative images in the BS+ MG cell sub-type.
759 Analytical results (see Appendix 1) for BS+ in which dis-inhibition increases broad spike rate. Here, disinhibition
760 leads to higher peak of narrow spike, mostly due to increase in narrow spike amplitude. Removal of excitatory input
761 (cancellation) restores narrow spike peak to initial values. The restoration is not done by reversing the effect of dis-
762 inhibition on narrow spike amplitude, but rather by a hyperpolarization of the baseline membrane potential.
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794


Figure 2-figure supplement 2. Biophysical explanation for negative image formation and transmission in the model. (A) As expected, hyperpolarization due to a transient increase in inhibitory current (line) increases when the baseline membrane potential is further from the reversal potential for inhibitory input (-65mV). Importantly, the effect of inhibition is similar across different model compartments, confirming that inhibitory input has a minimal effect on narrow spike rate because narrow spike threshold is close to the reversal potential for inhibitory input. In this simulation all active conductances were turned off to clearly see effect of inhibition on the membrane potential. (B-D) Similar to Figure 2B-D, but here we plot the entire distribution of narrow spike peak (B), narrow spike amplitude (C) and baseline membrane potential (D) values for the different input conditions. Gray line in B indicates broad spike threshold.

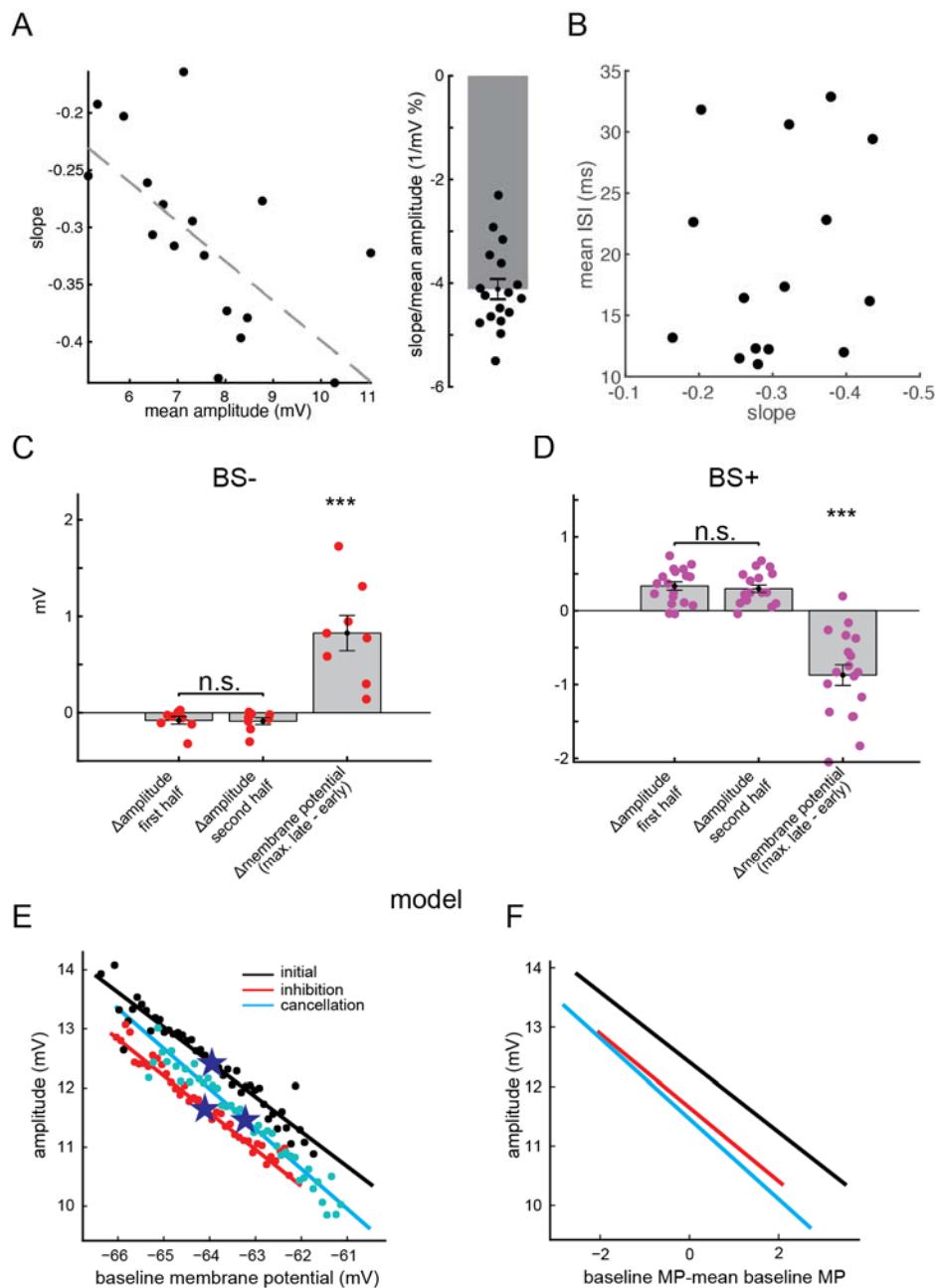
815
816
817
818

Figure 2-figure supplement 3. Formation and transmission of a time-varying negative image in the model.
(A-B) Similar to Figure 2A but here the inhibitory and excitatory inputs are transient (vertical lines denote average timing onset of synaptic input and gray bars denote the standard deviation). This mimics *in vivo* conditions where predictable electrosensory input is evoked by the fish's electric organ discharge pulse. Inhibitory input onto basal dendrites can selectively inhibit broad spikes (red). Adding excitatory inputs onto apical dendrites to simulate the process of negative image formation reduces the effects of inhibition on broad spike rate (cyan) and results in an increase in narrow spike firing with a temporal profile opposite to the effect of the sensory input on broad spikes, i.e. the transmission of a negative image of the effects of the sensory input on broad spike firing.


827
828
829
830
831
832
833
834
835

836
837

Figure 2-figure supplement 4. The probability of a narrow spike evoking a broad spike also depends on prior history of activity. (A) In recorded MG cells, the probability of a narrow spike evoking a broad spike is increased when it is preceded within a short interval by another narrow spike at a brief inter-spike interval (ISI) ($n = 17$, $p < 0.001$). ISI values were chosen individually for each cell depending on the narrow spike rate. The gray bar represents narrow spikes that exceeded broad spike threshold (defined as the 10th percentile of narrow spike peaks preceding a broad spike) but nevertheless failed to evoke a broad spike. The opposite effect was observed in the model; short narrow spike ISIs decreased the probability of evoking a broad spike in the model. This decrease is an expected consequence of the Hodgkin-Huxley type voltage-gated channels used in the model. (B) For narrow spikes that exceeded broad spike threshold, there was no difference in amplitude between preceding and non-preceding narrow spikes ($n = 17$, $p = 0.37$). A different effect was observed in the model; narrow spike preceding broad spikes have on average larger amplitude. This is an expected consequence of the Hodgkin-Huxley type voltage-gated channels used in the model (as we show in C-D). (C) Values for sodium channel activation (m), sodium channel inactivation (h) and potassium channel activation (n) were measured 0.65ms after narrow spike peak in a compartment near the site of broad spike initiation in the model. Using a support vector machine we could largely separate (with accuracy of 88%) the broad spike-evoking (red dots) and non-evoking (gray dots) narrow spikes using just m and h values (we ignore n here since it is highly correlated with h). Colored bands denote degrees of separation-confidence, with darker colors denoting higher confidence. (D) While the peak of the narrow spike is correlated with both m and h , it is h that is sensitive to amplitude because it strongly depends on the recent history of the membrane potential, with a rapid rise to threshold increasing spike probability.


857

858
859

860 **Figure 3-figure supplement 1. Correlation between sensory input and narrow spike amplitude *in vivo*.** **Left**,
861 example traces illustrating broad spike response to an electrosensory stimulus (red) and the difference between the
862 measured narrow spike amplitude and that expected given the baseline membrane potential (amplitude difference,
863 see Materials and methods). **Right**, summary across cells of the correlation between broad spike rate and amplitude
864 difference ($r = 0.35$, $n = 22$ stimulus periods from 16 cells). Multiple stimulus polarities and amplitudes were tested
865 in some cells.

866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885

886

887

888

889

890

891

892

893

894

895

896

897

898

Figure 3-figure supplement 2. Effects of the baseline membrane potential on narrow spike amplitude. (A)

Left, the slope of the relationship between narrow spike amplitude and baseline membrane potential depends on the average narrow spike amplitude. The latter varies across recordings, likely due to recording location in the soma versus proximal apical dendrites. The reduction in slope is consistent with the observation in the model that spatial attenuation magnitude is proportional to narrow spike amplitude (figure supplement 1I). Right, the average slope as a percentage of spike size is 4.1% ($n = 16$) (see Materials and methods as to why we use this measure). (B) The slope of the relationship between narrow spike amplitude and baseline membrane potential is independent of the mean inter-spike interval, suggesting that the change in amplitude is independent of spiking history. (C-D), In the main text we show that learning to cancel the effect of sensory input (the period we call here ‘second half’) changes the underlying membrane potential. This results in average amplitude change due to the slope of the relationship between narrow spike amplitude and baseline membrane potential (Figure 3D). However, for spikes arising from the same baseline membrane potential, the difference in amplitude between sensory evoked and control windows

899 (Figure 3A-C) is not affected by learning. (E-F), In the model, cancellation (i.e. the ‘second half’) does change the
900 amplitude for spikes arising from same baseline membrane potential (E, the stars in E denote mean baseline
901 membrane potential) but the average amplitude is minimally changed by learning (F). As a result, the amplification
902 of negative images observed *in vivo* is absent in the model. Whereas the slope of the relationship between narrow
903 spike amplitude and baseline membrane potential in the model is due to deviations from equilibrium driven by
904 fluctuations in the baseline current inputs.

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

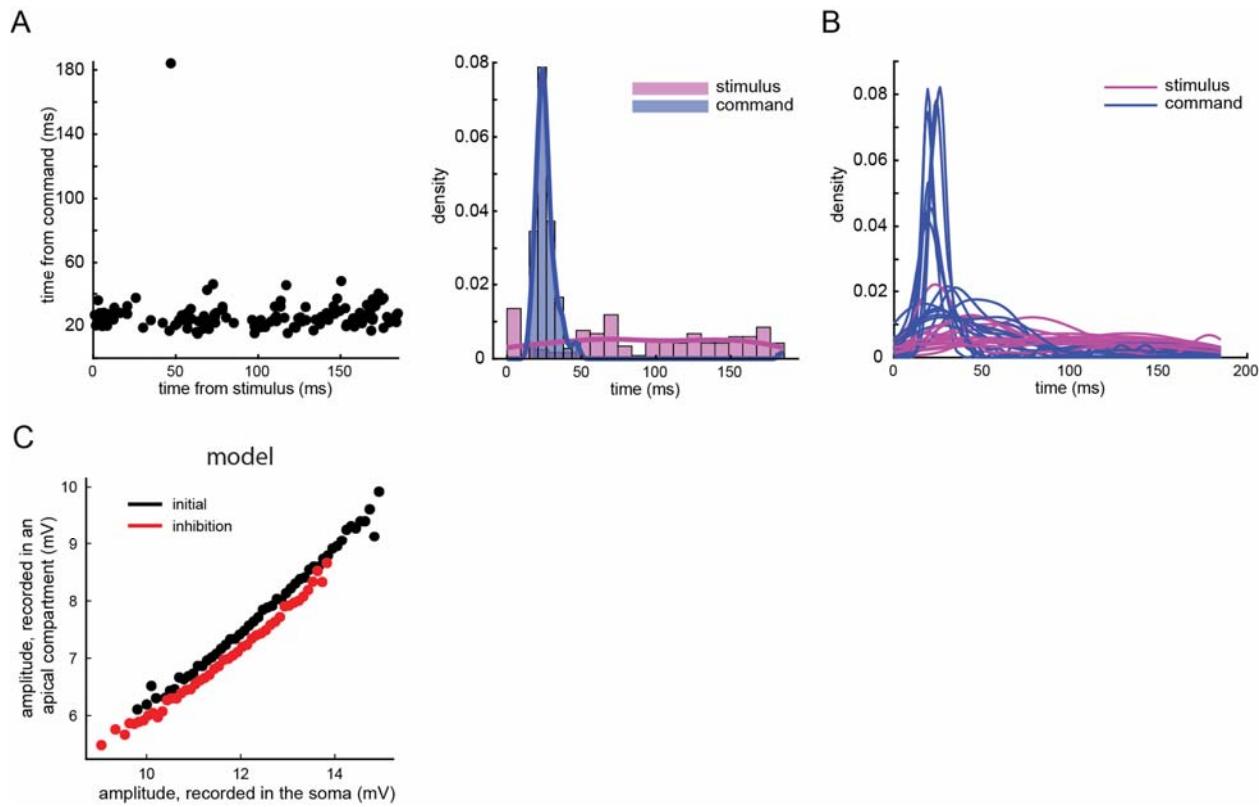
924

925

926

927

928


929

930

931

932

933

934
935 **Figure 3-figure supplement 3. Additional effects of corollary discharge input on broad spike firing may not be**
936 **visible at the soma.** Non-evoking narrow spikes that cross threshold for evoking a broad spike in somatic
937 recordings (threshold is calculated here as the 20th percentile peak of the broad spike-evoking narrow spikes), tend
938 to systematically occur ~20-40 ms after the EOD motor command, corresponding to the period of peak corollary
939 discharge-evoked responses in MG cells. This analysis was performed for periods during which an electrosensory
940 stimulus was delivered independent of the EOD motor command. (A) Example from one period shown as a scatter
941 plot (left, each dot is a non-evoking narrow spike that crossed threshold) and a histogram (right). (B) Same analysis
942 as in B. Each line is a different cell (n=12). (C) Model analysis showing that the effect of inhibition on reducing
943 narrow spike amplitude continues to grow as the spike continues to backpropagate even when inhibition is inserted
944 in the basal dendrites. This observation is consistent with the possibility that effects of inhibition onto apical
945 dendrites may not be visible in the soma.

946

947