

1
2

3 *In vivo Characterization of the Critical Interaction between the RNA Exosome and the Essential RNA Helicase Mtr4 in*
4 *Saccharomyces cerevisiae*
5

6 Maria C. Sterrett ^{1,2}, Daniela Farchi ¹, Sarah E. Strassler ^{2,3}, Lawrence H. Boise ^{4,5}, Milo B. Fasken ¹,
7 and Anita H. Corbett* ¹

8 ⁽¹⁾ Department of Biology, ⁽²⁾ Biochemistry, Cell, and Developmental Biology Graduate Program, ⁽³⁾ Department of
9 Biochemistry, and ⁽⁴⁾ Department of Hematology and Medical Oncology, School of Medicine, ⁽⁵⁾ Winship Cancer
10 Institute,

11 Emory University, Atlanta, Georgia

12

13

14 * = Corresponding authors

15

16 Contact information corresponding authors:

17 Anita H. Corbett
18 acorbe2@emory.edu
19 Department of Biology, RRC 1021
20 Emory University
21 1510 Clifton Road., NE
22 Atlanta, GA 30322

23
24
25 *Running head:* RNA exosome-Mtr4 interaction in budding yeast

26
27 *Keywords:* RNA Exosome, Mtr4, EXOSC2, Rrp4, RNA processing, multiple myeloma, RNA helicase

28

29

30

31

32

33 **ABSTRACT:**

34 The RNA exosome is a conserved molecular machine that processes/degrades numerous coding and non-coding
35 RNAs. The 10-subunit complex is composed of three S1/KH cap subunits (human EXOSC2/3/1; yeast Rrp4/40/Csl4), a
36 lower ring of six PH-like subunits (human EXOSC4/7/8/9/5/6; (yeast Rrp41/42/43/45/46/Mtr3), and a singular 3'-5'
37 exo/endonuclease DIS3/Rrp44. Recently, several disease-linked missense mutations have been identified in genes
38 encoding the structural cap and core subunits of the RNA exosome. In this study, we characterize a rare multiple myeloma
39 patient missense mutation that was identified in the cap subunit gene *EXOSC2*. This missense mutation results in a single
40 amino acid substitution, p.Met40Thr, in a highly conserved domain of EXOSC2. Structural studies suggest this Met40
41 residue makes direct contact with the essential RNA helicase, MTR4, and may help stabilize the critical interaction
42 between the RNA exosome complex and this cofactor. To assess this interaction *in vivo*, we utilized the *Saccharomyces*
43 *cerevisiae* system and modeled the *EXOSC2* patient mutation into the orthologous yeast gene *RRP4*, generating the
44 variant *rrp4 M68T*. The *rrp4 M68T* cells have accumulation of certain RNA exosome target RNAs and show sensitivity to
45 drugs that impact RNA processing. Additionally, we identified robust negative genetic interactions the *rrp4 M68T* variant
46 and RNA exosome cofactor mutants, particularly *mtr4* mutant variants. This study suggests that the *EXOC2* mutation
47 identified in a multiple myeloma patient may impact the function of the RNA exosome and provides an *in vivo* assessment
48 of a critical interface between the RNA exosome and Mtr4.

49

50

51 INTRODUCTION

52 The RNA exosome is a highly conserved exo/endonuclease complex that has an essential role in 3' to 5'
53 processing and degradation of nearly every species of RNA (Schneider and Tollervey 2013; Zinder and Lima 2017). First
54 identified in *Saccharomyces cerevisiae* in a screen for ribosomal RNA processing (*rrp*) mutants (Mitchell *et al.* 1996;
55 Mitchell *et al.* 1997), the RNA exosome is essential in all organisms studied thus far (Mitchell *et al.* 1997; Lorentzen *et al.*
56 2007; Hou *et al.* 2012; Lim *et al.* 2013; Pefanis *et al.* 2014). In addition to ribosomal RNA precursors, the RNA exosome
57 processes a variety of small non-coding RNAs (ncRNAs), including small nuclear RNAs (snRNAs) and small nucleolar
58 RNAs (snoRNAs) (Allmang *et al.* 1999; Van Hoof *et al.* 2000; Kilchert *et al.* 2016a; Fasken *et al.* 2020). The RNA
59 exosome also plays roles in targeting RNA for degradation and decay, including non-functional or aberrant mRNAs and
60 nuclear transcripts that result from pervasive transcription such as cryptic unstable transcripts (CUTs) in budding yeast or
61 promoter upstream transcripts (PROMPTs) in humans (Wyers *et al.* 2005; Preker *et al.* 2008; Moore and Proudfoot 2009;
62 Parker 2012; Schneider *et al.* 2012). The RNA exosome complex is composed of a 9-subunit structural core and a single
63 exo/endonuclease [DIS3/DIS3L (human); Dis3/Rrp44 (budding yeast)]. As shown in Figure 1A, the 9-subunit structural
64 core is composed of three S1/KH cap subunits (EXOSC1/2/3; Csl4/Rrp4/Rrp40) and a lower ring of six PH-like subunits
65 (EXOSC4/5/6/7/8/9; Rrp41/Rrp46/Mtr3/Rrp42/Rrp43/Rrp45). The nuclear RNA exosome has an additional 3'-5'
66 exonuclease, EXOSC10/Rrp6, that associates with the complex and aids in nuclear RNA targeting and processing (Briggs
67 *et al.* 1998; Wasmuth *et al.* 2014). Structural studies demonstrate that the overall organization of the RNA exosome is
68 conserved (Figure 1B) suggesting not only evolutionary conservation of the RNA exosome function but structure as well
69 (Makino *et al.* 2013; Schuller Jan *et al.* 2018; Weick *et al.* 2018). The vast array of targets and evolutionary conservation
70 of the complex components indicates a fundamental role of the RNA exosome in several cellular processes, including but
71 not limited to, maintaining genome integrity, translation, and cell differentiation through degradative and surveillance
72 pathways (Ogami *et al.* 2018).

73 RNA exosome specificity for a broad set of target transcripts is conferred in part through interactions with
74 cofactor proteins, which aid the RNA exosome in target recognition, RNA unwinding, degradation, and catalysis in both
75 the nucleus and the cytoplasm (Zinder and Lima 2017; Fasken *et al.* 2020). Many nuclear RNA exosome cofactors were
76 first characterized in budding yeast, including the Rrp6 obligate binding partner Rrp47, Mpp6 and the essential 3' to 5'
77 DExH box RNA helicase Mtr4 (De La Cruz *et al.* 1998; Mitchell *et al.* 2003; Lacava *et al.* 2005; Vaňáčová *et al.* 2005;
78 Milligan *et al.* 2008), with orthologs now identified in the mammalian system (C1D, MPH6 and MTR4/MTREX) (Zinder

79 and Lima 2017). Structural studies of the budding yeast and mammalian RNA exosome reveal that Rrp6/EXOSC10,
80 Rrp47/C1D and Mpp6/MPH6 interact with the complex through conserved interfaces that form composite sites for
81 interactions with other cofactors such as Mtr4/MTR4/MTREX (Schuch *et al.* 2014; Falk *et al.* 2017; Wasmuth *et al.* 2017;
82 Schuller *et al.* 2018; Weick *et al.* 2018). The Mtr4 helicase assists in RNA substrate unwinding and plays a critical role in
83 RNA exosome processing of the 5.8S rRNA precursor (7S rRNA) (De La Cruz *et al.* 1998; Taylor *et al.* 2014). Mtr4 also
84 acts as part of larger complexes that aid the RNA exosome in nuclear RNA quality control, including the budding yeast
85 TRAMP (Trf4/5-Air1/2-Mtr4 Polyadenylation) complex and the mammalian NEXT (Nuclear Exosome Targeting)
86 complex (Houseley and Tollervey 2008; Houseley and Tollervey 2009; Weir *et al.* 2010; Lubas *et al.* 2011; Stuparevic *et*
87 *al.* 2013; Falk *et al.* 2014; Kilchert *et al.* 2016a). Several studies that have dissected the role of Mtr4 in aiding the RNA
88 exosome were performed in the *Saccharomyces cerevisiae* system, establishing a number of *mtr4* mutations that disrupt
89 specific interactions and functions of the helicase (Kadowaki *et al.* 1994; Kadowaki *et al.* 1995; Liang *et al.* 1996; Weir *et*
90 *al.* 2010; Taylor *et al.* 2014). Thus, genetic model systems are a tractable system to investigate interactions with these
91 nuclear cofactors that impact RNA exosome function and studies in such systems can expand our understanding of the
92 influence the RNA exosome can exert over various cellular processes and pathways (Cervelli and Galli 2021).

93 Given the variety of RNA exosome target RNAs and their link to many cellular processes, connections between
94 the RNA exosome and human disease are not surprising. Many different human disease-linked mutations have been
95 identified in genes encoding RNA exosome subunits (Fasken *et al.* 2020). Mutations in *DIS3*, which encodes the catalytic
96 component of the RNA exosome in humans (Staals *et al.* 2010), are the fourth most common single nucleotide variation
97 identified in multiple myeloma (~10% of all newly diagnosed patients) (Chapman *et al.* 2011; Lohr *et al.* 2014). Multiple
98 myeloma, which is a currently incurable cancer of the long-lived antibody-secreting plasma cells of the bone marrow, is
99 the second most common hematologic malignancy accounting for 10-15% of incidence and 20% of deaths related to
100 cancer of the blood and bone marrow (Alexander *et al.* 2007; Laubach *et al.* 2011). Multiple myeloma-associated *DIS3*
101 mutations disrupt proper RNA degradation and processing in both mammalian cells and budding yeast mutant cells
102 (Tomecki *et al.* 2014; Weissbach *et al.* 2015; Boyle *et al.* 2020). However additional mechanistic studies are required to
103 understand how mutations in *DIS3*, and the function of the RNA exosome, could contribute to pathogenesis in multiple
104 myeloma.

105 Human disease mutations have also been identified in the genes encoding the non-catalytic, structural subunits of
106 the RNA exosome. Clinical studies have linked mutations in *EXOSC* genes to various, tissue-specific human pathologies

107 comprising a growing family of diseases termed “RNA exosomopathies” (Wan *et al.* 2012; Boczonadi *et al.* 2014; Eggens
108 *et al.* 2014; Di Donato *et al.* 2016; Burns *et al.* 2017; Slavotinek *et al.* 2020; Somashekar *et al.* 2021). RNA
109 exosomopathy mutations have been found in all three genes that encode the cap subunits (*EXOSC1/2/3*) and several ring
110 subunit genes (*EXOSC5/8/9*), with most being missense mutations that result in single amino acid substitutions in highly
111 conserved domains of the subunits. Most RNA exosomopathy diseases are neurological, with mutations in *EXOSC1*,
112 *EXOSC3*, *EXOSC5*, *EXOSC8*, and *EXOSC9* causing forms of cerebellar atrophy/degeneration and neuronopathies (Wan *et*
113 *al.* 2012; Boczonadi *et al.* 2014; Eggens *et al.* 2014; Burns *et al.* 2018; Slavotinek *et al.* 2020; Somashekar *et al.* 2021). In
114 contrast, patients with RNA exosomopathy mutations in *EXOSC2* have a complex syndrome known as SHRF that is
115 characterized by short stature, hearing loss, retinitis pigmentosa and distinctive facies (OMIM #617763) (Di Donato *et al.*
116 2016). *In vivo* studies characterizing some of these *EXOSC* RNA exosomopathy mutations in *Saccharomyces cerevisiae*
117 and *Drosophila melanogaster* suggest these pathogenic substitutions could differentially impact the function of the RNA
118 exosome complex potentially through changes in RNA targeting and cofactor interactions (Fasken *et al.* 2017; Gillespie *et*
119 *al.* 2017; Yang *et al.* 2019; De Amorim 2020; Morton *et al.* 2020; Slavotinek *et al.* 2020; Sterrett *et al.* 2021). Modeling
120 these pathogenic amino acid substitutions in the budding yeast RNA exosome is an invaluable tool as several RNA
121 exosomopathies have a small patient population, making analysis with patient tissue samples challenging. Therefore, by
122 utilizing the budding yeast system, we can begin elucidating the functional and molecular consequences resulting from
123 human disease mutations in RNA exosome genes can impact (Cervelli and Galli 2021).

124 In this study, we identify and characterize missense mutations in genes that encode the structural subunits of the
125 human RNA exosome within multiple myeloma patients. We surveyed the ongoing longitudinal Multiple Myeloma
126 Research Foundation (MMRF) study “Relating Clinical Outcomes in Multiple Myeloma to Personal Assessment of
127 Genetic Profile” (CoMMpass) [ClinicalTrials.gov Identifier NCT01454297] to identify mutations in structural RNA
128 exosome genes within multiple myeloma patients (Barwick *et al.* 2019). We focused on characterizing *EXOSC2 M40T*, a
129 missense mutation that encodes an amino acid substitution EXOSC2 p.Met40Thr (M40T) in a highly conserved region of
130 this cap subunit that interacts with the RNA helicase MTR4. To assess the effects of this amino acid substitution in
131 *EXOSC2* on the function of the RNA exosome, we utilized the budding yeast model system and generated a variant of the
132 *S. cerevisiae* EXOSC2 ortholog, Rpr4, which models the patient EXOSC2 M40T substitution, Rrp4 M68T. As a
133 comparative control within our studies, we included the Rrp4 G226D variant which models a SHRF-linked pathogenic
134 amino acid substitution in EXOSC2 p.Gly198Asp (Sterrett *et al.* 2021). The *rrp4-G226D* cells, corresponding to the
5

135 SHRF *EXOSC2* exosomopathy mutation, have defects in RNA exosome function, and are the only other budding yeast
136 model of a disease-linked *EXOSC2* mutation (Sterrett *et al.* 2021). Our results show that the *rrp4-M68T* gene variant can
137 replace the function of the essential *RRP4* gene. The *rrp4-M68T* and *rrp4-G226D* mutants show similar increases in
138 specific RNA exosome target transcripts, suggesting shared defects in RNA processing. However, the *rrp4-M68T* mutant
139 exhibits distinct negative genetic interactions with RNA exosome cofactor mutants, particularly *mtr4* mutants. Combined,
140 our results suggest that the Rrp4 M68T amino acid substitution, which models the multiple myeloma associated
141 substitution EXOSC2 M40T, alters RNA exosome function potentially by impacting the essential interaction between the
142 complex and Mtr4. These data are the first *in vivo* characterization of this isolated multiple myeloma-associated mutation
143 and give insight into the critical and conserved interactions between the RNA exosome and its cofactors.

144 **MATERIALS AND METHODS**

145 **Media and Chemicals**

146 All media were prepared by standard procedures (Adams *et al.* 1997). Unless stated otherwise, all chemicals were
147 acquired from Fisher Scientific (Pittsburgh, PA), Sigma-Aldrich (St. Louis, MO), or United States Biological
148 (Swampscott, MA).

149

150 **In silico protein structure predictions**

151 The mCSM-PPI2 platform (Rodrigues *et al.* 2019), and the PyMOL viewer (The PyMOL Molecular Graphics System,
152 Version 2.0 Schrödinger, LLC) (PyMOL) were used for structural modeling. Platforms were used with the cryo-EM
153 structure (PDB 6D6Q) of the human nuclear RNA exosome at 3.45Å resolution (Weick *et al.* 2018) and the X-Ray
154 diffraction structure (PDB 6FSZ) of the budding yeast nuclear RNA exosome at 4.60Å (Schuller Jan *et al.* 2018). The
155 ConSurf server (Ashkenazy *et al.* 2010; Celniker *et al.* 2013; Ashkenazy *et al.* 2016) was used to assess the evolutionary
156 conservation of the structure of both EXOSC2 and Rrp4.

157

158 ***Saccharomyces cerevisiae* strains and plasmids**

159 All DNA manipulations were performed according to standard procedures (Sambrook *et al.* 1989). *S. cerevisiae* strains
160 and plasmids used in this study are listed in Table S1. The *rrp4Δ* (yAV1103), *rrp4Δ mpp6Δ* (ACY2471), and *rrp4Δ*
161 *rrp47Δ* (ACY2474) strains have been previously described (Schaeffer *et al.* 2009; Losh 2018; Sterrett *et al.* 2021). The
162 *RRP45-TAP* (ACY2789) strain was obtained from Horizon Discovery Biosciences Limited and was previously described
163 (Ghaemmaghami *et al.* 2003). The *mtr4Δ* (ACY2532) strain was constructed by deletion of the genomic *MTR4* ORF in a
164 wild-type (W303) strain harboring a [MTR4; RRP4; URA3] (pAC3714) maintenance plasmid by homologous
165 recombination using *MTR4-UTR natMX4*. This *mtr4Δ* (ACY2532) strain was then used for consecutive deletion of the
166 genomic *RRP4* ORF to generate the *rrp4Δmtr4Δ* (ACY2536) strain as previously described (Sterrett *et al.* 2021).
167 Construction of the untagged *RRP4* and *rrp4-G226D* plasmids (pAC3656 and pAC3659) and the 2x-Myc tagged *RRP4*
168 and *rrp4-G226D* plasmids (pAC3669 and pAC3672) that contain native 3' UTRs was reported previously (Sterrett *et al.*
169 2021). The *rrp4-M68T LEU2 CEN6* (pAC4206) and *rrp4-M68T-2xMyc LEU2 CEN6* (pAC4207) plasmids were generated
170 by site-directed mutagenesis of the *RRP4* (pAC3656) or *RRP4-2xMyc* (pAC3669) plasmids using oligonucleotides

171 containing the M68T missense mutation (Fwd
172 5'GAAAATACGTACCGTGACCTCTCGTCCAGATAGGGTCATCAGTGACC 3', Rev
173 5'GGTCACTGATGACCCTATCTGGACGAGAGGTACCGTACGTATTTTC 3') and the QuikChange II Site-
174 Directed Mutagenesis Kit (Agilent). The *mtr4-F7A-F10A* (pAC4099) plasmid was generated as described previously
175 (Sterrett *et al.* 2021). Similarly, the other *mtr4* mutant plasmids were constructed by site-directed mutagenesis of the
176 *MTR4 HIS CEN6* plasmid (pAC4096) with the QuikChange II Site-Directed Mutagenesis Kit (Agilent) and
177 oligonucleotides containing the corresponding missense mutations. The oligonucleotides used to generate the *mtr4-I*
178 plasmid (pAC4103) contain the C942Y missense mutation (Fwd
179 5'CAAGCAGCAGCATTATTATCATACTTGCATTCCAAGAACGCTG 3', Rev
180 5'CAGCGTTCTTCCAATGCAAAGTATGATAATAATGCTGCTGCTT 3'). The oligonucleotides used to generate
181 the *mtr4-R349E-N352E* plasmid (pAC4100) contain the R349E and N352E missense mutations (Falk *et al.* 2014) (Fwd 5'
182 GGTTGACGAAAAAAAGTACCTTCGAAGAGGAAGAATTCCAAAAAGCAATGGCGTCC 3', Rev 5'
183 GGACGCCATTGCTTTGGAATTCTTCCTCTCGAAGGTACTTTTCGTCAACC 3'); The oligonucleotides
184 used to generate the *mtr4-R1030A* plasmid (pAC4104) contain the R1030A missense mutation (Taylor *et al.* 2014) (Fwd
185 5'CGTTGATCAGAATGTTCAAGGCATTAGAGGAATTGGTGAAGG 3', Rev
186 5'CCTTCACCAATTCCCTCTAACATGCCTGAACATTCTGATCAACG 3') and the oligonucleotides used to generate the
187 *mtr4-E1033W* plasmid (pAC4105) contain the E1033W missense mutation (Taylor *et al.* 2014) (Fwd
188 5'GAATGTTCAAGAGATTAGAGTGGTTGGTGAAGGAGCTGGTAGAC 3', Rev
189 5'GTCTACCAGCTCCTCACCAACCACCTCTAACATCTTGAACATTC). Plasmids were confirmed through DNA
190 sequencing.

191

192 *Saccharomyces cerevisiae* transformations and growth assays

193 All *S. cerevisiae* transformations were conducted following the standard Lithium Acetate (LiOAc) protocol (Da *et*
194 *al.* 2000). Strains were grown in liquid YEPD (1% yeast extract, 2% peptone, 2% dextrose, in distilled water) in a rotating
195 shaker at 30°C overnight to saturation. Cultures were normalized to a concentration of OD600 = 0.33 in 10 mL YEPD,
196 then incubated at 30°C for 3-8 hours depending on the severity of their growth defect. Cells were washed and resuspended
197 to a concentration of 2 x 10⁹ cells/mL using TE/LiOAc. Single-stranded carrier DNA (5 µL; 10 mg/mL), PEG/TE/LiOAc
198 (300 µL), and depending on reaction purpose, desired PCR product DNA or plasmid DNA, were added to cells. The

199 mixture was incubated at 30°C in a shaker for 30 minutes. Following this incubation, DMSO (35 μ L) was added and the
200 cells were heat shocked for 15 minutes at 42°C, washed, and plated onto selective media.

201 Standard plasmid shuffle assays were performed to assess the *in vivo* function of the *rrp4* variants as well as
202 genetic interaction with RNA exosome cofactor mutants. The *rrp4* Δ (yAV1103) cells containing a *RRP4 URA3*
203 maintenance plasmid and transformed with vector (pRS315) and transformed with *RRP4* (pAC3656), *rrp4-G226D*
204 (pAC3659), *rrp4-M68T* (pAC4206), *RRP4-2xMyc* (pAC3669) or *rrp4-M68T-2xMyc* (pAC4207) plasmid were grown on
205 Ura $^-$ Leu $^-$ minimal media control plates, which select for cells that contain both the *RRP4 URA3* maintenance plasmid as
206 well as the *RRP4/rrp4 LEU2* plasmid, and 5-FOA Leu $^-$ minimal media plates, which select for cells that lack the *RRP4*
207 *URA3* maintenance plasmid and contain only the *RRP4/rrp4 LEU2* plasmid. The plates were incubated at 30°C for 2-3
208 days and single colonies from the 5-FOA Leu $^-$ minimal media plates were selected in quadruplicate and streaked onto
209 selective Leu $^-$ minimal media plates. The cells containing only the *RRP4/rrp4 LEU2* plasmid are referred to as *RRP4*,
210 *rrp4-G226D* or *rrp4-M68T* cells. A similar strategy was used to generate *mtr4* Δ (ACY2532) cells that contain only the
211 *MTR4* (pAC4096) or *mtr4-I* (pAC4103) HIS3, CEN6 plasmid. The *mtr4* Δ cells transformed with *MTR4* or *mtr4-I* were
212 grown overnight and serially diluted and spotted onto Ura $^-$ His $^-$ minimal media plates and 5-FOA minimal media plates,
213 which select for cells that lack the *URA3* maintenance plasmid and contain only the *MTR4/mtr4 HIS3* plasmid. Single
214 colonies of cells containing only *MTR4* or *mtr4-I HIS3* plasmid were collected in quadruplicate and are referred to as
215 *MTR4* or as *mtr4-I* cells.

216 The *in vivo* function of the *rrp4-M68T* variant was assessed in growth assays on solid media and in liquid culture.
217 For growth on solid media, *rrp4* Δ (yAV1103) cells containing only *RRP4* (pAC3656), *rrp4-G226D* (pAC3659) or *rrp4-*
218 *M68T* (pAC4206) were grown in 2 mL Leu $^-$ minimal media overnight at 30°C to saturation. Cell concentrations were
219 normalized to an OD₆₀₀ = 0.5, and samples were serially diluted in 10-fold dilutions and spotted onto Leu $^-$ minimal media
220 plates, Leu $^-$ minimal media plates containing 25 μ M fluorouracil (5-FU), YEPD plates or YEPD plates containing 3%
221 formamide, 150 mM hydroxyurea or 5 μ g/ml phleomycin. Plates were grown at 25°C, 30°C, and 37°C for 2-3 days. For
222 growth in liquid culture, cells were grown in 2 mL Leu $^-$ minimal media overnight at 30°C to saturation, diluted to an
223 OD₆₀₀ = 0.01 in Leu $^-$ minimal media in a 24-well plate, and growth at 37°C was monitored and recorded at OD₆₀₀ in a
224 BioTek® SynergyMx microplate reader with Gen5™ v2.04 software over 24 hr. For the results shown, each sample was
225 performed in at least 3 independent biological replicates with 3 technical replicates for each biological sample. Doubling
226 times were calculated using GraphPad Prism version 9.3.1 for Windows (www.graphpad.com), GraphPad Software, San
9

227 Diego, California USA.

228

229 **Immunoblotting**

230 To analyze protein expression levels of C-terminally Myc-tagged Rrp4 and Rrp4 M68T, *rrp4Δ* (yAV1103) cells
231 expressing only Rrp4-2xMyc (pAC3669) or Rrp4-M68T-2xMyc (pAC4207) were incubated in 2 mL of Leu- minimal
232 medium at 30°C and grown to saturation overnight. The 10 mL cultures with an OD₆₀₀ = 0.2 were prepared and incubated
233 at 30°C or 37°C for 5 hr. Yeast cell pellets were collected by centrifugation and transferred to 2 mL screw-cap tubes. Cell
234 pellets were flash frozen with liquid nitrogen and stored at -20°C. Yeast cell lysate was prepared by resuspending pellets
235 in 0.3 mL of RIPA-2 Buffer (50 mM Tris-HCl, pH 8; 150 mM NaCl; 0.5% sodium deoxycholate; 1% NP40; 0.1% SDS)
236 supplemented with protease inhibitors [1 mM PMSF; 3 ng/ml PLAC (pepstatin A, leupeptin, aprotinin, and chymostatin)],
237 followed by addition of 300 µl glass beads. Lysates were placed in a Mini Bead Beater 16 Cell Disrupter (Biospec) for
238 6 × 1 min at 25°C with ice submersion intervals of 1 minute between rounds, and then centrifuged at 4°C at 12,000 RPM
239 for 10 min. Protein lysate concentration was determined by Pierce BCA Protein Assay Kit (Life Technologies). Whole
240 cell lysate protein samples (40 µg) in reducing sample buffer (50 mM Tris HCl, pH 6.8; 100 mM DTT; 2% SDS; 0.1%
241 Bromophenol Blue; 10% Glycerol) were resolved on Criterion 4–20% gradient denaturing gels (Bio-Rad), transferred to
242 nitrocellulose membranes (Bio-Rad) and Myc-tagged Rrp4 proteins were detected with anti-Myc monoclonal antibody
243 9B11 (1:2000; Cell Signaling). The 3-phosphoglycerate kinase (Pgk1) protein was detected using anti-Pgk1 monoclonal
244 antibody (1:30,000; Invitrogen) as a loading control. For quantitation, ImageJ v1.4 software (National Institutes of Health,
245 MD; <http://rsb.info.nih.gov/ij/>) was used to measure protein band areas and intensities. Protein percentages relative to
246 Pgk1 were calculated using GraphPad Prismversion 9.3.1 for Windows (www.graphpad.com), GraphPad Software, San
247 Diego, California USA.

248

249 **Co-Immunoprecipitations**

250 To assess association of Rrp4 M68T with the RNA exosome complex, we utilized *RRP45-TAP* (ACY2789) cells
251 expressing *RRP4-2xMyc* (pAC3669), *rrp4-G226D-2xMyc* (pAC3672) or *rrp4-M68T-2xMyc* (pAc4207) and
252 immunoprecipitated Rrp45-TAP using the IgG Sepharose beads as previously described (Sterrett *et al.* 2021). Briefly, cell
253 samples were grown in 2 mL Leu⁻ minimal media overnight at 30°C to saturation and 10-20 mL cultures with an OD₆₀₀ =
254 0.2 were prepared and grown at 30°C for 5 hr. Yeast cell lysates were prepared by resuspending cell pellets in 0.5-0.75

255 mL of IPP150 Buffer (10mM Tris-HCl, pH 8; 150 mM NaCl; 0.1% NP40, PMSF) supplemented with protease inhibitors
256 [1 mM PMSF; Pierce™ Protease Inhibitors (Thermo Fisher Scientific)], and 300 μ L of glass beads. Cells were disrupted
257 in a Mini Bead Beater 16 Cell Disrupter (Biospec) for 4-5 \times 1 min at 25°C with 1 min on ice between repetitions. Crude
258 lysate was transferred to a chilled microcentrifuge tube and remaining beads were washed with an additional 150 μ L of
259 IPP150 Buffer. Lysate was then cleared by centrifugation at 16,000 \times g for 10 min at 4°C. Protein lysate concentration
260 was determined by Pierce BCA Protein Assay Kit (Life Technologies). For input samples, 40 μ g of cleared lysate was
261 collected and frozen at -20°C. For co-immunoprecipitations, 1 mg of cleared lysate in IPP150 Buffer was prepared, 15-30
262 μ L of a 1:1 bead slurry of either Pierce™ Anti-c-Myc Magnetic Beads (ThermoFisher) or IgG Sepharose® 6 Fast Flow
263 Beads (GE Healthcare) was added, and samples were incubated at 4°C overnight with mixing. After overnight incubation,
264 beads were washed three times in 1 mL IPP150 Buffer for 15 sec each (anti-Myc beads) or 5 min each (IgG Sepharose
265 beads). Whole cell lysate input samples (40 μ g) and total bound samples in reducing sample buffer were boiled for 5
266 min® at 100°C, resolved on 4–20% Criterion™ TGX precast polyacrylamide gels (Bio-Rad), transferred to nitrocellulose
267 membranes (Bio-Rad). Levels of associated Rrp4-Myc proteins with the Rrp45-TAP tagged subunit were detected by
268 immunoblotting. Myc-tagged Rrp4 proteins were detected with mouse anti-Myc monoclonal antibody 9B11 (1:2000; Cell
269 Signaling). TAP-tagged Rrp45 protein was detected with peroxidase anti-peroxidase (PAP) soluble complex antibody
270 produced in rabbit (1:5000, Sigma-Aldrich). The 3-phosphoglycerate kinase (Pgk1) protein was detected using anti-Pgk1
271 monoclonal antibody (1:30,000; Invitrogen) as a loading control.

272

273 **Genetic Interaction Analysis**

274 To test genetic interactions between *rrp4-M68T* and RNA exosome cofactor/subunit deletion mutants, *rrp4* Δ
275 *mpp6* Δ (ACY2471), and *rrp4* Δ *rrp47* Δ (ACY2474) cells containing only *RRP4* (pAC3656), *rrp4-G226D* (pAC3659) or
276 *rrp4-M68T* (pAC4206) were grown in 2 mL Leu $^-$ minimal media overnight at 30°C to saturation, serially diluted, and
277 spotted on Leu $^-$ minimal media plates. The plates were incubated at 30°C or 37°C for 3 days. Cells were also grown in
278 liquid culture as described in *S. cerevisiae* transformation and growth assays method. The *rrp4* Δ *mpp6* Δ (ACY2471) cells
279 containing only *RRP4* (pAC3656), *rrp4-G226D* (pAC3659) or *rrp4-M68T* (pAC4206) were further assayed by being
280 serially spotted onto Leu $^-$ minimal media plates containing 25 μ M 5-FU, YEPD plates or YEPD plates containing 3%
281 formamide.

282 To test for genetic interactions between *rrp4-M68T* and *mtr4* mutants, *mtr4-F7A-F10A*, *mtr4-1*, *mtr4-R1030A*,

283 and *mtr4-E1033W*, *rrp4Δ mtr4Δ* (ACY2536) cells containing the [*MTR4*; *RRP4*; *URA3*] (pAC3714) maintenance plasmid
284 were transformed with *RRP4* (pAC3656), *rrp4-G226D* (pAC3659) or *rrp4-M68T* (pAC4206) *LEU2* plasmid and selected
285 on Ura⁻Leu⁻ minimal media plates. Transformed cells containing both the *URA3* maintenance plasmid and the *RRP4/rrp4*
286 variant plasmid were subsequently transformed with *MTR4* (pAC4096), *mtr4-F7A-F10A* (pAC4099), *mtr4-1* (pAC4103),
287 *mtr4-R1030A* (pAC4104), or *mtr4-E1033W* (pAC4105) *HIS3* plasmid and selected on Ura⁻Leu⁻His⁻ minimal media plates.

288 The transformed cells were then streaked to onto 5-FOA Leu⁻ His⁻ plates to select for cells that did not contain the *URA3*
289 maintenance plasmid. The resulting *rrp4Δ mtr4Δ* cells containing only *RRP4*, *rrp4-G226D* or *rrp4-M68T LEU2* plasmid
290 and *MTR4* or *mtr4* variant *HIS3* plasmid were grown in 2 mL Leu⁻ His⁻ minimal media overnight at 30°C to saturation,
291 serially diluted, and spotted on Leu⁻ His⁻ minimal media plates. The plates were incubated at 30°C and 37°C for 3 days.

292 Cell growth was quantified on a scale from 0 to 5 across triplicate assays, with a score of “0” representing lethality and a
293 score of “5” representing full growth across dilutions. Scores were averaged and displayed as a heatmap using GraphPad
294 Prism version 9.3.1 for Windows (www.graphpad.com), GraphPad Software, San Diego, California USA.

295

296 Total RNA isolation

297 Total RNA from *RRP4*, *rrp4-G226D*, *rrp4-M68T*, *MTR4* or *mtr4-1* cells was isolated using the MasterPure™

298 Yeast RNA Purification Kit (Epicentre, Lucigen). Cells were incubated in 2 mL of Leu⁻ minimal medium at 30°C and
299 grown to saturation overnight. Cultures were diluted in 10 mL to an OD₆₀₀ = 0.2 and further incubated at 37°C for 5 hours.

300 Cells were pelleted by centrifugation, transferred to RNase-free microcentrifuge tubes and flash frozen with liquid
301 nitrogen. Frozen cell pellets were stored at -80°C. RNA isolation was performed according to the MasterPure™ Yeast
302 RNA Purification Kit (Epicentre, Lucigen) manufacturer's protocol. Total RNA was resuspended in 50 µL DEPC-treated
303 water and stored at -80°C.

304

305 qRT-PCR

306 All oligonucleotides used in this study are shown in Table S2. For analysis of steady-state RNA levels using

307 quantitative PCR, three independent biological replicates of *RRP4*, *rrp4-G226D*, *rrp4-M68T*, *mtr4-1* and *MTR4* cells were
308 grown in 2 mL Leu⁻ or His⁻ minimal media overnight at 30°C. Cultures (10 mL) with an OD₆₀₀ = 0.2 were prepared from
309 the saturated cultures and cells were grown at 37°C for 5 hr. Total RNA was isolated from cell pellets as described and 1

310 μ g of total RNA was reverse transcribed to first strand cDNA using the M-MLV Reverse Transcriptase (Invitrogen)
311 according to manufacturer's protocol. Quantitative PCR was performed on technical triplicates of cDNA (10 ng) from
312 three independent biological replicates using gene specific primers (0.5 mM; Table S2), QuantiTect SYBR Green PCR
313 master mix (Qiagen) on a StepOnePlus Real-Time PCR machine (Applied Biosystems; Tanneal=55°C, 44 cycles). *ALG9*
314 or *PGK1* was used as an internal control. The mean RNA levels were calculated by the $\Delta\Delta Ct$ method (Livak and
315 Schmittgen 2001). Statistical analysis comparing the control cells (*RRP4* or *MTR4*) and the mutant cells (*rrp4* or *mtr4-1*)
316 was performed by t-test ($\alpha<0.05$) using GraphPad Prism version 9.3.1 for Windows (www.graphpad.com), GraphPad
317 Software, San Diego, California USA.

318

319 DATA AVAILABILITY STATEMENT

320 Strains and plasmids summarized in Table S1 and oligonucleotides are shown in Table S2. These reagents are available
321 upon request. Genomic data from CoMMpass are available at dbGaP with the accession number phs000748.v7.p4. The
322 authors affirm that all data necessary for confirming the conclusions of the article are present within the article, figures,
323 and tables.

324

325

326 RESULTS

327

328 EXOSC2 p.Met40Thr substitution is located within a conserved region of the cap subunit that interacts with the 329 essential helicase MTR4.

330 Mutations in the gene *DIS3*, which encodes the catalytic component of the RNA exosome, are commonly found in
331 patients diagnosed with multiple myeloma (Chapman *et al.* 2011; Lohr *et al.* 2014), suggesting a link between RNA
332 exosome function and disease pathology. We therefore considered whether mutations in the other components of the RNA
333 exosome would be found in multiple myeloma patients. Missense mutations in *EXOSC* genes, which encode the structural
334 subunits of the RNA exosome, were identified in multiple myeloma patients through interrogating the ongoing
335 longitudinal Multiple Myeloma Research Foundation (MMRF) study “Relating Clinical Outcomes in Multiple Myeloma
336 to Personal Assessment of Genetic Profile” (CoMMpass) [ClinicalTrials.gov Identifier NCT01454297]. A total of 1,154
337 newly diagnosed multiple myeloma patients were enrolled in CoMMpass and profiled by genomic testing and tissue

338 sampling throughout treatment. The molecular profiling collected through CoMMpass reveals several rare missense
339 mutations within *EXOSC* genes. One patient missense mutation identified within exon 1 of *EXOSC2* encodes EXOSC2
340 p.Met40Thr (M40T), which is located in a highly conserved region of the N-terminal domain of EXOSC2 (Figure 1C).
341 Notably, EXOSC2 Met40 lies within a key binding interface between the human RNA exosome and the RNA helicase
342 MTR4 (Weick *et al.* 2018).

343 The patient with the *EXOSC2* M40T mutation also had chromosomal aberrations including a chromosomal
344 translocation t(11;14) and hyperdiploidy disease. The chromosomal translocation t(11;14) is an IgH translocation which is
345 an initiating event that occurs frequently in multiple myeloma (~15-20% of patients) (Bergsagel *et al.* 1997). From the
346 CoMMpass dataset, we determined that the variant allele frequency is 0.2266, however the copy number of the
347 chromosome 9 *EXOSC2* locus is 2.6, suggesting that this *EXOSC2* allele is found on the extra copy of ch9 that is present
348 in over half the cells in the patient. Based on these findings, we conclude that this hyperdiploidy of chromosome 9
349 occurred after the t(11;14) translocation event and that the *EXOSC2* mutation either co-occurred with the chromosomal
350 gain or shortly after.

351 To explore how EXOSC2 M40T could alter the function of the RNA exosome complex, we modeled the
352 EXOSC2 M40T amino acid substitution using a recent structure of the human RNA exosome in complex with the
353 essential RNA helicase MTR4 (Weick *et al.* 2018). MTR4 makes several direct contacts with the RNA exosome, forming
354 a binding interface with a total surface area of 1,440 Å (Weick *et al.* 2018). Among the direct contacts between MTR4 and
355 the RNA exosome complex, the N-terminal domain of EXOSC2 interacts with MTR4 through an aliphatic surface that
356 includes Met40. As shown in Figure 2A, EXOSC2 Met40 engages with a hydrophobic pocket of MTR4 including I1014.
357 An amino acid substitution of Thr40, while unlikely to disrupt the aliphatic surface, could disrupt the hydrophobic
358 interaction at this contact given the polar, shortened side chain of threonine (Figure 2A). The EXOSC2 M40T substitution
359 could therefore destabilize the interface between the N-terminal domain of EXOSC2 and MTR4. We also modeled the
360 amino acid substitution in the budding yeast EXOSC2 ortholog, Rrp4, using a recent structure of the *S. cerevisiae* RNA
361 exosome (Schuller *et al.* 2018). As shown in Figure 2B, the budding yeast RNA exosome in complex with Mtr4 shows
362 structural similarities to the human complex, with Rrp4 interacting directly with Mtr4. Rrp4 Met68, corresponding to the
363 EXOSC2 Met40 residue, engages with the helicase directly through hydrophobic interactions at the binding interface.
364 Introduction of Thr40 would most likely disrupt this contract, similar to our predictions for the M40T substitution in
365 EXOSC2. Furthermore, the region surrounding Rrp4 Met68 is structurally synonymous to the aliphatic surface

366 surrounding EXOSC2 Met40, allowing for us to assess the effects of the EXOSC2 M40T amino acid substitution at the
367 conserved interface within the yeast system.

368 We further explored the conservation of the binding interface of human EXOSC2 as compared to budding yeast
369 Rrp4 using the bioinformatics tool ConSurf (Figure S1). The ConSurf server estimates the evolutionary conservation of
370 amino acids of a protein based on phylogenetic trees between homologous sequences, providing conservation rates for
371 each residue that reflect both functional and structural importance (Ashkenazy *et al.* 2010; Celniker *et al.* 2013;
372 Ashkenazy *et al.* 2016). Consistent with the sequence alignment (Figure 1C) and structural modeling, this tool predicts
373 high conservation for both EXOSC2 Met40 and Rrp4 Met68 and surrounding residues (Figure S1). Additionally, ConSurf
374 estimates high conservation rates at each site of contact between EXOSC2 and Rrp4 with the helicase MTR/Mtr4, further
375 supporting the evolutionary importance of this interaction.

376

377 ***Saccharomyces cerevisiae rrp4-M68T* mutant cells that model the multiple myeloma *EXOSC2 M40T* variant show
378 sensitivity on drugs that impact RNA metabolism.**

379 To assess the functional consequences of the EXOSC2 M40T amino acid substitution, we generated the
380 corresponding amino change in the *S. cerevisiae* ortholog Rrp4, M68T (Figure 1C). We first performed a plasmid shuffle
381 growth assay in which cells deleted for the genomic copy of *RRP4* are transformed with plasmids containing different
382 *rrp4* alleles (See *Materials and Methods*). This approach ensures that the background for all variants that are compared to
383 one another is identical (Sikorski and Hieter 1989). This growth assay reveals the *rrp4-M68T* allele can replace the
384 essential *RRP4* gene as the *rrp4-M68T* cells grow similarly to control cells expressing wild-type *RRP4* at all temperatures
385 examined (Figure 3A). As a comparison, we included cells expressing the *rrp4-G226D* allele as the sole copy of the
386 essential *RRP4* gene. The *rrp4-G226D* mutant allele models a known SHRF pathogenic amino acid change that has been
387 shown to cause impaired RNA exosome function *in vivo* (Sterrett *et al.* 2021). As previously reported, cells expressing
388 only *rrp4-G226D* show impaired growth at 37°C (Figure 3A). Furthermore, we assessed the growth of both the *rrp4-*
389 *M68T* and *rrp4-G226D* mutant cells using a liquid growth assay and quantified doubling times (Figure 3B, 3C). These
390 data confirm that the growth of *rrp4-M68T* cells does not differ significantly from wild-type *RRP4* cells.

391 To explore whether the *rrp4-M68T* mutation sensitizes cells to altered RNA processing, we tested for growth
392 defects when cells are grown on media containing 5-fluorouracil (5-FU) (Giaever *et al.* 2004; Hoskins and Scott Butler
393 2007) (Figure 3D). The *rrp4-M68T* cells show a slight growth defect compared to wild-type *RRP4* cells at 30°C when

394 grown on solid media containing 25 μ M 5-FU. This growth defect is more evident when the cells are challenged with both
395 37°C and 25 μ M 5-FU. As a comparison, the *rrp4-G226D* cells show a severe growth defect when grown on solid media
396 containing 5-FU both at 30°C and 37°C. To further explore whether the *rrp4-M68T* cells exhibit other changes in cell
397 growth, we tested for growth defects when cells are grown on media containing chemicals that disrupt different cellular
398 pathways (Figure 3E). Formamide alters RNA metabolism (Hoyos-Manchado *et al.* 2017), hydroxyurea impairs DNA
399 synthesis (Slater 1973), and phleomycin acts as a mutagen by introducing double-strand breaks in DNA (Suzuki *et al.*
400 1970). The *rrp4-M68T* cells do not show any increased sensitivity when grown at 30°C on solid media containing 3%
401 formamide, 150 mM hydroxyurea or 5 μ g/ml phleomycin (Figure 3E). In contrast, the *rrp4-G226D* cells show enhanced
402 growth defects at 30°C when grown on solid media containing 3% formamide, 150 mM hydroxyurea or 5 μ g/ml
403 phleomycin. Taken together, these data suggest that the *rrp4-M68T* cells are sensitive to defects in RNA processing but do
404 not exhibit the same extent of disrupted cellular pathways as the previously studied *rrp4-G226D* cells, which model a
405 pathogenic RNA exosomopathy mutation that has severely impaired RNA exosome function *in vivo* (Sterrett *et al.* 2021).
406

407 ***rrp4-M68T* cells have impaired RNA exosome function in processing RNA targets linked to Mtr4-RNA exosome
408 interactions.**

409 To further assess the *in vivo* consequences on RNA exosome function of the *rrp4-M68T* variant, we measured the
410 steady-state levels of several RNA exosome targets in *rrp4-M68T* cells using RT-qPCR. We assessed the steady-state
411 level of precursor RNAs that are targeted by the RNA exosome and are impacted by *mtr4* mutant alleles, including the
412 telomerase component RNA *TLC1*, which is processed by the RNA exosome in a manner dependent on TRAMP complex
413 association, and the 3' extended forms of *U4* snRNA and *snR33* snoRNA (Van Hoof *et al.* 2000; Houseley *et al.* 2006;
414 Coy *et al.* 2013). In this analysis, we included both *rrp4-G226D* and *mtr4-1* cells as comparative controls. The *mtr4-1*
415 cells have a missense mutation in *MTR4* that results in accumulation of polyadenylated targets within the nucleus
416 (Kadowaki *et al.* 1994; Kadowaki *et al.* 1995; Liang *et al.* 1996; Weir *et al.* 2010). We detect increases in the steady-state
417 level of both mature and precursor *TLC1* in *rrp4-M68T* cells similar to that observed in *rrp4-G226D* cells (Figure 4A)
418 (Sterrett *et al.* 2021). Both mature and precursor *TLC1* steady-state levels are significantly increased in *mtr4-1* cells.
419 Furthermore, we detect a significant increase in the steady-state level of the 3' extended forms of the *U4* snRNA and
420 *snR33* snoRNA in the *rrp4-M68T* cells (Figure 4B and 4C). This increase in the levels of the extended form of these target
421 RNAs is also observed in the *rrp4-G226D* cells and, to an even larger extent, the *mtr4-1* cells. We also assessed steady-

422 state levels of 5.8S rRNA precursors in *rrp4-M68T* and found no accumulation compared to wild-type *RRP4* cells (Figure
423 S2), although levels of both mature 5.8S rRNA and pre-5.8S rRNA do increase in *rrp4-G226D* cells which supports
424 previous observations that the *rrp4-G226D* cells exhibit accumulation of 7S rRNA (Sterrett *et al.* 2021).

425 We also measured the steady-state level of select targets that are impacted within *rrp4-G226D* cells (Sterrett *et al.*
426 2021). We assessed the target *INO1*, which encodes inositol-3-phosphate synthetase (Donahue and Henry 1981; Klig and
427 Henry 1984). *INO1* mRNA has previously been identified as a transcript bound to the catalytic subunit of the RNA
428 exosome (Delan-Forino *et al.* 2017), and was the most significantly decreased transcript in a previous RNA-Seq analysis
429 of the *rrp4-G226D* cells (Sterrett *et al.* 2021). In *rrp4-M68T* cells, the steady-state level of *INO1* is significantly
430 decreased, similar to results for *rrp4-G226D* (Figure 4D). We also assessed three cryptic unstable transcripts (CUTs) that
431 accumulate within *rrp4-G226D* cells (Sterrett *et al.* 2021). The steady-state levels of these three CUTs are not
432 significantly increased in *rrp4-M68T* cells (Figure 4E). Taken together, these data suggest that the *rrp4-M68T* cells have
433 some molecular consequences resulting from the modeled multiple myeloma amino acid substitution; however, they differ
434 from those resulting from the modeled SHRF substitution in the *rrp4-G226D* cells.

435

436 **The Rrp4 M68T variant can associate with the RNA exosome complex.**

437 The sensitivity of the *rrp4-M68T* cells to drugs that impact RNA processing (Figure 3D) and the observed
438 accumulation of key RNA exosome target RNAs (Figure 4) suggest that RNA exosome function may be impaired by the
439 modeled multiple myeloma amino acid substitution. Previous studies suggest that SHRF-linked amino acid substitutions
440 modeled in Rrp4 affect the RNA exosome function in part by disrupting complex integrity (Sterrett *et al.* 2021). To assess
441 the impact of the modeled multiple myeloma amino acid substitution on the association of Rrp4 with other RNA exosome
442 core subunits, we first assayed the protein level of Rrp4 M68T. We measured the steady-state level of the Myc-tagged
443 Rrp4 M68T subunit when expressed as the sole copy of the Rrp4 protein in *rrp4Δ* cells grown at either 30°C or 37°C
444 (Figure 5A). Immunoblotting reveals that the steady-state level of Rrp4 M68T is comparable to wild-type Rrp4 at both
445 temperatures tested. We next performed co-immunoprecipitations using *RRP45-TAP* cells that contain the endogenous,
446 genomic *RRP4* gene and express a C-terminally tandem affinity purification (TAP)-tagged Rrp45 core subunit from the
447 endogenous *RRP45* locus. We expressed Rrp4-Myc or Rrp4 M68T-Myc from plasmids in these *RRP45-TAP* cells. The
448 Rrp45-TAP protein was immunoprecipitated and association of the Myc-tagged Rrp4 variants was assayed by
449 immunoblotting (Figure 5B). Under these conditions in which an endogenous copy of *RRP4* is present, we can detect

450 association of Rrp4 M68T-Myc with Rrp45-TAP at levels equal to that of Rrp4-Myc. As a comparative control, we also
451 performed co-immunoprecipitations with *RRP45-TAP* cells expressing an exogenous Rrp4 G226D-Myc variant. Under
452 these conditions with an endogenous copy of *RRP4* present, we cannot detect association of Rrp4 G226D-Myc with the
453 TAP-tagged core subunit, supporting previous observations (Sterrett *et al.* 2021). Taken together, these data suggest that
454 Rrp4 M68T is biochemically similar to a wild-type Rrp4 subunit, and the multiple myeloma amino acid substitution likely
455 has no impact on RNA exosome complex integrity.

456

457 **The *rrp4-M68T* mutant shows negative genetic interactions with *mtr4* mutants that impact TRAMP complex
458 association and RNA helicase unwinding.**

459 As the Rrp4 M68T variant associates with the RNA exosome complex and has a steady level equivalent to wild-
460 type Rrp4, the observed sensitivity to disrupted RNA processing in *rrp4-M68T* cells (Figure 3D) and accumulation of
461 select RNA exosome target transcripts (Figure 4) could be due to altered interaction between Rrp4 and Mtr4. As depicted
462 in Figure 6A, the nuclear RNA exosome cofactors Mpp6 and Rrp47 and the associated exonuclease Rrp6 aid in recruiting
463 Mtr4 to the RNA exosome (Wasmuth *et al.* 2017). Rrp6 and Rrp47 form a composite site that binds to the N-terminus of
464 Mtr4, recruiting the helicase to the RNA exosome (Schuch *et al.* 2014). Mtr4 forms contacts with the cap subunit Rrp4
465 and the cofactor Mpp6, stabilizing the helicase on the RNA exosome complex through a very conserved interface between
466 the cap subunit and the helicase (Falk *et al.* 2017; Weick *et al.* 2018). The interaction between Mtr4 and Rrp4 provides a
467 surface for the RNA exosome to associate with the TRAMP complex, which helps facilitates nuclear RNA surveillance
468 and quality control of ncRNA (Lacava *et al.* 2005; Vaňáčová *et al.* 2005; Houseley and Tollervey 2008; Houseley and
469 Tollervey 2009; Lubas *et al.* 2011; Stuparevic *et al.* 2013; Rodríguez-Galán *et al.* 2015; Kilchert *et al.* 2016b; Zinder and
470 Lima 2017; Ogami *et al.* 2018; Belair *et al.* 2019). In addition to Mtr4, the TRAMP complex is composed of a zinc-
471 knuckle RNA binding protein, Air1 or Air2, and a non-canonical oligo(A) polymerase, Trf4 or Tr45, that oligoadenylates
472 RNA (Belair *et al.* 2018). The TRAMP complex triggers degradation by adding short polyadenylated tails to the 3' end of
473 substrate RNA and delivering them to the RNA exosome (Houseley *et al.* 2006; Anderson and Wang 2009; Belair *et al.*
474 2018; Ogami *et al.* 2018).

475 To assess genetic interactions between Mtr4 and the RNA exosome in *S. cerevisiae* modeling the multiple
476 myeloma patient mutation, we performed an analysis of a series of five *mtr4* mutant alleles that introduce amino acid
477 substitutions in Mtr4 as summarized in Figure 6B. We also included the *rrp4* mutant variant, *rrp4-G226D*, for comparison

478 as this *rrp4* variant has a negative interaction with the *mtr4-F7A-F10A* mutant allele (Sterrett *et al.* 2021). Included within
479 our five *mtr4* alleles is the *mtr4-I* allele which is a known temperature sensitive mutant (Kadowaki *et al.* 1994; Kadowaki
480 *et al.* 1995; Liang *et al.* 1996; Weir *et al.* 2010). These genetic data are shown both as representative solid growth assays
481 (Figure 6C) and as a heatmap (Figure 6D), which summarizes data from three independent replicates for all these genetic
482 experiments. As predicted, *RRP4 mtr4-I* cells have a severe growth defect at 37°C that is shared by both double mutant
483 *rrp4-M68T mtr4-I* and *rrp4-G226D mtr4-I*.

484 Two of the five *mtr4* mutant alleles, *mtr4-F7A-F10A* and *mtr4-R349E-N352E*, impair protein-protein interactions
485 of Mtr4 in *S. cerevisiae*. The Mtr4 F7A F10A variant disrupts Mtr4 interactions with Rrp6/Rrp47 by introducing two
486 amino acid substitutions, F7A and F10A, into the N-terminus of Mtr4 (Figure 6B) (Schuch *et al.* 2014). The *mtr4-R349E-*
487 *N352E* mutant allele impairs the association of Mtr4 with the poly(A) RNA polymerase Trf4 within the TRAMP complex
488 and thus disrupts the recruitment of the TRAMP complex to the RNA exosome (Falk *et al.* 2014). The *rrp4-M68T mtr4-*
489 *F7A-F10A* double mutant cells grow similarly to *rrp4-M68T* cells at 30°C, however at 37°C the double mutant cells show
490 a mild growth defect in comparison to the single mutant *rrp4-M68T* and the *RRP4 mtr4-F7A-F10A* cells (Figure 6D). As
491 shown previously, the *rrp4-G226D mtr4-F7A-F10A* show a severe growth defect at 37°C compared to *rrp4-G226D* cells
492 (Sterrett *et al.* 2021). The *rrp4 M68T mtr4-R349E-N352E* double mutant cells show severe growth defects at 30°C and
493 37°C and compared to the single mutant *rrp4-M68T* cells or the *RRP4 mtr4-R349E-N352E* control cells. Contrastingly,
494 the *rrp4 G226D mtr4-R349E-N352E* double mutant cells show no difference in growth at 30°C compared to the *RRP4*
495 *mtr4-R349E-N352E* control cells and improved growth compared to the single mutant *rrp4-G226D* cells at 37°C (Figure
496 6C and 6D).

497 The final two *mtr4* mutant alleles that we tested for genetic interaction with the *rrp4-M68T* variant impact nucleic
498 acid unwinding by Mtr4 (Taylor *et al.* 2014). Studies of an RNA-bound Mtr4 structure demonstrate that residues of
499 R1030 and E1033 mediate key nucleic acid base interactions with the helicase helical bundle (Weir *et al.* 2010; Taylor *et*
500 *al.* 2014). Mutagenesis of these residues in *S. cerevisiae*, generating the mutant alleles *mtr4-R1030A* and *mtr4-E1033A*,
501 reveal that these residues play important but distinct roles in helicase activity (Taylor *et al.* 2014). The *rrp4-M68T mtr4-*
502 *R1030A* double mutant cells are not viable at either temperature tested. In contrast the *rrp4-M68T mtr4-E1033A* double
503 mutant cells are viable and grow similar to the *RRP4 mtr4-E1033A* control cells at both 30°C and 37°C. The *rrp4-G226D*
504 *mtr4-R1030A* and *rrp4-G226D mtr4-E1033A* double mutant cells show lethality only at 37°C but have comparable growth
505 to the single mutant *rrp4-G226D* cells as well as the *RRP4 mtr4-R1030A* and *RRP4 mtr4-E1033A* control cells at 30°C.

506 The *rrp4-M68T* double mutants that show synthetical lethality are viable when rescued by expression of a wild-type *RRP4*
507 plasmid (Figure S3), demonstrating that the growth defects and lethality observed are due to negative genetic interactions
508 between the *rrp4* and *mtr4* mutants. Taken together, these data suggest that the *rrp4-M68T* cells have negative genetic
509 interactions with specific *mtr4* mutant alleles, distinct from those previously described for the *rrp4-G226D* mutant model.
510

511 **The *rrp4-M68T* mutant shows negative genetic interactions with *mpp6Δ*.**

512 As depicted in Figure 6A, the nuclear RNA exosome cofactors Mpp6 and Rrp47 and the exoribonuclease Rrp6
513 help to recruit and stabilize the interaction with Mtr4. The exosome cofactor Rrp47 interacts with and stabilizes the
514 exoribonuclease Rrp6 and the cofactor Mpp6 interacts with the nuclear RNA exosome through direct contacts with the
515 cap subunit Rrp40 (Schuch *et al.* 2014; Wasmuth *et al.* 2014; Wasmuth *et al.* 2017). To further evaluate the impact that
516 the modeled multiple myeloma amino acid substitution may have on the RNA exosome-Mtr4 interaction *in vivo*, we
517 tested whether the *rrp4-M68T* variant exhibits genetic interactions with *mpp6* or *rrp47* mutants by deleting these non-
518 essential, nuclear exosome cofactor genes *MPP6* and *RRP47* in combination with *rrp4-M68T*. For comparison, we
519 included the *rrp4-G226D* variant as these cells have known negative genetic interactions with these mutants (Sterrett *et al.*
520 2021). We examined the growth of these double mutants relative to single mutants (*rrp4-M68T* or *rrp4-G226D*) and the
521 control mutant cells (*RRP4 mpp6Δ* or *RRP4 rrp47Δ*) in solid and liquid media growth assays (Figure 7). In the solid media
522 growth assays the *rrp4-M68T mpp6Δ* double mutant cells show growth very similar to the *rrp4-M68T* cells at both 30°C
523 and 37°C after both one and two days of growth (Figure 7B). The *rrp4-M68T rrp47Δ* cells show a severe growth defect at
524 37°C compared to the single mutant *rrp4-M68T*; however, this impaired growth is comparable to that of the *RRP4 rrp47Δ*
525 cells, which has been previously reported for the single mutant *rrp47Δ* (Briggs *et al.* 1998; Mitchell *et al.* 2003) (Figure
526 6C). In contrast, the *rrp4-G226D mpp6Δ* and *rrp4-G226D rrp47Δ* double mutant cells show a severe growth defect at
527 both temperatures compared to the single mutant *rrp4-G226D* cells as described previously (Sterrett *et al.* 2021).

528 While the solid media growth assay suggests comparable growth between the controls and the *rrp4-M68T* double
529 mutant cells, the liquid media growth assay reveals a modest growth defect of the *rrp4-M68T mpp6Δ* at 37°C compared to
530 both the *rrp4-M68T* and control *RRP4 mpp6Δ* cells (Figure 7D), with the doubling time significantly longer than that of
531 wild-type *RRP4* cells (Figure 7E). The liquid growth assay also shows doubling times for *rrp4-M68T rrp47Δ* and *RRP4*
532 *rrp47Δ* double mutants are nearly twice that of wild-type *RRP4* cells, but do not differ significantly when compared to
533 each other (Figure 7D and 7E). The observed growth defect of the *rrp4-M68T mpp6Δ* double mutant in liquid culture is

534 revealed in a solid media growth assay when the cells are challenged with formamide or 5-FU (Figure 7F). The distinct
535 growth defect of the *rrp4-G226D mpp6Δ* double mutant is also exacerbated by growth on these chemicals. Taken
536 together, these data suggest a negative genetic interaction between the *rrp4* variants and *mpp6* mutants, with both double
537 mutants having exacerbated defects when challenged with drugs that impact RNA metabolism.

538

539 DISCUSSION

540 In this study, we modeled and analyzed a multiple myeloma patient *EXOSC2* mutation in the *S. cerevisiae*
541 homolog *RRP4*. We generated *rrp4-M68T* mutant cells expressing the variant Rrp4 M68T, which corresponds to the
542 *EXOSC2* M40T variant. Analysis of these *rrp4-M68T* cells reveals that this amino acid substitution affects RNA exosome
543 function. While our biochemical assays show that the Rrp4 M68T variant can associate with the RNA exosome complex
544 and function as the sole copy of the essential Rrp4 RNA exosome cap subunit, *rrp4-M68T* cells do show growth defects
545 when grown in media containing drugs that impact RNA processing. The *rrp4-M68T* cells also show accumulation of
546 known RNA exosome targets. These defects in RNA exosome function could result from an impaired interaction between
547 the complex and the essential RNA helicase Mtr4 as predicted by structural modeling. Our genetic analyses support this
548 model as *rrp4-M68T* cells show negative genetic interactions with both *mpp6* and *mtr4* mutants. These data suggest that
549 the introduction of the multiple myeloma associated amino acid change could impact the binding interface between
550 *EXOSC2* and *MTR4*, potentially impairing the function of the essential RNA exosome *in vivo* for a subset of Mtr4-
551 dependent targets.

552 Structural studies reveal the evolutionary conservation of the interaction between the RNA exosome and Mtr4
553 (Figure S1), with the helicase cofactor interacting with the complex through multiple points of contact including a direct
554 interface with *EXOSC2/Rrp4* and indirect stabilizing interactions with the cofactors Mpp6, Rrp47 and the associated
555 exonuclease Rrp6 (Falk *et al.* 2017; Weick *et al.* 2018). This robust interaction between the complex and the essential
556 helicase likely explains why the *rrp4-M68T* cells show no functional consequences unless challenged through
557 introduction of drugs impacting RNA processing or loss of other stabilizing cofactors, such as in *rrp4-M68T mpp6Δ*
558 double mutant cells. While this model would also predict a negative genetic interaction between *rrp47Δ* and *rrp4-M68T*,
559 the *rrp4-M68T rrp47Δ* cells show a growth defect at 37°C that is indistinguishable from that of *RRP4 rrp47Δ* cells. This
560 growth defect in *rrp4-M68T rrp47Δ* and *RRP4 rrp47Δ* cells is likely due to the loss of Rrp6 association with the RNA
561 exosome complex given the stabilizing role Rrp47 plays for Rrp6 (Mitchell *et al.* 2003; Wasmuth *et al.* 2014). The growth

562 defects resulting from destabilization of Mtr4 in *rrp4-M68T rrp47Δ* cells is likely masked by the larger consequence of
563 disassociating Rrp6 from the complex. We do detect a slight growth defect in *rrp4-M68T* cells expressing an *mtr4* variant
564 that disrupts the stabilizing interactions between Rrp6, Rrp47 and Mtr4 (*mtr4-F7A-F10A*), pointing to the importance of
565 the Rrp4-Mtr4 interface. Furthermore, we observe molecular consequences in *rrp4-M68T* cells as accumulation of several
566 documented RNA exosome target transcripts. These data suggest that the consequences resulting *in vivo* from the Rrp4
567 M68T variant are subtle though could be impactful for a specific set of target RNAs by the RNA exosome complex.

568 The interaction between the RNA exosome and Mtr4 could also be critical for other interactions, particularly
569 those involving the TRAMP (Trf4/5-Air1/2-Mtr4 Polyadenylation) complex. Our genetic analyses reveal a negative
570 genetic interaction between *rrp4-M68T* and *mtr4-R349E-N352E*. The Mtr4 R349E N352E variant impairs Mtr4-Trf4
571 binding and impacts TRAMP complex assembly *in vivo* (Falk *et al.* 2014). The *rrp4-M68T* cells that express Mtr4 R349E
572 N352E as the sole copy of the helicase grow very poorly at both 30°C and 37°C as compared to control *RRP4 mtr4-*
573 *R349E-N352E* cells, suggesting TRAMP complex assembly and association with the RNA exosome may also be impacted
574 by Rrp4 M68T. Intriguingly, we also detect synthetic lethality for the *rrp4-M68T mtr4-R1030A* double mutant. This
575 lethality is specific to *rrp4-M68T mtr4-R1030A* cells as the *rrp4-M68T* cells expressing the other helicase mutant, *mtr4-*
576 *E1033W*, show growth similar to the control (*RRP4 mtr4-E1033W*). Both Mtr4 R1030A and Mtr4 E1033W decrease
577 helicase unwinding capability (Taylor *et al.* 2014). However, the Mtr4 R1030A variant is also implicated in disrupting
578 target discrimination by the TRAMP complex, potentially by disrupting preferential polyadenylation by Trf4 (Taylor *et al.*
579 2014). Therefore, the negative genetic interaction observed for *rrp4-M68T rrp4-R1030A* cells further suggests that
580 TRAMP function is impacted in *rrp4-M68T* cells. Taken together with our structural modeling data, we hypothesize that a
581 stabilized interaction between the RNA exosome and Mtr4 is necessary for TRAMP association and the slightest
582 perturbation, even a subtle destabilization at one contact point with the helicase, could disrupt this vital interaction
583 between TRAMP and the complex. More biochemical studies could be performed to explore how changes within the
584 EXOSC2-Mtr4 interface impact the interaction with the TRAMP complex.

585 Our studies also show that *rrp4-M68T* mutant cells have distinct genetic interactions as compared to the *rrp4-*
586 *G226D* cells. The *rrp4-G226D mtr4-R349E-N352E* double mutant cells surprisingly show improved growth at 37°C
587 compared to either single mutant. Even more surprising is the synthetic lethality in cells expressing *rrp4-G226D* and
588 either *mtr4* helicase mutant (*mtr4-R1030A* and *mtr4-E1033W*). These genetic interactions could suggest that the modeled
589 SHRF amino acid substitution (Rrp4 G226D) has distinct *in vivo* consequences compared to the modeled multiple

590 myeloma-associated substitution Rrp4 M68T. The Rrp4 G226D variant has decreased association with Mtr4 and the *rrp4-*
591 *G226D* cells show transcriptomic differences from wild-type cells that suggest disrupted RNA exosome-Mtr4 interactions
592 (Sterrett *et al.* 2021). Some RNA exosome targets also accumulate in *rrp4-M68T* cells that accumulate in *rrp4-G226D*
593 cells. However notably we do not detect any changes in select CUTs or 5.8S rRNA precursors in *rrp4-M68T* cells. These
594 data suggest that there may be some distinct defects in RNA exosome function in *rrp4-G226D* cells compared to the *rrp4-*
595 *M68T* cells though they may also have some overlapping consequences *in vivo* due to altered association with Mtr4. The
596 difference in molecular consequences between the two *rrp4* variants could be attributed to the impact on RNA exosome
597 complex integrity observed in *rrp4-G226D* cells, which was not observed in *rrp4-M68T* cells (Figure 5B) (Sterrett *et al.*
598 2021).

599 The difference in severity of functional and molecular consequences we observe for the *rrp4-M68T* and *rrp4-*
600 *G226D* mutant models may partially explain the differences in disease pathology between SHRF patients with the
601 mutation *EXOSC2 G198D* and the multiple myeloma patient with the mutation *EXOSC2 M40T*. The *EXOSC2 G198D*
602 mutation was identified in SHRF patients through whole exome sequencing and classified as causing a novel Mendelian
603 syndrome (Di Donato *et al.* 2016). In contrast, the *EXOSC2 M40T* mutation is a spontaneous, somatic mutation that likely
604 co-occurred with a chromosome 9 duplication. Additionally, the patient with this *EXOSC2 M40T* mutation has several
605 chromosomal aberrations that are a hallmark of multiple myeloma, suggesting these *EXOSC2* mutations could be
606 passenger mutations rather than a pathogenic driver of the multiple myeloma. Upon further analysis of the noncoding
607 mutations in the patient harboring *EXOSC2 M40T*, we found a second mutation present in intron 1 of *EXOSC2* in this
608 patient (Figure S5). This mutation (*EXOSC2 SNV chr9:130,693,915 T>G*) is predicted to alter the splice donor site and
609 likely result in a misprocessed mRNA or truncated protein. Through RNA-Seq data available in CoMMpass for this
610 patient, we determined that the *EXOSC2 M40T* missense mutation and the splice donor mutation are expressed from the
611 same allele. Interestingly, we calculate the allelic frequency of these two *EXOSC2* mutations to be very similar (0.2266
612 vs. 0.2191). This suggests that *EXOSC2 M40T* and the *EXOSC2* splice donor mutation either co-occurred or that the
613 splice donor mutation was selected for in response to the *EXOSC2 M40T* missense mutation, which could negatively
614 affect cell growth and/or survival. As *EXOSC2* is an essential gene in 1076/1086 cancer cell lines in the Cancer
615 Dependencies Map project (depmap.org) including all 19 myeloma cell lines in the dataset, a future approach would be to
616 CRISPR mutate the *EXOSC2 M40T* mutation within myeloma cell lines to determine the effects on exosome function and
617 myeloma cell growth and survival.

618 As the *rrp4-M68T* cells show defects in function of the RNA exosome likely through altered of interactions with
619 the RNA helicase Mtr4 and the associated TRAMP complex, this EXOSC2 M40T substitution could be detrimental to the
620 function of the human RNA exosome. Altering key cofactor interactions with the RNA exosome could impact the
621 processing and degradation of target RNA transcripts such as small ncRNA species that have key regulatory roles in
622 various cellular processes. Furthermore, the interaction between the RNA exosome and MTR4 has been suggested to
623 resolve secondary DNA structures associated with strand asymmetric DNA mutagenesis that can lead to genome
624 instability and chromosomal translocations particularly in plasma B cells (Lim *et al.* 2017). The high level of
625 evolutionary conservation within the N-terminus of EXOSC2 that interacts with MTR4 (Figure 1C and Figure S1),
626 suggests that there could be evolutionary pressure to maintain the integrity of certain sequences within EXOSC2 that
627 specifically interact with key cofactors. Taking a genetic approach to assess different *EXOSC* missense mutations
628 associated with human diseases can help unravel different consequences in specific interactions of the essential RNA
629 exosome complex.

630 Utilizing the yeast genetic model system, we have characterized an *EXOSC2* mutation found in a multiple
631 myeloma patient. However, this mutation was one of several mutations identified in genes encoding structural subunits of
632 the RNA exosome in the CoMMpass study. The frequency of multiple myeloma mutations identified in the *DIS3* catalytic
633 exosome gene suggests that there is an important link between multiple myeloma and the RNA exosome. By modeling
634 identified *EXOSC* mutations in the budding yeast system, we can examine whether these mutations impair the function of
635 the essential RNA exosome and provide a deeper understanding of the role this conserved complex may have in cancer
636 pathologies. While it is unlikely that the identified *EXOSC* mutations drive the multiple myeloma disease, our study here
637 clearly shows that these mutations have *in vivo* consequences for the conserved and essential RNA exosome-Mtr4
638 interaction. In addition, by studying other models of *EXOSC* disease linked mutations, such as those identified in RNA
639 exosomopathy patients, we can provide insight into the biological pathways that are altered in these different disorders. As
640 more pathogenic mutations are uncovered in *EXOSC* genes through patient genomic screenings, generating *in vivo* models
641 to explore the consequences of these changes can help to define the most critical interactions of the complex with various
642 cofactors thus expand our understanding of the biological functions of this singular, essential RNA processing and
643 degradation complex.

646 **ACKNOWLEDGEMENTS**

647 We thank members of the Corbett lab for critical discussions and input. We thank Dr. Benjamin Barwick for his
648 contributions in assisting with the analysis of CoMMpass dataset. We also thank Dr. Graeme Conn and Dr. Ambro van
649 Hoof for their intellectual contributions. This work was supported by National Institutes of Health (NIH) R01 grants
650 (GM058728) and the NIH- funded Emory Initiative for Maximizing Student Development (R25 GM099644) to A.H.C
651 and National Cancer Institute (NCI) R21 grant (CA273773) to L.H.B. M.C.S. was supported by a National Institute of
652 General Medical Sciences (NIGMS) F31 grant (GM134649-01). S.E.S. was supported by the National Science
653 Foundation (NSF) Graduate Research Fellowship (GRFP 1937971). Lastly, we would also like to thank the Genetics
654 Society of America and the [Saccharomyces Genomic Database](#) (SGD) (Cherry *et al.* 2012) for providing community
655 resources and support for scientific discovery.

656

657

658

659 REFERENCES

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

Adams, A., D. E. Gottschling, C. A. Kaiser and T. Stearns, 1997 *Methods in Yeast Genetics*. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.

Alexander, D. D., P. J. Mink, H. O. Adami, P. Cole, J. S. Mandel *et al.*, 2007 Multiple myeloma: a review of the epidemiologic literature. *Int J Cancer* 120 Suppl 12: 40-61.

Allmang, C., J. Kufel, G. Chanfreau, P. Mitchell, E. Petfalski *et al.*, 1999 Functions of the exosome in rRNA, snoRNA and snRNA synthesis. *Embo Journal* 18: 5399-5410.

Anderson, J. T., and X. Wang, 2009 Nuclear RNA surveillance: no sign of substrates tailing off. *Crit Rev Biochem Mol Biol* 44: 16-24.

Ashkenazy, H., S. Abadi, E. Martz, O. Chay, I. Mayrose *et al.*, 2016 ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. *Nucleic Acids Research* 44: W344-W350.

Ashkenazy, H., E. Erez, E. Martz, T. Pupko and N. Ben-Tal, 2010 ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. *Nucleic Acids Research* 38: W529-W533.

Barwick, B. G., P. Neri, N. J. Bahlis, A. K. Nooka, M. V. Dhodapkar *et al.*, 2019 Multiple myeloma immunoglobulin lambda translocations portend poor prognosis. *Nature Communications* 10: 1911.

Belair, C., S. Sim, K. Y. Kim, Y. Tanaka, I. H. Park *et al.*, 2019 The RNA exosome nuclease complex regulates human embryonic stem cell differentiation. *J Cell Biol*.

Belair, C., S. Sim and S. L. Wolin, 2018 Noncoding RNA Surveillance: The Ends Justify the Means. *Chem Rev* 118: 4422-4447.

Bergsagel, P. L., E. Nardini, L. Brents, M. Chesi and W. M. Kuehl, 1997 IgH translocations in multiple myeloma: a nearly universal event that rarely involves c-myc. *Curr Top Microbiol Immunol* 224: 283-287.

Boczonadi, V., J. S. Mueller, A. Pyle, J. Munkley, T. Dor *et al.*, 2014 EXOSC8 mutations alter mRNA metabolism and cause hypomyelination with spinal muscular atrophy and cerebellar hypoplasia. *Nature Communications* 5.

Boyle, E. M., C. Ashby, R. G. Tytarenko, S. Deshpande, H. Wang *et al.*, 2020 BRAF and DIS3 Mutations Associate with Adverse Outcome in a Long-term Follow-up of Patients with Multiple Myeloma. *Clin Cancer Res* 26: 2422-2432.

Briggs, M. W., K. T. Burkard and J. S. Butler, 1998 Rrp6p, the yeast homologue of the human PM-Scl 100-kDa autoantigen, is essential for efficient 5.8 S rRNA 3' end formation. *J Biol Chem* 273: 13255-13263.

Burns, D., D. Donkervoort, D. Bharucha-Goebel, M. Giunta, B. Munro *et al.*, 2017 A recessive mutation in EXOSC9 causes abnormal RNA metabolism resulting in a novel form of cerebellar hypoplasia/atrophy with early motor neuronopathy. *Neuromuscul Disord* 27: S38.

Burns, D. T., S. Donkervoort, J. S. Muller, E. Knierim, D. Bharucha-Goebel *et al.*, 2018 Variants in EXOSC9 Disrupt the RNA Exosome and Result in Cerebellar Atrophy with Spinal Motor Neuronopathy. *Am J Hum Genet* 102: 858-873.

Büttner, K., S. Nehring and K. P. Hopfner, 2007 Structural basis for DNA duplex separation by a superfamily-2 helicase. *Nat Struct Mol Biol* 14: 647-652.

Celniker, G., G. Nimrod, H. Ashkenazy, F. Glaser, E. Martz *et al.*, 2013 ConSurf: Using Evolutionary Data to Raise Testable Hypotheses about Protein Function. *Israel Journal of Chemistry* 53: 199-206.

Cervelli, T., and A. Galli, 2021 Yeast as a Tool to Understand the Significance of Human Disease-Associated Gene Variants. *Genes (Basel)* 12.

Chapman, M. A., M. S. Lawrence, J. J. Keats, K. Cibulskis, C. Sougnez *et al.*, 2011 Initial genome sequencing and analysis of multiple myeloma. *Nature* 471: 467-472.

Cherry, J. M., E. L. Hong, C. Amundsen, R. Balakrishnan, G. Binkley *et al.*, 2012 *Saccharomyces Genome Database*: the genomics resource of budding yeast. *Nucleic Acids Res* 40: D700-705.

Coy, S., A. Volanakis, S. Shah and L. Vasiljeva, 2013 The Sm complex is required for the processing of non-coding RNAs by the exosome. *PloS one* 8: e65606-e65606.

Da, B., D. Dawson and T. Stearns, 2000 Methods In Yeast Genetics: A Cold Spring Harbor Laboratory Course Manual.

de Amorim, J., Slavotinek, A., Fasken, M.B., Corbett, A.H., Morton, D.J., 2020 Modeling Pathogenic Variants in the RNA Exosome. *RNA & Disease* 7.

de la Cruz, J., D. Kressler, D. Tollervey and P. Linder, 1998 Dob1p (Mtr4p) is a putative ATP-dependent RNA helicase required for the 3' end formation of 5.8S rRNA in *Saccharomyces cerevisiae*. *Embo j* 17: 1128-1140.

Delan-Forino, C., C. Schneider and D. Tollervey, 2017 Transcriptome-wide analysis of alternative routes for RNA substrates into the exosome complex. *PLOS Genetics* 13: e1006699.

711 Di Donato, N., T. Neumann, A.-K. Kahlert, B. Klink, K. Hackmann *et al.*, 2016 Mutations in EXOSC2 are associated with
712 a novel syndrome characterised by retinitis pigmentosa, progressive hearing loss, premature ageing, short stature,
713 mild intellectual disability and distinctive gestalt. *Journal of Medical Genetics* 53: 419-425.

714 Donahue, T. F., and S. A. Henry, 1981 myo-Inositol-1-phosphate synthase. Characteristics of the enzyme and
715 identification of its structural gene in yeast. *J Biol Chem* 256: 7077-7085.

716 Eggens, V. R. C., P. G. Barth, J.-M. F. Niermeijer, J. N. Berg, N. Darin *et al.*, 2014 EXOSC3 mutations in pontocerebellar
717 hypoplasia type 1: novel mutations and genotype-phenotype correlations. *Orphanet Journal of Rare Diseases* 9:
718 23.

719 Falk, S., F. Bonneau, J. Ebert, A. Kogel and E. Conti, 2017 Mpp6 Incorporation in the Nuclear Exosome Contributes to
720 RNA Channeling through the Mtr4 Helicase. *Cell Reports* 20: 2279-2286.

721 Falk, S., J. R. Weir, J. Hentschel, P. Reichelt, F. Bonneau *et al.*, 2014 The molecular architecture of the TRAMP complex
722 reveals the organization and interplay of its two catalytic activities. *Mol Cell* 55: 856-867.

723 Fasken, M. B., J. S. Losh, S. W. Leung, S. Brutus, B. Avin *et al.*, 2017 Insight into the RNA Exosome Complex Through
724 Modeling Pontocerebellar Hypoplasia Type 1b Disease Mutations in Yeast. *Genetics* 205: 221-+.

725 Fasken, M. B., D. J. Morton, E. G. Kuiper, S. K. Jones, S. W. Leung *et al.*, 2020 The RNA Exosome and Human Disease.
726 *Methods Mol Biol* 2062: 3-33.

727 Ghaemmaghami, S., W. K. Huh, K. Bower, R. W. Howson, A. Belle *et al.*, 2003 Global analysis of protein expression in
728 yeast. *Nature* 425: 737-741.

729 Giaever, G., P. Flaherty, J. Kumm, M. Proctor, C. Nislow *et al.*, 2004 Chemogenomic profiling: identifying the functional
730 interactions of small molecules in yeast. *Proc Natl Acad Sci U S A* 101: 793-798.

731 Gillespie, A., J. Gabunilas, J. C. Jen and G. F. Chanfreau, 2017 Mutations of EXOSC3/Rrp40p associated with
732 neurological diseases impact ribosomal RNA processing functions of the exosome in *S. cerevisiae*. *RNA* 23: 466-
733 472.

734 Hoskins, J., and J. Scott Butler, 2007 Evidence for distinct DNA- and RNA-based mechanisms of 5-fluorouracil
735 cytotoxicity in *Saccharomyces cerevisiae*. *Yeast* 24: 861-870.

736 Hou, D., M. Ruiz and E. D. Andrulis, 2012 The ribonuclease Dis3 is an essential regulator of the developmental
737 transcriptome. *Bmc Genomics* 13.

738 Houseley, J., J. LaCava and D. Tollervey, 2006 RNA-quality control by the exosome. *Nat Rev Mol Cell Biol* 7: 529-539.

739 Houseley, J., and D. Tollervey, 2008 The nuclear RNA surveillance machinery: the link between ncRNAs and genome
740 structure in budding yeast? *Biochim Biophys Acta* 1779: 239-246.

741 Houseley, J., and D. Tollervey, 2009 The many pathways of RNA degradation. *Cell* 136: 763-776.

742 Hoyos-Manchado, R., F. Reyes-Martín, C. Rallis, E. Gamero-Estevez, P. Rodríguez-Gómez *et al.*, 2017 RNA metabolism
743 is the primary target of formamide in vivo. *Scientific Reports* 7: 15895.

744 Jackson, R. N., A. A. Klauer, B. J. Hintze, H. Robinson, A. van Hoof *et al.*, 2010 The crystal structure of Mtr4 reveals a
745 novel arch domain required for rRNA processing. *EMBO J* 29: 2205-2216.

746 Kadowaki, T., S. Chen, M. Hitomi, E. Jacobs, C. Kumagai *et al.*, 1994 Isolation and characterization of *Saccharomyces*
747 *cerevisiae* mRNA transport-defective (mtr) mutants. *J Cell Biol* 126: 649-659.

748 Kadowaki, T., R. Schneiter, M. Hitomi and A. M. Tartakoff, 1995 Mutations in nucleolar proteins lead to nucleolar
749 accumulation of polyA+ RNA in *Saccharomyces cerevisiae*. *Mol Biol Cell* 6: 1103-1110.

750 Kilchert, C., S. Wittmann and L. Vasiljeva, 2016a The regulation and functions of the nuclear RNA exosome complex.
751 *Nature Reviews Molecular Cell Biology* 17: 227-239.

752 Kilchert, C., S. Wittmann and L. Vasiljeva, 2016b The regulation and functions of the nuclear RNA exosome complex.
753 *Nat Rev Mol Cell Biol* 17: 227-239.

754 Klig, L. S., and S. A. Henry, 1984 Isolation of the yeast INO1 gene: located on an autonomously replicating plasmid, the
755 gene is fully regulated. *Proc Natl Acad Sci U S A* 81: 3816-3820.

756 LaCava, J., J. Houseley, C. Saveanu, E. Petfalski, E. Thompson *et al.*, 2005 RNA degradation by the exosome is promoted
757 by a nuclear polyAde nylation complex. *Cell* 121: 713-724.

758 Laubach, J., P. Richardson and K. Anderson, 2011 Multiple myeloma. *Annu Rev Med* 62: 249-264.

759 Liang, S., M. Hitomi, Y. H. Hu, Y. Liu and A. M. Tartakoff, 1996 A DEAD-box-family protein is required for
760 nucleocytoplasmic transport of yeast mRNA. *Mol Cell Biol* 16: 5139-5146.

761 Lim, J., P. K. Giri, D. Kazadi, B. Laffleur, W. Zhang *et al.*, 2017 Nuclear Proximity of Mtr4 to RNA Exosome Restricts
762 DNA Mutational Asymmetry. *Cell* 169: 523-537 e515.

763 Lim, S. J., P. J. Boyle, M. Chinen, R. K. Dale and E. P. Lei, 2013 Genome-wide localization of exosome components to
764 active promoters and chromatin insulators in *Drosophila*. *Nucleic Acids Res* 41: 2963-2980.

765 Livak, K. J., and T. D. Schmittgen, 2001 Analysis of relative gene expression data using real-time quantitative PCR and
766 the 2(-Delta Delta C(T)) Method. *Methods* 25: 402-408.

767 Lohr, J. G., P. Stojanov, S. L. Carter, P. Cruz-Gordillo, M. S. Lawrence *et al.*, 2014 Widespread genetic heterogeneity in
768 multiple myeloma: implications for targeted therapy. *Cancer Cell* 25: 91-101.

769 Lorentzen, E., A. Dziembowski, D. Lindner, B. Seraphin and E. Conti, 2007 RNA channelling by the archaeal exosome.
770 *Embo Reports* 8: 470-476.

771 Losh, J., 2018 Identifying Subunit Organization and Function of the Nuclear RNA Exosome Machinery, pp. University of
772 Texas, UT GSBS Dissertations and Theses.

773 Lubas, M., M. S. Christensen, M. S. Kristiansen, M. Domanski, L. G. Falkenby *et al.*, 2011 Interaction profiling identifies
774 the human nuclear exosome targeting complex. *Mol Cell* 43: 624-637.

775 Makino, D. L., M. Baumgaertner and E. Conti, 2013 Crystal structure of an RNA-bound 11-subunit eukaryotic exosome
776 complex. *Nature* 495: 70-75.

777 Milligan, L., L. Decourty, C. Saveanu, J. Rappaport, H. Ceulemans *et al.*, 2008 A yeast exosome cofactor, Mpp6,
778 functions in RNA surveillance and in the degradation of noncoding RNA transcripts. *Mol Cell Biol* 28: 5446-
779 5457.

780 Mitchell, P., E. Petfalski, R. Houalla, A. Podtelejnikov, M. Mann *et al.*, 2003 Rrp47p is an exosome-associated protein
781 required for the 3' processing of stable RNAs. *Mol Cell Biol* 23: 6982-6992.

782 Mitchell, P., E. Petfalski, A. Shevchenko, M. Mann and D. Tollervey, 1997 The exosome: A conserved eukaryotic RNA
783 processing complex containing multiple 3'->5' exoribonucleases. *Cell* 91: 457-466.

784 Mitchell, P., E. Petfalski and D. Tollervey, 1996 The 3' end of yeast 5.8S rRNA is generated by an exonuclease processing
785 mechanism. *Genes Dev* 10: 502-513.

786 Moore, M. J., and N. J. Proudfoot, 2009 Pre-mRNA processing reaches back to transcription and ahead to translation. *Cell*
787 136: 688-700.

788 Morton, D. J., B. Jalloh, L. Kim, I. Kremsky, R. J. Nair *et al.*, 2020 A Drosophila model of Pontocerebellar Hypoplasia
789 reveals a critical role for the RNA exosome in neurons. *PLoS Genet* 16: e1008901.

790 Oddone, A., E. Lorentzen, J. Basquin, A. Gasch, V. Rybin *et al.*, 2007 Structural and biochemical characterization of the
791 yeast exosome component Rrp40. *EMBO reports* 8: 63-69.

792 Ogami, K., Y. Chen and J. L. Manley, 2018 RNA surveillance by the nuclear RNA exosome: mechanisms and
793 significance. *Noncoding RNA* 4.

794 Parker, R., 2012 RNA Degradation in *Saccharomyces cerevisiae*. *Genetics* 191: 671-702.

795 Pefanis, E., J. Wang, G. Rothschild, J. Lim, J. Chao *et al.*, 2014 Noncoding RNA transcription targets AID to divergently
796 transcribed loci in B cells. *Nature* 514: 389-393.

797 Preker, P., J. Nielsen, S. Kammler, S. Lykke-Andersen, M. S. Christensen *et al.*, 2008 RNA Exosome Depletion Reveals
798 Transcription Upstream of Active Human Promoters. *Science* 322: 1851-1854.

799 Rodrigues, C. H. M., Y. Myung, D. E. V. Pires and D. B. Ascher, 2019 mCSM-PPI2: predicting the effects of mutations
800 on protein-protein interactions. *Nucleic Acids Res* 47: W338-w344.

801 Rodríguez-Galán, O., J. J. García-Gómez, D. Kressler and J. de la Cruz, 2015 Immature large ribosomal subunits
802 containing the 7S pre-rRNA can engage in translation in *Saccharomyces cerevisiae*. *RNA biology* 12: 838-846.

803 Sambrook, J., E. F. Fritsch and T. Maniatis, 1989 *Molecular Cloning: A Laboratory Manual*. Cold Spring Harbor
804 Laboratory Press, Cold Spring Harbor, New York.

805 Schaeffer, D., B. Tsanova, A. Barbas, F. P. Reis, E. G. Dastidar *et al.*, 2009 The exosome contains domains with specific
806 endoribonuclease, exoribonuclease and cytoplasmic mRNA decay activities. *Nat Struct Mol Biol* 16: 56-62.

807 Schneider, C., G. Kudla, W. Wlotzka, A. Tuck and D. Tollervey, 2012 Transcriptome-wide Analysis of Exosome Targets.
808 *Molecular Cell* 48: 422-433.

809 Schneider, C., and D. Tollervey, 2013 Threading the barrel of the RNA exosome. *Trends in Biochemical Sciences* 38:
810 485-493.

811 Schuch, B., M. Feigenbutz, D. L. Makino, S. Falk, C. Basquin *et al.*, 2014 The exosome-binding factors Rrp6 and Rrp47
812 form a composite surface for recruiting the Mtr4 helicase. *Embo Journal* 33: 2829-2846.

813 Schuller Jan, M., S. Falk, L. Fromm, E. Hurt and E. Conti, 2018 Structure of the nuclear exosome captured on a maturing
814 preribosome. *Science* 360: 219-222.

815 Schuller, J. M., S. Falk, L. Fromm, E. Hurt and E. Conti, 2018 Structure of the nuclear exosome captured on a maturing
816 preribosome. *Science* 360: 219-222.

817 Sikorski, R. S., and P. Hieter, 1989 A system of shuttle vectors and yeast host strains designed for efficient manipulation
818 of DNA in *Saccharomyces cerevisiae*. *Genetics* 122: 19-27.

820 Slater, M. L., 1973 Effect of reversible inhibition of deoxyribonucleic acid synthesis on the yeast cell cycle. *J Bacteriol*
821 113: 263-270.

822 Slavotinek, A., D. Misceo, S. Htun, L. Mathisen, E. Frengen *et al.*, 2020 Biallelic variants in the RNA exosome gene
823 EXOSC5 are associated with developmental delays, short stature, cerebellar hypoplasia and motor weakness.
824 *Hum Mol Genet* 29: 2218-2239.

825 Somashekhar, P. H., P. Kaur, J. Stephen, V. S. Guleria, R. Kadavigere *et al.*, 2021 Bi-allelic missense variant, p.Ser35Leu
826 in EXOSC1 is associated with pontocerebellar hypoplasia. *Clin Genet* 99: 594-600.

827 Staals, R. H., A. W. Bronkhorst, G. Schilders, S. Slomovic, G. Schuster *et al.*, 2010 Dis3-like 1: a novel exoribonuclease
828 associated with the human exosome. *Embo J* 29: 2358-2367.

829 Sterrett, M. C., L. Enyenih, S. W. Leung, L. Hess, S. E. Strassler *et al.*, 2021 A budding yeast model for human disease
830 mutations in the EXOSC2 cap subunit of the RNA exosome complex. *RNA* 27: 1046-1067.

831 Stuparevic, I., C. Mosrin-Huaman, N. Hervouet-Coste, M. Remenaric and A. R. Rahmouni, 2013 Cotranscriptional
832 Recruitment of RNA Exosome Cofactors Rrp47p and Mpp6p and Two Distinct Trf-Air-Mtr4 Polyadenylation
833 (TRAMP) Complexes Assists the Exonuclease Rrp6p in the Targeting and Degradation of an Aberrant Messenger
834 Ribonucleoprotein Particle (mRNP) in Yeast. *Journal of Biological Chemistry* 288: 31816-31829.

835 Suzuki, H., K. Nagai, E. Akutsu, H. Yamaki and N. Tanaka, 1970 On the mechanism of action of bleomycin. Strand
836 scission of DNA caused by bleomycin and its binding to DNA in vitro. *J Antibiot (Tokyo)* 23: 473-480.

837 Taylor, L. L., R. N. Jackson, M. Rexhepaj, A. K. King, L. K. Lott *et al.*, 2014 The Mtr4 ratchet helix and arch domain
838 both function to promote RNA unwinding. *Nucleic acids research* 42: 13861-13872.

839 Tomecki, R., K. Drazkowska, I. Kucinski, K. Stodus, R. J. Szczesny *et al.*, 2014 Multiple myeloma-associated hDIS3
840 mutations cause perturbations in cellular RNA metabolism and suggest hDIS3 PIN domain as a potential drug
841 target. *Nucleic Acids Res* 42: 1270-1290.

842 van Hoof, A., P. Lennertz and R. Parker, 2000 Yeast exosome mutants accumulate 3'-extended polyadenylated forms of
843 U4 small nuclear RNA and small nucleolar RNAs. *Molecular and cellular biology* 20: 441-452.

844 Vaňáčová, Š., J. Wolf, G. Martin, D. Blank, S. Dettwiler *et al.*, 2005 A New Yeast Poly(A) Polymerase Complex
845 Involved in RNA Quality Control. *PLOS Biology* 3: e189.

846 Wan, J., M. Yourshaw, H. Mamsa, S. Rudnik-Schöneborn, M. P. Menezes *et al.*, 2012 Mutations in the RNA exosome
847 component gene EXOSC3 cause pontocerebellar hypoplasia and spinal motor neuron degeneration. *Nat Genet* 44:
848 704-708.

849 Wasmuth, E. V., K. Januszyk and C. D. Lima, 2014 Structure of an Rrp6-RNA exosome complex bound to poly(A) RNA.
850 *Nature* 511: 435-439.

851 Wasmuth, E. V., J. C. Zinder, D. Zattas, M. Das and C. D. Lima, 2017 Structure and reconstitution of yeast Mpp6-nuclear
852 exosome complexes reveals that Mpp6 stimulates RNA decay and recruits the Mtr4 helicase. *Elife* 6: 24.

853 Weick, E. M., M. R. Puno, K. Januszyk, J. C. Zinder, M. A. DiMattia *et al.*, 2018 Helicase-Dependent RNA Decay
854 Illuminated by a Cryo-EM Structure of a Human Nuclear RNA Exosome-MTR4 Complex. *Cell* 173: 1663-1677
855 e1621.

856 Weir, J. R., F. Bonneau, J. Hentschel and E. Conti, 2010 Structural analysis reveals the characteristic features of Mtr4, a
857 DExH helicase involved in nuclear RNA processing and surveillance. *Proc Natl Acad Sci U S A* 107: 12139-
858 12144.

859 Weissbach, S., C. Langer, B. Puppe, T. Nedeva, E. Bach *et al.*, 2015 The molecular spectrum and clinical impact of DIS3
860 mutations in multiple myeloma. *Br J Haematol* 169: 57-70.

861 Wyers, F., M. Rougemaille, G. Badis, J.-C. Rousselle, M.-E. Dufour *et al.*, 2005 Cryptic Pol II Transcripts Are Degraded
862 by a Nuclear Quality Control Pathway Involving a New Poly(A) Polymerase. *Cell* 121: 725-737.

863 Yang, X., V. Bayat, N. DiDonato, Y. Zhao, B. Zarnegar *et al.*, 2019 Genetic and genomic studies of pathogenic EXOSC2
864 mutations in the newly described disease SHRF implicate the autophagy pathway in disease pathogenesis. *Human
865 Molecular Genetics* 29: 541-553.

866 Zinder, J. C., and C. D. Lima, 2017 Targeting RNA for processing or destruction by the eukaryotic RNA exosome and its
867 cofactors. *Genes & Development* 31: 88-100.

868

869

870 **FIGURE LEGENDS**

871 **Figure 1. Overview of multiple myeloma linked amino acid substitutions in the human cap subunit EXOSC2 of the**
872 **RNA exosome.** (A) The RNA exosome is an evolutionary conserved ribonuclease complex composed of nine structural
873 subunits (EXOSC1-9) and one catalytic subunit (DIS3) that form a “Cap” and “Core” ring-like structure. The 3-subunit
874 cap at the top of the complex is composed of EXOSC1/Csl4 (Human/*S. cerevisiae*), EXOSC2/Rrp4, and EXOSC3/Rrp40
875 (labeled 1-3). The 6-subunit Core is composed of EXOSC4/Rrp41, EXOSC5/Rrp46, EXOSC6/Mtr3, EXOSC7/Rrp42,
876 EXOSC8/Rrp43, and EXOSC9/Rrp45 (labeled 4-9). The DIS3/Dis3/Rrp44 catalytic subunit is located at the bottom of the
877 complex. Together the cap and core form a barrel-like structure through which RNA is threaded to the catalytic
878 DIS3/Dis3/Rrp44 subunit. Recent missense mutation in the gene encoding the EXOSC2 cap subunit (pink) have been
879 identified in patients presenting with multiple myeloma. (B) Structural models of the human nuclear RNA exosome (left)
880 [PDB 6D6R] (Weick *et al.* 2018) and the *S. cerevisiae* nuclear RNA exosome (right) [PDB 6FSZ] (Schuller *et al.* 2018)
881 are depicted with the cap subunit EXOSC2/Rrp4 labeled and colored in pink. (C) Domain structure of EXOSC2/Rrp4.
882 This cap subunit is composed of three domains: an N-terminal domain, a putative RNA binding S1 domain, and a C-
883 terminal putative RNA binding KH (K homology) domain. A conserved “GxNG” motif identified in the KH domain is
884 boxed in green (Oddone *et al.* 2007). The position of the disease-linked amino acid substitutions in human EXOSC2 are
885 depicted above the domain structures. The amino acid substitution (p.Met40Thr) we report in a multiple myeloma patient
886 is shown in red. An amino acid substitution (p.Gly198Asp) linked to SHRF is shown in blue (Di Donato *et al.* 2016).
887 Sequence alignments of EXOSC2/Rrp4 orthologs from *Homo sapiens* (*Hs*), *Mus musculus* (*Mm*) and *S. cerevisiae* (*Sc*)
888 below the domain structures show the highly conserved residues altered in disease in red and blue and the conserved
889 sequences flanking these residues in gray.

890

891 **Figure 2. Modeling the multiple myeloma EXOSC2 M40T amino acid substitution in the human EXOSC2 cap**
892 **subunit and the *S. cerevisiae* ortholog Rrp4.** (A) Structural modeling of the human EXOSC2 p.Met40Thr (M40T)
893 amino acid substitution identified in a patient with multiple myeloma (PDB 6D6R) (Weick *et al.* 2018). The full structure
894 of the human RNA exosome with the associated cofactor MTR4 (purple) is depicted with a zoomed-in representation of
895 the interface between EXOSC2 (pink) and MTR4. Modeling of the native EXOSC2 Met40 (M40) residue (left) or the
896 multiple myeloma-associated EXOSC2 Thr40 (T40) residue (right) is shown. The EXOSC2 Met40 residue is located in
897 the N-terminal domain of EXOSC2, within a conserved aliphatic interface with MTR4. EXOSC2 Met40 and MTR4

898 associate through hydrophobic interactions, which includes contacts with MTR4 Ile1014 (I1014). (B) Structural modeling
899 of the budding yeast Rrp4 Met68Thr (M68T) amino acid change, corresponding to EXOSC2 p.Met40Thr, in the budding
900 yeast RNA exosome (PDB 6FSZ) (Schuller *et al.* 2018). The full structure of the budding yeast RNA exosome complex
901 with the associated MTR4 ortholog, Mtr4 (purple), is depicted on the left. A zoomed-in representation of the interface
902 between Rrp4 (pink) and Mtr4 are shown, modeling the native Rrp4 Met68 (M68) residue (left) or the modeled multiple
903 myeloma associated substitution Rrp4 Thr68 (T68) residue (right). The Rrp4 Met68 residue is conserved between human
904 and yeast and is located in the N-terminal domain of Rrp4. Similar to EXOSC2 Met40, Rrp4 Met68, associates with the
905 helicase Mtr4 through primarily hydrophobic interactions, including contacts with several glycine residues in a
906 neighboring loop of Mtr4. Parts of the human nuclear cofactor protein MPP6/MPH6 (blue) and the budding yeast ortholog
907 Mpp6 (blue) are also resolved in the structures shown in (A) and (B). Both MPP6/MPH6 and Mpp6 aid in stabilizing the
908 interaction of the RNA helicase with the RNA exosome in addition to the direct interface made between EXOSC2 and
909 MTR4 in humans or Rrp4 and Mtr4 in budding yeast (Falk *et al.* 2017; Wasmuth *et al.* 2017).
910

911 **Figure 3. *S. cerevisiae rrp4-M68T* mutant cells that model the EXOSC2 M40T variant identified in multiple**
912 **myeloma patients show impaired function on drugs that impact RNA processing.** *S. cerevisiae* cells expressing Rrp4
913 variants that model the multiple myeloma amino acid change or, as a control, the previously characterized (Sterrett *et al.*
914 2021) SHRF-linked amino acid change found in EXOSC2 were generated as described in *Materials and Methods*. (A-B)
915 The *rrp4* Δ cells expressing only *RRP4* or mutant *rrp4* were serially diluted, spotted onto solid selective media grown at
916 the indicated temperatures or grown in liquid media at 37°C with optical density measurement used to assess cell density
917 over time. The doubling time of these cells grown in liquid media is quantified and graphed in (C). (D) The *rrp4* Δ cells
918 expressing either *RRP4* or *rrp4-M68T* were serially diluted, spotted onto solid selective media containing 25 μ M
919 fluorouracil (5-FU) and grown at the indicated temperatures. Images shown are after two days of growth. (E) The *rrp4* Δ
920 cells expressing only *RRP4* or *rrp4-M68T* were serially diluted and spotted onto solid YEPD media containing 3%
921 formamide, 150 mM hydroxyurea or 5 μ g/ml phleomycin and grown at 30°C. Images shown are after two days of growth.
922 In all assays performed, *rrp4-G226D* cells, previously reported to be severely impaired at 37°C, were included as a
923 control (Sterrett *et al.* 2021). Data shown are representative of three independent experiments (n = 3).
924

925 **Figure 4. The *rrp4-M68T* mutant cells show elevated levels of specific RNA exosome target transcripts that depend**
926 **on the Mtr4-RNA exosome interaction *in vivo*.** The steady-state level of several RNA exosome target transcripts was
927 assessed in *rrp4-M68T* cells (denoted in pink). The steady-state levels of these RNAs were also assessed in the previously
928 described *rrp4* variant *rrp4-G226D* as a control (denoted in gray). (A) The *rrp4-M68T* cells show an elevated steady-state
929 level of mature *TLC1* telomerase component ncRNA relative to *RRP4* cells. The steady-state level of the precursor *TLC1*
930 ncRNA in *rrp4-M68T* cells follows this upward trend though not statistically significant compared to *RRP4* cells. This
931 increase in both mature and precursor *TLC1* is also observed in *mtr4-1* (denoted in purple) compared to the wild-type
932 control *MTR4*. (B) The *rrp4-M68T* cells show an elevated steady-state level of 3'-extended pre-*U4* snRNA relative to
933 *RRP4* cells. The *rrp4-G226D* mutant cells and *mtr4-1* cells have an even higher steady-state levels of this pre-*U4* snRNA
934 when compared to the *RRP4* and *MTR4* controls, respectively. (C) The *rrp4-M68T* cells show an elevated steady-state
935 level of 3' extended *snR33* snoRNA relative to *RRP4* cells that is similar to the increase observed in the *rrp4-G226D*
936 mutant cells and *mtr4-1* cells. (D) The *rrp4-M68T* cells show a decreased steady-state level of the mRNA transcript *INO1*
937 compared to wild-type *RRP4* control cells. A decrease in this mRNA was shown previously in *rrp4-G226D* cells (Sterrett
938 *et al.* 2021). (E) The steady-state levels of non-coding, cryptic unstable transcripts, *CUT501*, *CUT770*, and *CUT896*, are
939 not significantly increased in *rrp4-M68T* cells compared to control as shown previously in the *rrp4-G226D* mutant cells
940 (Sterrett *et al.* 2021). In (A-E), total RNA was isolated from cells grown at 37°C and transcript levels were measured by
941 RT-qPCR using gene specific primers and graphed as described in *Materials and Methods*. Gene specific primer
942 sequences are summarized in Table S2. The location of primers specific to the ncRNA transcripts are graphically
943 represented by the cartoons above each bar graph. Within the cartoon transcript, the box represents the body of the mature
944 transcript. Error bars represent standard error of the mean from three biological replicates. Statistical significance of the
945 RNA levels in *rrp4* variant cells relative to *RRP4* cells and in the *mtr4-1* cells relative to *MTR4* cells is denoted by an
946 asterisk (**p*-value ≤ 0.05; ***p*-value ≤ 0.01, ****p*-value ≤ 0.001, *****p*-value ≤ 0.0001).

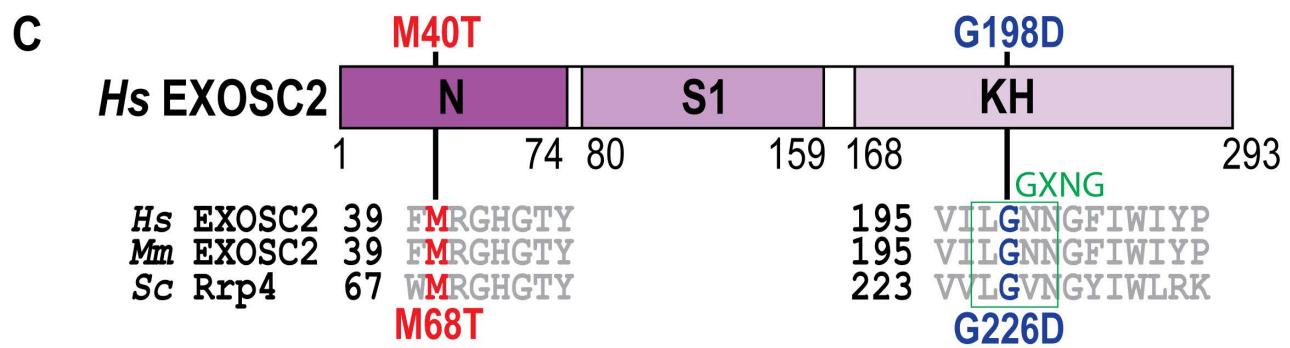
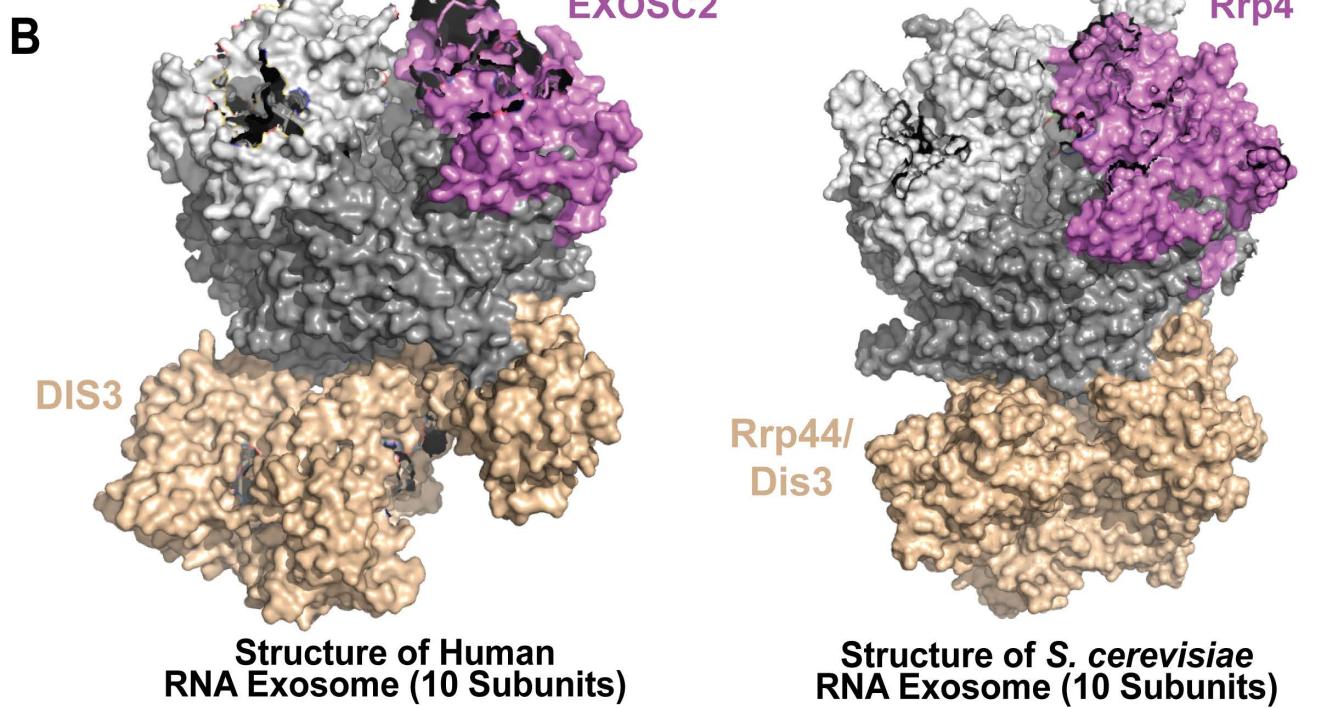
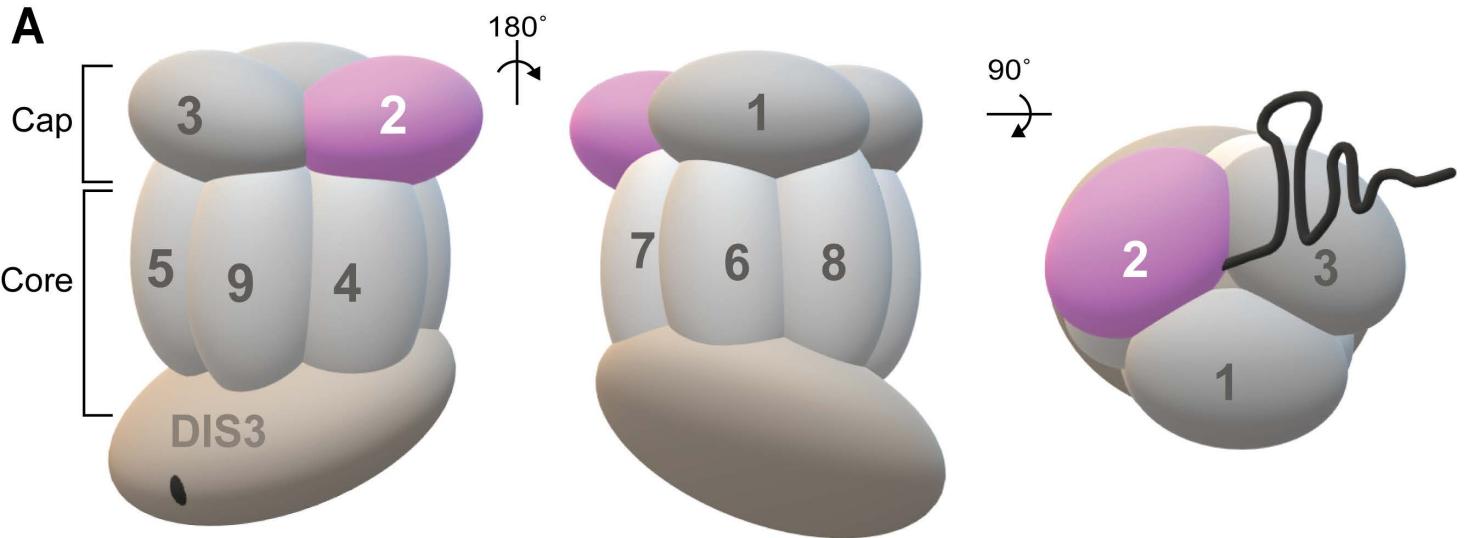
947
948 **Figure 5. The modeled multiple myeloma amino acid substitution in Rrp4 does not impact Rrp4 protein level or**
949 **association of the cap subunit with the RNA exosome complex.** (A) The steady-state level of the Rrp4 M68T protein
950 variant is equal to that of wild-type Rrp4 at both 30°C and 37°C. Lysates of *rrp4Δ* cells expressing Myc-tagged wild-type
951 Rrp4 or Rrp4 M68T grown at 30°C or 37°C were analyzed by immunoblotting with an anti-Myc antibody. An anti-Pgk1
952 antibody was used to detect 3-phosphoglycerate kinase (Pgk1) as a loading control. The mean percentage of Rrp4 M68T-

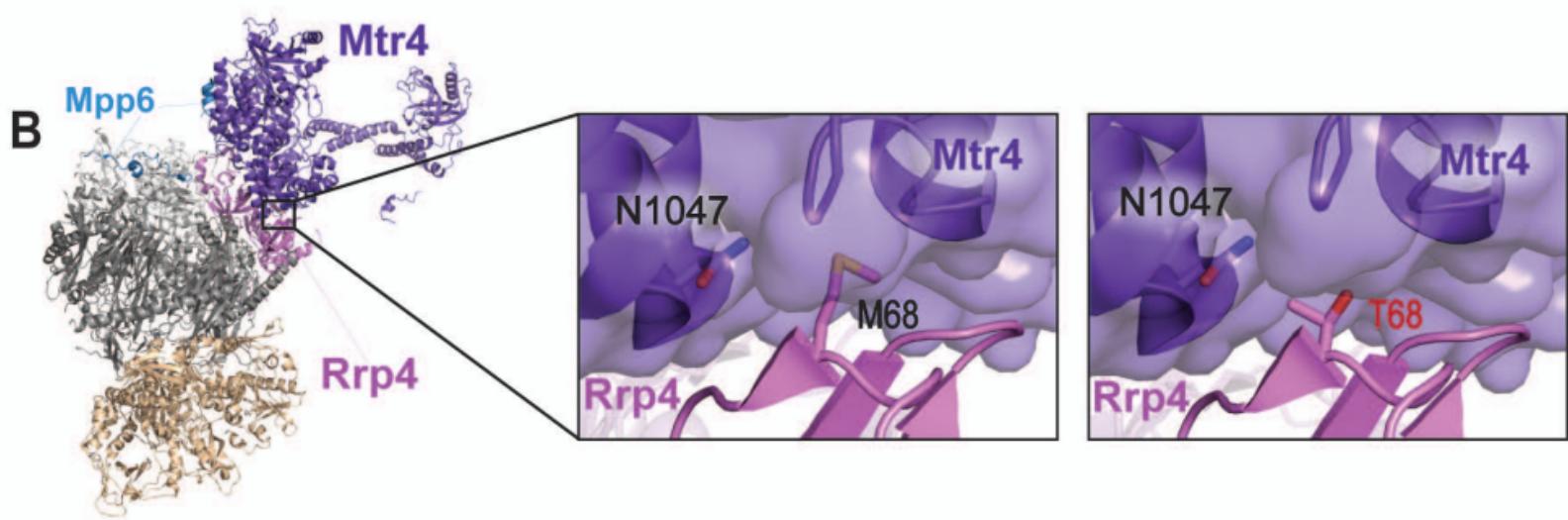
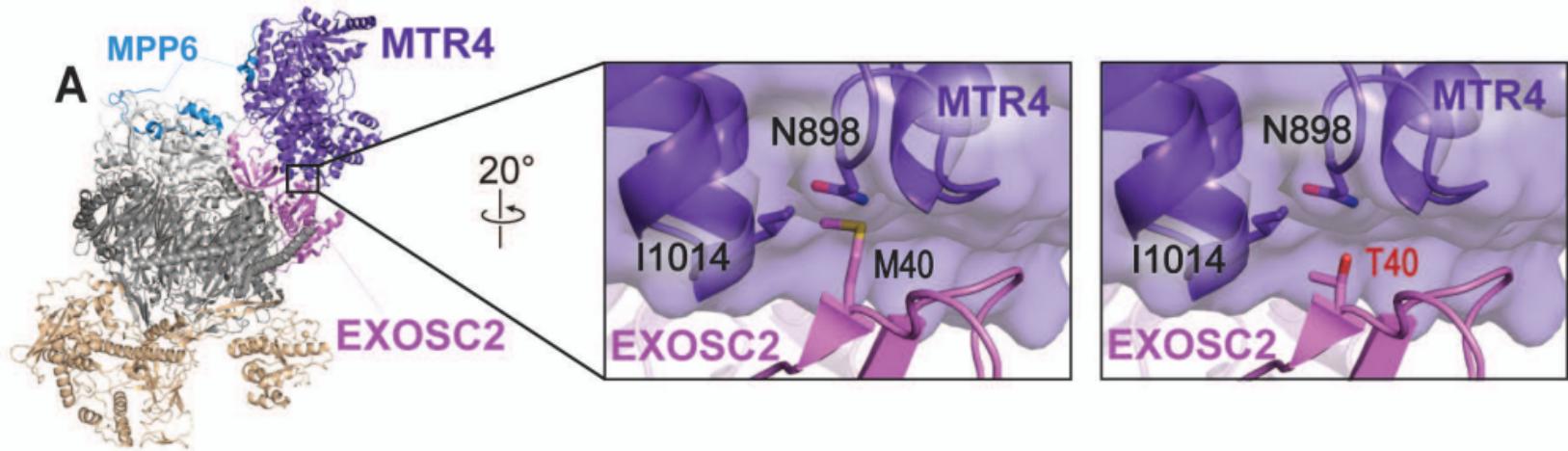
953 Myc normalized to Rrp4-Myc from four independent experiments (n = 4) is shown. Quantitation of the immunoblot was
954 performed as described in *Materials and Methods*. (B) The Rrp4 M68T variant co-precipitates with the RNA exosome
955 core subunit Rrp45 in the presence of a wild-type copy of Rrp4. Tandem affinity purification (TAP)-tagged Rrp45 was
956 immunoprecipitated from *RRP45-TAP* cells expressing endogenous, wild-type Rrp4 and co-expressing Myc-tagged Rrp4,
957 Rrp4 M68T, or, as a control, Rrp4 G226D grown at 30°C and bound (top) and input (bottom) samples were analyzed by
958 immunoblotting. As a control, immunoprecipitations were also performed from untagged *RRP45* cells (No TAP Control)
959 expressing Myc-tagged Rrp4 and Rrp4 variants. The bound/input level of Rrp4-Myc was detected with anti-Myc antibody
960 and bound/input level of Rrp45-TAP was detected with a peroxidase anti-peroxidase (PAP) antibody. Bound Rrp45-TAP
961 is also detected by the anti-Myc antibody as the Protein A moiety of the TAP tag binds to the antibody. The input level of
962 3-phosphoglycerate kinase (Pgk1) was detected with an anti-Pgk1 antibody and shown as a loading control. Data shown is
963 representative of three independent experiments (n = 3).

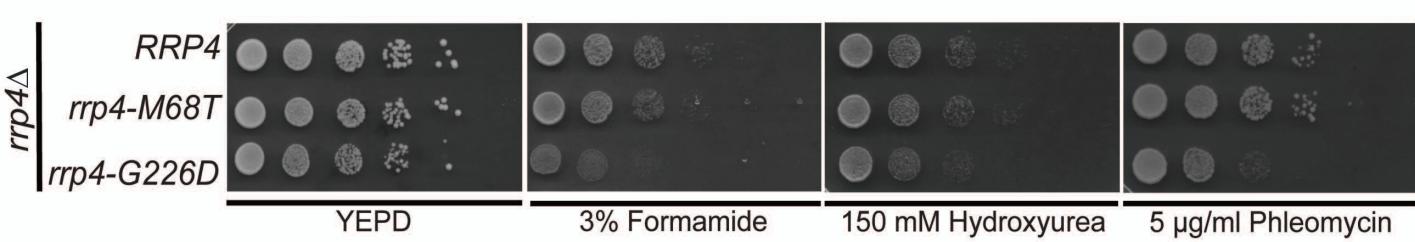
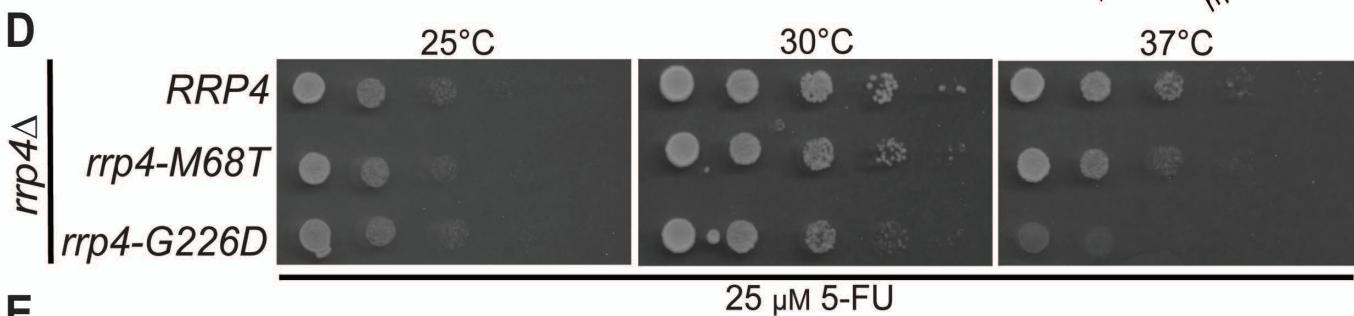
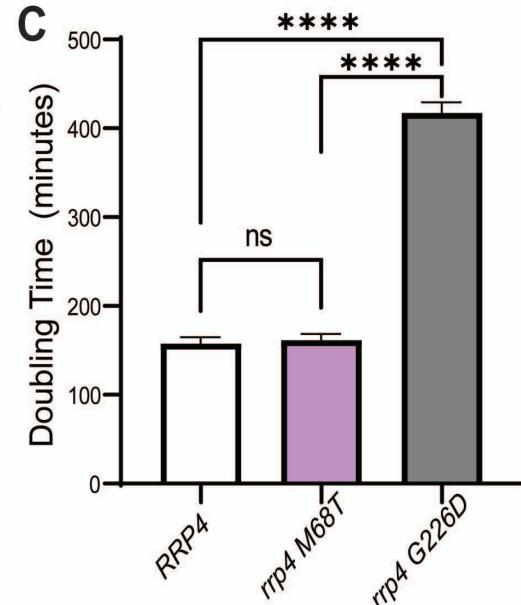
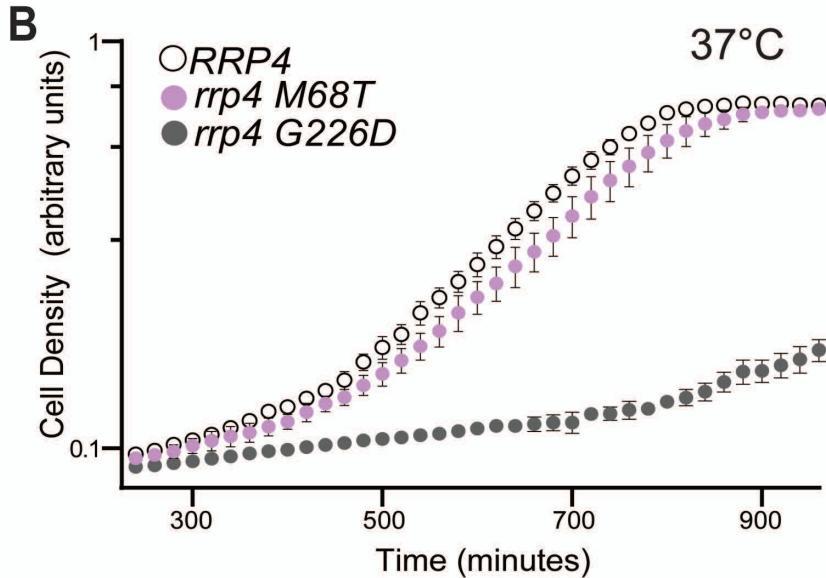
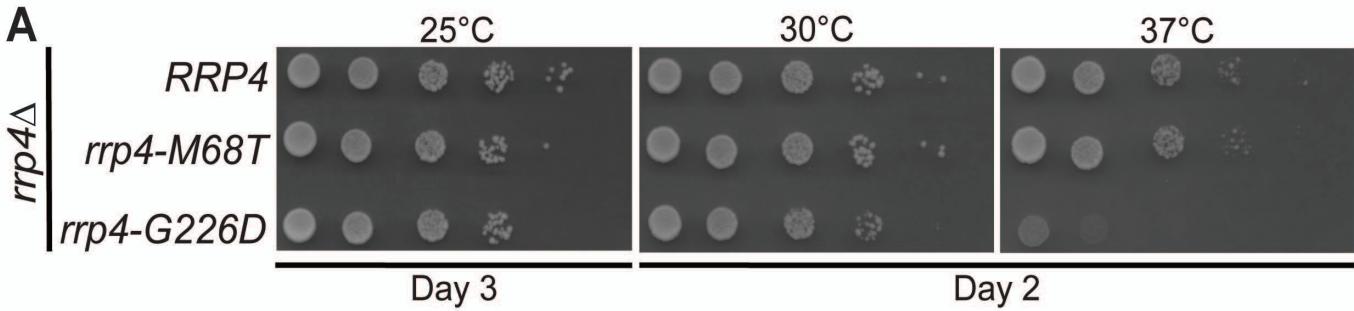
964

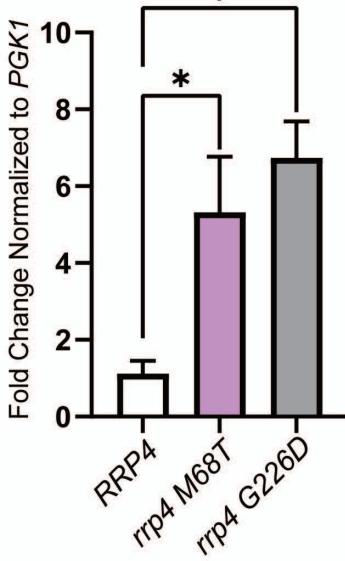
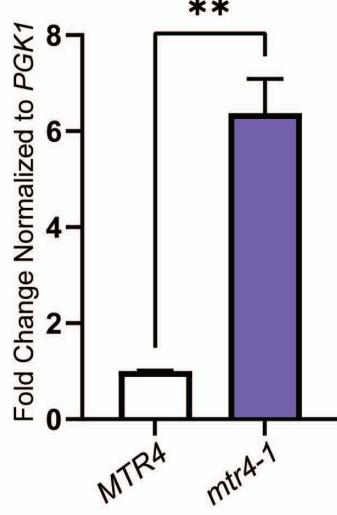
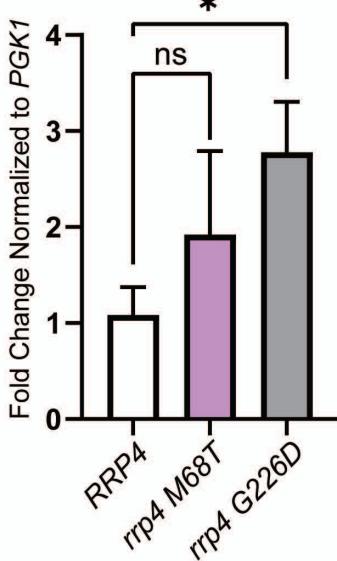
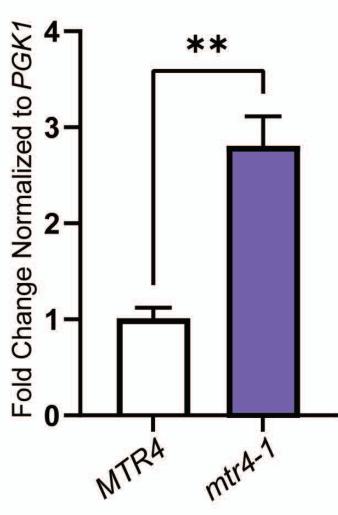
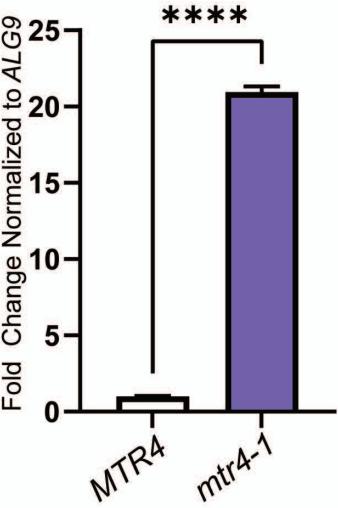
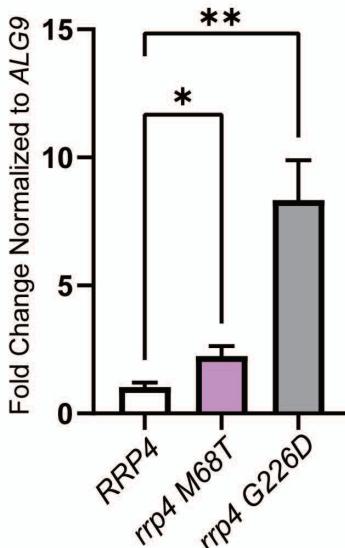
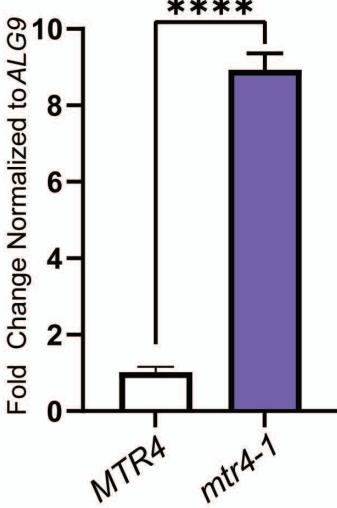
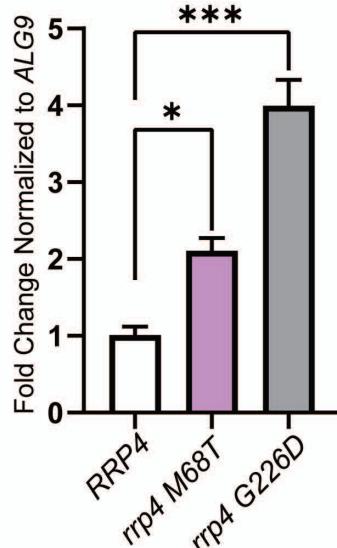
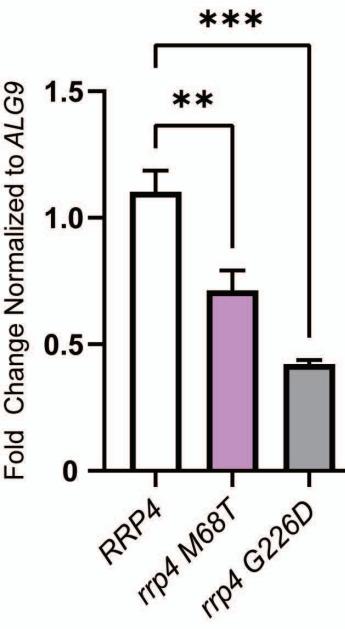
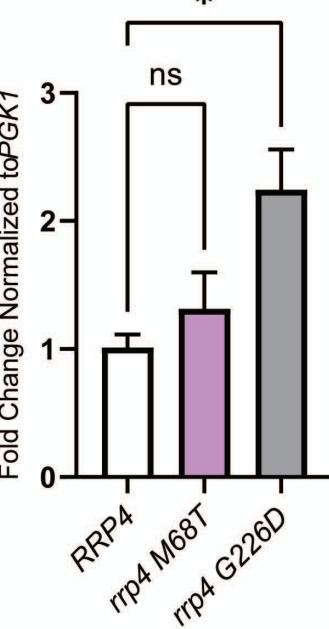
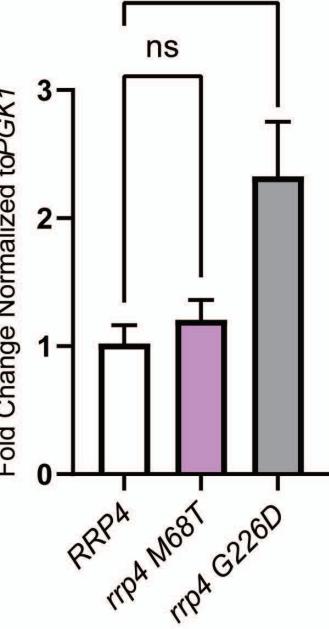
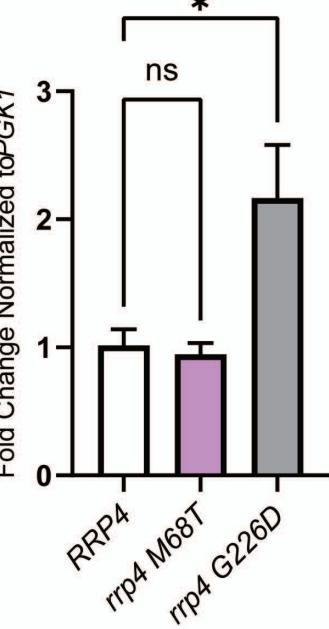
965 **Figure 6. The *rrp4-M68T* mutant cells show specific negative genetic interactions with *mtr4* mutants that are**
966 **predicted to impair the Trf4/5-Air1/2-Mtr4 (TRAMP) complex.** (A) Cartoon depicting the budding yeast nuclear RNA
967 exosome with interacting nuclear cofactors Mpp6 (turquoise) and Rrp47 (dark green), the exoribonuclease Rrp6 (light
968 green), and the essential RNA helicase, Mtr4 (purple) (Schuch *et al.* 2014; Falk *et al.* 2017; Schuller *et al.* 2018). The
969 association of Mtr4 with the RNA exosome is facilitated by interactions between Mtr4 and Rrp6/Rrp47 (denoted by the
970 red arrowed line) and by interactions with Mpp6 which is associated with the Rrp40 RNA exosome subunit and the Rrp4
971 subunit (Weir *et al.* 2010; Schuch *et al.* 2014; Wasmuth *et al.* 2017). The association of Mtr4 with the RNA exosome can
972 also facilitate interaction with the Trf4/5-Air1/2-Mtr4 polyadenylation (TRAMP) complex, which triggers degradation of
973 certain RNA targets by adding short oligo(A) tails to the 3' end of these targets and delivering them to the RNA exosome
974 (Houseley *et al.* 2006; Anderson and Wang 2009; Belair *et al.* 2018; Ogami *et al.* 2018). In addition to Mtr4, the TRAMP
975 complex is composed of a noncanonical poly(A) polymerase, Trf4/5, and a zinc-knuckle RNA binding protein, Air1/2
976 (Belair *et al.* 2018). Central to the degradation of TRAMP-targeted RNAs by the RNA exosome is the association of Mtr4
977 with Trf4/5, Air1/2 and the cap subunits and nuclear cofactors of the RNA exosome complex (Falk *et al.* 2014; Schuch *et*
978 *al.* 2014). (B) Domain structure for *S. cerevisiae* Mtr4. The helicase has a low-complexity N-terminal sequence followed
979 by the conserved helicase region. The helicase region is composed of two RecA domains and a helical domain (labeled
980 helical bundle) that form the globular core typical of DExH family proteins. The helical bundle was originally described

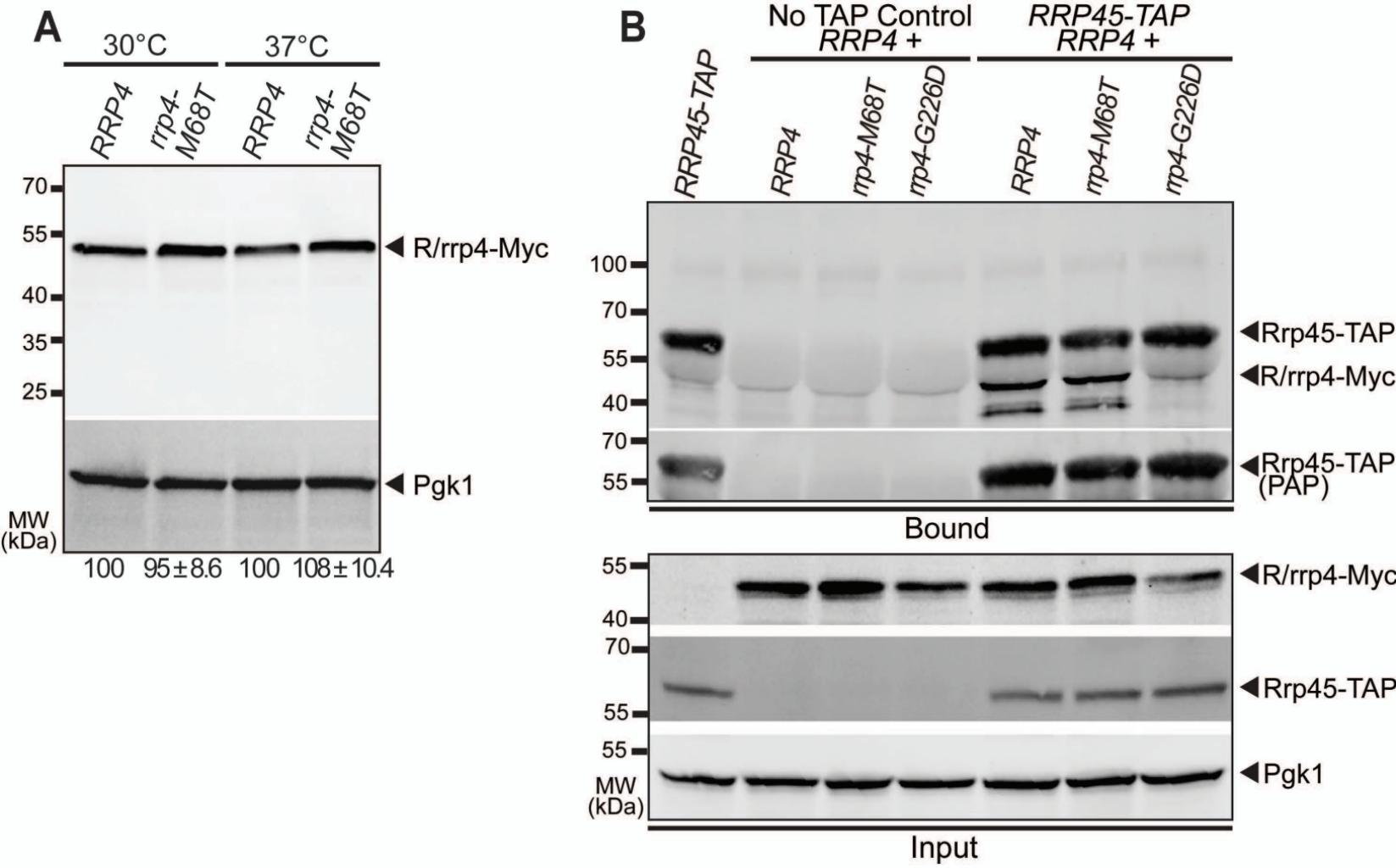
981 as the “ratchet” domain for its role in translocating nucleic acid by a Brownian ratchet (Büttner *et al.* 2007). In addition,
982 Mtr4 contains an insertion domain and KOW domain that fold into a helical stalk (labeled SK insertion) (Jackson *et al.*
983 2010; Weir *et al.* 2010). The amino acid changes used for this experiment are labeled in red along the domain structure.
984 (C) Double mutant cells containing *rrp4-M68T* and specific *mtr4* mutants show lethality at both 30°C and 37°C. The
985 *rrp4Δ mtr4Δ* double mutant cells were serially diluted, spotted onto solid media, and grown at the indicated temperatures
986 for 3 days. The *mtr4* mutant plasmids included in this experiment are as follows; *mtr4-1*—a temperature sensitive mutant
987 that contains a missense mutation resulting in the amino acid substitution Cys942Tyr, which causes accumulation of
988 poly(A)+ RNA in the nucleus at 37°C (Kadowaki *et al.* 1994; Kadowaki *et al.* 1995; Liang *et al.* 1996); *mtr4-F7A-*
989 *F10A*—an *mtr4* allele that impairs the interaction with Rrp6/Rrp47 (Schuch *et al.* 2014); *mtr4-R349E-N352E*—a mutation
990 that impairs the association of Mtr4 with the poly(A) RNA polymerase Trf4 with the Mtr4 helicase (Falk *et al.* 2014);
991 *mtr4R-1030A* and *mtr4-E1033W*—two mutations within the helical bundle that differentially impact nucleic acid
992 unwinding by Mtr4 (Taylor *et al.* 2014). *mtr4-1* mutant cells expressing *RRP4*, *rrp4-M68T* or *rrp4-G226D* show lethality
993 at 37°C presumably due to the known temperature sensitive nature of the *mtr4-1* allele (Liang *et al.* 1996). Growth of
994 double mutant cells containing *rrp4-M68T* or *rrp4-G226D* are shown. (D) Summary of *rrp4 mtr4* mutant cell growth.
995 Triplicate solid media assays were performed on double mutant cells containing *rrp4-M68T* or *rrp4-G226D* and the series
996 of *mtr4* variants. Cell growth at both 30°C and 37°C was semi-quantified on a scale of 0 (lethal; black) to 5 (comparable
997 to *RRP4* wild-type growth; white). Growth scale of the double mutant cells is represented through the color gradient on
998 the two heatmaps. All double mutant cells were generated as described in *Materials and Methods*.
999

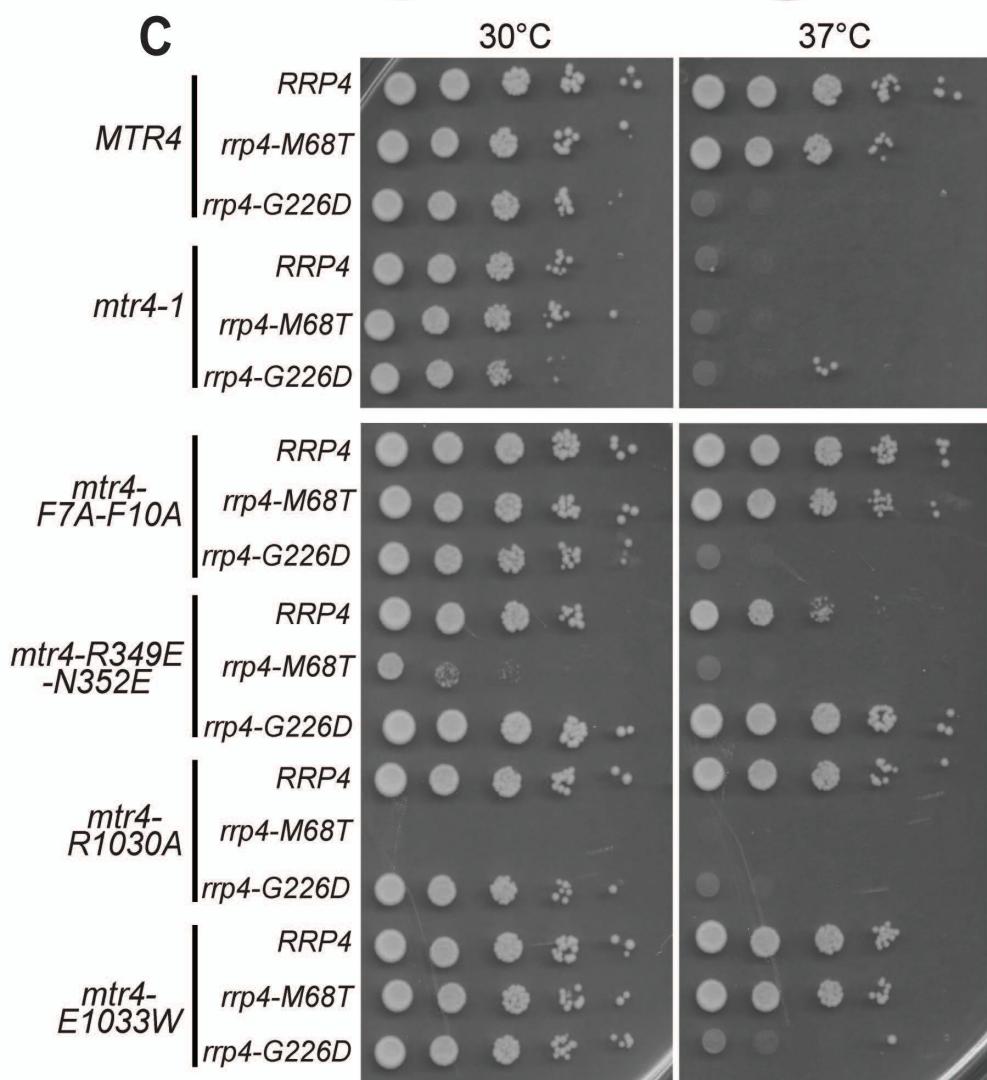
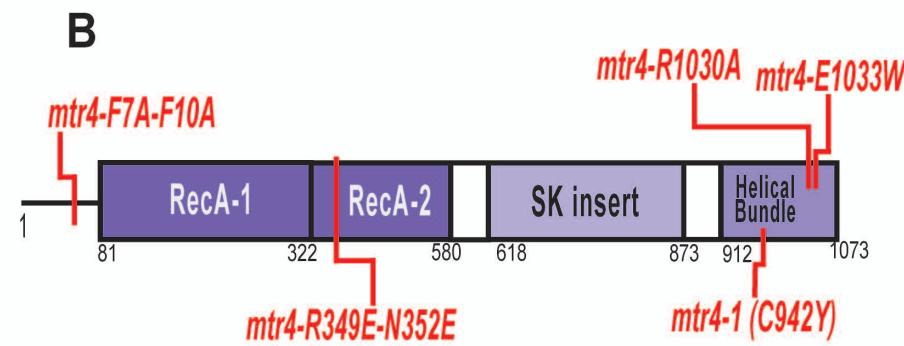
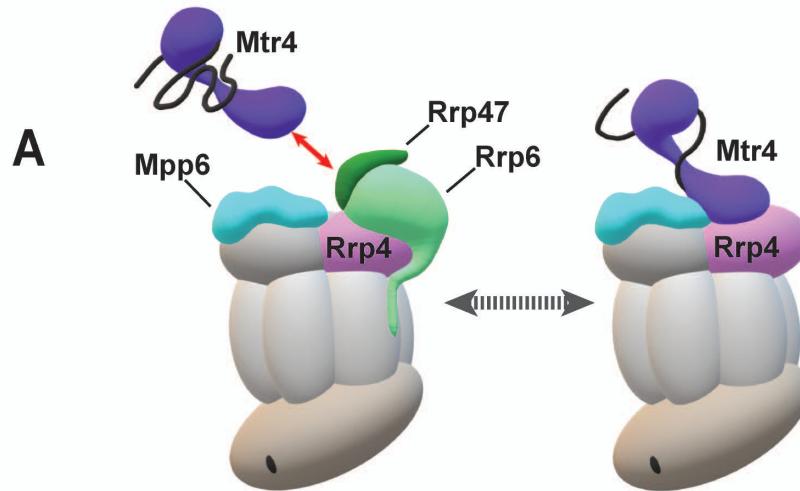



000 **Figure 7. The *rrp4-M68T mpp6Δ* double mutant cells exhibits impaired growth that is exacerbated on drugs that**
001 **impact RNA processing.** (A) Cartoon schematic of the budding yeast nuclear RNA exosome in complex with nuclear
002 cofactors Mpp6 (turquoise) and Rrp6/47 (light green/dark green) (Schuller *et al.* 2018). Serial dilution growth assays of
003 double mutant (B) *rrp4-M68T mpp6Δ* or (C) *rrp4-M68T rrp47Δ* cells at 30°C and 37°C. The double mutant cells (*rrp4Δ*
004 with *mp6Δ*, or *rrp47Δ*) containing control *RRP4* or *rrp4* variants *rrp4-M68T* and *rrp4-G226D* plasmids were serially
005 diluted, spotted onto selective solid media, and grown at the indicated temperatures for two days. The double mutant cells
006 *rrp4-G226D mpp6Δ* and *rrp4-G226D rrp47Δ* were included as a comparative control and show growth defects as
007 described previously (Sterrett *et al.* 2021). Data shown are representative of three independent assays (n = 3). (D) and (E)
008 Double mutant cells containing *rrp4-G226D* and *mp6Δ* exhibit a statistically significant increase in doubling time in

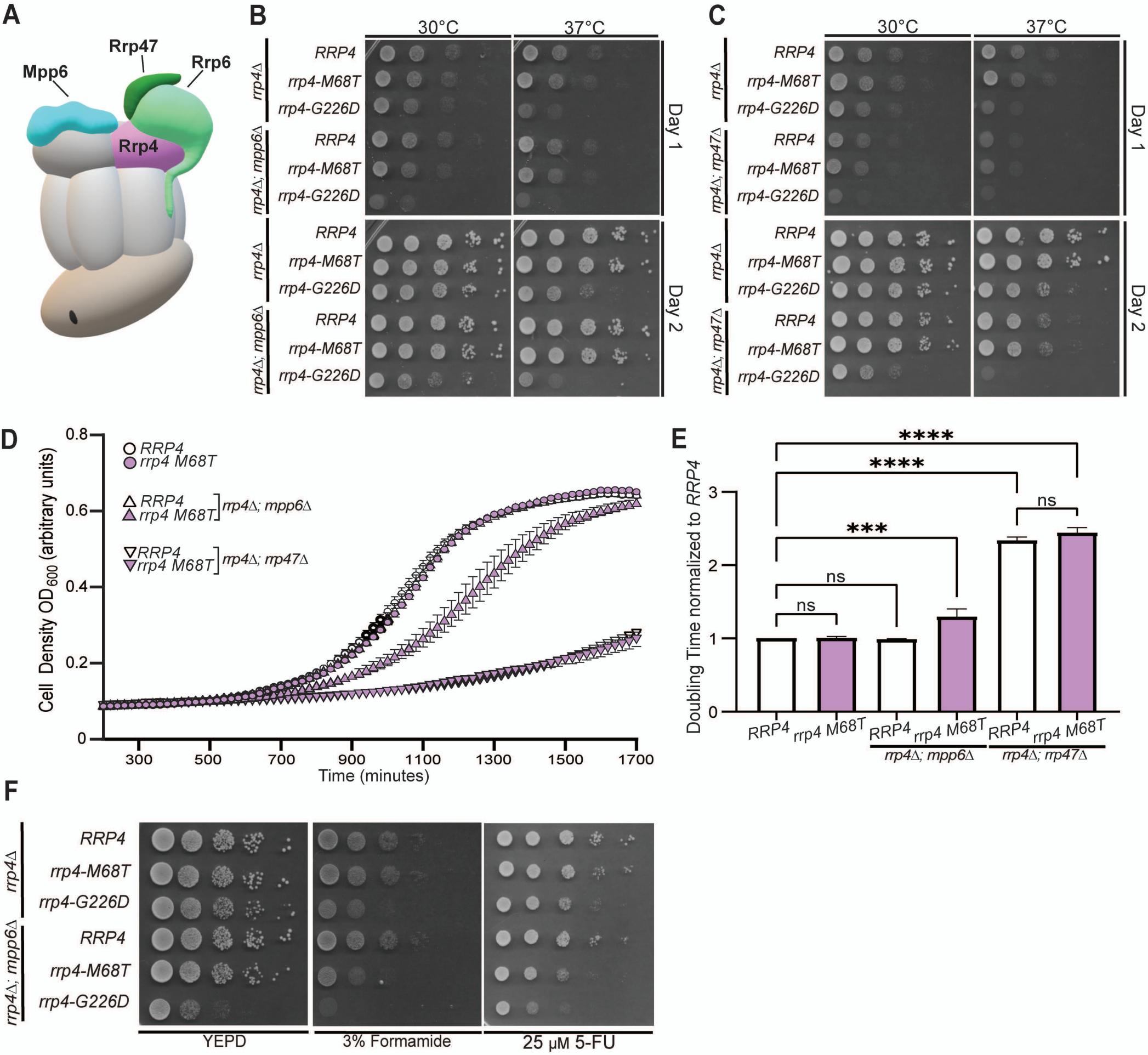


009 liquid culture. Double mutant cells (*rrp4Δ mpp6Δ* or *rrp4Δ rrp47Δ*) containing control *RRP4* or *rrp4-M68T* plasmids
010 were diluted in selective media and grown at 37°C with optical density measurements used to assess cell density over
011 time. Data shown is collected from four independent samples (n = 4). (E) Doubling time for each sample was quantified
012 and normalized to the growth rate of control *RRP4* cells. All calculations were performed as described in *Materials and*
013 *Methods*. Full liquid growth curves of both *rrp4-M68T mpp6Δ* and *rrp4-M68T rrp47Δ* mutant cells are shown in
014 Supplemental Figure S4. (F) Double mutant cells *rrp4-M68T mpp6Δ* exhibit impaired growth on solid media containing
015 drugs impacting RNA processing. The *rrp4Δ mpp6Δ* cells expressing *RRP4*, *rrp4-M68T* or *rrp4-G226D* were serially
016 diluted, spotted onto solid YEPD media containing 3% formamide or selective media containing 25 μM fluorouracil (5-
017 FU) and grown at 30°C for three days. The *rrp4-M68T mpp6Δ* cells show impaired growth when compared to *RRP4*
018 *mp6Δ* cells. The *rrp4-G226D mpp6Δ* cells show exacerbated growth defects on 3% formamide and 25 μM 5-FU at 30°C.
019 Data shown are representative of three independent assays (n = 3).






020













021


022



A *TLC1* ncRNA *TLC1* pre-ncRNA **B** 3' extended *U4* snRNA **C** 3' extended *snR33* snoRNA **D** *INO1* mRNA**E** *CUT501* ncRNA*CUT770* ncRNA*CUT896* ncRNA

