

1 **The *Plasmodium falciparum* apicoplast cysteine desulfurase provides sulfur for both iron**
2 **sulfur cluster assembly and tRNA modification**

3

4 **Russell P. Swift^{†1,2+}, Rubayet Elahi^{†1,2}, Krithika Rajaram^{1,2}, Hans B. Liu^{1,2}, Sean T.**
5 **Prigge^{1,2*}**

6

7 ¹ Department of Molecular Microbiology and Immunology, Johns Hopkins University,
8 Baltimore, Maryland, United States of America

9 ² The Johns Hopkins Malaria Research Institute, Baltimore, Maryland, United States of America

10

11 [†] Current address: Division of Biology and Biological Engineering, California Institute
12 of Technology, Pasadena, California, United States of America

13

14

15 **Contact information:**

16 rswift@caltech.edu (RPS)

17 aelahi3@jhmi.edu (RE)

18 krajara1@jhu.edu (KR)

19 hliu82@jhmi.edu (HBL)

20 sprigge2@jhu.edu (STP)*

21

22 [†]Equal contribution

23

24 Correspondence should be addressed to **STP (sprigge2@jhu.edu)**

25

26

27

28

29 **Abstract**

30 Iron sulfur clusters (FeS) are ancient and ubiquitous protein cofactors that play
31 fundamental roles in many aspects of cell biology. These cofactors cannot be scavenged or
32 trafficked within a cell and thus must be synthesized in any subcellular compartment where they
33 are required. We examined the FeS synthesis proteins found in the
34 relict plastid organelle, called the apicoplast, of the human malaria parasite *Plasmodium*
35 *falciparum*. Using a chemical bypass method, we deleted four of the FeS pathway proteins
36 involved in sulfur acquisition and cluster assembly and demonstrated that they are all essential
37 for parasite survival. However, the effect that these deletions had on the apicoplast organelle
38 differed. Deletion of the cysteine desulfurase SufS led to disruption of the apicoplast organelle
39 and loss of the organellar genome, whereas the other deletions did not affect organelle
40 maintenance. Ultimately, we discovered that the requirement of SufS for organelle maintenance
41 is not driven by its role in FeS biosynthesis, but rather, by its function in generating sulfur for use
42 by MnmA, a tRNA modifying enzyme that we localized to the apicoplast. By complementing the
43 activity of the parasite MnmA and SufS with a bacterial MnmA and its cognate cysteine
44 desulfurase, we showed that the parasite SufS provides sulfur for both FeS biosynthesis and
45 tRNA modification in the apicoplast. The dual role of parasite SufS is likely to be found in other
46 plastid-containing organisms and highlights the central role of this enzyme in plastid biology.

47

48

49

50

51 Key words: *Plasmodium*, MnmA, SufS, iron-sulfur cluster, tRNA modification

52 **Introduction**

53 Malaria parasites contain a relict plastid organelle called the apicoplast that is required
54 for its survival (Köhler et al., 1997; McFadden et al., 1996). The essentiality of this organelle and
55 the unique biochemical pathways within, such as iron-sulfur cluster (FeS), and isoprenoid
56 precursor biosynthetic pathways offers a potentially rich source of new antimalarial drug targets
57 (Ellis et al., 2001; Jomaa et al., 1999; Seeber, 2002). Since its discovery, several inhibitors
58 targeting these and other pathways have been described, supporting the assertion that this
59 organelle represents a viable source of novel drug targets (Botté et al., 2012; Dahl & Rosenthal,
60 2008; Ke et al., 2014; Shears et al., 2015).

61 FeS serve as cofactors for an array of proteins across kingdoms and are involved in a
62 myriad of biological functions, including electron transfer, sulfur donation, redox sensing, gene
63 expression, and translation (Blahut et al., 2020; Przybyla-Toscano et al., 2018; Rouault, 2019).
64 FeS cofactors are found in a variety of forms, most commonly in the rhombic 2Fe-2S or the
65 cubic 4Fe-4S forms and are typically bound to proteins through covalent bonds with cysteine
66 side chains (Beinert, 2000; Lill, 2009; Lu, 2018). In *Plasmodium falciparum*, FeS cofactors are
67 formed within the apicoplast by the sulfur utilization factor pathway (SUF), for use by FeS-
68 dependent proteins within the organelle (Charan et al., 2017; Gisselberg et al., 2013; Pala et al.,
69 2018; Swift et al., 2022), while the mitochondrion houses the iron-sulfur cluster formation (ISC)
70 pathway (Dellibovi-Ragheb et al., 2013; Gisselberg et al., 2013; Sadik et al., 2021). The ISC
71 pathway generates FeS for use by FeS-dependent proteins within the mitochondrion, in addition
72 to transferring a sulfur-containing moiety to the cytosolic iron-sulfur protein assembly (CIA)
73 machinery for FeS generation and transfer to cytosolic and nuclear proteins (Dellibovi-Ragheb et
74 al., 2013; Lill, 2009).

75 FeS biosynthesis is organized into three steps: sulfur acquisition, cluster assembly, and
76 cluster transfer (**Figure 1A**). The SUF pathway employs the cysteine desulfurase (SufS) to
77 mobilize sulfur from *L*-cysteine, resulting in a SufS-bound persulfide (Black & Santos, 2015b;
78 Loiseau et al., 2003; Ollagnier-de-Choudens et al., 2003). SufE can enhance the cysteine
79 desulfurase activity of SufS (Murthy et al., 2007; Outten et al., 2003; Pilon-Smits et al., 2002;
80 Wollers et al., 2010; Ye et al., 2006) and is also able to accept sulfur atoms from SufS and
81 transfer them to the SufBC₂D FeS assembly complex (Saini et al., 2010). The SufBC₂D complex
82 serves as a scaffold for cluster formation with the ATPase activity of SufC being essential for the
83 accumulation of iron from an unknown source (Bai et al., 2018; Hirabayashi et al., 2015; Saini et
84 al., 2010). Subsequently, assembled clusters are transferred to downstream target apoproteins by
85 transfer proteins such as SufA and NfuA (Chahal et al., 2009; Py et al., 2012).

86 In *Plasmodium*, all components of the SUF system are nuclear-encoded and trafficked to
87 the apicoplast, except SufB, which is encoded by the ~35 kb apicoplast organellar genome
88 (Wilson et al., 1996). The localization and activity of multiple components of the SUF pathway
89 from *Plasmodium* spp. have been confirmed, including the cysteine desulfurase activity of SufS,
90 its interaction with SufE and their localization to the apicoplast (Charan et al., 2014; Gisselberg
91 et al., 2013). *In vitro* studies demonstrated the ATPase activity of SufC and complex formation
92 by SufB, SufC, and SufD (Charan et al., 2017; Kumar et al., 2011). Similarly, the cluster transfer
93 proteins SufA and NfuApi (an ortholog of NufA) were shown to bind FeS cofactors and transfer
94 them to a model acceptor protein (Charan et al., 2017). In the apicoplast, the acceptor proteins
95 are presumably IspG and IspH (enzymes in the isoprenoid precursor biosynthesis pathway),
96 ferredoxin (Fd), LipA (lipoic acid synthase), and MiaB (tRNA methylthiotransferase)
97 (Gisselberg et al., 2013; Ralph et al., 2004; Swift et al., 2022).

98 The SUF pathway appears to be required for the development of mosquito-stage parasites
99 since conditional depletion of SufS blocks sporozoite maturation in *P. berghei* (Charan et al.,
100 2017). The essentiality of SUF pathway proteins in blood-stage parasites is less clear since
101 attempts to delete SufS, SufE, SufC, and SufD in *P. berghei*, were not successful (Haussig et al.,
102 2014). SufA and NfuApi are individually dispensable in blood-stage *P. falciparum* and *P.*
103 *berghei* (Haussig et al., 2013; Swift et al., 2022), but display synthetic lethality when both are
104 deleted (Swift et al., 2022). These results and the toxic effects of a dominant-negative SufC
105 mutant (Gisselberg et al., 2013) suggest that the SUF pathway is essential for blood-stage
106 parasites.

107 Blood-stage *P. falciparum* parasites can survive without an apicoplast as long as
108 sufficient isopentenyl pyrophosphate (IPP), a product of the apicoplast isoprenoid biosynthetic
109 pathway, is exogenously provided to the parasite (Yeh & DeRisi, 2011). Since this discovery, the
110 IPP chemical bypass system has been used to investigate the role and essentiality of numerous
111 apicoplast-specific proteins and pathways, including the SUF pathway (Gisselberg et al., 2013)
112 and FeS-dependent proteins in the apicoplast (Swift et al., 2022). In the work outlined here, we
113 determined the roles of SUF pathway proteins in an apicoplast metabolic bypass parasite line
114 containing a genetically-encoded isoprenoid precursor biosynthesis bypass pathway (Swift et al.,
115 2020). We found that SUF proteins involved in sulfur acquisition (SufS and SufE) and cluster
116 assembly (SufC and SufD) are all essential for parasite survival. Deletion of the cysteine
117 desulfurase SufS, however, resulted in loss of the apicoplast organelle and its organellar genome
118 whereas deletion of the other SUF proteins did not result in this phenotype. We hypothesized that
119 SufS is also responsible for providing sulfur for use by MnmA, a tRNA modifying enzyme. We
120 found that MnmA is located in the apicoplast and its loss results in the same apicoplast

121 disruption phenotype as observed for SufS. A series of complementation experiments using
122 *Bacillus subtilis* MnmA and its cognate cysteine desulfurase demonstrated that SufS is required
123 for both FeS synthesis and tRNA modification by MnmA, a novel paradigm that is likely to
124 apply to other plastid-containing organisms.

125

126 **Results**

127 **FeS assembly complex proteins SufC and SufD are essential for parasite survival, but are** 128 **not required for apicoplast maintenance**

129 In *P. falciparum*, FeS assembly is mediated by the SufBC₂D complex (Charan et al.,
130 2017). SufB is encoded by the apicoplast genome, while SufC (PF3D7_1413500) and SufD
131 (PF3D7_1103400) are encoded by the nuclear genome. Dominant negative experiments with
132 SufC suggested that the complex is essential for parasite survival (Gisselberg et al., 2013),
133 however, gene deletions have not been successful in any malaria parasite species. To investigate
134 the role of the FeS assembly complex, we targeted *sufC* and *sufD* in a metabolic bypass parasite
135 line (PfMev) under continuous mevalonate supplementation (**Figure 1- figure supplement 1**).
136 PfMev parasites synthesize IPP from exogenously provided mevalonate, enabling the disruption
137 of genes encoding essential apicoplast-specific proteins (Swift et al., 2020). We confirmed the
138 successful deletion of both *sufC* and *sufD* genes using genotyping PCR (**Figure 1B**). To
139 determine whether the deletion of *sufC* or *sufD* resulted in apicoplast disruption, we attempted to
140 amplify the apicoplast genome-encoded SufB from both the Δ *sufC* and Δ *sufD* parasite lines.
141 Both parasite lines contained the *sufB* gene, indicating retention of the apicoplast genome
142 (**Figure 1C**). We also observed intact apicoplast organelles, labeled by an apicoplast-localized
143 super-folder green protein reporter (api-SFG) (Swift et al., 2020), in these parasite lines by live

144 epifluorescence microscopy (**Figure 1D**). Despite the presence of intact apicoplast organelles,
145 both parasite lines required supplementation with exogenous mevalonate, demonstrating that
146 SufC and SufD are essential proteins (**Figure 1E**). Taken together, these results show that SufC
147 and SufD are essential for parasite survival, although neither protein is required for apicoplast
148 maintenance.

149 Since SufC and SufD are essential, it is likely that the SufBC₂D complex is essential.
150 Unfortunately, we cannot genetically modify the apicoplast genome-encoded SufB with any
151 available experimental techniques, but we can simultaneously delete both SufC and SufD to
152 remove the possibility of any type of complex forming with SufB. In *Escherichia coli*, pulldown
153 assays demonstrated that different types of FeS assembly complexes can be formed (SufBC₂D
154 and SufB₂C₂), which suggests that there may be some redundancy between complex proteins
155 (Saini et al., 2010; Yuda et al., 2017). We generated Δ sufC/sufD double knockout parasites in the
156 PfMev line, under continuous supplementation of mevalonate (**Figure 1F**). Consistent with the
157 phenotypes of the Δ sufC and Δ sufD parasite lines, Δ sufC/sufD parasites were also found to have
158 intact apicoplasts (**Figures 1G and 1H**) and were dependent on exogenous mevalonate
159 supplementation for survival (**Figure 1I**). Collectively, these findings demonstrate that while the
160 FeS assembly complex is essential for parasite survival, it is not required for apicoplast
161 maintenance.

162

163 **SufS is required for apicoplast maintenance while SufE is not**

164 We next investigated the sulfur acquisition steps of the SUF pathway upstream of SufC
165 and SufD. In the apicoplast of *P. falciparum*, SufS (PF3D7_0716600), along with its partner
166 SufE (PF3D7_0206100), mobilize sulfur from *L*-cysteine, with SufE transferring the sulfur to the

167 SufBC₂D complex (Gisselberg et al., 2013). The cysteine desulfurase activity of the *P.*
168 *falciparum* SufS has been confirmed biochemically (Charan et al., 2014) and through
169 complementation in *E. coli* (Gisselberg et al., 2013). It was also shown that the *P. falciparum*
170 SufE enhances the cysteine desulfurase activity of SufS by up to ~17-fold in an *in vitro*
171 biochemical assay (Charan et al., 2014). To disrupt sulfur acquisition in the SUF pathway, we
172 generated deletions of both *sufS* and *sufE* in the PfMev line (**Figure 2A**). In Δ *sufE* parasites, the
173 apicoplast remained intact as evidenced by successful PCR amplification of the *sufB* gene;
174 however, we were unable to amplify this gene from Δ *sufS* parasites (**Figure 2B**). Consistent with
175 the PCR results, we observed an intact apicoplast in Δ *sufE* parasites by live microscopy, while in
176 Δ *sufS* parasites we observed multiple discrete api-SFG labeled vesicles - a hallmark of apicoplast
177 organelle disruption (**Figure 2C**). Additionally, both parasite lines were dependent on
178 mevalonate for survival (**Figure 2D**). Taken together, these results indicate that both SufE and
179 SufS are required for parasite survival, but only SufS is required for apicoplast maintenance.
180

181 **MnmA is essential for apicoplast maintenance**

182 While SufS is required for apicoplast maintenance, none of the other SUF pathway
183 proteins or any of the FeS-dependent proteins in the apicoplast are required for this process
184 (Swift et al., 2022). This suggests that the reliance on sulfur for organelle maintenance is likely
185 driven by a different sulfur-dependent pathway. Several biochemical pathways require sulfur,
186 including those involved in the biosynthesis of thiamine, biotin, lipoic acid, molybdopterin, and
187 thio-modifications of tRNA (Hidese et al., 2011; Leimkühler et al., 2017; Mihara & Esaki,
188 2002). Of these pathways, we found that the biosynthesis of lipoic acid and tRNA thio-
189 modifications were the only ones that appeared to be present in *P. falciparum* with predicted

190 localization to the apicoplast (Ralph et al., 2004) (**Supplementary table 1**). In a recent study, we
191 showed that lipoic acid synthesis is dispensable (Swift et al., 2022), however, tRNA thiolation
192 has not been studied in malaria parasites. Based on sequence homology, *P. falciparum* parasites
193 appear to contain several enzymes capable of catalyzing tRNA thiolation reactions, but only one
194 appears to be a possible apicoplast protein. This protein (PF3D7_1019800) is currently annotated
195 as a tRNA methyltransferase (Aurrecoechea et al., 2008), but it shares 30% sequence identity
196 with an *E. coli* enzyme called MnmA (tRNA-specific 2-thiouridylase). MnmA inserts sulfur at
197 carbon-2 (C2) of uridine at position 34 (s^2 U34) of tRNA^{Lys}_{UUU}, tRNA^{Glu}_{UUC}, and tRNA^{Gln}_{UUG}
198 (Black & Santos, 2015a; Leimkühler et al., 2017; Shigi, 2014, 2018). *E. coli* MnmA receives
199 sulfur from a series of five sulfur transfer proteins, TusA/B/C/D/E (Black & Santos, 2015a;
200 Ikeuchi et al., 2006; Shigi, 2014), which ultimately acquire sulfur from the IscS cysteine
201 desulfurase, but cannot obtain sulfur from the *E. coli* SufS (Bühning et al., 2017). It is not clear
202 whether the apicoplast contains any orthologs of the Tus proteins, and the parasite IscS has
203 already been localized to the mitochondrion instead of the apicoplast in malaria parasites
204 (Gisselberg et al., 2013).

205 Multiple sequence alignments (MSA) of the putative *P. falciparum* MnmA (*Pf*MnmA)
206 with orthologs from *E. coli*, *Bacillus subtilis*, and *Saccharomyces cerevisiae* reveal that it has a
207 421 aa N-terminal extension (**Figure 3- figure supplement 1**), which is predicted to contain an
208 apicoplast transit peptide (Foth et al., 2003; Ralph et al., 2004). MSA also demonstrates that the
209 *Pf*MnmA has conserved catalytic cysteines as well as a highly conserved ATP-binding PP-loop
210 motif (SGGXDS) (**Figure 3A, Figure 3- figure supplement 1**) (Numata et al., 2006; Shigi et al.,
211 2020). This PP-loop motif activates the C2 of nucleotide U34 of the target tRNA by adenylation
212 in an ATP-dependent manner (Mueller, 2006; Numata et al., 2006). The first catalytic cysteine

213 receives sulfur generating an MnmA-persulfide, while the second catalytic cysteine releases the
214 sulfur from the adduct and transfers it to the activated U34 (Čavužić & Liu, 2017; Shigi et al.,
215 2020). Other pathogenic apicomplexans also seem to have an ortholog of MnmA with the
216 conserved cysteines and domains (**Figure 3- figure supplement 2**) and a putative MnmA from
217 *Toxoplasma gondii* has recently been described (Yang et al., 2022).

218 To validate the predicted apicoplast localization of the putative *Pf* MnmA, we generated a
219 parasite line with two C-terminal FLAG tags in tandem appended to the endogenous *Pf* MnmA
220 (**Figure 3B, 3C, 3D, Figure 3- figure supplement 3**). This parasite line, *mnmA*-flag, also
221 contains an aptamer array in the 3' untranslated region (UTR) of *mnmA* to use with the TetR-
222 DOZI system (Ganesan et al., 2016; Rajaram et al., 2020) for inducible control over protein
223 production (**Figure 3B**). We showed that FLAG-tagged *Pf* MnmA colocalizes with the
224 apicoplast marker protein, acyl carrier protein (ACP) by immunofluorescence (Manders'
225 coefficient, M1 = 0.818, standard deviation = ± 0.187 , n = 22), confirming *Pf* MnmA localization
226 to the apicoplast (**Figure 3E**). We next attempted to knock down *Pf* MnmA using the TetR-
227 DOZI system in the *mnmA*-flag parasite line (**Figure 3- figure supplement 4A**). We monitored
228 parasite growth in control (aTc added) and knockdown (aTc removed) conditions over eight
229 days. From day five onwards, the parasites showed a significant growth defect under the
230 knockdown condition (**Figure 3F**). When parasites in the knockdown condition were
231 supplemented with mevalonate (rescue), the parasites grew similarly to parasites under the
232 control condition (**Figure 3F**), further confirming the apicoplast-associated activity of *Pf* MnmA.
233 During the growth assay, we also assessed the apicoplast morphology of parasites under control
234 and knockdown conditions via live epifluorescence microscopy every 48 h. We started to
235 observe multiple discrete api-SFG labeled vesicles at day four following aTc removal (**Figure**

236 **3G, Figure 3- figure supplement 4B**), indicative of apicoplast disruption. At this point, about
237 ~70% of parasites contained an intact apicoplast. By day eight, only ~25% of parasites had an
238 intact apicoplast. Significant growth defects and disruption of the apicoplast following knock
239 down of *PfMnmA* suggests that *PfMnmA* is essential for parasite survival and apicoplast
240 maintenance. To further confirm these findings, we deleted the *mnmA* gene through Cas9-
241 mediated genome editing in PfMev parasites under continuous mevalonate supplementation
242 (**Figure 3I**). The deletion of *mnmA* resulted in apicoplast disruption, as evidenced by the
243 inability to detect the apicoplast genome encoded *sufB* gene (**Figure 3J**) and the presence of
244 multiple discrete vesicles labeled by api-SFG (**Figure 3K**). Additionally, $\Delta mnmA$ parasites were
245 dependent on exogenous mevalonate supplementation for survival (**Figure 3L**). Overall, these
246 results demonstrate that *PfMnmA* is required for both apicoplast maintenance and parasite
247 survival.

248

249 ***B. subtilis* MnmA and YrvO can be expressed in the *P. falciparum* apicoplast**

250 In *E. coli*, s^2U biosynthesis starts with the acquisition of sulfur from *L*-cysteine by the
251 cysteine desulfurase IscS, which then relays the sulfur via the five proteins of the Tus system
252 (TusABCDE) to MnmA (Black & Santos, 2015a; Ikeuchi et al., 2006; Outten et al., 2003; Shigi,
253 2014). MnmA then uses that sulfur to modify the target tRNAs at the U34 position in an ATP-
254 dependent manner (Mueller, 2006; Numata et al., 2006). Not all bacteria contain IscS or the Tus
255 system to relay sulfur to MnmA. In *B. subtilis* for example, a specialized cysteine desulfurase,
256 YrvO, provides sulfur directly to MnmA (Black & Santos, 2015a). Although there are four
257 different cysteine desulfurases (all four are SufS paralogs) present in *B. subtilis*, both *in vivo*
258 complementation and *in vitro* biochemical studies established that YrvO is the sulfur source for

259 the s²U modification catalyzed by MnmA (Black & Santos, 2015a). To clarify the role of MnmA
260 in *P. falciparum*, we attempted to complement *Pf* MnmA with the *B. subtilis* (*Bs*) MnmA in
261 *PfMev*^{attB} parasites (Swift et al., 2021), through knock-in via mycobacteriophage integrase-
262 mediated recombination (**Figure 4- figure supplement 1**) (Spalding et al., 2010). This parasite
263 line is hereafter referred to as *bsmnmA*⁺. *Bs* MnmA might not be functional in *P. falciparum* in
264 the absence of its cognate cysteine desulfurase, *Bs* YrvO, as previously demonstrated in *E. coli*
265 (Black & Santos, 2015a). To address this possibility, we also generated a parasite line expressing
266 a *Bs* MnmA-YrvO fusion protein (*bsmnmA-yrvO*⁺) (**Figure 4- figure supplement 2**) using the
267 same knock-in method.

268 The *bsmnmA* and *bsmnmA-yrvO* expression cassettes encode a conditional localization
269 domain (CLD) at the protein N-terminus for inducible control over protein localization (Roberts
270 et al., 2019) and contain an mCherry tag on the C-terminus for visualization by live cell
271 fluorescence (**Figure 4A**). The CLD directs the tagged protein to the apicoplast, but following
272 the addition of the ligand, *Shield1*, the tagged protein is redirected to the parasitophorous vacuole
273 (Roberts et al., 2019). An aptamer array was also included at the 3' UTR of these genes, for use
274 with the TetR-DOZI system (Ganesan et al., 2016; Rajaram et al., 2020) (**Figure 4A**). We
275 successfully generated both knock-in lines (**Figure 4B**). Live epifluorescence microscopy for
276 both lines showed that *Bs* MnmA and *Bs* MnmA-YrvO proteins are trafficked to the apicoplast,
277 as evidenced by the colocalization of the mCherry signal with the apicoplast api-SFG signal
278 (**Figure 4C**; Manders' coefficient, M1 of *bsmnmA*⁺ = 0.757, standard deviation = ± 0.155, n =
279 14; M1 of *bsmnmA-yrvO*⁺ = 0.740, standard deviation = ± 0.142, n = 15). Taken together, these
280 results show that *Bs* MnmA and *Bs* MnmA-YrvO can be expressed in the apicoplast of *P.*
281 *falciparum*.

282

283 **Bs MnmA-YrvO fusion protein can complement the loss of parasite MnmA**

284 We used *bsmnmA-yrvO*⁺ parasites to investigate whether loss of *Pf* MnmA can be
285 complemented by the *Bs* MnmA-YrvO fusion protein. We employed the same gRNA and repair
286 construct used in the experiment described in **Figure 3** to delete *pfmnmA* in the *bsmnmA-yrvO*⁺
287 parasites. In repeated independent transfection experiments, we successfully generated *bsmnmA-*
288 *yrvO*⁺ Δ *mnmA* parasites (**Figure 5A, Supplementary table 2**). These parasites were mevalonate
289 independent (**Figure 5B**) and possessed intact apicoplasts (**Figure 5C, 5D**), suggesting
290 complementation of *Pf* MnmA activity with *Bs* MnmA-YrvO fusion protein activity.
291 Additionally, the expression and apicoplast localization of *Bs* MnmA-YrvO fusion protein was
292 also confirmed via live epifluorescence microscopy (**Figure 5D**).

293 To demonstrate complementation of *Pf* MnmA with *Bs* MnmA-YrvO fusion protein more
294 conclusively, we next attempted to knock down *Bs* MnmA-YrvO in the *bsmnmA-yrvO*⁺ Δ *mnmA*
295 parasite line by utilizing the TetR-DOZI and CLD systems (**Figure 4A**). We monitored the
296 growth of *bsmnmA-yrvO*⁺ Δ *mnmA* parasites under permissive (aTc added, *Shield1* removed) and
297 non-permissive conditions (aTc removed, *Shield1* added) for eight days. Under the non-
298 permissive condition, the *bsmnmA-yrvO*⁺ Δ *mnmA* parasites showed a significant growth defect
299 from day four onwards (**Figure 5E**). Live epifluorescence microscopy on day eight revealed that
300 parasites grown under the non-permissive condition exhibited a disrupted apicoplast phenotype
301 (**Figure 5F, Figure 5- figure supplement 1**). This conclusively shows that the *Bs* MnmA-YrvO
302 fusion protein is required to maintain the integrity of the apicoplast organelle after deletion of *Pf*
303 MnmA.

304

305 ***B. subtilis* MnmA alone can complement the loss of parasite MnmA**

306 The results from the previous section showed that *Pf* MnmA can be complemented by the
307 *Bs* MnmA-YrvO fusion protein. However, whether *Bs* MnmA alone can complement *Pf* MnmA,
308 without its cognate cysteine desulfurase, *Bs* YrvO, was not clear. To this end, we attempted to
309 delete *pfmnmA* in the *bsmnmA*⁺ parasite line. Only one out of four attempts to generate a
310 *bsmnmA*⁺ Δ *mnmA* line was successful (**Figure 6A, Supplementary table 2**). These parasites
311 were mevalonate independent (**Figure 6B**) and possessed intact apicoplasts (**Figure 6C, 6D**),
312 replicating the same phenotype as observed for *Bs* MnmA-YrvO complementation (**Figure 5B**,
313 **5C**, and **5D**). These results suggested that *Bs* MnmA alone was successful in complementing *Pf*
314 MnmA. Next, we attempted to knock down *Bs* MnmA in the *bsmnmA*⁺ Δ *mnmA* parasite line
315 using the TetR-DOZI and CLD systems. We monitored the growth of *bsmnmA*⁺ Δ *mnmA*
316 parasites under permissive and non-permissive conditions for eight days. These parasites showed
317 significant growth inhibition under the non-permissive condition from day three onwards
318 (**Figure 6E**). Live epifluorescence microscopy of parasites cultured under the non-permissive
319 condition showed a disrupted apicoplast on day eight (**Figure 6F, Figure 6- figure supplement**
320 **1**). These results conclusively show that complementation of Δ *mnmA* parasites with *Bs* MnmA
321 can maintain the integrity of the organelle. These results also suggest that *Bs* MnmA is likely
322 capable of receiving sulfur from the endogenous parasite cysteine desulfurase, SufS, which is
323 critical for its function in the thiolation of target tRNAs.

324

325 ***P. falciparum* SufS provides sulfur for both FeS synthesis and tRNA thiolation**

326 Deletion of *sufS* resulted in a disrupted apicoplast mevalonate-dependent phenotype
327 (**Figure 2**). However, deletion of other SUF pathway components (**Figure 1, 2**) resulted in an

328 intact apicoplast mevalonate-dependent phenotype. These findings led us to hypothesize that
329 mevalonate-dependence results from loss of FeS cofactors needed for isoprenoid synthesis (Swift
330 et al., 2022), while apicoplast disruption results from loss of sulfur needed for tRNA
331 modification. By successfully complementing *Pf* MnmA with *Bs* MnmA we demonstrated that
332 *Pf* MnmA has the same enzymatic activity as the well-characterized bacterial enzyme, and that
333 this activity is essential for parasite survival and apicoplast maintenance (**Figure 5, 6**). However,
334 the complementation experiments in **Figures 5** and **6** did not provide any direct evidence that *Pf*
335 MnmA is reliant on sulfur generated from the endogenous SufS for use in tRNA modification.
336 To probe whether SufS provides sulfur to *Pf* MnmA, we used the *bsmnmA-yrvO*⁺ parasite line.
337 In these parasites, we attempted to delete *sufS* with continuous supplementation of mevalonate.
338 We expected to obtain a parasite line with intact apicoplasts and a mevalonate-dependent
339 phenotype (**Figure 7A**), which would suggest that sulfur acquired by *Bs* YrvO is only transferred
340 to MnmA but not to the components of the parasite SUF pathway. We were successful in
341 generating the *bsmnmA-yrvO*⁺ Δ *sufS* parasite line in the presence of mevalonate (**Figure 7B**). As
342 anticipated, these parasites retained intact apicoplasts as confirmed by both PCR and live
343 epifluorescence microscopy (**Figure 7C, 7D**). These parasites rely on mevalonate for growth
344 (**Figure 7E**). Collectively, these results suggest that the parasite SufS provides sulfur for both the
345 SUF pathway and MnmA-mediated tRNA modifications.

346

347 **Discussion**

348 A recent survey of *P. falciparum* apicoplast proteins found that five proteins are known
349 or predicted to rely on FeS cofactors (Swift et al., 2022). Three of these proteins were found to
350 be essential for the growth of blood-stage parasites due to their roles in supporting the MEP

351 isoprenoid precursor pathway (Akuh et al., 2022; Swift et al., 2022). These essential proteins
352 could be deleted in PfMev parasites without a noticeable growth defect or loss of the apicoplast
353 organelle as long as the cultures were supplemented with mevalonate. These results implied that
354 the SUF pathway of FeS synthesis would also be essential for parasite growth and that deletion
355 of SUF pathway proteins would not result in loss of the apicoplast. In general, this has proven to
356 be the case with the deletion of SufE, SufC, and SufD. Deletion of SufS, however, led to
357 apicoplast disruption and indicated that this enzyme plays another essential role in parasite
358 biology. Similar to what we observed in *P. falciparum*, deletion of SufS in *T. gondii* also leads to
359 loss of the apicoplast organelle and parasite death (Pamukcu et al., 2021). Conditional deletion of
360 SufS in the murine malaria parasite *P. berghei* demonstrated that this enzyme is essential for the
361 development of mosquito-stage parasites, although the status of the apicoplast was not reported
362 in this study (Charan et al., 2017). Taken together, these studies suggest that SufS plays a central
363 role in apicoplast biology in other parasite species and other stages of parasite development.

364 The phenotype of the SufC deletion line contrasts with a previous study using a dominant
365 negative SufC mutant. *In vitro* studies showed that *P. falciparum* SufC participates in a SufBC₂D
366 complex that hydrolyzes ATP and can form FeS cofactors (Charan et al., 2017; Kumar et al.,
367 2011). The ATPase activity of SufC is thought to provide energy to drive conformation changes
368 to the entire SufBC₂D complex required for iron binding and FeS assembly (Bai et al., 2018;
369 Hirabayashi et al., 2015; Yuda et al., 2017). In *E. coli*, SufC and SufD are essential for SUF
370 pathway activity and acquire iron for FeS assembly; loss of either protein results in reduced iron
371 content in the complex (Saini et al., 2010) and the same may be true for the parasite proteins. We
372 generated Δ sufC, Δ sufD, and Δ sufC/sufD lines and found that sufC and sufD are essential for
373 parasite survival, but we did not observe an apicoplast disruption phenotype in these deletion

374 lines (**Figure 1**). This finding conflicted with previous results showing that expression of a SufC
375 mutant (K140A) lacking ATPase activity functions as a dominant negative and leads to
376 disruption of the apicoplast (Gisselberg et al., 2013). Several factors could be responsible for the
377 apicoplast-disruption phenotype resulting from expression of SufC (K140A). In other organisms,
378 the intact SufBC₂D complex enhances SufS desulfurase activity (Hu, Kato, et al., 2017; Hu,
379 Page, et al., 2017; Outten et al., 2003; Wollers et al., 2010) potentially leading to accumulation
380 of toxic S⁻² if non-functional SufC (K140A) blocks further sulfur utilization. Alternatively,
381 dominant negative SufC could lead to dysfunctional iron homeostasis. ATP binding to SufC
382 elicits a conformational change in the SufBC₂D complex, exposing sites required for iron
383 binding and enabling the formation of nascent clusters (Bai et al., 2018; Hirabayashi et al., 2015;
384 Yuda et al., 2017). The dominant negative mutant SufC should be able to bind ATP, but not
385 hydrolyze it, locking the SufBC₂D complex in an open position and exposing these sites to the
386 environment. Exposure and release of iron could lead to oxidative damage and loss of the
387 organelle.

388 Gene deletion studies exposed different roles for the two proteins (SufE and SufS)
389 involved in sulfur acquisition. We found that both SufE and SufS are required for parasite
390 survival, however, only SufS is required for apicoplast maintenance (**Figure 2, 8A, 8B, 8C**).
391 These phenotypes make sense if SufE is required for FeS synthesis but not for tRNA thiolation.
392 In other organisms, SufE has been shown to be capable of enhancing the cysteine desulfurase
393 activity of SufS (Murthy et al., 2007; Outten et al., 2003; Pilon-Smits et al., 2002; Wollers et al.,
394 2010; Ye et al., 2006) and this appears to be the case with the *P. falciparum* proteins with ~17-
395 fold rate enhancement reported (Charan et al., 2014). SufE proteins also facilitate the transfer of
396 sulfur to the SufBC₂D complex, but SufS enzymes can often transfer sulfur directly to the

397 complex as is presumably the case in organisms lacking SufE (Huet et al., 2005). The
398 requirement for SufE in *P. falciparum* suggests that either SufS desulfurase activity or SufS
399 sulfur transfer activity (to the SufBC₂D complex) is too low in the absence of SufE to support
400 FeS synthesis. The fact that SufE is not required for apicoplast maintenance (and presumably
401 tRNA thiolation) further suggests that SufS desulfurase activity in the absence of SufE is
402 adequate for tRNA thiolation and that SufS may transfer sulfur directly to MnmA.

403 A recent study in the asexual blood-stage of *P. falciparum* reported 28 different tRNA
404 modifications, including s²U and mcm⁵s²U (Ng et al., 2018). The s²U modification of tRNA is
405 ubiquitous and critical for a number of biological functions related to protein translation as
406 demonstrated in other organisms, including the recognition of wobble codons (Urbonavičius et
407 al., 2001), tRNA ribosome binding (Ashraf et al., 1999), reading frame maintenance (Black &
408 Santos, 2015a), and the reduction of +1 and +2 frameshifts (Black & Santos, 2015a;
409 Urbonavičius et al., 2001). To investigate the biological function of *P. falciparum* MnmA, we
410 complemented parasites lacking endogenous MnmA by expressing the well-studied MnmA
411 homolog from *B. subtilis* (*Bs* MnmA) with and without its cognate cysteine desulfurase (*Bs*
412 YrvO) partner in the apicoplast. The role of *Bs* MnmA in the s²U modification of target tRNAs
413 has been demonstrated by both genetic and biochemical analysis (Black & Santos, 2015a). *Bs*
414 MnmA successfully complemented loss of *P. falciparum* MnmA and resulted in parasites that
415 did not require mevalonate for survival. Subsequent knock down of the complemented *Bs* MnmA
416 resulted in disruption of the apicoplast, demonstrating that MnmA activity and the s²U tRNA
417 modification are essential for apicoplast maintenance and parasite survival (**Figure 5, 6, 8E, 8F**).
418 These results also establish the biological function of *Plasmodium* MnmA in the thiolation of
419 target tRNAs in the apicoplast. Loss of tRNA thiolation presumably disrupts the translation of

420 essential proteins encoded by the apicoplast genome, ultimately causing the disruption and loss
421 of the organelle.

422 For our complementation experiments, we needed multiple attempts to generate a single
423 *bsmnmA*⁺ Δ *mnmA* line while every attempt to generate *bsmnmA*-*yrvO*⁺ Δ *mnmA* parasites was
424 successful (**Supplementary table 2**). This is perhaps because the parasite SufS is not very
425 efficient in providing sulfur to *Bs* MnmA (**Figure 8E**). By contrast, *Bs* YrvO can effectively
426 transfer sulfur to *Bs* MnmA in *bsmnmA*-*yrvO*⁺ Δ *mnmA* parasites (**Figure 8F**). Despite our
427 difficulties in obtaining Δ *mnmA* parasites in the *bsmnmA*⁺ background, we did not observe a
428 statistically significant growth difference between *bsmnmA*⁺ Δ *mnmA* and *bsmnmA*-*yrvO*⁺ Δ *mnmA*
429 parasite lines (**Figure 6- figure supplement 2**). The specificity of interaction between *Bs* MnmA
430 and desulfurase partners makes sense considering the specificity observed in *B. subtilis*. Even
431 though *B. subtilis* produces four SufS paralogs, only YrvO appears to function with *Bs* MnmA
432 (Black & Santos, 2015a) and both proteins are essential for bacterial growth (Kobayashi et al.,
433 2003).

434 To show that parasite MnmA receives sulfur from the endogenous cysteine desulfurase,
435 SufS, we deleted SufS in the *bsmnmA*-*yrvO*⁺ line. This deletion resulted in parasites that were
436 reliant on mevalonate for survival but contained an intact apicoplast (**Figure 7**). Mevalonate
437 dependency in *bsmnmA*-*yrvO*⁺ Δ *sufS* parasites can be explained by the likely lack of interaction
438 between *Bs* YrvO and other SUF pathway proteins. If *Bs* YrvO cannot transfer sulfur to SufE or
439 to the SufBC₂D complex directly, FeS cofactors will not be synthesized in the apicoplast. Recent
440 results show that lack of FeS cofactors generated by the SUF pathway prevents essential
441 isoprenoid precursor synthesis leading to parasite death in absence of an exogenous source of
442 isoprenoid precursors (Swift et al., 2022). Presumably, the apicoplast remains intact in the

443 *bsmnmA-yrvO⁺ ΔsufS* line because *Bs* YrvO and *Bs* MnmA (and *Pf* MnmA) function together to
444 produce essential tRNA s²U modifications (Figure 7, 8G). Taken together, these results show
445 that the parasite SufS provides sulfur for both FeS biosynthesis and the MnmA-mediated s²U
446 modification of target tRNAs in the parasite apicoplast, both of which are required for parasite
447 survival (Figure 8 A, C). Although loss of FeS biosynthesis is not required for apicoplast
448 maintenance, tRNA modification is. Thus, deletion of SufS results in loss of FeS biosynthesis
449 and tRNA modification in the apicoplast, culminating in apicoplast disruption and parasite death
450 (Figure 8H).

451 The dual activity of *P. falciparum* SufS and its direct interaction with MnmA are not
452 typical features of SufS desulfurases. In *E. coli*, IscS is required for MnmA-mediated tRNA
453 thiolation and the role of SufS is confined exclusively to FeS biosynthesis (Bühning et al., 2017).
454 Thiolation of tRNA in *E. coli* is also an indirect process involving the five proteins of the Tus
455 system to transfer sulfur from the desulfurase to MnmA (Black & Santos, 2015a; Ikeuchi et al.,
456 2006; Shigi, 2014, 2018). Similarly, the cysteine desulfurase of *S. cerevisiae* (called Nfs1) is an
457 IscS homolog and accomplishes the same feat through four sulfur transferases (Nakai et al.,
458 2004; Shigi, 2018). While we cannot rule out the possible presence of intermediate sulfur
459 transferases in *P. falciparum*, homology searches failed to detect them. The tRNA thiolation
460 mechanism found in *B. subtilis* is most similar to what we have observed in *P. falciparum*; a
461 SufS paralog (YrvO) transfers sulfur directly to MnmA (Black & Santos, 2015a). The unique
462 feature of the *P. falciparum* system is that SufS has dual activity and is essential for two
463 metabolic pathways, while *B. subtilis* YrvO is dedicated to tRNA thiolation (Black & Santos,
464 2015a).

465 In this work and a previous publication (Swift et al., 2022) we defined the roles of the
466 five known FeS-dependent proteins and six of the seven proteins involved in the SUF FeS
467 synthesis pathway (SufB was not studied because we do not have a way to target the apicoplast
468 genome). The combined information supports a model in which SufS is needed for both FeS
469 biosynthesis and tRNA thiolation in the apicoplast. In blood-stage parasites, the SUF pathway is
470 required solely for providing FeS cofactors to enable isoprenoid precursor synthesis, but FeS
471 cofactors should also be required for lipoic acid and fatty acid biosynthesis in mosquito-stage
472 and liver-stage parasites (Akuh et al., 2022; Shears et al., 2015). All stages of parasite
473 development may require tRNA modifications due to the role they play in codon recognition
474 (Urbonavičius et al., 2001) which may have elevated importance in the apicoplast due to the
475 unusually small number of only 24 tRNAs (Wilson et al., 1996). The dual roles of SufS may be a
476 feature of the apicoplasts found in other pathogens such as *T. gondii*. Deletion of *T. gondii* SufS
477 or MnmA results in apicoplast defects and parasite death (Pamukcu et al., 2021; Yang et al.,
478 2022). Overall, the work presented here reveals a novel metabolic paradigm and exposes new
479 vulnerabilities in malaria parasites that may extend to other related apicomplexan parasites.

480

481 **Experimental procedures**

482 ***P. falciparum* parental parasite lines**

483 For generating the knockout and knock-in lines we used two different parental lines:
484 PfMev (Swift et al., 2020) and PfMev^{attB} (Swift et al., 2021). Both parasite lines can generate
485 isoprenoid precursors from an engineered cytosolic mevalonate-dependent pathway (Swift et al.,
486 2020; Swift et al., 2021). In the presence of mevalonate, these parasite lines can replicate
487 normally even in the absence of an intact apicoplast. The PfMev^{attB} parasite line has an attB site

488 in the P230p locus (Swift et al., 2021). In both parasite lines, the apicoplast is labeled by the
489 super-folder green fluorescent protein (api-SFG) which has been codon-modified for expression
490 in *P. falciparum* (Roberts et al., 2019). The api-SFG reporter contains the signal and transit
491 peptide (first 55 amino acids) of the *P. falciparum* acyl-carrier protein (ACP) appended to the N-
492 terminal end of SFG to direct trafficking to the apicoplast (Swift et al., 2020; Swift et al., 2021).

493

494 ***P. falciparum* culture**

495 Asexual stage *P. falciparum* parasites were cultured in human O⁺ erythrocytes at 2%
496 hematocrit in RPMI 1640 medium with L-glutamine (USBiological, MA, USA). The RPMI 1640
497 medium was supplemented with 20 mM HEPES, 0.2% sodium bicarbonate, 12.5 µg/mL
498 hypoxanthine, 5 g/L Albumax II (Life Technologies, CA, USA), and 25 µg/mL gentamicin.
499 Cultures were incubated at 37°C and maintained in 25 cm² gassed flasks (94% N₂, 3% O₂, and
500 3% CO₂).

501

502 **Generation of *P. falciparum* plasmid constructs for gene deletion**

503 We employed Cas9-mediated gene editing to delete genes of interest (**Figure 1- figure**
504 **supplement 1**). For gene deletion, the pRS repair plasmid (Swift et al., 2020) in combination
505 with the pUF1-Cas9 plasmid (Ghorbal et al., 2014) were used. Alternatively, the pRSng (Swift et
506 al., 2020) or pRSng(BSD) repair plasmid (Swift et al., 2022) in combination with the pCasG-
507 LacZ plasmid (Rajaram et al., 2020) were used for targeted gene deletion. The plasmids used for
508 generation of the gene deletion lines are listed in **Supplementary table 3**.

509 To generate deletion constructs, ~300-500 bp homology arms (HA) were amplified from
510 *P. falciparum* NF54 genomic DNA with HA1 and HA2 forward and reverse primers

511 (Supplementary table 4). The HA1 and HA2 amplicons were inserted into the *NotI* and
512 *NgoMIV* restriction sites, respectively, of the repair plasmids by In-Fusion (Clontech
513 Laboratories, CA, USA) ligation independent cloning (LIC). The gRNA sequences
514 (Supplementary table 4) were inserted as annealed oligonucleotides into the *BsaI* sites of
515 pCasG-LacZ plasmids by LIC to generate pCasG-GOI plasmid or into the pRS plasmid. All the
516 plasmids were sequenced to confirm sequence fidelity. All the restriction enzymes used in this
517 section were sourced from New England Biolabs Inc, MA, USA.

518

519 **Generation of plasmid constructs for knockdown and epitope tagging of *PfMnmA***

520 To generate the knockdown construct of the endogenous *PfMnmA*, we created the pKD-
521 *mnmA*-2xFLAG-10xapt plasmid. This plasmid also allowed us to tag *PfMnmA* C-terminally
522 with 2xFLAG. To make this plasmid, ~ 300-400 bp HA1 and HA2 of the *pfmnmA* gene were
523 PCR amplified with MnmAKD.HA1F + MnmAKD.HA1R and MnmAKD.HA2F +
524 MnmAKD.HA2R, respectively from *P. falciparum* NF54 genomic DNA, (Supplementary table
525 4). These HA PCR fragments were fused together to generate a combined HA2-HA1 fragment
526 with MnmAKD.HA2F and MnmAKD.HA1R in an additional PCR step. The HA2 and HA1
527 fragments in the combined HA2-HA1 fragment are separated by two *EcoRV* sites to facilitate
528 linearization of the plasmid. The HA2-HA1 fragment was inserted into the *AscI* and *AatII* sites of
529 the pKD-2xFLAG-10xapt plasmid to generate the pKD-*mnmA*-2xFLAG-10xapt plasmid by LIC.
530 The pKD-2xFLAG-10xapt plasmid was generated by replacing the 3xHA tag of the pKD
531 plasmid reported elsewhere (Rajaram et al., 2020). To replace the 3xHA tag with the 2xFLAG
532 tag, the FLAG tag sequence was synthesized as oligonucleotides (Supplementary table 4),
533 annealed, and then inserted into the *AatII* and *PspMOI* sites of the pKD plasmid. Prior to

534 transfection, the pKD-*mnmA*-2xFLAG-10xapt plasmid was linearized with *EcoRV*. The
535 *MnmA.KD* gRNA sequence (**Supplementary table 4**) was inserted as annealed oligonucleotides
536 into the *BsaI* sites of the pCasG-LacZ plasmid by LIC to generate the pCasG-*mnmAKD* plasmid.
537

538 **Generation of plasmid constructs for *B. subtilis* *mnmA* and *mnmA-yrvO* knock-in**

539 To generate the *bsmnmA* knock-in plasmid, we amplified the *bsmnmA* gene from *B.*
540 *subtilis* genomic DNA with the following primer pair: *MnmA.BspEI.InF.F* and
541 *MnmA.BsiWI.InF.R*. The amplified product was used to replace the *EcDPCK* locus from the
542 pCLD-*EcDPCK*-mCherry-apt (Swift et al., 2021) plasmid using the *BspEI* and *BsiWI* cloning
543 sites to generate pCLD-*bsmnmA*-mCherry-apt. For enhanced stability of the aptamer system, we
544 replaced the existing 10x-aptamer array (apt) with a redesigned 10x-aptamer array (10xapt) that
545 prevents aptamer loss (Rajaram et al., 2020). First, the 10xapt DNA was amplified with the
546 *MY.Apt.PspOMI.F* and *MY.Apt.XmaI.R* primer pair from a pKD plasmid (Rajaram et al.,
547 2020). The apt locus was removed from the pCLD-*bsmnmA*-mCherry-apt plasmid by digestion
548 with *PspOMI* and *XmaI*, followed by insertion of the 10xapt PCR product using the same cloning
549 sites by LIC resulting in pCLD-*bsmnmA*-mCherry-10xapt plasmid. The fidelity of the *Bs mnmA*
550 and 10xapt sequence of the pCLD-*bsmnmA*-mCherry-10xapt was confirmed by sequencing.

551 In *B. subtilis*, the genes *mnmA* and *yrvO* are 31 bp apart from each other and are co-
552 transcribed (Black & Santos, 2015a). Hence, we decided to generate the pCLD-*bsmnmA-yrvO*-
553 mCherry-10xapt plasmid with *bsmnmA* and *bsyrvO* genes fused in one cassette with a 15 bp
554 linker. To make the fusion gene, we first amplified *mnmA* with *MnmA.BspEI.InF.F* and
555 *MnmA.Link.R*, and *yrvO* with *YrvO.Link.F* and *YrvO.BsiWI.InF.R* primer pairs. These two
556 PCR products were stitched together by PCR amplification (*bsmnmA-yrvO*, **Figure 4- figure**

557 **supplement 2)** using the primer pair MnmA.BspEI.InF.F and YrvO.BsiWI.InF.R. The *bsmnmA*-
558 *yrvO* fragment was inserted into the pCLD-*bsmnmA*-mCherry-10xapt plasmid, previously
559 digested with *BspEI* and *BsiWI*, using LIC. The resulting plasmid, pCLD-*bsmnmA*-*yrvO*-
560 mCherry-10xapt was sequenced to confirm the sequence fidelity of *bsmnmA*-*yrvO*. All the
561 primers are listed in **Supplementary table 4** and all the restriction enzymes were purchased
562 from New England Biolabs Inc, MA, USA.

563

564 **Parasite transfections**

565 To generate the Δ *sufC*, Δ *sufD*, Δ *sufE*, Δ *sufS*, and Δ *mnmA* transgenic lines, PfMev
566 parasites were transfected with the respective plasmids using previously described transfection
567 methods (Spalding et al., 2010). Briefly, 75 μ g of both gRNA containing pUF1-CasG or pCasG
568 plasmids and corresponding pRS or pRSng repair plasmids (**Supplementary table 3**) were
569 electroporated into 400 μ L of red blood cells (RBCs) by low-voltage electroporation. The
570 transfected RBCs were mixed with 2.5 mL of synchronized schizont stage PfMev parasites and
571 were cultured in complete medium with 50 μ M mevalonate (Racemic mevalonolactone, Sigma-
572 Aldrich, MO, USA). After 48 h, 1.5 μ M DSM1 (BEI resources, VA, USA), 2.5 nM WR99210
573 (Jacobus pharmaceuticals, NJ, USA), and 50 μ M mevalonate were added to select for the
574 transfectants over the course of seven days. After seven days, the cultures were maintained in
575 complete medium with 50 μ M mevalonate until parasites appeared in the culture. Once the
576 parasites appeared, the cultures were maintained in complete medium with 2.5 nM WR99210
577 and 50 μ M mevalonate.

578 For generating the Δ *sufC/sufD* line, RBCs were transfected with the pCasG-*sufC* and
579 pRSng(BSD)-*sufC* plasmids as described above. Synchronized Δ *sufD* parasites were added to the

580 transfected RBCs and cultured in medium with 50 μ M mevalonate. The transfectants were
581 selected with 2.5 μ g/mL blasticidin (Corning Inc, NY, USA), 1.5 μ M DSM1, 2.5 nM WR99210,
582 and 50 μ M mevalonate, after which the culture was maintained in complete medium containing
583 2.5 nM WR99210, and 50 μ M mevalonate until parasites appeared. Upon parasite appearance,
584 the culture was maintained in complete medium with 2.5 μ g/mL blasticidin, 2.5 nM WR99210,
585 and 50 μ M mevalonate.

586 For generation of the *mnmA*-flag parasite lines, the linearized pKD-*mnmA*-2xFLAG-
587 10xapt and pCasG-*mnmAKD* plasmids were co-transfected into RBCs as mentioned above.
588 Following transfection, these RBCs were mixed with PfMev parasites and selected with 2.5
589 μ g/mL blasticidin and 1.5 μ M DSM1 along with 0.5 μ M anhydrous tetracycline (aTc, Cayman
590 Chemical, MI, USA) for seven days. After initial selection for seven days, this culture was
591 grown in complete medium with aTc until parasite reappearance. Upon parasite reappearance,
592 the culture was switched to and maintained in complete medium containing 2.5 μ g/mL
593 blasticidin and 0.5 μ M aTc.

594 To generate the *bsmnmA*⁺ and *bsmnmA*-*yrvO*⁺ transgenic parasite lines, either the pCLD-
595 *bsmnmA*-mCherry-10xapt or pCLD-*bsmnmA*-*yrvO*-mCherry-10xapt plasmids were co-
596 transfected into RBCs with the pINT plasmid (Nkrumah et al., 2006) encoding the
597 mycobacteriophage integrase (this integrase mediates attP/attB integration into the target genome
598 locus). Transfected RBCs were mixed with PfMev^{attB} parasites (Swift et al., 2021) and cultured
599 with 2.5 μ g/mL blasticidin and 0.50 μ M aTc for seven days. After seven days, these cultures
600 were grown in complete medium with aTc until parasites were observed, at which point the
601 cultures were maintained in complete medium containing 2.5 μ g/mL blasticidin and 0.50 μ M
602 aTc.

603 The *bsmnmA*⁺ Δ *mnmA*, *bsmnmA*-*yrvO*⁺ Δ *mnmA*, and *bsmnmA*-*yrvO*⁺ Δ *sufS* transgenic
604 parasite lines were generated with the same Cas9 and pRSng repair plasmids that were used to
605 generate the Δ *mnmA*, and Δ *sufS* transgenic lines. For *bsmnmA*⁺ Δ *mnmA*, *bsmnmA*-*yrvO*⁺ Δ *mnmA*,
606 and *bsmnmA*-*yrvO*⁺ Δ *sufS*, medium supplemented with 1.5 μ M DSM1, 2.5 nM WR99210, 1.25
607 μ g/mL blasticidin, and 0.50 μ M aTc was used for the initial seven days of selection, after which
608 the cultures were switched to growth medium containing blasticidin and aTc. Upon parasite
609 appearance, all cultures were maintained in medium containing WR99210, blasticidin, and aTc.
610 The *bsmnmA*-*yrvO*⁺ Δ *sufS* transgenic parasite line was supplemented with 50 μ M mevalonate in
611 addition to WR99210, blasticidin, and aTc. The *bsmnmA*⁺ Δ *mnmA* line was difficult to generate
612 with only one successful line out of four attempts. Between two and eight parasite lines from
613 independent transfections were obtained for all other gene deletions (**Supplementary table 2**).
614

615 Confirmation of gene knockout, C-terminal tagging, and gene knock-in

616 Lysates from parasite cultures were prepared from the transgenic parasite lines by
617 incubating at 90 °C for 5 min. These lysates were used as the template for all genotype
618 confirmation PCRs. For confirmation of gene knockouts, the 5'- and 3'-end of the disrupted (Δ 5'
619 and Δ 3', respectively) and native gene loci (5' and 3', respectively) were amplified with
620 corresponding primers (**Supplementary table 4**). Expected amplicons for confirmation PCRs
621 are provided in **Figure 1- figure supplement 1C**. To confirm the successful C-terminal tagging
622 of MnmA and insertion of the aptamer array at the 3'UTR of MnmA, the 5'- and 3'-end of
623 modified genes (Δ 5' and Δ 3', respectively) and the native gene locus (C) were amplified with
624 corresponding primers. The expected amplicon sizes for these PCR products are provided in
625 **Figure 3- figure supplement 3B**. For gene knock-in confirmation, corresponding primers

626 (Supplementary table 4) were used to amplify the recombinant attL and attR loci for integration
627 of the knocked-in gene and the unaltered attB locus as a control. The anticipated PCR amplicon
628 sizes for knock-in confirmation PCRs can be found in **Figure 4- figure supplement 1B**. Parental
629 lines as indicated were used as a control for these reactions.

630

631 **Immunoblot**

632 Asynchronous parasite cultures were washed three times with cold-complete medium.
633 The cultures were treated with 0.15% (wt/vol) saponin in cold phosphate-buffered saline (PBS;
634 pH 7.4) for 10 min on ice for permeabilization of the RBC and parasitophorous vacuolar
635 membranes. Saponin-isolated parasites were centrifuged at 1940 g for 10 min at 4 °C and washed
636 three times with cold-PBS. These parasites were used immediately or were snap frozen in liquid
637 N₂ and saved at -80 °C for later use.

638 Saponin-isolated parasites were resuspended in 1x NuPAGE LDS sample buffer (Thermo
639 Fisher Scientific, MA, USA) containing 2% β-mercaptoethanol and boiled for 5 min. Proteins
640 were resolved on 4-12% gradient reducing gels and transferred to nitrocellulose membranes. The
641 membranes were blocked with 5% milk in PBS containing 0.1% Tween 20 (Milk/PBST) for 1 h
642 at room temperature and incubated overnight at 4 °C with mouse anti-FLAG monoclonal
643 antibody (Catalogue no. F3165, Millipore Sigma, MO, USA) diluted 1:1000 in Milk/PBST. The
644 membrane was then incubated for 1 h at room temperature with sheep anti-mouse horseradish
645 peroxidase (HRP)-conjugated antibody (Catalogue no. GENA931, Millipore Sigma, MO, USA)
646 diluted 1:10000 in Milk/PBST. Chemiluminescent signal was developed with SuperSignal West
647 Pico chemiluminescent substrate (Thermo Fisher Scientific, MA, USA) according to the
648 manufacturer's protocol and detected on autoradiography film. For loading controls, the

649 membrane was stripped of antibodies with 200 mM glycine (pH 2.0) for 5 min at room
650 temperature. After blocking the membrane with 5% Milk/PBST, the membrane was re-probed
651 with 1:25000 anti-Aldolase mouse monoclonal antibody (from David J. Sullivan, Johns Hopkins
652 Bloomberg School of Public Health) and 1:10000 sheep anti-mouse HRP-conjugated antibody,
653 using the methods described above.

654

655 **Confirmation of apicoplast genome loss**

656 The apicoplast-encoded *sufB* gene (PF3D7_API04700) was used as a proxy for the
657 presence of the apicoplast genome and was amplified by PCR with a primer pair listed in
658 **Supplementary table 4**. As controls, genes from the nuclear genome (*ldh*, PF3D7_1324900)
659 and the mitochondrial genome (*cox1*, PF3D7_MIT02100) were amplified with corresponding
660 primer pairs (**Supplementary table 4**). Parasite lysates of the parental line were used as positive
661 controls for apicoplast genome detection. The anticipated amplicon sizes are 520 bp, 581 bp, and
662 761 bp for *ldh*, *sufB* and *cox1*, respectively.

663

664 **Immunofluorescence assays and live cell microscopy**

665 For immunofluorescence assays, *mnmA*-flag parasites were fixed and permeabilized as
666 described previously (Gallagher et al., 2011). Briefly, infected RBCs from 250 µL of culture
667 were harvested by centrifugation and resuspended in 30 µL of 4% electron microscopy (EM)
668 grade paraformaldehyde and 0.0075% EM grade glutaraldehyde in PBS (pH 7.4) for 30 min at
669 room temperature. Fixed cells were then permeabilized with 0.1% Triton X-100 in PBS for 10
670 min and then treated with 0.1 mg/mL of sodium borohydride (NaBH₄) in PBS for 10 min to
671 reduce free aldehyde groups. After a 2 h blocking step with 3% bovine serum albumin (BSA) in

672 PBS, cells were incubated overnight at 4 °C with 1:500 rabbit anti-ACP antibody (Gallagher &
673 Prigge, 2010) and 1:500 mouse anti-FLAG antibody (Catalogue no. F3165, Millipore Sigma,
674 MO, USA). The cells were washed with PBS three times and then incubated for 2 h with 1:1000
675 goat anti-mouse Alexa 488 (Catalogue no. A11029, Invitrogen, CA, USA) and 1:1000 goat anti-
676 rabbit Alexa 59 (Catalogue no. A11037, Invitrogen, CA, USA) secondary antibodies in PBS with
677 3% BSA. After three washes with PBS, the cells were mounted on coverslips with ProLong Gold
678 4', 6-diamidino-2-phenylindole (DAPI) antifade reagent (Life Technologies, CA, USA) and
679 sealed with nail polish.

680 For live cell imaging of the $\Delta sufC$, $\Delta sufD$, $\Delta sufE$, $\Delta sufS$, $\Delta mnmA$, and $\Delta sufC/sufD$
681 transgenic lines, 100 μ L of asynchronous parasites were incubated with 1 μ g/mL DAPI
682 (Invitrogen, CA, USA) and 30 nM MitoTracker CMX-Ros (Invitrogen, CA, USA) for 30
683 minutes at 37 °C. The stained cells were then washed three times with complete medium and
684 incubated for 5 minutes at 37 °C after each wash. After the final wash, the cells were
685 resuspended in 20 μ L of complete medium, placed on a slide and sealed under a cover slip with
686 wax. For live cell imaging of the $bsmnmA^+$, $bsmnmA-yrvO^+$, $bsmnmA^+ \Delta mnmA$, $bsmnmA-yrvO^+$
687 $\Delta mnmA$, and $bsmnmA-yrvO^+ \Delta sufS$ parasite lines, cells were stained with 1 μ g/mL DAPI only.

688 All images were taken with a Zeiss AxioImager M2 microscope (Carl Zeiss Microscopy,
689 LLC, NY, USA) equipped with a Hamamatsu ORCA-R2 camera (Hamamatsu Photonics,
690 Hamamatsu, Japan) using a 100x/1.4 NA lens. A series of images were taken spanning 5 μ m
691 along the z-plane with 0.2 μ m spacing. An iterative restoration algorithm using the Volocity
692 software (PerkinElmer, MA, USA) was used to deconvolve the images to report a single image
693 in the z-plane.

694 The degree of colocalization between the red channel (anti-ACP or mCherry) and green
695 channel (anti-FLAG or api-SFG) signals was determined with Volocity software. The fluorescent
696 intensity thresholds were set using the region of interest (ROI) tool using Volocity. To set the
697 thresholds, the fluorescence intensity of a region of the cell with no staining for either signal
698 (background) was used. To measure the degree of colocalization, the Manders' coefficient (M1)
699 (Manders et al., 1993) was determined. M1 is defined as the percentage of total pixels from the
700 test channel (anti-FLAG, mCherry) that overlaps with the percentage of total pixels from the
701 organellar marker channel (anti-ACP, api-SFG). A value of M1=1 denotes perfect colocalization,
702 while M1=0 denotes no colocalization (Manders et al., 1993). Mean M1 (\pm standard deviation)
703 values were obtained by analyzing multiple images from at least two independent biological
704 replicates.

705

706 **Parasite growth assay**

707 Parasite growth was monitored using an Attune Nxt Flow Cytometer (Thermo Fisher
708 Scientific, MA, USA) as previously described (Swift et al., 2020; Tewari et al., 2022). For
709 determining the growth dependence on mevalonate, cultures were seeded in the presence or
710 absence of 50 μ M mevalonate at 0.5% parasitemia and 2% hematocrit in a total volume of 250
711 μ L, in quadruplicate for each condition. Parasite growth was monitored every 24 h over four
712 days following SYBR green I (Invitrogen, CA, USA) staining. For the growth curves shown in
713 **Figure 3F**, the parasites were cultured in the presence of 0.5 μ M aTc (control), absence of aTc
714 (knockdown), or with 50 μ M mevalonate supplementation (rescue). For growth assays presented
715 in **Figures 5E** and **6E**, parasites were grown in the presence of 0.5 μ M aTc and absence of
716 *Shield1* (Aobious Inc, MA, USA) (permissive condition) or in the absence of aTc and presence

717 of 0.5 μ M *Shield1* (nonpermissive condition). In all the experiments presented in **Figures 3F**,
718 **5E**, and **6E**, parasite growth was monitored over eight days. On day four, the cultures were
719 diluted 1:10. Data from two independent biological replicates (each in quadruplicate) of the
720 indicated parasite lines were analyzed using a two-way ANOVA with a Sidak-Bonferroni
721 correction in Prism V8.4 (GraphPad Software, CA, USA).

722

723 **Acknowledgements**

724 We express our gratitude to Patricia C. Dos Santos (Wake Forest University) for insights
725 on *B. subtilis* MnmA and YrvO. We also extend our thanks to David J. Sullivan (Johns Hopkins
726 Bloomberg School of Public Health) for the anti-Aldolase mouse monoclonal antibody and Erin
727 D. Goley (Johns Hopkins University School of Medicine) for providing *B. subtilis*.

728 This work was supported by the National Institutes of Health R01 AI125534 (STP) and
729 R21 AI101589 (STP), the Johns Hopkins Malaria Research Institute, and the Bloomberg
730 Philanthropies. RE was supported by Johns Hopkins Malaria Research Institute postdoctoral
731 fellowship. KR was supported by NIH training grant T32AI007417. The funders had no role in
732 study design, data collection and analysis, decision to publish, or preparation of the manuscript.

733

734 **Author contributions**

735 RPS, RE, and STP arranged the figures and wrote the manuscript, with input from all
736 listed coauthors. STP coordinated this work. RPS, RE, KR, and HBL carried out the experiments
737 displayed in this manuscript. All authors contributed to revision of the manuscript.

738 **Conflict of interests**

739 The authors declare that they have no conflict of interest.

740 **Figure Legends**

741

742 **Figure 1. Apicoplast FeS assembly is not essential for apicoplast maintenance**

743 **(A)** FeS assembly in the *Plasmodium falciparum* apicoplast. In the sulfur acquisition step, SufS,
744 liberates sulfur from cysteine (Cys), resulting in a bound persulfide. SufE transfers sulfur from
745 SufS to SufB of the SufBC₂D FeS assembly complex. SufA and NfuApi receive FeS cofactors
746 from the SufBC₂D complex and transfer them to downstream FeS-dependent proteins. The
747 proteins investigated in this study are colored blue. Ala, alanine; Fe, iron. **(B)** Genotyping PCR
748 confirming deletion of *sufC* (top panel) and *ΔsufD* (bottom panel). **(C)** Successful amplification
749 *sufB* (lane A) gene in the *ΔsufC* (left panel) and *ΔsufD* (right panel) parasites indicates the
750 presence of the apicoplast genome. **(D)** Representative epifluorescence microscopy images of
751 *ΔsufC* (top panel) and *ΔsufD* (bottom panel) parasites show a single intact apicoplast. **(E)**
752 Mevalonate (Mev)-dependent growth of *ΔsufC* (top panel) and *ΔsufD* (bottom panel) parasites
753 over four days. **(F)** Genotyping PCR confirms deletion of both *sufC* (top panel) and *sufD* (bottom
754 panel) in *ΔsufC/sufD* double knockout parasites. **(G)** Successful amplification of *sufB* (lane A)
755 demonstrates intact apicoplast in *ΔsufC/sufD* parasites. **(H)** Representative epifluorescence
756 microscopy images of *ΔsufC/sufD* parasites shows an apicoplast with typical intact morphology.
757 **(I)** Mevalonate (Mev)-dependent growth of *ΔsufC/sufD* parasites over four days.

758

759 In panels (B) and (F), successful gene deletion is demonstrated by the presence of PCR products
760 for the Δ5' and Δ3' loci, but not the unmodified loci (5' and 3') loci found in the PfMev
761 (parental) line. Expected PCR amplicon sizes are in **Figure 1- figure supplement 1(C)**. In (C)
762 and (G), PCR detection of the *ldh*, *sufB*, and *cox1* genes of the parasite nuclear (N), apicoplast
763 (A), and mitochondrial (M) genomes, respectively, were attempted from transgenic as well as
764 PfMev (parental) parasite lines. In (D) and (H), the api-SFG protein (green) labels apicoplast,
765 MitoTracker (red) stains the mitochondrion, and nuclear DNA is stained with DAPI (blue). Each
766 image shows a field representing 10 μm x 10 μm. For panels (E) and (I), asynchronous parasites
767 were cultured with or without 50 μM Mev and parasitemia was monitored every 24 h via flow
768 cytometry. Data points shows daily mean parasitemia ± standard error of the mean (SEM) from
769 two independent biological replicates, each with four technical replicates. DNA markers in (B),
770 (C), (D), and (G) are in kilobases (kb).

771

772 **Figure 1- figure supplement 1. Generation and characterization of knockout parasite lines**

773 **(A)** Schematic illustration of a double crossover homologous recombination event between the
774 native locus of gene of interest (GOI) and the repair plasmid with two homology (HA) arms. The
775 Cas9-endonuclease promotes a double-stranded break in the native locus while the HAs from the
776 repair plasmid recombine through a double crossover recombination event resulting in the
777 generation of the recombinant locus (“modified locus”). Individual segments are not to scale.
778 The positions and directions of the primers (red arrow) used for confirmation of gene knockout
779 are indicated. Primer sequences are available in **Supplementary file 1- table 4**. **(B)** Table
780 showing the primer pairs and the template used for each PCR reaction. **(C)** Table showing the
781 expected amplicon sizes for the genotyping PCR reactions shown in **Figures 1(B), 1(F), 2(A),**
782 **3(I), 5(A), 6(A), and 7(B)**.

783

784 **Figure 1- source data 1.** Uncropped agarose gel images of PCR analyses presented in **Figures**
785 **1(B), 1(C), 1(F), and 1(G)**.

786 **Figure 1- source data 2.** Growth assay parasitemia counts for $\Delta sufC$ (top table) and $\Delta sufD$
787 (bottom table) used for **Figure 1(E)**.

788 **Figure 1- source data 3.** Growth assay parasitemia counts for $\Delta sufC/sufD$ used for **Figure 1(I)**.

789

790 **Figure 2. Apicoplast cysteine desulfurase, SufS is essential for apicoplast maintenance**

791 **(A)** Genotyping PCR confirming deletion of *sufE* (top panel) or *sufS* (bottom panel) in PfMev
792 parasites. In both $\Delta sufE$ and $\Delta sufS$ parasite lines, gene deletions were validated by the presence
793 of PCR products for the $\Delta 5'$ and $\Delta 3'$ loci, but not for the unmodified loci (5' and 3') found in the
794 PfMev (parental) line. Genotyping PCR reactions and expected amplicon sizes are described in

795 **Figure 1- figure supplement 1. (B)** Attempted PCR amplification of *ldh*, *sufB*, and *cox1* genes
796 of the parasite nuclear (N), apicoplast (A), and mitochondrial (M) genomes, respectively, from
797 the $\Delta sufE$, $\Delta sufS$, and PfMev (parental) parasites. Successful amplification of *sufB* in the $\Delta sufE$
798 (top panel) parasites indicates the presence of the apicoplast genome, while failure to amplify
799 this gene in $\Delta sufS$ parasites (bottom panel) indicates loss of the apicoplast genome. **(C)**
800 Representative epifluorescence microscopy images of $\Delta sufE$ (top panel) and $\Delta sufS$ (bottom
801 panel) parasites. In the $\Delta sufE$ parasites, a single intact apicoplast is seen. Whereas in $\Delta sufS$
802 multiple discrete vesicles were seen, indicating disruption of the apicoplast organelle. The api-

803 SFG protein (green) labels the apicoplast, MitoTracker (red) stains the mitochondrion, and
804 nuclear DNA is stained with DAPI (blue). Each image is a field representing 10 μ m x 10 μ m.
805 **(D)** Mevalonate (Mev)- dependent growth of $\Delta sufE$ (top panel) and $\Delta sufS$ (bottom panel)
806 parasites. Asynchronous parasites from each line were cultured with or without 50 μ M Mev and
807 parasitemia was monitored every 24 h by flow cytometry for four days. Data points showing
808 daily mean parasitemia \pm SEM from two independent biological replicates, each with four
809 technical replicates.

810

811 In panels (A) and (B), DNA markers are in kilobases (kb).

812

813 **Figure 2- source data 1.** Uncropped agarose gel images of PCR analyses presented in **Figures**
814 **2(A) and 2(B).**

815 **Figure 2- source data 2.** Growth assay parasitemia counts for $\Delta sufE$ (top table) and $\Delta sufS$
816 (bottom table) used for **Figure 2(D).**

817

818 **Figure 3. *Plasmodium falciparum* MnM A is essential for apicoplast maintenance and**
819 **parasite survival**

820 **(A)** Snapshots from the multiple sequence alignment of MnM A orthologs from *P. falciparum* (*Pf*
821 MnM A, PlasmoDB ID: PF3D7_1019800), *Saccharomyces cerevisiae* (*Sc* Mtu1, Uniprot ID:
822 Q12093), *Escherichia coli* MnM A (*Ec* MnM A, Uniprot ID: P25745), and *Bacillus subtilis* (*Bs*
823 MnM A, Uniprot ID: O35020) showing the conserved sequence motifs in the catalytic domains.
824 The complete alignment is shown in **Figure 3- figure supplement 1**. The PP-loop signature
825 motif SGGXDS shown in teal and the D-type signature motif C----DXXC----C in bright green.
826 The red asterisks (*) indicate catalytic cysteines. **(B)** Expected modified locus following
827 introduction of 2xFLAG at 3'-end of *pfmnmA* and 10xAptamer in the 3'UTR. **(C)** Genotyping of
828 *mnmA*-flag parasites confirms plasmid integration as evidenced by the presence of PCR
829 amplicons for the recombinant $\Delta 5'$ and $\Delta 3'$ loci but not for the unmodified locus (C), as
830 compared to the PfMev (parental) line. Expected PCR amplicon sizes are provided in **Figure 3-**
831 **figure supplement 3(B).** **(D)** Immunoblot of saponin-isolated PfMev (parental, P) and *mnmA*-
832 flag (tagged, T) parasite lysates with anti-FLAG antibody (top panel). Anticipated molecular
833 weight for the tagged protein is 120 kDa. Anti-Aldolase immunoblot shows relative loading

834 levels (bottom panel). Protein markers are in kilodaltons (kDa). The uncropped version is shown
835 in **Figure 3- figure supplement 3(C)**. **(E)** Representative immunofluorescence microscopy
836 images show *PfMnmA-2xFLAG* (green) colocalization with the apicoplast marker ACP (acyl
837 carrier protein, red). Manders' coefficient (M1, green in red) quantifies the degree of
838 colocalization. **(F)** Anhydrous tetracycline (aTc)-dependent growth of *mnmA*-flag parasites.
839 Asynchronous parasites were grown with 0.5 μ M aTc (control), without 0.5 μ M aTc
840 (knockdown), or with 50 μ M mevalonate (Mev, rescue). Parasitemia was monitored via flow
841 cytometry every 24 h for eight days. On day four, parasite cultures were diluted 1:10. Data points
842 show daily mean parasitemia \pm SEM from two independent biological replicates, each with four
843 technical replicates; two-way ANOVA (Sidak-Bonferroni method), *** $p < 0.001$. **(G)**
844 Representative epifluorescence microscopy images of day four samples of *mnmA*-flag parasites
845 grown in control (aTc added) and knockdown (aTc removed) conditions from the experiment
846 shown in (F). Under control conditions, the apicoplast remains intact; under knockdown
847 conditions, multiple discrete vesicles are seen, demonstrating a disrupted apicoplast. The full
848 image panel is shown in **Figure 3- figure supplement 4(B)**. **(H)** Graph showing the percentage
849 of *mnmA*-flag parasites with an intact apicoplast when grown in control (aTc added) and
850 knockdown (aTc removed) conditions in the experiment shown in (F). Live epifluorescence
851 microscopy images were taken every 48 h and apicoplast morphology (intact or disrupted) was
852 determined based on apicoplast-localized api-SFG. Error bars represent standard deviation from
853 at least 18 images taken for each time point and growth condition from two independent
854 experiments. **(I)** Genotyping PCR confirming *mnmA* deletion in $\Delta mnmA$ parasites. In the
855 $\Delta mnmA$ parasite line, gene deletion was validated by the presence of PCR products for the $\Delta 5'$
856 and $\Delta 3'$ loci, but not for the unmodified loci (5' and 3') found in the PfMev (parental) line.
857 Genotyping PCR reactions and expected amplicon sizes are described in **Figure 1- figure**
858 **supplement 1**. **(J)** Attempted PCR amplification of *ldh*, *sufB*, and *cox1* genes of the parasite
859 nuclear (N), apicoplast (A), and mitochondrial (M) genomes, respectively, from the $\Delta mnmA$ and
860 PfMev (parental) parasites. Lack of a PCR amplicon for *sufB* in the $\Delta mnmA$ parasite line
861 suggests loss of the apicoplast genome. **(K)** Representative epifluorescence microscopy images
862 of $\Delta mnmA$ parasites. Multiple discrete vesicles are seen, demonstrating a disrupted apicoplast.
863 **(L)** Mevalonate (Mev)-dependent growth of the $\Delta mnmA$ parasites. Asynchronous parasites were
864 cultured with or without 50 μ M Mev for four days. Parasitemia was monitored every 24 h by

865 flow cytometry. Data points show daily mean parasitemia \pm SEM from two independent
866 biological replicates, each with four technical replicates.

867
868 In Panels (G) and (K), api-SFG protein (green) labels the apicoplast, the mitochondrion is stained
869 with MitoTracker (red), and nuclear DNA is stained with DAPI (blue). In (E), (G) and (K), each
870 image depicts a field of 10 μ m x 10 μ m. In (C), (I) and (J), DNA markers are in kilobases (kb).

871

872 **Figure 3- figure supplement 1. Multiple sequence alignment (MSA) of MnmA orthologs**

873 MSA of MnmA orthologs from *P. falciparum* (*Pf* MnmA, PlasmoDB ID: PF3D7_1019800), *S.*
874 *cerevisiae* (*Sc* Mtu1, Uniprot ID: Q12093), *E. coli* MnmA (*Ec* MnmA, Uniprot ID: P25745), and
875 *B. subtilis* (*Bs* MnmA, Uniprot ID: O35020) showing the conserved sequence motifs in the
876 catalytic domains. The PP-loop signature motif SGGXDS is underlined in teal and the D-type
877 signature motif C----DXXC----C is underlined in bright green. The red asterisks (*) indicate
878 catalytic cysteines. The ClustalW program from Geneious Prime (version 2019.2.1, Geneious
879 Biologics, CA, USA) was used to align these sequences (<https://www.geneious.com>).

880

881 **Figure 3- figure supplement 2. Multiple sequence alignment (MSA) of MnmA orthologs
882 from pathogenic apicomplexans**

883 MSA of MnmA orthologs from *P. falciparum* (PlasmoDB ID: PF3D7_1019800), *Babesia*
884 *microti* (PiroplasmaDB ID: BMR1_03g03155), *Theileria annulata* (PiroplasmaDB ID:
885 TA12620), *Toxoplasma gondii* (ToxoDB ID: TGME49_309110), and *Eimeria tenella* (ToxoDB
886 ID: ETH_00027940) showing the conserved sequence motifs in the catalytic domains. The PP-
887 loop signature motif SGGXDS is underlined in teal and the D-type signature motif C----DXXC--
888 ---C is underlined in bright green. The red asterisks (*) indicate catalytic cysteines. The ClustalW
889 program from Geneious Prime (version 2019.2.1, Geneious Biologics, CA, USA) was used to
890 align these sequences (<https://www.geneious.com>).

891

892 **Figure 3- figure supplement 3. Generation of the MnmA localization/knockdown construct**

893 (A) Schematic showing the insertion of 2x-FLAG at the 3' end and aptamers in the 3'UTR of
894 *pfnmna*. The pKD-*mnmA*-2xFLAG-10xapt plasmid was linearized with *EcoRV* digestion. The
895 homology arms (HA) on the plasmid corresponding to the native *mnmA* locus are shown,

896 indicating how homologous recombination occurs. Primer positions for insertion confirmation
897 PCR are shown with red arrows. Primer sequences are available in **Supplementary file 1- table**
898 **4**. Individual segments are not to scale. HA, homology arm; cds, coding sequence; UTR,
899 untranslated region; hBSD, codon-harmonized blasticidin deaminase. **(B)** Table showing the
900 anticipated amplicon sizes for insertion confirmation PCRs shown in **Figure 3(C)**. **(C)** Full panel
901 of immunoblot shown in **Figure 3(D)**. Immunodetection of saponin-isolated PfMev (parental, P)
902 and *mnmA*-flag (tagged, T) parasite lysates. These lysates were probed with an anti-FLAG
903 antibody (top panel). The anticipated molecular weight for the tagged protein is 120 kDa. These
904 lysates were also probed with an anti-Aldolase antibody to show relative loading levels (bottom
905 panel). Protein markers are in kilodaltons (kDa).

906

907 **Figure 3- figure supplement 4. Effect of aTc removal on *Pf* MnmA in the *mnmA*-flag line**
908 **(A)** Immunodetection of *mnmA*-flag in lysates of saponin-isolated parasites. Parasites were
909 grown under nonpermissive conditions (aTc removed) with samples collected daily for Western
910 blot. MnmA-2xFLAG protein was detected with anti-FLAG antibody (top panel). The blot was
911 washed and reprobed with an anti-Aldolase antibody to show relative loading levels (bottom
912 panel). Protein markers are in kilodaltons (kDa). **(B)** Live epifluorescence microscopy of day
913 zero, two, four, six, and eight samples from non-permissive growth conditions for the *mnmA*-flag
914 parasite line. From day four onwards, multiple discrete vesicles were observed instead of a the
915 single intact apicoplast organelle observed prior to day four. The api-SFG protein (green) marks
916 the apicoplast, the mitochondrion is labeled by MitoTracker (red), and nuclear DNA is stained
917 with DAPI (blue). Representative images are shown. Each image depicts a field of 10 μ m x 10
918 μ m.

919

920 **Figure 3- source data 1.** Uncropped agarose gel images of PCR analyses presented in **Figures**
921 **3(C), 3(I), and 3(J)**.

922 **Figure 3- source data 2.** Growth assay parasitemia counts used for **Figure 3(F)**. The yellow
923 highlighted row represents the expected parasitemia count after 1:10 dilution of day 4 parasites.

924 **Figure 3- source data 3.** Counts of intact apicoplasts presented in **Figure 3(H)**.

925 **Figure 3- source data 4.** Growth assay parasitemia counts for $\Delta mnmA$ used for **Figure 3(L)**.

926 **Figure 3- figure supplement 3- source data 1.** Full immunoblot shown in **Figure 3- figure**
927 **supplement 3(C).**

928 **Figure 3- figure supplement 4- source data 1.** Full immunoblot shown in **Figure 3- figure**
929 **supplement 4(A).**

930

931 **Figure 4. *Bacillus subtilis* MnmA and MnmA-YrvO can be expressed in the parasite**
932 **apicoplast**

933 **(A)** Schematics illustrating the expected gene product in the *bsmnmA*⁺ and *bsmnmA-yrvO*⁺
934 parasite lines following successful genetic modification. **(B)** Amplification of the attL and attR
935 regions from *bsmnmA*⁺ and *bsmnmA-yrvO*⁺ transgenic parasites indicates successful plasmid
936 integration in both lines. Amplification of the attB region from the PfMev^{attB} parasite line
937 (parental) was used as a control. DNA markers are in kilobases (kb). Expected PCR amplicon
938 sizes are provided in **Figure 4- figure supplement 1(B)**. **(C)** Representative epifluorescence
939 microscopy images of *bsmnmA*⁺ (top panel) and *bsmnmA-yrvO*⁺ (bottom panel) transgenic
940 parasites. The *bsmnmA* and *bsmnmA-yrvO* fusion protein contains a C-terminal mCherry tag
941 (red) and colocalizes with the apicoplast api-SFG marker (green). The nuclear DNA is stained
942 with DAPI (blue). The degree of colocalization of the *bsmnmA* or *bsmnmA-yrvO* fusion proteins
943 with the api-SFG apicoplast marker are shown in the merge images and the Manders'
944 coefficients (M1; red in green) are provided. Each image depicts a field of 10 μm x 10 μm.

945

946 **Figure 4- figure supplement 1. Generation and characterization of parasite lines expressing**
947 ***Bacillus subtilis* MnmA and MnmA-YrvO**

948 **(A)** Schematic illustration showing insertion of the pCLD-*bs*GOI-mCherry-10xapt plasmids into
949 the attB locus of PfMev^{attB} parasites. The TetR-DOZI inducible system regulator and harmonized
950 blasticidin-S-deaminase (hBSD) are separated by a T2A viral skip peptide. The CLD-*bs*GOI-
951 mCherry-10xapt and TetR-DOZI-2A-hBSD cassettes are expressed under a single bidirectional
952 promoter. This plasmid was co-transfected with the pINT plasmid, which expresses integrase for
953 catalyzing attB/attP integration. Primer pairs (in red) for PCR amplification of the attB region of
954 the parental line and the recombinant attL and attR regions are shown. Primer sequences are
955 available in **Supplementary file 1- table 4**. *bs*GOI, *B. subtilis* genes of interest: *mnmA* or

956 *mnmA-yrvO* fusion. **(B)** Table showing the anticipated amplicon sizes for insertion confirmation
957 PCR reactions shown in **Figure 4(B)**.

958

959 **Figure 4- figure supplement 2. The engineered sequence encoding the *B. subtilis* MnmA-**

960 **YrvO fusion protein**

961 The two genes were linked with a 15 bp linker (red font) and was used for generation of pCLD-
962 *bsmnmA-yrvO*-mCherry-10xapt plasmid. Highlighted in grey is the sequence for the *B. subtilis*
963 *mnmA*, with the sequence for the *B. subtilis* *yrvO* highlighted in yellow.

964

965 **Figure 4- source data 1.** Uncropped agarose gel images of PCR analyses presented in **Figure**
966 **4(B)**.

967

968 **Figure 5. *Bacillus subtilis* MnmA-YrvO fusion protein can complement *Plasmodium***

969 ***falciparum* MnmA**

970 **(A)** Genotyping PCR confirms *mnmA* deletion in *bsmnmA-yrvO*⁺ Δ *mnmA* parasites. Successful
971 deletion was validated by the presence of PCR amplicons for the Δ 5' and Δ 3' loci, but not for the
972 unmodified loci (5' and 3') found in the *bsmnmA-yrvO*⁺ (parental) parasites. Genotyping PCR
973 reactions and expected amplicon sizes are described in **Figure 1- figure supplement 1.** **(B)**
974 Mevalonate (Mev)-independent growth of *bsmnmA-yrvO*⁺ Δ *mnmA* parasites. Asynchronous
975 parasites were grown with or without 50 μ M Mev. Every 24 h parasitemia was monitored by
976 flow cytometry for four days. Data points show daily mean parasitemia \pm SEM from two
977 independent biological replicates, each with four technical replicates; n.s., non-significant, two-
978 way ANOVA (Sidak-Bonferroni method), p>0.05. **(C)** Attempted PCR amplification of *ldh*,
979 *sufB*, and *cox1* genes of the parasite nuclear (N), apicoplast (A), and mitochondrial (M) genomes,
980 respectively, from *bsmnmA-yrvO*⁺ Δ *mnmA* and *bsmnmA-yrvO*⁺ (parental) parasites. Successful
981 amplification of *sufB* in *bsmnmA-yrvO*⁺ Δ *mnmA* parasites indicates the presence of the apicoplast
982 genome. **(D)** Representative epifluorescence microscopy images of *bsmnmA-yrvO*⁺ Δ *mnmA*
983 parasites showing an intact apicoplast. **(E)** Growth of the *bsmnmA-yrvO*⁺ Δ *mnmA* parasites.
984 Asynchronous parasites were grown under permissive (with 0.5 μ M aTc and without 0.5 μ M
985 *Shield1*), or non-permissive (without 0.5 μ M aTc and with 0.5 μ M *Shield1*) conditions.
986 Parasitemia was monitored via flow cytometry every 24 h for eight days. On day four, parasite

987 cultures were diluted 1:10. Data points showing daily mean parasitemia \pm SEM from two
988 independent biological replicates, each with four technical replicates; two-way ANOVA (Sidak-
989 Bonferroni method), * $p < 0.05$. **(F)** Representative epifluorescence microscopy images of day
990 eight *bsmnmA-yrvO⁺ΔmnmA* parasites from (E). The apicoplast remains intact under permissive
991 conditions, whereas multiple discrete vesicles were observed under non-permissive conditions.
992 The *Bs* MnmA-YrvO-mCherry (red) is only visible under permissive conditions. The full image
993 panel is available in **Figure 5- figure supplement 1**.

994

995 In (D) and (F), the *Bs* MnmA-YrvO fusion protein contains a C-terminal mCherry fluorescent
996 protein (red). Api-SFG protein (green) labels the apicoplast, and nuclear DNA is stained with
997 DAPI (blue). Each image depicts a field of 10 $\mu\text{m} \times 10 \mu\text{m}$. In (A) and (C), DNA markers are in
998 kilobases (kb).

999

1000 **Figure 5- figure supplement 1.** Live epifluorescence microscopy of day eight samples from
1001 permissive and non-permissive growth conditions for *bsmnmA-yrvO⁺ΔmnmA*

1002 The apicoplast remained intact under permissive conditions, while multiple discrete vesicles
1003 were observed under non-permissive conditions, indicative of a disrupted apicoplast organelle.
1004 The *Bs* mnmA-YrvO fusion protein contains a C-terminal mCherry fluorescent protein tag (red)
1005 which is only visible under permissive conditions. The api-SFG protein (green) labels the
1006 apicoplast, and nuclear DNA is stained with DAPI (blue). Representative images are shown.
1007 Each image depicts a field of 10 $\mu\text{m} \times 10 \mu\text{m}$.

1008

1009 **Figure 5- source data 1.** Uncropped agarose gel images of PCR analyses presented in **Figures**
1010 **5(A) and 5(C)**.

1011 **Figure 5- source data 2.** Growth assay parasitemia counts for *bsmnmA-yrvO⁺ΔmnmA* used for
1012 **Figure 5(B)**.

1013 **Figure 5- source data 3.** Growth assay parasitemia counts for *bsmnmA-yrvO⁺ΔmnmA* used for
1014 **Figure 5(E)**. The yellow highlighted row represents the expected parasitemia count after 1:10
1015 dilution of day 4 parasites.

1016

1017

1018 **Figure 6. *Bacillus subtilis* MnmA can complement loss of *Plasmodium falciparum* MnmA**
1019 **(A)** Genotyping PCR confirms *mnmA* deletion in *bsmnmA*⁺ Δ *mnmA* parasites, as evidenced by
1020 the presence of PCR amplicons for the Δ 5' and Δ 3' loci, but not for the unmodified loci (5' and
1021 3') found in the *bsmnmA*⁺ (parental) parasites. Genotyping PCR reactions and expected amplicon
1022 sizes are described in **Figure 1- figure supplement 1**. **(B)** Mevalonate (Mev)-independent
1023 growth of *bsmnmA*⁺ Δ *mnmA* parasites. Asynchronous parasites were grown with or without 50
1024 μ M Mev and parasitemia was monitored every 24 h by flow cytometry for four days. Data points
1025 represent daily mean parasitemia \pm SEM from two independent biological replicates, each with
1026 four technical replicates; n.s., non-significant, two-way ANOVA (Sidak-Bonferroni method),
1027 $p>0.05$. **(C)** PCR detection of *ldh*, *sufB*, and *cox1* genes of the parasite nuclear (N), apicoplast
1028 (A), and mitochondrial (M) genomes, respectively, in *bsmnmA*⁺ Δ *mnmA* and *bsmnmA*⁺ (parental)
1029 parasites. Successful amplification of *sufB* in the *bsmnmA*⁺ Δ *mnmA* parasites indicates the
1030 presence of the apicoplast genome. **(D)** Representative epifluorescence microscopy images of
1031 *bsmnmA*⁺ Δ *mnmA* parasites shows an intact apicoplast. **(E)** Asynchronous *bsmnmA*⁺ Δ *mnmA*
1032 parasites were grown under permissive (with 0.5 μ M aTc and without 0.5 μ M *Shield1*), or non-
1033 permissive (without 0.5 μ M aTc and with 0.5 μ M *Shield1*) conditions. Parasitemia was
1034 monitored via flow cytometry every 24 h for eight days. On day four, parasite cultures were
1035 diluted 1:10. Data points represent daily mean parasitemia \pm SEM from two independent
1036 biological replicates, each with four technical replicates; n.s., non-significant, two-way ANOVA
1037 (Sidak-Bonferroni method), * $p<0.05$. **(F)** Representative epifluorescence microscopy images of
1038 day eight *bsmnmA*⁺ Δ *mnmA* parasites from (E). The apicoplast remained intact under permissive
1039 conditions, while multiple discrete vesicles were observed under non-permissive conditions,
1040 indicative of a disrupted apicoplast organelle. The *Bs* MnmA -mCherry (red) is only visible
1041 under permissive conditions. The full image is available in **Figure 6- figure supplement 1**.
1042
1043 In (D) and (F), The *Bs* MnmA protein is tagged C-terminally with mCherry (red), api-SFG
1044 protein (green) labels the apicoplast, and nuclear DNA is stained with DAPI (blue). Each image
1045 depicts a field of 10 μ m x 10 μ m. In (A) and (C), DNA markers are in kilobases (kb).
1046
1047

1048 **Figure 6- figure supplement 1. Live epifluorescence microscopy of day eight samples from**
1049 **permissive and non-permissive growth conditions for *bsmnmA*⁺*ΔmnmA* parasites**

1050 The apicoplast remained intact under permissive conditions, while multiple discrete vesicles
1051 were observed under non-permissive conditions, indicative of a disrupted apicoplast organelle.
1052 The *Bs* MnmA protein contains a C-terminal mCherry fluorescent protein tag (red) which is only
1053 visible under permissive conditions. The api-SFG protein (green) labels the apicoplast, and
1054 nuclear DNA is stained with DAPI (blue). Representative images are shown. Each image depicts
1055 a field of 10 μm x 10 μm .

1056

1057 **Figure 6- figure supplement 2. Growth comparison between the *bsmnmA*⁺*ΔmnmA* parasite**
1058 **line and *bsmnmA*-*yrvO*⁺*ΔmnmA* parasite line**

1059 Asynchronous parasites were grown in complete medium with 0.5 μM aTc for eight days.
1060 Parasite growth was monitored via flow cytometry every 24 h. On day four, parasite cultures
1061 were diluted 1:10. Data presented are from two independent biological replicates, each with four
1062 technical replicates, error bars represent the standard error of the mean; n.s., non-significant,
1063 two-way ANOVA (Sidak-Bonferroni method), $p>0.05$.

1064

1065 **Figure 6- source data 1.** Uncropped agarose gel images of PCR analyses presented in **Figures**
1066 **6(A) and 6(C).**

1067 **Figure 6- source data 2.** Growth assay parasitemia counts for *bsmnmA*⁺*ΔmnmA* used for **Figure**
1068 **6(B).**

1069 **Figure 6- source data 3.** Growth assay parasitemia counts for *bsmnmA*⁺*ΔmnmA* used for **Figure**
1070 **6(E).** The yellow highlighted row represents the expected parasitemia count after 1:10 dilution of
1071 day 4 parasites.

1072 **Figure 6- figure supplement 2- source data 1.** Growth assay parasitemia counts used for
1073 **Figure 6 - figure supplement 2.** All parasites were cultured in presence of anhydrotetracycline
1074 (aTc). The yellow highlighted row represents the expected parasitemia count after 1:10 dilution
1075 of day 4 parasites.

1076

1077

1078 **Figure 7. *Plasmodium falciparum* SufS provides sulfur for both the SUF pathway and**
1079 **MnmA-catalyzed tRNA thiolation**

1080 **(A)** The expected outcome of *sufS* deletion in *bsmnmA-yrvO⁺* parasites is explained in the
1081 schematic. In absence of parasite SufS, sulfur for FeS biosynthesis is unavailable resulting in no
1082 FeS synthesis. Since, the IPP precursor biosynthesis pathway contains FeS-dependent enzymes,
1083 this pathway cannot function, rendering parasites reliant on exogenous mevalonate (mev) to
1084 survive. Sulfur liberated by *Bs* YrvO is sufficient for the MnMnA-mediated s²U tRNA
1085 modification and efficient protein translation. **(B)** Genotyping PCR confirms deletion of *sufS* in
1086 *bsmnmA-yrvO⁺* Δ *sufS* parasites. Successful deletion was validated by the presence of PCR
1087 amplicons for the Δ 5' and Δ 3' loci, but not for the unmodified loci (5' and 3') found in the
1088 *bsmnmA-yrvO⁺* (parental) parasites. Genotyping PCR reactions and expected amplicon sizes are
1089 described in **Figure 1- figure supplement 1**. **(C)** Attempted PCR amplification of *ldh*, *sufB*, and
1090 *cox1* genes from the parasite nuclear (N), apicoplast (A), mitochondrial (M) genomes,
1091 respectively, in *bsmnmA-yrvO⁺* Δ *sufS* and *bsmnmA-yrvO⁺* (parental) parasites. Successful
1092 amplification of *sufB* in the *bsmnmA-yrvO⁺* Δ *sufS* parasite line indicates the presence of the
1093 apicoplast genome. **(D)** Representative epifluorescence microscopy images of the *bsmnmA-*
1094 *yrvO⁺* Δ *sufS* parasite line expressing api-SFG protein (green) and the *Bs* MnMnA-YrvO-mCherry
1095 (red). The nuclear DNA is stained with DAPI (blue). A single intact apicoplast was seen in this
1096 parasite. Each image depicts a field of 10 μ m x 10 μ m. **(E)** Mevalonate (mev)-dependent growth
1097 of *bsmnmA-yrvO⁺* Δ *sufS* parasites. Asynchronous were cultured with or without 50 μ M Mev for
1098 four days. Flow cytometry was used to monitor parasitemia every 24 h. Data points represent
1099 daily mean parasitemia \pm SEM from two independent biological replicates, each with four
1100 technical replicates.

1101

1102 In panels (B) and (C), DNA markers are in kilobases (kb).

1103

1104 **Figure 7- source data 1.** Uncropped agarose gel images of PCR analyses presented in **Figures**
1105 **7(B)** and **7(C)**.

1106 **Figure 7- source data 2.** Growth assay parasitemia counts for *bsmnmA-yrvO⁺* Δ *sufS* used for
1107 **Figure 7(E)**.

1108

1109 **Figure 8. Dual role of SufS in the *P. falciparum* apicoplast**

1110 **(A)** Dual role of SufS in FeS synthesis and s²U modification of tRNAs in the apicoplast of *P.*
1111 *falciparum*. **(B)** In Δ *sufE* parasites, deletion of *sufE* results in a mevalonate (Mev)-dependent
1112 phenotype with an intact apicoplast. This phenotype is likely caused by the deletion of SufE
1113 resulting in the loss of FeS biosynthesis. **(C)** In Δ *sufS* parasites, disruption of both FeS
1114 biosynthesis and MnmA-dependent tRNA thiolation results in a mevalonate (Mev)-dependent
1115 phenotype with a disrupted apicoplast. **(D)** In Δ *mnmA* parasites, deletion of *mnmA* results in a
1116 mevalonate (Mev)-dependent phenotype with a disrupted apicoplast. Deletion of MnmA likely
1117 causes tRNA thiolation defect leading to translational aberration and ultimately apicoplast
1118 disruption. **(E)** In *bsmnmA-yrvO*⁺ Δ *mnmA* parasites, both SufS and *Bs* YrvO have cysteine
1119 desulfurase activity that transfers sulfur to *Bs* MnmA in the absence of the endogenous parasite
1120 MnmA. **(F)** In *bsmnmA*⁺ Δ *mnmA* parasites, *Bs* MnmA complements the loss of the endogenous
1121 parasite MnmA. The possibility that SufS can transfer sulfur to *Bs* MnmA is represented by the
1122 dotted arrow. **(G)** In *bsmnmA-yrvO*⁺ Δ *sufS* parasites, *Bs* YrvO can transfer sulfur to *Bs* MnmA
1123 and/or parasite MnmA, but not to SufE and the FeS biosynthesis pathway. In this scenario,
1124 parasites would have intact apicoplasts due to proper tRNA thiolation but would be mevalonate-
1125 dependent due to loss of FeS biosynthesis. **(H)** Events leading to parasite death because of loss
1126 of SufS activity in the apicoplast. In panels, (A)-(G), Cys, cysteine; Ala, alanine.

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146 **References**

1147 Akuh, O.-A., Elahi, R., Prigge, S. T., & Seeber, F. (2022). The ferredoxin redox system – an
1148 essential electron distributing hub in the apicoplast of Apicomplexa. *Trends Parasitol*,
1149 38(10), 868-881. <https://doi.org/https://doi.org/10.1016/j.pt.2022.08.002>

1150

1151 Ashraf, S. S., Sochacka, E., Cain, R., Guenther, R., Malkiewicz, A., & Agris, P. F. (1999). Single
1152 atom modification (O → S) of tRNA confers ribosome binding. *RNA*, 5(2), 188-194.
1153 <https://doi.org/10.1017/S1355838299981529>

1154

1155 Aurrecochea, C., Brestelli, J., Brunk, B. P., Dommer, J., Fischer, S., Gajria, B., Gao, X., Gingle,
1156 A., Grant, G., Harb, O. S., Heiges, M., Innamorato, F., Iodice, J., Kissinger, J. C.,
1157 Kraemer, E., Li, W., Miller, J. A., Nayak, V., Pennington, C., Pinney, D. F., Roos, D. S.,
1158 Ross, C., Stoeckert, C. J., Jr., Treatman, C., & Wang, H. (2008). PlasmoDB: a functional
1159 genomic database for malaria parasites. *Nucleic Acids Res*, 37(suppl_1), D539-D543.
1160 <https://doi.org/10.1093/nar/gkn814>

1161

1162 Bai, Y., Chen, T., Happe, T., Lu, Y., & Sawyer, A. (2018). Iron–sulphur cluster biogenesis via
1163 the SUF pathway. *Metalomics*, 10(8), 1038-1052. <https://doi.org/10.1039/c8mt00150b>

1164

1165 Beinert, H. (2000). Iron-sulfur proteins: ancient structures, still full of surprises. *J Biol Inorg
1166 Chem*, 5(1), 2-15. <https://doi.org/10.1007/s007750050002>

1167

1168 Black, K. A., & Santos, P. C. D. (2015a). Abbreviated pathway for biosynthesis of 2-Thiouridine
1169 in *Bacillus subtilis*. *J Bacteriol*, 197(11), 1952-1962.
1170 <https://doi.org/doi:10.1128/JB.02625-14>

1171

1172 Black, K. A., & Santos, P. C. D. (2015b). Shared-intermediates in the biosynthesis of thio-
1173 cofactors: Mechanism and functions of cysteine desulfurases and sulfur acceptors.
1174 *Biochim Et Biophys Acta (BBA)-Mol Cell Res*, 1853(6), 1470-1480.
1175 <https://doi.org/https://doi.org/10.1016/j.bbamcr.2014.10.018>

1176

1177 Blahut, M., Sanchez, E., Fisher, C. E., & Outten, F. W. (2020). Fe-S cluster biogenesis by the
1178 bacterial Suf pathway. *Biochim Et Biophys Acta (BBA)-Mol Cell Res*, 1867(11), 118829.
1179 <https://doi.org/https://doi.org/10.1016/j.bbamcr.2020.118829>

1180

1181 Botté, C. Y., Dubar, F., McFadden, G. I., Maréchal, E., & Biot, C. (2012). *Plasmodium
1182 falciparum* apicoplast drugs: targets or off-Targets? *Chem Rev*, 112(3), 1269-1283.
1183 <https://doi.org/10.1021/cr200258w>

1184

1185 Bühning, M., Valleriani, A., & Leimkühler, S. (2017). The role of SufS is restricted to Fe–S
1186 cluster biosynthesis in *Escherichia coli*. *Biochemistry*, 56(14), 1987-2000.
1187 <https://doi.org/10.1021/acs.biochem.7b00040>

1188

1189 Čavužić, M., & Liu, Y. (2017). Biosynthesis of Sulfur-containing tRNA modifications: a
1190 comparison of bacterial, archaeal, and eukaryotic pathways. *Biomolecules*, 7(1), 27.
1191 <https://www.mdpi.com/2218-273X/7/1/27>

1192
1193 Chahal, H. K., Dai, Y., Saini, A., Ayala-Castro, C., & Outten, F. W. (2009). The SufBCD Fe–S
1194 scaffold complex interacts with SufA for Fe–S Cluster transfer. *Biochemistry*, 48(44),
1195 10644-10653. <https://doi.org/10.1021/bi901518y>

1196
1197 Charan, M., Choudhary, H. H., Singh, N., Sadik, M., Siddiqi, M. I., Mishra, S., & Habib, S.
1198 (2017). [Fe–S] cluster assembly in the apicoplast and its indispensability in mosquito
1199 stages of the malaria parasite. *FEBS J*, 284(16), 2629-2648.
1200 <https://doi.org/https://doi.org/10.1111/febs.14159>

1201
1202 Charan, M., Singh, N., Kumar, B., Srivastava, K., Siddiqi, M. I., & Habib, S. (2014). Sulfur
1203 mobilization for Fe-S cluster assembly by the essential SUF pathway in the *Plasmodium*
1204 *falciparum* apicoplast and its inhibition. *Antimicrob Agents Chemother*, 58(6), 3389-
1205 3398. <https://doi.org/doi:10.1128/AAC.02711-13>

1206
1207 Dahl, E. L., & Rosenthal, P. J. (2008). Apicoplast translation, transcription and genome
1208 replication: targets for antimalarial antibiotics. *Trends Parasitol*, 24(6), 279-284.
1209 <https://doi.org/https://doi.org/10.1016/j.pt.2008.03.007>

1210
1211 DelliBovi-Ragheb, T. A., Gisselberg, J. E., & Prigge, S. T. (2013). Parasites FeS up: iron-sulfur
1212 cluster biogenesis in eukaryotic pathogens. *PLoS Pathog*, 9(4), e1003227.
1213 <https://doi.org/10.1371/journal.ppat.1003227>

1214
1215 Ellis, K. E. S., Clough, B., Saldanha, J. W., & Wilson, R. J. M. (2001). Nifs and Sufs in malaria.
1216 *Mol Microbiol*, 41(5), 973-981. <https://doi.org/https://doi.org/10.1046/j.1365-2958.2001.02588.x>

1217
1218 Foth, B. J., Ralph, S. A., Tonkin, C. J., Struck, N. S., Fraunholz, M., Roos, D. S., Cowman, A.
1219 F., & McFadden, G. I. (2003). Dissecting apicoplast targeting in the malaria parasite
1220 *Plasmodium falciparum*. *Science*, 299(5607), 705-708.
1221 <https://doi.org/doi:10.1126/science.1078599>

1222
1223 Gallagher, J. R., Matthews, K. A., & Prigge, S. T. (2011). *Plasmodium falciparum* apicoplast
1224 transit peptides are unstructured *in vitro* and during apicoplast import. *Traffic*, 12(9),
1225 1124-1138. <https://doi.org/https://doi.org/10.1111/j.1600-0854.2011.01232.x>

1226
1227 Gallagher, J. R., & Prigge, S. T. (2010). *Plasmodium falciparum* acyl carrier protein crystal
1228 structures in disulfide-linked and reduced states and their prevalence during blood stage
1229 growth. *Proteins: Structure, Function, and Bioinformatics*, 78(3), 575-588.
1230 <https://doi.org/https://doi.org/10.1002/prot.22582>

1231
1232 Ganesan, S. M., Falla, A., Goldfless, S. J., Nasamu, A. S., & Niles, J. C. (2016). Synthetic RNA–
1233 protein modules integrated with native translation mechanisms to control gene expression
1234 in malaria parasites. *Nat Commun*, 7(1), 10727. <https://doi.org/10.1038/ncomms10727>

1235
1236

1237 Ghorbal, M., Gorman, M., Macpherson, C. R., Martins, R. M., Scherf, A., & Lopez-Rubio, J.-J.
1238 (2014). Genome editing in the human malaria parasite *Plasmodium falciparum* using the
1239 CRISPR-Cas9 system. *Nat Biotechnol*, 32(8), 819-821. <https://doi.org/10.1038/nbt.2925>
1240

1241 Gisselberg, J. E., Dellibovi-Ragheb, T. A., Matthews, K. A., Bosch, G., & Prigge, S. T. (2013).
1242 The Suf iron-sulfur cluster synthesis pathway is required for apicoplast maintenance in
1243 malaria parasites. *PLoS Pathog*, 9(9), e1003655.
1244 <https://doi.org/10.1371/journal.ppat.1003655>
1245

1246 Haussig, J. M., Matuschewski, K., & Kooij, T. W. A. (2013). Experimental genetics of
1247 *Plasmodium berghei* NFU in the apicoplast iron-sulfur cluster biogenesis pathway. *PLOS
1248 ONE*, 8(6), e67269. <https://doi.org/10.1371/journal.pone.0067269>
1249

1250 Haussig, J. M., Matuschewski, K., & Kooij, T. W. A. (2014). Identification of vital and
1251 dispensable sulfur utilization factors in the *Plasmodium* apicoplast. *PLOS ONE*, 9(2),
1252 e89718. <https://doi.org/10.1371/journal.pone.0089718>
1253

1254 Hidese, R., Mihara, H., & Esaki, N. (2011). Bacterial cysteine desulfurases: versatile key players
1255 in biosynthetic pathways of sulfur-containing biofactors. *Appl Microbiol Biotechnol*,
1256 91(1), 47-61. <https://doi.org/10.1007/s00253-011-3336-x>
1257

1258 Hirabayashi, K., Yuda, E., Tanaka, N., Katayama, S., Iwasaki, K., Matsumoto, T., Kurisu, G.,
1259 Outten, F. W., Fukuyama, K., Takahashi, Y., & Wada, K. (2015). Functional dynamics
1260 revealed by the structure of the SufBCD complex, a novel ATP-binding cassette (ABC)
1261 protein that serves as a scaffold for iron-sulfur cluster biogenesis. *J Biol Chem*, 290(50),
1262 29717-29731. <https://doi.org/10.1074/jbc.M115.680934>
1263

1264 Hu, X., Kato, Y., Sumida, A., Tanaka, A., & Tanaka, R. (2017). The SUFBC₂D complex is
1265 required for the biogenesis of all major classes of plastid Fe-S proteins. *Plant J*, 90(2),
1266 235-248. <https://doi.org/https://doi.org/10.1111/tpj.13483>
1267

1268 Hu, X., Page, M. T., Sumida, A., Tanaka, A., Terry, M. J., & Tanaka, R. (2017). The iron-sulfur
1269 cluster biosynthesis protein SUFB is required for chlorophyll synthesis, but not
1270 phytochrome signaling. *Plant J*, 89(6), 1184-1194.
1271 <https://doi.org/https://doi.org/10.1111/tpj.13455>
1272

1273 Huet, G., Daffé, M., & Saves, I. (2005). Identification of the *Mycobacterium tuberculosis* SUF
1274 machinery as the exclusive mycobacterial system of [Fe-S] cluster assembly: evidence
1275 for its implication in the pathogen's survival. *J Bacteriol*, 187(17), 6137-6146.
1276 <https://doi.org/doi:10.1128/JB.187.17.6137-6146.2005>
1277

1278 Ikeuchi, Y., Shigi, N., Kato, J.-i., Nishimura, A., & Suzuki, T. (2006). Mechanistic insights into
1279 sulfur relay by multiple sulfur mediators involved in Thiouridine biosynthesis at tRNA
1280 wobble positions. *Mol Cell*, 21(1), 97-108.
1281 <https://doi.org/https://doi.org/10.1016/j.molcel.2005.11.001>
1282

1283 Jomaa, H., Wiesner, J., Sanderbrand, S., Altincicek, B., Weidemeyer, C., Hintz, M., Türbachova,
1284 I., Eberl, M., Zeidler, J., Lichtenhaler, H. K., Soldati, D., & Beck, E. (1999). Inhibitors
1285 of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. *Science*,
1286 285(5433), 1573-1576. <https://doi.org/doi:10.1126/science.285.5433.1573>

1287

1288 Ke, H., Sigala, P. A., Miura, K., Morrisey, J. M., Mather, M. W., Crowley, J. R., Henderson, J.
1289 P., Goldberg, D. E., Long, C. A., & Vaidya, A. B. (2014). The heme biosynthesis
1290 pathway is essential for *Plasmodium falciparum* development in mosquito stage but not
1291 in blood stages. *J Biol Chem*, 289(50), 34827-34837.
1292 <https://doi.org/https://doi.org/10.1074/jbc.M114.615831>

1293

1294 Kobayashi, K., Ehrlich, S. D., Albertini, A., Amati, G., Andersen, K. K., Arnaud, M., Asai, K.,
1295 Ashikaga, S., Aymerich, S., Bessieres, P., Boland, F., Brignell, S. C., Bron, S., Bunai, K.,
1296 Chapuis, J., Christiansen, L. C., Danchin, A., Débarbouillé, M., Dervyn, E., Deuerling,
1297 E., Devine, K., Devine, S. K., Dreesen, O., Errington, J., Fillinger, S., Foster, S. J., Fujita,
1298 Y., Galizzi, A., Gardan, R., Eschevins, C., Fukushima, T., Haga, K., Harwood, C. R.,
1299 Hecker, M., Hosoya, D., Hullo, M. F., Kakeshita, H., Karamata, D., Kasahara, Y.,
1300 Kawamura, F., Koga, K., Koski, P., Kuwana, R., Imamura, D., Ishimaru, M., Ishikawa,
1301 S., Ishio, I., Le Coq, D., Masson, A., Mauël, C., Meima, R., Mellado, R. P., Moir, A.,
1302 Moriya, S., Nagakawa, E., Nanamiya, H., Nakai, S., Nygaard, P., Ogura, M., Ohanan, T.,
1303 O'Reilly, M., O'Rourke, M., Pragai, Z., Pooley, H. M., Rapoport, G., Rawlins, J. P.,
1304 Rivas, L. A., Rivolta, C., Sadaie, A., Sadaie, Y., Sarvas, M., Sato, T., Saxild, H. H.,
1305 Scanlan, E., Schumann, W., Seegers, J. F. M. L., Sekiguchi, J., Sekowska, A., Séror, S.,
1306 J., Simon, M., Stragier, P., Studer, R., Takamatsu, H., Tanaka, T., Takeuchi, M.,
1307 Thomaides, H. B., Vagner, V., van Dijl, J. M., Watabe, K., Wipat, A., Yamamoto, H.,
1308 Yamamoto, M., Yamamoto, Y., Yamane, K., Yata, K., Yoshida, K., Yoshikawa, H.,
1309 Zuber, U., & Ogasawara, N. (2003). Essential *Bacillus subtilis* genes. *Proc Natl Acad Sci
1310 U S A*, 100(8), 4678-4683. <https://doi.org/doi:10.1073/pnas.0730515100>

1311

1312 Köhler, S., Delwiche, C. F., Denny, P. W., Tilney, L. G., Webster, P., Wilson, R. J. M., Palmer,
1313 J. D., & Roos, D. S. (1997). A plastid of probable green algal origin in apicomplexan
1314 parasites. *Science*, 275(5305), 1485-1489.
1315 <https://doi.org/doi:10.1126/science.275.5305.1485>

1316

1317 Kumar, B., Chaubey, S., Shah, P., Tanveer, A., Charan, M., Siddiqi, M. I., & Habib, S. (2011).
1318 Interaction between sulphur mobilisation proteins SufB and SufC: evidence for an iron-
1319 sulphur cluster biogenesis pathway in the apicoplast of *Plasmodium falciparum*. *Int J
1320 Parasitol*, 41(9), 991-999. <https://doi.org/https://doi.org/10.1016/j.ijpara.2011.05.006>

1321

1322 Leimkühler, S., Bühning, M., & Beilschmidt, L. (2017). Shared sulfur mobilization routes for
1323 tRNA Thiolation and Molybdenum cofactor biosynthesis in prokaryotes and eukaryotes.
1324 *Biomolecules*, 7(1), 5. <https://www.mdpi.com/2218-273X/7/1/5>

1325

1326 Lill, R. (2009). Function and biogenesis of iron-sulphur proteins. *Nature*, 460(7257), 831-838.
1327 <https://doi.org/10.1038/nature08301>

1328

1329 Loiseau, L., Ollagnier-de-Choudens, S., Nachin, L., Fontecave, M., & Barras, F. (2003).
1330 Biogenesis of Fe-S cluster by the bacterial Suf System: SufS and SufE form a new type
1331 of cysteine desulfurase. *J Biol Chem*, 278(40), 38352-38359.
1332 <https://doi.org/https://doi.org/10.1074/jbc.M305953200>
1333
1334 Lu, Y. (2018). Assembly and transfer of iron–sulfur clusters in the plastid. *Front Plant Sci*, 9.
1335 <https://doi.org/10.3389/fpls.2018.00336>
1336
1337 Manders, E. M. M., Verbeek, F. J., & Aten, J. A. (1993). Measurement of co-localization of
1338 objects in dual-colour confocal images. *J Microsc*, 169(3), 375-382.
1339 <https://doi.org/https://doi.org/10.1111/j.1365-2818.1993.tb03313.x>
1340
1341 McFadden, G. I., Reith, M. E., Munholland, J., & Lang-Unnasch, N. (1996). Plastid in human
1342 parasites. *Nature*, 381(6582), 482-482. <https://doi.org/10.1038/381482a0>
1343
1344 Mihara, H., & Esaki, N. (2002). Bacterial cysteine desulfurases: their function and mechanisms.
1345 *Appl Microbiol Biotechnol*, 60(1), 12-23. <https://doi.org/10.1007/s00253-002-1107-4>
1346
1347 Mueller, E. G. (2006). Trafficking in persulfides: delivering sulfur in biosynthetic pathways. *Nat
1348 Chem Biol*, 2(4), 185-194. <https://doi.org/10.1038/nchembio779>
1349
1350 Murthy, U. M. N., Ollagnier-de-Choudens, S., Sanakis, Y., Abdel-Ghany, S. E., Rousset, C., Ye,
1351 H., Fontecave, M., Pilon-Smits, E. A. H., & Pilon, M. (2007). Characterization of
1352 *Arabidopsis thaliana* SufE2 and SufE3: functions in chloroplast iron-sulfur cluster
1353 assembly and NAD synthesis. *J Biol Chem*, 282(25), 18254-18264.
1354 <https://doi.org/https://doi.org/10.1074/jbc.M701428200>
1355
1356 Nakai, Y., Umeda, N., Suzuki, T., Nakai, M., Hayashi, H., Watanabe, K., & Kagamiyama, H.
1357 (2004). Yeast Nfs1p is involved in Thio-modification of both mitochondrial and
1358 cytoplasmic tRNAs. *J Biol Chem*, 279(13), 12363-12368.
1359 <https://doi.org/https://doi.org/10.1074/jbc.M312448200>
1360
1361 Ng, C. S., Sinha, A., Aniweh, Y., Nah, Q., Babu, I. R., Gu, C., Chionh, Y. H., Dedon, P. C., &
1362 Preiser, P. R. (2018). tRNA epitranscriptomics and biased codon are linked to proteome
1363 expression in *Plasmodium falciparum*. *Mol Syst Biol*, 14(10), e8009.
1364 <https://doi.org/https://doi.org/10.15252/msb.20178009>
1365
1366 Nkrumah, L. J., Muhle, R. A., Moura, P. A., Ghosh, P., Hatfull, G. F., Jacobs, W. R., & Fidock,
1367 D. A. (2006). Efficient site-specific integration in *Plasmodium falciparum* chromosomes
1368 mediated by mycobacteriophage Bxb1 integrase. *Nat Methods*, 3(8), 615-621.
1369 <https://doi.org/10.1038/nmeth904>
1370
1371 Numata, T., Ikeuchi, Y., Fukai, S., Suzuki, T., & Nureki, O. (2006). Snapshots of tRNA
1372 sulphuration via an adenylated intermediate. *Nature*, 442(7101), 419-424.
1373 <https://doi.org/10.1038/nature04896>
1374

1375 Ollagnier-de-Choudens, S., Lascoux, D., Loiseau, L., Barras, F., Forest, E., & Fontecave, M.
1376 (2003). Mechanistic studies of the SufS–SufE cysteine desulfurase: evidence for sulfur
1377 transfer from SufS to SufE. *FEBS Lett*, 555(2), 263-267.
1378 [https://doi.org/https://doi.org/10.1016/S0014-5793\(03\)01244-4](https://doi.org/https://doi.org/10.1016/S0014-5793(03)01244-4)
1379

1380 Outten, F. W., Wood, M. J., Muñoz, F. M., & Storz, G. (2003). The SufE protein and the
1381 SufBCD complex enhance SufS cysteine desulfurase activity as part of a sulfur transfer
1382 pathway for Fe-S cluster assembly in *Escherichia coli*. *J Biol Chem*, 278(46), 45713-
1383 45719. <https://doi.org/https://doi.org/10.1074/jbc.M308004200>
1384

1385 Pala, Z. R., Saxena, V., Saggur, G. S., & Garg, S. (2018). Recent advances in the [Fe–S] cluster
1386 biogenesis (SUF) pathway functional in the apicoplast of *Plasmodium*. *Trends Parasitol*,
1387 34(9), 800-809. <https://doi.org/https://doi.org/10.1016/j.pt.2018.05.010>
1388

1389 Pamukcu, S., Cerutti, A., Bordat, Y., Hem, S., Rofidal, V., & Besteiro, S. (2021). Differential
1390 contribution of two organelles of endosymbiotic origin to iron-sulfur cluster synthesis
1391 and overall fitness in *Toxoplasma*. *PLoS Pathog*, 17(11), e1010096.
1392 <https://doi.org/10.1371/journal.ppat.1010096>
1393

1394 Pilon-Smits, E. A. H., Garifullina, G. F., Abdel-Ghany, S., Kato, S.-I., Mihara, H., Hale, K. L.,
1395 Burkhead, J. L., Esaki, N., Kurihara, T., & Pilon, M. (2002). Characterization of a NifS-
1396 like chloroplast protein from *Arabidopsis*. Implications for its role in sulfur and selenium
1397 metabolism. *Plant Physiol*, 130(3), 1309-1318. <https://doi.org/10.1104/pp.102.010280>
1398

1399 Przybyla-Toscano, J., Roland, M., Gaymard, F., Couturier, J., & Rouhier, N. (2018). Roles and
1400 maturation of iron–sulfur proteins in plastids. *J Biol Inorg Chem*, 23(4), 545-566.
1401 <https://doi.org/10.1007/s00775-018-1532-1>
1402

1403 Py, B., Gerez, C., Angelini, S., Planel, R., Vinella, D., Loiseau, L., Talla, E., Brochier-Armanet,
1404 C., Garcia Serres, R., Latour, J.-M., Ollagnier-de Choudens, S., Fontecave, M., & Barras,
1405 F. (2012). Molecular organization, biochemical function, cellular role and evolution of
1406 NfuA, an atypical Fe-S carrier. *Mol Microbiol*, 86(1), 155-171.
1407 <https://doi.org/https://doi.org/10.1111/j.1365-2958.2012.08181.x>
1408

1409 Rajaram, K., Liu, H. B., & Prigge, S. T. (2020). Redesigned TetR-Aptamer system to control
1410 gene expression in *Plasmodium falciparum*. *mSphere*, 5(4), e00457-00420.
1411 <https://doi.org/doi:10.1128/mSphere.00457-20>
1412

1413 Ralph, S. A., van Dooren, G. G., Waller, R. F., Crawford, M. J., Fraunholz, M. J., Foth, B. J.,
1414 Tonkin, C. J., Roos, D. S., & McFadden, G. I. (2004). Metabolic maps and functions of
1415 the *Plasmodium falciparum* apicoplast. *Nat Rev Microbiol*, 2(3), 203-216.
1416 <https://doi.org/10.1038/nrmicro843>
1417

1418 Roberts, A. D., Nair, S. C., Guerra, A. J., & Prigge, S. T. (2019). Development of a conditional
1419 localization approach to control apicoplast protein trafficking in malaria parasites.
1420 *Traffic*, 20(8), 571-582. <https://doi.org/https://doi.org/10.1111/tra.12656>

1421
1422 Rouault, T. A. (2019). The indispensable role of mammalian iron sulfur proteins in function and
1423 regulation of multiple diverse metabolic pathways. *BioMetals*, 32(3), 343-353.
1424 <https://doi.org/10.1007/s10534-019-00191-7>
1425
1426 Sadik, M., Afsar, M., Ramachandran, R., & Habib, S. (2021). [Fe–S] biogenesis and unusual
1427 assembly of the ISC scaffold complex in the *Plasmodium falciparum* mitochondrion. *Mol*
1428 *Microbiol*, 116(2), 606-623. <https://doi.org/https://doi.org/10.1111/mmi.14735>
1429
1430 Saini, A., Mapolelo, D. T., Chahal, H. K., Johnson, M. K., & Outten, F. W. (2010). SufD and
1431 SufC ATPase activity are required for iron acquisition during *in vivo* Fe-S cluster
1432 formation on SufB. *Biochemistry*, 49(43), 9402-9412. <https://doi.org/10.1021/bi1011546>
1433
1434 Seeber, F. (2002). Biogenesis of iron–sulphur clusters in amitochondriate and apicomplexan
1435 protists. *Int J Parasitol*, 32(10), 1207-1217. [https://doi.org/https://doi.org/10.1016/S0020-7519\(02\)00022-X](https://doi.org/https://doi.org/10.1016/S0020-7519(02)00022-X)
1436
1437
1438 Shears, M. J., Botté, C. Y., & McFadden, G. I. (2015). Fatty acid metabolism in the *Plasmodium*
1439 apicoplast: drugs, doubts and knockouts. *Mol Biochem Parasitol*, 199(1), 34-50.
1440 <https://doi.org/https://doi.org/10.1016/j.molbiopara.2015.03.004>
1441
1442 Shigi, N. (2014). Biosynthesis and functions of sulfur modifications in tRNA. *Front Genet*, 5.
1443 <https://doi.org/10.3389/fgene.2014.00067>
1444
1445 Shigi, N. (2018). Recent advances in our understanding of the biosynthesis of sulfur
1446 modifications in tRNAs. *Front Microbiol*, 9. <https://doi.org/10.3389/fmicb.2018.02679>
1447
1448 Shigi, N., Horitani, M., Miyauchi, K., Suzuki, T., & Kuroki, M. (2020). An ancient type of
1449 MnmA protein is an iron–sulfur cluster-dependent sulfurtransferase for tRNA anticodons.
1450 *RNA*, 26(3), 240-250. <https://doi.org/10.1261/rna.072066.119>
1451
1452 Spalding, M. D., Allary, M., Gallagher, J. R., & Prigge, S. T. (2010). Validation of a modified
1453 method for Bxb1 mycobacteriophage integrase-mediated recombination in *Plasmodium*
1454 *falciparum* by localization of the H-protein of the glycine cleavage complex to the
1455 mitochondrion. *Mol Biochem Parasitol*, 172(2), 156-160.
1456 <https://doi.org/https://doi.org/10.1016/j.molbiopara.2010.04.005>
1457
1458 Swift, R. P., Rajaram, K., Elahi, R., Liu, H. B., & Prigge, S. T. (2022). Roles of ferredoxin-
1459 dependent proteins in the apicoplast of *Plasmodium falciparum* parasites. *mBio*, 13(1),
1460 e03023-03021. <https://doi.org/doi:10.1128/mbio.03023-21>
1461
1462 Swift, R. P., Rajaram, K., Liu, H. B., Dziedzic, A., Jedlicka, A. E., Roberts, A. D., Matthews, K.
1463 A., Jhun, H., Bumpus, N. N., Tewari, S. G., Wallqvist, A., & Prigge, S. T. (2020). A
1464 mevalonate bypass system facilitates elucidation of plastid biology in malaria parasites.
1465 *PLoS Pathog*, 16(2), e1008316. <https://doi.org/10.1371/journal.ppat.1008316>
1466

1467 Swift, R. P., Rajaram, K., Liu, H. B., & Prigge, S. T. (2021). Dephospho-CoA kinase, a nuclear-
1468 encoded apicoplast protein, remains active and essential after *Plasmodium falciparum*
1469 apicoplast disruption. *EMBO J*, 40(16), e107247.
1470 <https://doi.org/https://doi.org/10.15252/embj.2020107247>
1471

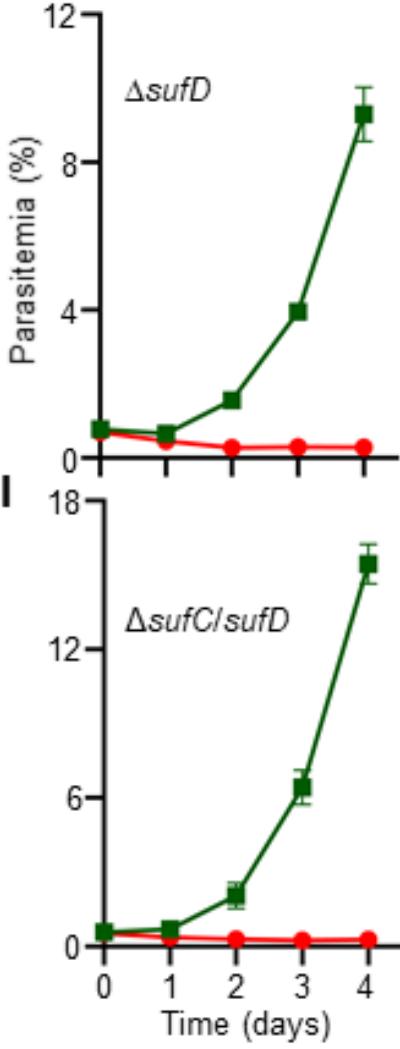
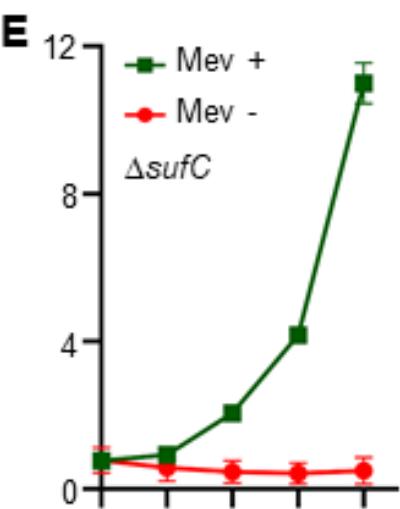
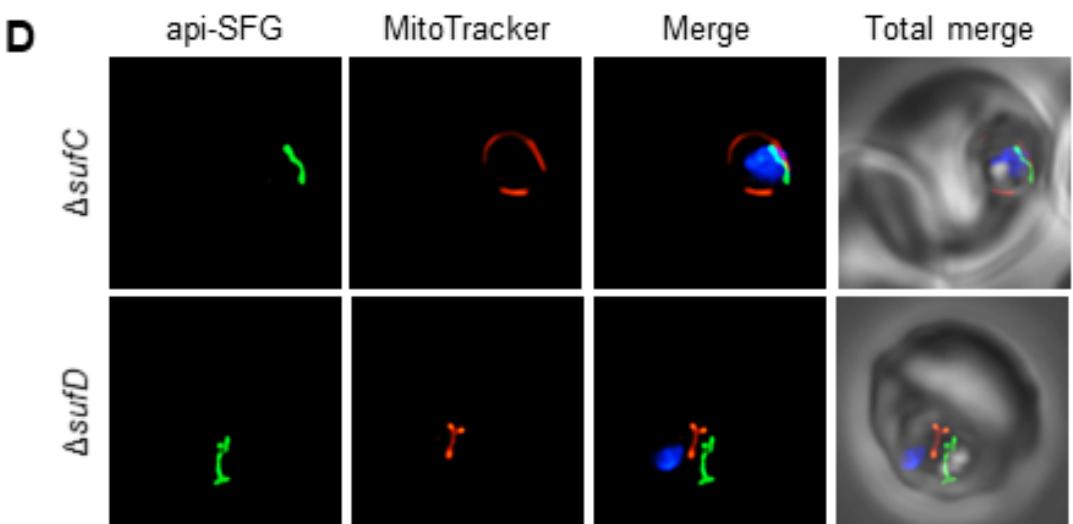
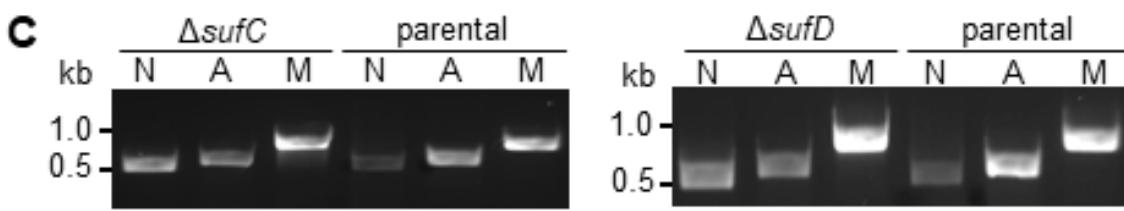
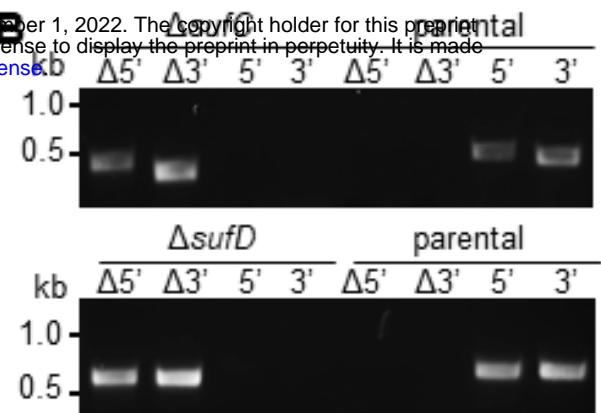
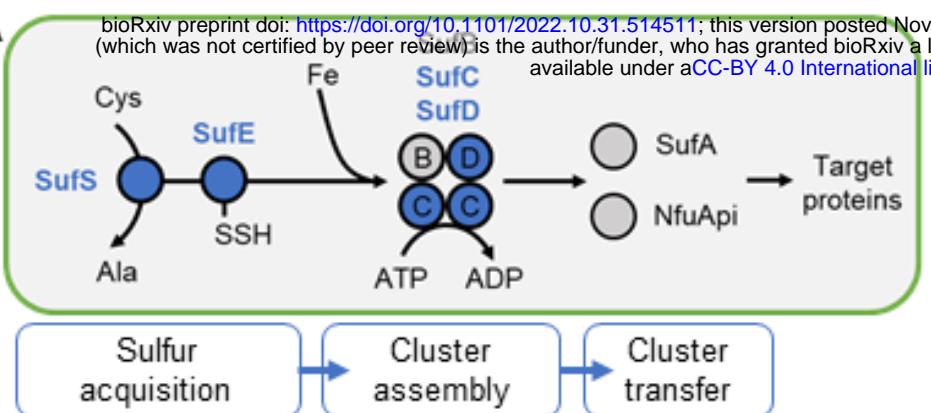
1472 Tewari, S. G., Kwan, B., Elahi, R., Rajaram, K., Reifman, J., Prigge, S. T., Vaidya, A. B., &
1473 Wallqvist, A. (2022). Metabolic adjustments of blood-stage *Plasmodium falciparum* in
1474 response to sublethal pyrazoleamide exposure. *Sci Rep*, 12(1), 1167.
1475 <https://doi.org/10.1038/s41598-022-04985-7>
1476

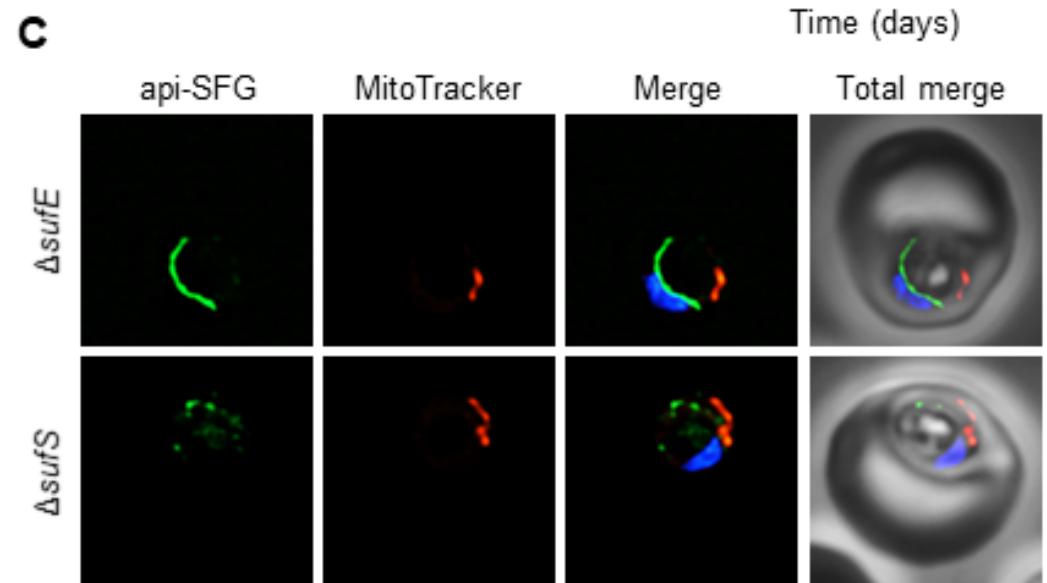
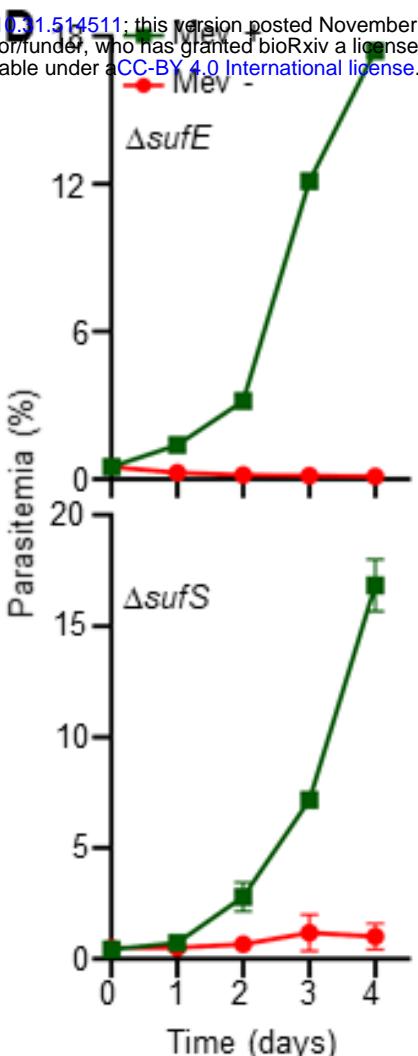
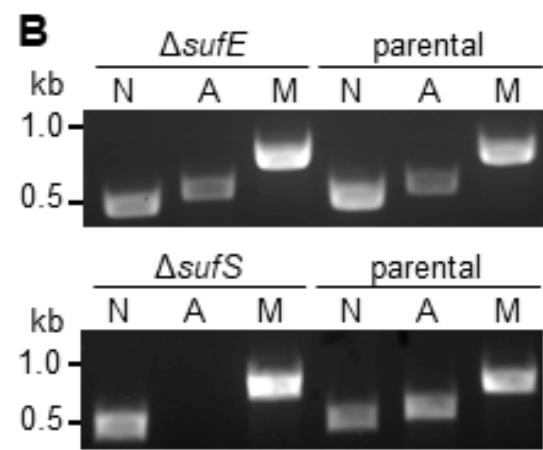
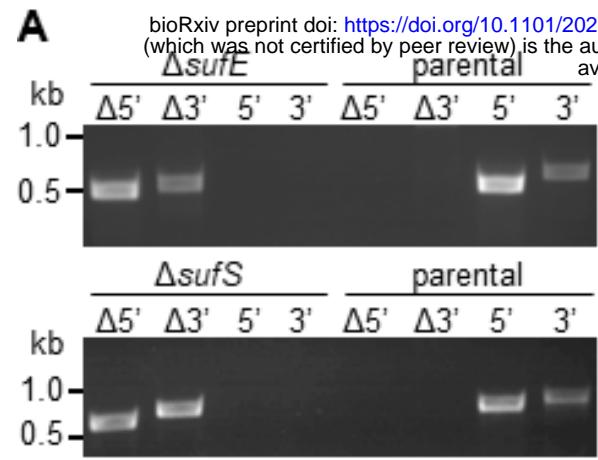
1477 Urbonavičius, J., Qian, Q., Durand, J. M. B., Hagervall, T. G., & Björk, G. R. (2001).
1478 Improvement of reading frame maintenance is a common function for several tRNA
1479 modifications. *EMBO J*, 20(17), 4863-4873.
1480 <https://doi.org/https://doi.org/10.1093/emboj/20.17.4863>
1481

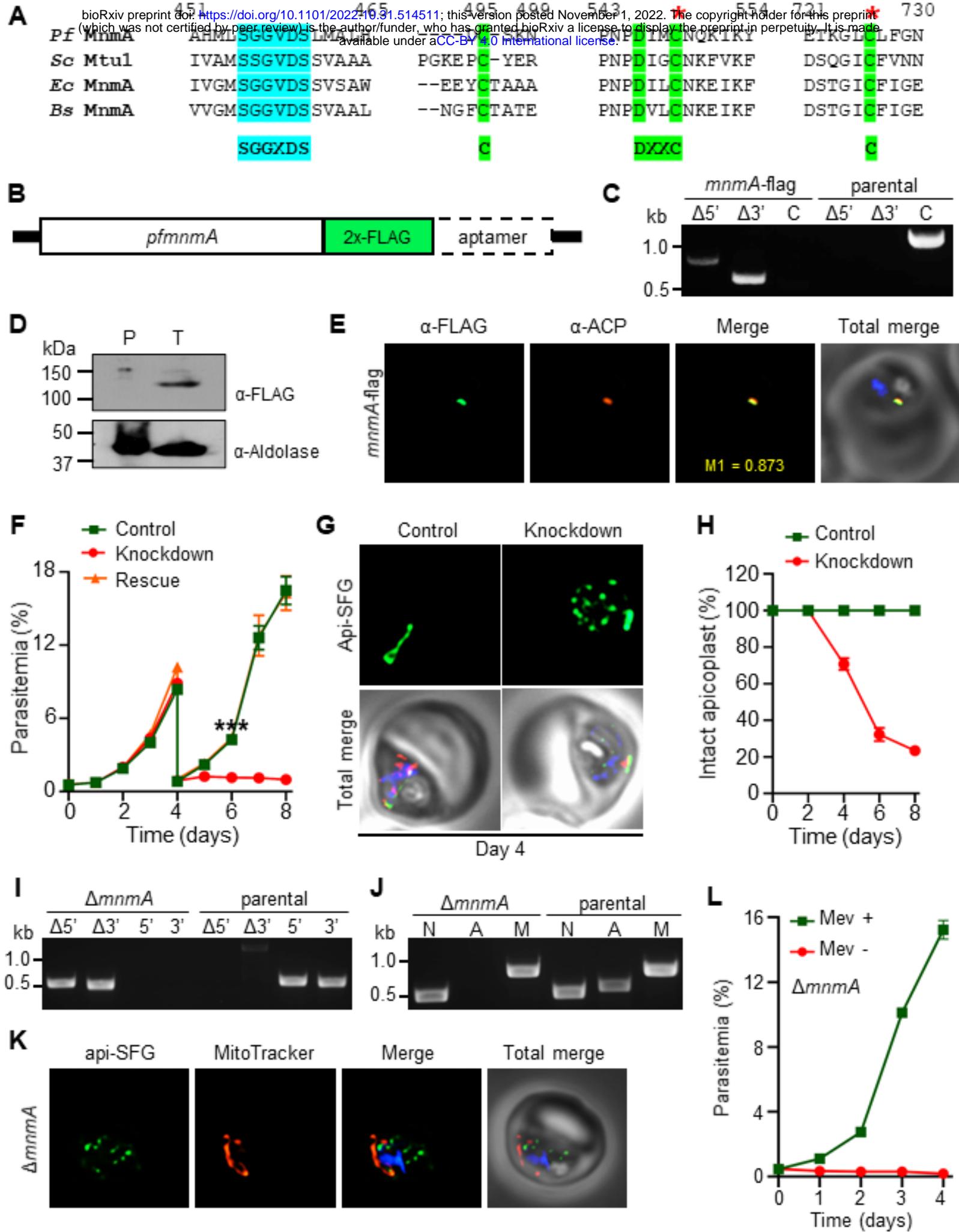
1482 Wilson, R. J. M., Denny, P. W., Preiser, P. R., Rangachari, K., Roberts, K., Roy, A., Whyte, A.,
1483 Strath, M., Moore, D. J., Moore, P. W., & Williamson, D. H. (1996). Complete gene map
1484 of the plastid-like DNA of the malaria parasite *Plasmodium falciparum*. *J Mol Biol*,
1485 261(2), 155-172. <https://doi.org/https://doi.org/10.1006/jmbi.1996.0449>
1486

1487 Wollers, S., Layer, G., Garcia-Serres, R., Signor, L., Clemancey, M., Latour, J.-M., Fontecave,
1488 M., & Ollagnier de Choudens, S. (2010). Iron-sulfur (Fe-S) cluster assembly: the
1489 SufBCD complex is a new type of Fe-S scaffold with a falvin redox cofactor. *J Biol
1490 Chem*, 285(30), 23331-23341. <https://doi.org/https://doi.org/10.1074/jbc.M110.127449>
1491

1492 Yang, Y., Lin, M., Chen, X., Zhao, X., Chen, L., Zhao, M., Yao, C., Sheng, K., Yang, Y., Ma,
1493 G., & Du, A. (2022). The first apicoplast tRNA thiouridylase plays a vital role in the
1494 growth of *Toxoplasma gondii*. *Front Cell Infect Microbiol*, 12.
1495 <https://doi.org/10.3389/fcimb.2022.947039>
1496

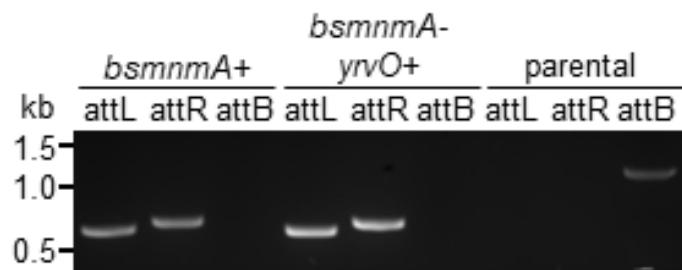
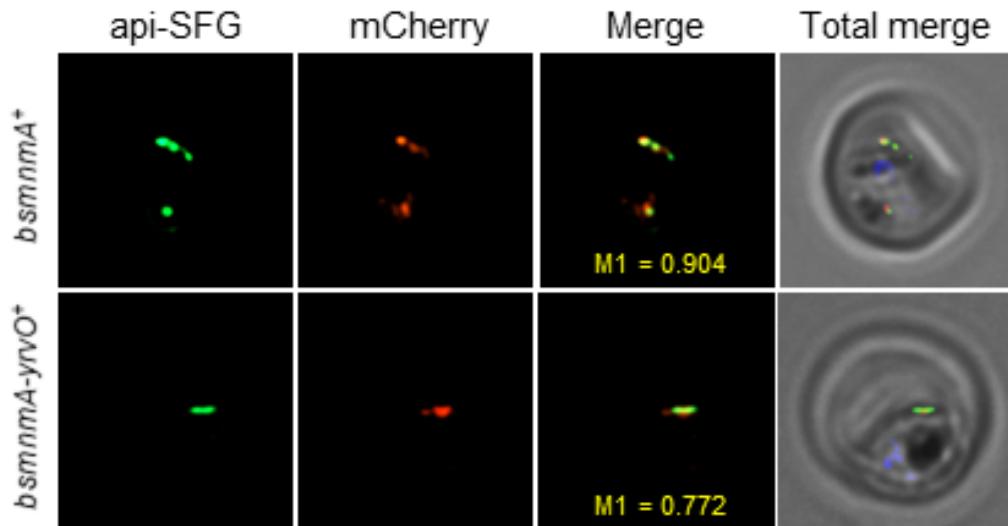






1497 Ye, H., Abdel-Ghany, S. E., Anderson, T. D., Pilon-Smits, E. A. H., & Pilon, M. (2006). CpSufE
1498 activates the cysteine desulfurase CpNifS for chloroplastic Fe-S cluster formation. *J Biol
1499 Chem*, 281(13), 8958-8969. <https://doi.org/https://doi.org/10.1074/jbc.M512737200>
1500

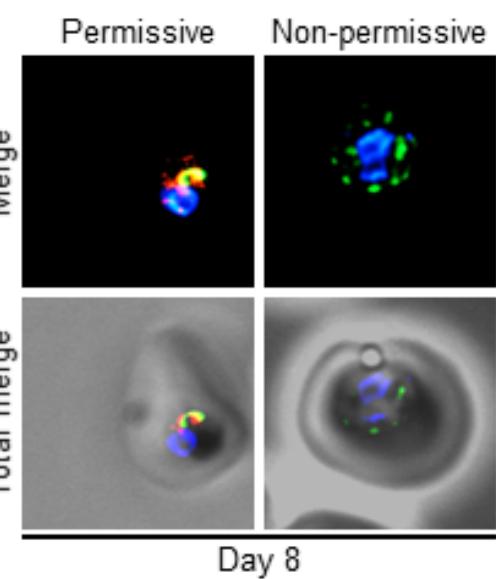
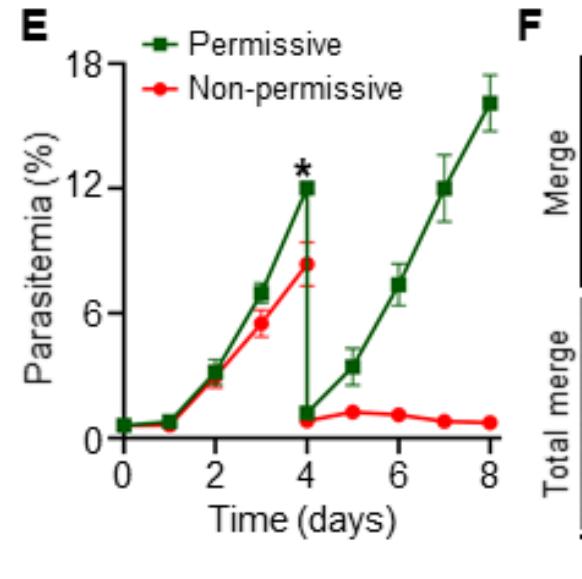
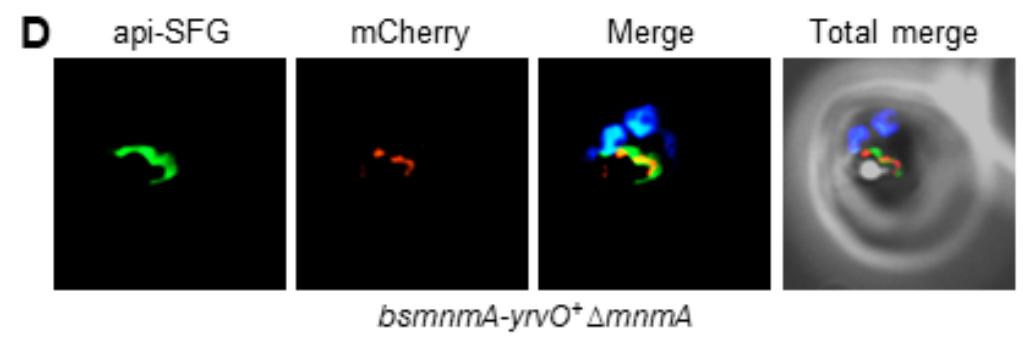
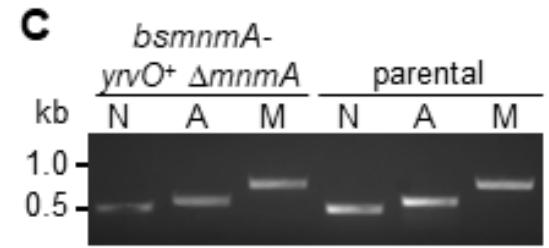




1501 Yeh, E., & DeRisi, J. L. (2011). Chemical rescue of malaria parasites lacking an apicoplast
1502 defines organelle function in blood-stage *Plasmodium falciparum*. *PLoS Biol*, 9(8),
1503 e1001138. <https://doi.org/10.1371/journal.pbio.1001138>
1504

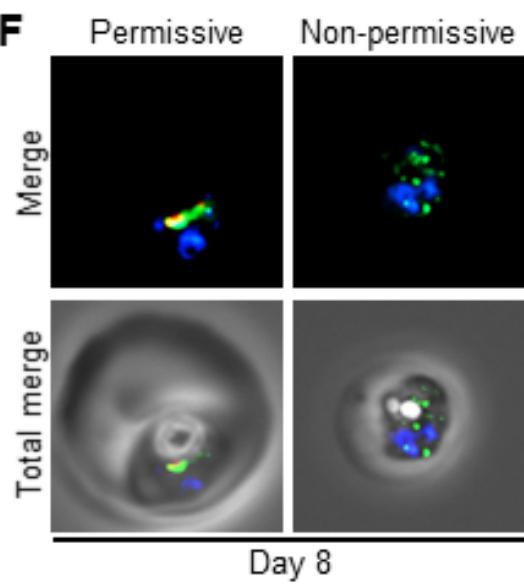
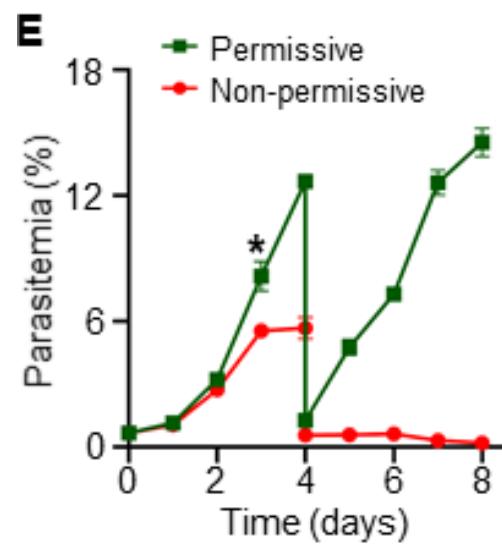
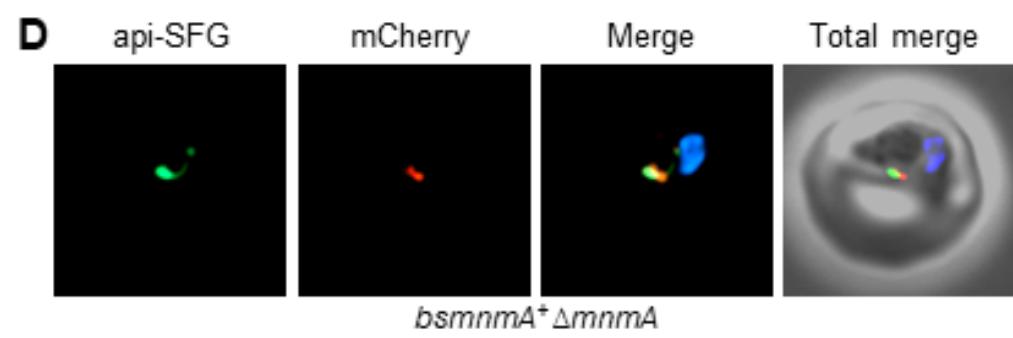
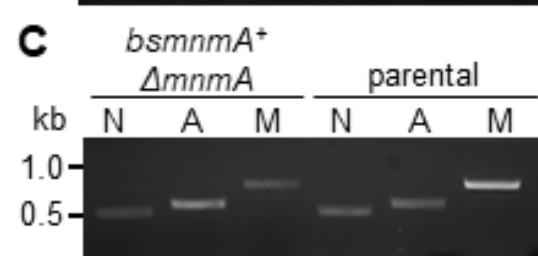
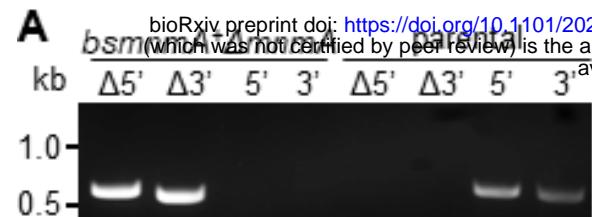

1505 Yuda, E., Tanaka, N., Fujishiro, T., Yokoyama, N., Hirabayashi, K., Fukuyama, K., Wada, K., &
1506 Takahashi, Y. (2017). Mapping the key residues of SufB and SufD essential for
1507 biosynthesis of iron-sulfur clusters. *Sci Rep*, 7(1), 9387. <https://doi.org/10.1038/s41598-017-09846-2>
1508

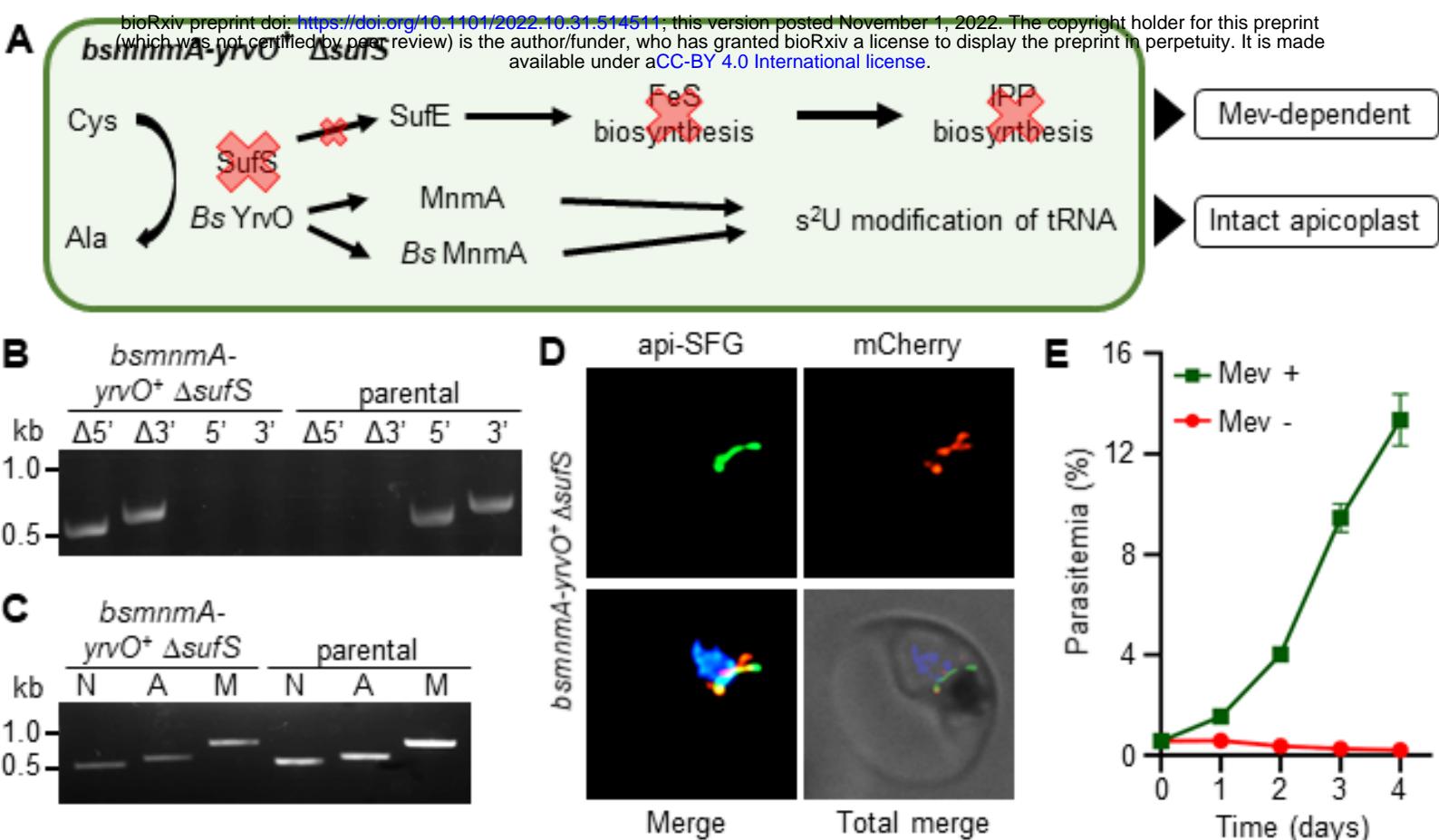
1509

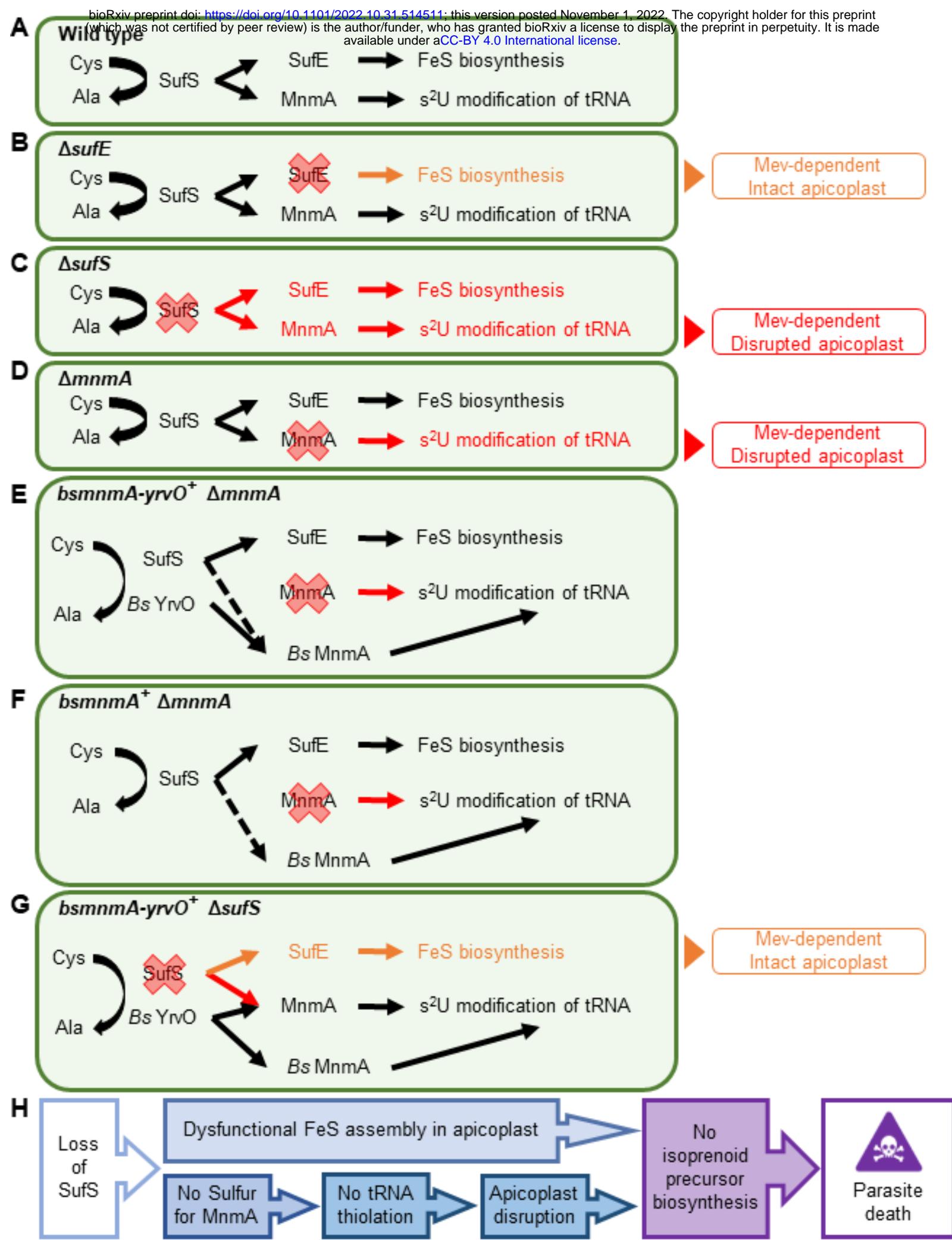
1510

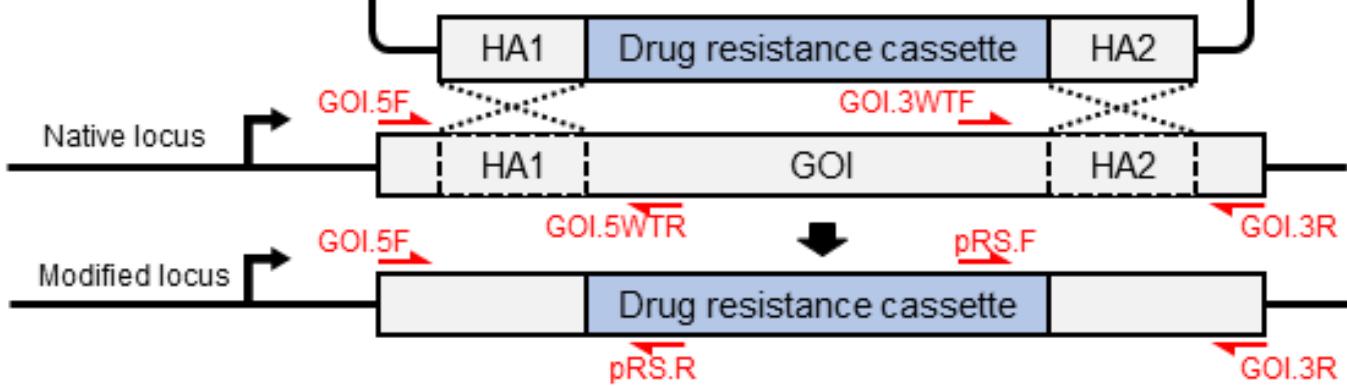






A


BioRxiv preprint doi: <https://doi.org/10.1101/2022.10.31.514511>; this version posted November 1, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

B**C**



Repair plasmid

B

PCR reaction	Primer combination		Parasite line
	Forward	Reverse	
$\Delta 5'$	GOI.5F	pRS.R	Gene knockout lines
$\Delta 3'$	pRS.F	GOI.3R	
5'	GOI.5F	GOI.5WTR	
3'	GOI.3WTF	GOI.3R	
$\Delta 5'$	GOI.5F	pRS.R	PfMev (parental)
$\Delta 3'$	pRS.F	GOI.3R	
5'	GOI.5F	GOI.5WTR	
3'	GOI.3WTF	GOI.3R	

C

Gene of interest	Anticipated amplicon sizes (bp)			
	$\Delta 5'$	$\Delta 3'$	5'	3'
<i>sufC</i>	467	389	486	457
<i>sufD</i>	593	582	636	649
<i>sufE</i>	490	543	556	656
<i>sufS</i>	584	677	691	754
<i>mnmA</i>	605	577	626	617

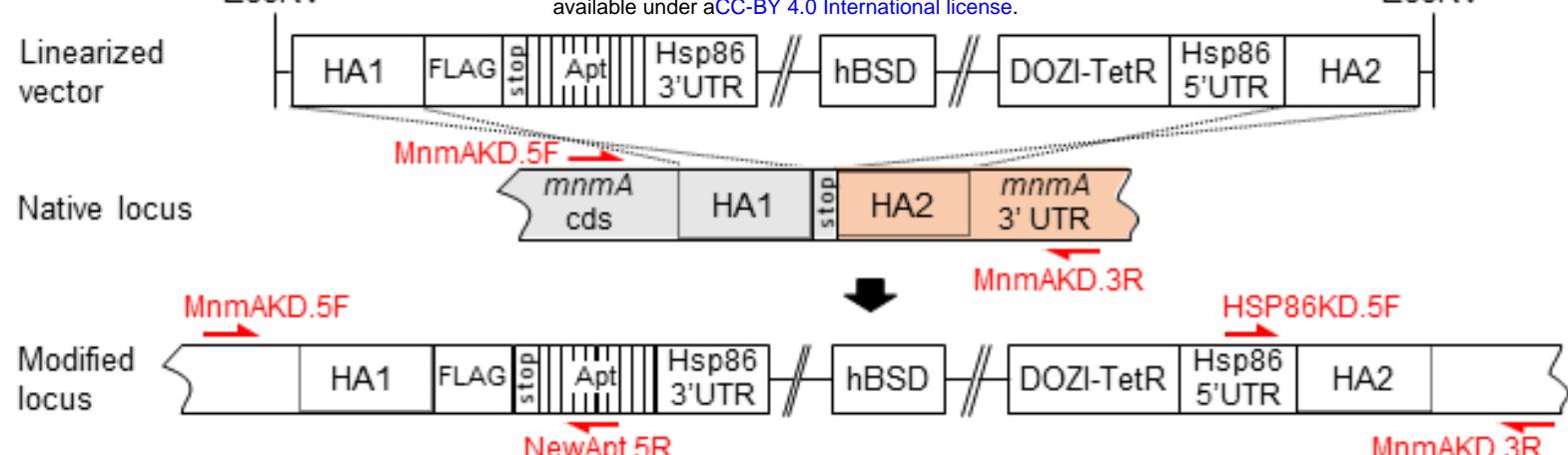
Figure 1- figure supplement 1

Pf MnmA	MLIFFFFFFFKYIYNIFILTCFYITLSSYYFIISFIFSTLMFFYFCTFYVISLFFLYIS	60
Sc Mtul	-----	0
Ec MnmA	-----	0
Bs MnmA	-----	0
Pf MnmA	SFCKSIKVTQLYDKKIKIKSFINNYLVSCRKKKYIYNNVDDKSNIGTFNLYHNIRDNNNN	120
Sc Mtul	-----	0
Ec MnmA	-----	0
Bs MnmA	-----	0
Pf MnmA	NNNNNDNNNNLKKRDDVLFPLCNKNIINDVQKIYDEVNNNIKDKEQKINYLMEQCSSLCKEN	180
Sc Mtul	-----	0
Ec MnmA	-----	0
Bs MnmA	-----	0
Pf MnmA	YFPPILNLNKAYRNKRIDEFNKGKNFYINEVGKNIWYKYVNRCDEILFMAIDIQIDEDE	240
Sc Mtul	-----	0
Ec MnmA	-----	0
Bs MnmA	-----	0
Pf MnmA	QRNNNSIKDVHDVHDDNIKTCTLIKDDKHFEKYKDIHNDNILKNILPLDKKIDSINKMLNH	300
Sc Mtul	-----	0
Ec MnmA	-----	0
Bs MnmA	-----	0
Pf MnmA	KYMKKKCIIITIDAYSNNLILYCFYLILKHINKMYLYSFMNIIQIKEITAKLKEFLDLHF	360
Sc Mtul	-----	0
Ec MnmA	-----	0
Bs MnmA	-----	0
Pf MnmA	NVHHIIDYIHEYIYNFLMSYHIKRKKKNKSKNMKEKDIKNVFANNIIISDEENKHISKESS	420
Sc Mtul	-----	0
Ec MnmA	-----	0
Bs MnmA	-----	0
Pf MnmA	DMYKKTTITTTTTKKKNTMKLFTYPRIAHMLSGGVDSLMLAHLLERKKFYVDNYFF--	479
Sc Mtul	-MLARYLNLIGRRSASPYPQRQLPAKFDNVIVAMSSGVDSVAALFAGEFPNTRGVYMQ	59
Ec MnmA	-MSETAKKIVVGMSGGVDSVSAWLLQQQGYQVEGLFMK	38
Bs MnmA	-MEKRPEDTRVVVGMSSGGVDSVVAALLKEQGYDVIGIFMK	40
Pf MnmA	NFTNA-----DC-SKNEDIKYVKDICKNNKRNLFIIININDEYFDEVLVPMFFYADG	529
Sc Mtul	NWSESEQSLDDPGKEPC-YERDWRDVNRVAKHLNIRVDKVNFEQDYWIDVFEPMRLRGYSEG	118
Ec MnmA	NWEEDDG-----EEYCTAAADLADAQAVCDKLGIELHTVNFAAEYWDNVFELFLAEYKAG	93
Bs MnmA	NWDDTDE-----NGFCTATEDYEDVIRVCNQIGIPYYAVNFEKQYYEKVFQYFLDEYKAG	95
Pf MnmA	*-----KVPNPDIMCNQKIKYNFFLKVVIKSIYKQKWNYRTSKLCLNYDFISTGHYAMIRTNDKNNP	589
Sc Mtul	STPNPDIGCNKFVKGKLREWLDEKYG-----TGNYWLVTGHYARVMQEM-----	163
Ec MnmA	RTPNPDILCNKEIKFKAFLEFAAEDL-----GADYIATGHYVRRAD-----	134
Bs MnmA	RTPNPDVLCNKEIKFKAFLEHA-LSL-----GADYLATGHYARVDR-----	135
Pf MnmA	NNIFNNNLFIKKKKKIKNIKNKKNIKNNNNNNIYTINYIYNLHNDNIKTNYKK	649
Sc Mtul	-----	163
Ec MnmA	-----	134
Bs MnmA	-----	135

<i>Pf</i>	MnmA	NNKYFYKLLVSNDKKKDQTFFLSSFNHIQLSKFIFPLSLYT	KDVKKYMNENNINNYNHK	709
<i>Sc</i>	Mtu1	NGKGLFHLRLRSIYRPKDQSYYLSQINSTVLSSLLPIGHLT	KPEVRDLAKYAGLPTAEKP	223
<i>Ec</i>	MnmA	-VDGKSRLRLRGGLDSNKDQSYYFLYTLSHEQIAQSLFPVGE	LEKPKQVRKIAEDLGLVTAKKK	193
<i>Bs</i>	MnmA	-SGGKVRMLRGIDENKDQTYFLNQLTEDTLSKVMFPIGELOQ	KSRSRVREIAKEAELATATKK	194
*				
<i>Pf</i>	MnmA	ETKGLCLFGN---	IDMQTLLHKYFVNTEKDDIKNKQNEDNIFKENNILNLNNNFNQNEKK	766
<i>Sc</i>	Mtu1	DSQGICFVNNSQHGFKNFLKHLPSSPGDIITVDPQSGA-----		263
<i>Ec</i>	MnmA	DSTGICFIGE---	RKFREFLGRYLPQPGKIIITVGDG-----	227
<i>Bs</i>	MnmA	DSTGICFIGE---	RNFKTFLSQYLPQPGDMMTMDGE-----	228
*				
<i>Pf</i>	MnmA	KKKEKKLLVDITTTSSHLKKFRETFIPKMLHYKNYLINLDDQTILDINS	DIHLYAIGQH	826
<i>Sc</i>	Mtu1	-----	KTTWGRHDGLWSYTIGQK	281
<i>Ec</i>	MnmA	-----	EIGEHQGLMYHTLGQR	243
<i>Bs</i>	MnmA	-----	VKGRHDGLMYYTIGQR	244
*				
<i>Pf</i>	MnmA	KNVTNYLHNLYNKKMININGYKKHVKNVISSFQWIVVYKKIKRDM	STNLIHNFIYLTKN	886
<i>Sc</i>	Mtu1	VGIS-----	MPQADP-----NYQGTWFVSEKLRDT-----NEILIVRG	314
<i>Ec</i>	MnmA	KGLG-----	IGGTKE-----GTEEPWYVVDKDVEN-----NILVVAQG	276
<i>Bs</i>	MnmA	HGLG-----	IGGS-----GEPWFAVGKDLEK-----NILYVDQG	273
*				
<i>Pf</i>	MnmA	YDQDLFTHIRT	KCKLHNKIKWIEGKLPACIKKQFKYKYNKINKKKKINNNNNKYKTNETFH	946
<i>Sc</i>	Mtu1	RDNPALY--	SDTMRIENFSSLGPREDTINAF-----	343
<i>Ec</i>	MnmA	HEHPRLM--	SVGLIAQQLHWVDRREPFTG-----	302
<i>Bs</i>	MnmA	FHNPLLY--	SDKITATNISWVRSDIMKGE-----	300
*				
<i>Pf</i>	MnmA	VYNNIQESGKKKKKKVKNI	PHDEKTIFVKIRNSEQIKKAKIKFSLSNNNTAYLKVQKD	1006
<i>Sc</i>	Mtu1	-----	QNTGALT-----LQFRSLQVPVQIKSCKLNRSADNL	385
<i>Ec</i>	MnmA	-----	TMRCTVK-----TRYRQTDIPCTVKA-----LDDDR	338
<i>Bs</i>	MnmA	-----	EISCTAK-----FRYRQEDHKVTVRM-----TGEGEAEV	336
*				
<i>Pf</i>	MnmA	GFSPGQIITLYFPFI	IKKNNKVTYITNLNKYNNLINTNKNTIYYHCLGSATISNQFLD	1066
<i>Sc</i>	Mtu1	AITPGQSCCLYIDD-----	RVLGSGPISHVNNNDT	415
<i>Ec</i>	MnmA	AVTPGQSAVFYNGE-----	VCLGGGIIEQRLPLPV	368
<i>Bs</i>	MnmA	AVTPGQAVVFYDGE-----	ECLGGGTIDDVYKDGT	366
*				
<i>Pf</i>	MnmA	LYQHIKNIHQINDLNMS	1083	
<i>Sc</i>	Mtu1	HA-----	417	
<i>Ec</i>	MnmA	-----	368	
<i>Bs</i>	MnmA	KLWYV-----	371	

Figure 3- figure supplement 1

<i>P. falciparum</i>	-----	0
<i>B. microti</i>	-----	0
<i>T. annulata</i>	-----	0
<i>T. gondii</i>	MFLSSLGGCKSILSAVLFLLLFVLDPROASPLATSVASAAGSSAWLPAALPRSSGVRPPDQ	60
<i>E. tenella</i>	-----	0
<i>P. falciparum</i>	-----	0
<i>B. microti</i>	-----	0
<i>T. annulata</i>	-----	0
<i>T. gondii</i>	SRRRLGRSAPRGNADNLQQLPSQNGVRRRSVSWARGLPALFRAAADEGTEGGTRSDPRED	120
<i>E. tenella</i>	-----	0
<i>P. falciparum</i>	-----MLIFFFFFFFFKYIY-	15
<i>B. microti</i>	-----	0
<i>T. annulata</i>	-----MFKNVVL--LYNYLFFIFLNH	19
<i>T. gondii</i>	DACSLLPSSHRPSWQLRGDAAGASLNEKSGKTRRRSGSHPWVRSVAKHRFPRWTYTSLSH	180
<i>E. tenella</i>	-----MRAFLELFFLVL--	12
<i>P. falciparum</i>	-----NIFILT CFY ITLSSYYFIISFIFSTLMFFYFCTFYVISLFFFLYISSFCKSIKV	68
<i>B. microti</i>	-----	0
<i>T. annulata</i>	FN-----IIFVIHCNFAYSIY-----NNK--FINN--	43
<i>T. gondii</i>	HRGVPCASLLPHRCGFCPSSF-----LNSARFCPVIGE	214
<i>E. tenella</i>	-----SALFH Q CLEVSDSAI-----LS-----	29
<i>P. falciparum</i>	TQ-----LYDKKKIKI-----K-SFINNY-----	85
<i>B. microti</i>	-----MGT-----G-----	4
<i>T. annulata</i>	-----I-----EI-----LNKRNNISKNNNLLYPYLFIY-----	67
<i>T. gondii</i>	DTAVRGVLAGGDGVWSHVV--SGSAARCDAGRPRQEKGAVGRKRPHAVFFFISNFAPCG	272
<i>E. tenella</i>	-----CCHVQPARVWQPRRPLQLQVKICRTGRPLGG-----SLMPRVS-FLLHPR-ANL	76
<i>P. falciparum</i>	-----LVSCRKKKIYNNVDDKSNIGT-----	107
<i>B. microti</i>	-HRTICGCFVPANGHVRVAAT-----	24
<i>T. annulata</i>	-NRIYNK C CKN-----	77
<i>T. gondii</i>	ASTSSRDCFANS-----EDRRG-APVGPLSPSLRSLSRSSLCSLS	313
<i>E. tenella</i>	LTRTIVGCFSRPLGPFCPSIDHKCDRQLYLKQVEAG-RPPEPPSAAS---QTADECASP	131
<i>P. falciparum</i>	-FNLYHNIRDNNNNNNNNNNNNNNLKKRDDVLFPLCNKNIINDVQKIYDEVNNIKDKEQKI	166
<i>B. microti</i>	-----	24
<i>T. annulata</i>	-----	77
<i>T. gondii</i>	RSSLRSSARDPFSPATPLASSGSLPPRMRELLSELR--RQKDLHAVFE-----	359
<i>E. tenella</i>	DGSVM-----GS-----AFFEVAR--RWLTLCRVFRGA---PTAESRI	164
<i>P. falciparum</i>	NYLMEQ-----	172
<i>B. microti</i>	-----	24
<i>T. annulata</i>	-----	77
<i>T. gondii</i>	-----KLVSFASSVPLYPARDASAVSSRASTASPPSPPRVPSASLSPAPP	405
<i>E. tenella</i>	KILMHЛАFQETNGSDFLSFTGKRPLTRIKQS-----AHGPSAS	202
<i>P. falciparum</i>	-----CSSLCKENYFPPILNLNKAYRNK--RID-EFNKGKNFYINEVGKNIWYKYV	221
<i>B. microti</i>	NKGTEELNVGNHDAHQTA--F---ARELNARLVERLSK-----KFSSSSEHLTEV	72
<i>T. annulata</i>	-----EPFRANSDTKHTLTST--LQHNYNDLNEKIKHRIESESSCLLEDLNKSDFVQEL	130
<i>T. gondii</i>	PKATE--TSGRADDRLPPAQLLQQPRREASEAD-----EEGDSPEAWERV	450
<i>E. tenella</i>	SEALESGSAAGVDEASVC-----PST-----SDLVLSDIWRPV	235
<i>P. falciparum</i>	NRCDEILFMAIDIQIDEDEQRNNNSIKDVHDVHDDNIKTCLIKDDKHF E KYKD-----	274
<i>B. microti</i>	T-----RVASEI-FPNPKDEH-----FHL-----F	92
<i>T. annulata</i>	A-----RLGRSI-YSNIPTPTL-----FKS-----VPNGINLLKSF	160
<i>T. gondii</i>	AGCAALVRIRVCLRRVLSPKREG-----ESRACSV F READVREEPQQ-GALASL	498
<i>E. tenella</i>	TGCAAAVAKVSLHYPVRPQQRS-----LAA-----	261


<i>P. falciparum</i>	IHNDNILKNILPLDKKIDSINKMLNKHMKKKCIIITIDAY	315
<i>B. microti</i>	--NLSQFSPE-----FADQFGAKP-YAKLQDCITPI-YLAAIRYWHEGVERLAIDGT	140
<i>T. annulata</i>	--NSNDFNLSLGCGNGRDYFLVKSPVPVD-YKLLDDCSSI-YISIH--LDKDKKIYLDGI	213
<i>T. gondii</i>	SVAASSSSGASCHDVE-----GAKKERRELRE-DRD-GEDERR--RWELRVDLRGW	546
<i>E. tenella</i>	--SITSNSRLCCVAA-----KQGAKVHVHGE	285
<i>P. falciparum</i>	SNNILILYCFYLILKHINKMYLYSFMNNIQIKEITAKI KEL	355
<i>B. microti</i>	SNSLVGKTYLALMLSALHGNPLDELASIFE-----SKGRTFEQLSRF	182
<i>T. annulata</i>	SDSFVFKGII SL LS-----	228
<i>T. gondii</i>	SDSLVVRAWLAILVVGLNNAAPDTVLALSTD-----ILREAGLMPSSTPSGGKGHKDTVKE	603
<i>E. tenella</i>	SDSLVVGGLLQLLSRSLSGSGAPCGVFALSALGSKLLQFSSLNNLPPDSRVRGFR TAMHI	345
<i>P. falciparum</i>	-----	355
<i>B. microti</i>	TDGISQRICQ-----ELFR-----	196
<i>T. annulata</i>	-----	228
<i>T. gondii</i>	TQGEPEKQTEEGEDGHREAAAAEEAEEEEEKERKGSKRESEEERLQEGER	663
<i>E. tenella</i>	LMGSTQDLLQR-----YFCNEVLPP--PAELPQ--NAHGEQGTAP--NKQDITTG-----	389
<i>P. falciparum</i>	-----FDLHFNVHHIIDYIHEYIYN-----	375
<i>B. microti</i>	-----	196
<i>T. annulata</i>	-----	228
<i>T. gondii</i>	LREEETRKCREEKRRRLVVPQGLEFMLRSIQRQVREQLSRLAEEKNGGAPDGKVRKSKT	723
<i>E. tenella</i>	-----RTQAKVPKG TSL -----RP-----	403
<i>P. falciparum</i>	-----FLMSYHIK-----RKKNKSKNMKEKDIKNVFANN-----IIISD	409
<i>B. microti</i>	-----LIGFTNTKA--AGYDD-----SEADMDKNDKFQFKRLVPK-----PAL--	232
<i>T. annulata</i>	-----LIGWKNSTE--VEVDN-----V-----KKHKF-FKKVIDH-----GIISE	260
<i>T. gondii</i>	DRDASRDLTGETRTRTDENGVQRSVFHRCRSDAET-EADSHHVSSSLSSSLPPSQPHLSS	782
<i>E. tenella</i>	-----PRPANDALSGY-----RQE-----PHGDQWGNPIPQHALPSI-----	435
<i>P. falciparum</i>	EENKHSKE-----SSDMYKKTTITTTTTK KKNTM KLFTYPRIAHML SG	456
<i>B. microti</i>	-----RNSLYRRSY--GFEVHDLYRLRSKSSPNKVAL ISG	267
<i>T. annulata</i>	NSLNSIL-----NIKNELKKQDN--PTKGPKRTSMFQS PRSKRVA L VSG	305
<i>T. gondii</i>	PSSSSLSSSSSPSSSSSSSSSSA APDL FASTT--ETCEEKRELRRSAASSPPQVA VLLSG	839
<i>E. tenella</i>	PRSKEIAK-----L-----AAKSRVSLPLSDGAGAEVHVL VSG	468
<i>P. falciparum</i>	GVDS LMAL HLLEKKF Y VDNYFFNFT-----NADC-----	486
<i>B. microti</i>	GVDSSVALWMLKSQGYNVHAFY YL KAFG-----SDSPGCT	301
<i>T. annulata</i>	GVDSS LA W IM KS RG F DV QAFHLKVN DL -----SNGPG C	340
<i>T. gondii</i>	GVDSSV SL CL Q RG F APQAFF I KV W LP E LL V SR H LN R LL-----SGLAPAAAG CG	893
<i>E. tenella</i>	GV DS AVS L LL M REW G FRPK I FL KV WAPEAA Q MK Q L Q GRY Q QE K L D IAASATAAA CP	528
<i>P. falciparum</i>	SKNDIKYVKDICKNNKRN LI FI I IN I ND E Y F DE V L V PM L FF Y AD G K V P N E D MCNQ K IKY N F-----*	546
<i>B. microti</i>	VAEDIRYAT D CC N V L GV P L H I L P V ED V N R AV M Q Y M VE G Y RAG N T P N D V I C N R E V K F G Y	361
<i>T. annulata</i>	SSNDISYAME V C N I L R V T L H V L P F S Q V D K H I L S D V L D D Y R K G E V P N P D I L C N S R I K F G E	400
<i>T. gondii</i>	WERD L I F A D Q V C R Q A R V P L E V L P Q E A Y W E G V V Q Q M L D E A R Q G L T P N P D W W C N Q R V K F G A	953
<i>E. tenella</i>	WREDAKAAA V A A A G L S I E V V P M Q Q Y W D R V I S G F E G A R A G L T L N P D W S C N S V K F G A	588
<i>P. falciparum</i>	FLKVIKSIYK Q KWN Y RT K SK-----LCNYDFIST G HYAMIRTND	585
<i>B. microti</i>	FLNLAT S - E - FG F -----DMV A GH Y AR I N P Q Y	387
<i>T. annulata</i>	FLKMA-T-D-WGF-----DYVAT G HYAT L C D F	425
<i>T. gondii</i>	FLD L L D G R E - TR F S A R I A G E S E G E N E K E A D M P F L R N S R W T G A V A S G Y A R V P A A	1010
<i>E. tenella</i>	FAETLDAVD-YR-----IAS G HY A R I L I -	610
<i>P. falciparum</i>	KNNPNNIFNNNL F IKKKKK K NI K NI K NNNNNN I Y T Y N L H N D N I K T	645
<i>B. microti</i>	FIP P Q Q S N G -----	396
<i>T. annulata</i>	FTKEQ I K S P -----S-----YL-----DGC-----	440
<i>T. gondii</i>	ETSRRSEEG-----E-----DT-----EDR D E G -----E E D R G D	1036
<i>E. tenella</i>	-----	610

<i>P. falciparum</i>	NYKKNNKYFYKLLVSNDKKDQTFFLSFNHIOLSKFIFPLSLYTKKDVKYMNENNINN	705
<i>B. microti</i>	-TQSSFVRFNELETSYYVNKDQTYFLSRLSSAOLGKMICPLGVHKKKMVRALAYINGLGT	455
<i>T. annulata</i>	TSINGYYRIKRLCLSTDTVKDQTYFLSRLNQNOMSRLIFPIGNILKTQVRDFAKTVGLPT	500
<i>T. gondii</i>	ERGSEERRTRLFRGKDRRKDQSIFLGLSQRQLRRLVTPVGDMEKVEVRRLAAALDLPT	1096
<i>E. tenella</i>	-----DEGCPRLLRGVDLTKDQSIFLGLSSLQLSRLLFPVGALLKTQVRKIAVSGLPS	665
*		
<i>P. falciparum</i>	YNHKETKGCLFGNIDMQTILHKYFVNTEKDDIKNKQNEDNIFKENNILNLNNNFNQNEK	765
<i>B. microti</i>	QARDDSMGVCFGLRLLDRLQFLKAHLGETPGQIIDYKS-KQVIGQHTGLYNY-----TIGQR	510
<i>T. annulata</i>	YNKKDSFGLCFLLEDLDSLSEYLTKTGLGESRGPIVEYET-NKVIIGEHNGLYNF-----TIGQK	555
<i>T. gondii</i>	ARRQDSQGLCFLGNLSSLFFRRHFLGSSTGPVLFHFPS-CLALGSHDGLWNF-----TVGQR	1151
<i>E. tenella</i>	SQRPDSDQGLCFLGPLPVVSQFLMHLLGEEEGPVIHFPT-GVSIIGRHKGILWGF-----TVGQQ	720
-		
<i>P. falciparum</i>	KKKKEKKLLVDITTTSSHLKKFRE-TFIP-----	793
<i>B. microti</i>	Q---GLGVSIDHGG-EE-----	523
<i>T. annulata</i>	K---TINNYLNPKHVG-----	569
<i>T. gondii</i>	K---GVTPCIDVARVRR-LSSLPDSSLTPHAASVDSEGSEEQTARAGDSRRRQARAPPGK	1207
<i>E. tenella</i>	K---GVVPLLDPRLCRR-CHGASG-----	740

<i>P. falciparum</i>	-----KMNLHYKNYLINLDDQTILDINSD	817
<i>B. microti</i>	-----	523
<i>T. annulata</i>	-----	569
<i>T. gondii</i>	PTKASATGQGRQAADDEERRLEAKCHRDGDDSCRLSANHTVRGRLECTDNADRP--DGR	1265
<i>E. tenella</i>	-----	740

<i>P. falciparum</i>	IHLYAIG-----QHK-----NVTNYLHNLYNKKMINI	844
<i>B. microti</i>	-----	523
<i>T. annulata</i>	-----	569
<i>T. gondii</i>	VPVLSEGNEAPSSSSCSSSAEADEGQEEGGDRQSRLLSSSFAACLSGSPQNLFE---PA	1321
<i>E. tenella</i>	-----	740

<i>P. falciparum</i>	NGYKKKHVKNNVISSFQWIVVYKKIKRDM-----ST-	874
<i>B. microti</i>	-----GGWFVVKSKDAASNTLYVTKEYNSRHFTRGSCIRRAFLAHVRWNN-	568
<i>T. annulata</i>	-----TPKYVVKDIYKNTLYVSASYNEDFFTNPRGIRSSFKVRDFFWNT-	614
<i>T. gondii</i>	NPFSRTGLGAASLAGRVVVAAKHPPSNALFVVSEKEMKAAA---VAES---VGYSLD	1373
<i>E. tenella</i>	-----GPPKLSGPWSVVGKLPEANALFVVSKEEEAAAED---RLRALATEPGNYSEP	789

<i>P. falciparum</i>	-----NLIHNFIYLTKNYDQD-LFTHIRTKCKLHNKWIIEGKLPACIKKQFKKYNKINK-	927
<i>B. microti</i>	-----PILLNSHGINEAD---YI-----KA	585
<i>T. annulata</i>	-----PDYKDLINKVQSEVSD-NFKFK-----VKLRHPTPNYNCNINFKGDEATDLQ	660
<i>T. gondii</i>	VLAAGPGVRT-LGDSQTYLLALLTLQQKFLRVDNIQWISHPPCACNAEEQPVS---	1427
<i>E. tenella</i>	L-G-APLLRAAANGDKAAALALKRQLRTCLRVVDNIRWFHGKAPAGFDASATLQP-GCLR	846

<i>P. falciparum</i>	-----KKKKINNNNNKYKTNETFHVNNIQESGKKKKKKVK--NIPHDE	970
<i>B. microti</i>	EWEPPITRRDI-KTMQDLTLDNRVASTE---KLFL---K-----VRNGTVLYEA	627
<i>T. annulata</i>	KWLPTTYELAA-ATIASV--DNSKCSIKM--IQLILT-FCT-----IEDVGFHTA	705
<i>T. gondii</i>	-RDPSFLGTLLGSRDPRARLRGDEKSLETADEFAFLR-WALEGSRDKRPRLYDVQVRHAA	1485
<i>E. tenella</i>	EEGPTL-AAVAASAVAAAKT-NTALPMERP-AESFL-----TG-SSKGAGFVVQVRHSA	897

<i>P. falciparum</i>	KTIFVKIRNS-----EQIKKAK-----IKFSLSN	994
<i>B. microti</i>	ELK-----LSPPI--RKGQGVT	642
<i>T. annulata</i>	DSKATTIAL---F-----FIFGSNK--DEKDGT	729
<i>T. gondii</i>	GTACAAIHRVRCLFPERRSPSFLPSAVSEESGGRKESRAPFGPSRVETSAGSSGA	1545
<i>E. tenella</i>	GFHGVAKHNFVKLCVSRGH-----SGNSSPI	923

<i>P. falciparum</i>	NTAYLKVQKDTGFSPGQIITLYFPFIKKNNKVTYITNLNKYNNLINTNKNTIYYHCLG	1054
<i>B. microti</i>	QHGWAVLDRSDPGLATGQYAALYRGN-----ICIG	672
<i>T. annulata</i>	IELEDIVHEPAPSEHGSKKSPSELHI-----YEIG	759
<i>T. gondii</i>	WTAWIELAEPDEGLAPGQIAAIYEGE-----ECLG	1575
<i>E. tenella</i>	EEAELLLEEPDVGLAPGQVAAFYRDD-----ECIG	953

<i>P. falciparum</i>	SATISNQFLDYNLYQHIKN-----	IHQINDLNMS-----	1083
<i>B. microti</i>	SGIIYQSF-----		680
<i>T. annulata</i>	KPIDYLDWKQHKRTNSSQSGRNGTHGKTHTEKRRNSDPTKRSKVHKPQRITSELEQKTP		819
<i>T. gondii</i>	AGRISARQGQMAVEAAL--RSAGLN-----		1598
<i>E. tenella</i>	SGRISALQGSFALKSII--DRLG-----		974
<i>P. falciparum</i>	-----	-----	1083
<i>B. microti</i>	-----	-----	680
<i>T. annulata</i>	NSPQQTTTKQQNTKEQNTNKQQSSVEQKTKADQSGPITRPFISPSVLKPSEKAERVFSS		879
<i>T. gondii</i>	-----	-----	1598
<i>E. tenella</i>	-----	-----	974
<i>P. falciparum</i>	-----	-----	1083
<i>B. microti</i>	-----	-----	680
<i>T. annulata</i>	NEKPAVQQRLFKPRENKYQKRTERYDMDFEKIFNPVHENAKDDEPGSYMPFESIYDLS		939
<i>T. gondii</i>	-----	-----	1598
<i>E. tenella</i>	-----	-----	974
<i>P. falciparum</i>	-----	-----	1083
<i>B. microti</i>	-----	-----	680
<i>T. annulata</i>	LDKCRLNKAFPPKGKPAGHKFECIDL DVIRVSKDFKNISLVNANVIHPKSNTHKICKISF		999
<i>T. gondii</i>	-----	-----	1598
<i>E. tenella</i>	-----	-----	974
<i>P. falciparum</i>	-----	-----	1083
<i>B. microti</i>	-----	-----	680
<i>T. annulata</i>	DNKVLVDKVDDSMEFTAVVLEHVR SISILSVISTNPN MERSAIQFVITGKDKINVMNDYV		1059
<i>T. gondii</i>	-----	-----	1598
<i>E. tenella</i>	-----	-----	974
<i>P. falciparum</i>	----- 1083		
<i>B. microti</i>	----- 680		
<i>T. annulata</i>	SVMSTILKSEL 1070		
<i>T. gondii</i>	----- 1598		
<i>E. tenella</i>	----- 974		

Figure 3- figure supplement 2

A

B

PCR reaction	Primer combination		Anticipated amplicon sizes (bp)	Parasite line
	Forward	Reverse		
Δ5'	MnmAKD.5F	NewApt.5R	800	<i>mnmA</i> -flag
Δ3'	HSP86KD.5F	MnmAKD.3R	596	
C	MnmAKD.5F	MnmAKD.3R	-	
Δ5'	MnmAKD.5F	NewApt.5R	-	PfMev (parental)
Δ3'	HSP86KD.5F	MnmAKD.3R	-	
C	MnmAKD.5F	MnmAKD.3R	1160	

C

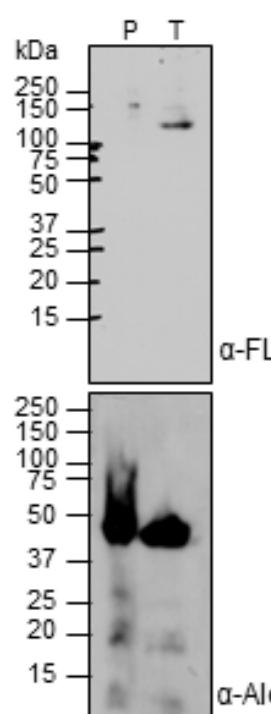
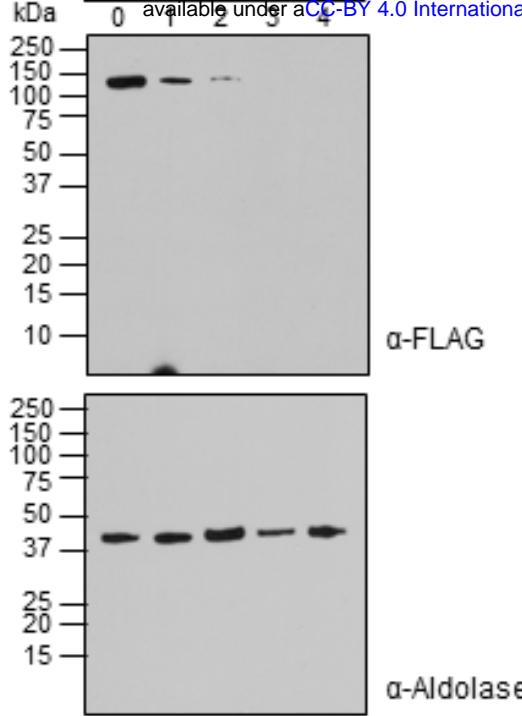
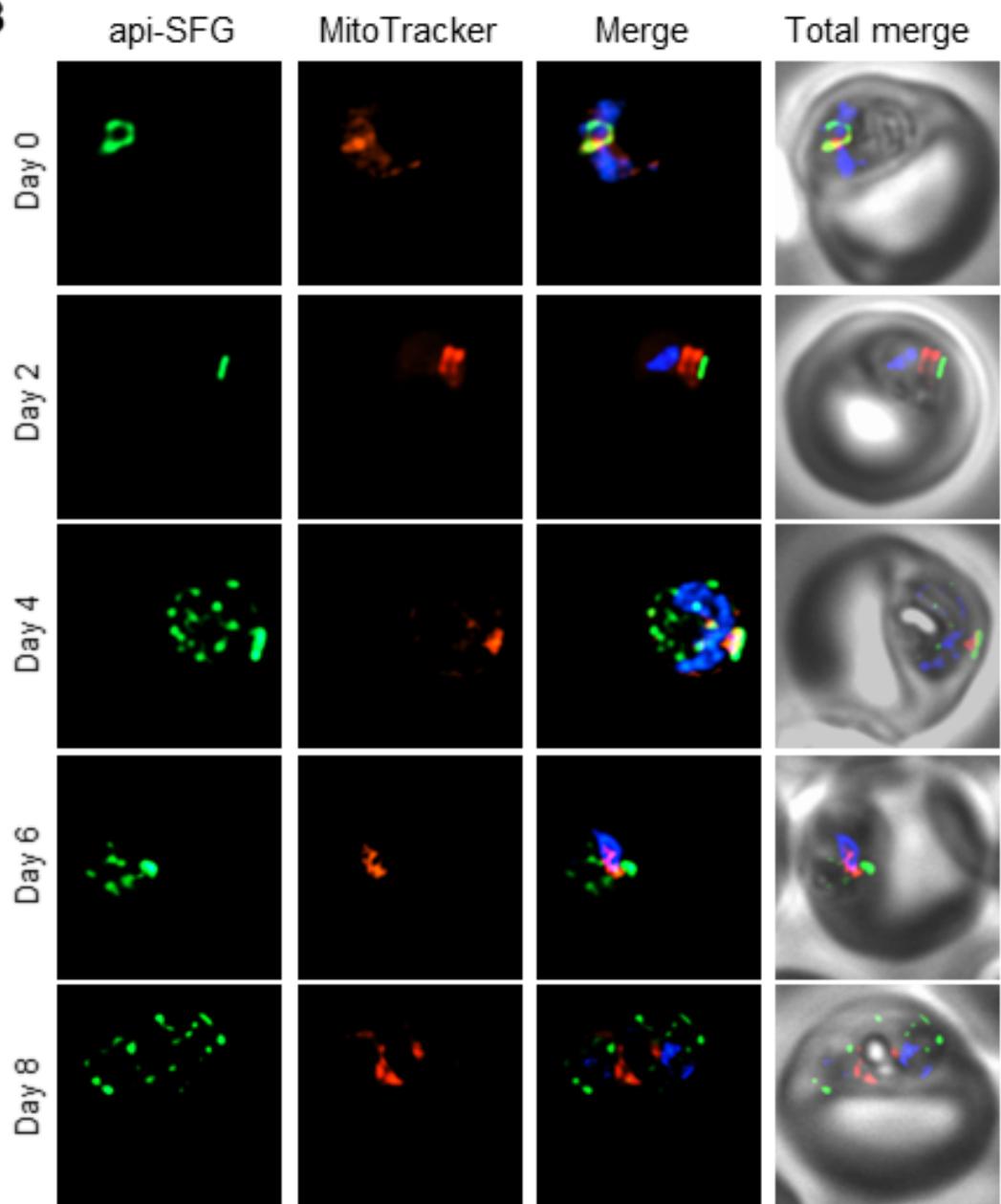
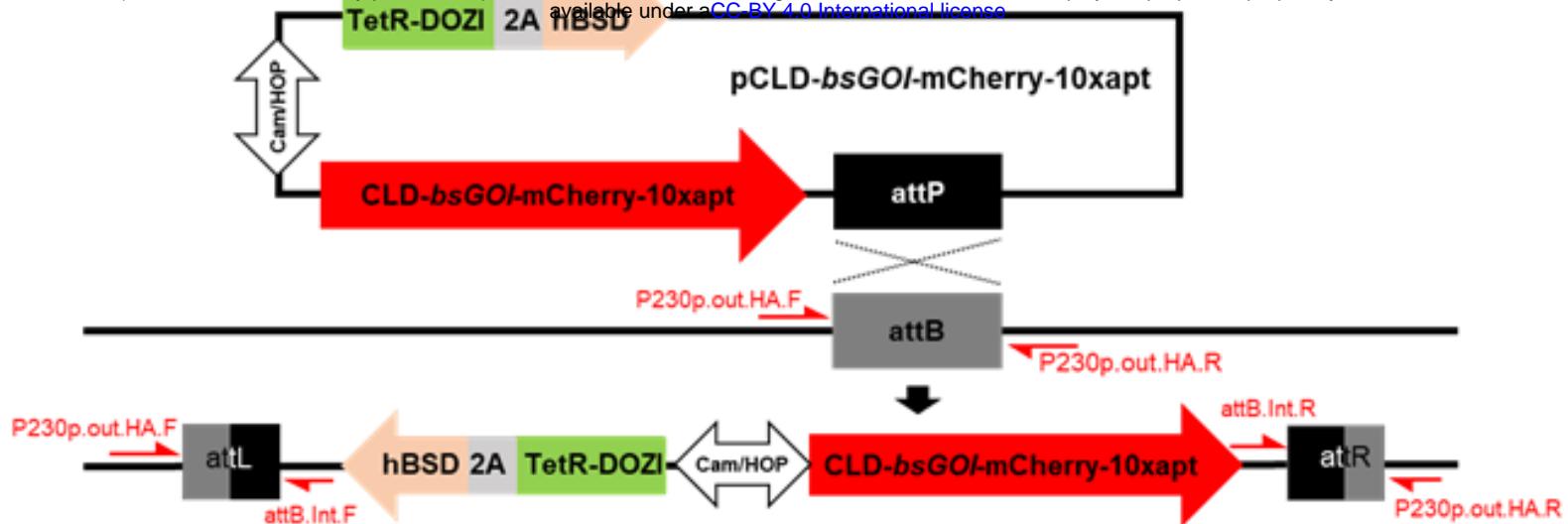




Figure 3- figure supplement 3

A



B

**Figure 3-
figure
supplement 4**

A

B

PCR reaction	Primer combination		Anticipated amplicon sizes (bp)	Parasite line
	Forward	Reverse		
attL	P230p.out.HA.F	attB.Int.F	642	
attR	attB.Int.R	P230p.out.HA.R	732	<i>bsmnmA</i> ⁺ <i>/bsmnmA-yrvO</i> ⁺
attB	P230p.out.HA.F	P230p.out.HA.R	-	
attL	P230p.out.HA.F	attB.Int.F	-	
attR	attB.Int.R	P230p.out.HA.R	-	PfMev ^{attB} (parental)
attB	P230p.out.HA.F	P230p.out.HA.R	1229	

Figure 4- figure supplement 1

ATGGAAAAAUUUCGCAATATAATACGTTCTTGTGAGTGTGAAATGATCTG
TGGCGGCCCTGCTGTTAAAAGAACAGGGCTATGATGTAATCGGAATCTTATGAAAAACTGGGA
TGATACGGACGAAAACGGTTTGCACGGCACAGAGGATTATGAAGATGTGATCCCGCTGC
AACCAAATCGGAATTCCGTATTATGCCGTAAACTTGAAAAGCAATATTATGAGAAGGTATTTC
AATACTCCTGATGAATATAAAGCAGGCAGAACACCAACCCGGATGTATTGTGCAACAAAGA
AATTAAATTCAAGGCCTTTGGAGCATGCATTGTCATTGGCGCCGACTATTTAGCGACTGGC
CACTATGCAAGAGTAGACAGAACGGCGAAAAGTCAGAATGCTGCGCGCATTGATGAAAACA
AGGATCAAACGTACTCCTGAATCAGCTGACAGAACAGATACTGCTGAGCAAAGTCATGTTCCC
CGCGAACATTCAAAAAAGCCGTGCGTGAATTGCCAAAGAACAGAACATTGCAACAGCGACG
AAAAAAAGACAGTACAGGCATCTGCTTATCGCGAACGCAACTTCAAAACGTTCTCAGCCAAT
ATCTCCCTGCACAGCCGGCGATATGATGACGATGGACGGCGAAGTAAAAGGCCGCCACGACGG
GTTGATGTACTATACGATCGGACAGCGTCACGGCCTGGCATGGCGAACGGCGAGCCGTGG
TTTGCAGTAGGCAAAGATCTGAAAAGAACATCCTCTACGTAGATCAAGGGTTCCATAACCC
TTTATATTCCGACAAAATCACAGCAACAAATATCAGCTGGGTACGTTGGATATCATGAAGGG
CGAAGAGATTCCCTGCACGGCTAAATTCCGTTACCGCCAAGAGGATCATAAGTAACAGTGC
ATGACTGGGAAGGTGAAGCGGAAGTCATCTTGTGAAACAAGTCCGCGCTGTAACGCCGGAC
AAGCCGTTGTCTTCTATGACGGCGAACGATGCCCTGGCGGGACAATTGATGATGTGACAA
AGACGGAACAAAATTGTTGAGCTGTGAGTGGATCTGGTATGGAACGGATTATTAGATCAT
GCCGCAACGTCTCCGATGGATGAGCGCGTGCTGGAACAAATGATACCGCACTTCTCCGGCAGTT
TCGGTAATCCCTCCAGTATTCAATTGAGGAGAATCTGAAAATGGGTGGATGAAGCAAG
AGCGCAGATCGCAGCAGAAATCGGAGCGGCAGAGCAGGAGATCATTAAAGCGGGGGAACG
GAAGCTGATAACTTGGCGATCATGGGAACCGCACTTGCAAGAAAAGATCTTGGCAGACATATCA
TCACAACAAAAATTGAGCATCACGCCGTGCTTCACACATGTGAAAAACTTGAGGGAGACGGATT
TGACATAACGTATCTGGACGTTGACCAAAATGGAAGAGTCAGTGCAAAACAGGTGAAAGAAC
CTGCGTGATGATACAATCCTGTGACAGTGATGTATGGAATAATGAAGTCGGAACAGTGCAGC
CGATCGAACGAAATCGGTGAGCTGTTAAAGGAACACAAAGCTTATTCATACCGATGCTGTTCA
GGCATTGGGTTGCTGCCAATTGATGTGAAAAACAGCCATATTGACCTTCTGTCTGTTCCGGG
CACAGCTAACGGCCAAAAGGGACAGGTTTATATGCTAGTAAAGATGTGAAGCTTCAAC
CCCTTTATTGGAGGAGAGCAAGAAAGAAAACGCCGTGCCGGAACGGAAAATGTTCCAGGCAT
TGTCGGGCTGAAAGAACGATCAAGCTGTCAAGTGAAAGAACGTGACGAAAAACGAGAACG
CAATCGTTAAAGCAATCTTGGCGACACGCTTAGAGATGCAGGTGTGGCATTGAGGTCAACG
GGGACAAAGAGCATAGTCTGCCGCATGTTCTGAATCTTATTCCCCGGTGTGTCAGTGGAAAGC
GCTGCTGGTTAATCTGATATGGCTGGTGTGCGCTGTCCAGCGGTTCAAGCGTGCACGGCCGGT
TCAGTCCTGCCGTACATGTTCTGACTGCTATGTTGGCGAACAGAGAGTGACCGGCTGACGTCT
CTATTGAAATCAGCTTGGCCTCGGCAATACGGCTGAGCAAGTGAAAAGTGTGCTGCCAAACATGT
GGCCGACGTTGTCAAACGGCTGACA

Figure 4- figure supplement 2

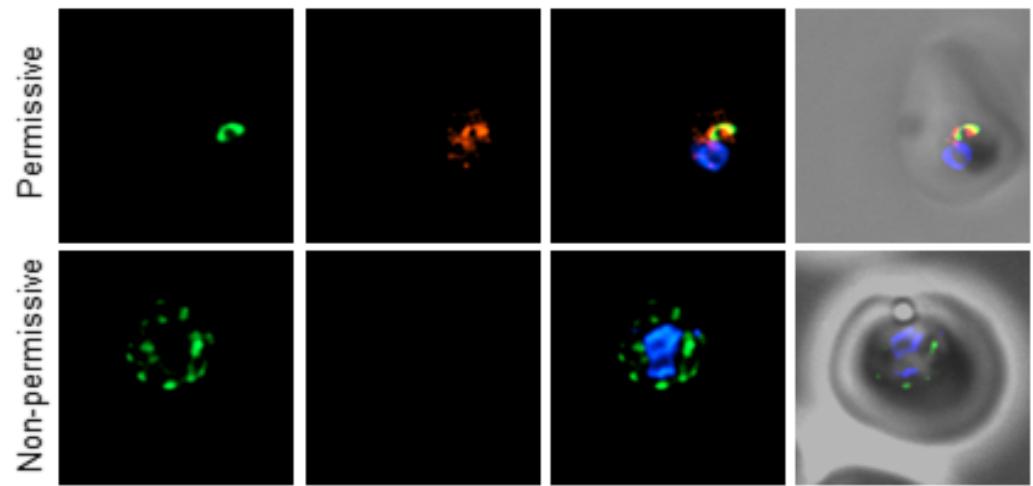


Figure 5- figure supplement 1

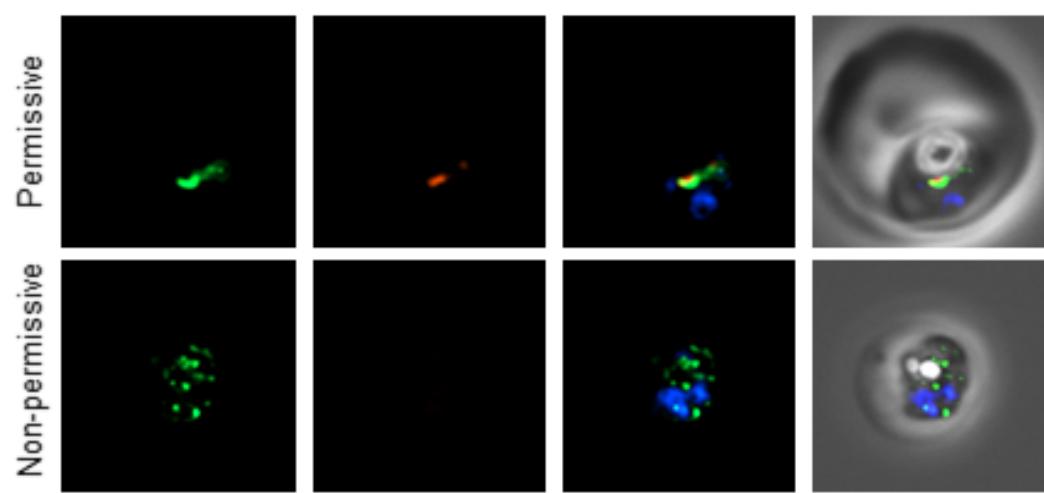


Figure 6- figure supplement 1

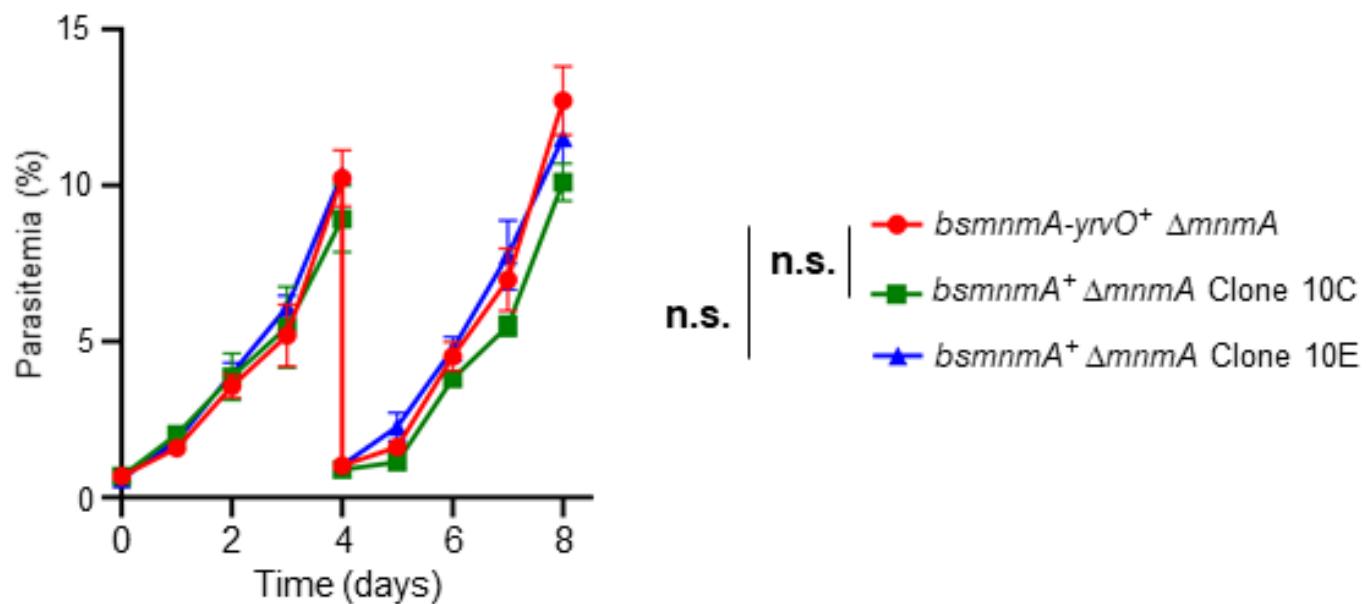


Figure 6- figure supplement 2