

1 ***Letter***

2

3 **Heat stress reveals a fertility debt owing to postcopulatory sexual selection**

4 Julian Baur^{1*}, Martyna Zwoinska^{1,2*}, Mareike Koppik^{1,3}, Rhonda R. Snook², David Berger¹

5

6 Corresponding author: Julian Baur, julian.baur@ebc.uu.se

7 *Shared first authorship

8

9 Affiliations:

10 ¹ Department of Ecology and Genetics, Division of Animal Ecology, Evolutionary Biology Centre,
11 Uppsala University, Uppsala, Sweden

12 ² Department of Zoology, Stockholm University, Stockholm, Sweden

13 ³ Department of Zoology, Animal Ecology, Martin-Luther University Halle-Wittenberg, Halle (Saale),
14 Germany

15

16 Running title: Sexual selection, fertility and climate change

17 Keywords: Temperature, postcopulatory sexual selection, sperm competition, fertility, heat shock,
18 mating system, sex, climate warming, environmental change.

19

20

21 ABSTRACT

22 Climates are changing rapidly, demanding equally rapid adaptation of natural populations. Whether
23 sexual selection can aid such adaptation is under debate; while sexual selection should promote
24 adaptation when individuals with high mating success are also best adapted to their local
25 surroundings, the expression of sexually selected traits can incur costs. Here we asked what the
26 demographic consequences of such costs may be once climates change to become harsher and the
27 strength of natural selection increases. We investigated how an evolutionary history of strong
28 postcopulatory sexual selection (sperm competition) affects male fertility under acute adult heat
29 stress. Harnessing the empirical potential of long-term experimental evolution in the seed beetle
30 *Callosobruchus maculatus*, we assessed the thermal sensitivity of fertility (TSF) in replicated lines
31 maintained for 68 generations under three alternative mating regimes manipulating the opportunity
32 for sexual and natural selection. We find that males evolving under strong sexual selection suffer
33 from increased TSF, and that male success in sperm competition (P2: sperm offense) is genetically
34 correlated to increased TSF. Interestingly, females from the regime under strong sexual selection,
35 who experienced relaxed selection on their own reproductive effort, had high fertility in benign
36 settings but suffered increased TSF, like their brothers. This implies that female fertility and TSF
37 evolved through genetic correlation with reproductive traits sexually selected in males. Paternal but
38 not maternal heat stress reduced offspring fertility with no evidence for adaptive transgenerational
39 plasticity among heat-exposed offspring, indicating that the observed effects may compound over
40 generations. Our results suggest that trade-offs between fertility and traits increasing success in
41 postcopulatory sexual selection can be revealed in harsh environments. This can put polyandrous
42 species under increased risk during extreme heat waves expected under future climate change.

43

44 **IMPACT STATEMENT**

45 How will populations respond to a warming world? Of increasing concern are negative effects of
46 elevated temperatures on fertility, which in many species are observed for temperatures
47 substantially lower than the ones causing death. Incorporating knowledge on species-specific
48 thermal fertility limits has improved estimates of current species' ranges but renders a more
49 pessimistic view of the potential for adaptive responses under climate change. Sexual selection is a
50 process that can interact with thermal sensitivity of fertility and is strongest in males of polyandrous
51 species, in which females mate multiply and sperm of multiple males compete for fertilization of
52 female eggs. Therefore, males of polyandrous species often invest heavily in sperm competition.
53 However, given finite resources, increased investment in sperm competition can come at an expense
54 of other processes needed to maintain the integrity of the male germline, which when compromised
55 can reduce fertility and offspring quality. How may such male investment, fuelled by sexual
56 selection, affect species responses to climate warming? To address this question, we first evolved
57 populations under different laboratory settings that independently manipulated the levels of natural
58 and sexual selection. We exposed adults from these populations to acute heat stress and measured
59 the fertility of males and females. We find that sexual selection on males leads to a fertility debt that
60 is revealed under heat stress. This debt was also apparent in females, who themselves were not
61 selected for increased reproductive investment. Thus, genes under sexual selection in males seems
62 to have impaired fertility in both sexes under heat stress. Forecasts of species response to climate
63 change that do not incorporate thermal fertility limits and sexual selection may therefore
64 underestimate species vulnerability to increasing temperatures.

65 **INTRODUCTION**

66 Sexual selection is a strong evolutionary force that can select for traits that are associated with
67 considerable costs in the face of natural selection (Andersson, 1994; Zahavi, 1975). Harsh
68 environments that impose strong natural selection are therefore predicted to limit the evolution of
69 excessive expression of sexually selected traits in favour of allocation to maintenance and survival
70 (Buchanan, 2000; Candolin & Heuschele, 2008; Zahavi, 1975). It is well recognized that
71 anthropogenic environmental change is placing many organisms under the threat of extinction by
72 imposing severe challenges on natural populations (IPCC 2022). How may such rapid increases in the
73 force of natural selection affect species that have had a long-term history of evolving under strong
74 sexual selection? Intuitively, one might expect polygamous species that invest heavily in sexually
75 selected traits to suffer severe fitness losses when environments change to become harsher and
76 impose greater needs for allocation to maintenance. Moreover, because sexually selected traits are
77 often linked to fertility, these consequences could be severe, as fertility is typically highly sensitive to
78 environmental stress and a strong determinate of population-level viability (Parratt et al., 2021;
79 Walsh et al., 2019).

80 In polyandrous species, postcopulatory sexual selection through sperm competition
81 represents a central part of the selective process (Birkhead & Pizzari, 2002). Sperm competition can
82 lead to the evolution of increased sperm numbers (Boschetto et al., 2011; Simmons & Fitzpatrick,
83 2012; Wedell et al., 2002) and investment into, presumably costly, sperm traits such as swimming
84 velocity (Gage et al., 2004), flagellum length (Godwin et al., 2017), and ornamentation (Lüpold et al.,
85 2016; Silva et al., 2019). However, the need for more numerous and competitive sperm also requires
86 increased maintenance to sustain the integrity of the germline and ensure high fertility and offspring
87 quality (Dowling & Simmons, 2009; Monaghan & Metcalfe, 2019). Such maintenance, including DNA
88 repair, antioxidant defence and apoptosis, is tied to considerable costs (Chen et al., 2020; Kirkwood,
89 2005; Kirkwood et al., 1979; Lemaître et al., 2020; Maklakov & Immler, 2016). Hence, if organisms

90 balance investment into sperm competition against germline maintenance, increased demand on
91 maintenance under rapid environmental change could cause a severe reduction of male fertility in
92 species with intense postcopulatory sexual selection.

93 Climate warming and the incidence of heat waves is one of the most common and impactful
94 consequences of anthropogenic environmental change (Bathiany et al., 2018; IPCC, 2022; Johnson et
95 al., 2018; Varela et al., 2020), and male fertility is highly sensitive to increased temperatures
96 (Chirgwin et al., 2021, 2020; Iossa, 2019; Rodrigues et al., 2022; Sales et al., 2021; Vasudeva et al.,
97 2019; Walsh et al., 2019; Wang and Gunderson, 2022). We therefore tested the general prediction
98 that a history of strong sexual selection might lead to greater environmental sensitivity of male
99 fertility by investigating how experimental evolution under different levels of natural and sexual
100 selection affects the thermal sensitivity of fertility in the seed beetle, *Callosobruchus maculatus*, a
101 model species for studies on postcopulatory sexual selection. We used a set of replicated lines that
102 had evolved for 68 generations under three alternative mating regimes, manipulating the relative
103 strengths of sexual and natural selection (natural selection only (N), natural and sexual selection
104 (N+S), or sexual selection only (S)) in benign and constant laboratory conditions. Previous work has
105 shown that these regimes have evolved differences in a variety of reproductive phenotypes. For
106 example, populations evolving under strong sexual selection and minimized natural selection show
107 greater postcopulatory reproductive success (Koppik et al., 2022) and different sperm allocation
108 patterns with more plastic germline maintenance (Baur & Berger, 2020). Hence, we predicted that
109 these males would suffer increased thermal sensitivity of fertility (henceforth: TSF) compared to
110 males that have evolved without sexual selection.

111 Plastic male allocation decisions in response to social cues, such as the presence of receptive
112 females or male competitors, has been observed in several polyandrous taxa (e.g., Bretman et al.,
113 2011, 2010; Ramm and Stockley, 2009). If such plasticity shifts resources away from germline
114 maintenance in favour of investment in sperm competition, this could likewise reduce TSF under the

115 trade-off scenario. Indeed, the studied evolution regimes of *C. maculatus* have previously been
116 shown to differ in how socio-sexual interactions affect plastic changes in ejaculate traits and
117 germline maintenance (Baur & Berger, 2020; Koppik et al., 2022). We therefore also explored the
118 direct effects of the presence of male rivals on the plasticity of TSF across the three evolution
119 regimes, predicting that such interactions would generally reduce male TSF.

120 Female fertility is typically a stronger limiting factor on population growth rate than male
121 fertility (Caswell, 2006; Manning, 1984). Understanding if and how female fertility is moulded by the
122 mating system is therefore important for predicting demographic consequences under future
123 climate warming (e.g., Fox et al., 2019). Females can exhibit complex trade-offs between
124 reproduction and maintenance (Harshman & Zera, 2007) and often evolve costly counter-
125 adaptations to male mating strategies (Andersson & Simmons, 2006; Arnqvist & Rowe, 2002; Pizzari
126 & Snook, 2003; Rönn et al., 2007; Ryan, 1998) and presumably costly mechanisms that allow them to
127 exert cryptic female choice of male sperm (W. Eberhard, 1996; W. G. Eberhard & Cordero, 1995;
128 Shuker & Simmons, 2014; Telford & Jennions, 1998). However, it remains unclear how such female
129 adaptation to mating interactions affect their stress tolerance. Additionally, because male and
130 female reproductive traits often share a genetic basis, it is possible that male adaptation could target
131 genes that also affect female reproduction and maintenance. To explore how sexual selection affects
132 female fertility responses to environmental stress we therefore also assayed TSF in females from the
133 three evolution regimes.

134 The severity of the impact of environmental stress on population viability depends on if and
135 how effects on fertility are carried over to subsequent generations. However, it remains unclear
136 whether such transgenerational effects typically confer adaptive or detrimental responses in
137 offspring (Bonduriansky & Day, 2009; Donelson et al., 2018; A. A. Hoffmann & Sgrò, 2011). Indeed,
138 evidence for whether parental heat stress positively or negatively affects offspring TSF is scarce but
139 seemingly indicates that heat stress experienced by parents reduces offspring TSF (Burgess &

140 Marshall, 2011; Diaz et al., 2021; Uller et al., 2013). Population-level consequences of reductions in
141 fertility should also depend on which sex that is most severely impacted (Caswell, 2006; Manning,
142 1984), but studies assessing the sex-specificity of transgenerational effects of heat stress are rare.
143 We therefore also assessed sex-specific transgenerational effects on TSF.

144 Our results support the hypothesis that previous male adaptation under strong directional
145 sexual selection on sperm traits may lead to detrimental effects on fertility once temperatures rise,
146 and that these effects may permeate through generations. We also find evidence suggesting that
147 sexual selection may lead to increased thermal sensitivity of female fertility, most likely via
148 genetically correlated responses to selection on males. Forecasts of responses to environmental
149 change should thus incorporate sexual selection and the mating system to accurately predict species
150 vulnerability.

151

152 METHODS

153 *Predictions for how a history of strong sexual selection affects the environmental sensitivity of male*
154 *fertility*

155 To formalize general predictions for how an evolutionary history of strong postcopulatory sexual
156 selection affects the environmental sensitivity of male fertility, we employed a life history theory
157 framework and the “Y-model” for allocation and acquisition trade-offs (de Jong & van Noordwijk,
158 1992; Houle, 1991). The model is described in full in Supplement S1. In brief, the model assumed
159 that “fitness” is the product of competitive fertilization success and gamete viability. It was further
160 assumed that individual condition (C) determines the amount of resources that can be allocated to
161 germline maintenance (M) in form of anti-oxidative defence and repair needed to maintain ejaculate
162 quality and gamete viability (Dowling & Simmons, 2009; Friedberg et al., 2005) and reproductive
163 effort (R) in form of gamete production and ejaculatory components that increase a male’s

164 competitive fertilization success, such that: $C = R + M$. This results in an allocation trade-off between
165 reproductive effort and germline maintenance that impacts sperm competition success and fertility,
166 respectively.

167 Competitive fertilization success was modelled as an increasing power function of
168 reproductive investment (R), with the strength of postcopulatory sexual selection given by exponent
169 b , with higher values of b indicating stronger sexual selection. Gamete viability was modelled as an
170 increasing power function of allocation to maintenance (M), with the strength of viability selection in
171 a given environment given by exponent a , where higher values of a indicate harsher conditions.
172 Optimal allocation between reproductive effort and maintenance was found by maximizing fitness
173 for different values of a and b (Fig. 1A). We then calculated the fertility reduction resulting from
174 abrupt increase in environmental harshness (increase in a) for species with alternative allocation
175 strategies corresponding to differences in the relative strengths of sexual selection (different values
176 of b) and viability selection (different values of a) in their ancestral environment (Fig. 1B).

177

178 *Study species*

179 *C. maculatus* originates from the tropical and subtropical regions of the world and is a common pest
180 of stored fabaceous seeds. Females glue their eggs on host beans and the larvae develop inside the
181 beans for roughly three weeks before eclosing as sexually mature adults (C. W. Fox, 1993).
182 Reproduction starts a few hours after eclosion and usually takes place within the first few days of
183 adulthood (C. W. Fox, 1993). The adult life span of *C. maculatus* typically ranges between 7 and 12
184 days under aphagous conditions, with females living longer than males. *C. maculatus* is frequently
185 used as a model system to study sexual selection and sexual conflict (Arnqvist et al., 2021; Baur et
186 al., 2019; Berger, You, et al., 2016; Bilde et al., 2009; Dougherty et al., 2017; Eady, 1995; Gay et al.,
187 2009; Lieshout et al., 2013; Rönn et al., 2006, 2007) because males are known to compete fiercely
188 over access to females, leading to high levels of promiscuity and postcopulatory sexual selection.

189 Sperm regeneration rates have been shown to evolve in response to sexual selection in *C. maculatus*
190 (Baur & Berger 2020) and to be associated with increased metabolic expenditure (Immonen et al.,
191 2016). Female beetles show a noticeable kicking behaviour upon a mating attempt by a male, and
192 potentially cryptic female choice (Lieshout et al., 2014). While preferred temperatures range from
193 25°C to 30°C (C. W. Fox et al., 2006; Martinossi-Allibert et al., 2017; Vasudeva et al., 2014), several
194 experiments indicate that this species exhibits tolerance to even higher temperatures (Berger et al.,
195 2017, 2021; Lale & Vidal, 2003; Loganathan et al., 2011).

196

197 *Experimental evolution regimes*

198 The experimental evolution lines were created from a stock population sampled from a natural
199 population in Lomé, Togo (06°10#N 01°13#E), in 2010. Previous studies have demonstrated that this
200 genetic stock harbours substantial standing genetic variation for behaviour, life history and sex-
201 specific reproductive success (Berger, Martinossi-Allibert, et al., 2016; Berger, You, et al., 2016;
202 Grieshop et al., 2021; Grieshop & Arnqvist, 2018). The three experimental evolution regimes
203 (outlined below) have been studied extensively and show divergence in a range of reproductive
204 traits, including sex-specific competitive reproductive success (Martinossi-Allibert, Thilliez, et al.,
205 2019), mating behaviour (Baur et al. 2019), germline maintenance (Baur and Berger, 2020; Koppik et
206 al. 2022), postcopulatory reproductive success (Koppik et al., 2022) and immunity (Bagchi et al.,
207 2021). Three replicate lines were started per evolution regime, but one line was lost for the S regime
208 prior to experiments. Each line was maintained at an effective population size of approximately 150.
209 For more details on the selection protocol see (Martinossi-Allibert, Thilliez, et al., 2019).

210 *N + S (natural and sexual selection):* This regime was designed to resemble the natural
211 mating system of *C. maculatus*. This regime allows for pre- and postcopulatory sexual selection as
212 well as viability and fecundity selection as males and females were freely interacting during the
213 entire reproductive and egg-laying period.

214 *N (only natural selection):* Under this regime, a virgin male and female were paired at
215 random to form monogamous couples, removing sexual selection while allowing for viability and
216 fecundity selection. This regime should select for males with ejaculatory components with beneficial
217 effects on female fertility.

218 *S (only sexual selection):* This mating regime was designed to allow for sexual selection on
219 males while attempting to minimize natural selection, thereby removing genetic constraints on the
220 evolution of secondary sexual characters (i.e., sperm traits) imposed by natural selection on
221 correlated traits expressed in both sexes. Males and females were first allowed to mate and interact
222 freely (i.e., sexual selection proceeded) for 48h without egg-laying substrate for females, after which
223 all females were collected in individual 60 mm petri dishes, each containing roughly 30 beans onto
224 which the females could oviposit. Exactly one male and one female beetle per dish were picked to
225 contribute to the next generation. This effectively removed selection on female fecundity by making
226 sure that each female contributed equally, and only two offspring, to the next generation (offspring
227 numbers per female typically range between 50-100). We note that although viability selection was
228 not actively prevented in this regime, female mortality was very low (1 out of 100 females died every
229 1-2 generations) and egg-to-adult survival is high (>95%) in all lines, thus, viability selection is
230 unlikely to be effective in this or any other regime.

231

232 *Assessing male and female TSF via heat shock*

233 Following 68 generations of experimental evolution, all lines were maintained for two generations
234 under common garden conditions (typical laboratory conditions resembling the N+S regime; See
235 Supplement S2 for a graphical illustration of the experimental design). The experiment was
236 performed in two blocks, each consisting of three experimental days coinciding with the peak
237 emergence of the beetles in each block. We picked virgin focal adults from all lines within 24 hr after
238 eclosion. Virgin focal males and females were isolated in perforated 0.5 ml Eppendorf tubes for 24 hr

239 (isolated treatment), except the males assigned to compete (male-male treatment). These males
240 were placed in 35 mm petri dishes in groups of three. After 24 hrs, we randomly selected half of the
241 beetles in each group for heat shock exposure. Prior to the heat shock, we moved all males from the
242 male-male treatment individually into perforated 0.5 ml Eppendorf tubes, to ensure the same
243 conditions during the heat shock. The heat shock consisted of 20 minutes in an incubator at 55°C at
244 high relative humidity, which has previously been shown to result in a reduction of fertility while
245 remaining in a range that is ecologically relevant for *C. maculatus* (Baur et al., 2022). To confirm the
246 ecological relevance of the selected temperature, we used NicheMapR (Kearney & Porter, 2017) to
247 run a microclimate model assuming a global temperature increase of 1.5°C. The model showed that
248 soil temperature can reach up to 70°C and air temperatures up to 50°C in Lomé, Togo, placing 55°C
249 in a range that a ground-dwelling insect may experience (see Supplement S2 for the NicheMapR
250 model). We mated all focal beetles to reference individuals of the opposite sex (untreated beetles
251 from the ancestral stock population) starting 20 minutes after the heat shock. We mated heat
252 shocked males from the isolated treatment a second time, seven hours after heat shock, to
253 investigate time effects on TSF. All matings were performed in 60 mm petri dishes on a heating plate
254 at benign 29°C. We excluded 37 couples that did not mate within 75 minutes. This resulted in a total
255 of 1123 mating couples for which fertility (number of adult offspring) was recorded, with on average
256 47 couples per experimental cell (a combination of: sex, heat shock treatment, and male social
257 treatment; for exact sample sizes see Supplement S4).

258 We did not mate untreated control males a second time in our experiment , since males of
259 *C. maculatus* are able to mate multiply without detectable declines in fertility (Rönn et al., 2008).
260 Hence, there was no formal control group for heat shocked males that mated a second time, 7h
261 after the heat shock application. We therefore confirmed that our results (see below) were indeed
262 caused by responses to heat stress, and not an effect of mating order or male aging *per se*, by
263 performing a follow-up experiment comparing fertility from first and second matings of untreated

264 male beetles from the S regime. More detailed methods and the results from this experiment are
265 summarized in Supplement S5.

266

267 *Transgenerational effects*

268 We investigated transgenerational effects using the three lines from the N+S regime, which is closest
269 to this species' natural polygamous mating system. We studied effects on F1 offspring fertility and
270 TSF (son, daughter, or neither one, was heat shocked) from heat shock applied to the F0 parents
271 (mother, father, or neither one, was heat shocked) in a fully crossed design (see Supplement S6 for a
272 graphical illustration of the design). F0 males belonged to the isolated treatment in the original
273 experiment, and all F1 offspring derived from the first mating following heat shock in the F0. All focal
274 F1 offspring were mated to untreated partners originating from the parental control treatment and
275 same experimental evolution line.

276

277 *Statistical analyses*

278 We used Bayesian generalized mixed effects models implemented in the package
279 MCMCglmm (Hadfield, 2010) for R (R Core Team, 2020). Ggplot2 was used for graphical illustration
280 (Wickham, 2016).

281 We performed three main analyses including the experimental evolution lines. We used
282 uninformative and weak priors and included line identity crossed with the applied treatments as
283 random effect terms. The 6 experimental days (2 blocks with 3 days each), crossed with the heat
284 shock treatment, were included as additional random effect terms. First, we tested for effects of
285 evolution regime on TSF from the first and second mating in isolated males in a model that
286 incorporated fixed effects of the heat shock treatment, mating number, and evolution regime, as
287 well as all higher order interactions (see Supplement S7). This model was including only data on

288 isolated males (first and second ejaculate). Second, we tested for effects of the presence of male
289 rivals on the TSF from the first mating (males from the male-male treatment were not assayed for
290 the second mating) in a model including the fixed effects of heat shock treatment, evolution regime,
291 male social treatment, as well as all higher-order interactions (see Supplement S8). Third, we
292 analysed effects of evolution regime on female TSF in a model that included heat shock treatment
293 and evolution regime (all females were kept isolated prior to heat shock and were all allowed to
294 mate only once following it, see Supplement S9 for model details)). When analysing effects of heat
295 shock in males in the first model including both the first and second mating, we excluded four males
296 that failed to mate during the first census time. All these males derived from the third day of the
297 second block and were limited to the heat shock treatment. When analysing the effects of male
298 rivals on fertility in the second model, we excluded these four isolated males and an additional six
299 males from the male-male treatment that also failed to mate after the heat shock. The number of
300 excluded males was small and equally distributed over the evolution regimes, and their
301 inclusion/exclusion did not affect results qualitatively (for an analysis including males that did not
302 mate, with their fertility of zero, see Supplement S8 and S10). The model used to investigate
303 transgenerational effects included the sex of the focal individual from the parental generation, the
304 heat shock treatment of the focal parental individual (heat shock, control), and the treatment of the
305 F1 couple (male heat shock, female heat shock, control) as interacting fixed effects. Line identity was
306 also included as fixed effect. The experimental block from the parental generation and its interaction
307 with the sex and treatment of the focal parental individual were included as random effects.

308 We assumed a Poisson distributed error for the response in all models used for testing of
309 statistical significance. For illustrative purposes, we also calculated the effect size as: $TSF = 1 - \frac{\text{mean}}{\text{number of offspring}_{\text{heat shocked}}} / \text{mean number of offspring}_{\text{control}}$ (thus giving the proportional reduction
310 in offspring produced attributed to heat shock), based on posteriors from models equivalent those
311 described above, but using a Gaussian response. The results of these Gaussian models are presented
312 in Figures 2-5 and for all offspring numbers or fertility reductions (incl. TSF) reported in the result
313 in Figures 2-5 and for all offspring numbers or fertility reductions (incl. TSF) reported in the result

314 section. The mean number of offspring was high (range 55-85 for the different treatments), so the
315 response was approximately normal, and the resulting estimates from the Poisson and Gaussian
316 models were qualitatively identical. We ran our models for 2.2M iterations with an initial burn in of
317 200k iterations and a thinning factor of 2000 to avoid autocorrelations, resulting in 1000
318 uncorrelated posterior samples from which posterior means, 95% credible intervals and two-tailed
319 P-values were calculated based on model posterior distributions (model specifications in
320 Supplements S7-9, S11).

321 To explore possible mechanistic links between the evolution of sexually selected
322 postcopulatory reproductive traits and male TSF, we made use of previously published data from the
323 same eight replicate lines as used here on sperm production (males were mated three times within
324 90 minutes to deplete sperm storage, 25 hours later males were allowed to mate again, sperm
325 production refers to the increase in sperm number per ejaculate between the third and fourth
326 mating), following 29 generations of experimental evolution (Extended data Fig. 5 in Baur & Berger
327 2020), and postcopulatory reproductive success in form of sperm defence (P1, i.e., the focal male is
328 the first of two males to mate with the female) and sperm offense (P2, i.e., the focal male is second
329 of two males to mate with the female), following 51 generations of experimental evolution (Fig. 1 in
330 Koppik et al. 2022). We then estimated genetic correlations between these traits and the fertility
331 reduction induced by heat shock (i.e., the TSF) in the second mating, based on line means. P1 and P2
332 were logit-transformed before analysis, as these traits are proportions ranging between 0 and 1.

333

334 **Results**

335 *Predictions for how a history of strong sexual selection affects the environmental sensitivity of male*
336 *fertility*

337 Increased allocation to sperm competition traits at the expense of germline maintenance is
338 predicted to evolve when the expected fitness return of increased postcopulatory reproductive
339 effort (given by exponent b) is high but is disfavoured in harsh environments that impose strong
340 viability selection on gametes (given by exponent a) (Fig. 1A). Once environmental harshness
341 suddenly increases (a increases) fertility declines, but more so in species that have evolved their
342 optimal allocation strategy in benign environments (small ancestral a). For any strength of viability
343 selection (a) in the ancestral environment, populations that have evolved under a history of strong
344 sexual selection (high b) are predicted to suffer a greater fertility loss following increased
345 environmental stress (Fig. 1B). We note that this simple model does not consider several conditions
346 that could alter response, such as: adaptive germline plasticity, further evolution in response to the
347 change in environmental harshness, or how changes in environmental harshness may cause changes
348 in the strength of postcopulatory sexual selection (b) itself (e.g., Martinossi-Allibert et al., 2019a;
349 Svensson and Connallon, 2019).

350

351 *Effects of evolution under different mating regimes on the thermal sensitivity of male fertility*
352 To test this general prediction, we compared the TSF of isolated males from the three evolution
353 regimes that differed in the strength of postcopulatory sexual selection. For untreated (control)
354 males, we found no fertility differences between the evolution regimes, and thus no evidence for a
355 general reduction in the fertility of S males that had evolved under sexual selection in the absence of
356 natural selection (mean number of offspring produced with 95% CI: N: 66.4 [58.8, 73.4]; N+S: 71.8
357 [64.8, 78.8]; S: 69.0 [62.9, 77.7]; all pairwise $p_{MCMC} > 0.16$, Fig. 2A). For naïve males kept in isolation
358 prior to the heat shock treatment, heat stress had significant effects on fertility in the second, but
359 not in the first mating (first mating: $p_{MCMC} = 0.116$, second mating: $p_{MCMC} = 0.028$). Furthermore, in
360 accordance with predictions (Fig. 1B), the reduction in fertility caused by heat shock was strongest in
361 the S regime (TSF first mating: N: 0.03 [-0.12, 0.16]; N+S: -0.01 [-0.14, 0.10]; S: 0.09 [-0.04, 0.22]; TSF

362 second mating: N: 0.07 [-0.05, 0.20]; N+S: 0.09 [-0.02, 0.21]; S: 0.21 [0.08, 0.33], regime:treatment
363 interaction for second mating; N vs. N+S: $p_{MCMC} = 0.76$, N vs. S: $p_{MCMC} = 0.026$; N+S vs. S: $p_{MCMC} =$
364 0.014, Fig 2A, C) (Supplement S7).

365

366 *Effects of male rivals*

367 We explored whether potential plasticity in germline allocation in response to cues from male rivals
368 affected male TSF. Male-male interactions resulted in overall negative effects on fertility in
369 untreated (control) males (fertility reduction, mean offspring produced with 95% CI: 5.6 [2.3, 8.7],
370 $p_{MCMC} = 0.015$; Fig. 3; see Supplements S8 and S10 for the analysis including males that failed to
371 mate), suggesting that these interactions had costs. However, when analysing the regimes
372 separately, we found an effect of male-male interactions only in N+S control-males (fertility
373 reduction: 8.6 [2.0, 14.7], $p_{MCMC} = 0.028$), and S control-males (fertility reduction: 6.4 [1.6, 11.1],
374 $p_{MCMC} = 0.033$), whereas there was no effect in N control-males (fertility reduction: 1.7 [-4.1, 7.0],
375 $p_{MCMC} = 0.69$) (Fig. 3). This pattern suggests that N males may have evolved to invest less into male-
376 male competition under the removal of sexual selection, although we did not find a statistically
377 significant difference in the effect of male-male interactions between regimes (interaction: N vs N+S:
378 $p_{MCMC} = 0.083$, N vs S: $p_{MCMC} = 0.23$). However, there was no suggestion that male-male interactions
379 worsened the impact of heat shock on male fertility (all interactions: $p_{MCMC} > 0.08$, Fig. 3). We note
380 that the effect of male-male interactions on fertility was only investigated in the first mating, where
381 effects of heat shock were overall very modest, which may have reduced the chances of detecting
382 such effects.

383

384 *Mechanistic links between investment in sperm competition and thermal sensitivity of male fertility*

385 We found a strong and statistically significant correlation between male TSF (assayed in the second
386 mating) and previously reported estimates of male success in sperm offense, P2 ($r = 0.89$, $p = 0.003$),
387 but not for sperm defence, P1 ($r = 0.39$, $p = 0.34$) nor sperm production ($r = 0.03$, $p = 0.95$), implying
388 that improvement in a male's sperm offense is associated with increased sensitivity to thermal stress
389 (Fig. 4).

390

391 *Effects of evolution under different mating regimes on the thermal sensitivity of female fertility*

392 Interestingly, the fertility of both S and N+S females, was higher than the fertility of N females in the
393 untreated control group (mean number of offspring produced and 95% CI: N: 73.3 [62.7, 82.8]; N+S:
394 84.9 [76.5, 93.2]; S: 84.0 [74.8, 93.1]; N vs. N+S: $p_{MCMC} = 0.056$, N vs. S: $p_{MCMC} = 0.032$) (Fig. 2B, D).
395 These results thus suggest that females have evolved increased reproductive output as a result of
396 sexual selection on their brothers, demonstrating that the removal of natural (fecundity and
397 viability) selection in the S regime has not led to any detectable decline in fertility under benign
398 (ancestral) lab conditions.

399 While there was no main effect of heat shock across all regimes (Fig. 2B, D), evolution
400 regimes varied in the extent of TSF (N: -0.07 [-0.24, 0.08]; N+S: 0.03 [-0.08, 0.15]; S: TSF: 0.10 [-0.01,
401 0.25], interaction regime:heat shock, N vs. S: $p_{MCMC} = 0.040$) (Fig. 2B, D; Supplement S9). The
402 response to heat shock across the three regimes followed a similar qualitative pattern across the
403 two sexes, with the S regime showing the strongest reduction in fertility, and the N regime showing
404 weak and non-significant responses. This could imply that sexual selection targeting male
405 postcopulatory reproductive traits in the S regime has led to correlated evolution of female fertility
406 and TSF. Alternatively, it is possible that female TSF evolved independently in the mating regimes yet
407 resulted in a mostly parallel response to that seen in males. Based on the eight line means, we found
408 a marginally non-significant positive genetic correlation between male and female TSF ($r = 0.65$, $p =$

409 0.08, Fig. 4D), which, given the amount of measurement error, does not provide conclusive evidence
410 in favour of one hypothesis over the other.

411

412 *Transgenerational effects*

413 Heat shock experienced by fathers, but not mothers, negatively affected offspring fertility (reduction
414 in offspring fertility due to heat shocked father: 7.1 [3.2, 10.5], $p_{MCMC} = 0.002$; reduction in offspring
415 fertility due to heat shocked mother: -0.5 [-4.19, 2.93], $p_{MCMC} = 0.96$; interaction parental
416 sex:parental treatment: $p_{MCMC} = 0.012$, Fig. 5; Supplement S11). We found no evidence that heat
417 shock experienced by either parent would affect offspring TSF, providing no support for adaptive
418 transgenerational plasticity (Supplement S11). We note that the power to detect significant higher-
419 order interactions is modest with these data.

420

421 **Discussion**

422 Increased investment into reproduction fuelled by sexual selection is expected to trade-off with
423 fitness components under natural selection (Folstad & Karter, 1992; Zahavi, 1975). However, while
424 postcopulatory sexual selection is widespread in promiscuous species (Parker, 1970), empirical
425 evidence documenting trade-offs between different sperm traits (Pizzari and Parker, 2009; Snook,
426 2005, Simmons & Fitzpatrick 2012), or between sperm traits and somatic traits (Simmons & Emlen
427 2006; Lüpold et al., 2015; Parker and Pizzari, 2010; Simmons et al., 2017), is mixed and relatively
428 scarce. One possible explanation could be that optimal allocation strategies often are context-
429 dependent (Harshman & Zera 2007; Ferenci, 2016; Flatt, 2020; Messina and Fry, 2003). Here we first
430 provided simple theoretical arguments to why male adaptation enhancing postcopulatory
431 reproductive success may be associated with a reduction in fertility that manifests at stressful
432 temperatures, and then used long-term experimental evolution in a model species for sexual

433 selection to provide empirical support for this prediction. Specifically, our model and empirical data
434 suggest that reductions in fertility imposed by environmental stress will be most pronounced in
435 highly polyandrous species that have evolved in a constant and benign environment prior to the
436 abrupt environmental change (Figs. 1 & 2, Supplement S1).

437 What might the long-term consequences of these effects be for polyandrous species facing
438 the increased incidence of heat waves projected under future climate change? Quantitative genetic
439 models of adaptation suggest that sexual selection can improve population viability (Agrawal, 2001;
440 Lorch et al., 2003; Siller, 2001). However, such conclusions rely on two main assumptions.

441 First, genetic variation for traits under selection needs to be abundant, and population size
442 sufficiently large, to sustain population growth during environmental change (Bürger & Lynch, 1995;
443 Lande & Shannon, 1996). Whether or not fitness-related traits typically harbour sufficient genetic
444 variation to permit the rapid evolution that climate change demands is under debate (Angert et al.,
445 2020; Bonnet et al., 2022; Kokko et al., 2017; Lancaster et al., 2022) and will likely differ between
446 traits and the type of environmental change imposed (Agrawal & Whitlock, 2010; Caruso et al., 2017;
447 null Hoffmann & Merilä, 1999; Rowiński & Rogell, 2017). While male reproductive traits can evolve
448 rapidly (Haerty et al., 2007; Swanson & Vacquier, 2002), recent studies indicate that the evolutionary
449 potential of thermal tolerance is limited (Castañeda et al., 2019; Debes et al., 2021; Kellermann &
450 Heerwaarden, 2019; Morgan et al., 2020; Zwoinska et al., 2020). Moreover, a recent meta-analysis
451 has suggested that the strength of purifying selection increases at elevated temperature, implying
452 that populations facing climate warming will experience an increase in genetic load (Berger et al.,
453 2021). Heat-induced fertility costs associated with postcopulatory sexual selection may therefore
454 have severe repercussions in small populations with limited standing genetic variation in
455 reproductive phenotypes.

456 Second, quantitative genetic models that predict population-level benefits of sexual
457 selection assume that male adaptation under sexual selection also improves female fitness

458 components (the "genic capture" hypothesis: Rowe and Houle, 1996; Tomkins et al., 2004).
459 However, sexual selection in males can promote genes with detrimental effects on female fitness
460 (Bonduriansky & Chenoweth, 2009). In our experiment, S females, who did not experience fecundity
461 selection themselves, showed high fertility under benign conditions but suffered more from heat
462 stress (Fig 2). While we cannot exclude that some of these effects may have been caused by direct
463 selection on S females via mate choice processes (Hare & Simmons, 2019), our results seem more
464 consistent with sexual selection in males targeting genes that shift allocation away from
465 maintenance towards reproduction in females, with detrimental effects evident under adult heat
466 stress. As female fertility is typically a more important determinate of demography than male
467 fertility (Caswell, 2006; Manning, 1984), this mechanism could contribute further to population
468 decline and extinction threats in warming climates. Nevertheless, experimental studies have
469 illustrated that sexual selection has the potential to aid adaptation to stressful environments in
470 general (reviewed in Cally et al., 2019), and to warm developmental temperatures in particular
471 (Godwin et al., 2020; Parrett & Knell, 2018; Plesnar-Bielak et al., 2012), although the roles of pre-
472 versus postcopulatory sexual selection in driving these patterns remain unclear. Thus, by showing
473 that sperm competition is associated with immediate costs in populations experiencing acute adult
474 heat stress, our results add to a growing body of literature illustrating that sexual selection can
475 impact evolutionary potentials under environmental change (e.g., Fox et al., 2019; García-Roa et al.,
476 2020; Martínez-Ruiz and Knell, 2017; Martinossi-Allibert et al., 2019a; Pilakouta and Ålund, 2021;
477 Rowe and Rundle, 2021; Singh and Agrawal, 2022; Yun et al., 2017). The upcoming challenge is to
478 translate results such as ours into practical insights that will help predict species vulnerability and
479 adaptive potential in the face of climate change.

480

481 *Mechanistic explanations*

482 What may be the underlying mechanistic link between sexual selection and TSF? Several
483 transcription factors regulating heat shock protein (hsp) expression have been found to play
484 important regulatory roles during spermatogenesis at benign temperatures (Shiraishi, 2016; Widlak
485 & Vydra, 2017), and male germ cells show a distinct heat stress response compared to other cells
486 (Kim et al., 2013; Michaud et al., 1997; Sarge, 1995). These findings suggest that elements of the
487 heat stress response are employed during spermatogenesis and provide a possible functional basis
488 by which postcopulatory sexual selection may optimise sperm competitive ability at a cost of
489 increased TSF (Dowling & Simmons, 2009). Moreover, reproduction has been shown to generally
490 trade-off with HSP expression (Sørensen et al., 2003), suggesting that this functional basis also may
491 underly the observed increase in TSF of S females (Rodrigues et al., 2022).

492 For the correlations between male TSF and the previously assayed traits measuring different
493 aspects of sperm competition success, we found no association between TSF and sperm production,
494 suggesting that a simple trade-off between sperm number and quality is unlikely to explain the
495 increased TSF in the S regime. We also found no correlation between TSF and sperm defence (P1;
496 male is first to mate), but a strong a relationship with sperm offence (P2; male is second to mate).
497 Success in sperm defence may to large extent depend on a male's ability to induce early
498 reproduction in the female (securing paternity of the fraction of eggs fertilized prior to the female
499 mating with another male), while work in fruit flies suggests that success in sperm offence depends
500 on allocation to production of ejaculate components that cause females to dump sperm of the first
501 male from their reproductive tract (Lüpold et al., 2016; McDonough-Goldstein et al., 2022; Wigby et
502 al., 2020). The male ejaculate in *C. maculatus* contains a rich mix of components of which some are
503 thought to be toxic but important in sperm competition (e.g., Yamane et al., 2015) , and male
504 genotypes that are successful in sperm competition have been shown to sire offspring of lower
505 quality (Bilde et al., 2009). It is thus possible that the increased TSF in S males could in part have
506 been mediated by the transfer of such toxic components to their female mating partner. Future
507 studies are needed to reveal the exact mechanistic basis behind our results.

508

509 *Effects of male rivals*

510 We also investigated plastic responses of TSF to male-male interactions, which typically incurs
511 considerable costs in *C. maculatus* males, as reflected by shortened lifespan (Maklakov &
512 Bonduriansky, 2009). Our data show a tendency for more detrimental effects of male-male
513 interactions in the S and N+S males compared to N males, which could be a sign of adaptation to,
514 and associated costs of, sexual selection. However, while environmental stressors sometimes
515 exacerbate each other's effects (Relyea & Mills, 2001; Sejian et al., 2011), we found no such obvious
516 effects here for heat stress and male competition. The presence of male rivals do not always favour
517 increased allocation to sperm production but can in certain scenarios, where such interactions
518 confer considerable costs, instead favour reduced reproductive effort in favour of maintenance
519 (Parker, 1990; Parker & Pizzari, 2010). It might thus be that several simultaneous effects triggered by
520 male rivals (i.e., overall reduction in condition coupled with shifts in germline allocation) could have
521 counteracting effects on male TSF. Additionally, effects of male-male interactions on TSF were only
522 monitored in the first mating, where overall effects of heat shock were weak, limiting our inferences.

523

524 *Transgenerational effects*

525 The full consequence of heat waves on population viability will depend on if and how effects in
526 exposed parents get transferred to offspring, where detrimental effects at the population-level can
527 be exacerbated via further reductions in the quality and fertility of their surviving offspring. Exposed
528 parents may also prime their gametes with epigenetic information helping offspring to better cope
529 with future heat stress. Indeed, such adaptive trans-generational plasticity can provide an avenue to
530 maintain population fitness under climate change (Bonduriansky & Day, 2009; Donelson et al., 2018;
531 A. A. Hoffmann & Sgrò, 2011). We found that in *C. maculatus*, paternal heat shock reduces offspring

532 fertility while mothers transferred no obvious effects to offspring. This corroborates findings of a
533 recent study by Sales et al. (2018), in which heat exposure of paternal sperm (either via the father
534 himself or via the inseminated mother) resulted in decreased survival and fitness of offspring. We
535 found no indication that offspring of heat-exposed fathers performed better under heat stress
536 conditions relative to controls from untreated parents, suggesting that adaptive transgenerational
537 plasticity is unlikely to remedy fertility loss due to heat stress. Strikingly, in our transgenerational
538 experiment there was no apparent fertility reduction detected at all in the exposed F0 fathers (Fig. 3;
539 first mating for isolated N+S males) while the offspring deriving from this mating suffered a 10%
540 reduction in fertility on average (Fig. 5, bottom panels). This result is similar to that reported recently
541 for field crickets (Simmons et al., 2022) and highlights that heat waves can have long-lasting effects
542 in natural populations that may remain undetected in experimental studies unless appropriate
543 designs are used.

544

545 *Conclusions*

546 Here we have provided evidence for fertility trade-offs associated with adaptation under post-
547 copulatory sexual selection. Our empirical data and simple model suggest that such trade-offs may
548 become more apparent under environmental stress because strong directional selection for male
549 traits that increase postcopulatory reproductive success in benign conditions may lead to allocation
550 strategies that have detrimental effects on fertility once environmental conditions worsen and put
551 larger demands on germline maintenance and repair. This fertility debt owing to sexual selection
552 may have particularly detrimental effects in the light of the findings that sexual selection also
553 affected female TSF, and that effects of paternal heat shock permeate through generations in *C.*
554 *maculatus*. The increase in heat waves expected under climate warming may thus cause pronounced
555 reductions in population size in species evolving under postcopulatory sexual selection that may
556 elevate their extinction risk unless standing genetic variation for heat tolerance is abundant.

557

558 **Acknowledgements**

559 This research was funded by grants from the Swedish research council (VR: 2019-05024) and Carl

560 Tryggers Stiftelse (CTS:18:32) to D.B..

561

562 **Author contributions**

563 J.B., M.Z., M.K., and D.B. conceived and designed the study. J.B., M.Z., and M.K. performed the

564 experiments. J.B., M.Z., and D.B. analysed the data, and J.B. and D.B. wrote the manuscript. All

565 authors commented on manuscript drafts.

566

567 **Competing interests**

568 The authors declare no competing interests.

569

570 **Data Accessibility**

571 All data generated during the experiments presented in this study will be made publicly available

572 upon acceptance.

573

574

575 **References**

576 Agrawal, A. F. (2001). Sexual selection and the maintenance of sexual reproduction. *Nature*,
577 411(6838), 692–695. <https://doi.org/10.1038/35079590>

578 Agrawal, A. F., & Whitlock, M. C. (2010). Environmental duress and epistasis: How does stress affect
579 the strength of selection on new mutations? *Trends in Ecology & Evolution*, 25(8), 450–458.
580 <https://doi.org/10.1016/j.tree.2010.05.003>

581 Andersson, M. (1994). *Sexual Selection* (Vol. 72). Princeton University Press.
582 <https://doi.org/10.2307/j.ctvs32s1x>

583 Andersson, M., & Simmons, L. W. (2006). Sexual selection and mate choice. *Trends in Ecology &*
584 *Evolution*, 21(6), 296–302. <https://doi.org/10.1016/j.tree.2006.03.015>

585 Angert, A. L., Bontrager, M. G., & Ågren, J. (2020). What Do We Really Know About Adaptation at
586 Range Edges? *Annual Review of Ecology, Evolution, and Systematics*, 51(1), 341–361.
587 <https://doi.org/10.1146/annurev-ecolsys-012120-091002>

588 Arnqvist, G., Grieshop, K., Hotzy, C., Rönn, J., Polak, M., & Rowe, L. (2021). Direct and indirect effects
589 of male genital elaboration in female seed beetles. *Proceedings of the Royal Society B: Biological Sciences*, 288(1954), 20211068. <https://doi.org/10.1098/rspb.2021.1068>

590 Arnqvist, G., & Rowe, L. (2002). Antagonistic coevolution between the sexes in a group of insects.
591 *Nature*, 415(6873), Article 6873. <https://doi.org/10.1038/415787a>

592 Bagchi, B., Corbel, Q., Khan, I., Payne, E., Banerji, D., Liljestrand-Rönn, J., Martinossi-Allibert, I., Baur,
593 J., Sayadi, A., Immonen, E., Arnqvist, G., Söderhäll, I., & Berger, D. (2021). Sexual conflict
594 drives micro- and macroevolution of sexual dimorphism in immunity. *BMC Biology*, 19(1),
595 114. <https://doi.org/10.1186/s12915-021-01049-6>

596 Bathiany, S., Dakos, V., Scheffer, M., & Lenton, T. M. (2018). Climate models predict increasing
597 temperature variability in poor countries. *Science Advances*, 4(5), eaar5809.
598 <https://doi.org/10.1126/sciadv.aar5809>

600 Baur, J., & Berger, D. (2020). Experimental evidence for effects of sexual selection on condition-
601 dependent mutation rates. *Nature Ecology & Evolution*, 4(5), Article 5.
602 <https://doi.org/10.1038/s41559-020-1140-7>

603 Baur, J., Jagusch, D., Michalak, P., Koppik, M., & Berger, D. (2022). The mating system affects the
604 temperature sensitivity of male and female fertility. *Functional Ecology*, 36(1), 92–106.
605 <https://doi.org/10.1111/1365-2435.13952>

606 Baur, J., Nsanzimana, J. d'Amour, & Berger, D. (2019). Sexual selection and the evolution of male and
607 female cognition: A test using experimental evolution in seed beetles*. *Evolution*, 73(12),
608 2390–2400. <https://doi.org/10.1111/evo.13793>

609 Berger, D., Martinossi-Allibert, I., Grieshop, K., Lind, M. I., Maklakov, A. A., & Arnqvist, G. (2016).
610 Intralocus sexual conflict and the tragedy of the commons in seed beetles. *The American
611 Naturalist*, 188(4), E98–E112.

612 Berger, D., Stångberg, J., Baur, J., & Walters, R. J. (2021). Elevated temperature increases genome-
613 wide selection on de novo mutations. *Proceedings of the Royal Society B: Biological Sciences*,
614 288(1944), 20203094. <https://doi.org/10.1098/rspb.2020.3094>

615 Berger, D., Stångberg, J., Grieshop, K., Martinossi-Allibert, I., & Arnqvist, G. (2017). Temperature
616 effects on life-history trade-offs, germline maintenance and mutation rate under simulated
617 climate warming. *Proceedings of the Royal Society B: Biological Sciences*, 284(1866),
618 20171721. <https://doi.org/10.1098/rspb.2017.1721>

619 Berger, D., You, T., Minano, M. R., Grieshop, K., Lind, M. I., Arnqvist, G., & Maklakov, A. A. (2016).
620 Sexually antagonistic selection on genetic variation underlying both male and female same-
621 sex sexual behavior. *BMC Evolutionary Biology*, 16(1), 88. [https://doi.org/10.1186/s12862-016-0658-4](https://doi.org/10.1186/s12862-
622 016-0658-4)

623 Bilde, T., Foged, A., Schilling, N., & Arnqvist, G. (2009). Postmating Sexual Selection Favors Males
624 That Sire Offspring with Low Fitness. *Science*, 324(5935), 1705–1706.
625 <https://doi.org/10.1126/science.1171675>

626 Birkhead, T. R., & Pizzari, T. (2002). Postcopulatory sexual selection. *Nature Reviews Genetics*, 3(4),
627 Article 4. <https://doi.org/10.1038/nrg774>

628 Bonduriansky, R., & Chenoweth, S. F. (2009). Intralocus sexual conflict. *Trends in Ecology &*
629 *Evolution*, 24(5), 280–288. <https://doi.org/10.1016/j.tree.2008.12.005>

630 Bonduriansky, R., & Day, T. (2009). Nongenetic Inheritance and Its Evolutionary Implications. *Annual*
631 *Review of Ecology, Evolution, and Systematics*, 40(1), 103–125.
632 <https://doi.org/10.1146/annurev.ecolsys.39.110707.173441>

633 Bonnet, T., Morrissey, M. B., de Villemereuil, P., Alberts, S. C., Arcese, P., Bailey, L. D., Boutin, S.,
634 Brekke, P., Brent, L. J. N., Camenisch, G., Charmantier, A., Clutton-Brock, T. H., Cockburn, A.,
635 Coltman, D. W., Courtiol, A., Davidian, E., Evans, S. R., Ewen, J. G., Festa-Bianchet, M., ...
636 Kruuk, L. E. B. (2022). Genetic variance in fitness indicates rapid contemporary adaptive
637 evolution in wild animals. *Science*, 376(6596), 1012–1016.
638 <https://doi.org/10.1126/science.abk0853>

639 Boschetto, C., Gasparini, C., & Pilastro, A. (2011). Sperm number and velocity affect sperm
640 competition success in the guppy (*Poecilia reticulata*). *Behavioral Ecology and Sociobiology*,
641 65(4), 813–821. <https://doi.org/10.1007/s00265-010-1085-y>

642 Bretman, A., Fricke, C., Hetherington, P., Stone, R., & Chapman, T. (2010). Exposure to rivals and
643 plastic responses to sperm competition in *Drosophila melanogaster*. *Behavioral Ecology*,
644 21(2), 317–321. <https://doi.org/10.1093/beheco/arp189>

645 Bretman, A., Gage, M. J. G., & Chapman, T. (2011). Quick-change artists: Male plastic behavioural
646 responses to rivals. *Trends in Ecology & Evolution*, 26(9), 467–473.
647 <https://doi.org/10.1016/j.tree.2011.05.002>

648 Buchanan, K. L. (2000). Stress and the evolution of condition-dependent signals. *Trends in Ecology &*
649 *Evolution*, 15(4), 156–160. [https://doi.org/10.1016/S0169-5347\(99\)01812-1](https://doi.org/10.1016/S0169-5347(99)01812-1)

650 Bürger, R., & Lynch, M. (1995). Evolution and Extinction in a Changing Environment: A Quantitative-
651 Genetic Analysis. *Evolution*, 49(1), 151–163. <https://doi.org/10.1111/j.1558-5646.1995.tb05967.x>

652 Burgess, S. C., & Marshall, D. J. (2011). Temperature-induced maternal effects and environmental
653 predictability. *Journal of Experimental Biology*, 214(14), 2329–2336.
654 <https://doi.org/10.1242/jeb.054718>

655 Cally, J. G., Stuart-Fox, D., & Holman, L. (2019). Meta-analytic evidence that sexual selection
656 improves population fitness. *Nature Communications*, 10(1), Article 1.
657 <https://doi.org/10.1038/s41467-019-10074-7>

659 Candolin, U., & Heuschele, J. (2008). Is sexual selection beneficial during adaptation to
660 environmental change? *Trends in Ecology & Evolution*, 23(8), 446–452.
661 <https://doi.org/10.1016/j.tree.2008.04.008>

662 Caruso, C. M., Martin, R. A., Sletvold, N., Morrissey, M. B., Wade, M. J., Augustine, K. E., Carlson, S.
663 M., MacColl, A. D. C., Siepielski, A. M., & Kingsolver, J. G. (2017). What Are the
664 Environmental Determinants of Phenotypic Selection? A Meta-analysis of Experimental
665 Studies. *The American Naturalist*, 190(3), 363–376. <https://doi.org/10.1086/692760>

666 Castañeda, L. E., Romero-Soriano, V., Mesas, A., Roff, D. A., & Santos, M. (2019). Evolutionary
667 potential of thermal preference and heat tolerance in *Drosophila subobscura*. *Journal of
668 Evolutionary Biology*, 32(8), 818–824. <https://doi.org/10.1111/jeb.13483>

669 Caswell, H. (2006). Matrix Population Models. In *Encyclopedia of Environmetrics*. American Cancer
670 Society. <https://doi.org/10.1002/9780470057339.vam006m>

671 Chen, H., Jolly, C., Bublys, K., Marcu, D., & Immler, S. (2020). Trade-off between somatic and
672 germline repair in a vertebrate supports the expensive germ line hypothesis. *Proceedings of
673 the National Academy of Sciences*, 117(16), 8973–8979.
674 <https://doi.org/10.1073/pnas.1918205117>

675 Chirgwin, E., Connallon, T., & Monro, K. (2021). The thermal environment at fertilization mediates
676 adaptive potential in the sea. *Evolution Letters*, 5(2), 154–163.
677 <https://doi.org/10.1002/evl3.215>

678 Chirgwin, E., Marshall, D. J., & Monro, K. (2020). Physical and physiological impacts of ocean
679 warming alter phenotypic selection on sperm morphology. *Functional Ecology*, 34(3), 646–
680 657. <https://doi.org/10.1111/1365-2435.13483>

681 de Jong, G., & van Noordwijk, A. J. (1992). Acquisition and Allocation of Resources: Genetic (CO)
682 Variances, Selection, and Life Histories. *The American Naturalist*, 139(4), 749–770.

683 Debes, P. V., Solberg, M. F., Matre, I. H., Dyrhovden, L., & Glover, K. A. (2021). Genetic variation for
684 upper thermal tolerance diminishes within and between populations with increasing
685 acclimation temperature in Atlantic salmon. *Heredity*, 127(5), Article 5.
686 <https://doi.org/10.1038/s41437-021-00469-y>

687 Diaz, F., Kuijper, B., Hoyle, R. B., Talamantes, N., Coleman, J. M., & Matzkin, L. M. (2021).
688 Environmental predictability drives adaptive within- and transgenerational plasticity of heat
689 tolerance across life stages and climatic regions. *Functional Ecology*, 35(1), 153–166.
690 <https://doi.org/10.1111/1365-2435.13704>

691 Donelson, J. M., Salinas, S., Munday, P. L., & Shama, L. N. S. (2018). Transgenerational plasticity and
692 climate change experiments: Where do we go from here? *Global Change Biology*, 24(1), 13–
693 34. <https://doi.org/10.1111/gcb.13903>

694 Dougherty, L. R., van Lieshout, E., McNamara, K. B., Moschilla, J. A., Arnqvist, G., & Simmons, L. W.
695 (2017). Sexual conflict and correlated evolution between male persistence and female
696 resistance traits in the seed beetle *Callosobruchus maculatus*. *Proceedings of the Royal
697 Society B: Biological Sciences*, 284(1855), 20170132. <https://doi.org/10.1098/rspb.2017.0132>

698 Dowling, D. K., & Simmons, L. W. (2009). Reactive oxygen species as universal constraints in life-
699 history evolution. *Proceedings of the Royal Society B: Biological Sciences*, 276(1663), 1737–
700 1745. <https://doi.org/10.1098/rspb.2008.1791>

701 Eady, P. E. (1995). Why Do Male *Callosobruchus maculatus* Beetles Inseminate so Many Sperm?

702 *Behavioral Ecology and Sociobiology*, 36(1), 25–32.

703 Eberhard, W. (1996). *Female Control: Sexual Selection by Cryptic Female Choice*. Princeton University

704 Press.

705 Eberhard, W. G., & Cordero, C. (1995). Sexual selection by cryptic female choice on male seminal

706 products—A new bridge between sexual selection and reproductive physiology. *Trends in*

707 *Ecology & Evolution*, 10(12), 493–496. [https://doi.org/10.1016/S0169-5347\(00\)89205-8](https://doi.org/10.1016/S0169-5347(00)89205-8)

708 Ferenci, T. (2016). Trade-off Mechanisms Shaping the Diversity of Bacteria. *Trends in Microbiology*,

709 24(3), 209–223. <https://doi.org/10.1016/j.tim.2015.11.009>

710 Flatt, T. (2020). Life-History Evolution and the Genetics of Fitness Components in *Drosophila*

711 *melanogaster*. *Genetics*, 214(1), 3–48. <https://doi.org/10.1534/genetics.119.300160>

712 Folstad, I., & Karter, A. J. (1992). Parasites, Bright Males, and the Immunocompetence Handicap. *The*

713 *American Naturalist*, 139, 603–622. <https://doi.org/10.1086/285346>

714 Fox, C. W. (1993). Multiple Mating, Lifetime Fecundity and Female Mortality of the Bruchid Beetle,

715 *Callosobruchus maculatus* (Coleoptera: Bruchidae). *Functional Ecology*, 7(2), 203–208.

716 <https://doi.org/10.2307/2389888>

717 Fox, C. W., Stillwell, R. C., Wallin, W. G., & Hitchcock, L. J. (2006). Temperature and host species

718 affect nuptial gift size in a seed-feeding beetle. *Functional Ecology*, 20(6), 1003–1011.

719 <https://doi.org/10.1111/j.1365-2435.2006.01197.x>

720 Fox, R. J., Fromhage, L., & Jennions, M. D. (2019). Sexual selection, phenotypic plasticity and female

721 reproductive output. *Philosophical Transactions of the Royal Society B: Biological Sciences*,

722 374(1768), 20180184. <https://doi.org/10.1098/rstb.2018.0184>

723 Friedberg, E. C., Walker, G. C., Siede, W., & Wood, R. D. (2005). *DNA Repair and Mutagenesis*.

724 American Society for Microbiology Press.

725 Gage, M. J. G., Macfarlane, C. P., Yeates, S., Ward, R. G., Searle, J. B., & Parker, G. A. (2004).

726 Spermatozoal Traits and Sperm Competition in Atlantic Salmon: Relative Sperm Velocity Is

727 the Primary Determinant of Fertilization Success. *Current Biology*, 14(1), 44–47.

728 <https://doi.org/10.1016/j.cub.2003.12.028>

729 García-Roa, R., Garcia-Gonzalez, F., Noble, D. W. A., & Carazo, P. (2020). Temperature as a modulator

730 of sexual selection. *Biological Reviews*, 95(6), 1607–1629. <https://doi.org/10.1111/brv.12632>

731 Gay, L., Hosken, D. J., Vasudeva, R., Tregenza, T., & Eady, P. E. (2009). Sperm competition and

732 maternal effects differentially influence testis and sperm size in *Callosobruchus maculatus*.

733 *Journal of Evolutionary Biology*, 22(5), 1143–1150. <https://doi.org/10.1111/j.1420-9101.2009.01724.x>

735 Godwin, J. L., Lumley, A. J., Michalczyk, Ł., Martin, O. Y., & Gage, M. J. G. (2020). Mating patterns

736 influence vulnerability to the extinction vortex. *Global Change Biology*, 26(8), 4226–4239.

737 <https://doi.org/10.1111/gcb.15186>

738 Godwin, J. L., Vasudeva, R., Michalczyk, Ł., Martin, O. Y., Lumley, A. J., Chapman, T., & Gage, M. J. G.

739 (2017). Experimental evolution reveals that sperm competition intensity selects for longer,

740 more costly sperm. *Evolution Letters*, 1(2), 102–113. <https://doi.org/10.1002/evl3.13>

741 Grieshop, K., & Arnqvist, G. (2018). Sex-specific dominance reversal of genetic variation for fitness.

742 *PLOS Biology*, 16(12), e2006810. <https://doi.org/10.1371/journal.pbio.2006810>

743 Grieshop, K., Maurizio, P. L., Arnqvist, G., & Berger, D. (2021). Selection in males purges the mutation

744 load on female fitness. *Evolution Letters*, 5(4), 328–343. <https://doi.org/10.1002/evl3.239>

745 Hadfield, J. D. (2010). MCMC Methods for Multi-Response Generalized Linear Mixed Models: The

746 MCMCglmm R Package. *Journal of Statistical Software*, 33(2), 1–22.

747 Haerty, W., Jagadeeshan, S., Kulathinal, R. J., Wong, A., Ram, K. R., Sirot, L. K., Levesque, L., Artieri, C.

748 G., Wolfner, M. F., Civetta, A., & Singh, R. S. (2007). Evolution in the Fast Lane: Rapidly

749 Evolving Sex-Related Genes in *Drosophila*. *Genetics*, 177(3), 1321–1335.

750 <https://doi.org/10.1534/genetics.107.078865>

751 Hare, R. M., & Simmons, L. W. (2019). Sexual selection and its evolutionary consequences in female

752 animals. *Biological Reviews*, 94(3), 929–956. <https://doi.org/10.1111/brv.12484>

753 Harshman, L. G., & Zera, A. J. (2007). The cost of reproduction: The devil in the details. *Trends in*
754 *Ecology & Evolution*, 22(2), 80–86. <https://doi.org/10.1016/j.tree.2006.10.008>

755 Hoffmann, null, & Merilä, null. (1999). Heritable variation and evolution under favourable and
756 unfavourable conditions. *Trends in Ecology & Evolution*, 14(3), 96–101.
757 [https://doi.org/10.1016/s0169-5347\(99\)01595-5](https://doi.org/10.1016/s0169-5347(99)01595-5)

758 Hoffmann, A. A., & Sgrò, C. M. (2011). Climate change and evolutionary adaptation. *Nature*,
759 470(7335), Article 7335. <https://doi.org/10.1038/nature09670>

760 Houle, D. (1991). Genetic Covariance of Fitness Correlates: What Genetic Correlations Are Made of
761 and Why It Matters. *Evolution*, 45(3), 630–648. <https://doi.org/10.1111/j.1558-5646.1991.tb04334.x>

763 Immonen, E., Rönn, J., Watson, C., Berger, D., & Arnqvist, G. (2016). Complex mitonuclear
764 interactions and metabolic costs of mating in male seed beetles. *Journal of Evolutionary*
765 *Biology*, 29(2), 360–370.

766 Iossa, G. (2019). Sex-Specific Differences in Thermal Fertility Limits. *Trends in Ecology & Evolution*,
767 34(6), 490–492. <https://doi.org/10.1016/j.tree.2019.02.016>

768 IPCC. (2022). *IPCC, 2022: Climate Change 2022: Mitigation of Climate Change. Contribution of*
769 *Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate*
770 *Change*. Cambridge University Press, Cambridge, UK and New York, NY, USA.
771 10.1017/9781009157926

772 Johnson, N. C., Xie, S.-P., Kosaka, Y., & Li, X. (2018). Increasing occurrence of cold and warm
773 extremes during the recent global warming slowdown. *Nature Communications*, 9(1), Article
774 1. <https://doi.org/10.1038/s41467-018-04040-y>

775 Kearney, M. R., & Porter, W. P. (2017). NicheMapR – an R package for biophysical modelling: The
776 microclimate model. *Ecography*, 40(5), 664–674. <https://doi.org/10.1111/ecog.02360>

777 Kellermann, V., & Heerwaarden, B. van. (2019). Terrestrial insects and climate change: Adaptive
778 responses in key traits. *Physiological Entomology*, 44(2), 99–115.
779 <https://doi.org/10.1111/phen.12282>

780 Kim, B., Park, K., & Rhee, K. (2013). Heat stress response of male germ cells. *Cellular and Molecular
781 Life Sciences*, 70(15), 2623–2636. <https://doi.org/10.1007/s00018-012-1165-4>

782 Kirkwood, T. B. L. (2005). Understanding the odd science of aging. *Cell*, 120(4), 437–447.
783 <https://doi.org/10.1016/j.cell.2005.01.027>

784 Kirkwood, T. B. L., Holliday, R., Maynard Smith, J., & Holliday, R. (1979). The evolution of ageing and
785 longevity. *Proceedings of the Royal Society of London. Series B. Biological Sciences*,
786 205(1161), 531–546. <https://doi.org/10.1098/rspb.1979.0083>

787 Kokko, H., Chaturvedi, A., Croll, D., Fischer, M. C., Guillaume, F., Karrenberg, S., Kerr, B., Rolshausen,
788 G., & Stapley, J. (2017). Can Evolution Supply What Ecology Demands? *Trends in Ecology &
789 Evolution*, 32(3), 187–197. <https://doi.org/10.1016/j.tree.2016.12.005>

790 Koppik, M., Baur, J., & Berger, D. (2022). *Increased male investment in sperm competition results in
791 offspring of lower quality* (p. 2022.03.18.484900). bioRxiv.
792 <https://doi.org/10.1101/2022.03.18.484900>

793 Lale, N. E. S., & Vidal, S. (2003). Effect of constant temperature and humidity on oviposition and
794 development of *Callosobruchus maculatus* (F.) and *Callosobruchus subinnotatus* (Pic) on
795 bambara groundnut, *Vigna subterranea* (L.) Verdcourt. *Journal of Stored Products Research*,
796 39(5), 459–470. [https://doi.org/10.1016/S0022-474X\(01\)00028-5](https://doi.org/10.1016/S0022-474X(01)00028-5)

797 Lancaster, L. T., Fuller, Z. L., Berger, D., Barbour, M. A., Jentoft, S., & Wellenreuther, M. (2022).
798 Understanding climate change response in the age of genomics. *Journal of Animal Ecology*,
799 91(6), 1056–1063. <https://doi.org/10.1111/1365-2656.13711>

800 Lande, R., & Shannon, S. (1996). The Role of Genetic Variation in Adaptation and Population
801 Persistence in a Changing Environment. *Evolution*, 50(1), 434–437.
802 <https://doi.org/10.1111/j.1558-5646.1996.tb04504.x>

803 Lemaître, J.-F., Gaillard, J.-M., & Ramm, S. A. (2020). The hidden ageing costs of sperm competition.

804 *Ecology Letters*, 23(11), 1573–1588. <https://doi.org/10.1111/ele.13593>

805 Lieshout, E. van, McNamara, K. B., & Simmons, L. W. (2014). Why Do Female *Callosobruchus*

806 *maculatus* Kick Their Mates? *PLOS ONE*, 9(4), e95747.

807 <https://doi.org/10.1371/journal.pone.0095747>

808 Lieshout, E. van, Tomkins, J. L., & Simmons, L. W. (2013). Heat stress but not inbreeding affects

809 offensive sperm competitiveness in *Callosobruchus maculatus*. *Ecology and Evolution*, 3(9),

810 2859–2866. <https://doi.org/10.1002/ece3.667>

811 Loganathan, M., Jayas, D. S., Fields, P. G., & White, N. D. G. (2011). Low and high temperatures for

812 the control of cowpea beetle, *callosobruchus maculatus* (F.) (coleoptera: Bruchidae) in

813 chickpeas. *Journal of Stored Products Research*, 47(3), 244–248.

814 <https://doi.org/10.1016/j.jspr.2011.03.005>

815 Lorch, P. D., Proulx, * Stephen, Rowe, ‡ Locke, & Day§, T. (2003). Condition-dependent sexual

816 selection can accelerate adaptation. *Evolutionary Ecology Research*, 5(6), 867–881.

817 Lüpold, S., Manier, M. K., Puniamoorthy, N., Schoff, C., Starmer, W. T., Luepold, S. H. B., Belote, J. M.,

818 & Pitnick, S. (2016). How sexual selection can drive the evolution of costly sperm

819 ornamentation. *Nature*, 533(7604), Article 7604. <https://doi.org/10.1038/nature18005>

820 Lüpold, S., Simmons, L. W., Tomkins, J. L., & Fitzpatrick, J. L. (2015). No evidence for a trade-off

821 between sperm length and male premating weaponry. *Journal of Evolutionary Biology*,

822 28(12), 2187–2195. <https://doi.org/10.1111/jeb.12742>

823 Maklakov, A. A., & Bonduriansky, R. (2009). Sex differences in survival costs of homosexual and

824 heterosexual interactions: Evidence from a fly and a beetle. *Animal Behaviour*, 77(6), 1375–

825 1379. <https://doi.org/10.1016/j.anbehav.2009.03.005>

826 Maklakov, A. A., & Immler, S. (2016). The Expensive Germline and the Evolution of Ageing. *Current*

827 *Biology*, 26(13), R577–R586. <https://doi.org/10.1016/j.cub.2016.04.012>

828 Manning, J. T. (1984). Males and the advantage of sex. *Journal of Theoretical Biology*, 108(2), 215–
829 220. [https://doi.org/10.1016/S0022-5193\(84\)80067-3](https://doi.org/10.1016/S0022-5193(84)80067-3)

830 Martínez-Ruiz, C., & Knell, R. J. (2017). Sexual selection can both increase and decrease extinction
831 probability: Reconciling demographic and evolutionary factors. *Journal of Animal Ecology*,
832 86(1), 117–127. <https://doi.org/10.1111/1365-2656.12601>

833 Martinossi-Allibert, I., Arnqvist, G., & Berger, D. (2017). Sex-specific selection under environmental
834 stress in seed beetles. *Journal of Evolutionary Biology*, 30(1), 161–173.
835 <https://doi.org/10.1111/jeb.12996>

836 Martinossi-Allibert, I., Rueffler, C., Arnqvist, G., & Berger, D. (2019). The efficacy of good genes
837 sexual selection under environmental change. *Proceedings of the Royal Society B: Biological
838 Sciences*, 286(1896), 20182313. <https://doi.org/10.1098/rspb.2018.2313>

839 Martinossi-Allibert, I., Thilliez, E., Arnqvist, G., & Berger, D. (2019). Sexual selection, environmental
840 robustness, and evolutionary demography of maladapted populations: A test using
841 experimental evolution in seed beetles. *Evolutionary Applications*, 12(7), 1371–1384.
842 <https://doi.org/10.1111/eva.12758>

843 McDonough-Goldstein, C. E., Pitnick, S., & Dorus, S. (2022). Drosophila female reproductive glands
844 contribute to mating plug composition and the timing of sperm ejection. *Proceedings of the
845 Royal Society B: Biological Sciences*, 289(1968), 20212213.
846 <https://doi.org/10.1098/rspb.2021.2213>

847 Messina, F. J., & Fry, J. D. (2003). Environment-dependent reversal of a life history trade-off in the
848 seed beetle *Callosobruchus maculatus*: Stability of life history trade-offs. *Journal of
849 Evolutionary Biology*, 16(3), 501–509. <https://doi.org/10.1046/j.1420-9101.2003.00535.x>

850 Michaud, S., Marin, R., & Tanguay, R. M. (1997). Regulation of heat shock gene induction and
851 expression during Drosophila development. *Cellular and Molecular Life Sciences CMLS*, 53(1),
852 104–113. <https://doi.org/10.1007/PL00000572>

853 Monaghan, P., & Metcalfe, N. B. (2019). The deteriorating soma and the indispensable germline:
854 Gamete senescence and offspring fitness. *Proceedings of the Royal Society B: Biological
855 Sciences*, 286(1917), 20192187. <https://doi.org/10.1098/rspb.2019.2187>

856 Morgan, R., Finnøen, M. H., Jensen, H., Pélabon, C., & Jutfelt, F. (2020). Low potential for
857 evolutionary rescue from climate change in a tropical fish. *Proceedings of the National
858 Academy of Sciences*, 117(52), 33365–33372. <https://doi.org/10.1073/pnas.2011419117>

859 Parker, G. A. (1970). Sperm competition and its evolutionary consequences in the insects. *Biological
860 Reviews*, 45(4), 525–567.

861 Parker, G. A. (1990). Sperm competition games: Raffles and roles. *Proceedings of the Royal Society of
862 London. Series B: Biological Sciences*, 242(1304), 120–126.
863 <https://doi.org/10.1098/rspb.1990.0114>

864 Parker, G. A., & Pizzari, T. (2010). Sperm competition and ejaculate economics. *Biological Reviews*,
865 85(4), 897–934. <https://doi.org/10.1111/j.1469-185X.2010.00140.x>

866 Parratt, S. R., Walsh, B. S., Metelmann, S., White, N., Manser, A., Bretman, A. J., Hoffmann, A. A.,
867 Snook, R. R., & Price, T. A. R. (2021). Temperatures that sterilize males better match global
868 species distributions than lethal temperatures. *Nature Climate Change*, 1–4.
869 <https://doi.org/10.1038/s41558-021-01047-0>

870 Parrett, J. M., & Knell, R. J. (2018). The effect of sexual selection on adaptation and extinction under
871 increasing temperatures. *Proceedings of the Royal Society B: Biological Sciences*, 285(1877),
872 20180303. <https://doi.org/10.1098/rspb.2018.0303>

873 Pilakouta, N., & Ålund, M. (2021). Sexual selection and environmental change: What do we know
874 and what comes next? *Current Zoology*, zoab021. <https://doi.org/10.1093/cz/zoab021>

875 Pizzari, T., & Parker, G. (2009). *Sperm competition and sperm phenotype* In: Birkhead TR, Hosken DJ,
876 Pitnick S, editors. *Sperm biology: An evolutionary perspective*. Oxford: Academic Press.

877 Pizzari, T., & Snook, R. R. (2003). Perspective: Sexual Conflict and Sexual Selection: Chasing Away
878 Paradigm Shifts. *Evolution*, 57(6), 1223–1236. <https://doi.org/10.1111/j.0014-3820.2003.tb00331.x>

880 Plesnar-Bielak, A., Skrzyniecka, A. M., Prokop, Z. M., & Radwan, J. (2012). Mating system affects
881 population performance and extinction risk under environmental challenge. *Proceedings of
882 the Royal Society B: Biological Sciences*, 279(1747), 4661–4667.
883 <https://doi.org/10.1098/rspb.2012.1867>

884 R Core Team. (2020). *R: A Language and Environment for Statistical Computing*. R Foundation for
885 Statistical Computing. <https://www.R-project.org/>

886 Ramm, S. A., & Stockley, P. (2009). Adaptive plasticity of mammalian sperm production in response
887 to social experience. *Proceedings of the Royal Society B: Biological Sciences*, 276(1657), 745–
888 751. <https://doi.org/10.1098/rspb.2008.1296>

889 Relyea, R. A., & Mills, N. (2001). Predator-induced stress makes the pesticide carbaryl more deadly to
890 gray treefrog tadpoles (*Hyla versicolor*). *Proceedings of the National Academy of Sciences*,
891 98(5), 2491–2496. <https://doi.org/10.1073/pnas.031076198>

892 Rodrigues, L. R., Zwoinska, M. K., Wiberg, R. A. W., & Snook, R. R. (2022). The genetic basis and adult
893 reproductive consequences of developmental thermal plasticity. *Journal of Animal Ecology*,
894 91(6), 1119–1134. <https://doi.org/10.1111/1365-2656.13664>

895 Rönn, J. L., Katvala, M., & Arnqvist, G. (2006). The costs of mating and egg production in
896 *Callosobruchus* seed beetles. *Animal Behaviour*, 72(2), 335–342.

897 Rönn, J. L., Katvala, M., & Arnqvist, G. (2007). Coevolution between harmful male genitalia and
898 female resistance in seed beetles. *Proceedings of the National Academy of Sciences*, 104(26),
899 10921–10925.

900 Rönn, J. L., Katvala, M., & Arnqvist, G. (2008). Interspecific variation in ejaculate allocation and
901 associated effects on female fitness in seed beetles. *Journal of Evolutionary Biology*, 21(2),
902 461–470. <https://doi.org/10.1111/j.1420-9101.2007.01493.x>

903 Rowe, L., & Houle, D. (1996). The lek paradox and the capture of genetic variance by condition
904 dependent traits. *Proceedings of the Royal Society of London. Series B: Biological Sciences*,
905 263(1375), 1415–1421. <https://doi.org/10.1098/rspb.1996.0207>

906 Rowe, L., & Rundle, H. D. (2021). The Alignment of Natural and Sexual Selection. *Annual Review of
907 Ecology, Evolution, and Systematics*, 52(1), 499–517. [https://doi.org/10.1146/annurev-ecolsys-012021-033324](https://doi.org/10.1146/annurev-
908 ecolsys-012021-033324)

909 Rowiński, P. K., & Rogell, B. (2017). Environmental stress correlates with increases in both genetic
910 and residual variances: A meta-analysis of animal studies. *Evolution*, 71(5), 1339–1351.
911 <https://doi.org/10.1111/evo.13201>

912 Ryan, M. J. (1998). Sexual Selection, Receiver Biases, and the Evolution of Sex Differences. *Science*,
913 281(5385), 1999–2003. <https://doi.org/10.1126/science.281.5385.1999>

914 Sales, K., Vasudeva, R., Dickinson, M. E., Godwin, J. L., Lumley, A. J., Michalczyk, Ł., Hebberecht, L.,
915 Thomas, P., Franco, A., & Gage, M. J. G. (2018). Experimental heatwaves compromise sperm
916 function and cause transgenerational damage in a model insect. *Nature Communications*,
917 9(1), 4771. <https://doi.org/10.1038/s41467-018-07273-z>

918 Sales, K., Vasudeva, R., & Gage, M. J. G. (2021). Fertility and mortality impacts of thermal stress from
919 experimental heatwaves on different life stages and their recovery in a model insect. *Royal
920 Society Open Science*, 8(3), 201717. <https://doi.org/10.1098/rsos.201717>

921 Sarge, K. D. (1995). Male Germ Cell-specific Alteration in Temperature Set Point of the Cellular Stress
922 Response (*). *Journal of Biological Chemistry*, 270(32), 18745–18748.
923 <https://doi.org/10.1074/jbc.270.32.18745>

924 Sejian, V., Maurya, V. P., & Naqvi, S. M. K. (2011). Effect of thermal stress, restricted feeding and
925 combined stresses (thermal stress and restricted feeding) on growth and plasma
926 reproductive hormone levels of Malpura ewes under semi-arid tropical environment. *Journal
927 of Animal Physiology and Animal Nutrition*, 95(2), 252–258. [https://doi.org/10.1111/j.1439-0396.2010.01048.x](https://doi.org/10.1111/j.1439-
928 0396.2010.01048.x)

929 Shiraishi, K. (2016). HSF Is Required for Gametogenesis. In A. Nakai (Ed.), *Heat Shock Factor* (pp.
930 147–164). Springer Japan. https://doi.org/10.1007/978-4-431-55852-1_8

931 Shuker, D. M., & Simmons, L. W. (2014). *The Evolution of Insect Mating Systems*. Oxford University
932 Press.

933 Siller, S. (2001). Sexual selection and the maintenance of sex. *Nature*, 411(6838), 689–692.
934 <https://doi.org/10.1038/35079578>

935 Silva, W. T. A. F., Sáez-Espinosa, P., Torijo-Boix, S., Romero, A., Devaux, C., Durieux, M.,
936 Gómez-Torres, M. J., & Immler, S. (2019). The effects of male social environment on sperm
937 phenotype and genome integrity. *Journal of Evolutionary Biology*, 32(6), 535–544.
938 <https://doi.org/10.1111/jeb.13435>

939 Simmons, L. W., & Fitzpatrick, J. L. (2012). Sperm wars and the evolution of male fertility.
940 *Reproduction*, 144(5), 519–534. <https://doi.org/10.1530/REP-12-0285>

941 Simmons, L. W., Lüpold, S., & Fitzpatrick, J. L. (2017). Evolutionary Trade-Off between Secondary
942 Sexual Traits and Ejaculates. *Trends in Ecology & Evolution*, 32(12), 964–976.
943 <https://doi.org/10.1016/j.tree.2017.09.011>

944 Simmons, L. W., Ng, S. H., & Lovegrove, M. (2022). Condition-dependent seminal fluid gene
945 expression and intergenerational paternal effects on ejaculate quality. *Functional Ecology*,
946 36(4), 798–811. <https://doi.org/10.1111/1365-2435.13987>

947 Singh, A., & Agrawal, A. F. (2022). Sex-Specific Variance in Fitness and the Efficacy of Selection. *The
948 American Naturalist*, 199(5), 587–602. <https://doi.org/10.1086/719015>

949 Snook, R. R. (2005). Sperm in competition: Not playing by the numbers. *Trends in Ecology &
950 Evolution*, 20(1), 46–53. <https://doi.org/10.1016/j.tree.2004.10.011>

951 Sørensen, J. G., Kristensen, T. N., & Loeschcke, V. (2003). The evolutionary and ecological role of heat
952 shock proteins. *Ecology Letters*, 6(11), 1025–1037. [https://doi.org/10.1046/j.1461-0248.2003.00528.x](https://doi.org/10.1046/j.1461-
953 0248.2003.00528.x)

954 Svensson, E. I., & Connallon, T. (2019). How frequency-dependent selection affects population
955 fitness, maladaptation and evolutionary rescue. *Evolutionary Applications*, 12(7), 1243–
956 1258. <https://doi.org/10.1111/eva.12714>

957 Swanson, W. J., & Vacquier, V. D. (2002). The rapid evolution of reproductive proteins. *Nature
958 Reviews Genetics*, 3(2), Article 2. <https://doi.org/10.1038/nrg733>

959 Telford, S. R., & Jennions, M. D. (1998). Establishing cryptic female choice in animals. *Trends in
960 Ecology & Evolution*, 13(6), 216–218. [https://doi.org/10.1016/S0169-5347\(98\)01372-X](https://doi.org/10.1016/S0169-5347(98)01372-X)

961 Tomkins, J. L., Radwan, J., Kotiaho, J. S., & Tregenza, T. (2004). Genic capture and resolving the lek
962 paradox. *Trends in Ecology & Evolution*, 19(6), 323–328.
963 <https://doi.org/10.1016/j.tree.2004.03.029>

964 Uller, T., Nakagawa, S., & English, S. (2013). Weak evidence for anticipatory parental effects in plants
965 and animals. *Journal of Evolutionary Biology*, 26(10), 2161–2170.
966 <https://doi.org/10.1111/jeb.12212>

967 Varela, R., Rodríguez-Díaz, L., & deCastro, M. (2020). Persistent heat waves projected for Middle East
968 and North Africa by the end of the 21st century. *PLOS ONE*, 15(11), e0242477.
969 <https://doi.org/10.1371/journal.pone.0242477>

970 Vasudeva, R., Deeming, D. C., & Eady, P. E. (2014). Developmental temperature affects the
971 expression of ejaculatory traits and the outcome of sperm competition in *Callosobruchus
972 maculatus*. *Journal of Evolutionary Biology*, 27(9), 1811–1818.
973 <https://doi.org/10.1111/jeb.12431>

974 Vasudeva, R., Sutter, A., Sales, K., Dickinson, M. E., Lumley, A. J., & Gage, M. J. (2019). Adaptive
975 thermal plasticity enhances sperm and egg performance in a model insect. *eLife*, 8, e49452.
976 <https://doi.org/10.7554/eLife.49452>

977 Walsh, B. S., Parratt, S. R., Hoffmann, A. A., Atkinson, D., Snook, R. R., Bretman, A., & Price, T. A. R.
978 (2019). The Impact of Climate Change on Fertility. *Trends in Ecology & Evolution*, 34(3), 249–
979 259. <https://doi.org/10.1016/j.tree.2018.12.002>

980 Wang, W. W.-Y., & Gunderson, A. R. (2022). The Physiological and Evolutionary Ecology of Sperm
981 Thermal Performance. *Frontiers in Physiology*, 13.
982 <https://www.frontiersin.org/article/10.3389/fphys.2022.754830>
983 Wedell, N., Gage, M. J. G., & Parker, G. A. (2002). Sperm competition, male prudence and sperm-
984 limited females. *Trends in Ecology & Evolution*, 17(7), 313–320.
985 [https://doi.org/10.1016/S0169-5347\(02\)02533-8](https://doi.org/10.1016/S0169-5347(02)02533-8)
986 Wickham, H. (2016). *ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag New York.
987 <https://ggplot2.tidyverse.org>
988 Widlak, W., & Vydra, N. (2017). The Role of Heat Shock Factors in Mammalian Spermatogenesis. In
989 D. J. MacPhee (Ed.), *The Role of Heat Shock Proteins in Reproductive System Development
990 and Function* (pp. 45–65). Springer International Publishing. [https://doi.org/10.1007/978-3-19-51409-3_3](https://doi.org/10.1007/978-3-
991 319-51409-3_3)
992 Wigby, S., Brown, N. C., Allen, S. E., Misra, S., Sitnik, J. L., Sepil, I., Clark, A. G., & Wolfner, M. F.
993 (2020). The Drosophila seminal proteome and its role in postcopulatory sexual selection.
994 *Philosophical Transactions of the Royal Society B: Biological Sciences*, 375(1813), 20200072.
995 <https://doi.org/10.1098/rstb.2020.0072>
996 Yamane, T., Goenaga, J., Rönn, J. L., & Arnqvist, G. (2015). Male Seminal Fluid Substances Affect
997 Sperm Competition Success and Female Reproductive Behavior in a Seed Beetle. *PLOS ONE*,
998 10(4), e0123770. <https://doi.org/10.1371/journal.pone.0123770>
999 Yun, L., Chen, P. J., Singh, A., Agrawal, A. F., & Rundle, H. D. (2017). The physical environment
1000 mediates male harm and its effect on selection in females. *Proceedings of the Royal Society
1001 B: Biological Sciences*, 284(1858), 20170424. <https://doi.org/10.1098/rspb.2017.0424>
1002 Zahavi, A. (1975). Mate selection—A selection for a handicap. *Journal of Theoretical Biology*, 53(1),
1003 205–214. [https://doi.org/10.1016/0022-5193\(75\)90111-3](https://doi.org/10.1016/0022-5193(75)90111-3)
1004 Zwoinska, M. K., Rodrigues, L. R., Slate, J., & Snook, R. R. (2020). Phenotypic Responses to and
1005 Genetic Architecture of Sterility Following Exposure to Sub-Lethal Temperature During

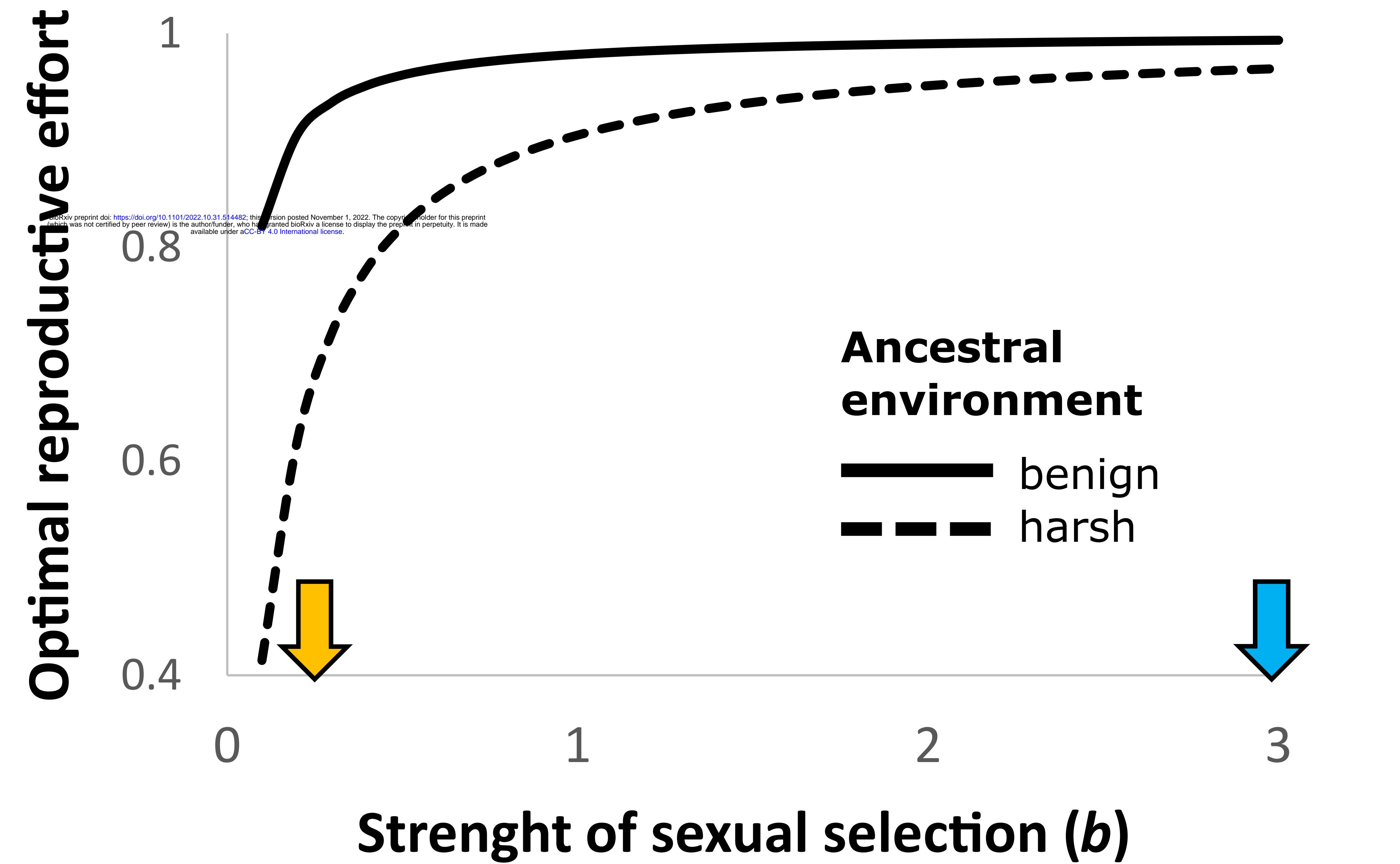
1006 Development. *Frontiers in Genetics*, 11.
1007 <https://www.frontiersin.org/article/10.3389/fgene.2020.00573>
1008

1009 **Figure captions**

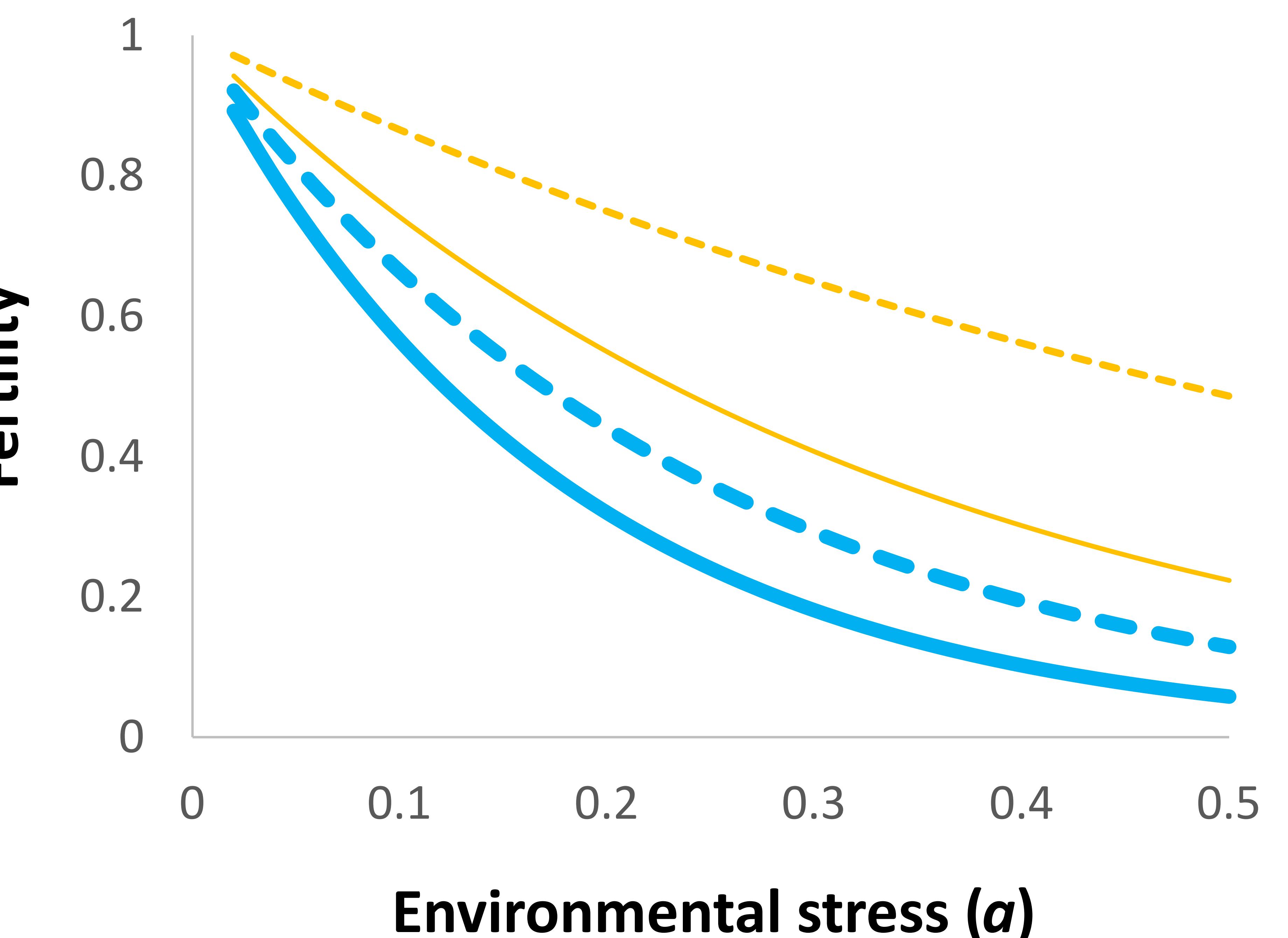
1010 **Figure 1: The expected relationship between the strength of postcopulatory sexual selection and**
1011 **fertility under environmental stress.** In A) the optimal fraction of resources devoted to reproductive
1012 effort (traits that increase sperm competition success) is shown for different strengths of
1013 postcopulatory sexual selection in an environment that is either benign and imposes weak viability
1014 selection ($a = 0.02$, full line) or relatively harsh ($a = 0.10$, hatched line). The downwards facing arrows
1015 along the x-axis depict hypothetical species that have evolved to maximize fitness under either weak
1016 ($b = 0.2$, yellow) or strong ($b = 3.0$, blue) postcopulatory sexual selection. In B) the consequences for
1017 fertility are given for the different scenarios once an abrupt environmental change occurs that
1018 increases viability selection (via exponent a). Postcopulatory sexual selection promotes investment
1019 into reproductive effort, which leads to strong declines in fertility once the environment becomes
1020 stressful. Polyandrous species evolving in benign ancestral conditions, that devote most resources to
1021 reproductive effort and least to maintenance, are predicted to be most at risk (full blue line).

1022 **Figure 2: The evolution of male and female TSF under varying levels of natural and sexual**
1023 **selection.** The top panels show fertility of focal (isolated) males (A) and females (B) that were either
1024 heat shocked (closed bars, first ejaculate/mating 20 minutes after heat shock; striped bars, second
1025 ejaculate 7 days after heat shock) or controls (open bars, first ejaculate/mating), originating from
1026 the N (natural selection only: orange), N+S (natural and sexual selection: green), or S (sexual
1027 selection only: blue) regime. Bars represent posterior means and whiskers 95% credible intervals.
1028 The bottom panels show TSF for experimental evolution regimes, with male TSF (C) and female TSF
1029 (D) shown separately for each replicate line. TSF was calculated as $1 - (\text{offspring}_{\text{heat}} - \text{offspring}_{\text{control}}) / \text{offspring}_{\text{control}}$, using raw data means. Hence, positive values indicate reductions in offspring
1030 due to heat shock.

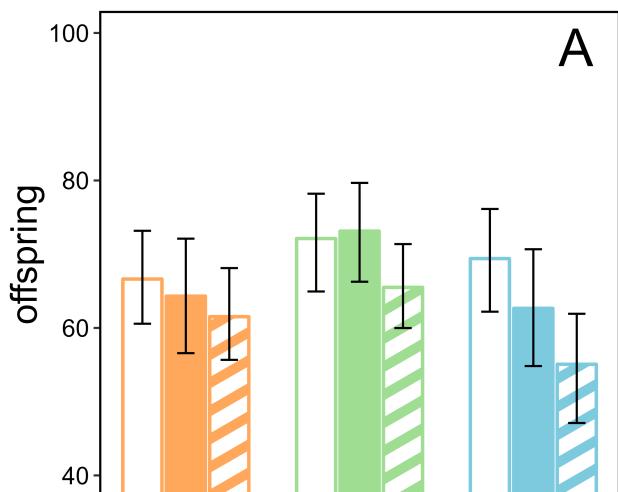
1032 **Figure 3: The effect of male-male interactions on male fertility.** Fertility of couples from the N
1033 (natural selection only: orange), N+S (natural and sexual selection: green), or S (sexual selection
1034 only: blue) regime. Focal males were either kept at benign conditions (open bars) or exposed to heat
1035 shock (closed bars) and were either kept isolated (A) or in groups of three (B) prior to heat shock and
1036 mating. Bars represent posterior means and whiskers 95% credible intervals.

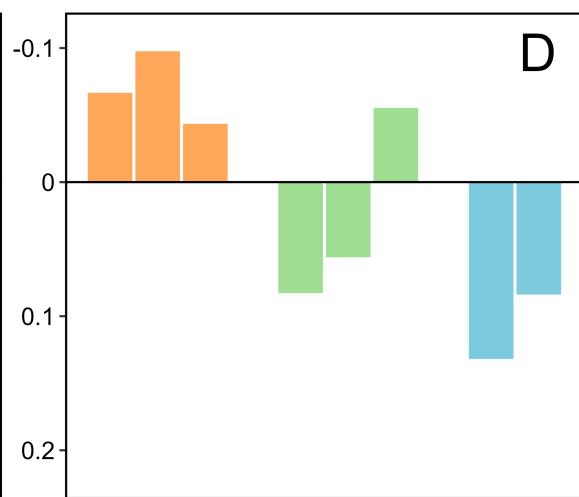

1037 **Figure 4: Correlations between male TSF and postcopulatory traits:** (a) sperm defence (P1
1038 fertilisation success), (b) sperm offense (P2 fertilisation success) (P1 & P2 data from Koppik et al.,
1039 2022), (c) sperm regeneration (measured as the number of sperm transferred in mating, 25 hours
1040 after sperm depletion; data from Baur & Berger, 2020), and also (d) female TSF. P1 and P2 were
1041 logit-transformed before analysis. Individual data points represent line means for N (orange circles),
1042 N + S (green squares), and S lines (blue triangles). The diagonal line in panel d represents equal male
1043 and female TSF, indicating that male TSF is higher compared to female TSF. Whiskers represent 95%
1044 Bayesian credible intervals. Note that the axes of some panels have been adjusted for better
1045 illustration, which cuts off the error bars in some instances.

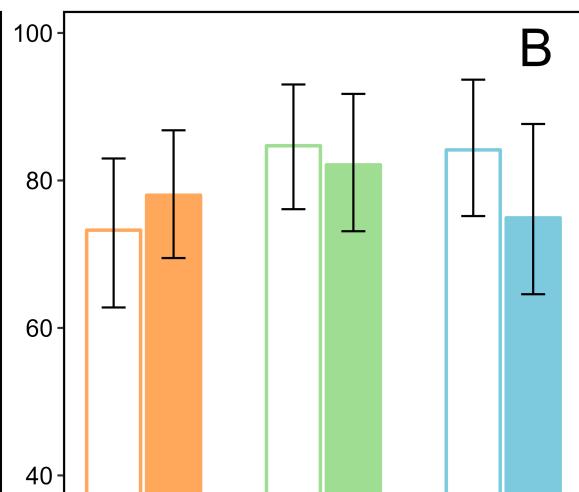
1046 **Figure 5: Sex-specific transgenerational effects of adult heat shock.** Fertility for F1 couples in which
1047 the focal parent originates from the N+S regime (while the mating partner was a reference individual


1048 from the ancestral line)) and was either maintained at benign control temperature (grey bars) or
1049 underwent the heat shock treatment (coloured bars). F1 couples were either controls (first column)
1050 or contained a heat shocked female (second column) or a heat shocked male (third column). Mating
1051 crosses were performed while avoiding inbreeding. Bars represent posterior means and whiskers
1052 95% credible intervals.

1053


A: Optimal allocation




B: Environmental sensitivity

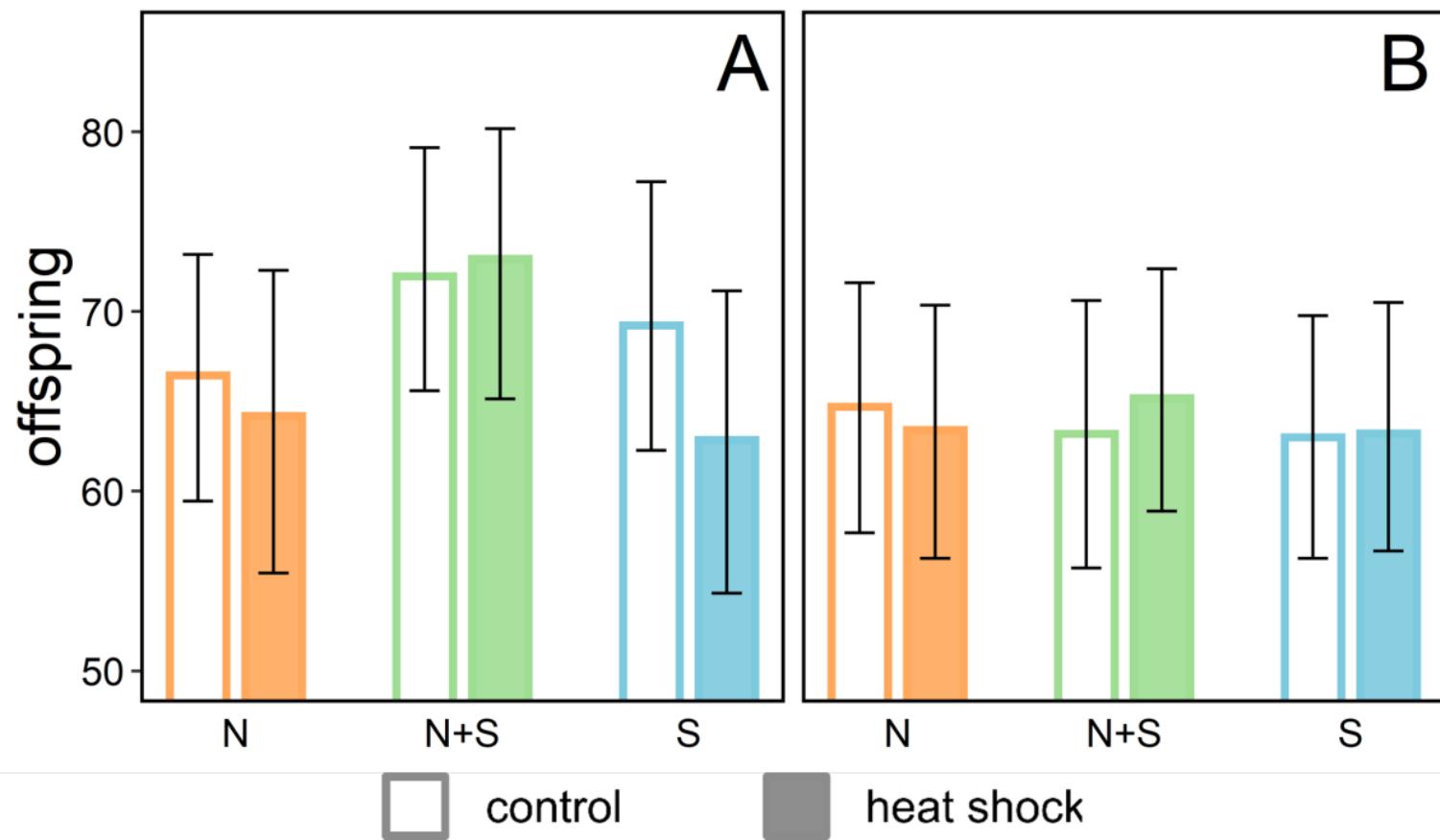
male

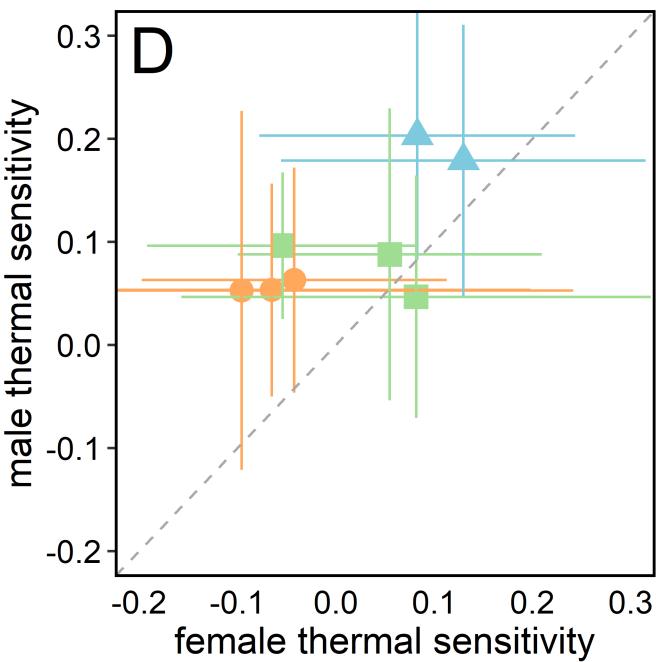
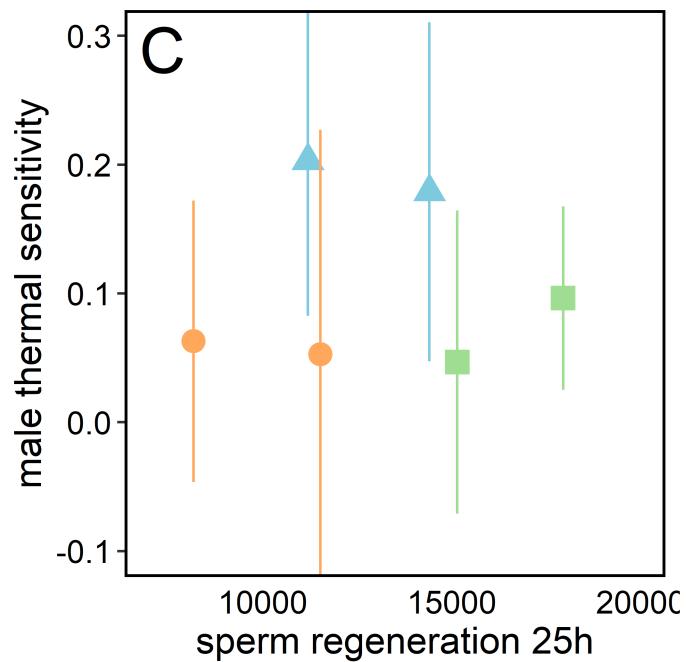
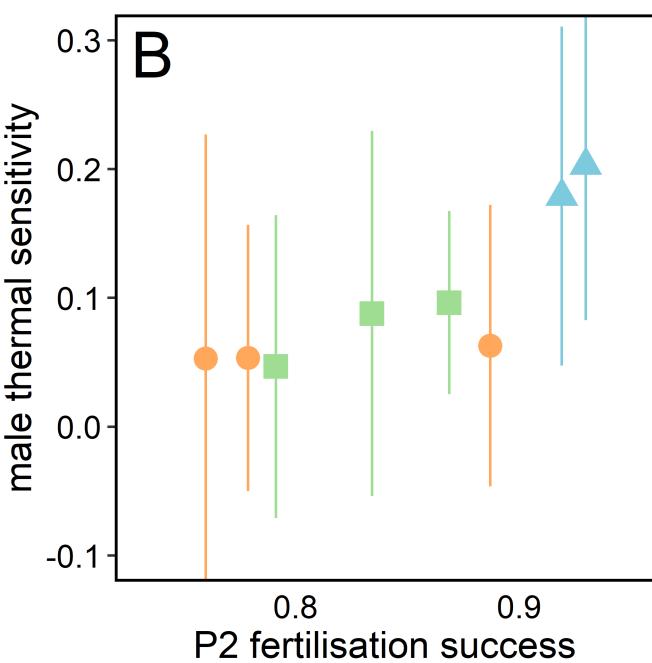
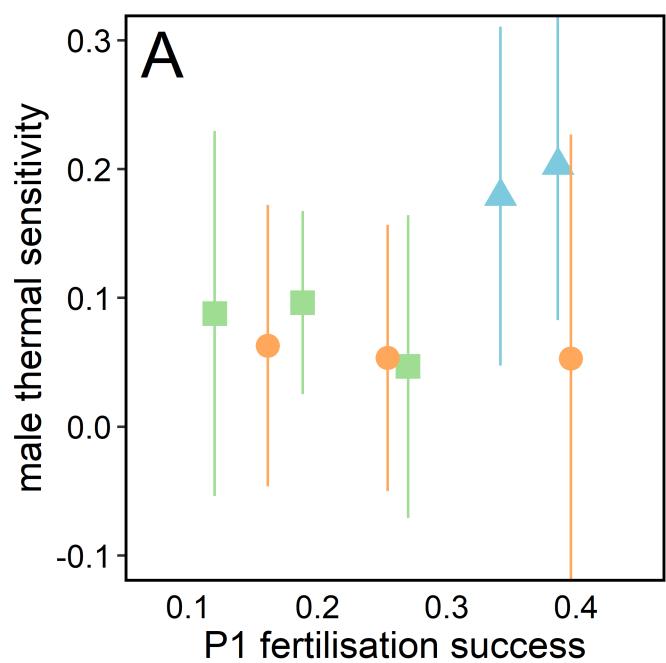
female

█ natural selection

█ natural + sexual selection

█ sexual selection

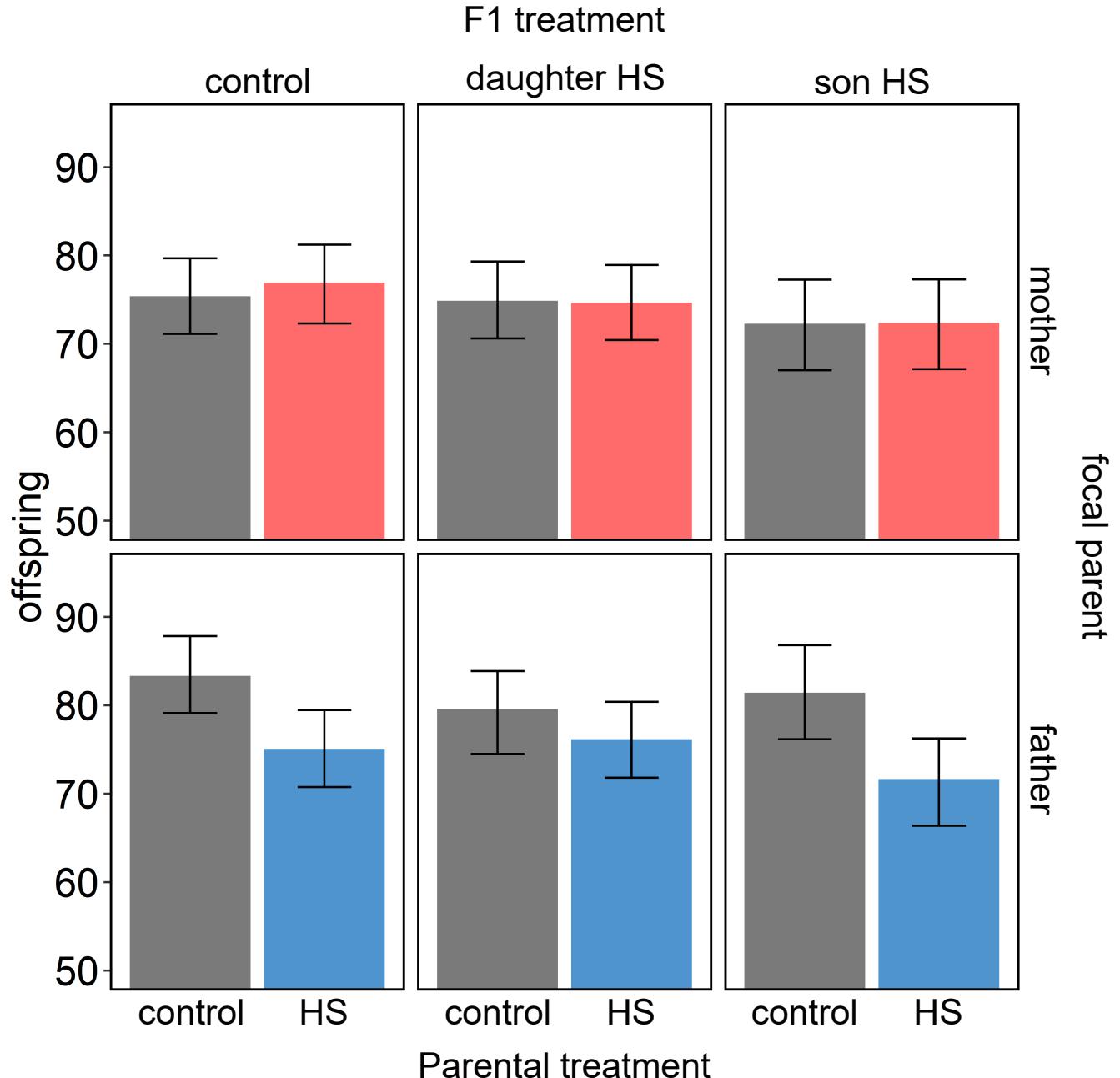

█ control





█ first mating

second mating

isolated

socio-sexual



● natural selection

■ natural + sexual selection

▲ sexual selection

