

1 **Distribution and survival strategies of diazotrophs in the Arctic**

2 **Ocean revealed by global-scale metagenomic analysis**

3

4 Takuhei Shiozaki^{1#*}, Yosuke Nishimura^{2#}, Susumu Yoshizawa¹, Hideto Takami^{1,3}, Koji
5 Hamasaki¹, Amane Fujiwara⁴, Shigeto Nishino⁴, Naomi Harada^{1,4}

6

7 [#]These authors contributed equally to this work.

8

9 ¹Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa 277-8564,
10 Japan

11 ²Research Centre for Bioscience and Nanoscience, Japan Agency for Marine-Earth Science
12 and Technology (JAMSTEC), Yokosuka 237-0061, Japan

13 ³Center for Mathematical Science and Advanced Technology, JAMSTEC, Yokohama 236-
14 0001, Japan

15 ⁴Research Institute for Global Change, JAMSTEC, Yokosuka 237-0061, Japan

16

17 *Corresponding author, Takuhei Shiozaki (shiozaki@g.ecc.u-tokyo.ac.jp)

18

19 **ABSTRACT (200 words)**

20 Nitrogen fixation is the major source of reactive nitrogen in the ocean and has been
21 considered to occur specifically in low-latitude oligotrophic oceans. Recent studies have
22 shown that nitrogen fixation also occurs in the polar regions and thus is a global process,
23 although the physiological and ecological characteristics of polar diazotrophs are not yet
24 known. Here, we successfully reconstructed genomes, including that of cyanobacterium
25 UCYN-A (*Candidatus ‘Atelocyanobacterium thalassa’*), from metagenome data
26 corresponding to 111 samples isolated from the Arctic Ocean. These diazotrophs were highly
27 abundant in the Arctic Ocean (max., 1.28% of the total microbial community), suggesting
28 that they have important roles in the Arctic ecosystem and biogeochemical cycles.

29 Diazotrophs in the Arctic Ocean were either Arctic-specific or universal species. Arctic-
30 specific diazotrophs, including Arctic UCYN-A, had unique gene sets (e.g., aromatics
31 degradation) and/or a very small cell size (<0.2 μ m), suggesting adaptations to Arctic-specific
32 conditions. Universal diazotrophs were generally heterotrophs and commonly had the gene
33 that encodes the cold-inducible RNA chaperone, which presumably makes their survival
34 possible even in deep, cold waters and polar regions. Thus both types of diazotroph have
35 physiological traits adaptable to their environments, which allow nitrogen fixation on a global
36 scale.

37

38 INTRODUCTION

39 Nitrogen fixation is the process by which specialized prokaryotes (diazotrophs) convert
40 dinitrogen gas to ammonia. It has long been thought that nitrogen fixation occurs mainly in
41 the N-depleted tropical and subtropical regions where cyanobacterial diazotrophs are
42 prevalent¹. However, recent studies have demonstrated that nitrogen fixation occurs even in
43 the N-rich polar regions²⁻⁵.

44 In the Arctic Ocean, sea ice exists throughout the year, and the seawater temperature
45 remains below 5°C. The Arctic surface layer is relatively stable despite the high latitude due
46 to the presence of low-salinity water, and some regions become oligotrophic in summer^{6,7}.
47 During the autumn and winter, mixing processes become active due to the frequent strong
48 wind and atmospheric cooling, and nitrogenous nutrients are supplied to the surface layer
49 throughout the Arctic Ocean⁷. Furthermore, underwater irradiance varies dramatically
50 throughout the year, with solar radiation disappearing in winter. The Arctic environment is
51 largely different from that in tropical and subtropical oligotrophic regions, in which the
52 seawater temperature in the mixed layer is maintained above 25°C throughout the year, the
53 thick N-depleted surface layer is rarely disturbed due to the stable water structure, and
54 underwater irradiance is also stable throughout the year⁸. Given this environmental
55 difference, diazotrophs could have unique strategies for adapting to the Arctic environment.

56 Information on diazotrophs in the Arctic Ocean is currently limited to the *nifH* sequence.
57 *nifH* encodes the iron protein subunit of nitrogenase, which has a highly conserved sequence
58 that can be used for species identification⁹. Many *nifH* sequences retrieved from the Arctic
59 Ocean differ from those at lower latitudes^{2,3,10}, suggesting the presence of Arctic-specific
60 diazotrophs. However, *nifH* alone does not explain how diazotrophs have adapted to the
61 Arctic environment. Furthermore, *nifH* alone is not necessarily an indicator of microbial

62 nitrogen fixation^{11,12}. Mise et al.¹² recently demonstrated that ~20% of bacterial genomes
63 with *nifH* in the public database do not have *nifD* and/or *nifK*, which encode essential
64 subunits of nitrogenase, indicating that these genomes represent non-diazotrophs. Therefore,
65 current understandings of Arctic diazotrophs based only on *nifH* information are incomplete.

66 The recent development of culture-independent genome reconstruction techniques such
67 as metagenome-assembled genomes (MAGs) has changed our understanding of microbial
68 ecology, including that of diazotrophs. Genome-based approaches have been applied in
69 tropical and subtropical studies, revealing previously unknown diazotrophs and their
70 physiology and ecology^{13,14}. Recently, we have newly built a marine MAG catalog, which
71 contains >50,000 genomes derived from 8,466 prokaryotic species that were derived from
72 various marine oceanic regions including the Arctic Ocean¹⁵. Here, we explored the genome
73 catalog for Arctic diazotrophic species using *nifH* sequences as an initial marker gene.

74 Notably, we successfully retrieved the genome of symbiotic cyanobacterial diazotroph
75 UCYN-A (*Candidatus ‘Atelocyanobacterium thalassum’*) from metagenomic data of the Arctic
76 Ocean. UCYN-A is one of the major diazotrophs in subtropical regions¹⁶ and is currently
77 divided into six subclades based on its *nifH* sequences¹⁷, of which UCYN-A1 and -A2 occur
78 exclusively in and fix nitrogen in the Arctic Ocean^{3,4}. The *nifH* sequences of UCYN-A1 and
79 -A2 in the Arctic Ocean are identical to those in the subtropical Ocean⁴. However, genomic
80 information on UCYN-A in the Arctic Ocean has not been revealed, and thus there are no
81 clues for adaptation mechanisms of UCYN-A to the Arctic environment. We examined the
82 distribution patterns using a global metagenomic database and characterized diazotrophs in
83 the Arctic Ocean by comparative genomic analyses.

84

85 **RESULTS AND DISCUSSION**

86 ***Overall characteristics of MAGs containing nifH that were retrieved from the Arctic Ocean***

87 Metagenomic data derived from 111 samples collected in the Arctic Ocean yielded 6816
88 prokaryotic MAGs, which include 1095 species according to the OceanDNA MAGs catalog
89¹⁵. Of those MAGs from the Arctic Ocean, *nifH* was detected in nine MAGs (Table 1 and
90 Supplementary Data 1). Four of the nine (Arc-UCYN-A2, Arc-Campylo, Arc-Alpha, and
91 Arc-Gamma-01) were detected with the existing *nifH* universal primers, but the remaining
92 five could not be detected with previous PCR approaches (Table 1 and Supplementary Data
93 2).

94 Diazotrophs must have at least *nifDK* and *nifEBN* in addition to *nifH* for nitrogen
95 fixation¹¹. Of the nine MAGs, Arc-Gamma-01, Arc-Gamma-04, and Arc-Myxo lacked *nifK*,
96 *nifB*, and *nifDK* and *nifENB*, respectively, suggesting that these may not be genomes of
97 diazotrophs. However, upon careful inspection, Arc-Gamma-01 had a contig that included
98 *nifD* at the end of the contig. Because *nifHDK* generally form an operon structure in the
99 genome, this MAG may seem to lack *nifK* due to the limitations of a fragmented genome
100 assembly. As Arc-Gamma-01 was categorized into the genus *Immundisolibacter* and the same
101 genus genome was reconstructed with a different method in which all *nif* genes were isolated
102 from Arctic metagenomic data (<https://anvio.org/blog/targeted-binning/>), we assumed that
103 Arc-Gamma-01 is a diazotroph. However, Arc-Gamma-04 and Arc-Myxo, neither of which is
104 likely to be a diazotroph, were excluded from the subsequent analysis.

105 Among the Arctic diazotroph MAGs, Arc-Bactero belongs to Cluster III and the rest
106 belong to Cluster I based on the *nifH* sequence⁹ (Fig. 1a and Table 1). These MAGs were
107 taxonomically classified to Cyanobacteria, Alphaproteobacteria, Gammaproteobacteria,
108 Campylobacterota (formerly categorized as Epsilonproteobacteria), and Bacteroidota at the
109 phylum or class level using the Genome Taxonomy Database¹⁸. Diazotrophs belonging to the

110 phylum Bacteroidota have not been reported thus far from the marine water column. The
111 cyanobacterial MAG (Arc-UCYN-A2) was classified to UCYN-A belonging to the subclade
112 UCYN-A2. The remaining six Arctic diazotrophs may represent new species within genera
113 *Arcobacter*, *Sunxiuqinia*, *Psychromonas*, *Oceanobacter*, *Immunodisolibacter*,
114 *Novosphingobium* (Table1 and Supplementary Data 1). Thus far, *nifH* of *Arcobacter* has been
115 found in oceans around the globe including the Arctic Ocean ^{10,19,20}, and *nifH* of
116 *Novosphingobium* was recently detected in deep waters in the subtropical ocean ²¹. The
117 diazotrophs within genera *Sunxiuqinia*, *Psychromonas*, *Oceanobacter*, and
118 *Immunodisolibacter* were newly discovered in this study.

119 The phylogenetic tree based on concatenated sequences of a set of marker genes
120 conserved in all MAGs formed various clusters categorized into every phylum or class in the
121 case of Proteobacteria, as expected, and this result supported the correctness of the
122 phylogenetic assignment for each MAG (Fig. 1a). In contrast, the clusters on the
123 phylogenetic tree based on *nifH* genes did not necessarily reflect the phylogenetic placement
124 because the genes assigned to different taxonomic groups were nested in one cluster. For
125 example, Arc-Gamma-01, which is categorized as belonging to Gammaproteobacteria, was
126 buried within the cluster composed of Alphaproteobacteria, which does suggest that the *nifH*
127 gene in Arc-Gamma-01 was acquired by horizontal gene transfer. In addition to the
128 phylogenetic analysis, we also carried out hierarchical clustering analysis of MAGs based on
129 the pattern of completion ratios of functional modules as calculated by the GenomapleTM
130 system ²² (Fig. 1a), which results in the functional classification of the genomes ²³. Although
131 most clusters consisted of a single taxonomic group, some were made up of phylogenetically
132 distant groups such as Planctomyces, Verrucomicrobia, and Bacteroidota. This indicated that
133 these particular MAGs possess a similar physiological and metabolic potential regardless of

134 their phylogenetic relationships. In addition, as Arctic diazotroph MAGs did not form their
135 own cluster, they did not possess common functional traits that can distinguish them from
136 those from lower latitudes.

137

138 ***Global distribution of Arctic diazotroph MAGs***

139 We examined the relative abundance of each MAG in a global metagenome database
140 (Fig. S1a)¹⁵. Samples were assessed based on size fractionation—total ($\geq 0.2 \mu\text{m}$; although
141 the viral fraction was not included, this sample is referred to as “total” for convenience),
142 bacterial (0.2–3 μm), and viral ($< 0.2 \mu\text{m}$) fractions—and water column depth—shallow
143 ($\leq 200 \text{ m}$), intermediate (200–1000 m), and deep ($\geq 1000 \text{ m}$) layers. In general, water
144 temperature at the surface varied widely across the sampled oceanic regions, but in the deep
145 sea it was uniformly low in all regions (Fig. S1b). Similarly, in the metagenome database,
146 water temperatures in the deep layers showed less variation and lower temperatures (median,
147 2.02 °C) than in other layers (Fig. S1c). The genome abundance of Arctic diazotroph MAGs
148 varied greatly across different size fractions and regions (Fig. 2). In the total fraction (> 0.2
149 μm), the abundance of Arc-UCYN-A2, Arc-Bactero, Arc-Alpha, and Arc-Gamma-01 was
150 high (maximum length-normalized count per million microbe genomes of a total community
151 [CPMM]: 479, 355, 3213, and 12841, respectively) especially in the Arctic Ocean. The
152 maximum CPMM of Arc-Gamma-01 means that the genome abundance reached 1.28% of
153 the total microbial community, which was the highest on a global scale (Fig. 2 and S2a),
154 suggesting that it could be crucial to the Arctic ecosystem and biogeochemical cycles. The
155 abundance of Arc-Alpha also increased in deep water ($\geq 1000 \text{ m}$) in low latitudes. In contrast,
156 in the bacterial fraction (0.2–3 μm), most arctic diazotroph MAGs were rarely found. This
157 size-dependent difference in the abundance could be due to the cell size of these bacteria. For

158 example, UCYN-A is a symbiotic diazotroph with haptophytes, and its size including its host
159 is $>3 \mu\text{m}$ ^{4,24}. Therefore, UCYN-A was detected in the total fraction but was rarely detected in
160 the bacterial fraction. Similarly, Arc-Bactero, Arc-Alpha, and Arc-Gamma-01 are also likely
161 to have cell sizes $>3 \mu\text{m}$.

162 In the viral fraction ($<0.2 \mu\text{m}$), the relative abundance of Arc-Bactero, Arc-Campylo,
163 Arc-Gamma-02, and Arc-Gamma-03 was particularly high in the Arctic Ocean samples
164 (maximum CPMM: 14291, 62203, 2530, and 152821, respectively). The CPMM value
165 indicates that Arc-Gamma-03 accounted for up to 15.2% of the viral fraction community.
166 Arc-Bactero was also abundant in the total fraction, which may be attributable to its cell
167 shape (i.e., a slender filamentous cell). Meanwhile, as Arc-Campylo, Arc-Gamma-02, and
168 Arc-Gamma-03 were rarely found in the other fractions, their cell size is likely to be very
169 small, and thus they would have passed through a 0.2- μm filter²⁵. Interestingly, some *nifH*
170 sequences were recently reported to be more abundant in the viral fraction of the Arctic
171 Ocean¹⁰. Of the two *nifH* sequences observed in the viral fraction, one was identical to the
172 *nifH* sequence of Arc-Campylo, thus confirming our result.

173 We further examined the abundance of diazotroph genomes obtained at lower latitudes
174 (Fig. S2). Cyanobacterial diazotrophs were abundant mainly at low latitudes in the total and
175 bacterial fractions as shown in previous microscopy and *nifH*- and genome-based studies
176^{10,14,26}. The exception was *C. chwakensis*, which was widely found in the Arctic Ocean.
177 Interestingly, some heterotrophic diazotrophs were as abundant or more abundant in the
178 Arctic Ocean than in low latitudes. For example, the relative abundance of Alpha-02 and -04
179 became high in the Arctic Ocean (maximum CPMM: 324 and 843, respectively) in the total
180 fractions. These heterotrophic diazotrophs also occurred in deep water at low latitudes, and
181 this distribution pattern was similar to that of Arc-Alpha. Among the known diazotrophs, no

182 species was found to have a high relative abundance in only the viral fraction, as was noted
183 for the Arctic diazotrophs Arc-Campylo, Arc-Gamma-02, and Arc-Gamma-03.

184 In summary, we noted two general distribution patterns of diazotrophs that exist in the
185 Arctic Ocean: (1) diazotrophs that occur almost exclusively in the Arctic Ocean (Arc-
186 Bactero; Arc-Campylo; and Arc-Gamma-01, -02, and -03) and (2) diazotrophs that occur both
187 in the Arctic Ocean and at lower latitudes (Arc-Alpha, *C. chwakensis*, Alpha-02 and -04, and
188 so on) (Table 1 and S1). Based on the size-fractionation data, we were able to estimate the
189 cell size of the Arctic diazotrophs. Arc-UCYN-A2, Arc-Bactero, Arc-Alpha, and Arc-
190 Gamma-01 may have a large cell size of $>3 \mu\text{m}$, and Arc-Campylo and Arc-Gamma-01 and -
191 02 are likely to have a very small cell size of $<0.2 \mu\text{m}$.

192

193 ***What characteristics allow diazotrophs to occur in the Arctic Ocean?***

194 Arctic-specific microbes other than diazotrophs have previously been described based on
195 16S rRNA genes and MAGs²⁷⁻²⁹. Royo-Llonch et al.²⁹ recently investigated the genomic
196 characteristics of Arctic-specific microbes through a large-scale comparison of MAGs from
197 the Arctic Ocean and lower latitudes and showed that Arctic-specific microbes generally have
198 larger genome sizes and shorter minimum generation times, implying a copiotrophic lifestyle.
199 The genome size (1.4–4.5 Mb, Table 1) and minimum generation time (1.0–12 hours,
200 Supplementary Data 1), which was estimated using Growpred³⁰, of Arctic diazotrophs were
201 not significantly different from those of low-latitude microbes in Royo-Llonch et al.²⁹,
202 suggesting no trend of a copiotrophic lifestyle. This may not be surprising for diazotrophs
203 because they can thrive in an oligotrophic environment.

204 Other possible factors that may make microbes more likely to inhabit the Arctic Ocean
205 are their psychrophilic (grow optimally at $<15^\circ\text{C}$) or psychrotolerant (survive below the

206 freezing point but grow optimally at 20–25 °C) characteristics^{28,31}. Indeed, *Psychromonas*
207 (Arc-Gamma-02) is a representative of the psychrophilic bacteria, many species of which
208 have been isolated from low-temperature marine environments including polar regions and
209 the deep sea (e.g.,^{32,33}). Microbes in cold environments generally have specialized proteins
210 that function alone or in combination to adapt to their growing conditions^{31,34,35}. We
211 examined the genes encoding cold-inducible proteins³⁴ in each MAG (Supplementary Data
212 1), but we note that some of these cold-inducible proteins are not found only in cold-adapted
213 microbes but can also be present in thermophilic or mesophilic microbes (e.g.,³⁶). Among
214 these proteins, the cold-inducible RNA chaperone (*CspA*), which is a protein involved in
215 maintaining RNA structure at low temperatures, is generally shared among microbes in cold
216 environments^{31,34,35}. *cspA* gene was found in all Arctic diazotroph MAGs except that of Arc-
217 UCYN-A2. Furthermore, among the low-latitude diazotrophs examined here, most of the
218 heterotrophic diazotrophs had *cspA* (Supplementary Data 1). Obviously, various genes in
219 addition to *cspA* are involved in cold-environment adaptation, but these results suggested that
220 most marine heterotrophic diazotrophs have the potential to adapt to cold environments.
221 Heterotrophs can occur from the surface to the deep sea, and thus it is not surprising that
222 heterotrophic diazotrophs inhabiting mainly low latitudes also have *cspA* to adapt to the cold
223 environment of the deep sea (median, 2.02 °C in our dataset). In contrast, cyanobacterial
224 diazotrophs do not have *cspA* except for *C. chwakensis* and *C. subtropica*. Cyanobacteria can
225 grow only in the euphotic layer (<200 m), as they need to perform photosynthesis. In
226 addition, cyanobacterial diazotrophs occurs mainly in high-temperature (>20 °C), low-
227 latitude waters^{1,26} and thus do not need to have *cspA*. *C. chwakensis* was found in high
228 abundance in the Arctic Ocean, suggesting that it acquired *cspA* to adapt to the cold
229 environment. Although *C. subtropica* was rarely found in the Arctic Ocean, it is

230 phylogenetically very close to *C. chwakensis* (Fig. 1a and ³⁷) and may also have *cspA*. The
231 presence of *cspA* in the genome can explain distribution patterns of diazotrophs that are
232 present both in the Arctic Ocean and at lower latitudes; these include not only *C. chwakensis*
233 but also Arc-Alpha and Alpha-02 and -04. However, *cspA* alone does not explain the
234 occurrence of Arctic-specific diazotrophs. There were no genes encoding cold-inducible
235 proteins that were specific to Arctic diazotroph MAGs with the exception of *ipxP* of Arc-
236 Gamma-02 (Supplementary Data 1), which encodes a protein responsible for lipid A
237 synthesis under low temperatures ³⁴. Therefore, in addition to cold-environment adaptations,
238 there are likely to be other reasons for the occurrence of Arctic-specific diazotrophs.

239 Environmental uniqueness may also be related to characteristics of Arctic diazotrophs.
240 The Arctic Ocean has sea ice throughout the year and is prone to being stratified despite the
241 cold environment due to the fresh water input from melting sea ice and rivers. Arctic rivers
242 also supply a large amount of terrestrial materials to the ocean. Interestingly, Arc-Gamma-01
243 has a large number of glycosyltransferase genes (57 genes) as compared with low-latitude
244 gammaproteobacterial diazotrophs (14–43 genes) (Supplementary Data 1).

245 Glycosyltransferase is involved in polysaccharide production ³⁸. *Crocospaera* and
246 *Trichodesmium*, which also have a high number of members of this gene family
247 (Supplementary Data 1), produce extracellular polysaccharides (EPSs) and form aggregates
248 ^{39,40} in which EPSs assist with adherence ³⁸. Similarly, Arc-Gamma-01 can produce EPSs and
249 may form aggregates and/or attach itself to sea ice. Another unique feature of Arctic
250 diazotroph MAGs is their potential for aromatics degradation. The degradation function of
251 carbazole by Arc-Gamma-01 and of salicylate by Arc-Gamma-03 were not found in any other
252 diazotrophs (Supplementary Data 3). In addition, Arc-Gamma-02 has genes associated with
253 benzene degradation. Colatriano et al. ⁴¹ recently showed that Chloroflexi, a major bacterial

254 phylum in the Arctic Ocean, may have acquired aromatics degradation genes horizontally
255 from terrestrial bacteria and was subsequently able to grow using material of terrestrial
256 origin. The same thing could have happened to the Arctic diazotrophs. Collectively, the
257 Arctic-specific diazotrophs may have expanded their metabolic potential to adapt to the
258 unique environment of the Arctic Ocean.

259 It should be noted that some Arctic diazotrophs (Arc-Campylo and Arc-Gamma-02 and -
260 03) are expected to have a very small cell size (<0.2 μm), as was also inferred from an *nifH*-
261 based study¹⁰. One characteristic of very small bacteria is a reduced genome size (<2 Mb)²⁵.
262 The genome size of Arc-Gamma-03 (3.7 Mb) is smaller than that of the isolated species in the
263 genus *Oceanobacter* (4.5 and 5.1 Mb), but it is not particularly small. Those of Arc-Gamma-
264 02 (4.1 Mb) and Arc-Campylo (2.9 Mb) are within the range of the genus *Psychromonas*
265 (3.9–5.5 Mb) and *Arcobacter* (2.2–3.2 Mb). Therefore, these Arctic diazotrophs with small
266 cell sizes do not have small genomes. In contrast, the cell size of the Arctic diazotrophs is
267 presumably smaller than that of isolated non-diazotroph species^{32,33,42–45}. In general, bacteria
268 in the field tend to have smaller cell sizes than do cultured strains due to nutrient limitations
269 and predation⁴⁶. Given that variations in cell size were noticed but appreciable variations in
270 genome size were not, it is likely that environmental stress reduced the cell size of the Arctic
271 diazotrophs. In contrast, the abundance of low-latitude diazotrophs was not notably high in
272 the viral fraction alone (Fig. S2), suggesting that such very small diazotrophs rarely occur at
273 low latitudes, which may mean that Arctic diazotrophs have adapted to greater environmental
274 stress.

275

276 ***Comparative genome analysis of UCYN-A***

277 We obtained a nearly complete genome of UCYN-A2 from the Arctic Ocean. The *nifH*

278 phylogenetic tree using full-length *nifH* showed that the *nifH* sequence of Arc-UCYN-A2 is
279 distinct from that of low-latitude UCYN-A2 (Fig. 1b), which contradicts the conclusion of a
280 previous study⁴. This is because the previous study examined only a short PCR-amplified
281 region of the gene. Indeed, the *nifH* sequence targeted by PCR of Arc-UCYN-A2 is identical
282 to that of the low-latitude one.

283 We further performed a comparative genomic analysis using existing UCYN-A genomes
284 (Supplementary Data 4 and Fig. S3). As noted previously⁴⁷, substantial differences were
285 found between the UCYN-A1 and -A2 genomes (Fig. S3). In contrast, the intraclade
286 difference was very small; the Arc-UCYN-A2 genome was almost identical to that of UCYN-
287 A2 at low latitudes (ANI 99.42–99.79% as compared with low-latitude UCYN-A2).

288 However, we found that Arc-UCYN-A2 had a *gph* gene, which is used in DNA repair⁴⁸, that
289 was absent from the low-latitude UCYN-A2. No differences were found except for this *gph*
290 gene when comparing Arc-UCYN-A2 with the low-latitude UCYN-A2 genome. Regarding
291 the *gph* gene, cold-adapted microbes tend to have more genes to repair DNA damage caused
292 by reactive oxygen species, which generally increase inside the cell in cold environments³⁴.
293 Although Arc-UCYN-A2 does not have the *cspA* gene, the *gph* gene in Arc-UCYN-A2 may
294 be used for another strategy for adaptation to the cold Arctic environment.

295

296 ***nifH* gene abundance among diazotroph MAGs isolated from Arctic Ocean samples**

297 We quantified the *nifH* copy number of MAGs that showed a particularly high genome
298 abundance in the total fraction of Arctic Ocean and of Arc-UCYN-A2 using qPCR technique.
299 We collected the samples in the Pacific side of the Arctic Ocean in summer for three years.
300 The observed sample sites were located mainly in open-water areas. The sea surface
301 temperature ranged from –1.2 to 7.6 °C. Although nitrogenous nutrients were sporadically

302 high (>1 μ M) in the surface water of the Bering Strait, they were generally depleted (< 0.1
303 μ M) in the north of 70°N. Of the targeted diazotrophs, Arc-UCYN-A2, Arc-Alpha, and
304 Alpha-04 were detected in samples collected during each cruise, indicating that these
305 diazotrophs were indeed present in the Arctic Ocean. In contrast, Arc-Bactero, Arc-Gamma-
306 01, *C. chwakensis*, and Alpha-02 were not detected in samples from either cruise. This
307 absence might be related to their habitat area and season, because samples were collected
308 only in the Pacific side open-water area in summer. For example, Arc-Gamma-01 could
309 produce EPSs as mentioned above and thus could attach to the sea ice, which would preclude
310 its sampling from open-water samples. The *nifH* of *C. chwakensis* (former genus *Cyanothece*)
311 was detected in the Atlantic side of the Arctic Ocean⁴⁹.

312 UCYN-A2 was found in samples from most of the stations during each cruise and was
313 distributed vertically (Fig. 3a). The maximum *nifH* abundance of UCYN-A2 was 2.9×10^3 ,
314 5.8×10^5 , and 8.0×10^6 copies L^{-1} in 2015, 2016, and 2017, respectively, and was found near
315 the surface. Arc-Alpha and Alpha-04 were widely distributed in the study region but were
316 detected only at the surface. The maximum for Arc-Alpha (3.3×10^2 copies L^{-1}) and Alpha
317 04 (3.0×10^2 copies L^{-1}) was significantly lower than that of UCYN-A2 ($p < 0.05$). We
318 examined the relationship between *nifH* abundance and environmental parameters and found
319 that UCYN-A2 had a significant positive correlation with temperature ($p < 0.05$), although
320 other diazotrophs had no significant relationship with any environmental parameters ($p >$
321 0.05). This relationship between UCYN-A abundance and temperature was also reported at
322 low latitudes, although the temperature range (22–30 °C) differed from that in the Arctic
323 Ocean (−0.4–7.6 °C)^{50,51}. Hence, the controlling factor seems to be the same even if the clade
324 is different. The positive correlation with temperature indicated that UCYN-A2 can expand
325 its habitat range and should be able to increase in the Arctic Ocean with future warming.

326

327 **CONCLUSION**

328 This study demonstrates the distribution and survival strategies of diazotrophs in the
329 Arctic Ocean based on MAG information, most of which would not have been detected by a
330 conventional PCR-based approach. Although the environments in the Arctic and tropics and
331 subtropics are very different, we found universal diazotrophs that were distributed all over the
332 world that have the potential for cold adaptation. In contrast, we also found Arctic-specific
333 diazotrophs, which have specific genes that help them adapt to the Arctic environment.

334 Considering that cyanobacterial diazotrophs occur mainly in low latitudes, the global
335 distribution of diazotrophs follows one of three patterns: those with a low-latitude
336 distribution, those that are Arctic specific, and those that are universally distributed.

337 The Arctic-occurring diazotrophs are remarkably abundant among the total metagenomic
338 reads from the Arctic Ocean samples, indicating that they are important species in the Arctic
339 microbial community and thus are likely to substantially contribute to biogeochemical cycles.

340 We further showed that diazotrophs with a very small cell size (<0.2 μm) are particularly
341 abundant in the Arctic Ocean, indicating that the standard (and even recently improved)
342 method of using GF/F filters (pore size, 0.3–0.7 μm)⁵²⁻⁵⁴ can markedly underestimate the
343 rate of nitrogen fixation. The Arctic Ocean is one of the most rapidly changing oceans on
344 earth, and nitrogen fixation in the pan-Arctic Ocean is still unknown. Our findings increase
345 our understanding of current and possible future Arctic nitrogen fixation.

346

347 **METHODS**

348 *Arctic Ocean metagenomes and MAG construction*

349 The 111 metagenome data used in this study were derived from the water column of the
350 Arctic Ocean. These samples were originally published in the Tara polar project (n = 68)
351^{55,56}, Polar marine reference gene catalog (n = 31) (Cao et al., 2020), and Canada Basin cruise
352 (n = 12)⁴¹ and were reanalyzed in a large-scale marine metagenome study (the OceanDNA
353 MAG study)¹⁵. The samples were collected across the entire Arctic Ocean, except for those
354 collected during the Canada Basin cruise. Size-fractionated samples were collected during
355 each project (0.2–3 and <0.2 µm for the Tara polar project; ≥0.2 µm for the Polar marine
356 reference gene catalog; 0.2–3 µm for the Canada Basin cruise). The samples were collected
357 wide depth range from 0 to 3800 m.

358 The OceanDNA MAG study reconstructed 52,325 qualified prokaryotic MAGs using
359 2,057 metagenomes derived from various marine environments¹⁵. We focused on the 111
360 Arctic Ocean samples, which yielded 6,816 MAGs, which include 1095 species
361 representatives. Completeness and contamination of genomes were estimated by taxon-
362 specific sets of single-copy marker genes through the lineage-specific workflow of CheckM
363 v1.0.13⁵⁷. We explored new diazotroph genomes among the species representatives derived
364 from the Arctic Ocean samples. The *nifH* gene was identified with a significant (<1e-05) and
365 best hit to TIGR01287 among the TIGRFAMs HMM library⁵⁸ using hmmsearch (HMMER
366 v3.3.2). The MAGs containing *nifH* were deposited in the UTokyo Repository
367 (<https://doi.org/10.15083/0002005808>).

368

369 *Marine diazotroph genomes from the lower latitudes*

370 Diazotroph genomes from low-latitude samples were reconstructed from metagenomic

371 data, which included not only existing cyanobacterial diazotrophs but also previously
372 unknown heterotrophic bacteria^{13,14}, although genomes of *Crocospaera subtropica* (UCYN-
373 C) and *C. chwakensis* (formerly *Cyanothece* CCY0110) were not included. We then used
374 these genomes as the reference genomes for the Arctic diazotroph MAGs. The genomes of *C.*
375 *subtropica* and *C. chwakensis* were downloaded from the NCBI website. To perform a
376 comparative genomics analysis of UCYN-A, we downloaded all UCYN-A genomes in the
377 NCBI database for which the collection location could be identified.

378

379 *Taxonomic and gene annotation and metabolic and physiological potential and their*
380 *clustering*

381 All genomes used in this study were taxonomically classified using GTDB-Tk v1.7.0
382 (GTDB release 202)¹⁸. Gene annotation was performed with hmmsearch (HMMER v3.3.2)
383 using HMMs of Pfam⁵⁹, TIGRFAMs⁵⁸, and KOfam⁶⁰ databases. We further estimated the
384 minimum generation time using Growthpred³⁰ by following the method of Royo-Llonch et
385 al.²⁹. The lists of gene annotations for each genome were deposited in the UTokyo
386 Repository (<https://doi.org/10.15083/0002005808>).

387 To examine the metabolic and physiological potential of each diazotroph genome, the
388 multi-FASTA file of amino acid sequences of the genes was subjected to GenomapleTM
389 (formerly MAPLE) ver. 2.3.2⁶¹. GenomapleTM is available through a web interface⁶² and as
390 a stand-alone package from Docker Hub (<https://hub.docker.com/r/genomaple/genomaple>).
391 Genes were mapped to 814 functional modules defined by the KEGG⁶³, resulting in 310
392 pathways, 298 complexes, 167 functional sets, and 49 signatures. The module completion
393 ratio (MCR) was calculated according to a Boolean algebra-like equation⁶⁴, and the Q-value
394 was also calculated to evaluate the MCR in GenomapleTM. We note that a Q-value near zero

395 indicates a high working probability of the module ²². Then, we characterized the overall
396 MCR pattern of all diazotroph genomes. The complete-linkage clustering method was used
397 for the functional classification of diazotrophs with pairwise Euclidean distances between the
398 overall MCR patterns for each genome using an R statistical package ver. 4.1.2 ⁶⁵. KEGG
399 modules with MCR values of 0% for all genomes were excluded from this analysis.

400

401 *Homology between nifH of Arctic diazotroph MAGs and universal nifH primers*

402 The *nifH* sequence of Arctic diazotroph MAGs was tested *in silico* if it was detectable
403 with the existing universal *nifH* primers using *gen_primer_match_report.py*¹³ on *anvi'o* ver.
404 7.1 ⁶⁶.

405

406 *Phylogenetic analysis*

407 Two types of phylogenetic tree were constructed, one for *nifH* only and one for the whole
408 genome. The complete *nifH* sequences were aligned with MUSCLE in the MEGA11 package
409 ⁶⁷. Then, an *nifH* phylogenetic tree was constructed using the maximum likelihood method,
410 and bootstrap values were determined using 100 iterations implemented in MEGA11. A
411 whole-genome-based phylogenetic tree was constructed by PhyloPhlAn v3 ⁶⁸, which uses
412 ~400 conserved marker genes. The phylogenetic tree was built with default settings and a
413 rapid bootstrap test of 100 replicates.

414

415 *Comparative genome analysis of UCYN-A*

416 This study used all UCYN-A genomes for which sampling locations have been clearly
417 described (as of September 2022) (Supplementary Data 4). The method for gene annotation is
418 detailed above. Average nucleotide identity was calculated using the ANI calculator ⁶⁹. To

419 visualize the UCYN-A pangenome, the anvi'o ver. 7.1⁶⁶ pangenomic workflow was used.

420 Details of the method are provided (<https://merenlab.org/2016/11/08/pangenomics-v2/>).

421

422 *Genome abundance of MAGs in metagenomes*

423 We assessed the fraction of metagenomic reads recruited onto diazotroph genomes.

424 Sequence reads of the 2,057 metagenomes used in the OceanDNA MAG study¹⁵ were

425 mapped onto 57 diazotroph genomes. Read mapping was performed with bowtie2 v2.3.5.1⁷⁰

426 with the default setting using the quality-controlled paired-end reads of each run. If multiple

427 sequencing runs were performed for one sample, only the run with the largest scale was used.

428 If the sequencing run was >5 Gbps, a subset of 5 Gbps was randomly sampled. Then, the

429 mapping results were sorted using samtools v1.9, and mapped reads with ≥95% identity, of

430 ≥80 bp, and with ≥80% aligned fraction of the read length were extracted using msamtools

431 bundled in MOCAT2 v2.1.3^{57,71}. Then, the mapped reads were counted using featureCounts

432⁷² bundled in Subread v2.0.0.⁷³ The genome abundance in each sample was calculated as a

433 length-normalized count per million microbe genomes of a total community (CPMM) by the

434 following equation,

435

436 $CPMM = CPMT \cdot (\text{mapped read count on the 57 genomes}) / (\text{total read count})$

437 $CPMT = 10^6 \cdot G_i / (\text{sum of } G_i \text{ of the 57 genomes})$

438 $G_i = 1000 \cdot C_i / L_i$

439

440 where C_i is a count of mapped reads on genome_{_i}, and L_i is the length of genome_{_i}. CPMT is

441 a length-normalized count per million targeted genomes (i.e., 57 genomes). The concept of

442 CPMT is similar to the 'TPM' measure, which is frequently used in transcriptome analysis⁷⁴.

443 For example, when CPMM is 1000, the genome abundance is estimated as 0.1% of the total
444 microbe community.

445

446 *Shipboard observation and qPCR assay*

447 We performed shipboard observations of western Arctic Ocean samples to examine the
448 distribution of major diazotrophs in the Arctic metagenome and the environmental factors
449 contributing to their distribution. Sampling was carried out on board the R/V Mirai MR15-03
450 (06 Sep to 03 Oct 2015), MR16-06 (30 Aug to 22 Sep 2016), and MR17-05C (26 Aug to 21
451 Sep 2017) cruises. Seawater was collected from depths corresponding to 100%, 10%, 1%,
452 and 0.1% of surface light intensity, and from near bottom in the shelf region or from 100 m in
453 the off-shelf region with Niskin-X bottles and a bucket. The light profiles were determined
454 using a submersible PAR sensor just before water sampling. The depth profiles of
455 temperature, salinity, and dissolved oxygen were measured with an SBE 911 plus CTD
456 system (Sea-Bird Electronics). Samples for nutrient and chlorophyll *a* analyses were
457 collected in 10-mL acrylic tubes and 290-mL dark bottles and were analyzed immediately
458 onboard. For DNA analysis, 2 L of seawater was collected and filtered onto 0.2- μ m pore size
459 Sterivex-GP pressure filters (Millipore). Total DNA was extracted using the ChargeSwitch
460 Forensic DNA Purification kit (Invitrogen). Quantitative PCR (qPCR) analysis targeted the
461 *nifH* sequences of six species (Arc-Bactero, Arc-Alpha, Arc-Gamma-01, Alpha-02, Alpha-04,
462 and *C. chwakensis*) that were particularly highly abundant in the Arctic Ocean in the >0.2- μ m
463 fraction and targeted *nifH* of Arc-UCYN-A2. The TaqMan probe and primer sets used here
464 were newly designed except for Arc-UCYN-A2 (Supplementary Data 5). The qPCR analysis
465 was conducted in triplicate using a LightCycler 480 System (Roche Applied Science,
466 Penzberg, Germany). The r^2 values for the standard curves ranged from 0.990 to 1.000. The

467 efficiency of the qPCR analyses ranged from 93.8 to 100%.

468

469 **ACKNOWLEDGEMENTS**

470 We thank all persons who contributed to the generation of the metagenomic sequence

471 data and all persons who developed the software and databases used in this study. We also

472 thank the captain, crew members, and participants of the R/V Mirai Arctic cruises for their

473 cooperation at sea. We are grateful to H. Endo, Y. Nakajima, T. Masuda, and Y. Hirose for

474 helpful discussion and support of data analyses. This study was financially supported by the

475 Japan Society for the Promotion of Science (JSPS) KAKENHI Grant JP15H05712,

476 JP19H04263, JP21H03583, JP22K15089, and JP22H05714, Japan Science and Technology

477 Agency (JST) ACT-X Grant JPMJAX21BK, Arctic Challenge for Sustainability II (ArCS II)

478 of the Ministry of Education, Culture, Sports, Science and Technology, and the FSI project

479 “Ocean DNA: Constructing “Bio-map” of Marine Organisms using DNA Sequence

480 Analyses” from The University of Tokyo.

481

482 REFERENCES

483 1 Sohm, J. A., Webb, E. A. & Capone, D. G. Emerging patterns of marine nitrogen
484 fixation. *Nature reviews. Microbiology* **9**, 499-508 (2011).
<https://doi.org/10.1038/nrmicro2594>

485 2 Blais, M. *et al.* Nitrogen fixation and identification of potential diazotrophs in the
486 Canadian Arctic. *Global Biogeochemical Cycles* **26**, GB3022 (2012).
<https://doi.org/10.1029/2011gb004096>

487 3 Shiozaki, T. *et al.* Diazotroph community structure and the role of nitrogen fixation in
488 the nitrogen cycle in the Chukchi Sea (western Arctic Ocean). *Limnology and
489 Oceanography* **63**, 2191-2205 (2018). <https://doi.org/10.1002/lno.10933>

490 4 Harding, K. *et al.* Symbiotic unicellular cyanobacteria fix nitrogen in the Arctic
491 Ocean. *Proceedings of the National Academy of Sciences of the United States of
492 America* **115**, 13371-13375 (2018). <https://doi.org/10.1073/pnas.1813658115>

493 5 Shiozaki, T. *et al.* Biological nitrogen fixation detected under Antarctic sea ice. *Nature
494 Geoscience* **13**, 729-+ (2020). <https://doi.org/10.1038/s41561-020-00651-7>

495 6 Aagaard, K. & Carmack, E. C. The Role of Sea Ice and Other Fresh-Water in the
496 Arctic Circulation. *J Geophys Res-Oceans* **94**, 14485-14498 (1989).
<https://doi.org/DOI 10.1029/JC094iC10p14485>

497 7 Tremblay, J. E. *et al.* Global and regional drivers of nutrient supply, primary
498 production and CO₂ drawdown in the changing Arctic Ocean. *Progress in
499 Oceanography* **139**, 171-196 (2015). <https://doi.org/10.1016/j.pocean.2015.08.009>

500 8 Karl, D. M. & Church, M. J. Microbial oceanography and the Hawaii Ocean Time-
501 series programme. *Nature Reviews Microbiology* **12**, 699-713 (2014).
<https://doi.org/DOI 10.1038/Nrmicro3333>

502 9 Zehr, J. P., Jenkins, B. D., Short, S. M. & Steward, G. F. Nitrogenase gene diversity
503 and microbial community structure: a cross-system comparison. *Environmental
504 microbiology* **5**, 539-554 (2003). <https://doi.org/DOI 10.1046/j.1462-2920.2003.00451.x>

505 10 Pierella Karlusich, J. J. *et al.* Global distribution patterns of marine nitrogen-fixers by
506 imaging and molecular methods. *Nature communications* **12**, 4160 (2021).
<https://doi.org/10.1038/S41467-021-24299-Y>

507 11 Dos Santos, P. C., Fang, Z., Mason, S. W., Setubal, J. C. & Dixon, R. Distribution of
508 nitrogen fixation and nitrogenase-like sequences amongst microbial genomes. *Bmc
509 Genomics* **13**, 162 (2012). <https://doi.org/10.1186/1471-2164-13-162>

510 12 Mise, K., Masuda, Y., Senoo, K. & Itoh, H. Undervalued Pseudo-nifH Sequences in

517 Public Databases Distort Metagenomic Insights into Biological Nitrogen Fixers.
518 *MspHERE* **6**, e00785-00721 (2021). <https://doi.org/10.1128/mSphere.00785-21>

519 13 Delmont, T. O. *et al.* Nitrogen-fixing populations of Planctomycetes and
520 Proteobacteria are abundant in surface ocean metagenomes. *Nat Microbiol* **3**, 804-813
521 (2018). <https://doi.org/10.1038/s41564-018-0176-9>

522 14 Delmont, T. O. *et al.* Heterotrophic bacterial diazotrophs are more abundant than their
523 cyanobacterial counterparts in metagenomes covering most of the sunlit ocean *ISME*
524 *Journal* **16**, 1203-1203 (2022). <https://doi.org/10.1038/s41396-021-01173-9>

525 15 Nishimura, Y. & Yoshizawa, S. The OceanDNA MAG catalog contains over 50,000
526 prokaryotic genomes originated from various marine environments. *Sci Data* **9**, 305
527 (2022). <https://doi.org/10.1038/s41597-022-01392-5>

528 16 Zehr, J. P., Shilova, I. N., Farnelid, H. M., Munoz-Marin, M. C. & Turk-Kubo, K. A.
529 Unusual marine unicellular symbiosis with the nitrogen-fixing cyanobacterium
530 UCYN-A. *Nat Microbiol* **2**, 16214 (2017).
531 <https://doi.org/10.1038/Nmicrobiol.2016.214>

532 17 Turk-Kubo, K. A., Farnelid, H. M., Shilova, I. N., Henke, B. & Zehr, J. P. Distinct
533 Ecological Niches of Marine Symbiotic N-2-Fixing Cyanobacterium *Candidatus*
534 *Atelocyanobacterium Thalassa* Sublineages. *Journal of Phycology* **53**, 451-461
535 (2017). <https://doi.org/10.1111/jpy.12505>

536 18 Chaumeil, P. A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to
537 classify genomes with the Genome Taxonomy Database. *Bioinformatics* **36**, 1925-
538 1927 (2020). <https://doi.org/10.1093/bioinformatics/btz848>

539 19 Fernandez-Mendez, M. *et al.* Diazotroph Diversity in the Sea Ice, Melt Ponds, and
540 Surface Waters of the Eurasian Basin of the Central Arctic Ocean. *Frontiers in*
541 *microbiology* **7**, 1884 (2016). <https://doi.org/10.3389/Fmicb.2016.01884>

542 20 Jabir, T., Vipindas, P. V., Krishnan, K. P. & Hatha, A. A. M. Abundance and diversity
543 of diazotrophs in the surface sediments of Kongsfjorden, an Arctic fjord. *World J*
544 *Microb Biot* **37**, 41 (2021). <https://doi.org/10.1007/S11274-020-02993-1>

545 21 Acinas, S. G. *et al.* Deep ocean metagenomes provide insight into the metabolic
546 architecture of bathypelagic microbial communities. *Commun Biol* **4**, 604 (2021).
547 <https://doi.org/10.1038/s42003-021-02112-2>

548 22 Takami, H. *et al.* An automated system for evaluation of the potential functionome:
549 MAPLE version 2.1.0. *DNA Res* **23**, 467-475 (2016).
550 <https://doi.org/10.1093/dnares/dsw030>

551 23 Takami, H., Arai, W., Takemoto, K., Uchiyama, I. & Taniguchi, T. Functional
552 Classification of Uncultured "Candidatus Caldiarchaeum subterraneum" Using the

553 553 Maple System. *PloS one* **10** (2015). <https://doi.org/10.1371/journal.pone.0132994>

554 24 Thompson, A. W. *et al.* Unicellular cyanobacterium symbiotic with a single-celled
555 eukaryotic alga. *Science* **337**, 1546-1550 (2012).
<https://doi.org/10.1126/science.1222700>

556 25 Nakai, R. Size Matters: Ultra-small and Filterable Microorganisms in the
558 Environment. *Microbes and Environments* **35**, ME20025 (2020).
<https://doi.org/10.1264/Jsme2.Me20025>

559 26 Zehr, J. P. & Capone, D. G. Changing perspectives in marine nitrogen fixation.
560 *Science* **368**, eaay9514 (2020). <https://doi.org/10.1126/science.aay9514>

561 27 Ghiglione, J. F. *et al.* Pole-to-pole biogeography of surface and deep marine bacterial
563 communities. *Proceedings of the National Academy of Sciences of the United States
564 of America* **109**, 17633-17638 (2012). <https://doi.org/10.1073/pnas.1208160109>

565 28 Cao, S. N. *et al.* Structure and function of the Arctic and Antarctic marine microbiota
566 as revealed by metagenomics. *Microbiome* **8**, 47 (2020).
<https://doi.org/10.1186/S40168-020-00871-4>

567 29 Royo-Llonch, M. *et al.* Compendium of 530 metagenome-assembled bacterial and
569 archaeal genomes from the polar Arctic Ocean. *Nat Microbiol* **6**, 1561-1574 (2021).
<https://doi.org/10.1038/s41564-021-00979-9>

570 30 Vieira-Silva, S. & Rocha, E. P. C. The Systemic Imprint of Growth and Its Uses in
572 Ecological (Meta) Genomics. *Plos Genet* **6**, e1000808 (2010).
<https://doi.org/10.1371/journal.pgen.1000808>

573 31 De Maayer, P., Anderson, D., Cary, C. & Cowan, D. A. Some like it cold:
575 understanding the survival strategies of psychrophiles. *Embo Rep* **15**, 508-517 (2014).
<https://doi.org/10.1002/embr.201338170>

576 32 Auman, A. J., Breezee, J. L., Gosink, J. J., Kampfer, P. & Staley, J. T. Psychromonas
578 ingrahamii sp nov., a novel gas vacuolate, psychrophilic bacterium isolated from
579 Arctic polar sea ice. *Int J Syst Evol Micr* **56**, 1001-1007 (2006).
<https://doi.org/10.1099/ijns.0.64068-0>

580 33 Miyazaki, M., Nogi, Y., Fujiwara, Y. & Horikoshi, K. Psychromonas japonica sp nov.,
582 Psychromonas aquimarina sp nov., Psychromonas macrocephali sp nov and
583 Psychromonas ossibalaenae sp nov., psychrotrophic bacteria isolated from sediment
584 adjacent to sperm whale carcasses off Kagoshima, Japan. *Int J Syst Evol Micr* **58**,
585 1709-1714 (2008). <https://doi.org/10.1099/ijns.0.65744-0>

586 34 Barria, C., Malecki, M. & Arraiano, C. M. Bacterial adaptation to cold. *Microbiology*
587 **159**, 2437-2443 (2013). <https://doi.org/10.1099/mic.0.052209-0>

588 35 Siddiqui, K. S. *et al.* Psychrophiles. *Annual Review of Earth and Planetary Sciences*,

589 36 Vol 41 **41**, 87-115 (2013). <https://doi.org:10.1146/annurev-earth-040610-133514>

590 36 Nagaoka, E., Hidese, R., Imanaka, T. & Fujiwara, S. Importance and Determinants of
591 Induction of Cold-Induced DEAD RNA Helicase in the Hyperthermophilic Archaeon
592 Thermococcus kodakarensis. *J Bacteriol* **195**, 3442-3450 (2013).
<https://doi.org:10.1128/Jb.00332-13>

593 37 Mares, J. *et al.* Taxonomic resolution of the genus Cyanothecae (Chroococcales,
594 Cyanobacteria), with a treatment on Gloeothecae and three new genera, Crocosphaera,
595 Rippkaea, and Zehria. *Journal of Phycology* **55**, 578-610 (2019).
<https://doi.org:10.1111/jpy.12853>

596 38 Yakovlieva, L. & Walvoort, M. T. C. Processivity in Bacterial Glycosyltransferases.
597 *Acs Chem Biol* **15**, 3-16 (2020). <https://doi.org:10.1021/acschembio.9b00619>

598 39 Berman-Frank, I., Rosenberg, G., Levitan, O., Haramaty, L. & Mari, X. Coupling
599 between autocatalytic cell death and transparent exopolymeric particle production in
600 the marine cyanobacterium *Trichodesmium*. *Environmental microbiology* **9**, 1415-
601 1422 (2007). <https://doi.org:10.1111/j.1462-2920.2007.01257.x>

602 40 Sohm, J. A., Edwards, B. R., Wilson, B. G. & Webb, E. A. Constitutive extracellular
603 polysaccharide (EPS) production by specific isolates of *Crocosphaera watsonii*.
604 *Frontiers in microbiology* **2**, 229 (2011). <https://doi.org:10.3389/fmicb.2011.00229>

605 41 Colatriano, D. *et al.* Genomic evidence for the degradation of terrestrial organic
606 matter by pelagic Arctic Ocean Chloroflexi bacteria. *Commun Biol* **1**, 90 (2018).
<https://doi.org:10.1038/s42003-018-0086-7>

607 42 Bowditch, R. D., Baumann, L. & Baumann, P. Description of *Oceanospirillum-*
608 *Kriegii* Sp-Nov and *Oceanospirillum-Jannaschii* Sp-Nov and Assignment of 2 Species
609 of *Alteromonas* to This Genus as *Oceanospirillum-Commune* Comb-Nov and
610 *Oceanospirillum-Vagum* Comb-Nov. *Curr Microbiol* **10**, 221-229 (1984).
<https://doi.org:Doi 10.1007/Bf01627259>

611 43 Huang, Z. B. *et al.* *Oceanobacter mangrovi* Sp. Nov., a Novel Poly-beta-
612 hydroxybutyrate Accumulating Bacterium Isolated from Mangrove Sediment. *Curr*
613 *Microbiol* **79**, 100 (2022). <https://doi.org:10.1007/s00284-022-02798-5>

614 44 Collado, L., Cleenwerck, I., Van Trappen, S., De Vos, P. & Figueras, M. J. *Arcobacter*
615 *mytili* sp nov., an indoxyl acetate-hydrolysis-negative bacterium isolated from
616 mussels. *Int J Syst Evol Micr* **59**, 1391-1396 (2009).
<https://doi.org:10.1099/ij.s.0.003749-0>

617 45 Collado, L., Levican, A., Perez, J. & Figueras, M. J. *Arcobacter defluvii* sp nov.,
618 isolated from sewage samples. *Int J Syst Evol Micr* **61**, 2155-2161 (2011).
<https://doi.org:10.1099/ij.s.0.025668-0>

625 46 Young, K. D. The selective value of bacterial shape. *Microbiol Mol Biol R* **70**, 660-
626 703 (2006). <https://doi.org:10.1128/Mmbr.00001-06>

627 47 Bombar, D., Heller, P., Sanchez-Baracaldo, P., Carter, B. J. & Zehr, J. P. Comparative
628 genomics reveals surprising divergence of two closely related strains of uncultivated
629 UCYN-A cyanobacteria. *Isme Journal* **8**, 2530-2542 (2014). <https://doi.org:DOI>
630 10.1038/ismej.2014.167

631 48 Pellicer, M. T., Nunez, M. F., Aguilar, J., Badia, J. & Baldoma, L. Role of 2-
632 phosphoglycolate phosphatase of *Escherichia coli* in metabolism of the 2-
633 phosphoglycolate formed in DNA repair. *J Bacteriol* **185**, 5815-5821 (2003).
634 <https://doi.org:10.1128/Jb.185.19.5815-5821.2003>

635 49 Diez, B., Bergman, B., Pedros-Alio, C., Anto, M. & Snoeijs, P. High cyanobacterial
636 nifH gene diversity in Arctic seawater and sea ice brine. *Environmental microbiology*
637 *reports* **4**, 360-366 (2012). <https://doi.org:10.1111/j.1758-2229.2012.00343.x>

638 50 Moisander, P. H. *et al.* Unicellular cyanobacterial distributions broaden the oceanic
639 N₂ fixation domain. *Science* **327**, 1512-1514 (2010).
640 <https://doi.org:10.1126/science.1185468>

641 51 Shiozaki, T. *et al.* Seasonal variations of unicellular diazotroph groups A and B, and
642 Trichodesmium in the northern South China Sea and neighboring upstream Kuroshio
643 Current. *Continental Shelf Research* **80**, 20-31 (2014).
644 <https://doi.org:10.1016/j.csr.2014.02.015>

645 52 Montoya, J. P., Voss, M., Kahler, P. & Capone, D. G. A simple, high-precision, high-
646 sensitivity tracer assay for N₂ fixation. *Applied and environmental microbiology* **62**,
647 986-993 (1996).

648 53 Mohr, W., Grosskopf, T., Wallace, D. W. R. & LaRoche, J. Methodological
649 Underestimation of Oceanic Nitrogen Fixation Rates. *PLoS one* **5**, e12583 (2010).
650 <https://doi.org:10.1371/journal.pone.0012583>

651 54 Bombar, D., Paerl, R. W., Anderson, R. & Riemann, L. Filtration via conventional
652 glass fiber filters in ¹⁵N₂ tracer assays fails to capture all nitrogen-fixing prokaryotes.
653 *Front. Mar. Sci.* **5**, 6 (2018).

654 55 Salazar, G. *et al.* Gene Expression Changes and Community Turnover Differentially
655 Shape the Global Ocean Metatranscriptome. *Cell* **179**, 1068-1083 (2019).
656 <https://doi.org:10.1016/j.cell.2019.10.014>

657 56 Gregory, A. C. *et al.* Marine DNA Viral Macro- and Microdiversity from Pole to Pole.
658 *Cell* **177**, 1109-1123 (2019). <https://doi.org:10.1016/j.cell.2019.03.040>

659 57 Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W.
660 CheckM: assessing the quality of microbial genomes recovered from isolates, single

661 cells, and metagenomes. *Genome Res* **25**, 1043-1055 (2015).

662 <https://doi.org/10.1101/gr.186072.114>

663 58 Haft, D. H., Selengut, J. D. & White, O. The TIGRFAMs database of protein families.

664 *Nucleic Acids Res* **31**, 371-373 (2003). <https://doi.org/10.1093/nar/gkg128>

665 59 Bateman, A. *et al.* The Pfam Protein Families Database. *Nucleic Acids Res* **30**, 276-

666 280 (2002). <https://doi.org/10.1093/nar/30.1.276>

667 60 Aramaki, T. *et al.* KofamKOALA: KEGG Ortholog assignment based on profile

668 HMM and adaptive score threshold. *Bioinformatics* **36**, 2251-2252 (2020).

669 <https://doi.org/10.1093/bioinformatics/btz859>

670 61 Arai, W. *et al.* MAPLE 2.3.0: an improved system for evaluating the functionomes of

671 genomes and metagenomes. *Biosci Biotech Bioch* **82**, 1515-1517 (2018).

672 <https://doi.org/10.1080/09168451.2018.1476122>

673 62 Takami, H. in *Marine metagenomics-technological aspects and applications* (eds T.

674 Gojobori, T. Wada, T. Kobayashi, & K. Mineta) 85-119 (Springer, 2019).

675 63 Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes.

676 *Nucleic Acids Res* **28**, 27-30 (2000). <https://doi.org/10.1093/nar/28.1.27>

677 64 Takami, H. *et al.* Evaluation method for the potential functionome harbored in the

678 genome and metagenome. *Bmc Genomics* **13**, 699 (2012).

679 <https://doi.org/10.1186/1471-2164-13-699>

680 65 R_Core_Team. *R: A language and environment for statistical computing*, 2021).

681 66 Eren, A. M. *et al.* Community-led, integrated, reproducible multi-omics with anvi'o.

682 *Nat Microbiol* **6**, 3-6 (2021). <https://doi.org/10.1038/s41564-020-00834-3>

683 67 Tamura, K., Stecher, G. & Kumar, S. MEGA11 Molecular Evolutionary Genetics

684 Analysis Version 11. *Mol Biol Evol* **38**, 3022-3027 (2021).

685 <https://doi.org/10.1093/molbev/msab120>

686 68 Asnicar, F. *et al.* Precise phylogenetic analysis of microbial isolates and genomes

687 from metagenomes using PhyloPhlAn 3.0. *Nature communications* **11**, 2500 (2020).

688 <https://doi.org/10.1038/s41467-020-16366-7>

689 69 Rodriguez-R, L. M. & Konstantinidis, K. T. The enveomics collection: a toolbox for

690 specialized analyses of microbial genomes and metagenomes. *PeerJ Preprints* (2016).

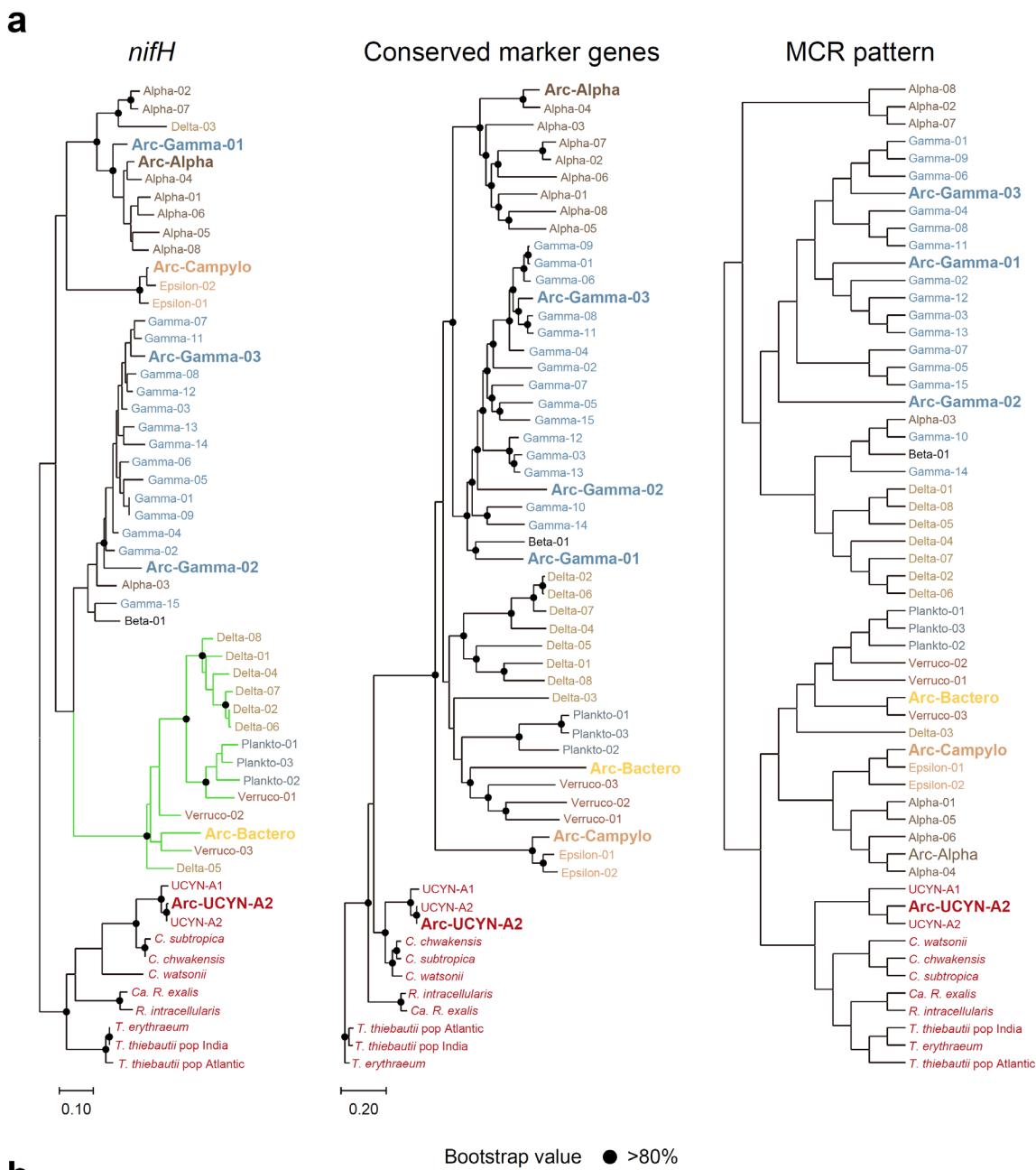
691 70 Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. *Nature*

692 *methods* **9**, 357-359 (2012). <https://doi.org/10.1038/nmeth.1923>

693 71 Kultima, J. R. *et al.* MOCAT2: a metagenomic assembly, annotation and profiling

694 framework. *Bioinformatics* **32**, 2520-2523 (2016).

695 <https://doi.org/10.1093/bioinformatics/btw183>

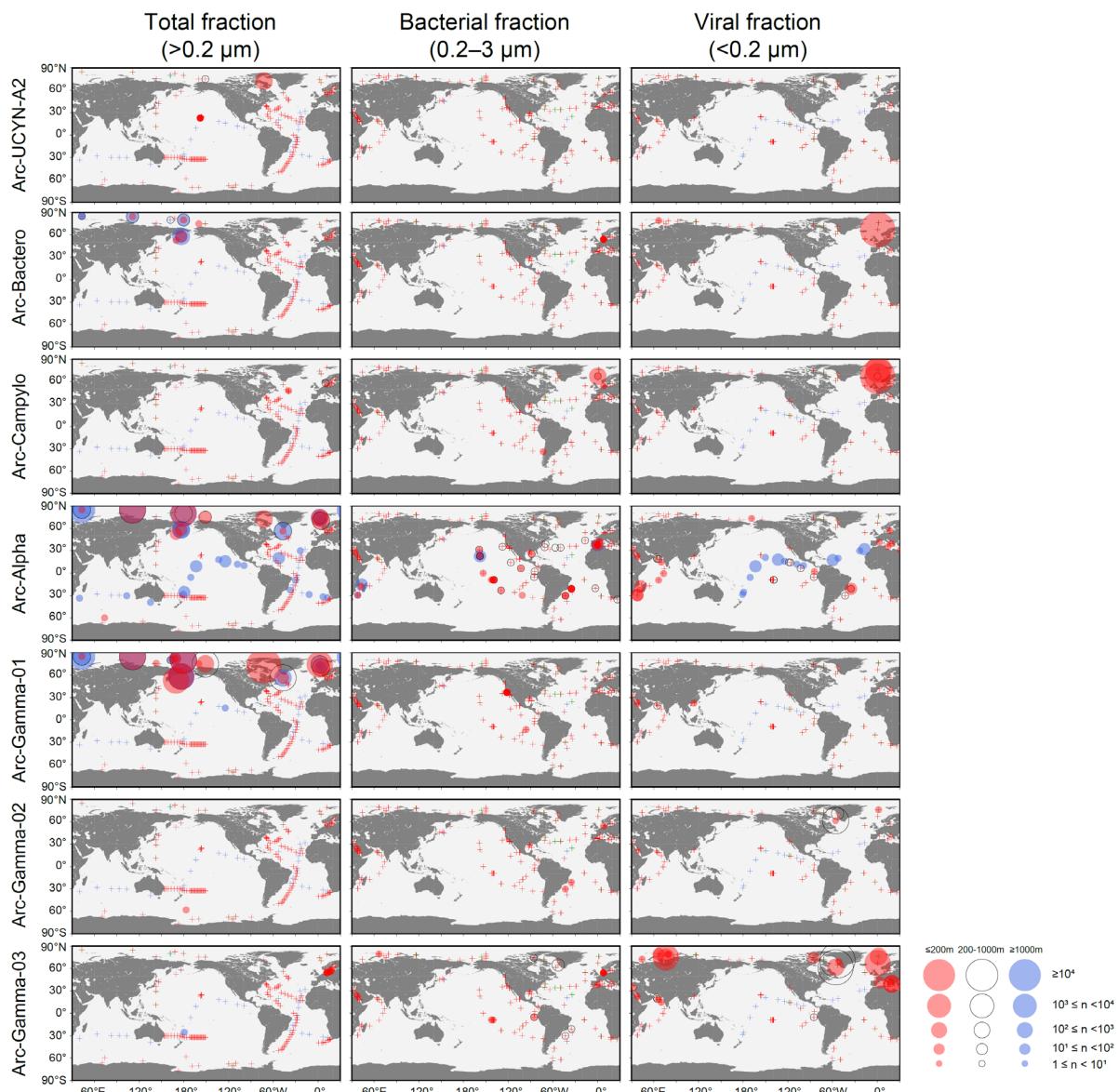

696 72 Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program

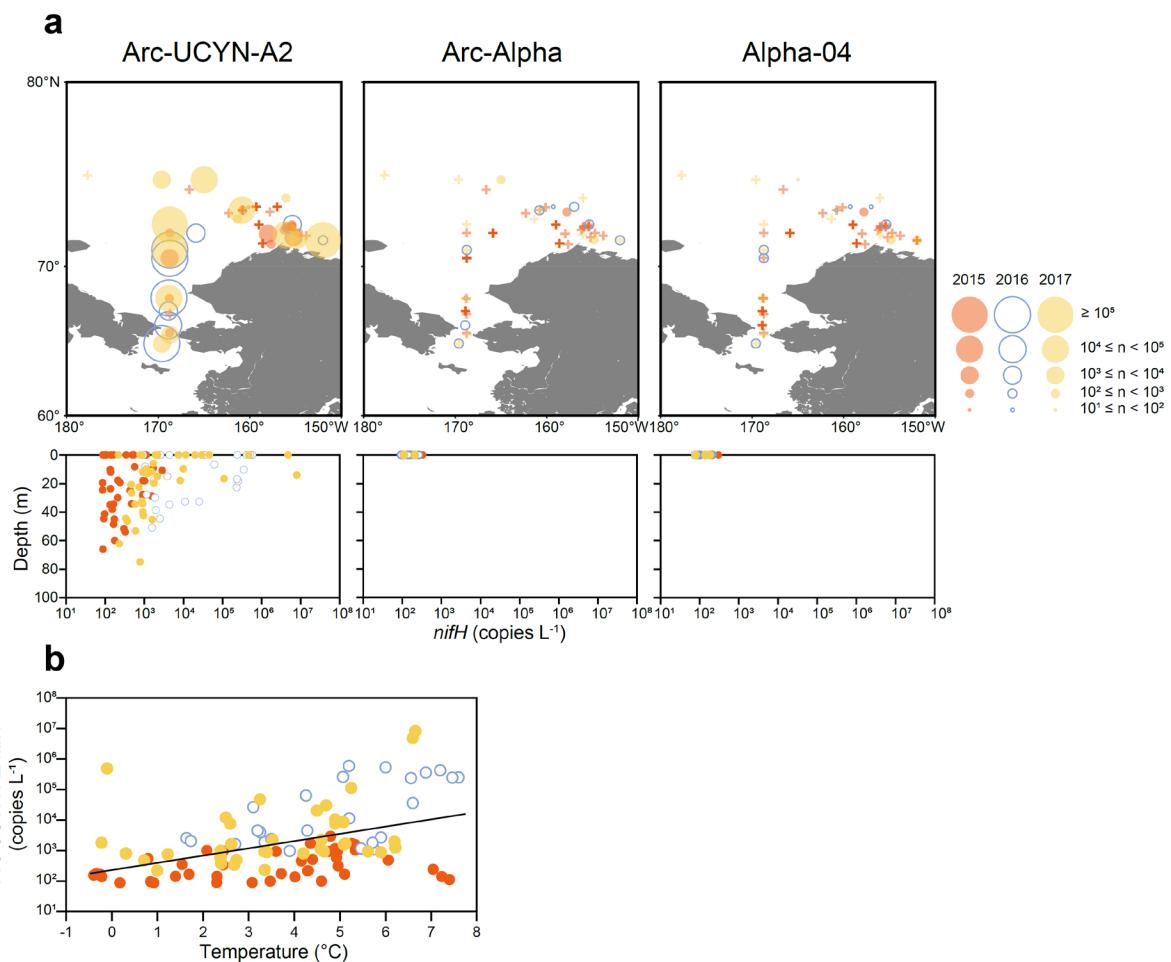
697 for assigning sequence reads to genomic features. *Bioinformatics* **30**, 923-930 (2014).
698 <https://doi.org/10.1093/bioinformatics/btt656>

699 73 Liao, Y., Smyth, G. K. & Shi, W. The Subread aligner: fast, accurate and scalable read
700 mapping by seed-and-vote. *Nucleic Acids Res* **41** (2013).
701 <https://doi.org/10.1093/nar/gkt214>

702 74 Wagner, G. P., Kin, K. & Lynch, V. J. Measurement of mRNA abundance using RNA-
703 seq data: RPKM measure is inconsistent among samples. *Theor Biosci* **131**, 281-285
704 (2012). <https://doi.org/10.1007/s12064-012-0162-3>

705




708 **Fig. 1. Phylogeny and functional module clustering of diazotrophs.** a. three types of
709 dendograms representing *nifH* phylogeny, conserved marker gene phylogeny, and
710 hierarchical clustering based on the functional module completion ratio (MCR)⁶⁴. The seven

711 Arctic MAGs (shown in bold) and cyanobacterial diazotrophs *C. chwakensis* and *C.*
712 *subtropica* are included, along with MAGs constructed from a metagenomic dataset from
713 samples collected in the subtropical ocean^{13,14}. Label colors represent phylum- or class-level
714 taxonomy. The *nifH* phylogenetic tree is rooted with cyanobacterial sequences to be
715 consistent with the other trees. b. *nifH* phylogenetic tree of UCYN-A, for which nearly the
716 whole genome has been assembled (Supplementary Data 4). The phylogenetic tree was
717 estimated with the maximum-likelihood method based on the full length of the *nifH* sequence
718 and the conserved marker genes using PhyloPhlAn. The branches in the *nifH* phylogenetic
719 trees belonging to Clusters I and III are shown with black and green lines, respectively.

720

721

731

732

733 **Fig. 3. *nifH* abundance of Arctic diazotroph MAGs in the Arctic Ocean. a.** Spatial and
734 vertical distribution of *nifH* abundance. The *nifH* abundance of the spatial distribution is the
735 maximum value at each station. **b.** Relationship between *nifH* abundance of Arc-UCYN-A2
736 and temperature. The samples were collected late summer in 2015 (orange), 2016 (blue)
737 circle), and 2017 (yellow).

738

Table 1 Summary of *nifH*detected MAGs in the Arctic Ocean

Genome	Length (Mb)	Genome completeness	<i>nifH</i> primer compatibility	<i>nifH</i> Cluster	<i>nifDK, nifENB</i>	Distribution pattern	Taxonomy
Arc-UCYN-A2	1.48	74.3 (99.3)*	○	I	○	Arctic-specific	Cyanobacteria; <i>Atelocyanobacterium thalassa</i>
Arc-Bactero	4.55	97.3	✗ nifH4	III	○	Arctic-specific	Bacteroidota; genus <i>Sunxiuqinia</i>
Arc-Campylo	2.92	96.8	○	I	○	Arctic-specific	Campylobacterota; genus <i>Arcobacter</i>
Arc-Alpha	3.18	97.7	○	I	○	Universal	Proteobacteria; genus <i>Novosphingobium</i>
Arc-Gamma-01	3.21	97.6	○	I	No <i>nifK</i>	Arctic-specific	Proteobacteria; genus <i>Immundisolibacter</i>
Arc-Gamma-02	4.14	93.9	✗ nifH4	I	○	Arctic-specific	Proteobacteria; genus <i>Psychromonas</i>
Arc-Gamma-03	3.74	96.4	✗ nifH4	I	○	Arctic-specific	Proteobacteria; genus <i>Oceanobacter</i>
Arc-Gamma-04	3.77	91.8	✗ nifH4	I	No <i>nifB</i>	-	Proteobacteria; genus <i>Motiliproteus</i>
Arc-Myxo	3.77	84.6	✗ nifH1,2,3	III	No <i>nifDK</i> , or <i>nifENB</i>	-	Myxococcota; family JABWCM01

Genome completeness was estimated by CheckM⁵⁷. *Calculated by regarding the complete genome of the UCYN-A2 (CPSB-1, Supplementary Data 4) as 100.