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ABSTRACT

Maize (Zea mays ssp. mays) populations exhibit vast amounts of genetic and phenotypic diversity. As sequencing
costs have declined, an increasing number of projects have sought to measure genetic differences between
and within maize populations using whole genome resequencing strategies, identifying millions of segregating
single-nucleotide polymorphisms (SNPs) and insertions/deletions (InDels). Unlike older genotyping strategies
like microarrays and genotyping by sequencing, resequencing should, in principle, frequently identify and score
common genetic variants. However, in practice, different projects frequently employ different analytical pipelines,
often employ different reference genome assemblies, and consistently filter for minor allele frequency within
the study population. This constrains the potential to reuse and remix data on genetic diversity generated from
different projects to address new biological questions in new ways. Here we employ resequencing data from 1,276
previously published maize samples and 239 newly resequenced maize samples to generate a single unified
marker set of ~366 million segregating variants and ~46 million high confidence variants scored across crop wild
relatives, landraces as well as tropical and temperate lines from different breeding eras. We demonstrate that the
new variant set provides increased power to identify known causal flowering time genes using previously published
trait datasets, as well as the potential to track changes in the frequency of functionally distinct alleles across the
global distribution of modern maize.

Introduction

The degree of DNA sequence diversity observed in maize populations exceeds that of humans, most genetic model
species, and many wild plants (Buckler et al., 2006). This diversity includes not only small scale variation — single-
nucleotide polymorphisms (SNPs) and insertions/deletions (InDels) — but also copy number and presence absence
variation (Swanson-Wagner et al., 2010). Scoring large maize populations for common sets of segregating DNA
sequence polymorphisms (markers) is a key step in a range of research approaches to identify targets of selection
(Hufford et al., 2012; Wang et al., 2020), inferring past demographic events, geographic diffusion (Da Fonseca
et al., 2015; Kistler et al., 2018; Swarts et al., 2017), and linking genotype to phenotype (Mural et al., 2022).
Early approaches to scoring common sets of genetic markers across large maize populations targeted thousands to
hundreds of thousands of known markers, in the case of arrays (Ganal et al., 2011; Unterseer ef al., 2014a). Array
based genotyping allowed wide reuse and combination of independent datasets generated using the same array
platform and, in cases where common probes were retained, between platforms. Reductions in the cost of DNA
sequencing enabled sequencing-based strategies combined marker discovery and scoring in a single step (Elshire
etal.,2011; Romay et al., 2013). This change reduced the substantial ascertainment bias present in many array based
genetic marker datasets. However, combining marker discovery and scoring into a single step created new barriers
to combining datasets. It was not possible to target specific known markers to enable interoperability between
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genotyping platforms. Different approaches to reducing the proportion of the genotype sequenced targeted different
subsets of the genome for sequencing. Even when the same region was sequenced in two studies, differences in
allele frequency, SNP calling software pipelines, or stochastic distributions of read depths might result in the same
marker being identified and scored in one dataset and absent from the other. Sequencing technology has continued
to improve and so costs have continued to decline. Whole genome resequencing is now economically viable for
even populations of hundreds of maize genotypes. This removes the issue of generating sequence data for largely
non-overlapping sites present for earlier sequencing-based strategies. However, combining marker datasets across
different studies remains challenging as very different sets of markers will be discovered and pass quality filtering in
different populations and/or when using different bioinformatics pipelines.

Identifying a common set of genetic variants in maize is challenging, and the optimal set of lines to use in
defining a marker set likely depends on the question of interest. Maize was domesticated from a wild progenitor
teosinte (Zea mays ssp. parviglumis) 9,000-10,000 years ago in southwest Mexico (Matsuoka et al., 2002; Piperno
et al., 2009) with substantial gene flow from at least one other teosinte (Zea mays ssp. mexicana) (Chen et al., 2022;
Van Heerwaarden et al., 2011). After domestication, maize spread across North and South America (Da Fonseca
et al., 2015; Kistler et al., 2018; Swarts et al., 2017). Maize, almost certainly of Caribbean origin, was first cultivated
in southern Europe in 1493 and was growing in Germany by 1539 (Tenaillon and Charcosset, 2011). By 1555,
substantial maize cultivation was already being recorded in Henan, China (Ho, 1955). Therefore, maize was already
cultivated on at least four continents in the mid XVI-century. Tropical maize varieties that flower under short-day
conditions making them unsuitable for cultivation in regions with killing frosts retain many alleles and haplotypes
not found in temperate populations (Hung et al., 2012). Breeding efforts in the United State, Europe, and China
focus on temperate-adapted cultivars which are less photoperiod sensitive than tropical maize. In the United States,
hybrid production focuses on three heterotic groups, stiff stalk, non-stiff stalk, and iodent, in Europe many hybrids
are generated from crosses between the flint and dent heterotic groups, while in China Huangzaosi group was also
used alongside stiff stalk, non-stiff stalk, and iodent (Wang et al., 2020). As a result, different research groups
studying quantitative genetic variation, domestication, adaptation, or crop improvement have selected different sets
of inbred lines, open-pollinated landraces, or maize wild relatives drawn from populations in different parts of the
globe.

The maize HapMap?2 project was motivated in part by understanding changes in genetic diversity associated with
maize domestication and improvement. The study identified more than 55 million total variants from an average
of 4x resequencing of 103 samples, including 83 individuals representing domesticated maize and 20 individuals
drawn from wild relative populations aligned to B73_RefGen_V1 (Chia et al., 2012; Hufford et al., 2012). A project
focused on understanding the history and demography of the initial introduction of maize to Europe identified
22.3 million SNPs relative to the B73_RefGen_V?2 genome by resequencing 67 maize samples originating in the
Americas (n=37) and Europe (n=30) to an average depth of 18x (Brandenburg et al., 2017). Given the focus on the
introduction of maize to Europe, this study focused primarily on maize lines originating in western (18) and central
(11) Europe, with one line sourced from eastern Europe. Another study focused on the pre-Colombian demographic
history of maize resequenced 35 maize landraces and wild relatives from the Americas to a median depth of 28x and
identified 49.5 million SNPs via alignment to the B73_RefGen_V3 reference genome (Wang et al., 2017). A study
of maize domestication and improvement in South America generated data from 49 living and archaeological maize
samples and generated a new SNP set by aligning both data from these new samples and 70 published maize datasets
to the B73_RefGen_V4 reference genome (Kistler et al., 2018). Resequencing of 521 entry maize association
panel to an average depth of 20x identified 11.5 million variants as part of an effort to link structural variation in
the genome to changes in gene expression and phenotypic outcomes (Yang et al., 2019). A comparative analysis
of phenotypic and genetic changes associated with the breeding effort in different temperate breeding programs
generated resequencing data from 350 maize inbreds from China (187) and the United States (163) sequenced to a
median depth of 12x and identified more than 29 million genetic markers relative to the B73_RefGen_V3 reference
genome (Wang et al., 2020). An effort to quantify SNP and transposon insertion diversity within an association panel
used for genome wide association studies identified approximately 2.4 million SNPs and 0.45 million segregating
transposon associations across a panel of approximately 500 temperate adapted maize lines (Qiu et al., 2021; Renk
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et al., 2021). Finally, a recent study of genus wide genetic variation in maize identified approximately 65 million
SNPs and approximately 8 million InDels by generating 22x average depth sequencing data from 239 accessions of
wild relatives (Chen et al., 2022; Gui et al., 2022) in combination with the approximately 500 entry maize diversity
panel resequenced in (Yang et al., 2019). The largest scale of these efforts to date is likely the aggregate analysis
of 1,218 maize lines as part of the maize HapMap3 project representing global maize diversity, however, higher
sequencing costs at the time of this study resulted in lines being resequenced to a median depth of 2x (Bukowski
etal.,2018).

Here we sought to update and expand the reference set of segregating diversity in maize by incorporating
published high coverage resequencing data from maize lines originating on six continents, including resequencing
data from lines relative to maize domestication and improvement, including wild relatives, tropical landraces, and
archaeological maize samples, as well as maize wild relatives, and to further improve the resolution and mapping
power for maize genome wide association studies conducted in the temperate midwest through the resequencing of
an additional 239 maize lines including 228 lines from the Wisconsin Diversity panel not previously resequenced
and 11 Eastern European lines. To ensure the greatest degree of reusability and forward compatibility, we employed
the B73_RefGen_V5 maize reference genome (Hufford ef al., 2021) and, in addition to raw and filtered SNP files,
we are releasing GATK GenomicsDB datastores so that these same 1,515 lines can be incorporated into future high
coverage maize resequencing efforts without the need to reprocess and realign sequence data.

Methods

Plant material and datasets

Whole genome resequencing data from 1,515 total samples were used in this analysis, including 1,276 previously
published samples (Brandenburg et al., 2017; Bukowski et al., 2018; Chen et al., 2022; Chia et al., 2012; Kistler
et al., 2018; Qiu et al., 2021; Unterseer et al., 2014b; Wang et al., 2020, 2017) and 239 lines resequenced as part of
this study. The origin and source of each sample included in this analysis are provided in supplemental table S1.

Two hundred twenty-eight inbred lines from the Wisconsin Diversity Panel (Mazaheri et al., 2019) were grown
in a greenhouse setting (27°C - 29°C during the day, and 19°C — 21°C at night, with 12 hours light/12 hours
dark). After reaching V2, the youngest leaf was harvested onto the ice and was then lyophilized for two days in a
Flexi-Dry lyophilizer (FTS Systems Inc. New York). The lyophilized samples were ground to a fine powder at room
temperature using 4.76 mm ball bearings in a Tissuelyzer II (Qiagen, Germany). Following the manual’s instructions,
DNA was extracted from the individual lyophilized and ground samples using the MagMAX Plant DNA Isolation
Kit (Thermo Scientific, USA) with the help of a benchtop automated extraction instrument, KingFisher Flex (Thermo
Scientific, USA). Raw DNA extracts were quantified using the Quant-iT dsDNA Broad Range Kit (Invitrogen, USA)
and normalized to 20ng/uL. using an Andrew pipetting robot (Andrew Alliance, USA). Normalized DNA samples
were submitted to Psomagen, Inc. (USA) for library preparation and sequencing.

On receipt of the DNA samples, Psomagen, Inc. (USA) performed an in-house Quality assessment of the DNA
samples using TapeStation 4200 (Agilent). DNA samples from 29 lines did not meet the minimum DNA quality
control standards for sequencing. An additional set of seeds from these lines were surface sterilized by washing
them in a 5% v/v bleach solution for 10 minutes, rinse three times with sterile water, and placed in centrifuge tubes
with wetted paper and left in the dark at 23°C. Shortly after germinating (VE), the entire coleoptile was harvested,
snap-frozen in liquid nitrogen, and stored at -80°C. The tissue was then ground to a fine powder using 3/16 inch
(4.76mm) ball bearings in a Tissuelyzer II (Qiagen, Germany) in the presence of dry ice in the pockets around tube
holders. The DNA extraction was then performed utilizing the same procedure as was used on the original samples.
Initial quality assessment of DNA samples, library preparation, and sequencing was performed by Psomagen, Inc.
(USA). Libraries were prepared using the TruSeq DNA PCR-Free kit (Illumina, USA). A NovaSeq6000 S4 (Illumina,
USA) sequencer was used to generate 150 bp paired-end reads.

Eleven Polish inbred lines were obtained from Plant Breeding Smolice Ltd., Co., Poland. Plants were grown
in a phytotron chamber (24°C/22°C day/night and 16 hours light/8 hours dark). Tissues for DNA extraction were
harvested from the third fully developed leaf (V3 stage) and three individual plants were pooled into a single sample.
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Leaves were immediately flash-frozen in liquid nitrogen and tissue was ground in liquid nitrogen using a mortar and
pestle. DNA extraction was done with DNeasy Plant Kit (Qiagen, Germany) according to the manual’s instructions.
Genomic DNA for each genotype was submitted to Fasteris (Switzerland) for whole genome sequencing. For S160,
550676, and S68911 inbred lines 100 bp paired-end reads, and for the remaining eight lines 150 bp paired-end reads
were generated on a HiSeq X Ten (Illumina, USA) sequencer.

Creation of the global maize SNP set

After fastq files were downloaded from the European Nucleotide Archive or transferred from the sequencing provider,
each file was cleaned using fastp v.0.23.2 with the default setting (Chen et al., 2018). Reads with > 40% unqualified
bases or quality value < 15 were removed. Cleaned fastq files were aligned to the B73_RefGen_V5 maize reference
genome (Hufford et al., 2021) using SpeedSeq v.0.1.2 (Chiang et al., 2015) which parallelizes BWA-MEM v.0.7.10
(Li, 2013) for alignment, Samblaster v.0.1.22 for marking duplicated reads (Faust and Hall, 2014), and Sambamba
v.0.5.9 for position sorting and BAM file indexing (Tarasov et al., 2015). Samblaster defined duplicate read pairs as
cases where two or more pairs of reads aligned to the same reference sequence on the same strand and with the same
5’ start position — or inferred 5’ start position if the alignment was clipped — for both forward reads and for both
reverse reads. Unless otherwise stated, default parameters were used for each software package.

Individual gVCF files were generated for each maize pseudomolecule for each BAM file using the Haplotype-
Caller tool provided by GATK v.4.2.0.0 in diploid mode (Poplin et al., 2018). To enable extensive parallelization of
variant calling the maize genome was divided into 5 Mb windows for the creation of separate GenomicsDB datastores.
During the project, an update of GATK appeared (v.4.2.6.1), which offered a reduction of files number stored in
GenomicsDB datastores. Therefore, GenomicsDBImport tool provided by GATK v.4.2.6.1. was used for each
genomic window to create GenomicsDB datastore. Joint variant calling was conducted using the GenotypeGVCFs
tool provided by GATK v.4.2.6.1. with default settings. To aid in additional parallelization, each 5 Mb GenomicsDB
datastore was divided into five 1 Mb windows for variant calling.

Following GATK best practices recommendations, hard filters were applied to call variants. Variants were
divided into SNPs and InDels for filtering. SNPs having a QualByDepth < 2.0, FisherStrand > 60.0, RMSMap-
pingQuality < 40.0, MappingQualityRankSumTest < -12.5 or ReadPosRankSumTest < -8.0 were removed. InDels
with QualByDepth < 2.0, FisherStrand > 200.0 or ReadPosRankSumTest < -20.0 were also removed. After filtering,
SNP and InDel variants were merged into single sorted VCF files for each chromosome using Picard v.2.9 (Pic,
2019). Finally, genotypes with depth < 2 were masked using bcftools setGT plugin v.1.10.2 (Danecek et al., 2021).
All further VCEF files manipulations were done with bcftools v.1.10.2 (Danecek et al., 2021).

Creation of the filtered and imputed maize SNP sets

The filtered and imputed variant set was generated by first removing variants where: >2 alleles were observed in
the population, variants with > 50% missing data, variants with extremely low < 1,515 or extremely high > 33,550
sequencing depth, and variants with inbreeding coefficients > 0 resulting in ~ 46 million variants. The inbreeding
coefficient per variant was calculated as:

H
JC — 1 — -1OBS

Hgxp
where Hyps and Heyp are the observed and expected heterozygosity under Hardy—Weinberg equilibrium.
Variants were phased and imputed using Beagle 5.0 with default settings (err=0.0001; window=40.0 cM;
overlap=4.0 cM; step=0.1 cM; nsteps=7) (Browning et al., 2018).

Population genetic analyses

Principle component analysis (PCA) was conducted with Plink v.1.9 (Purcell et al., 2007). Unimputed variants were
filtered with MAF > 5% and with a fraction of missing data < 10%, leading to 19,205,674 markers, which were used
for PCA. Individual genotypes were assigned to the population using published literature data (Brandenburg et al.,
2017; Bukowski et al., 2018; Chen et al., 2022; Chia et al., 2012; Kistler et al., 2018; Qiu et al., 2021; Unterseer
et al., 2014b; Wang et al., 2020, 2017).
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Measures of LD (%) were calculated for the entire population and pre-defined groups using PopLDdecay v.3.42
(Zhang et al., 2019), and the subset of unimputed SNPs with MAF > 0.05 and missing rate < 0.25. Local LD in a
100 Kb window was calculated using the Genome-wide Complex Trait Analysis (GCTA) with the default settings
(Yang et al., 2011).

To calculate nucleotide diversity (Nei and Li, 1979) maize genome was first divided into 1 Kb window using
bedtools v.2.27.1 (Quinlan and Hall, 2010). Next, windows that overlapped with region annotated as transposon in
B73_RefGen_V5 (Hufford et al., 2021) were excluded from the analysis. Nucleotide diversity were calculated using
the vcftools v.0.1.16 site-pi function (Danecek ef al., 2011) in remaining 1 Kb window, with a value of 0 employed
for monomorphic positions. Mean values were calculated for each window and the distribution of window-mean
values were employed in downstream analyses.

Genome-wide association study
A published dataset of female flowering time (days to silking) for 752 inbreds drawn from the Wisconsin Diversity
panel (Mazaheri ef al., 2019) and grown in a replicated field study in Lincoln, NE in 2020 was employed for genome
wide association (Mural ef al., 2022). Three genetic marker sets for the same population of 752 maize inbreds were
used to conduct GWAS. The first set was created by filtering 752 maize inbreds with MAF > 5% from 899,784
variants called using RNA-seq and called relative to the B73_RefGen_V4 reference genome (Mazaheri et al., 2019).
This leads to a creation set containing 428,487 variants. The second was a set of ~17.2 million markers called using
a combination of resequencing (581 lines) (Bukowski et al., 2018; Qiu et al., 2021) and RNA-seq (361 lines) (Hirsch
et al., 2014; Mazaheri et al., 2019) with extensive imputation to fill in non-exonic SNPs for the subset of samples
genotyped only with RNA-seq (Mural ef al., 2022; Sun et al., 2022). The third was a set of 16,634,049 markers
obtained by subsetting the filtered and imputed SNP set assembled in this study to include only those markers with a
minor allele frequency >5% among the 752 genotypes for which female flowering time phenotypes were available.
In all three cases, GWAS was conducted using the mixed linear model algorithm (Yu et al., 2006) as implemented in
the rMVP R package v.1.0.6 (Yin et al., 2021). In all three cases, both the kinship matrix — computed following
the method described in (VanRaden, 2008) — and the first five principal components of variation — calculated as
described above — were included as covariates. Calculations of local linkage disequilibrium were performed using
Plink v.1.9 (Purcell et al., 2007).

All additional statistical analysis were conducted in R (R Core Team, 2022), with extensive use of data.table
(Dowle and Srinivasan, 2021), and tidyverse (Wickham et al., 2019) for data manipulation, and tidyverse and
patchwork (Pedersen, 2020) for visualisation.

Results and discussion

Sequence Variation Across the Genome of Maize
Sequence data from 1,276 maize individuals generated as part of eight different studies (Brandenburg ef al., 2017,
Bukowski et al., 2018; Chen et al., 2022; Chia et al., 2012; Kistler et al., 2018; Qiu et al., 2021; Unterseer et al.,
2014b; Wang et al., 2020, 2017) were retrieved from the European Nucleotide Archive. To this public dataset, we
added data from de novo resequencing of 228 maize inbred lines which are part of the expanded Wisconsin Diversity
Panel (Mazaheri et al., 2019) but were not resequenced as part of previous efforts (Bukowski et al., 2018; Qiu et al.,
2021). An average of 155 million reads were generated for each of these inbred lines, corresponding to an average
sequencing depth of approximately 22x. Additionally, a set of 11 maize inbred lines from Poland, representative of
eastern Europe, a region only modestly represented among previous maize resequencing efforts were resequenced
here to an average depth of ~35x. Those lines were used in previous studies on maize cold response (Grzybowski
et al., 2019; Sowinski et al., 2005). The total set of 1,515 maize accessions included wild relatives, archaeological
samples, modern open-pollinated varieties, and inbred lines from both public and private sector breeding efforts
representing the maize lines originating in or developed over six continents (Table S1).

Aligning sequence data from each of these accessions to the maize B73_RefGen_5 reference genome (Hufford
et al., 2021) and applying recommended filtering criteria from GATK resulted in the identification of 365,611,965
potential DNA sequence polymorphisms. This number is substantially higher than ~83 million variants identified in
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the maize HapMap3 project, one of the largest surveys of maize genetic diversity conducted to date, incorporating
data from 1,218 maize accessions (Bukowski et al., 2018). However, it should be emphasized that HapMap3 utilized
a different variant calling pipeline and that the median sequencing depth of samples in that study was ~2x. A
more recent study that examined the genetic differentiation of male and female heterotic groups in maize using
resequencing data from 1,604 maize inbred lines, primarily from China and the USA, resequenced to an average
depth of ~7.5x identified ~242 million DNA sequence polymorphisms (Li et al., 2022).

Second-stage quality filtering (based on allele number, missing data rates, sequence depth, and excess heterozy-
gosity, see Methods) resulted in a smaller set of 46,054,265 higher confidence variants, including 43,296,332 SNPs
and 2,757,933 InDels (Figure. S1). The median total sequencing depth for higher confidence variants was 17,365
(Figure. S2), corresponding to an average sequence depth of 11.5 reads per site per individual. Concordance rates for
SNP calls among the 26 NAM founder parents (Hufford et al., 2021) and SNP calls reported as part of the de novo
sequence assembly of these parents ranged from 92% to 99% with a mean value of 98% (Table S2). Among these
higher confidence variable sites, the median accession was genotyped as heterozygous 2.8% of the time. However,
per-accession heterozygosity rates varied significantly across groups (Figure S4). Heterozygous calls were more
common in pericentromeric regions (Figure S4). Groups expected to consist primarily of inbred lines, such as those
classified as belonging to the stiff stalk, non stiff stalk, and iodent heterozygous groups typically exhibited per-
accession heterozygosity values of <3%. Accessions classified as wild-relatives frequently exhibited per-accession
heterozygosity values of >10% (Figure S4, Table S1). Inbred lines with unexpectedly high heterozygosity were not
removed from the final dataset however they should be used with caution as these may represent contaminated or
mislabeled samples.

While many high confidence SNPs (41%) and InDels (38%) were rare, defined here as a minor allele frequency
< 5%, more than 26 million variants were common defined as a minor allele frequency >5% (25,154,632 SNPs and
1,704,190 InDels) (Figure 1b&d). Segregating SNPs were more common around pericentromeric regions (Figure 1a)
while segregating InDels were more frequent on chromosome arms and less frequent in pericentromeric regions
(Figure 2c). The relationship between distance from the centromere and SNP or InDel density was extremely weak
but statistically significant for each chromosome (Figure S5), similar to the pattern of SNPs and InDels reported
in sorghum (Lozano et al., 2021). Linkage disequilibrium was typically elevated in pericentromeric regions likely
reflecting lower recombination rates in these regions (Figure le). The pattern of elevated linkage disequilibrium
around the centromere was less prominent on chromosome 10, consistent with previous reports (Romero Navarro
et al., 2017). Several other peaks of elevated linkage disequilibrium were observed which did not coincide with the
known positions of maize centromeres. One potential explanation is that these peaks may represent large segregating
structural variants (Crow et al., 2020) however validating hypothesis is beyond the scope of this paper. The majority
of high confidence variants (57%) were located in intragenic regions, defined as those regions > 5 Kb from the
closest annotated exon. Another 31% of variants were located in regions outside annotated genes but < 5 Kb from
the closest gene (Figure 1f). Among variants located between the annotated transcription start sites and transcription
stop sites of genes, intronic variants were most abundant (8.6%), followed by 5’- and 3’ UTR (0.7 and 0.9%) and
coding sequence (0.4%).
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Figure 1. Properties of high confidence maize genetic variants identified in this study. The distribution of high
confidence, and common (MAF > 5%, ~27 million) (a) SNPs and (c) InDels across each of the 10 maize
chromosomes. For both (a) & (b) the genome was divided into non-overlapping 100 Kb windows and SNPs and
InDels were counted in each window. Distribution of minor allele frequency of high confidence (~46 million) (b)
SNPs and (d) InDels. (e) Mean LD value in 100 Kb window calculated with high confidence, and common (MAF >
5%) SNPs. Black triangles indicate the centromere position on each chromosome. (f) Percentage of variants across
the major genic and intergenic regions calculated with high confidence variant set.

Intra- and Inter-Population Genetic Variation

Of the 1,515 maize samples used in this study, 760 were assigned to one of ten groups through a combination
of prior publication data and metadata associated with USDA GRIN records. These ten groups included three
groups of wild relatives — Zea mays ssp. mexicana (n=79, hereafter mexicana), Zea mays ssp. parviglumis (n=84,
hereafter parviglumis), and other wild relatives (n=66). Among these samples, four groups based on geographic
origin — tropical (n=86), South America (n=48), China (n=182), Europe (n=34) — and three based on a combination
of geographic origin and heterotic group — temperate North American stiff stalk (n=193), non-stiff stalk (n=127),
and iodent (n=69). The remaining 549 lines were classified as "other" in the analyses below. All together, this set
of lines comes from 35 countries across six continents (Figure 2a). Lines tended to cluster based on the group
assignment in analyses of population structure conducted using the genetic marker data generated in this study
(Figure 2b and S6). The first principal component of variation for genetic marker data roughly corresponded to the
division between the maize and other maize wild relatives (Figure 2b). The second principal component separates
stiff stalk and non-stiff stalk heterotic groups, alternatively, to how closely a line is related to B73, the reference
genotype for maize. Finally, the third principal component corresponds to latitudinal geographic distribution, with
South American lines at one extreme, followed by tropical and wild populations, then Chinese, European, and North
American temperate populations, and other wild relatives (Figure 2b).

High-density genetic marker data is useful for both population genetic and quantitative genetic analyses (Mural
et al., 2021). Many population genetic analyses require measurements of plant traits. When trait data is collected
in different environments, variance resulting from differences in genotype is confounded with variance resulting
from different environments, reducing statistical power to link genotype and phenotype. Growing and phenotyping
large plant populations in common environments can more effectively isolate contributions of genetic variation to
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phenotypic variation, at least in that specific environment. However, this presents a challenge in capturing global
genetic diversity in species such as maize where different lines are adapted to different environments and may not
even be able to successfully complete their lifecycles in environments to which they are not adapted. Efforts to
establish common association panels for quantitative genetic analysis in maize including the Maize Association
Panel (MAP) (Flint-Garcia et al., 2005), Shoot Apical Meristem association panel (SAM) (Leiboff et al., 2015), and
the Wisconsin Diversity Panel (WiDiv) (Hansey et al., 2011) have required researchers to prioritize the partially
contradictory goals of maximizing genetic diversity while also selecting for a set of genotypes that can all grow and
successfully complete their life cycles in a single common environment. Based on marker data for 798 genotypes
from the WiDiv panel included in this study, linkage disequilibrium decays roughly as fast within the WiDiv panel
as with the set of all northern temperate lines (1090 lines defined as all those excluding teosinte, tropical, and
South America lines) but mostly more slowly than the rate of linkage disequilibrium decay among all 1,515 lines
included in this study (Figure 2c). LD decayed fastest among the two maize wild relative populations with the
largest number of samples: mexicana and parviglumis. The median value of 7 observed for randomly selected
intervals in the maize genome within the WiDiv population was 0.00376, similar to the median observed for all
temperate lines (7=0.00374), but lower than when calculated for the population of all genotypes included in this
study (r=0.00443; Figure 2d). The difference in 7 for the overall population is likely driven by the inclusion of
wild relatives in the overall population as these populations exhibit elevated 7 values of mexicana (7=0.00480) and
parviglumis (1=0.00490). Previous study indicate that 83% of nucleotide variation from teosinte being retained in
maize landraces (Hufford ef al., 2012). Here we found that WiDiv lines retain 76% of nucleotide variation observed
in parviglumis, which indicate that a substantial portion of genetic variation is still present in this northern temperate
set of lines.
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Figure 2. Geographical distribution, population structure, LD patterns, and nucleotide diversity in maize. a
Geographical distribution of the country of origin for 1,515 maize individuals.b First three principal components
from PCA analysis on 1515 maize individuals. Each individual was assigned to different groups based on previous
literature data. ¢ Genome-wide averaged distance of LD decay for six maize groups. d Nucleotide diversity for six
maize groups. High confident common (MAF > 5%) variant set were used for each analysis.
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Greater Utility of Existing Trait Data as Marker Density Increases

Community association panels are typically reused by many research groups working to study the genetic control of
variation in different traits of interest. A recent literature study identified more than 160 distinct trait datasets scored
across North American temperate maize association panels between 2010 and 2020 (Mural et al., 2022). During
the past seventeen years, the density of publicly available markers for maize association panels has grown from 94
microsatellite markers (Flint-Garcia et al., 2005) to 1,536 microarray-based SNP markers (Hansey et al., 2011) to
hundreds of thousands of markers scored using genotyping by sequencing (Romay et al., 2013) and approximately
one million markers scored using RNA-seq (Leiboff ef al., 2015; Mazaheri et al., 2019) and now typically include
tens of millions of markers discovered and scored via whole genome resequencing (Bukowski et al., 2018; Chen
etal., 2022; Li et al., 2022; Qiu et al., 2021; Wang et al., 2020) or a combination of whole genome resequencing
for a subset of lines and imputation from lower density markers for additional lines (Mural ef al., 2022; Sun et al.,
2022).

We employed a previously published set of female flowering data (days to silking) generated for 752 temperate
adapted maize inbreds to assess the impact of increased marker density vs direct resequencing (this study) on the
outcomes from genome wide association studies in maize. When using ~400k markers discovered and scored
using RNA-seq (MAF > 5% in 752 lines) (Mazaheri et al., 2019), a genome wide association study identified one
statistically significant signal corresponding to the cloned maize flowering time gene MADS69 ((Liang et al., 2019);
Figure 3a). A genome wide association study conducted using the new, purely whole genome resequencing based
marker dataset generated in this study identified both MADS69 and ZCNS8 (Figure 3b). Overall, the newly generated
variant dataset increases the power to detect causal genes and doesn’t increase p-value inflation (Figure S7).

In addition to the total number of confident signals identified, an additional potential benefit of higher-density
genetic marker data is the more precise localization of peaks to only one or several candidate genes. The peak
corresponding to MADS69 included 29 markers which were significant at a Bonferroni corrected p-value of 0.01.
These markers span a region of 410,350 bp that includes 3 annotated genes. However, the peak SNP (e.g. the single
SNP with the most significant p-value) was 8,507 bases from MADS69 and MADS69 was the closest gene to this
SNP (Figure 4a). The peak corresponding to ZCNS included 35 significant markers which were significant at a
Bonferroni corrected p-value of 0.01. These markers span a region of 349,944 bases that includes 7 annotated genes.
In this case the peak SNP was 18,912 bases from ZCNS and three genes separated ZCNS from the peak SNP (Figure
4b).

The diverse composition of the population used for genotyping in this study creates an opportunity to detect
patterns of selection in the genome and track changes in favorable allele frequency of variants associated with traits
of interest, during domestication, adaptation to a new environment, or genetic improvement during modern breeding.
Since flowering plays an important role in local adaptation, we attempted to evaluate patterns of selection around
the two known flowering time genes identified above. We observed a clear reduction in nucleotide diversity in the
promoter of MADS69 in tropical and temperate maize lines relative to parviglumis (Figure 4a), consistent with
previous report (Liang et al., 2019). The most significantly associated SNP for days to silking in the MADS69 gene
region was located at position 161,177,471. The reference allele (T) was associated with more rapid female silking
relative to the alternate allele (C), with a mean difference of ~5 days (Figure 4a). In both mexicana and parviglumis
populations only the slower flowering C allele was observed (Figure 4a). In lines classified as belonging to the
tropical or Chinese populations, the C allele was predominant. In contrast, the T allele was the more common in the
three North American populations (stiff stalk, non-stiff stalk, and iodent). The T allele was particularly common
among lines classified as belonging to the iodent heterotic group. Similarly, the T allele also made up the majority
of genotype calls among European maize lines included in this study. The large increase of frequency of shorter
flowering T allele in temperate adapted lines is consistent with strong selection on MADS69 during maize adaptation
to temperate climates.

The second known flowering time gene identified in this study was ZCNS8, which has been previously shown
to contribute to maize adaption to temperate climates and to have experienced a decline in nucleotide diversity in
domesticated maize relative to wild teosinte accessions which is in the parity with the conclusion that ZCN8 was
likely a target of selection during maize domestication (Guo et al., 2018). However, the greater representation of
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Figure 3. Identification of the candidate genes for flowering time (days to silking) via GWAS. a Association
between days to silking, as reported in Mural et al. (2022), and 428,487 segregating SNPs identified and genotyped
using RNA-seq data in Mazaheri ef al. (2019).b Association test for days to silking using the marker set defined in
this study (n = 16,634,049). The horizontal dashed line on each plot indicates an o = 1% significance threshold after
applying Bonferroni correction assuming n number of variants in each dataset as independent tests.

different maize groups included in this study enabled the more specific identification of a decline in nucleotide
diversity specifically between temperate and tropical domesticated maize populations, while tropical maize retained
similar diversity to teosinte at this locus (Figure 4b). This result is consistent with selection on ZNC8 occurring
during adaptation to temperate conditions rather than during domestication.

The single most significant marker at the ZCNS locus was a C/T SNP at position 126,660,665 on chromosome 8.
The T allele appears to be the derived allele and the median line homozygous for T at this position flowered 10.7 days
earlier than the median line homozygous for the C allele. While additional markers at the ZCNS locus that were not
in LD (<0.2) with the most significant marker also exhibited a statistically significant association with flowering time,
a haplotype based model that incorporated information from the top not-in-linkage SNP (chr8:126,689,419) did not
significantly improve the predictive ability for flowering time vs a single marker model. The rapid flowering allele at
ZCNS8 was observed at extremely low frequencies in North American temperate germplasm. Almost all individuals
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homozygous for the rapid flowering allele originated in Europe (Figure 4b), demonstrating the importance of
sampling broader global germplasm pools to have greater power to identify functional variants primarily segregating
in only individual geographic regions.
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Figure 4. MADS69 and ZNC8 are associated with flowering time and were target of selection. Top panel:
zoom in on GWAS peak around MADS69 (a) and ZNCS8 (b). Linkage disequilibrium (LD) were calculated in each
loci against top associated SNP: chr3:161,177,471 and chr8:126,660,665 (marked as red triangles). Horizontal
dashed line indicates genome wide Bonferroni correction level. Vertical red dashed lines mark the position of the
gene of interest. Middle panel: nucleotide diversity in three maize groups. Gene body of MADS69 ZNC8 were
marked at the bottom. Bottom left panels: Allele effect of chr3:161,177,471 (a) and chr8:126,660,665 (b) on DTS.
Bottom right panels: Changes of allele frequency of chr3:161,177,471 (a) and chr8:126,660,665 (b) in eight maize
groups. SS - stiff stalk, NSS - non-stif-stalk, IDT - iodent.

Conclusion

In summary, we perform a large-scale joint variant calling for 1,515 maize individuals, which include a wide range
of maize accessions from multiple continents and eras and discover more than 46 million high-confidence sequence
variants. In addition to releasing new sequence data for 239 new maize inbreds, we also release raw and filtered
variant lists as well as processed GenomeDB files that will allow this SNP set to be further extended and expanded
without the need to realign previously processed samples to the maize reference genome. We have shown that the
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new variant set accurately describes the population structure used in this study and improves power in genome wide
association studies relative to the previous state-of-the-art marker datasets for a large maize association panel.

Acknowledgements

This project was supported by U.S. Department of Energy, Grant no. DE-SC0020355, the National Science
Foundation under grant OIA-1826781, USDA-NIFA under the Al Institute: for Resilient Agriculture, Award No.
2021-67021-35329, the Foundation for Food and Agriculture Research Award No. 602757, and National Science
Center (NCN), Poland, Grant no. 2012/05/B/NZ9/03407 and 2017/27/B/NZ9/00995. This project was completed
utilizing the Holland Computing Center of the University of Nebraska, which receives support from the Nebraska
Research Initiative.

Data availability

The additional resequencing data generated as part of this project has been deposited in the European Nucleotide
Archive (ENA) under the study accession numbers: PRIEB56265, PRJEB56295, and PRJEB56320. Raw VCF files
for all 366 million variants identified in this study, imputed VCEF files for the 46 million quality and minor allele
frequency filtered variations identified as part of this study and GATK GenomicsDBs files to enable new SNP calling
with additional populations have been deposited at CyVerse and are available for download from:
https://datacommons.cyverse.org/browse/iplant/home/shared/Grzybowski_MaizeSNPset_2022
Please note that the link above will be augmented with a permanent DOI upon publication.

Author contributions

JCS and MWG conceived the study. JT conducted experiments and generated data. JY and GX provided advice
and feedback on the design of experiments and analyses. MWG and RVM designed and conducted analyses and
visualized the results. MWG, RVM and JCS composed the initial draft of the manuscript. All authors contributed to
writing and editing and approved the final version of the manuscript.

Competing Interest Statement

James C. Schnable has equity interests in Data2Bio, LLC; Dryland Genetics LLC; and EnGeniousAg LLC. He is a
member of the scientific advisory board of GeneSeek and currently serves as a guest editor for The Plant Cell. The
authors declare no other conflicts of interest.

References

2019 Picard toolkit. https://broadinstitute.github.io/picard/.

Brandenburg, J.-T., T. Mary-Huard, G. Rigaill, S. J. Hearne, H. Corti, J. Joets, C. Vitte, A. Charcosset, S. D. Nicolas,
and M. L. Tenaillon, 2017 Independent introductions and admixtures have contributed to adaptation of european
maize and its american counterparts. PLoS genetics 13: e1006666.

Browning, B. L., Y. Zhou, and S. R. Browning, 2018 A one-penny imputed genome from next-generation reference
panels. The American Journal of Human Genetics 103: 338-348.

Buckler, E. S., B. S. Gaut, and M. D. McMullen, 2006 Molecular and functional diversity of maize. Current opinion
in plant biology 9: 172-176.

Bukowski, R., X. Guo, Y. Lu, C. Zou, B. He, Z. Rong, B. Wang, D. Xu, B. Yang, C. Xie, et al., 2018 Construction of
the third-generation zea mays haplotype map. Gigascience 7: gix134.

Chen, L., J. Luo, M. Jin, N. Yang, X. Liu, Y. Peng, W. Li, A. Philips, B. Cameron, J. Bernal, et al., 2022 Genome
sequencing reveals evidence of adaptive variation in the genus zea. Nature Genetics .

Chen, S., Y. Zhou, Y. Chen, and J. Gu, 2018 fastp: an ultra-fast all-in-one fastq preprocessor. Bioinformatics 34:
1884-1890.

13/24


https://broadinstitute.github.io/picard/
https://doi.org/10.1101/2022.10.28.514203
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.28.514203; this version posted October 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Chia, J.-M., C. Song, P. J. Bradbury, D. Costich, N. De Leon, J. Doebley, R. J. Elshire, B. Gaut, L. Geller, J. C.
Glaubitz, et al., 2012 Maize hapmap?2 identifies extant variation from a genome in flux. Nature genetics 44:
803-807.

Chiang, C., R. M. Layer, G. G. Faust, M. R. Lindberg, D. B. Rose, E. P. Garrison, G. T. Marth, A. R. Quinlan, and
I. M. Hall, 2015 Speedseq: ultra-fast personal genome analysis and interpretation. Nature methods 12: 966-968.

Crow, T., J. Ta, S. Nojoomi, M. R. Aguilar-Rangel, J. V. Torres Rodriguez, D. Gates, R. Rellan-Alvarez, R. Sawers,
and D. Runcie, 2020 Gene regulatory effects of a large chromosomal inversion in highland maize. PLoS genetics
16: €1009213.

Da Fonseca, R. R., B. D. Smith, N. Wales, E. Cappellini, P. Skoglund, M. Fumagalli, J. A. Samaniego, C. Carge,
M. C. Avila-Arcos, D. E. Hufnagel, et al., 2015 The origin and evolution of maize in the southwestern united
states. Nature plants 1: 1-5.

Danecek, P., A. Auton, G. Abecasis, C. A. Albers, E. Banks, M. A. DePristo, R. E. Handsaker, G. Lunter, G. T.
Marth, S. T. Sherry, et al., 2011 The variant call format and vcftools. Bioinformatics 27: 2156-2158.

Danecek, P., J. K. Bonfield, J. Liddle, J. Marshall, V. Ohan, M. O. Pollard, A. Whitwham, T. Keane, S. A. McCarthy,
R. M. Davies, et al., 2021 Twelve years of samtools and bcftools. Gigascience 10: giab00S.

Dowle, M. and A. Srinivasan, 2021 data.table: Extension of ‘data.frame’. R package version 1.14.2.

Elshire, R. J., J. C. Glaubitz, Q. Sun, J. A. Poland, K. Kawamoto, E. S. Buckler, and S. E. Mitchell, 2011 A robust,
simple genotyping-by-sequencing (gbs) approach for high diversity species. PloS one 6: €19379.

Faust, G. G. and 1. M. Hall, 2014 Samblaster: fast duplicate marking and structural variant read extraction.
Bioinformatics 30: 2503-2505.

Flint-Garcia, S. A., A.-C. Thuillet, J. Yu, G. Pressoir, S. M. Romero, S. E. Mitchell, J. Doebley, S. Kresovich, M. M.
Goodman, and E. S. Buckler, 2005 Maize association population: a high-resolution platform for quantitative trait
locus dissection. The plant journal 44: 1054—-1064.

Ganal, M. W., G. Durstewitz, A. Polley, A. Bérard, E. S. Buckler, A. Charcosset, J. D. Clarke, E.-M. Graner,
M. Hansen, J. Joets, et al., 2011 A large maize (zea mays l.) snp genotyping array: development and germplasm
genotyping, and genetic mapping to compare with the b73 reference genome. PloS one 6: €28334.

Grzybowski, M., J. Adamczyk, M. Joriczyk, A. Sobkowiak, J. Szczepanik, K. Frankiewicz, J. Fronk, and P. Sowifiski,
2019 Increased photosensitivity at early growth as a possible mechanism of maize adaptation to cold springs.
Journal of experimental botany 70: 2887-2904.

Gui, S., W. Wei, C. Jiang, J. Luo, L. Chen, S. Wu, W. Li, Y. Wang, S. Li, N. Yang, ef al., 2022 A pan-zea genome
map for enhancing maize improvement. Genome biology 23: 1-22.

Guo, L., X. Wang, M. Zhao, C. Huang, C. Li, D. Li, C. J. Yang, A. M. York, W. Xue, G. Xu, et al., 2018 Stepwise
cis-regulatory changes in zcn8 contribute to maize flowering-time adaptation. Current biology 28: 3005-3015.
Hansey, C. N., J. M. Johnson, R. S. Sekhon, S. M. Kaeppler, and N. De Leon, 2011 Genetic diversity of a maize

association population with restricted phenology. Crop Science 51: 704-715.

Hirsch, C. N., J. M. Foerster, J. M. Johnson, R. S. Sekhon, G. Muttoni, B. Vaillancourt, F. Pefiagaricano, E. Lindquist,
M. A. Pedraza, K. Barry, ef al., 2014 Insights into the maize pan-genome and pan-transcriptome. The Plant Cell
26: 121-135.

Ho, P.-t., 1955 The introduction of american food plants into china. American Anthropologist 57: 191-201.

Hufford, M. B., A. S. Seetharam, M. R. Woodhouse, K. M. Chougule, S. Ou, J. Liu, W. A. Ricci, T. Guo, A. Olson,
Y. Qiu, et al., 2021 De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes. Science
373: 655-662.

Hufford, M. B., X. Xu, J. Van Heerwaarden, T. Pyhégjarvi, J.-M. Chia, R. A. Cartwright, R. J. Elshire, J. C.
Glaubitz, K. E. Guill, S. M. Kaeppler, ef al., 2012 Comparative population genomics of maize domestication and
improvement. Nature genetics 44: 808—811.

Hung, H.-Y., L. M. Shannon, F. Tian, P. J. Bradbury, C. Chen, S. A. Flint-Garcia, M. D. McMullen, D. Ware,
E. S. Buckler, J. F. Doebley, et al., 2012 Zmcct and the genetic basis of day-length adaptation underlying the
postdomestication spread of maize. Proceedings of the National Academy of Sciences 109: E1913-E1921.

14/24


https://doi.org/10.1101/2022.10.28.514203
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.28.514203; this version posted October 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Kistler, L., S. Y. Maezumi, J. Gregorio de Souza, N. A. Przelomska, F. Malaquias Costa, O. Smith, H. Loiselle,
J. Ramos-Madrigal, N. Wales, E. R. Ribeiro, et al., 2018 Multiproxy evidence highlights a complex evolutionary
legacy of maize in south america. Science 362: 1309—-1313.

Leiboff, S., X. Li, H.-C. Hu, N. Todt, J. Yang, X. Li, X. Yu, G. J. Muehlbauer, M. C. Timmermans, J. Yu, et al., 2015
Genetic control of morphometric diversity in the maize shoot apical meristem. Nature Communications 6: 1-10.

Li, C., H. Guan, X. Jing, Y. Li, B. Wang, Y. Li, X. Liu, D. Zhang, C. Liu, X. Xie, et al., 2022 Genomic insights into
historical improvement of heterotic groups during modern hybrid maize breeding. Nature Plants pp. 1-14.

Li, H., 2013 Aligning sequence reads, clone sequences and assembly contigs with bwa-mem. arXiv preprint
arXiv:1303.3997 .

Liang, Y., Q. Liu, X. Wang, C. Huang, G. Xu, S. Hey, H.-Y. Lin, C. Li, D. Xu, L. Wu, et al., 2019 ZmMADS69
functions as a flowering activator through the zmrap2.7-zcn 8 regulatory module and contributes to maize flowering
time adaptation. New Phytologist 221: 2335-2347.

Lozano, R., E. Gazave, J. P. Dos Santos, M. G. Stetter, R. Valluru, N. Bandillo, S. B. Fernandes, P. J. Brown,
N. Shakoor, T. C. Mockler, et al., 2021 Comparative evolutionary genetics of deleterious load in sorghum and
maize. Nature Plants 7: 17-24.

Matsuoka, Y., Y. Vigouroux, M. M. Goodman, J. Sanchez G, E. Buckler, and J. Doebley, 2002 A single domestication
for maize shown by multilocus microsatellite genotyping. Proceedings of the National Academy of Sciences 99:
6080-6084.

Mazaheri, M., M. Heckwolf, B. Vaillancourt, J. L. Gage, B. Burdo, S. Heckwolf, K. Barry, A. Lipzen, C. B. Ribeiro,
T. J. Kono, et al., 2019 Genome-wide association analysis of stalk biomass and anatomical traits in maize. BMC
plant biology 19: 1-17.

Mural, R. V., M. Grzybowski, C. Miao, A. Damke, S. Sapkota, R. E. Boyles, M. G. Salas Fernandez, P. S. Schnable,
B. Sigmon, S. Kresovich, et al., 2021 Meta-analysis identifies pleiotropic loci controlling phenotypic trade-offs in
sorghum. Genetics 218: iyab087.

Mural, R. V., G. Sun, M. Grzybowski, M. C. Tross, H. Jin, C. Smith, L. Newton, C. M. Andorf, M. R. Woodhouse,
A. M. Thompson, et al., 2022 Association mapping across a multitude of traits collected in diverse environments
in maize. GigaScience 11.

Nei, M. and W.-H. Li, 1979 Mathematical model for studying genetic variation in terms of restriction endonucleases.
Proceedings of the National Academy of Sciences 76: 5269-5273.

Pedersen, T. L., 2020 patchwork: The Composer of Plots. R package version 1.1.1.

Piperno, D. R., A.J. Ranere, 1. Holst, J. Iriarte, and R. Dickau, 2009 Starch grain and phytolith evidence for early
ninth millennium bp maize from the central balsas river valley, mexico. Proceedings of the National Academy of
Sciences 106: 5019-5024.

Poplin, R., V. Ruano-Rubio, M. A. DePristo, T. J. Fennell, M. O. Carneiro, G. A. Van der Auwera, D. E. Kling,
L. D. Gauthier, A. Levy-Moonshine, D. Roazen, et al., 2018 Scaling accurate genetic variant discovery to tens of
thousands of samples. BioRxiv p. 201178.

Purcell, S., B. Neale, K. Todd-Brown, L. Thomas, M. A. Ferreira, D. Bender, J. Maller, P. Sklar, P. I. De Bakker,
M. J. Daly, et al., 2007 Plink: a tool set for whole-genome association and population-based linkage analyses.
The American journal of human genetics 81: 559-575.

Qiu, Y., C. H. O’Connor, R. Della Coletta, J. S. Renk, P. J. Monnahan, J. M. Noshay, Z. Liang, A. Gilbert, S. N.
Anderson, S. E. McGaugh, et al., 2021 Whole-genome variation of transposable element insertions in a maize
diversity panel. G3 11: jkab238.

Quinlan, A. R. and 1. M. Hall, 2010 Bedtools: a flexible suite of utilities for comparing genomic features. Bioinfor-
matics 26: 841-842.

R Core Team, 2022 R: A Language and Environment for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria.

Renk, J. S., A. M. Gilbert, T. J. Hattery, C. H. O’Connor, P. J. Monnahan, N. Anderson, A. J. Waters, D. P. Eickholt,
S. A. Flint-Garcia, M. D. Yandeau-Nelson, et al., 2021 Genetic control of kernel compositional variation in a
maize diversity panel. The Plant Genome 14: €20115.

15/24


https://doi.org/10.1101/2022.10.28.514203
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.28.514203; this version posted October 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Romay, M. C., M. J. Millard, J. C. Glaubitz, J. A. Peiffer, K. L. Swarts, T. M. Casstevens, R. J. Elshire, C. B.
Acharya, S. E. Mitchell, S. A. Flint-Garcia, et al., 2013 Comprehensive genotyping of the usa national maize
inbred seed bank. Genome biology 14: 1-18.

Romero Navarro, J. A., M. Willcox, J. Burguefio, C. Romay, K. Swarts, S. Trachsel, E. Preciado, A. Terron, H. V.
Delgado, V. Vidal, et al., 2017 A study of allelic diversity underlying flowering-time adaptation in maize landraces.
Nature genetics 49: 476—480.

Sowinski, P., A. Rudziiska-Langwald, J. Adamczyk, I. Kubica, and J. Fronk, 2005 Recovery of maize seedling
growth, development and photosynthetic efficiency after initial growth at low temperature. Journal of Plant
Physiology 162: 67-80.

Sun, G., R. V. Mural, J. D. Turkus, and J. C. Schnable, 2022 Quantitative resistance loci to southern rust mapped in
a temperate maize diversity panel. Phytopathology® 112: 579-587.

Swanson-Wagner, R. A., S. R. Eichten, S. Kumari, P. Tiffin, J. C. Stein, D. Ware, and N. M. Springer, 2010 Pervasive
gene content variation and copy number variation in maize and its undomesticated progenitor. Genome research
20: 1689-1699.

Swarts, K., R. M. Gutaker, B. Benz, M. Blake, R. Bukowski, J. Holland, M. Kruse-Peeples, N. Lepak, L. Prim, M. C.
Romay, et al., 2017 Genomic estimation of complex traits reveals ancient maize adaptation to temperate north
america. Science 357: 512-515.

Tarasov, A., A. J. Vilella, E. Cuppen, L. J. Nijman, and P. Prins, 2015 Sambamba: fast processing of ngs alignment
formats. Bioinformatics 31: 2032-2034.

Tenaillon, M. I. and A. Charcosset, 2011 A european perspective on maize history. Comptes rendus biologies 334:
221-228.

Unterseer, S., E. Bauer, G. Haberer, M. Seidel, C. Knaak, M. Ouzunova, T. Meitinger, T. M. Strom, R. Fries,
H. Pausch, et al., 2014a A powerful tool for genome analysis in maize: development and evaluation of the high
density 600 k snp genotyping array. BMC genomics 15: 1-15.

Unterseer, S., E. Bauer, G. Haberer, M. Seidel, C. Knaak, M. Ouzunova, T. Meitinger, T. M. Strom, R. Fries,
H. Pausch, et al., 2014b A powerful tool for genome analysis in maize: development and evaluation of the high
density 600 k snp genotyping array. BMC genomics 15: 1-15.

Van Heerwaarden, J., J. Doebley, W. H. Briggs, J. C. Glaubitz, M. M. Goodman, J. de Jesus Sanchez Gonzalez, and
J. Ross-Ibarra, 2011 Genetic signals of origin, spread, and introgression in a large sample of maize landraces.
Proceedings of the National Academy of Sciences 108: 1088—1092.

VanRaden, P. M., 2008 Efficient methods to compute genomic predictions. Journal of dairy science 91: 4414-4423.

Wang, B., Z. Lin, X. Li, Y. Zhao, B. Zhao, G. Wu, X. Ma, H. Wang, Y. Xie, Q. Li, et al., 2020 Genome-wide
selection and genetic improvement during modern maize breeding. Nature Genetics 52: 565-571.

Wang, L., T. M. Beissinger, A. Lorant, C. Ross-Ibarra, J. Ross-Ibarra, and M. B. Hufford, 2017 The interplay of
demography and selection during maize domestication and expansion. Genome biology 18: 1-13.

Wickham, H., M. Averick, J. Bryan, W. Chang, L. D. McGowan, R. Francois, G. Grolemund, A. Hayes, L. Henry,
J. Hester, et al., 2019 Welcome to the tidyverse. Journal of Open Source Software 4: 1686.

Yang, J., S. H. Lee, M. E. Goddard, and P. M. Visscher, 2011 Gcta: a tool for genome-wide complex trait analysis.
The American Journal of Human Genetics 88: 76-82.

Yang, N, J. Liu, Q. Gao, S. Gui, L. Chen, L. Yang, J. Huang, T. Deng, J. Luo, L. He, et al., 2019 Genome assembly
of a tropical maize inbred line provides insights into structural variation and crop improvement. Nature genetics
51: 1052-1059.

Yin, L., H. Zhang, Z. Tang, J. Xu, D. Yin, Z. Zhang, X. Yuan, M. Zhu, S. Zhao, X. Li, et al., 2021 rmvp: a memory-
efficient, visualization-enhanced, and parallel-accelerated tool for genome-wide association study. Genomics,
proteomics & bioinformatics 19: 619-628.

Yu, J., G. Pressoir, W. H. Briggs, 1. Vroh Bi, M. Yamasaki, J. F. Doebley, M. D. McMullen, B. S. Gaut, D. M.
Nielsen, J. B. Holland, ef al., 2006 A unified mixed-model method for association mapping that accounts for
multiple levels of relatedness. Nature genetics 38: 203-208.

16/24


https://doi.org/10.1101/2022.10.28.514203
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.28.514203; this version posted October 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Zhang, C., S.-S. Dong, J.-Y. Xu, W.-M. He, and T.-L. Yang, 2019 Poplddecay: a fast and effective tool for linkage
disequilibrium decay analysis based on variant call format files. Bioinformatics 35: 1786—1788.

17/24


https://doi.org/10.1101/2022.10.28.514203
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.28.514203; this version posted October 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Table S1. Summary of sequenced lines. Provided as Excel file.

Table S2. Comparison of SNPs yielded in this study with those in Hufford ez al. (2021)

Inbred line

Concordance rate

B73

B97
CML228
CML247
CML277
CML322
CML333
CML52
CML69
HP301
1114H
Kill

Ki3
Ky21
M162W
MO18W
MS71
NC350
NC358
Oh43
Oh7B
P39
Tx303
Tzi8

0.99
0.98
0.98
0.98
0.98
0.98
0.98
0.96
0.98
0.99
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.98
0.99
0.99
0.98
0.97
0.92
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Table S3. Number of accessions resequenced in the corresponding studies.

Source # of Accessions Target populations Sequencing Depth
Brandenburg et al. (2017) 58 American and European landrace 18X
Bukowski et al. (2018) 214 Various 2X
Chen et al. (2022) 208 Teosinte 22X
Chia et al. (2012) 16 Various 4X
Kistler et al. (2018) 48 South America landrace XXX
Unterseer et al. (2014b) 26 European 16X
Qiu et al. (2021) 473 North American temperate 10-55X
This Study 228 North American temperate 22X
This Study 2 11 Eastern Europe (Poland) 35X
Wang et al. (2017) 35 Central America landrace 29X
Wang et al. (2020) 198 Chinese inbred 13X
Total 1515
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Figure S1. Schematic representation of the approach employed for variant calling and quality filtering in this study.
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Figure S2. Distribution of total aligned read depth for high confidence (~46 million) variant sites identified in this

study.
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Figure S3. Frequency of heterozygous genotype calls for each individual used in this study. Individuals were
assigned to different groups based on previous literature data. Exact heterozygosity rates for each individual plots in

this figure are provided in table S1.
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Figure S4. Example of three inbred lines B114, LH61, and NS501 with unexpectedly high heterozygosity.
Maize genome was divided into 1 Mb bin and number of heterozygous site in each for each line were counted.
Black triangles indicate position of centromere of each chromosome. High confident common (MAF > 5%) variant
set were used for this analysis.
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Figure S5. Relationship between distance to centromere and density of SNPs and InDels. Each dot
corresponds to a single 100 Kb window on the maize genome, with its position on the x-axis indicating the distance
between the bin and the annotated position of the centromere and its position on the y-axis indicating the number of
SNPs (a) or InDels (b) present within that interval. Blue line indicates the slope of a linear regression between
marker density and distance to the centromere. R? indicates pearson coefficient of determination. All R? values
were significant (p < 0.01). The number at the top of each box indicates the maize chromosome number. High
confident common (MAF > 5%) variant set were used for this analysis.
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Figure S6. Distribution of PCA values assigned to the 1,515 maize individuals analyzed in this study for principal
components three to six. Data are plotted and visualized as described in Figure 2b.
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Figure S7. QQ-plots of the two GWAS results shown in Figure 3.
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