

1 A Common Resequencing-Based Genetic Marker 2 Dataset for Global Maize Diversity

3 **Marcin W. Grzybowski^{1,2,3,*}, Ravi V. Mural^{1,2}, Gen Xu^{1,2}, Jonathan Turkus^{1,2}, Jinliang
4 Yang^{1,2}, and James C. Schnable^{1,2,**}**

5 ¹Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE USA

6 ²Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE USA

7 ³Department of Plant Molecular Ecophysiology, Institute of Plant Experimental Biology and Biotechnology, Faculty
8 of Biology, University of Warsaw, Warsaw, Poland

9 ^{*}marcin.grzybowski@uw.edu.pl

10 ^{**}schnable@unl.edu

11 ABSTRACT

12 Maize (*Zea mays* ssp. *mays*) populations exhibit vast amounts of genetic and phenotypic diversity. As sequencing
13 costs have declined, an increasing number of projects have sought to measure genetic differences between
and within maize populations using whole genome resequencing strategies, identifying millions of segregating
single-nucleotide polymorphisms (SNPs) and insertions/deletions (InDels). Unlike older genotyping strategies
like microarrays and genotyping by sequencing, resequencing should, in principle, frequently identify and score
common genetic variants. However, in practice, different projects frequently employ different analytical pipelines,
often employ different reference genome assemblies, and consistently filter for minor allele frequency within
the study population. This constrains the potential to reuse and remix data on genetic diversity generated from
different projects to address new biological questions in new ways. Here we employ resequencing data from 1,276
previously published maize samples and 239 newly resequenced maize samples to generate a single unified
marker set of ~366 million segregating variants and ~46 million high confidence variants scored across crop wild
relatives, landraces as well as tropical and temperate lines from different breeding eras. We demonstrate that the
new variant set provides increased power to identify known causal flowering time genes using previously published
trait datasets, as well as the potential to track changes in the frequency of functionally distinct alleles across the
global distribution of modern maize.

13 Introduction

14 The degree of DNA sequence diversity observed in maize populations exceeds that of humans, most genetic model
15 species, and many wild plants (Buckler *et al.*, 2006). This diversity includes not only small scale variation – single-
16 nucleotide polymorphisms (SNPs) and insertions/deletions (InDels) – but also copy number and presence absence
17 variation (Swanson-Wagner *et al.*, 2010). Scoring large maize populations for common sets of segregating DNA
18 sequence polymorphisms (markers) is a key step in a range of research approaches to identify targets of selection
19 (Hufford *et al.*, 2012; Wang *et al.*, 2020), inferring past demographic events, geographic diffusion (Da Fonseca
20 *et al.*, 2015; Kistler *et al.*, 2018; Swarts *et al.*, 2017), and linking genotype to phenotype (Mural *et al.*, 2022).
21 Early approaches to scoring common sets of genetic markers across large maize populations targeted thousands to
22 hundreds of thousands of known markers, in the case of arrays (Ganal *et al.*, 2011; Unterseer *et al.*, 2014a). Array
23 based genotyping allowed wide reuse and combination of independent datasets generated using the same array
24 platform and, in cases where common probes were retained, between platforms. Reductions in the cost of DNA
25 sequencing enabled sequencing-based strategies combined marker discovery and scoring in a single step (Elshire
26 *et al.*, 2011; Romay *et al.*, 2013). This change reduced the substantial ascertainment bias present in many array based
27 genetic marker datasets. However, combining marker discovery and scoring into a single step created new barriers
28 to combining datasets. It was not possible to target specific known markers to enable interoperability between

29 genotyping platforms. Different approaches to reducing the proportion of the genotype sequenced targeted different subsets of the genome for sequencing. Even when the same region was sequenced in two studies, differences in 30 allele frequency, SNP calling software pipelines, or stochastic distributions of read depths might result in the same 31 marker being identified and scored in one dataset and absent from the other. Sequencing technology has continued 32 to improve and so costs have continued to decline. Whole genome resequencing is now economically viable for 33 even populations of hundreds of maize genotypes. This removes the issue of generating sequence data for largely 34 non-overlapping sites present for earlier sequencing-based strategies. However, combining marker datasets across 35 different studies remains challenging as very different sets of markers will be discovered and pass quality filtering in 36 different populations and/or when using different bioinformatics pipelines.

37 Identifying a common set of genetic variants in maize is challenging, and the optimal set of lines to use in 38 defining a marker set likely depends on the question of interest. Maize was domesticated from a wild progenitor 39 teosinte (*Zea mays* ssp. *parviglumis*) 9,000-10,000 years ago in southwest Mexico (Matsuoka *et al.*, 2002; Piperno 40 *et al.*, 2009) with substantial gene flow from at least one other teosinte (*Zea mays* ssp. *mexicana*) (Chen *et al.*, 2022; 41 Van Heerwaarden *et al.*, 2011). After domestication, maize spread across North and South America (Da Fonseca 42 *et al.*, 2015; Kistler *et al.*, 2018; Swarts *et al.*, 2017). Maize, almost certainly of Caribbean origin, was first cultivated 43 in southern Europe in 1493 and was growing in Germany by 1539 (Tenallon and Charcosset, 2011). By 1555, 44 substantial maize cultivation was already being recorded in Henan, China (Ho, 1955). Therefore, maize was already 45 cultivated on at least four continents in the mid XVI-century. Tropical maize varieties that flower under short-day 46 conditions making them unsuitable for cultivation in regions with killing frosts retain many alleles and haplotypes 47 not found in temperate populations (Hung *et al.*, 2012). Breeding efforts in the United State, Europe, and China 48 focus on temperate-adapted cultivars which are less photoperiod sensitive than tropical maize. In the United States, 49 hybrid production focuses on three heterotic groups, stiff stalk, non-stiff stalk, and iodent, in Europe many hybrids 50 are generated from crosses between the flint and dent heterotic groups, while in China Huangzaosi group was also 51 used alongside stiff stalk, non-stiff stalk, and iodent (Wang *et al.*, 2020). As a result, different research groups 52 studying quantitative genetic variation, domestication, adaptation, or crop improvement have selected different sets 53 of inbred lines, open-pollinated landraces, or maize wild relatives drawn from populations in different parts of the 54 globe.

55 The maize HapMap2 project was motivated in part by understanding changes in genetic diversity associated with 56 maize domestication and improvement. The study identified more than 55 million total variants from an average 57 of 4x resequencing of 103 samples, including 83 individuals representing domesticated maize and 20 individuals 58 drawn from wild relative populations aligned to B73_RefGen_V1 (Chia *et al.*, 2012; Hufford *et al.*, 2012). A project 59 focused on understanding the history and demography of the initial introduction of maize to Europe identified 60 22.3 million SNPs relative to the B73_RefGen_V2 genome by resequencing 67 maize samples originating in the 61 Americas (n=37) and Europe (n=30) to an average depth of 18x (Brandenburg *et al.*, 2017). Given the focus on the 62 introduction of maize to Europe, this study focused primarily on maize lines originating in western (18) and central 63 (11) Europe, with one line sourced from eastern Europe. Another study focused on the pre-Colombian demographic 64 history of maize resequenced 35 maize landraces and wild relatives from the Americas to a median depth of 28x and 65 identified 49.5 million SNPs via alignment to the B73_RefGen_V3 reference genome (Wang *et al.*, 2017). A study 66 of maize domestication and improvement in South America generated data from 49 living and archaeological maize 67 samples and generated a new SNP set by aligning both data from these new samples and 70 published maize datasets 68 to the B73_RefGen_V4 reference genome (Kistler *et al.*, 2018). Resequencing of 521 entry maize association 69 panel to an average depth of 20x identified 11.5 million variants as part of an effort to link structural variation in 70 the genome to changes in gene expression and phenotypic outcomes (Yang *et al.*, 2019). A comparative analysis 71 of phenotypic and genetic changes associated with the breeding effort in different temperate breeding programs 72 generated resequencing data from 350 maize inbreds from China (187) and the United States (163) sequenced to a 73 median depth of 12x and identified more than 29 million genetic markers relative to the B73_RefGen_V3 reference 74 genome (Wang *et al.*, 2020). An effort to quantify SNP and transposon insertion diversity within an association panel 75 used for genome wide association studies identified approximately 2.4 million SNPs and 0.45 million segregating 76 transposon associations across a panel of approximately 500 temperate adapted maize lines (Qiu *et al.*, 2021; Renk 77

78 *et al.*, 2021). Finally, a recent study of genus wide genetic variation in maize identified approximately 65 million
79 SNPs and approximately 8 million InDels by generating 22x average depth sequencing data from 239 accessions of
80 wild relatives (Chen *et al.*, 2022; Gui *et al.*, 2022) in combination with the approximately 500 entry maize diversity
81 panel resequenced in (Yang *et al.*, 2019). The largest scale of these efforts to date is likely the aggregate analysis
82 of 1,218 maize lines as part of the maize HapMap3 project representing global maize diversity, however, higher
83 sequencing costs at the time of this study resulted in lines being resequenced to a median depth of 2x (Bukowski
84 *et al.*, 2018).

85 Here we sought to update and expand the reference set of segregating diversity in maize by incorporating
86 published high coverage resequencing data from maize lines originating on six continents, including resequencing
87 data from lines relative to maize domestication and improvement, including wild relatives, tropical landraces, and
88 archaeological maize samples, as well as maize wild relatives, and to further improve the resolution and mapping
89 power for maize genome wide association studies conducted in the temperate midwest through the resequencing of
90 an additional 239 maize lines including 228 lines from the Wisconsin Diversity panel not previously resequenced
91 and 11 Eastern European lines. To ensure the greatest degree of reusability and forward compatibility, we employed
92 the B73_RefGen_V5 maize reference genome (Hufford *et al.*, 2021) and, in addition to raw and filtered SNP files,
93 we are releasing GATK GenomicsDB datastores so that these same 1,515 lines can be incorporated into future high
94 coverage maize resequencing efforts without the need to reprocess and realign sequence data.

95 Methods

96 Plant material and datasets

97 Whole genome resequencing data from 1,515 total samples were used in this analysis, including 1,276 previously
98 published samples (Brandenburg *et al.*, 2017; Bukowski *et al.*, 2018; Chen *et al.*, 2022; Chia *et al.*, 2012; Kistler
99 *et al.*, 2018; Qiu *et al.*, 2021; Unterseer *et al.*, 2014b; Wang *et al.*, 2020, 2017) and 239 lines resequenced as part of
100 this study. The origin and source of each sample included in this analysis are provided in supplemental table S1.

101 Two hundred twenty-eight inbred lines from the Wisconsin Diversity Panel (Mazaheri *et al.*, 2019) were grown
102 in a greenhouse setting (27°C - 29°C during the day, and 19°C – 21°C at night, with 12 hours light/12 hours
103 dark). After reaching V2, the youngest leaf was harvested onto the ice and was then lyophilized for two days in a
104 Flexi-Dry lyophilizer (FTS Systems Inc. New York). The lyophilized samples were ground to a fine powder at room
105 temperature using 4.76 mm ball bearings in a Tissuelyzer II (Qiagen, Germany). Following the manual's instructions,
106 DNA was extracted from the individual lyophilized and ground samples using the MagMAX Plant DNA Isolation
107 Kit (Thermo Scientific, USA) with the help of a benchtop automated extraction instrument, KingFisher Flex (Thermo
108 Scientific, USA). Raw DNA extracts were quantified using the Quant-iT dsDNA Broad Range Kit (Invitrogen, USA)
109 and normalized to 20ng/uL using an Andrew pipetting robot (Andrew Alliance, USA). Normalized DNA samples
110 were submitted to Psomagen, Inc. (USA) for library preparation and sequencing.

111 On receipt of the DNA samples, Psomagen, Inc. (USA) performed an in-house Quality assessment of the DNA
112 samples using TapeStation 4200 (Agilent). DNA samples from 29 lines did not meet the minimum DNA quality
113 control standards for sequencing. An additional set of seeds from these lines were surface sterilized by washing
114 them in a 5% v/v bleach solution for 10 minutes, rinse three times with sterile water, and placed in centrifuge tubes
115 with wetted paper and left in the dark at 23°C. Shortly after germinating (VE), the entire coleoptile was harvested,
116 snap-frozen in liquid nitrogen, and stored at -80°C. The tissue was then ground to a fine powder using 3/16 inch
117 (4.76mm) ball bearings in a Tissuelyzer II (Qiagen, Germany) in the presence of dry ice in the pockets around tube
118 holders. The DNA extraction was then performed utilizing the same procedure as was used on the original samples.
119 Initial quality assessment of DNA samples, library preparation, and sequencing was performed by Psomagen, Inc.
120 (USA). Libraries were prepared using the TruSeq DNA PCR-Free kit (Illumina, USA). A NovaSeq6000 S4 (Illumina,
121 USA) sequencer was used to generate 150 bp paired-end reads.

122 Eleven Polish inbred lines were obtained from Plant Breeding Smolice Ltd., Co., Poland. Plants were grown
123 in a phytotron chamber (24°C/22°C day/night and 16 hours light/8 hours dark). Tissues for DNA extraction were
124 harvested from the third fully developed leaf (V3 stage) and three individual plants were pooled into a single sample.

125 Leaves were immediately flash-frozen in liquid nitrogen and tissue was ground in liquid nitrogen using a mortar and
126 pestle. DNA extraction was done with DNeasy Plant Kit (Qiagen, Germany) according to the manual's instructions.
127 Genomic DNA for each genotype was submitted to Fasteris (Switzerland) for whole genome sequencing. For S160,
128 S50676, and S68911 inbred lines 100 bp paired-end reads, and for the remaining eight lines 150 bp paired-end reads
129 were generated on a HiSeq X Ten (Illumina, USA) sequencer.

130 **Creation of the global maize SNP set**

131 After fastq files were downloaded from the European Nucleotide Archive or transferred from the sequencing provider,
132 each file was cleaned using fastp v.0.23.2 with the default setting (Chen *et al.*, 2018). Reads with > 40% unqualified
133 bases or quality value < 15 were removed. Cleaned fastq files were aligned to the B73_RefGen_V5 maize reference
134 genome (Hufford *et al.*, 2021) using SpeedSeq v.0.1.2 (Chiang *et al.*, 2015) which parallelizes BWA-MEM v.0.7.10
135 (Li, 2013) for alignment, Samblaster v.0.1.22 for marking duplicated reads (Faust and Hall, 2014), and Sambamba
136 v.0.5.9 for position sorting and BAM file indexing (Tarasov *et al.*, 2015). Samblaster defined duplicate read pairs as
137 cases where two or more pairs of reads aligned to the same reference sequence on the same strand and with the same
138 5' start position – or inferred 5' start position if the alignment was clipped – for both forward reads and for both
139 reverse reads. Unless otherwise stated, default parameters were used for each software package.

140 Individual gVCF files were generated for each maize pseudomolecule for each BAM file using the Haplotype-
141 Caller tool provided by GATK v.4.2.0.0 in diploid mode (Poplin *et al.*, 2018). To enable extensive parallelization of
142 variant calling the maize genome was divided into 5 Mb windows for the creation of separate GenomicsDB datastores.
143 During the project, an update of GATK appeared (v.4.2.6.1), which offered a reduction of files number stored in
144 GenomicsDB datastores. Therefore, GenomicsDBImport tool provided by GATK v.4.2.6.1. was used for each
145 genomic window to create GenomicsDB datastore. Joint variant calling was conducted using the GenotypeGVCFs
146 tool provided by GATK v.4.2.6.1. with default settings. To aid in additional parallelization, each 5 Mb GenomicsDB
147 datastore was divided into five 1 Mb windows for variant calling.

148 Following GATK best practices recommendations, hard filters were applied to call variants. Variants were
149 divided into SNPs and InDels for filtering. SNPs having a QualByDepth < 2.0, FisherStrand > 60.0, RMSMappingQuality
150 < 40.0, MappingQualityRankSumTest < -12.5 or ReadPosRankSumTest < -8.0 were removed. InDels
151 with QualByDepth < 2.0, FisherStrand > 200.0 or ReadPosRankSumTest < -20.0 were also removed. After filtering,
152 SNP and InDel variants were merged into single sorted VCF files for each chromosome using Picard v.2.9 (Pic,
153 2019). Finally, genotypes with depth < 2 were masked using bcftools setGT plugin v.1.10.2 (Danecek *et al.*, 2021).
154 All further VCF files manipulations were done with bcftools v.1.10.2 (Danecek *et al.*, 2021).

155 **Creation of the filtered and imputed maize SNP sets**

156 The filtered and imputed variant set was generated by first removing variants where: >2 alleles were observed in
157 the population, variants with $\geq 50\%$ missing data, variants with extremely low < 1,515 or extremely high > 33,550
158 sequencing depth, and variants with inbreeding coefficients ≥ 0 resulting in ~ 46 million variants. The inbreeding
159 coefficient per variant was calculated as:

$$IC = 1 - \frac{H_{OBS}}{H_{EXP}}$$

160 where H_{obs} and H_{exp} are the observed and expected heterozygosity under Hardy–Weinberg equilibrium.

161 Variants were phased and imputed using Beagle 5.0 with default settings (err=0.0001; window=40.0 cM;
162 overlap=4.0 cM; step=0.1 cM; nsteps=7) (Browning *et al.*, 2018).

163 **Population genetic analyses**

164 Principle component analysis (PCA) was conducted with Plink v.1.9 (Purcell *et al.*, 2007). Unimputed variants were
165 filtered with MAF > 5% and with a fraction of missing data < 10%, leading to 19,205,674 markers, which were used
166 for PCA. Individual genotypes were assigned to the population using published literature data (Brandenburg *et al.*,
167 2017; Bukowski *et al.*, 2018; Chen *et al.*, 2022; Chia *et al.*, 2012; Kistler *et al.*, 2018; Qiu *et al.*, 2021; Unterseer
168 *et al.*, 2014b; Wang *et al.*, 2020, 2017).

169 Measures of LD (r^2) were calculated for the entire population and pre-defined groups using PopLDdecay v.3.42
170 (Zhang *et al.*, 2019), and the subset of unimputed SNPs with MAF > 0.05 and missing rate < 0.25. Local LD in a
171 100 Kb window was calculated using the Genome-wide Complex Trait Analysis (GCTA) with the default settings
172 (Yang *et al.*, 2011).

173 To calculate nucleotide diversity (Nei and Li, 1979) maize genome was first divided into 1 Kb window using
174 bedtools v.2.27.1 (Quinlan and Hall, 2010). Next, windows that overlapped with region annotated as transposon in
175 B73_RefGen_V5 (Hufford *et al.*, 2021) were excluded from the analysis. Nucleotide diversity were calculated using
176 the vcftools v.0.1.16 site-pi function (Danecek *et al.*, 2011) in remaining 1 Kb window, with a value of 0 employed
177 for monomorphic positions. Mean values were calculated for each window and the distribution of window-mean
178 values were employed in downstream analyses.

179 **Genome-wide association study**

180 A published dataset of female flowering time (days to silking) for 752 inbreds drawn from the Wisconsin Diversity
181 panel (Mazaheri *et al.*, 2019) and grown in a replicated field study in Lincoln, NE in 2020 was employed for genome
182 wide association (Mural *et al.*, 2022). Three genetic marker sets for the same population of 752 maize inbreds were
183 used to conduct GWAS. The first set was created by filtering 752 maize inbreds with MAF > 5% from 899,784
184 variants called using RNA-seq and called relative to the B73_RefGen_V4 reference genome (Mazaheri *et al.*, 2019).
185 This leads to a creation set containing 428,487 variants. The second was a set of ~17.2 million markers called using
186 a combination of resequencing (581 lines) (Bukowski *et al.*, 2018; Qiu *et al.*, 2021) and RNA-seq (361 lines) (Hirsch
187 *et al.*, 2014; Mazaheri *et al.*, 2019) with extensive imputation to fill in non-exonic SNPs for the subset of samples
188 genotyped only with RNA-seq (Mural *et al.*, 2022; Sun *et al.*, 2022). The third was a set of 16,634,049 markers
189 obtained by subsetting the filtered and imputed SNP set assembled in this study to include only those markers with a
190 minor allele frequency >5% among the 752 genotypes for which female flowering time phenotypes were available.
191 In all three cases, GWAS was conducted using the mixed linear model algorithm (Yu *et al.*, 2006) as implemented in
192 the rMVP R package v.1.0.6 (Yin *et al.*, 2021). In all three cases, both the kinship matrix – computed following
193 the method described in (VanRaden, 2008) – and the first five principal components of variation – calculated as
194 described above – were included as covariates. Calculations of local linkage disequilibrium were performed using
195 Plink v.1.9 (Purcell *et al.*, 2007).

196 All additional statistical analysis were conducted in R (R Core Team, 2022), with extensive use of *data.table*
197 (Dowle and Srinivasan, 2021), and *tidyverse* (Wickham *et al.*, 2019) for data manipulation, and *tidyverse* and
198 *patchwork* (Pedersen, 2020) for visualisation.

199 **Results and discussion**

200 **Sequence Variation Across the Genome of Maize**

201 Sequence data from 1,276 maize individuals generated as part of eight different studies (Brandenburg *et al.*, 2017;
202 Bukowski *et al.*, 2018; Chen *et al.*, 2022; Chia *et al.*, 2012; Kistler *et al.*, 2018; Qiu *et al.*, 2021; Unterseer *et al.*,
203 2014b; Wang *et al.*, 2020, 2017) were retrieved from the European Nucleotide Archive. To this public dataset, we
204 added data from *de novo* resequencing of 228 maize inbred lines which are part of the expanded Wisconsin Diversity
205 Panel (Mazaheri *et al.*, 2019) but were not resequenced as part of previous efforts (Bukowski *et al.*, 2018; Qiu *et al.*,
206 2021). An average of 155 million reads were generated for each of these inbred lines, corresponding to an average
207 sequencing depth of approximately 22x. Additionally, a set of 11 maize inbred lines from Poland, representative of
208 eastern Europe, a region only modestly represented among previous maize resequencing efforts were resequenced
209 here to an average depth of ~35x. Those lines were used in previous studies on maize cold response (Grzybowski
210 *et al.*, 2019; Sowiński *et al.*, 2005). The total set of 1,515 maize accessions included wild relatives, archaeological
211 samples, modern open-pollinated varieties, and inbred lines from both public and private sector breeding efforts
212 representing the maize lines originating in or developed over six continents (Table S1).

213 Aligning sequence data from each of these accessions to the maize B73_RefGen_5 reference genome (Hufford
214 *et al.*, 2021) and applying recommended filtering criteria from GATK resulted in the identification of 365,611,965
215 potential DNA sequence polymorphisms. This number is substantially higher than ~83 million variants identified in

216 the maize HapMap3 project, one of the largest surveys of maize genetic diversity conducted to date, incorporating
217 data from 1,218 maize accessions (Bukowski *et al.*, 2018). However, it should be emphasized that HapMap3 utilized
218 a different variant calling pipeline and that the median sequencing depth of samples in that study was $\sim 2x$. A
219 more recent study that examined the genetic differentiation of male and female heterotic groups in maize using
220 resequencing data from 1,604 maize inbred lines, primarily from China and the USA, resequenced to an average
221 depth of $\sim 7.5x$ identified ~ 242 million DNA sequence polymorphisms (Li *et al.*, 2022).

222 Second-stage quality filtering (based on allele number, missing data rates, sequence depth, and excess heterozy-
223 gosity, see Methods) resulted in a smaller set of 46,054,265 higher confidence variants, including 43,296,332 SNPs
224 and 2,757,933 InDels (Figure. S1). The median total sequencing depth for higher confidence variants was 17,365
225 (Figure. S2), corresponding to an average sequence depth of 11.5 reads per site per individual. Concordance rates for
226 SNP calls among the 26 NAM founder parents (Hufford *et al.*, 2021) and SNP calls reported as part of the *de novo*
227 sequence assembly of these parents ranged from 92% to 99% with a mean value of 98% (Table S2). Among these
228 higher confidence variable sites, the median accession was genotyped as heterozygous 2.8% of the time. However,
229 per-accession heterozygosity rates varied significantly across groups (Figure S4). Heterozygous calls were more
230 common in pericentromeric regions (Figure S4). Groups expected to consist primarily of inbred lines, such as those
231 classified as belonging to the stiff stalk, non stiff stalk, and iodent heterozygous groups typically exhibited per-
232 accession heterozygosity values of $< 3\%$. Accessions classified as wild-relatives frequently exhibited per-accession
233 heterozygosity values of $> 10\%$ (Figure S4, Table S1). Inbred lines with unexpectedly high heterozygosity were not
234 removed from the final dataset however they should be used with caution as these may represent contaminated or
235 mislabeled samples.

236 While many high confidence SNPs (41%) and InDels (38%) were rare, defined here as a minor allele frequency
237 $\leq 5\%$, more than 26 million variants were common defined as a minor allele frequency $> 5\%$ (25,154,632 SNPs and
238 1,704,190 InDels) (Figure 1b&d). Segregating SNPs were more common around pericentromeric regions (Figure 1a)
239 while segregating InDels were more frequent on chromosome arms and less frequent in pericentromeric regions
240 (Figure 2c). The relationship between distance from the centromere and SNP or InDel density was extremely weak
241 but statistically significant for each chromosome (Figure S5), similar to the pattern of SNPs and InDels reported
242 in sorghum (Lozano *et al.*, 2021). Linkage disequilibrium was typically elevated in pericentromeric regions likely
243 reflecting lower recombination rates in these regions (Figure 1e). The pattern of elevated linkage disequilibrium
244 around the centromere was less prominent on chromosome 10, consistent with previous reports (Romero Navarro
245 *et al.*, 2017). Several other peaks of elevated linkage disequilibrium were observed which did not coincide with the
246 known positions of maize centromeres. One potential explanation is that these peaks may represent large segregating
247 structural variants (Crow *et al.*, 2020) however validating hypothesis is beyond the scope of this paper. The majority
248 of high confidence variants (57%) were located in intragenic regions, defined as those regions ≥ 5 Kb from the
249 closest annotated exon. Another 31% of variants were located in regions outside annotated genes but < 5 Kb from
250 the closest gene (Figure 1f). Among variants located between the annotated transcription start sites and transcription
251 stop sites of genes, intronic variants were most abundant (8.6%), followed by 5'- and 3' UTR (0.7 and 0.9%) and
252 coding sequence (0.4%).

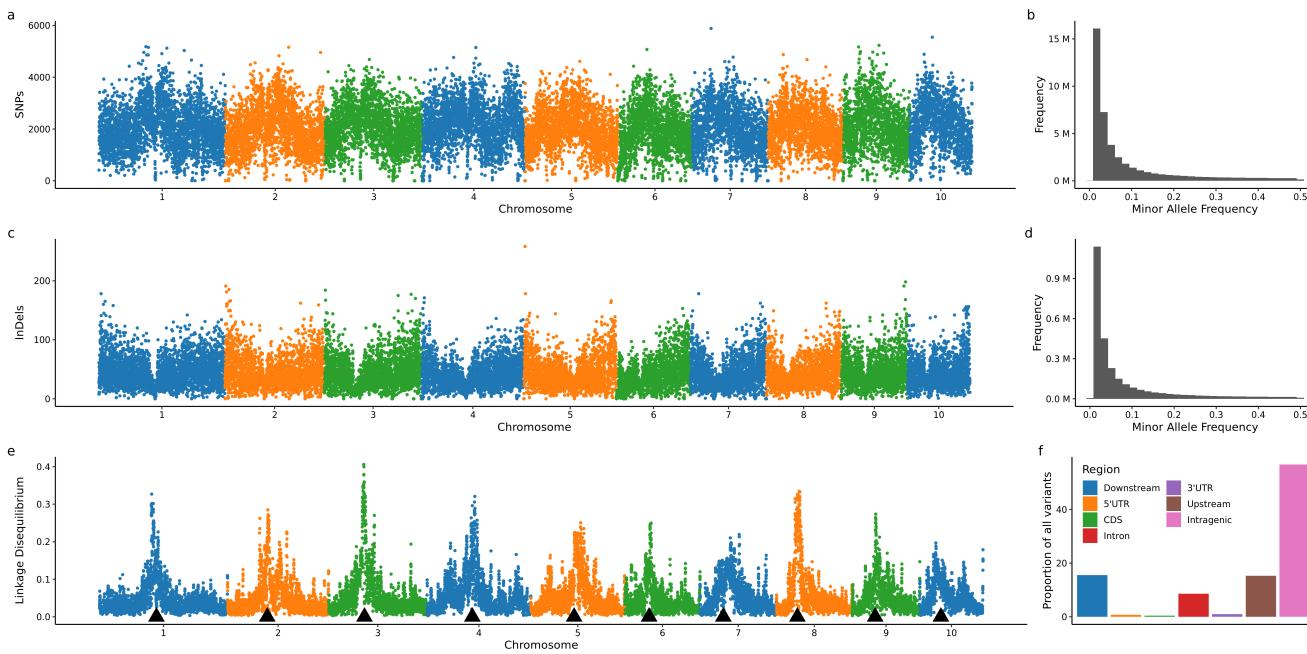


Figure 1. Properties of high confidence maize genetic variants identified in this study. The distribution of high confidence, and common (MAF > 5%, ~27 million) (a) SNPs and (c) InDels across each of the 10 maize chromosomes. For both (a) & (b) the genome was divided into non-overlapping 100 Kb windows and SNPs and InDels were counted in each window. Distribution of minor allele frequency of high confidence (~46 million) (b) SNPs and (d) InDels. (e) Mean LD value in 100 Kb window calculated with high confidence, and common (MAF > 5%) SNPs. Black triangles indicate the centromere position on each chromosome. (f) Percentage of variants across the major genic and intergenic regions calculated with high confidence variant set.

253 Intra- and Inter-Population Genetic Variation

254 Of the 1,515 maize samples used in this study, 760 were assigned to one of ten groups through a combination
255 of prior publication data and metadata associated with USDA GRIN records. These ten groups included three
256 groups of wild relatives – *Zea mays* ssp. *mexicana* (n=79, hereafter *mexicana*), *Zea mays* ssp. *parviglumis* (n=84,
257 hereafter *parviglumis*), and other wild relatives (n=66). Among these samples, four groups based on geographic
258 origin – tropical (n=86), South America (n=48), China (n=182), Europe (n=34) – and three based on a combination
259 of geographic origin and heterotic group – temperate North American stiff stalk (n=193), non-stiff stalk (n=127),
260 and iodent (n=69). The remaining 549 lines were classified as "other" in the analyses below. All together, this set
261 of lines comes from 35 countries across six continents (Figure 2a). Lines tended to cluster based on the group
262 assignment in analyses of population structure conducted using the genetic marker data generated in this study
263 (Figure 2b and S6). The first principal component of variation for genetic marker data roughly corresponded to the
264 division between the maize and other maize wild relatives (Figure 2b). The second principal component separates
265 stiff stalk and non-stiff stalk heterotic groups, alternatively, to how closely a line is related to B73, the reference
266 genotype for maize. Finally, the third principal component corresponds to latitudinal geographic distribution, with
267 South American lines at one extreme, followed by tropical and wild populations, then Chinese, European, and North
268 American temperate populations, and other wild relatives (Figure 2b).

269 High-density genetic marker data is useful for both population genetic and quantitative genetic analyses (Mural
270 *et al.*, 2021). Many population genetic analyses require measurements of plant traits. When trait data is collected
271 in different environments, variance resulting from differences in genotype is confounded with variance resulting
272 from different environments, reducing statistical power to link genotype and phenotype. Growing and phenotyping
273 large plant populations in common environments can more effectively isolate contributions of genetic variation to

274 phenotypic variation, at least in that specific environment. However, this presents a challenge in capturing global
275 genetic diversity in species such as maize where different lines are adapted to different environments and may not
276 even be able to successfully complete their lifecycles in environments to which they are not adapted. Efforts to
277 establish common association panels for quantitative genetic analysis in maize including the Maize Association
278 Panel (MAP) (Flint-Garcia *et al.*, 2005), Shoot Apical Meristem association panel (SAM) (Leiboff *et al.*, 2015), and
279 the Wisconsin Diversity Panel (WiDiv) (Hansey *et al.*, 2011) have required researchers to prioritize the partially
280 contradictory goals of maximizing genetic diversity while also selecting for a set of genotypes that can all grow and
281 successfully complete their life cycles in a single common environment. Based on marker data for 798 genotypes
282 from the WiDiv panel included in this study, linkage disequilibrium decays roughly as fast within the WiDiv panel
283 as with the set of all northern temperate lines (1090 lines defined as all those excluding teosinte, tropical, and
284 South America lines) but mostly more slowly than the rate of linkage disequilibrium decay among all 1,515 lines
285 included in this study (Figure 2c). LD decayed fastest among the two maize wild relative populations with the
286 largest number of samples: *mexicana* and *parviglumis*. The median value of π observed for randomly selected
287 intervals in the maize genome within the WiDiv population was 0.00376, similar to the median observed for all
288 temperate lines ($\pi=0.00374$), but lower than when calculated for the population of all genotypes included in this
289 study ($\pi=0.00443$; Figure 2d). The difference in π for the overall population is likely driven by the inclusion of
290 wild relatives in the overall population as these populations exhibit elevated π values of *mexicana* ($\pi=0.00480$) and
291 *parviglumis* ($\pi=0.00490$). Previous study indicate that 83% of nucleotide variation from *teosinte* being retained in
292 maize landraces (Hufford *et al.*, 2012). Here we found that WiDiv lines retain 76% of nucleotide variation observed
293 in *parviglumis*, which indicate that a substantial portion of genetic variation is still present in this northern temperate
294 set of lines.

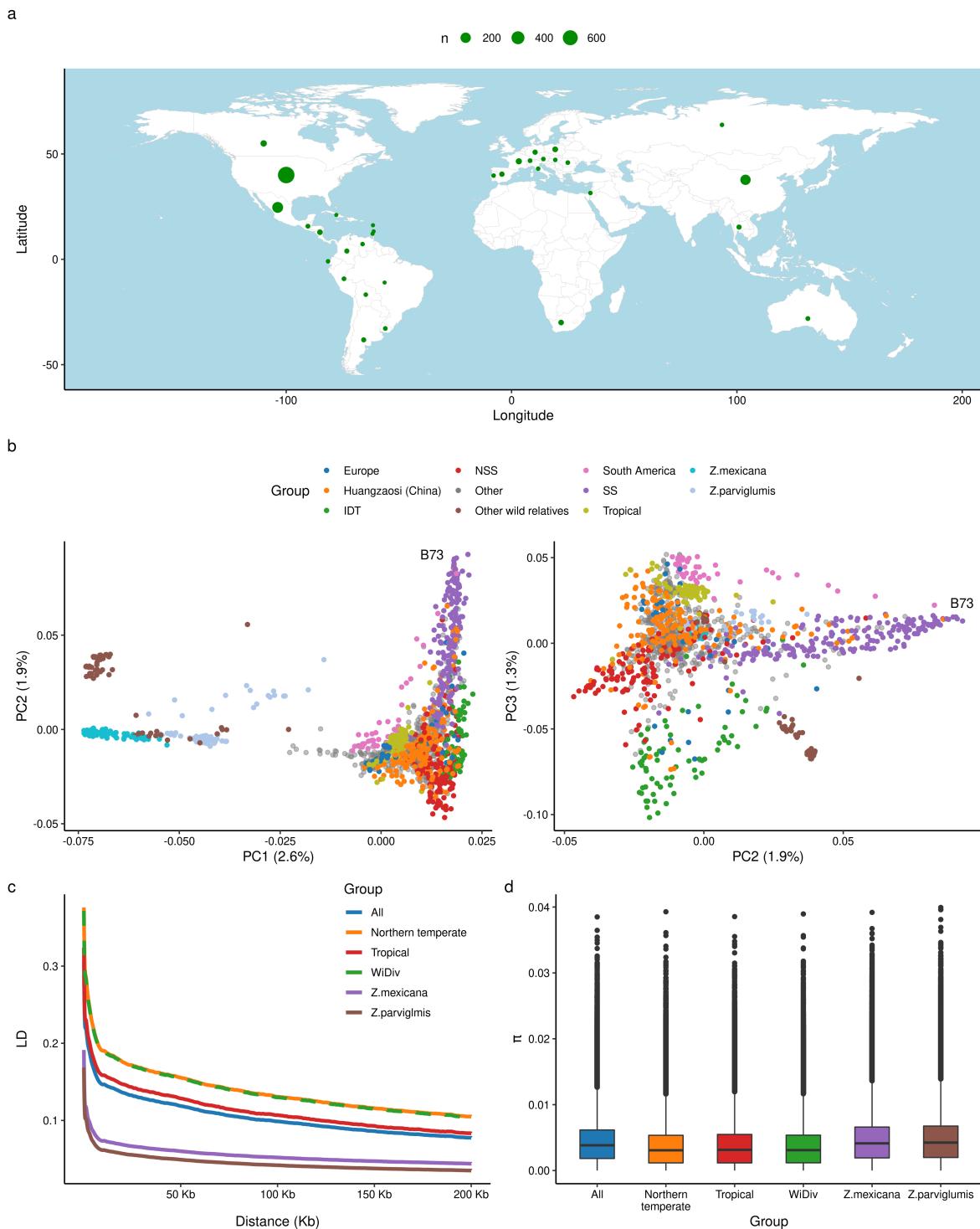


Figure 2. Geographical distribution, population structure, LD patterns, and nucleotide diversity in maize. **a** Geographical distribution of the country of origin for 1,515 maize individuals. **b** First three principal components from PCA analysis on 1515 maize individuals. Each individual was assigned to different groups based on previous literature data. **c** Genome-wide averaged distance of LD decay for six maize groups. **d** Nucleotide diversity for six maize groups. High confident common (MAF > 5%) variant set were used for each analysis.

295 Greater Utility of Existing Trait Data as Marker Density Increases

296 Community association panels are typically reused by many research groups working to study the genetic control of
297 variation in different traits of interest. A recent literature study identified more than 160 distinct trait datasets scored
298 across North American temperate maize association panels between 2010 and 2020 (Mural *et al.*, 2022). During
299 the past seventeen years, the density of publicly available markers for maize association panels has grown from 94
300 microsatellite markers (Flint-Garcia *et al.*, 2005) to 1,536 microarray-based SNP markers (Hansey *et al.*, 2011) to
301 hundreds of thousands of markers scored using genotyping by sequencing (Romay *et al.*, 2013) and approximately
302 one million markers scored using RNA-seq (Leiboff *et al.*, 2015; Mazaheri *et al.*, 2019) and now typically include
303 tens of millions of markers discovered and scored via whole genome resequencing (Bukowski *et al.*, 2018; Chen
304 *et al.*, 2022; Li *et al.*, 2022; Qiu *et al.*, 2021; Wang *et al.*, 2020) or a combination of whole genome resequencing
305 for a subset of lines and imputation from lower density markers for additional lines (Mural *et al.*, 2022; Sun *et al.*,
306 2022).

307 We employed a previously published set of female flowering data (days to silking) generated for 752 temperate
308 adapted maize inbreds to assess the impact of increased marker density vs direct resequencing (this study) on the
309 outcomes from genome wide association studies in maize. When using ~400k markers discovered and scored
310 using RNA-seq (MAF > 5% in 752 lines) (Mazaheri *et al.*, 2019), a genome wide association study identified one
311 statistically significant signal corresponding to the cloned maize flowering time gene *MADS69* (Liang *et al.*, 2019);
312 Figure 3a). A genome wide association study conducted using the new, purely whole genome resequencing based
313 marker dataset generated in this study identified both *MADS69* and *ZCN8* (Figure 3b). Overall, the newly generated
314 variant dataset increases the power to detect causal genes and doesn't increase p-value inflation (Figure S7).

315 In addition to the total number of confident signals identified, an additional potential benefit of higher-density
316 genetic marker data is the more precise localization of peaks to only one or several candidate genes. The peak
317 corresponding to *MADS69* included 29 markers which were significant at a Bonferroni corrected p-value of 0.01.
318 These markers span a region of 410,350 bp that includes 3 annotated genes. However, the peak SNP (e.g. the single
319 SNP with the most significant p-value) was 8,507 bases from *MADS69* and *MADS69* was the closest gene to this
320 SNP (Figure 4a). The peak corresponding to *ZCN8* included 35 significant markers which were significant at a
321 Bonferroni corrected p-value of 0.01. These markers span a region of 349,944 bases that includes 7 annotated genes.
322 In this case the peak SNP was 18,912 bases from *ZCN8* and three genes separated *ZCN8* from the peak SNP (Figure
323 4b).

324 The diverse composition of the population used for genotyping in this study creates an opportunity to detect
325 patterns of selection in the genome and track changes in favorable allele frequency of variants associated with traits
326 of interest, during domestication, adaptation to a new environment, or genetic improvement during modern breeding.
327 Since flowering plays an important role in local adaptation, we attempted to evaluate patterns of selection around
328 the two known flowering time genes identified above. We observed a clear reduction in nucleotide diversity in the
329 promoter of *MADS69* in tropical and temperate maize lines relative to *parviglumis* (Figure 4a), consistent with
330 previous report (Liang *et al.*, 2019). The most significantly associated SNP for days to silking in the *MADS69* gene
331 region was located at position 161,177,471. The reference allele (T) was associated with more rapid female silking
332 relative to the alternate allele (C), with a mean difference of ~5 days (Figure 4a). In both *mexicana* and *parviglumis*
333 populations only the slower flowering C allele was observed (Figure 4a). In lines classified as belonging to the
334 tropical or Chinese populations, the C allele was predominant. In contrast, the T allele was the more common in the
335 three North American populations (stiff stalk, non-stiff stalk, and iodent). The T allele was particularly common
336 among lines classified as belonging to the iodent heterotic group. Similarly, the T allele also made up the majority
337 of genotype calls among European maize lines included in this study. The large increase of frequency of shorter
338 flowering T allele in temperate adapted lines is consistent with strong selection on *MADS69* during maize adaptation
339 to temperate climates.

340 The second known flowering time gene identified in this study was *ZCN8*, which has been previously shown
341 to contribute to maize adaption to temperate climates and to have experienced a decline in nucleotide diversity in
342 domesticated maize relative to wild teosinte accessions which is in the parity with the conclusion that *ZCN8* was
343 likely a target of selection during maize domestication (Guo *et al.*, 2018). However, the greater representation of

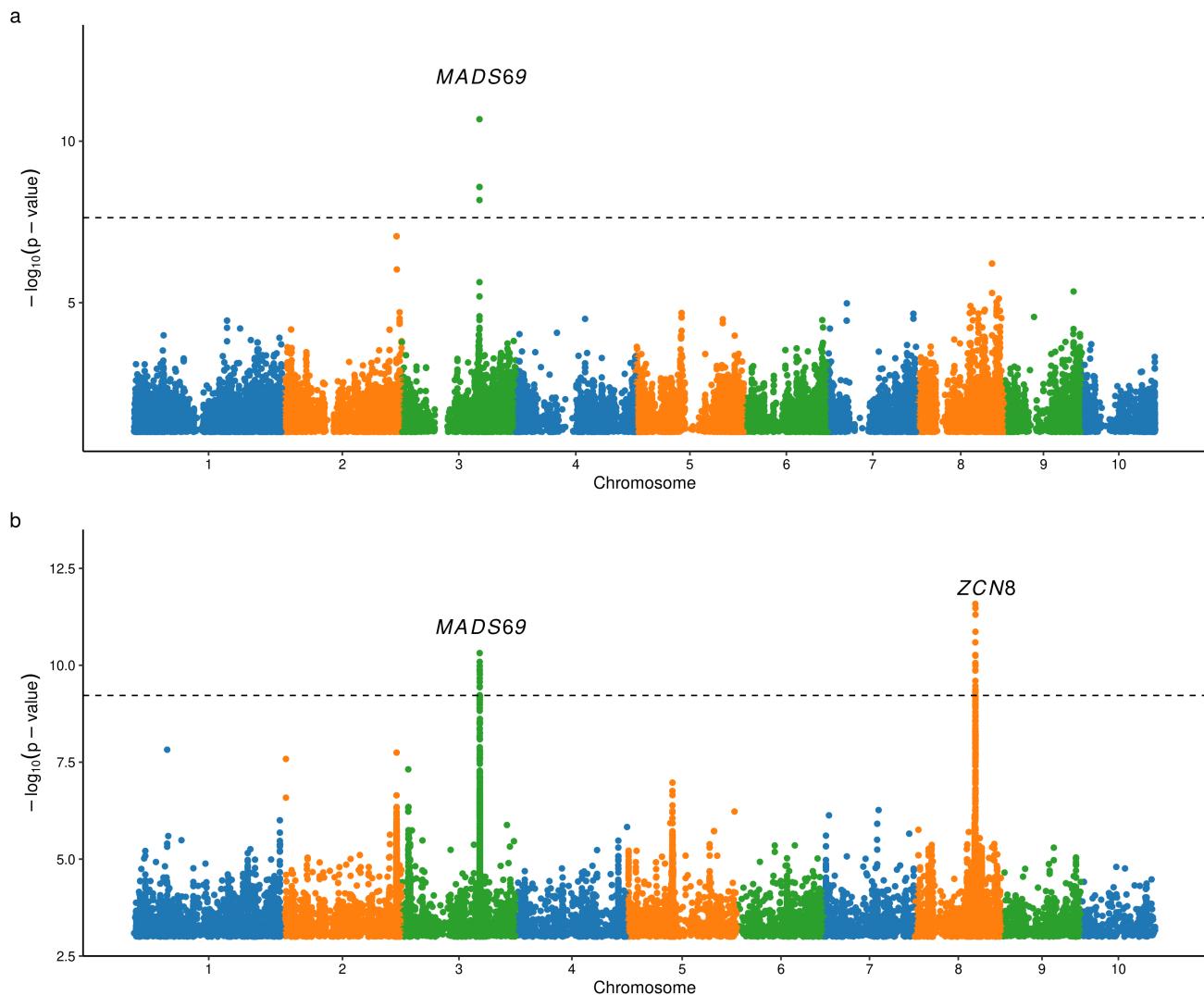


Figure 3. Identification of the candidate genes for flowering time (days to silking) via GWAS. a Association between days to silking, as reported in [Mural *et al.* \(2022\)](#), and 428,487 segregating SNPs identified and genotyped using RNA-seq data in [Mazaheri *et al.* \(2019\)](#). **b** Association test for days to silking using the marker set defined in this study (n = 16,634,049). The horizontal dashed line on each plot indicates an $\alpha = 1\%$ significance threshold after applying Bonferroni correction assuming n number of variants in each dataset as independent tests.

344 different maize groups included in this study enabled the more specific identification of a decline in nucleotide
345 diversity specifically between temperate and tropical domesticated maize populations, while tropical maize retained
346 similar diversity to teosinte at this locus (Figure 4b). This result is consistent with selection on ZNC8 occurring
347 during adaptation to temperate conditions rather than during domestication.

348 The single most significant marker at the ZCN8 locus was a C/T SNP at position 126,660,665 on chromosome 8.
349 The T allele appears to be the derived allele and the median line homozygous for T at this position flowered 10.7 days
350 earlier than the median line homozygous for the C allele. While additional markers at the ZCN8 locus that were not
351 in LD (<0.2) with the most significant marker also exhibited a statistically significant association with flowering time,
352 a haplotype based model that incorporated information from the top not-in-linkage SNP (chr8:126,689,419) did not
353 significantly improve the predictive ability for flowering time vs a single marker model. The rapid flowering allele at
354 ZCN8 was observed at extremely low frequencies in North American temperate germplasm. Almost all individuals

355 homozygous for the rapid flowering allele originated in Europe (Figure 4b), demonstrating the importance of
 356 sampling broader global germplasm pools to have greater power to identify functional variants primarily segregating
 357 in only individual geographic regions.

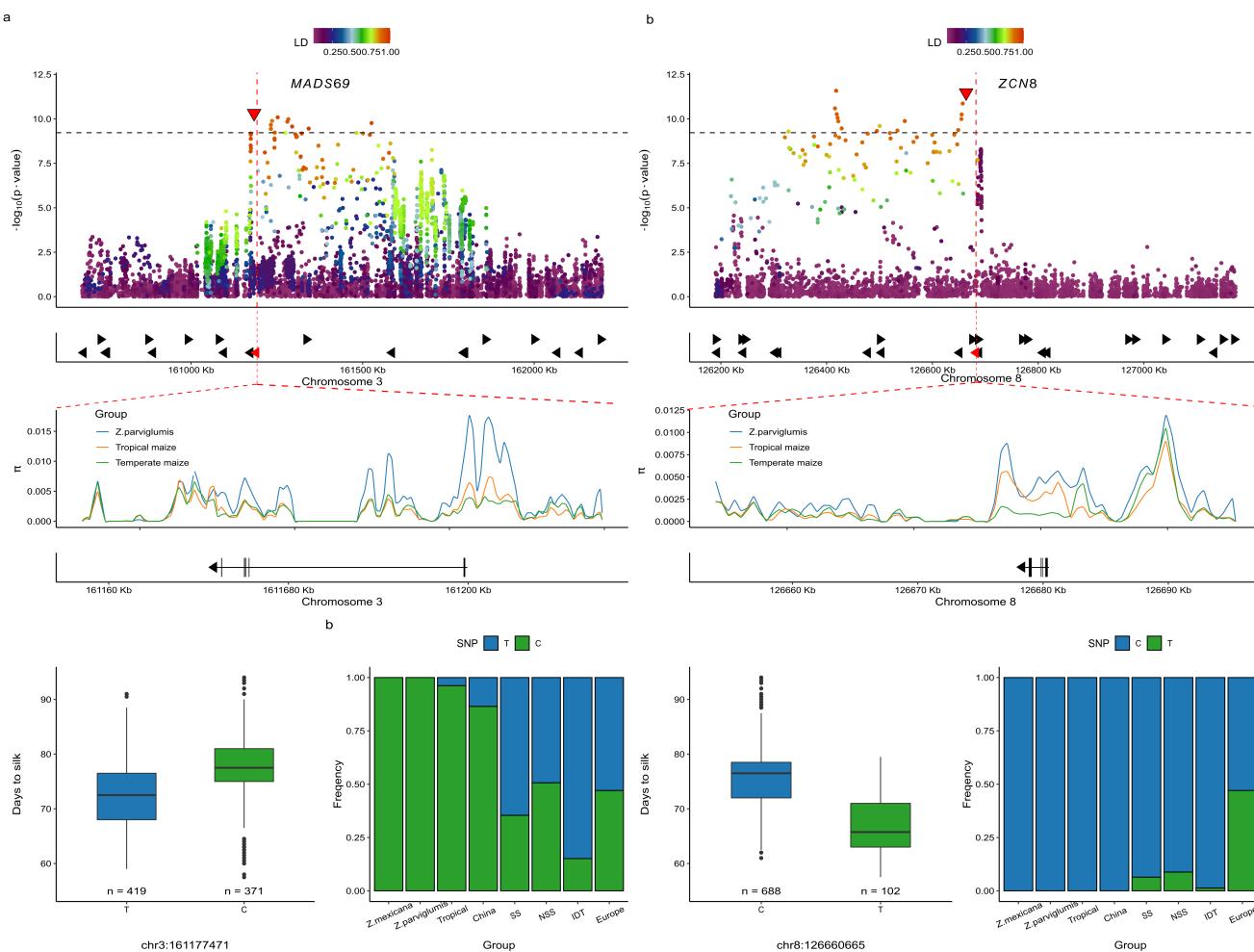


Figure 4. *MADS69* and *ZNC8* are associated with flowering time and were target of selection. Top panel: zoom in on GWAS peak around *MADS69* (a) and *ZNC8* (b). Linkage disequilibrium (LD) were calculated in each loci against top associated SNP: chr3:161,177,471 and chr8:126,660,665 (marked as red triangles). Horizontal dashed line indicates genome wide Bonferroni correction level. Vertical red dashed lines mark the position of the gene of interest. Middle panel: nucleotide diversity in three maize groups. Gene body of *MADS69* *ZNC8* were marked at the bottom. Bottom left panels: Allele effect of chr3:161,177,471 (a) and chr8:126,660,665 (b) on DTS. Bottom right panels: Changes of allele frequency of chr3:161,177,471 (a) and chr8:126,660,665 (b) in eight maize groups. SS - stiff stalk, NSS - non-stiff-stalk, IDT - iodine.

358 **Conclusion**

359 In summary, we perform a large-scale joint variant calling for 1,515 maize individuals, which include a wide range
 360 of maize accessions from multiple continents and eras and discover more than 46 million high-confidence sequence
 361 variants. In addition to releasing new sequence data for 239 new maize inbreds, we also release raw and filtered
 362 variant lists as well as processed GenomeDB files that will allow this SNP set to be further extended and expanded
 363 without the need to realign previously processed samples to the maize reference genome. We have shown that the

364 new variant set accurately describes the population structure used in this study and improves power in genome wide
365 association studies relative to the previous state-of-the-art marker datasets for a large maize association panel.

366 **Acknowledgements**

367 This project was supported by U.S. Department of Energy, Grant no. DE-SC0020355, the National Science
368 Foundation under grant OIA-1826781, USDA-NIFA under the AI Institute: for Resilient Agriculture, Award No.
369 2021-67021-35329, the Foundation for Food and Agriculture Research Award No. 602757, and National Science
370 Center (NCN), Poland, Grant no. 2012/05/B/NZ9/03407 and 2017/27/B/NZ9/00995. This project was completed
371 utilizing the Holland Computing Center of the University of Nebraska, which receives support from the Nebraska
372 Research Initiative.

373 **Data availability**

374 The additional resequencing data generated as part of this project has been deposited in the European Nucleotide
375 Archive (ENA) under the study accession numbers: PRJEB56265, PRJEB56295, and PRJEB56320. Raw VCF files
376 for all 366 million variants identified in this study, imputed VCF files for the 46 million quality and minor allele
377 frequency filtered variations identified as part of this study and GATK GenomicsDBs files to enable new SNP calling
378 with additional populations have been deposited at CyVerse and are available for download from:
379 https://datacommons.cyverse.org/browse/iplant/home/shared/Grzybowski_MaizeSNPset_2022
380 Please note that the link above will be augmented with a permanent DOI upon publication.

381 **Author contributions**

382 JCS and MWG conceived the study. JT conducted experiments and generated data. JY and GX provided advice
383 and feedback on the design of experiments and analyses. MWG and RVM designed and conducted analyses and
384 visualized the results. MWG, RVM and JCS composed the initial draft of the manuscript. All authors contributed to
385 writing and editing and approved the final version of the manuscript.

386 **Competing Interest Statement**

387 James C. Schnable has equity interests in Data2Bio, LLC; Dryland Genetics LLC; and EnGeniousAg LLC. He is a
388 member of the scientific advisory board of GeneSeek and currently serves as a guest editor for The Plant Cell. The
389 authors declare no other conflicts of interest.

References

2019 Picard toolkit. <https://broadinstitute.github.io/picard/>.

Brandenburg, J.-T., T. Mary-Huard, G. Rigaill, S. J. Hearne, H. Corti, J. Joets, C. Vitte, A. Charcosset, S. D. Nicolas, and M. I. Tenallon, 2017 Independent introductions and admixtures have contributed to adaptation of european maize and its american counterparts. *PLoS genetics* **13**: e1006666.

Browning, B. L., Y. Zhou, and S. R. Browning, 2018 A one-penny imputed genome from next-generation reference panels. *The American Journal of Human Genetics* **103**: 338–348.

Buckler, E. S., B. S. Gaut, and M. D. McMullen, 2006 Molecular and functional diversity of maize. *Current opinion in plant biology* **9**: 172–176.

Bukowski, R., X. Guo, Y. Lu, C. Zou, B. He, Z. Rong, B. Wang, D. Xu, B. Yang, C. Xie, *et al.*, 2018 Construction of the third-generation *zea mays* haplotype map. *Gigascience* **7**: gix134.

Chen, L., J. Luo, M. Jin, N. Yang, X. Liu, Y. Peng, W. Li, A. Philips, B. Cameron, J. Bernal, *et al.*, 2022 Genome sequencing reveals evidence of adaptive variation in the genus *zea*. *Nature Genetics* .

Chen, S., Y. Zhou, Y. Chen, and J. Gu, 2018 fastp: an ultra-fast all-in-one fastq preprocessor. *Bioinformatics* **34**: i884–i890.

Chia, J.-M., C. Song, P. J. Bradbury, D. Costich, N. De Leon, J. Doebley, R. J. Elshire, B. Gaut, L. Geller, J. C. Glaubitz, *et al.*, 2012 Maize hapmap2 identifies extant variation from a genome in flux. *Nature genetics* **44**: 803–807.

Chiang, C., R. M. Layer, G. G. Faust, M. R. Lindberg, D. B. Rose, E. P. Garrison, G. T. Marth, A. R. Quinlan, and I. M. Hall, 2015 Speedseq: ultra-fast personal genome analysis and interpretation. *Nature methods* **12**: 966–968.

Crow, T., J. Ta, S. Nojoomi, M. R. Aguilar-Rangel, J. V. Torres Rodríguez, D. Gates, R. Rellan-Alvarez, R. Sawers, and D. Runcie, 2020 Gene regulatory effects of a large chromosomal inversion in highland maize. *PLoS genetics* **16**: e1009213.

Da Fonseca, R. R., B. D. Smith, N. Wales, E. Cappellini, P. Skoglund, M. Fumagalli, J. A. Samaniego, C. Carøe, M. C. Ávila-Arcos, D. E. Hufnagel, *et al.*, 2015 The origin and evolution of maize in the southwestern united states. *Nature plants* **1**: 1–5.

Danecek, P., A. Auton, G. Abecasis, C. A. Albers, E. Banks, M. A. DePristo, R. E. Handsaker, G. Lunter, G. T. Marth, S. T. Sherry, *et al.*, 2011 The variant call format and vcftools. *Bioinformatics* **27**: 2156–2158.

Danecek, P., J. K. Bonfield, J. Liddle, J. Marshall, V. Ohan, M. O. Pollard, A. Whitwham, T. Keane, S. A. McCarthy, R. M. Davies, *et al.*, 2021 Twelve years of samtools and bcftools. *Gigascience* **10**: giab008.

Dowle, M. and A. Srinivasan, 2021 *data.table: Extension of ‘data.frame’*. R package version 1.14.2.

Elshire, R. J., J. C. Glaubitz, Q. Sun, J. A. Poland, K. Kawamoto, E. S. Buckler, and S. E. Mitchell, 2011 A robust, simple genotyping-by-sequencing (gbs) approach for high diversity species. *PloS one* **6**: e19379.

Faust, G. G. and I. M. Hall, 2014 Samblaster: fast duplicate marking and structural variant read extraction. *Bioinformatics* **30**: 2503–2505.

Flint-Garcia, S. A., A.-C. Thuillet, J. Yu, G. Pressoir, S. M. Romero, S. E. Mitchell, J. Doebley, S. Kresovich, M. M. Goodman, and E. S. Buckler, 2005 Maize association population: a high-resolution platform for quantitative trait locus dissection. *The plant journal* **44**: 1054–1064.

Ganal, M. W., G. Durstewitz, A. Polley, A. Bérard, E. S. Buckler, A. Charcosset, J. D. Clarke, E.-M. Graner, M. Hansen, J. Joets, *et al.*, 2011 A large maize (*zea mays* l.) snp genotyping array: development and germplasm genotyping, and genetic mapping to compare with the b73 reference genome. *PloS one* **6**: e28334.

Grzybowski, M., J. Adamczyk, M. Jończyk, A. Sobkowiak, J. Szczepanik, K. Frankiewicz, J. Fronk, and P. Sowiński, 2019 Increased photosensitivity at early growth as a possible mechanism of maize adaptation to cold springs. *Journal of experimental botany* **70**: 2887–2904.

Gui, S., W. Wei, C. Jiang, J. Luo, L. Chen, S. Wu, W. Li, Y. Wang, S. Li, N. Yang, *et al.*, 2022 A pan-zea genome map for enhancing maize improvement. *Genome biology* **23**: 1–22.

Guo, L., X. Wang, M. Zhao, C. Huang, C. Li, D. Li, C. J. Yang, A. M. York, W. Xue, G. Xu, *et al.*, 2018 Stepwise cis-regulatory changes in zcn8 contribute to maize flowering-time adaptation. *Current biology* **28**: 3005–3015.

Hansey, C. N., J. M. Johnson, R. S. Sekhon, S. M. Kaepller, and N. De Leon, 2011 Genetic diversity of a maize association population with restricted phenology. *Crop Science* **51**: 704–715.

Hirsch, C. N., J. M. Foerster, J. M. Johnson, R. S. Sekhon, G. Muttoni, B. Vaillancourt, F. Peñagaricano, E. Lindquist, M. A. Pedraza, K. Barry, *et al.*, 2014 Insights into the maize pan-genome and pan-transcriptome. *The Plant Cell* **26**: 121–135.

Ho, P.-t., 1955 The introduction of american food plants into china. *American Anthropologist* **57**: 191–201.

Hufford, M. B., A. S. Seetharam, M. R. Woodhouse, K. M. Chougule, S. Ou, J. Liu, W. A. Ricci, T. Guo, A. Olson, Y. Qiu, *et al.*, 2021 De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes. *Science* **373**: 655–662.

Hufford, M. B., X. Xu, J. Van Heerwaarden, T. Pyhäjärvi, J.-M. Chia, R. A. Cartwright, R. J. Elshire, J. C. Glaubitz, K. E. Guill, S. M. Kaepller, *et al.*, 2012 Comparative population genomics of maize domestication and improvement. *Nature genetics* **44**: 808–811.

Hung, H.-Y., L. M. Shannon, F. Tian, P. J. Bradbury, C. Chen, S. A. Flint-Garcia, M. D. McMullen, D. Ware, E. S. Buckler, J. F. Doebley, *et al.*, 2012 Zmcct and the genetic basis of day-length adaptation underlying the postdomestication spread of maize. *Proceedings of the National Academy of Sciences* **109**: E1913–E1921.

Kistler, L., S. Y. Maezumi, J. Gregorio de Souza, N. A. Przelomska, F. Malaquias Costa, O. Smith, H. Loiselle, J. Ramos-Madrigal, N. Wales, E. R. Ribeiro, *et al.*, 2018 Multiproxy evidence highlights a complex evolutionary legacy of maize in south america. *Science* **362**: 1309–1313.

Leiboff, S., X. Li, H.-C. Hu, N. Todt, J. Yang, X. Li, X. Yu, G. J. Muehlbauer, M. C. Timmermans, J. Yu, *et al.*, 2015 Genetic control of morphometric diversity in the maize shoot apical meristem. *Nature Communications* **6**: 1–10.

Li, C., H. Guan, X. Jing, Y. Li, B. Wang, Y. Li, X. Liu, D. Zhang, C. Liu, X. Xie, *et al.*, 2022 Genomic insights into historical improvement of heterotic groups during modern hybrid maize breeding. *Nature Plants* pp. 1–14.

Li, H., 2013 Aligning sequence reads, clone sequences and assembly contigs with bwa-mem. *arXiv preprint arXiv:1303.3997*.

Liang, Y., Q. Liu, X. Wang, C. Huang, G. Xu, S. Hey, H.-Y. Lin, C. Li, D. Xu, L. Wu, *et al.*, 2019 *ZmMADS69* functions as a flowering activator through the *zmrab2.7-zcn 8* regulatory module and contributes to maize flowering time adaptation. *New Phytologist* **221**: 2335–2347.

Lozano, R., E. Gazave, J. P. Dos Santos, M. G. Stetter, R. Valluru, N. Bandillo, S. B. Fernandes, P. J. Brown, N. Shakoor, T. C. Mockler, *et al.*, 2021 Comparative evolutionary genetics of deleterious load in sorghum and maize. *Nature Plants* **7**: 17–24.

Matsuoka, Y., Y. Vigouroux, M. M. Goodman, J. Sanchez G, E. Buckler, and J. Doebley, 2002 A single domestication for maize shown by multilocus microsatellite genotyping. *Proceedings of the National Academy of Sciences* **99**: 6080–6084.

Mazaheri, M., M. Heckwolf, B. Vaillancourt, J. L. Gage, B. Burdo, S. Heckwolf, K. Barry, A. Lipzen, C. B. Ribeiro, T. J. Kono, *et al.*, 2019 Genome-wide association analysis of stalk biomass and anatomical traits in maize. *BMC plant biology* **19**: 1–17.

Mural, R. V., M. Grzybowski, C. Miao, A. Damke, S. Sapkota, R. E. Boyles, M. G. Salas Fernandez, P. S. Schnable, B. Sigmon, S. Kresovich, *et al.*, 2021 Meta-analysis identifies pleiotropic loci controlling phenotypic trade-offs in sorghum. *Genetics* **218**: iyab087.

Mural, R. V., G. Sun, M. Grzybowski, M. C. Tross, H. Jin, C. Smith, L. Newton, C. M. Andorf, M. R. Woodhouse, A. M. Thompson, *et al.*, 2022 Association mapping across a multitude of traits collected in diverse environments in maize. *GigaScience* **11**.

Nei, M. and W.-H. Li, 1979 Mathematical model for studying genetic variation in terms of restriction endonucleases. *Proceedings of the National Academy of Sciences* **76**: 5269–5273.

Pedersen, T. L., 2020 *patchwork: The Composer of Plots*. R package version 1.1.1.

Piperno, D. R., A. J. Ranere, I. Holst, J. Iriarte, and R. Dickau, 2009 Starch grain and phytolith evidence for early ninth millennium bp maize from the central balsas river valley, mexico. *Proceedings of the National Academy of Sciences* **106**: 5019–5024.

Poplin, R., V. Ruano-Rubio, M. A. DePristo, T. J. Fennell, M. O. Carneiro, G. A. Van der Auwera, D. E. Kling, L. D. Gauthier, A. Levy-Moonshine, D. Roazen, *et al.*, 2018 Scaling accurate genetic variant discovery to tens of thousands of samples. *BioRxiv* p. 201178.

Purcell, S., B. Neale, K. Todd-Brown, L. Thomas, M. A. Ferreira, D. Bender, J. Maller, P. Sklar, P. I. De Bakker, M. J. Daly, *et al.*, 2007 Plink: a tool set for whole-genome association and population-based linkage analyses. *The American journal of human genetics* **81**: 559–575.

Qiu, Y., C. H. O'Connor, R. Della Coletta, J. S. Renk, P. J. Monnahan, J. M. Noshay, Z. Liang, A. Gilbert, S. N. Anderson, S. E. McGaugh, *et al.*, 2021 Whole-genome variation of transposable element insertions in a maize diversity panel. *G3* **11**: jkab238.

Quinlan, A. R. and I. M. Hall, 2010 Bedtools: a flexible suite of utilities for comparing genomic features. *Bioinformatics* **26**: 841–842.

R Core Team, 2022 *R: A Language and Environment for Statistical Computing*. R Foundation for Statistical Computing, Vienna, Austria.

Renk, J. S., A. M. Gilbert, T. J. Hattery, C. H. O'Connor, P. J. Monnahan, N. Anderson, A. J. Waters, D. P. Eickholt, S. A. Flint-Garcia, M. D. Yandeu-Nelson, *et al.*, 2021 Genetic control of kernel compositional variation in a maize diversity panel. *The Plant Genome* **14**: e20115.

Romay, M. C., M. J. Millard, J. C. Glaubitz, J. A. Peiffer, K. L. Swarts, T. M. Casstevens, R. J. Elshire, C. B. Acharya, S. E. Mitchell, S. A. Flint-Garcia, *et al.*, 2013 Comprehensive genotyping of the usa national maize inbred seed bank. *Genome biology* **14**: 1–18.

Romero Navarro, J. A., M. Willcox, J. Burgueño, C. Romay, K. Swarts, S. Trachsel, E. Preciado, A. Terron, H. V. Delgado, V. Vidal, *et al.*, 2017 A study of allelic diversity underlying flowering-time adaptation in maize landraces. *Nature genetics* **49**: 476–480.

Sowiński, P., A. Rudzińska-Langwald, J. Adamczyk, I. Kubica, and J. Fronk, 2005 Recovery of maize seedling growth, development and photosynthetic efficiency after initial growth at low temperature. *Journal of Plant Physiology* **162**: 67–80.

Sun, G., R. V. Mural, J. D. Turkus, and J. C. Schnable, 2022 Quantitative resistance loci to southern rust mapped in a temperate maize diversity panel. *Phytopathology®* **112**: 579–587.

Swanson-Wagner, R. A., S. R. Eichten, S. Kumari, P. Tiffin, J. C. Stein, D. Ware, and N. M. Springer, 2010 Pervasive gene content variation and copy number variation in maize and its undomesticated progenitor. *Genome research* **20**: 1689–1699.

Swarts, K., R. M. Gutaker, B. Benz, M. Blake, R. Bukowski, J. Holland, M. Kruse-Peeples, N. Lepak, L. Prim, M. C. Romay, *et al.*, 2017 Genomic estimation of complex traits reveals ancient maize adaptation to temperate north america. *Science* **357**: 512–515.

Tarasov, A., A. J. Vilella, E. Cuppen, I. J. Nijman, and P. Prins, 2015 Sambamba: fast processing of ngs alignment formats. *Bioinformatics* **31**: 2032–2034.

Tenaillon, M. I. and A. Charcosset, 2011 A european perspective on maize history. *Comptes rendus biologies* **334**: 221–228.

Unterseer, S., E. Bauer, G. Haberer, M. Seidel, C. Knaak, M. Ouzunova, T. Meitinger, T. M. Strom, R. Fries, H. Pausch, *et al.*, 2014a A powerful tool for genome analysis in maize: development and evaluation of the high density 600 k snp genotyping array. *BMC genomics* **15**: 1–15.

Unterseer, S., E. Bauer, G. Haberer, M. Seidel, C. Knaak, M. Ouzunova, T. Meitinger, T. M. Strom, R. Fries, H. Pausch, *et al.*, 2014b A powerful tool for genome analysis in maize: development and evaluation of the high density 600 k snp genotyping array. *BMC genomics* **15**: 1–15.

Van Heerwaarden, J., J. Doebley, W. H. Briggs, J. C. Glaubitz, M. M. Goodman, J. de Jesus Sanchez Gonzalez, and J. Ross-Ibarra, 2011 Genetic signals of origin, spread, and introgression in a large sample of maize landraces. *Proceedings of the National Academy of Sciences* **108**: 1088–1092.

VanRaden, P. M., 2008 Efficient methods to compute genomic predictions. *Journal of dairy science* **91**: 4414–4423.

Wang, B., Z. Lin, X. Li, Y. Zhao, B. Zhao, G. Wu, X. Ma, H. Wang, Y. Xie, Q. Li, *et al.*, 2020 Genome-wide selection and genetic improvement during modern maize breeding. *Nature Genetics* **52**: 565–571.

Wang, L., T. M. Beissinger, A. Lorant, C. Ross-Ibarra, J. Ross-Ibarra, and M. B. Hufford, 2017 The interplay of demography and selection during maize domestication and expansion. *Genome biology* **18**: 1–13.

Wickham, H., M. Averick, J. Bryan, W. Chang, L. D. McGowan, R. François, G. Grolemund, A. Hayes, L. Henry, J. Hester, *et al.*, 2019 Welcome to the tidyverse. *Journal of Open Source Software* **4**: 1686.

Yang, J., S. H. Lee, M. E. Goddard, and P. M. Visscher, 2011 Gcta: a tool for genome-wide complex trait analysis. *The American Journal of Human Genetics* **88**: 76–82.

Yang, N., J. Liu, Q. Gao, S. Gui, L. Chen, L. Yang, J. Huang, T. Deng, J. Luo, L. He, *et al.*, 2019 Genome assembly of a tropical maize inbred line provides insights into structural variation and crop improvement. *Nature genetics* **51**: 1052–1059.

Yin, L., H. Zhang, Z. Tang, J. Xu, D. Yin, Z. Zhang, X. Yuan, M. Zhu, S. Zhao, X. Li, *et al.*, 2021 rmvp: a memory-efficient, visualization-enhanced, and parallel-accelerated tool for genome-wide association study. *Genomics, proteomics & bioinformatics* **19**: 619–628.

Yu, J., G. Pressoir, W. H. Briggs, I. Vroh Bi, M. Yamasaki, J. F. Doebley, M. D. McMullen, B. S. Gaut, D. M. Nielsen, J. B. Holland, *et al.*, 2006 A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. *Nature genetics* **38**: 203–208.

Zhang, C., S.-S. Dong, J.-Y. Xu, W.-M. He, and T.-L. Yang, 2019 Poplddecay: a fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. *Bioinformatics* **35**: 1786–1788.

Table S1. Summary of sequenced lines. Provided as Excel file.

Table S2. Comparison of SNPs yielded in this study with those in [Hufford *et al.* \(2021\)](#)

Inbred line	Concordance rate
B73	0.99
B97	0.98
CML228	0.98
CML247	0.98
CML277	0.98
CML322	0.98
CML333	0.98
CML52	0.96
CML69	0.98
HP301	0.99
II14H	0.98
Ki11	0.98
Ki3	0.98
Ky21	0.98
M162W	0.98
MO18W	0.98
MS71	0.98
NC350	0.98
NC358	0.98
Oh43	0.99
Oh7B	0.99
P39	0.98
Tx303	0.97
Tzi8	0.92

Table S3. Number of accessions resequenced in the corresponding studies.

Source	# of Accessions	Target populations	Sequencing Depth
Brandenburg <i>et al.</i> (2017)	58	American and European landrace	18X
Bukowski <i>et al.</i> (2018)	214	Various	2X
Chen <i>et al.</i> (2022)	208	Teosinte	22X
Chia <i>et al.</i> (2012)	16	Various	4X
Kistler <i>et al.</i> (2018)	48	South America landrace	XXX
Unterseer <i>et al.</i> (2014b)	26	European	16X
Qiu <i>et al.</i> (2021)	473	North American temperate	10-55X
This Study	228	North American temperate	22X
This Study 2	11	Eastern Europe (Poland)	35X
Wang <i>et al.</i> (2017)	35	Central America landrace	29X
Wang <i>et al.</i> (2020)	198	Chinese inbred	13X
Total	1515		

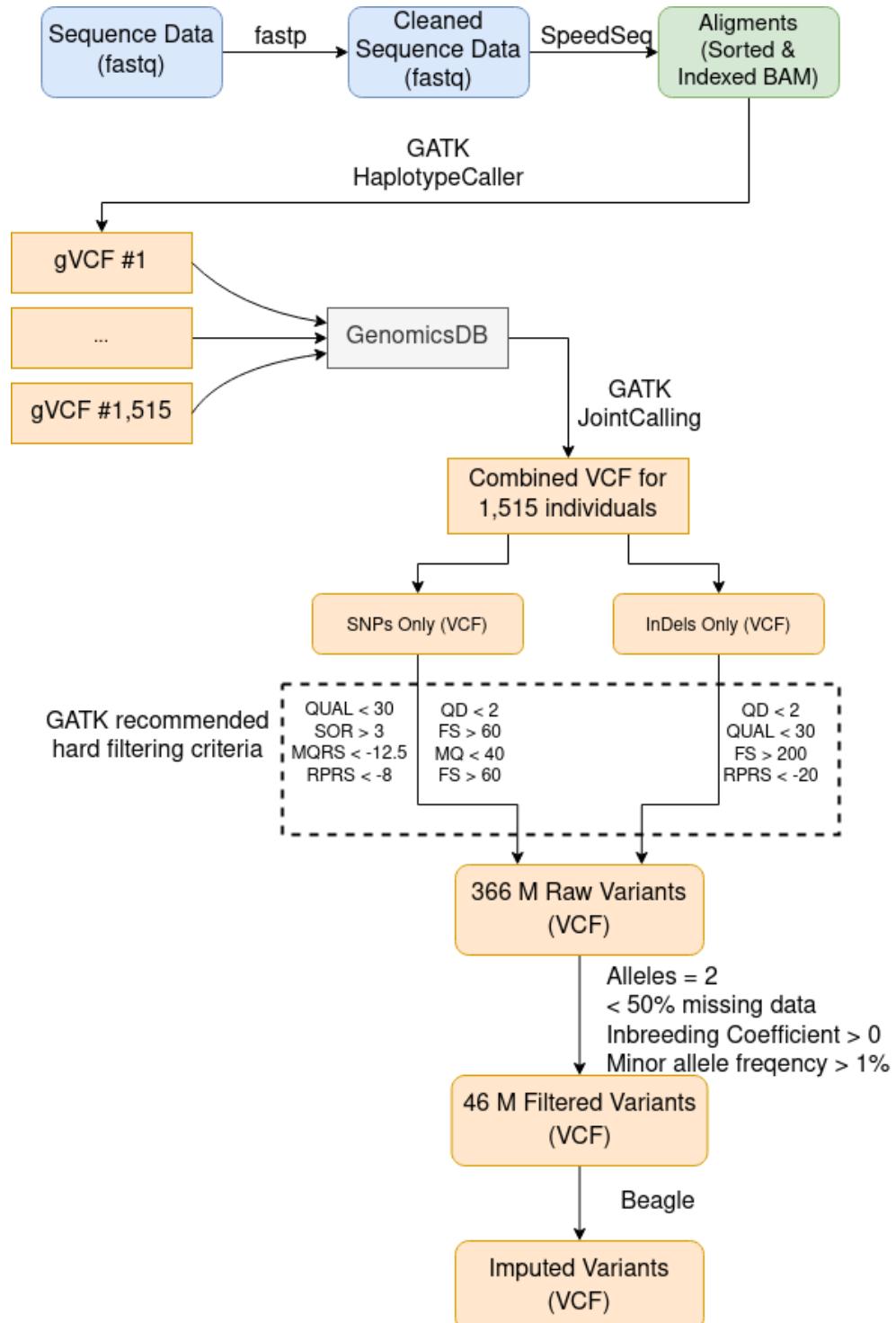


Figure S1. Schematic representation of the approach employed for variant calling and quality filtering in this study.

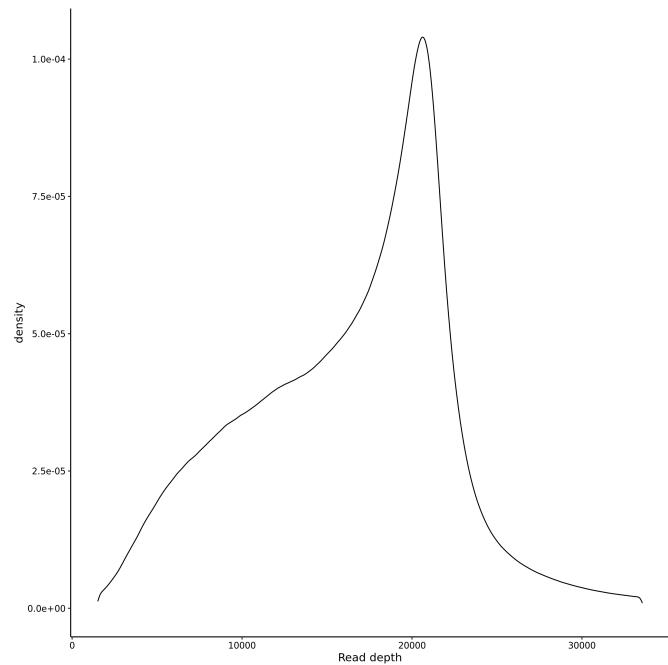


Figure S2. Distribution of total aligned read depth for high confidence (~46 million) variant sites identified in this study.

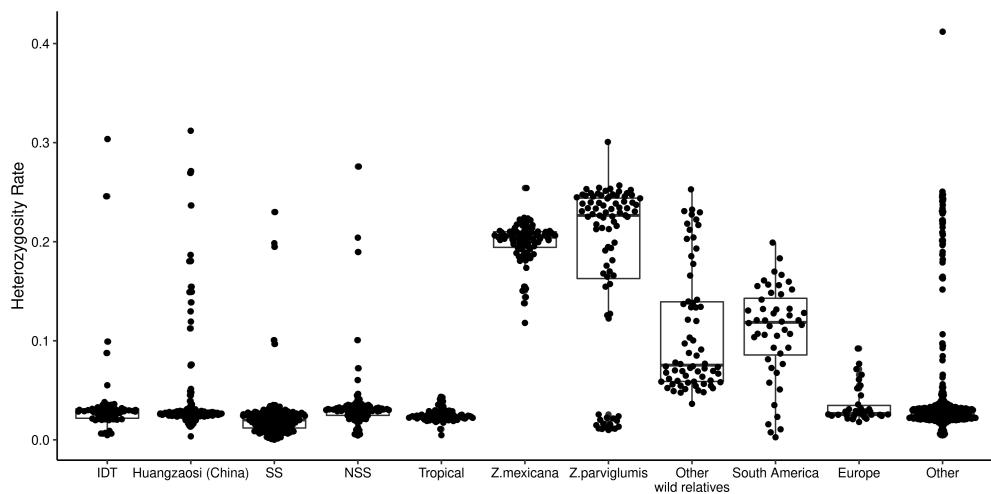


Figure S3. Frequency of heterozygous genotype calls for each individual used in this study. Individuals were assigned to different groups based on previous literature data. Exact heterozygosity rates for each individual plots in this figure are provided in table S1.

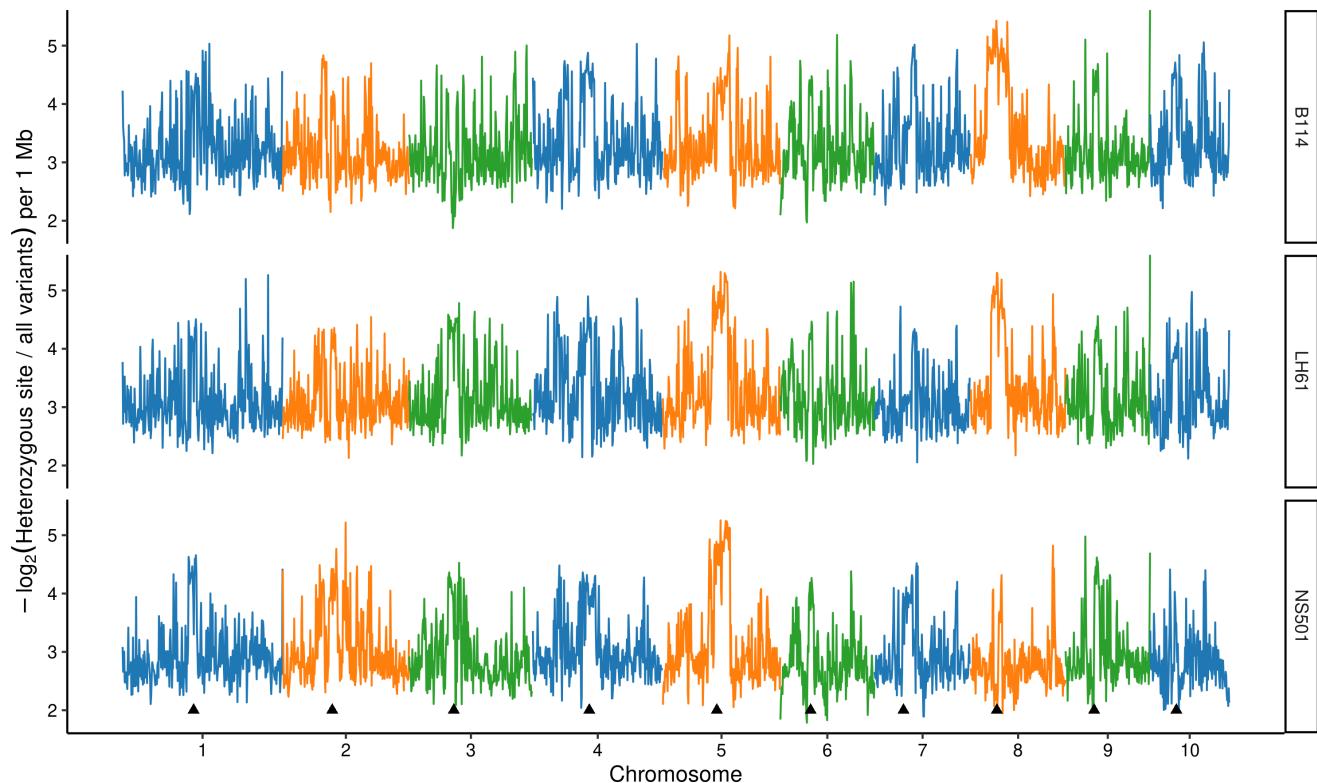


Figure S4. Example of three inbred lines B114, LH61, and NS501 with unexpectedly high heterozygosity.
Maize genome was divided into 1 Mb bin and number of heterozygous site in each for each line were counted.
Black triangles indicate position of centromere of each chromosome. High confident common (MAF > 5%) variant set were used for this analysis.

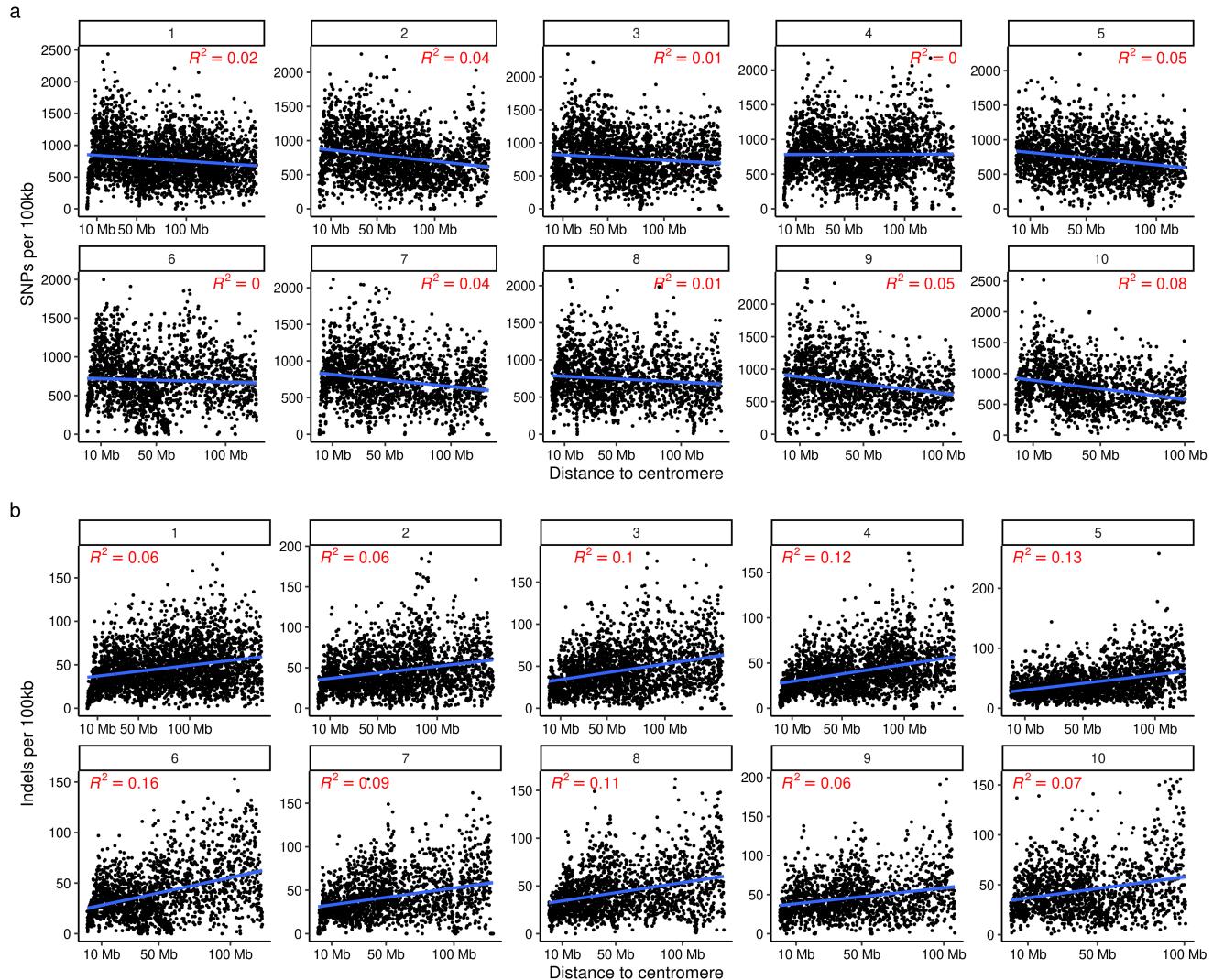


Figure S5. Relationship between distance to centromere and density of SNPs and InDels. Each dot corresponds to a single 100 Kb window on the maize genome, with its position on the x-axis indicating the distance between the bin and the annotated position of the centromere and its position on the y-axis indicating the number of SNPs (a) or InDels (b) present within that interval. Blue line indicates the slope of a linear regression between marker density and distance to the centromere. R^2 indicates pearson coefficient of determination. All R^2 values were significant ($p < 0.01$). The number at the top of each box indicates the maize chromosome number. High confident common (MAF > 5%) variant set were used for this analysis.

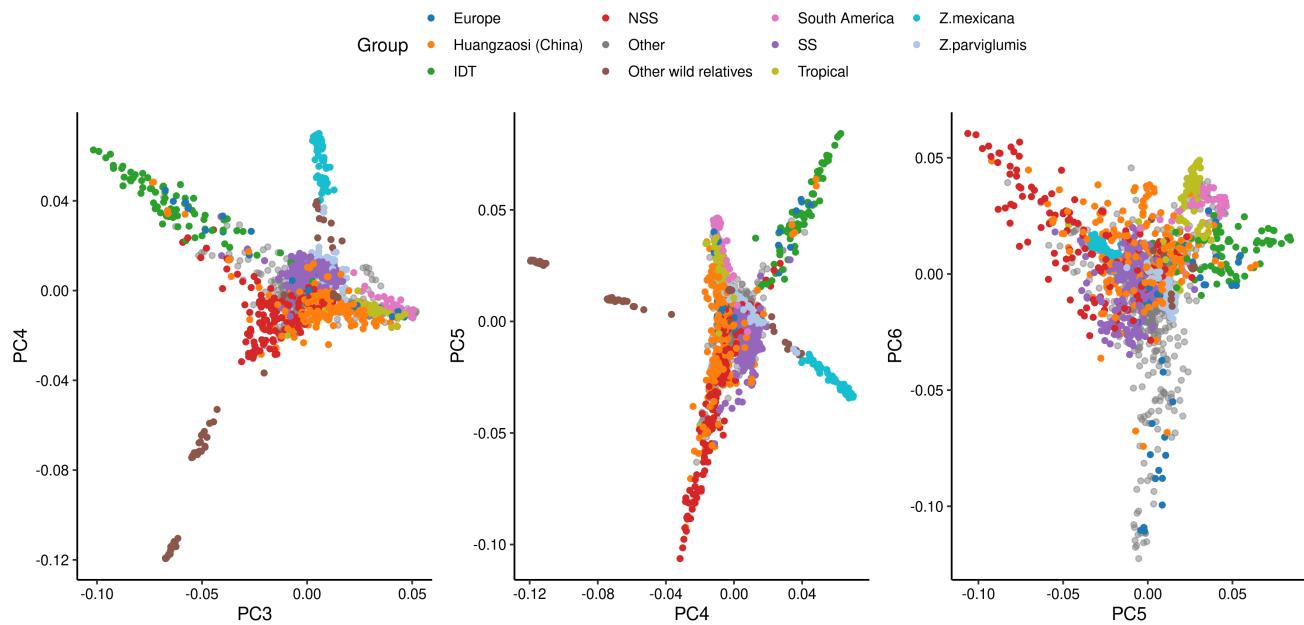


Figure S6. Distribution of PCA values assigned to the 1,515 maize individuals analyzed in this study for principal components three to six. Data are plotted and visualized as described in Figure 2b.

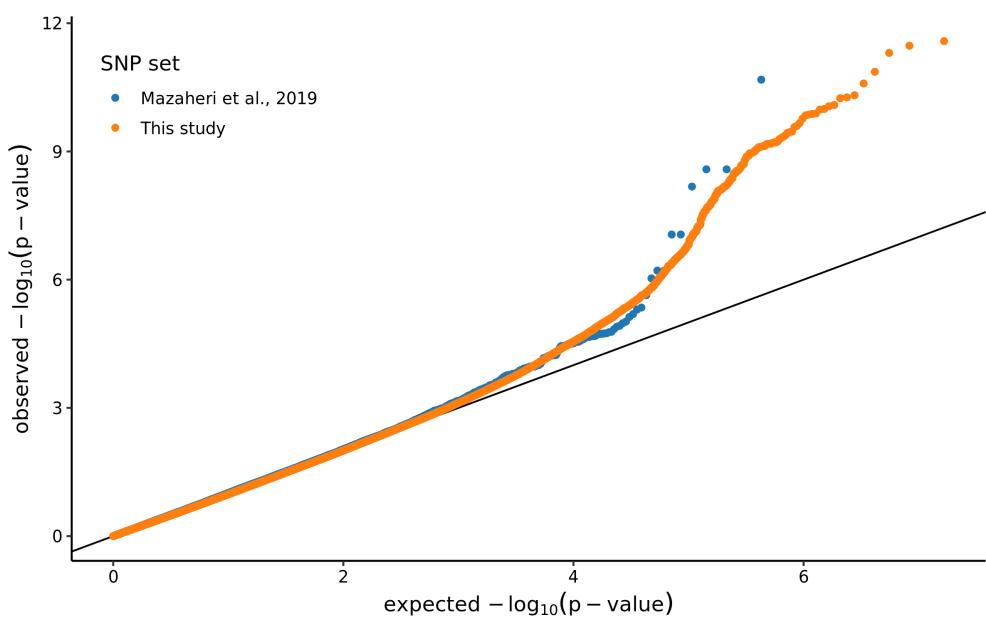


Figure S7. QQ-plots of the two GWAS results shown in Figure 3.