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Abstract

We analyzed large-scale post-translational modification (PTM) data to outline cell
signaling pathways affected by tyrosine kinase inhibitors (TKIs) in ten lung cancer cell
lines. Tyrosine phosphorylated, lysine ubiquitinated, and lysine acetylated proteins were
concomitantly identified using sequential enrichment of post translational modification
(SEPTM) proteomics. Machine learning was used to identify PTM clusters that represent
functional modules that respond to TKils. To model lung cancer signaling at the protein
level, PTM clusters were used to create a co-cluster correlation network (CCCN) and
select protein-protein interactions (PPIs) from a large network of curated PPIs to create a
cluster-filtered network (CFN). Next, we constructed a Pathway Crosstalk Network (PCN)
by connecting pathways from NCATS BioPlanet whose member proteins have PTMs that
co-cluster. Interrogating the CCCN, CFN, and PCN individually and in combination yields
insights into the response of lung cancer cells to TKls. We highlight examples where cell
signaling pathways involving EGFR and ALK exhibit crosstalk with BioPlanet pathways:
Transmembrane transport of small molecules; and Glycolysis and gluconeogenesis.
These data identify known and previously unappreciated connections between receptor
tyrosine kinase (RTK) signal transduction and oncogenic metabolic reprogramming in
lung cancer. Comparison to a CFN generated from a previous multi-PTM analysis of lung
cancer cell lines reveals a common core of PPIs involving heat shock/chaperone
proteins, metabolic enzymes, cytoskeletal components, and RNA-binding proteins.
Elucidation of points of crosstalk among signaling pathways employing different PTMs
reveals new potential drug targets and candidates for synergistic attack through

combination drug therapy.
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Author Summary

Protein post-translational modifications (PTMs), such as phosphorylation, ubiquitination,
and acetylation, are extensively employed by cell signaling pathways that regulate cell
division, differentiation, migration, and cancer. We used machine learning to identify PTM
clusters that represent functional modules in cell signaling pathways. These clusters
were used to identify protein-protein interactions, and interactions between cell signaling
pathways, that were active in lung cancer cells that were treated with anti-cancer drugs.
We model these interactions as networks at three levels of granularity at the pathway,
protein-protein interaction, and PTM levels. Interrogation of these networks yielded
insights into molecular interactions between cell signaling pathways activated by
oncogenes, transmembrane transport of small molecules, and glycolysis and
gluconeogenesis. These analyses identify previously unappreciated mechanisms of
crosstalk among signaling pathways between oncogenic tyrosine kinase signaling and
proteins that regulate metabolic reprogramming in lung cancer, revealing new potential

drug targets for combination therapy.
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Introduction

Protein post-translational modifications (PTMs) are intimately intertwined with cell signaling
mechanisms that regulate cell differentiation, migration, and proliferation, and when mis-
regulated become hallmarks and drivers of neurodegenerative diseases and cancer [1-8]. While
the transcriptome provides a robust signature for different cell states or responses to
perturbagens, gene expression is an indirect readout of signaling pathway activation, and the
levels of MRNAs and proteins are not necessarily well correlated [9]. Analysis of PTMs is a
more direct indicator of signaling pathway activation, since many signaling pathways are
controlled by PTMs, and examining PTMs on a large scale reveals how cell signaling networks
control diverse cellular responses [10]. While different types of PTMs (for example
phosphorylation, acetylation, and ubiquitination) are traditionally studied independently, many
proteins are modified by more than one type of PTM, and this information is integrated by cell
signaling pathways. The ability to combine different types of PTM information adds richness to

models of cell signaling pathways.

Lung cancer is one of the most commonly diagnosed cancers and the cancer responsible for
the most deaths worldwide [11]. Non-small cell lung cancer (NSCLC), a sub-type of lung cancer,
is frequently associated with activating mutations in receptor tyrosine kinases, including EGFR,
MET, ALK, and ROS1 [12], which disrupt tyrosine kinase signaling and drive cancer
progression. Targeted tyrosine kinase inhibitors (TKIs) have been developed that can be very
effective treatments in the short term. However, cancers inevitably become resistant to these
drugs either through further mutation of the target kinase or through activation of compensatory
signaling pathways. Development of new therapies to circumvent or overcome drug resistance
requires a better understanding of how the mutated kinases affect the cell signaling network and

how TKiIs further modulate it.
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The state of the signaling network can be assessed by monitoring changes in multiple PTMs.
Previously, we developed computational methods to identify groups of statistically-related PTMs
from sparse datasets, and integrated these data with protein interaction networks to examine
cancer signaling pathways [13-15]. The methods include discerning clusters of PTMs that
respond to perturbagens in similar ways, and using those clusters together with data from
protein-protein interaction (PPI) databases to define cell signaling networks, including those that

involve more than one type of PTM [13-15].

PPI databases (STRING, GeneMania, BioPlex, and PathwayCommons) [16-19] attempt to
define different types of relationships among proteins. PPI data are represented as a network
where proteins are nodes and their interactions are edges. However, these networks represent
the union of interactions observed in a wide range of cell types, disease states, and
environmental conditions making it difficult to hone in on the signaling pathways that are most
relevant to a particular experiment. To address this issue, we took advantage of the fact that
interacting proteins that undergo coordinated PTM in the same samples define signaling
mechanisms activated in those samples. By observing PTM changes in related conditions of
interest, e.g., lung cancer cell lines treated with different tyrosine kinase inhibitors (TKIs), we
can define clusters of coordinately-regulated PTMs. These clusters form a network that we refer
to as a Co-cluster Correlation Network (CCCN). Clusters can also be used to construct a
Cluster-Filtered Network (CFN) by filtering PPl edges from curated databases to include only
edges between proteins whose PTMs co-clustered. This process is useful because it simplifies
the complex network of PPIs to focus on cell signaling interactions supported by PTM data.
Groups of proteins that are coordinately post-translationally modified in the same samples
identify signaling pathways activated in different tumors or cell lines and under different
conditions [13-15]. Clustering of PTMs that occur under different conditions reveals patterns
specific to the drugs and cell lines under study, and proteins known to interact with each other

whose PTMs co-cluster are likely to represent functional signaling pathways [15].
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We hypothesized that different TKls would perturb certain core cell signaling pathways in ways
that would be reflected by PTM changes in response to drug treatments. To test this, we
constructed a CCCN and CFN from measurements of phosphorylation, acetylation, and
ubiquitination in 10 different lung cancer cell lines with driver mutations in EGFR, ALK, ROS1,
and DDR2 treated with four different TKils. In addition, we used curated pathways from NCATS
BioPlanet [20] to identify interactions among cell signaling pathways that are supported by our
PTM data, which we call pathway crosstalk. This strategy provides a high-level overview of
connections between specific pathways and cellular mechanisms whose details can then be
explored using the CFN and CCCN models. This integrated model was interrogated with an eye
towards interactions between pathways that do not have proteins in common but whose PTM
patterns indicate a relationship. We also compared our current CFN with our CFN previously
constructed using a different PTM dataset [15] and identified a core network that was common
to both studies despite differences in PTM data acquisition methodology, PTM types observed,

and cell lines and drugs used.

Results

Construction of the Co-Cluster Correlation Network (CCCN) and Cluster Filtered Network

(CFN)

Sequential enrichment of post translational modification (SEPTM) proteomics [21] was used to
identify tyrosine phosphorylated, ubiquitinated, and acetylated proteins in lung cancer cell lines
treated with four tyrosine kinase inhibitors (TKIs), crizotinib, erlotinib, dasatinib, and afatinib
(Figure 1A, B). A total of 12,461 unique PTMs were identified (Table S1). Of these, 4987
phosphorylation sites, 3249 acetylation sites, and 4452 ubiquitination sites were changed by at

least 2.25-fold up or down compared to control cells by at least one TKI treatment (Figure S1A).
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Different PTMs responded asymmetrically to different TKls; for example, dasatinib and afatinib
predominantly inhibited phosphorylation and acetylation and concomitantly increased
ubiquitination, while crizotinib and erlotinib caused changes in all PTMs in both directions
(Figure S1B). There were 60 phosphorylation, 21 acetylation, and 13 ubiquitination sites that
were affected by all four TKIs (Figure S1A, Table S1). Gene Ontology (GO) enrichment
associated with genes of these multi-drug-affected PTMs suggest connections from tyrosine
kinase-driven cell signaling to several other biological processes, including adhesion, gene
expression, and cytoskeletal regulation. There were also three genes involved in glycolysis
(ALDOA, GAPDH, GPI; Table S1) that had PTMs affected by all drugs tested. We hypothesized
that these data may be interrogated to find network connections between drug targets,
downstream proteins, and cellular pathways. Thus, we analyzed these data using a combination

of approaches that model PTMs, proteins, and pathways as networks (Figure 1C).

We used the dimension reduction algorithm t-distributed stochastic neighbor embedding (-SNE)
to help identify groups of PTMs whose abundances changed in a coordinated manner across
different drug and cell line combinations (Figure 1C). For each PTM observed, we calculated the
ratio of its abundance in each drug-treated sample to its abundance in the same cell line treated
with DMSO (control). Ultimately, each PTM is described by up to 25 treatment vs. control ratios.
t-SNE reduces the complexity of this high-dimensional data by embedding relationships among
the PTMs in a three-dimensional graph [22, 23]. As a result, PTMs that are near one another in
the t-SNE embedding represent PTMs that share close statistical relationships (e.g., high
Spearman correlation, low Euclidean distance) (Figure S2A). PTMs in the low dimensional
embedding were clustered using the minimum spanning tree method. The full list of PTMs and
their cluster membership can be found in Table S2. The data were then modeled as a network
(called a co-cluster correlation network, CCCN; Figure 1C; Figure S2B) where PTMs (nodes)
were joined by an edge if they belonged to the same cluster. We graph networks with features

that are driven by data: node shape depicts protein families (Figure S2C), and node size and
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color represent fold change, similar to a heatmap. Figure S3 shows all RTK and SRC-family
kinase (SFK) PTMs, graphed as a heatmap (Figure S3A), and as PTM networks showing CCCN
edges (yellow, positive correlation; blue, negative correlation) where node size and color

indicate log2 fold change in response to TKls (Figure S3B-D).

We then used the clusters to filter a network of physical protein-protein interactions obtained
from the PPI databases STRING [18], GeneMANIA [17, 24], BioPlex (12), and Pathway
Commons [16], and kinase-substrate interactions from PhosphositePlus [25], only retaining
edges between proteins whose PTMs co-clustered in the CCCN, to create a cluster filtered
network (CFN; Figure S4A). The CFN and CCCN were combined (Figure S4B) to model the
data in a similar manner as described previously for phosphorylation, acetylation, and

methylation PTMs derived from lung cancer cell lines [15].

As an initial exploration of the CFN, we compared the shortest paths subnetworks connecting
inhibited kinases to proteins whose PTMs changed in response to drugs. For each drug-treated
sample, we selected the proteins that had at least one PTM site that was at least 2.25-fold
increased or decreased relative to control cells. Next, we identified all shortest paths connecting
those proteins to the drug target. Although some of the TKls we used have multiple targets (e.g.,
crizotinib inhibits both ALK and MET), we chose one target for each drug for the purposes of this
analysis, namely erlotinib: EGFR, crizotinib: ALK, and afatinib: ERBB2. We calculated the
Jaccard similarity (intersection divided by union) of the proteins in the subnetworks for each pair
of samples and plotted the results in a heatmap (Figure S5). As expected, replicates of the
same drug/cell-line combination have the highest similarity, followed by different cell lines
treated with same drug. Samples treated with different drugs had the lowest similarity. These
results suggest that despite the inherent noisiness of the underlying PTM proteomic data, the

CFN can reproducibly capture signaling responses to TKis.


https://doi.org/10.1101/2022.10.28.514170
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.28.514170; this version posted October 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Pathway crosstalk

We next hypothesized that patterns of PTMs could be used to identify relationships among
known biological pathways in human cells, which we call pathway crosstalk. Therefore, we
extended our CCCN/CFN model of lung cancer PTM data to investigate relationships among
1657 curated pathways from NCATS BioPlanet, which consists of groups of genes (proteins)
involved in various cellular processes [20]. To model interactions among pathways, we
constructed a pathway crosstalk network (PCN) where pathway-pathway relationships (network
edges) are defined by pathway genes whose PTMs co-cluster (Figure 1C). The edge weight on
the interactions between pathways (called PTM cluster weight) is defined by the number of each
pathway’s genes in the same PTM cluster (defined by t-SNE as described above), normalized to
give less weight to genes found in many pathways and genes represented in large clusters (see
Methods). The PCN consists of 645,709 pathway-pathway interactions with non-zero PTM

cluster weight.

We compared the PTM cluster weights to two other measures of pathway-pathway similarity: i)
Jaccard similarity, and ii) Gene Ontology (GO) similarity, which measures the extent to which
genes in the two pathways are annotated with common GO Biological Process terms (see
Methods) [26]. The PTM cluster weight was poorly correlated with the Jaccard similarity (R2 =
0.02, Figure S6A), which indicates this approach is not simply recapitulating pathway
relationships based on genes in common. GO similarity had a moderate correlation with Jaccard
similarity (R2 = 0.22; Figure S6B). Overall, the correlation between PTM cluster weight and GO
similarity was low (R2 = 0.13), though pathway pairs that had high PTM cluster weight did tend
to have higher GO similarity (Figure S6C). The converse is not true, however; there were
pathways with high GO similarity that had low PTM cluster weight, which probably reflects that
our data do not represent complete coverage of all PTMs in all cells due to limitations in the

enrichment of these selected PTMs, the digestion enzyme, and mass spectrometry detection.
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Comparing the plot of PTM cluster weight vs. GO similarity for all pathway pairs (Figure S6C) to
the plot that includes only those pathway pairs that had zero Jaccard similarity (no genes in
common; Figure S6D) indicates that most of the pathway pairs with very high GO similarity had
genes in common, as did many of the pathway pairs with the highest PTM cluster weight.
Pathway pairs with high PTM cluster weights that had no genes in common tended to have
intermediate GO similarity (Figure S6D). These comparisons support the hypothesis that the
PTM clusters return biologically relevant information that is complementary to, and independent
of, common genes or common GO annotation, and that the PTM cluster weight will be useful for

filtering relationships between pathways.

Because of its known role in lung cancer, we first considered pathway interactions with the EGF/
EGFR signaling pathway. In the PCN, the EGF/EGFR signaling pathway interacts with 1,363
other BioPlanet pathways with non-zero PTM cluster weight (Table S3); of these, 620 have no
genes in common with the EGF/EGFR signaling pathway (i.e., Jaccard similarity is 0).
Considering the interacting pathways with no genes in common that have the highest PTM
cluster weights, a few themes emerge. There were pathways that mediate many major steps of
gene expression (e.g., Transcription, Messenger RNA processing, Splicesome, Translation, and
Cap-dependent translation initiation), pathways involved in glucose metabolism (e.g., Glycolysis
and gluconeogenesis, Glucose metabolism, Gluconeogenesis, and Carbohydrate metabolism)
and pathways that regulate transport of metabolic building blocks (e.g., Transmembrane
transport of small molecules, SLC-mediated transmembrane transport, and Transport of
inorganic cations/anions and amino acids/oligopeptides). We focused on two of these pathways
—Glycolysis and gluconeogenesis and Transmembrane transport of small molecules (Figure

2A)—because of their strong PTM cluster-based links to the EGF/EGFR signaling pathway and
because of the importance of metabolic adaptations in the progression to advanced cancer [27].

The PTM cluster weight of these pathways ranked fourth and ninth, respectively, among

pathways that interact with the EGF/EGFR signaling pathway, but have no genes in common,
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and the PTM cluster weight of these pathway interactions with the EGF/EGFR signaling
pathway were in the top 0.22% of PCN interactions among pathways with no genes in common
(Figure S7), and in the top 1% in the PCN overall. First neighbors of these pathways with high
PTM cluster weight (purple edges) and/or a high number of genes in common (high Jaccard
similarity; green edges) are shown in Figure 2B). These pathway crosstalk interactions were
interrogated to determine the cell signaling interactions between pathways. As described below,
interactions between the EGF/EGFR signaling, Transmembrane transport of small molecules,
and Glycolysis and gluconeogenesis pathways were further explored using the CFN/CCCN data
structure to determine the cell signaling pathways driven by PTMs that mediate pathway

crosstalk.

CFN/CCCNSs between EGF/EGFR signaling and Transmembrane transport of small

molecules

Examining all shortest paths that connect proteins in the EGF/EGFR signaling pathway (top,
Figure 3A) to those in Transmembrane transport of small molecules (bottom, Figure 3A) reveals
striking complexity in our combined CFN/CCCN model of data structure. Clusters of PTMs stand
out as cliques with yellow positive correlation edges. As previously reported [15], we also noted
reciprocally antagonistic relationships between different types of PTMs within the same protein
(blue edges, Figure 3A). A number of PTMs stand out as being strongly inhibited by TKI
treatment (large blue nodes Figure 3A, B), while a smaller number of PTMs increased (large
yellow nodes, Figure 3, Table S4).
To define cell signaling pathways connecting EGF/EGFR signaling pathway and
Transmembrane transport of small molecules, we graphed the CFN of all shortest paths without
PTMs (Figure 3B). From this network we identified intermediate nodes that directly connected to

one or more members of each pathway (“mutual friends”; Figure 3C). A number of cell signaling
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enzymes were in this group of mutual friends, including several SRC-family kinases (SFKs):
FYN, LYN, and LCK (Figure 3C). The mutual friends also included the RTK EPHB2; other
kinases GSK3A, PAK2; the Ser/Thr phosphatase PPP2CA; three 14-3-3 proteins YWHAZ,
YWHAQ, YWHAE; four heat shock/chaperone proteins from the HSP90 and HSP70 family,
HSP90AA1, HSP90AB1, HSPA1B, and HSPAS; and the mitochondrial ATP/ADP transporter
SLC25A5 (Figure 3C). More broadly, there were numerous direct links in the CFN between
RTKs and SFKs and the Transmembrane transport pathway proteins (Figure 3D), including
connections between RTKs and five transporters (ATP1A1, SLC1A5, SLC3A2, ABCC5,

ATP2C1) and interaction between SFKs and two others (ABCC1, ABCC3).

Several ABC transporters (ABCC1, ABCC2, ABCC3, ABCC5) implicated in TKI efflux and
multidrug resistance [28] had links to EGFR through SFKs, GSK3A, and HSP90 proteins (Figure
S8A-C). Interestingly, erlotinib decreased ubiquitination at distinct sites on ABCC1 and ABCC3
(Figure S8A-C), suggesting a role for erlotinib in stabilization of ABC transporters and promotion
of chemoresistance. Similarly, crizotinib dramatically decreased ABC transporter ubiquitination,
likely stabilizing ABCC1 and ABCC3 (Figure S8B). In contrast, no decreases in ABC transporter

ubiquitination were observed in dasatinib-treated samples (Figure S8C).

Examination of CCCN interactions among PTMs on proteins belonging to the two pathways
revealed distinct changes in cells treated with different TKls (Figure S8D-F). While most PTM
sites that were affected by erlotinib were down-regulated, we observed significant up-regulation
of phosphorylation of INPPL1 (SHIP-2), the Phosphoinositide (PI)-5 phosphatase that acts on
PI1(3,4,5) triphosphate, which co-clustered with PTMs from proteins in both pathways (Figure
S8D). Tyrosine phosphorylation of INPPL1 has been shown to promote its association with
SHC1 and its membrane localization [29]. The role of INPPL1 in cancer invasion and
metastasis has been studied, but the results are contradictory [30, 31]. Erlotinib also increased

phosphorylation on highly conserved tyrosine residues in two transporters: SLC20A2 (sodium-
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phosphate symporter) and SLC4A7 (sodium- and bicarbonate-dependent cotransporter; Figure
S8D). While the effect of tyrosine phosphorylation on the two transporters has not been
reported, upregulation of SLC4A7 has been observed in breast cancer where it participates in
pH regulation [32]. These phosphorylations demonstrate that tyrosine kinase activity toward
some substrates is increased despite the inhibitory effect of erlotinib on EGFR. In contrast to
erlotinib, crizotinib decreased phosphorylation on INPPL1, and crizotinib and dasatinib

decreased phosphorylation on SLC4A7 (Figure S8E,F).

Next, we examined direct CFN connections between the two pathways: nine proteins in the
EGF/EGFR signaling pathway interact directly with eight proteins in the Transmembrane
transport of small molecules pathway (Figure 3E). To understand how crosstalk between these
pathways might contribute to erlotinib resistance, we focused on the subset of direct CFN
connections where both interaction partners had PTMs that were changed at least 2.25-fold by
erlotinib. There were two such connections between EGFR and the transporters, ATP1A1 and
SLC3A2 (Figure 3E). We observed reduced phosphorylation of several sites on EGFR,
indicating that erlotinib inhibits EGFR activity, as expected, as well as decreased ubiquitination
of the transporters. Interaction of EGFR with these transporters has been shown to be highest
when EGFR is inactive [33]. Additionally, ubiquitination of ATP1A1 and SLC3A2 leads to their
down-regulation and removal from the plasma membrane; thus, by reducing ubiquitination, TKI

treatment may result in increased levels of active transporters in the membrane.

CFN/CCCNs between EGF/EGFR signaling and Glycolysis and gluconeogenesis

A similar approach was used to analyze pathway crosstalk between the EGF/EGFR signaling
and Glycolysis and gluconeogenesis pathways. The composite shortest paths connecting these
two pathways was also very complex (Figure S9A, CFN/CCCN; S8B, CFN). The “mutual
friends,” nodes that connected to at least one member of both pathways in the CFN, contain

some similarities and differences compared to those connecting the EGFR signaling and
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Transmembrane transport pathways (Figure S9C). In common were the SFKs FYN, LYN, and
LCK; GSK3A,; the RTK EPHB2; and the mitochondrial ADP/ATP transporter SLC25A5. Distinct
in this group were kinases PRKDC, MAPK11, CDK1, CDK2, CDKS5, FRK, and SYK;
acetyltransferases EP300 and FASN; and the G-protein-coupled receptor GPRC5A, whose

expression is linked to poor prognosis in human NSCLC patients [34].

Upregulation of glycolysis in the presence of oxygen is a well-recognized phenomenon in
cancer cells known as the Warburg effect [27]. The PTM changes we observed in proteins
connecting the two pathways suggest that erlotinib treatment may paradoxically support the
Warburg effect through crosstalk between EGFR signaling and glucose metabolism pathways
(Figure 4A). Most of the PTM changes in the EGFR signaling proteins are consistent with
reduced protein abundance or activity—e.g., reduced tyrosine phosphorylation of EGFR,
increased ubiquitination of CFL1, and reduced phosphorylation of Y374 on PRKCD, which is
likely to result in less recycling of EGFR from the endosome to the cell surface [35]. In contrast,
most of the PTM changes in the glycolysis and gluconeogenesis pathway proteins are indicative
of increased protein abundance or activity. We noted decreased ubiquitination of ALDOA,
GAPDH, ENO1, TPI1, and LDHB, suggesting that these proteins were stabilized by erlotinib
treatment. This observation is consistent with other evidence showing that glycolysis is
regulated by ubiquitination in cancer cells [27]. Moreover, acetylation of ALDOA, which inhibits
enzyme activity [36], was reduced. Thus, direct inhibition of EGFR by erlotinib led to inhibition of
members of the EGFR signaling pathway and a concomitant increase in activity of glucose
metabolic enzymes in the interacting Glycolysis and gluconeogenesis pathway. These metabolic
changes are consistent with promotion of the Warburg effect. Clues about the mechanism
mediating this were found by examination of direct connections between RTKs, SFKs and the
Glycolysis and gluconeogenesis pathway: PKM is a hub that integrates information from several

RTKs and SFKs, and ENO1 and PGK1 are also key regulatory proteins (Figure 4B).
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There are several indications from our network that erlotinib treatment may result in
relocalization of glycolysis enzymes. First, EGFR physically interacts with the glycolysis
enzymes TPI1, ALDOA, and GAPDH. Previous studies have shown GAPDH binding to EGFR
increases upon EGFR stimulation [33], so erlotinib treatment is likely to reduce the level of
binding, and thereby the amount of GADPH, at the membrane. Furthermore, the actin-
modulatory protein coffin (CFL1) interacts with several glycolysis enzymes (TPI1, ENO1,
GAPDH, ALDOA, PKM, LDHB) in our network. In the case of TPI1, it has been shown that the
interaction with CFL1 is required to translocate the enzyme to the plasma membrane, where it
associates with the sodium-potassium ATPase [37]. Our PTM data indicates that CFL1 is
ubiquitinated and down-regulated by erlotinib treatment, suggesting that localization of TPI1 to

the plasma membrane may be reduced.

Another potentially relevant interaction in our network is the kinase-substrate relationship
between protein kinase C-delta (PRKCD) and GAPDH (Figure 4A). We observed reduced
tyrosine phosphorylation of PRKCD, which could result in reduced phosphorylation of GAPDH.
Other studies have shown that phosphorylation of GAPDH by PRKCD inhibits the turnover
(mitophagy) of mitochondria [38]; thus, erlotinib-induced reduction in phosphorylation of GAPDH

may lead to up regulation of mitophagy.

Communication between EGFR and SFKs

In our analyses so far, we repeatedly observed that SFKs were important intermediaries in the
communication between EGFR signaling and transport and metabolism. To better understand
the role of SFKs, we examined the relationships between RTKs and SFKs in our networks more
closely. First, we constructed a subnetwork of the CFN showing paths between EGFR and
proteins whose PTMs were most affected by the SFK inhibitor dasatinib (Figure 4C, D).
Fourteen of the proteins in this dasatanib-affected network, were also “mutual friends” directly

linking EGF/EGFR signaling pathway to Transmembrane transporters of small molecules
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(Figure 3C), and seventeen were “mutual friends” linking to Glycolysis and gluconeogenesis
(Figure S9C), reinforcing the notion that dastinib treatment could mediate pathway crosstalk
between EGFR signaling and pathways that affect cell metabolism. Within this network, we
observed several proteins (ERBB2, NCK1, IRS2) whose PTMs were elevated in erlotinib (Figure
4C) and depressed or unchanged in dasatinib (Figure 4D). Of particular interest,
phosphorylation of the related EGFR-related RTK, ERBB2, on Y877 was increased by erlotinib,
whereas this same site was strongly inhibited by dasatinib. Examination of the response of all
RTKs (Figure S3) revealed other RTKs whose phosphorylation is increased with erlotinib
treatment and inhibited by dasatinib (AXL p Y481; EPHB5 p Y774), and several more RTK sites
strongly inhibited by dasatinib (Figure S3). Examination of the response of SFKs to TKils
revealed that erlotinib increased tyrosine phosphorylation on activating sites of FYN and LCK,
whereas LYN and YES1 were phosphorylated on their C-terminal inhibitory sites (Figure S3B).

In contrast, mainly LYN appeared to be activated in crizotinib-treated cells (Figure S3C).

CCCN Clusters Enriched for Drug-Affected PTMs

We hypothesize that the PTM clusters in the CCCN represent signaling modules—groups of
related proteins that respond to perturbations in a coordinated fashion. Thus, we investigated
several clusters in depth in order to characterize the biological processes that they might be
controlling. Because we were particularly interested in how signaling modules respond to TKis,
we focused on clusters that were statistically enriched for drug-affected sites. We defined drug-
affected sites to be sites whose median abundance ratio in drug-treated vs. control cells was at
least 2.25-fold (up or down) in samples grouped by cell type and drug treatment (called sample
groups, defined in Methods). The complete list of drug-affected sites in each sample group can
be found in Table S4. Out of 818 clusters, there were 137 that were enriched for drug-affected
sites in at least one cell-line/drug combination, (corrected p-value < 0.05, Fisher's Exact Test),
including 91 clusters enriched in more than one sample group (Table S5). There were multiple

enriched clusters for each of the sample groups (range: 11-64 clusters, mean: 40 clusters). The
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non-random distribution of drug-affected sites among clusters in a variety of sample groups
confirms that our clustering method produced clusters that respond to perturbations in a
coordinated manner and may represent biological modules. The three clusters of PTMs
highlighted below illustrate different potential intersections among cell signaling pathways and

biological processes.

The first cluster, which we call cluster A, was the most enriched cluster for PTM sites affected by
crizotinib and dasatinib and was also enriched for erlotinib affected sites (Figures 5 and S10).
This cluster contained 92 PTM sites, the majority of which were phosphorylation sites (63%)
followed by acetylation sites (29%) and then ubiquitination sites (8%). Figure S10A shows the
71 unique proteins whose PTMs were in the cluster and the CFN edges that connect them.
Twelve of the proteins were protein kinases (nodes with red borders), and 8 of these kinases
had at least one kinase-substrate relationship with another of the proteins (red edges). The
cluster contained activating phosphorylation sites on a number of known signaling proteins,
including receptor tyrosine kinases (EGFR pY 1197, EPHA2 p Y575), downstream effector
kinases (PTK2 pY576, TNK2 pY859, MAPK14 pY182, MAPK9 pY195), and tyrosine

phosphatases (PTPN11 pY584, PTPNG pY536, PTPNG pY564, PTPRA pY798) (Table S6).

Of the 92 sites in the cluster, 49 were drug-affected (at least 2.25-fold changed) in at least one
sample group. The vast majority of the drug affected sites were down in the drug-treated vs.
control cells (Figure S10), which is consistent with the fact that TKI treatment inhibits signaling,
reducing PTM of many sites in growth-factor signaling pathways. Notably, two of the few
upregulated sites were T14 and Y15 of the mitotic-driver kinase CDK1; phosphorylation of these
sites inhibits kinase activity [39], so the effect of this PTM change was to suppress kinase
activity. In addition to the signaling molecules themselves, Cluster A also contained direct or
indirect substrates of several of the kinases that were targeted by TKIs in our experiments, e.g.,

substrates of ABL (Figure 5A, targeted by dasatinib), SRC-family kinases (Figure 5B, targeted
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by dasatinib), and EGFR (Figure 5C, targeted by erlotinib). The drug-affected sites (those that
were changed at least 2.25-fold) were almost exclusively down-regulated by all TKls examined,
indicating that effects of suppressing one avenue of tyrosine kinase signaling propagated to the
substrates of other tyrosine kinases. Importantly, some of the down-regulated substrates were
implicated in negative regulation of growth-factor signaling (Figure 5D). For example, an
activating phosphorylation site on TNK2, Y859, was down-regulated in all sample groups. TNK2
localizes to clathrin-coated pits and plays a role in internalization of growth factor receptors [40].
Suppression of these proteins that inhibit signaling may contribute to acquisition of drug
resistance. In summary, Cluster A represents a group of signaling mediators and regulators

whose activity is suppressed by treatment with multiple TKis.

Cluster B was remarkable because of the large number of sites that were up-regulated by
erlotinib treatment (Figure S11). Eighteen out of the 44 sites in this cluster were up-regulated by
more than 2.25-fold in the all.erl sample group, which included erlotinib treated PC9, HCC4006,
and HCC827 cells. Many of the same sites were also up-regulated to a lesser extent in the
pc9.erl (erlotinib-treated PC9 cells) sample group. Although Cluster B was also enriched for
sites affected by crizotinib and dasatinib, these sites were largely down-regulated as was much
more typical in our dataset. We performed pathway and GO enrichment analysis on the proteins
with erlotinib-up-regulated PTMs using Enrichr [41]. The most enriched Bioplanet pathway was
the ERBB1 (EGFR) downstream pathway (adjusted p-value = 0.014). Thus, many of these
proteins are part of the EGFR pathway but have PTMs that are increased when EGFR is
inhibited. The great majority (14/18) of these PTMs are tyrosine phosphorylations. Although the
precise roles of these PTMs has not been characterized, increased tyrosine phosphorylation is
often associated with signaling pathway activity; thus, these PTMs could be sentinels of

signaling crosstalk that promotes erlotinib resistance.
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One of the top enriched GO Cellular Component terms for the set of proteins with erlotinib up-
regulated PTMs was focal adhesion (adjusted p-value = 0.042). Focal adhesions serve as an
intermediary between the actin cytoskeleton and the extracellular matrix and play a key role in
migration and metastasis of cancer cells [42]. In total, the cluster contained 12 proteins with
drug-affected PTMs that were associated with focal adhesions and/or actin cytoskeleton
dynamics according to their UniProt function description and/or their GO term annotation (Figure
6A, Table S6). Thus, Cluster B could be a module involved in cell motility and communication
with the extracellular matrix. TKI-induced changes in the PTMs in this cluster could alter a

tumor’s potential for metastasis.

Finally, cluster C had a very different PTM composition, consisting of 29 sites the overwhelming
majority of which (25) were acetylation sites (Figures S12, 6B). The remaining four sites in the
cluster were ubiquitination sites. Many of the proteins represented in this cluster have a role in
transcription regulation (Table S6). Half of the acetylation sites (12/29) were on histone subunits
(H1, H2A, H2B, and H4). In cases where the role of the acetylation has been characterized
(e.g., H2AFV K5/K8/K12, H2AFZ K5/K8/K12, and HIST4H4 K6/K9), the modifications are
associated with open chromatin and transcriptional activation [43]. The cluster also contained
two histone acetyltransferases (HATs): KAT7 and EP300, which have multiple interactions with
histones (Figure S12A). The modification site on EP300, K1551, is in a region of the protein that
is known to undergo auto-acetylation, increasing EP300 activity [44]. Thus, this cluster may be
capturing the relationship between changes in HAT activity and changes in levels of histone
acetylation. The sites in this cluster were markedly down-regulated in H3122 cells treated with
crizotinib and PC9 cells treated with erlotinib (Figure S12B). Given the known roles of the
proteins and PTMs in this cluster, this outcome would suggest that treatment with both drugs

promoted an overall downregulation of transcription.

Comparison of networks
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The CFN network from this study was generated using methods to create a CFN in a previous
integrated analysis of phosphorylation, acetylation, and methylation PTMs in lung cancer cell
lines (referred to here as the CST-CFN) [15]. While the data described here differs from that
work in mass spectrometry methods and set of PTMs analyzed (methylation in the CST-CFN vs.
ubiquitination here), both data sets contain phosphorylation and acetylation sites from lung
cancer cell lines, so we hypothesized that we could identify a core set of the most highly
connected nodes common to both networks. We employed k-core decomposition, which ranks
nodes of a graph according to their connections and creates groups of increasingly more
“important” or “central” nodes [45]. k-core decomposition has emerged as a fundamental
operation in many areas such as graph similarity matching [46], network visualization [47],

graph clustering [48], anomaly detection [49], and robustness analysis [50].

We applied k-core decomposition to the CFN generated from data in this study and the CST-
CFN to identify the compositional differences between the two graphs in terms of the highest
cores (see Methods). We used the simplified versions of the two networks where we omitted
self-loop and duplicated edges. The CST-CFN and our CFN networks shared 583 common
nodes (proteins), which have 3504 unique edges; 239 of the 3504 edges existed in both
networks. Our CFN had 12 cores; for this network, we considered cores 11-12 to be high cores.
The CST-CFN had 10 cores; for this network we considered cores 6 and above to be high
cores because it had no nodes in its 8th core and the 9th and 10th cores were a clique of 12
interacting acetylated ribosomal protein genes (NOP58, RPL18A, RPL23A, RPL26, RPL3,
RPL35, RPL5, RPS25, RPS28, RPS6, RPS9, SSR3). These vertices were not connected to the
nodes in lower cores, which indicates a specialized function, namely control of translation
through ribosomal protein acetylation. In our network, the high cores (=11) contained 135 nodes
and 1308 edges (Figure 7A, B); in the CST-CFN network, the high cores (=6) contained 43

nodes and 137 edges. Interestingly, 10/12 of the high core CST-CFN nodes and 107/135 of the
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high core nodes in our CFN were among the 583 nodes that existed in both the CST-CFN and

our CFN.

The 43 genes in common to the high cores of both networks (cores 11-12 of our network and
cores 6-10 of the CST-CFN) were highly connected to EGFR in our CFN (Figure 7C). The
common core contained several heat shock proteins (CCT4, HSP90AA1, HSP90AB1, HSPAS,
HSPD1, NPM1), which is consistent with their role as chaperone proteins that bind diverse
substrates in the cytosol. Consistent with the interplay between metabolism and cell signaling
discussed above, the common core also contained ENO1, FASN, PKM, GAPDH, and the
mitochondrial ADP/ATP transporter SLC25A5, which was noted above as linking EGF/EGFR
signaling pathway to both Transmembrane transport of small molecules (Figure 3C) and
Glycolysis and gluconeogenesis (Figure S9C). The core contained six genes whose PTMs
changed in response to all TKIs (HNRNPA2B1, FASN, GAPDH, HNRNPU, PPIA, ACTB, Table
S1). The core also contained ribosomal proteins, splicing factors and other RNA-binding
proteins, cytoskeletal components including clathrin heavy chain and lamin A, and two 14-3-3
phosphoserine-binding proteins (Figure 7C). Most of these genes had many PTMs which are
represented in nine positively-correlated clusters associated with one or more PTMs of EGFR

(Figure S13).

Notably, there were a large number of negative correlations among different PTM types on
these core proteins (Figure S13). Negative correlations between phosphorylation, acetylation
and ubiquitination on the same protein indicate that these different PTMs were rarely found on
the same protein in the same samples (Figure S1C). Thirty-nine proteins whose PTMs were
negatively correlated were modified by both acetylation and ubiquitination on the same amino
acid (Table S1). Remarkably, ten of these were in the core (PKM, ACTB, DDX5, EEF1A1,
HNRNPA1, HNRNPU, HSPA8, MYH9, SET, YWHAZ; Figure S13). This supports the hypothesis

that reciprocally antagonistic pathways control cell signaling through proteins that act as hubs or

21


https://doi.org/10.1101/2022.10.28.514170
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.28.514170; this version posted October 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

pathway control switches for signal integration [15]. Proteins with multiple PTM types will have
different sets of interacting partners that depend on PTM-specific binding domains (e.g.,
ubiquitin binding domains; bromodomains; SH2 and PTB domains) to regulate protein

localization, degradation, and activity.

Discussion

This integrated analysis of protein phosphorylation, acetylation, and ubiquitination in lung cancer
cell lines in response to TKls attempts to model cell signaling pathways using network-based
approaches. The activity of cell signaling pathways can only be indirectly inferred by
interrogating the transcriptome or the proteome. While analysis of PTMs does not
comprehensively cover all signaling pathways, or directly assess the role of intracellular second
messengers, the integrated analysis of several PTMs enables modeling cell signaling pathways
that are likely to be upstream of transcription and translation with sufficient resolution to begin to

describe the interactions among pathways that affect many cellular processes.

This network-based framework allows interrogation of multi-PTM proteomics data with three
levels of granularity at the pathway (PCN), protein (CFN), and PTM (CCCN) levels. The highest-
level network, introduced for the first time in this study, is the PCN, in which the highly-curated
biological pathways from BioPlanet [20] were connected based on the extent to which their
member proteins’ PTMs co-cluster in the CCCN. We focused on pathways that did not share
any genes in common but nonetheless were strongly connected by PTM cluster evidence, thus
elucidating new interactions between pathways. A PPI-based view is provided by the CFN, in
which PPIs from curated databases were filtered to retain only interactions between proteins
whose PTMs co-cluster. This slimmed-down version of the full interactome selects interactions
most relevant to the cell signaling response to TKils in our experiments. We have previously
shown that the CFN derived from PTM clusters effectively removes biases in PPI networks

where well-studied proteins have more interactions [15]. The network that is the most detailed
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and the closest to the raw data is the CCCN, in which PTMs were clustered by t-SNE based on
statistical relationships in TKl-treated lung cancer cells. Meaningful clustering of PTMs is
challenging due to the sparseness of data sets typically obtained from mass spectrometry and
immunoprecipitation using modification-specific antibodies. We have extensively evaluated this
problem in previous work [13-15]. Here, we observed that drug-affected PTMs were
asymmetrically distributed in the CCCN (i.e., some clusters were highly enriched for drug
affected sites), supporting the hypothesis that the clusters define functional modules whose

members respond in concert to drug treatment.

Using the PCN as a starting point, we interrogated the data structure more deeply by way of the
CFN and CCCN interactions among the proteins and PTMs that connect the interacting
pathways (Figures 3, 4, S8, S9). EGFR is a driver of lung cancer and acquisition of resistance to
EGFR is a major concern and an unmet medical need for lung cancer patients [51, 52].
Additionally, enhanced aerobic glycolysis in tumor cells (the Warburg effect) is a hallmark of
cancer that contributes to chemotherapy resistance and involves changes in metabolic enzymes
and small molecule transporters at the plasma membrane and in mitochondria [53-56].
Therefore, we focused on the interaction between the EGF/EGFR signaling pathway and two
BioPlanet pathways, Transmembrane transport of small molecules and Glycolysis and
gluconeogenesis, which had robust PCN interactions despite having no genes in common

(Figure 2A).

Our results indicate that EGFR inhibition by erlotinib promotes metabolic changes that support
the high metabolic needs for therapeutic escape [57]. While EGFR showed reductions in
activating phosphorylation consistent with drug inhibition, interacting glycolysis enzymes and
small molecule transporters showed PTM changes consistent with activation (e.g., reduced

inhibitory acetylation of ALDOA) and increased stability (i.e., reduced ubiquitination of the
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glycolysis enzymes ALDOA, GAPDH, ENO1, TPI1, and LDHB and the transporters ATP1A1 and
SLC3A2).

We also observed potential erlotinib-induced effects on the localization of transporters and
glycolysis enzymes that promote tumor growth. First, erlotinib treatment may result in increased
localization of transporters ATP1A1 and SLC3AZ2 to the plasma membrane (Figure 3E). Both
ATP1A1 and SLC3A2 have been implicated in lung cancer. Many lung cancers show increased
expression of ATP1A1 and targeting ATP1A1 with siRNA or drugs (cardenolides) has an anti-
tumor effect [58]. SLC3A2 heterodimerizes with SLC7A5/LAT1, which has a well-established
role in lung cancer [59-61]. Conversely, our results suggest that erlotinib treatment may result in
localization of glycolysis enzymes away from the plasma membrane (Figure 4A). While
increased aerobic glycolysis is a characteristic of cancer cells (Warburg effect), some glycolysis
takes place even in healthy cells, particularly at the plasma membrane, where several glycolysis
enzymes have been found associated with pumps and transporters that have high demands for
ATP [37, 62]. Altered localization of glycolysis enzymes could be an important factor in the
metabolic reprogramming of cancer cells. It would be interesting to test whether erlotinib does
indeed alter the localization of glycolysis enzymes and whether that contributes to the reduced

ubiquitination of these enzymes that we observed and to increased aerobic glycolysis.

Finally, we propose that mitophagy might increase in erlotinib-treated samples due to reductions
in phosphorylation of GAPDH by PRKCD [38]. We observed reduced phosphorylation of
GAPDH potentially mediated by reduced activity of PRKCD, which may lead to increased
mitophagy (Figure 4A), which is a feature of cancer cells that are undergoing metabolic stress

from their nutrient poor environment and/or the effects of anti-cancer treatments [63].

Our results point to the importance of SFKs as key signaling intermediates in TKl-treated cells.

First, multiple SFKs were “mutual friends” with direct connections to members of the EGFR
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signaling pathway and both the Transmembrane transport of small molecules pathway (Figure
3C) and Glycolysis and gluconeogenesis pathway (Figure S9C). Second, SFKs were found on
the shortest paths connecting EGFR to the ABCC transporters (Figure S8D-F). Third, SFKs are
directly connected in the CFN to several transporters (Figure 3D) and glycolysis enzymes
(Figure 4). Forth, several RTKs show increased phosphorylation in erlotinib, but decreased
phosphorylation in dasatinib (Figure 4B, C, Figure S3), suggesting that SFKs might be
responsible for RTK activation in erlotinib-treated cells. Finally, SFKs show a reciprocal
activation pattern in erlotinib vs. crizotinib, suggesting that FYN and LCK are responsible for
increased tyrosine phosphorylation of RTKs in erlotinib-treated cells, whereas LYN
phosphorylates different RTK sites in crizotinib-treated cells (Figure S3B-D). This is consistent
with previous work showing that FYN and LYN show different responses in activity, association
with the scaffold protein PAG1, and intracellular localization when activated by different RTKs in
neuroblastoma cells [14, 64]. It is also consistent with work showing that SFKs remain active in
the presence of EGFR TKils and contribute to EGFR-independent compensatory mitogenic

signaling [65].

We also explored how several of the PTM clusters in the CCCN defined functional modules that
respond to drug treatment (Figures 5, 6, S10-S12). One cluster (cluster A) appeared to be a key
signaling module. It contained many PTMs implicated in RTK signaling as well as numerous
SFK target sites. Most of the PTM changes upon TKI treatment are consistent with
downregulation of signaling; however, some of the proteins with downregulated PTMs are
involved in feedback inhibition of signaling (e.g., TNK2 Y859) suggesting a mechanism for
acquired TKI resistance. A second cluster (cluster B) contained a number of PTMs on proteins
associated with focal adhesions and remodeling of the actin cytoskeleton. This may provide a
clue to the mechanism by which the epithelial-mesenchymal transition (EMT) facilitates acquired
EGFR-TKI resistance in NSCLC [66]. Because they regulate cell shape and motility and

mediate communication between the cytoskeleton and the extracellular matrix, focal adhesions
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play an important role in invasion and metastasis of cancer [67]. Third, in cluster C, we

observed changes in acetylation of transcriptional regulatory proteins (e.g., histones) that are
suggestive of widespread transcriptional down-regulation in response to TKls. Thus, in-depth
analysis of individual clusters in the CCCN revealed functional themes as well as evidence of

PTM changes in response to TKIls that could mediate drug resistance.

Finally, we compared our data to previously published data from an integrated analysis of
protein phosphorylation, methylation, and acetylation [15]. Despite significant differences in
PTM proteomics methodology and even in the types of PTMs assayed (methylation in the
previous study vs. ubiquitination in this study), we identified a core set of important, highly
connected proteins in common to both networks. Several of these proteins were also identified
as key proteins in our other analyses (e.g., as links between our PCN focus pathways) and
many have documented roles in cancer, which confirms that our approach of using PTM
clusters to examine cell signaling pathways returns actionable information. SLC25A5 and
ENO1, which we found in our common core, were recently identified among six hub genes
prognostic for cervical cancer [68]. SLC25A5 (ANT2) is an ADP/ATP translocase associated
with several cancers [69](https://www.proteinatlas.org/ENSG00000005022-SLC25A5/

pathology). Similarity to related SLC25A4 (ANT1) suggests the possibility that SLC25A5 (ANT2)
may play a role as a low-conductance pore-forming component of the mitochondrial
permeability transition pore (mPTP) [70]. The expression level of ENO1 (ENOA), a glycolytic
enzyme the catalyzes the conversion of 2-phosphoglycerate to phosphoenolpyruvate, has other
cellular functions, and is diagnostic for several cancers, including lung cancer [71-73](https://

www.uniprot.org/uniprot/P06733).

Another common core protein, PKM (pyruvate kinase M), has two isoforms (1 and 2) that
convert phosphoenolpyruvate (PEP) to pyruvate in glycolysis and are implicated in the Warburg

effect [74, 75]. PKM is modified by phosphorylation, acetylation and ubiqutination in our data
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and is connected to three RTKs and four SFKs in our CFN (Figure 4B). FASN (fatty acid
synthase), was also part of the common core (Figure 7). FASN is being explored as a drug
target because it enables cancer cells to survive in tumors [76, 77]. FASN’s activity and
expression has been shown to be controlled by EP300 acetylation and ubiquitination [78, 79].
FASN ubiquitination on multiple sites was detected in this study and two sites were upregulated
in response to erlotinib (K70; K1993; Table S4). Our analysis suggests the hypothesis that other
proteins that also appear as links between EGF/EGFR and our focus pathways (Figures 3, 4)

could be candidates for drugs that can be used in combination therapy for cancer.

There are still large gaps in our knowledge about the regulatory function of many PTMs. We
encountered numerous PTMs on proteins of interest (e.g., proteins in our focus pathways or
proteins that were key intermediates) that were strongly affected by TKls where little is known
about the biological effect of the modification. In most cases, these PTMs have been observed
in high-throughput PTM proteomics analyses but have never been the subject of focused
studies. Thus, one useful outcome of this work is to highlight understudied PTMs that should be
prioritized for future in-depth studies, for example, drug affected PTMs that co-cluster with PTMs
known to be involved in RTK signaling (cluster A, Figure 6); or drug affected PTMs of members

of the common core (Figure S13).

In this article, we focused on interactions among EGFR signaling, glycolysis, and small
molecule transport because of the strong evidence for these connections provided by our PTM
data and because these pathways have an established, important role in lung cancer; however,
numerous other relevant interactions can be explored. The networks can be queried as
navigable data structures in multiple ways for further investigation (NDEX https://
www.ndexbio.org/viewer/networks/452ac60b-4681-11ed-b7d0-0ac135e8bacf).

Methods
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Lung cancer cell lines and drug treatments

Five tyrosine kinases (TK) EGFR, ALK fusion, ROS, HER2, and DDR2 represent the major
known oncogenes driving NSCLC. Afatinib, dasatinib, erlotinib, and crizotinib target these five
TKs and have been used clinically to treat lung cancer. To understand the crosstalks among
signaling pathways mediated by major protein post-translational modifications including
phosphorylation, ubiquitination, and acetylation, we selected ten NSCLC cell lines harboring
driver tyrosine kinases and treated them with and without corresponding TKils (Fig 1B). We
carried out triplicate experiments on EML4-ALK-driven H3122 cells and EGFR-driven PC9 cells
treated with and without TKis, including crizotinib and erlotinib. A similar drug treatment
experiment was then performed on ten different cell lines, including EGFR-driven PC9,
HCC827, and H4006 cell lines, EML4-ALK-driven H3122, H228, and STE1 cell lines, ROS-
driven HCC78 cell line, and HER2-driven H1781 cell line, respectively. Afatinib (HER2+),
Erlotinib (EGFR+), Crizotinib (ALK+, or ROS2+), and Dasatinib (DDR2+) were used as TKls for
the corresponding targets. DMSO vehicle served as the control for all TKls. All inhibitors were
obtained from Selleck Chemicals (Houston, TX). Cells were treated with TKls at 1uM for three
hours, which significantly decreased cell viability without killing cells. DMSO was used as the

vehicle alone control.

Sequential enrichment of multiple global post translational modification

Peptides modified by phosphorylation, ubiquitination, and acetylation were sequentially enriched
and purified using PTMScan® Phospho-Tyrosine Rabbit mAb (P-Tyr-1000) Kit (Cell Signaling
Technology #8803), PTMScan® Ubiquitin Remnant Motif (K-e-GG) Kit (Cell Signaling
Technology #5562), and PTMScan® Acetyl-Lysine Motif (Ac-K) Kit (Cell Signaling Technology
#13416). The experiment was conducted according to the kit's instructions. Briefly, for each
condition, 10 x 150 mm tissue culture dishes (approximately 1-2 x 1078 cells total) were rinsed

with 5 ml PBS. The cells were lysed using 10 ml of 9M urea lysis buffer in the first dish, and then
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the lysate was scraped iteratively into subsequent dishes. Cell lysates were cleared by
centrifuging at 20,000 x g for 15 min at room temperature, following three sonications of 15 sec
each at 15 W output. The clear cell supernatants were digested with Trypsin-TPCK
(Worthington, LS003744) after reduction with dithiothreitol (DTT), alkylation with iodoacetamide
(IAA), and dilution with 20 mM HEPES buffer (pH 8.0). The resulting peptides were acidified and
desalted using the Sep-Pak C18 Classic Cartridge (Waters). After purification, the peptides were
lyophilized and resuspended in immunoaffinity purification (IAP) buffer (PTMScan, Cell
Signaling Technology, Beverly, MA). The supernatant containing pure peptides was centrifuged
for 5 minutes at 10,000 x g at 4°C in a microcentrifuge, and then incubated with Phospho-
Tyrosine Motif (Y*) (P-Tyr-1000) Immunoaffinity Beads. Tyrosine phosphorylated peptides and
antibody complexes were separated by centrifugation at 4°C for one minute at 1,000 x g.
Supernatant was then incubated with Ubiquitin Remnant Motif (K-e-GG) Antibody Beads.
Following the isolation of ubiquitinated peptides, the acetylation peptide separation with Ac-K
beads was performed in a similar fashion. After washing, all peptides were separately eluted

from beads using 0.15% TFA and stored at -80°C for further analysis.

Protein and PTM identification and quantification using Liquid chromatography tandem
mass spectrometry and database searching

Nanoflow ultra-high performance liquid chromatography (RSLCnano, Dionex, Sunnyvale, CA)
and a hybrid quadrupole-Orbitrap mass spectrometer (Q Exactive Plus, Thermo, San Jose, CA)
were used for tandem mass spectrometry peptide sequencing. The sample was first loaded
onto a precolumn (C18 PepMap100, 2 cm in length x 100 um ID packed with C18 reversed-
phase resin, 5 um particle size, 100 A pore size) and washed for 8 minutes with aqueous 2%
acetonitrile and 0.1% formic acid. The trapped peptides were eluted on the analytical column
(C18 PepMap100, 75 ym ID x 50 cm in length, 2 ym particle size, 100 A pore size [Thermo,
Sunnyvale, CA]) using a 120-minute gradient programmed as: 95% solvent A (aqueous 2%

acetonitrile + 0.1% formic acid) for 8 minutes, 5% to 38.5% solvent B (aqueous 90% acetonitrile
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+ 0.1% formic acid) for 90 minutes, 50% to 90% solvent B for 7 minutes and held at 90% for 5
minutes; which was followed by 90% to 5% solvent B for 1 minute and re-equilibration for 10
minutes. A flow rate of 300 nL/minute was used on the analytical column. NanoESI spray
voltage was 1900 v and capillary temperature was 275 °C. Resolution setting for MS1 and MS/
MS was 70,000 and 17500, respectively. Sixteen tandem mass spectra were collected in a data-
dependent manner following each survey scan. Sixty second exclusion was used for previously

sampled peptide peaks.

MaxQuant software was employed to assign the PTM sites in the peptides and quantify PTM-
modified peptides. To identify proteins and assign the PTM sites, raw data files were submitted
to MaxQuant 1.5.3.30 software to search the Uni-Prot human canonical and isoform database
version 04.29.2016. The sequences were reversed and added into the database to estimate
false discovery rate. Three modifications were separately searched: phosphorylation on serine,
threonine, and tyrosine residues; Gly-Gly modification on lysine (to detect ubiquitination); and
acetylation on lysine. The false discovery rate cutoff for proteins was set at 0.05. Entries with
contamination and reverse identification prefixes, such as "CON_" and "REV_", were removed
from the final protein ID results. Three variant modifications setting are 1) Oxidation (M)/Acetyl
(protein N-term)/phosphorylation -phosphor (STY), 2) Oxidation (M)/Acetyl (protein N-term)/
ubiquitination-glygly (K), 3) Oxidation (M)/Acetyl (protein N-term)/acetyl(K).

PTM sites maximum in each peptide was set at 3.

PTM data were used to calculate treatment:control ratios, which were limited to +/-100 to avoid
statistical bias and transformed into logz values as described previously [15]. Ratios were
calculated by comparing each drug-treated sample to the average of control replicates. Ratio

data and original data were both used as feature vectors for PTM clustering.

Clustering of PTMs and construction of CCCN and CFN
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Construction of the CCCN and CFN were done as described [13-15]. Briefly, pairwise-complete
Euclidean distance, Spearman and hybrid Spearman-Euclidean dissimilarity (SED) was
calculated using R from the combined data from the SEPTM experiments described. t-SNE
embeddings were created using Rtsne using the Barnes-Hut implementation of t-SNE. Clusters
were identified using minimum spanning tree method from three three dimensional t-SNE
embeddings. Each cluster represents the intersection of all three t-SNE embeddings. To
construct a co-cluster correlation network (CCCN), an adjacency matrix was constructed by
pairing co-clustered modifications to each other. Based on this clustering, co-clustered
Spearman correlations were used as weight for CCCN edges, excluding values that were not
found between co-clustered modifications. Spearman correlation values were used as network
edge weights. Additionally, negative correlations (<-0.5) between different PTM types on the

same protein were added as CCCN edges to examine reciprocally antagonistic relationships
when graphing PTM CCCN edges. This PTM CCCN was used to construct a protein CCCN by

merging all co-clustered PTMs into the gene names of modified proteins. The final protein
(gene) CCCN represents the sum of all PTM ratios into protein nodes and PTM correlation edge
weights among all proteins (genes) whose PTMs clustered together and were detected in two or

more experiments.

The resulting protein CCCN was used to create a cluster-filtered network (CFN) of known PPI
interactions that were filtered by excluding all interactions save those from proteins with co-
clustered modifications. The PPI dataset was composed of curated physical interactions with a
focus on direct interactions as described [15] from STRING [18], GeneMANIA [17, 24], BioPlex
(12), Pathway Commons [16], and the kinase-substrate data from PhosphositePlus [25].

Networks were graphed in Cytoscape using RCy3 [80, 81].

Pathway Crosstalk Network (PCN) construction
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The PCN was constructed using R. BioPlanet pathways were downloaded from the NCATS

website (https://tripod.nih.gov/bioplanet/) as gene sets and converted into a list of pathway

names whose elements are the genes in each pathway. In the PCN, each BioPlanet pathway
was represented as a node. Pathways were joined by edges weighted according to the PTM
Cluster Weight (pathway interaction based on co-clustering of PTMs), Gene Ontology (GO)
similarity (pathway interaction based on common GO annotations), or Jaccard Similarity
(pathway interaction based on shared protein members), which are described in detail below.
When only pathway interactions with non-zero PTM Cluster Weight are included, the PCN
contained 1488/1658 BioPlanet pathways and 645,709 edges out of 1,106,328 possible edges
(density = 0.5836506) (Table S7). The version of the PCN that only includes interactions with
non-zero PTM Cluster Weight and zero Jaccard Similarity also contained 1488 pathways, but

only 456,985 edges (density = 0.4130647).

PTM Cluster Weight

We hypothesized that PTM clusters from the CCCN may be used to identify relationships
among cell signaling and other pathways that are active in lung cancer cell lines. For each pair
of BioPlanet pathways, we calculated PTM Cluster Weight based on the extent to which the
proteins in each pathway have PTMs that co-cluster in the CCCN. PTM Cluster Weight was
adjusted to reduce the influence of large clusters and of proteins that were found in many

pathways.
To calculate PTM Cluster Weight, we first considered each cluster (i) and for each pathway (j)
calculated a score (Cluster Pathway Evidence (i,j)) that captures the representation of pathway

(j) in cluster (i):

Cluster Pathway Evidence (i,j) = > k( # of PTMs on protein (k) in pathway (j) found in cluster (i) / [

total number of Pathways in which protein (k) is found * size of cluster (i)]
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Weights for PTMs with ambiguous protein assignments (where peptide sequences are identical
in several proteins) were divided by the number of ambiguous proteins, so that ambiguous

PTMs were weighted proportionally to the number of possible matches.

The result was a matrix with pathway names in columns and individual clusters as rows. This
matrix is interpreted as a bipartite graph where PTM clusters form one projection and BioPlanet
pathways form the second projection. An edge table was constructed consisting of pathway
pairs that have non-zero Cluster Pathway Evidence from the same cluster(s). For each pathway
pair, Cluster Pathway Evidences for both of the pathways were summed for all clusters where

both pathways were represented.

To illustrate how this method works, consider the two BioPlanet pathways "Transmembrane
transport of small molecules" and "EGF/EGFR signaling pathway." There were 68 clusters that
contained PTMs on one or more proteins from the “Transmembrane transport of small
molecules pathway” and on one or more proteins from the “EGF/EGFR Signaling Pathway”. The
individual Cluster Pathway Evidences for the two pathways ranged from 0.0278 to 0.122 for
these 68 clusters and summed to 1.659, which is strong evidence for interactions between

these two pathways.

The raw weights were then normalized to fall into the range 0-1 to produce the final PTM Cluster
Weights. Sub-networks of the PCN that were selected by thresholding the various edge weights

were graphed in Cytoscape using RCy3 [80, 81].

Gene Ontology (GO) Similarity

We defined the similarity of a pathway pair in three steps as the average similarity of their

genes. First, we used the Gene Ontology to define a vector of a gene’s pathways (i.e., pathways
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where the gene is a member). Next, the resulting gene to pathway vector mappings (e.g.,
NOPS8 is in [Pathwayi , Pathway; , Pathwayk ] and RPL18A is in [Pathway; , Pathwayj]) were

used in Cosine similarity:
GeneSim(NOP58, RPL18A) = cosine([Pathwayi , Pathway; , Pathwayk ], [Pathwayi , Pathwayj]).

Cosine similarity takes a value in (-1,1) by computing the angle between the two vectors. If the

vectors are identical, the angle is zero and the similarity is 1.

We computed gene similarity for every gene pair (genex, geney) from every pathway pair
(Pathwayi, Pathway;). Note that each pathway had a different number of genes, and large
pathways may create too many low gene similarity values. We carefully tailored our similarity
computations to avoid bias against large pathways in the following way. Once we compute all
gene similarities among two pathways, we used a nearest neighbor approach and consider the

top-N similar gene pairs to compute the pathway similarity:

N
GOSim(Pathwayi , Pathway;) = z GeneSim(geney;, geney;)
n=1

Z| =

where gene,; and gene,j are the nth highest similarity gene pair from Pathway; and Pathway;.

Note that we do not use shared genes in GoSim computations (i.e., genen # genen;). However,

the shared genes are quite useful to validate the GoSim results. If two pathways share many
genes, the GoSim of the pathways should be higher because two pathways that share many

genes should also contain gene pairs that have similar biological roles in pathways.

A crucial step in GoSim is to specify the value of N. A large N value penalizes large pathways,
whereas a small N value ignores useful gene similarity information beyond the Nth pair. We

experimented with N € (5, 10, 20, 30, 50, 100) , and used the existence of shared genes to
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create a ground truth for GoSim validity. With this approach, we achieved the best results with N

= 30.

Jaccard Similarity
Finally, for each pathway pair, we calculated the Jaccard similarity as a measure of the degree

to which the pathways were similar due to sharing genes in common:

Jaccard Similarity = (humber of genes shared between Pathway; and Pathway;) / (number of

distinct genes in Pathway; and Pathwayj)

Shortest Paths Analysis

For the shortest paths analysis, we extracted subnetworks from the CFN in which proteins
whose PTMs were significantly affected by drug treatment were connected by all shortest paths
in the CFN to the mutated driver kinase (i.e., drug target). Drug affected sites were defined as
sites where the median ratio (drug-treated vs. control) of all experiments in a sample group is at
least 2.25-fold changed (up or down). Sites must be observed for at least two experiments in the
group to be included. We computed shortest paths networks for four different sample groups: i)
h3122.criz: H3122 cells treated with crizotinib (5 samples); ii) all.alk.criz: all cell lines with an
ALK driver mutation treated with crizotinib, namely H3122 (5 samples), H2228 (1 sample), and
STE1 (1 sample); iii) pc9.erl: PC9 cells treated with erlotinib (5 samples); and iv) all.egfr.erl: all
cell lines with an EGFR driver mutation treated with erlotinib, namely PC9 (5 samples),
HCC4006 (1 sample) and HCC827 (1 sample). For sample groups i) and ii), the driver kinase/
drug target was ALK; for sample groups iii) and iv) the driver kinase/drug target was EGFR.
Shortest paths were determined using the R package, igraph (igraph.org) and graphed in

Cytoscape using RCy3 [80, 81].
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We also created shortest paths CFN networks for each individual sample that connected sites in
the sample that were at least 2.25-fold changed to the driver kinase/drug target. For H3122,
H2228, and STE1 samples, the driver kinase/drug target was ALK; for PC9, HCC4006, and
HCC827 samples the driver kinase/drug target was EGFR; and for the H1781 sample the driver
kinase/drug target was ERBB2. H2286 and H366 samples were not included because the driver
kinase in these cells, DDR2, was not included in the CFN. Similarly, HCC78 cells were not
included because the driver kinase, ROS1, was not included in the CFN. For every pair of
samples, we calculated the Jaccard similarity (intersection/union) of the set of proteins found in

their shortest paths networks and plotted the similarities in a heatmap using heatmap.2 in R.

Cluster Enrichment Analysis

Clusters in the CCCN that are significantly enriched for drug-affected PTMs were identified for
the following groups of samples: (i) h3122.criz: H3122 cells treated with crizotinb (5 samples);
(i) hcc78.criz: HCC78 cells treated with crizotinib (2 samples); (iii) pc9.erl: PC9 cells treated
with erlotinib (5 samples); all.criz: H3122 (5 samples), HCC78 (2 samples), H2228 (1 sample),
and STE1 (1 sample) cells treated with crizotinib; (iv) all.erl: PC9 (5 samples), HCC4006 (1
sample), and HCC827 (1 sample) cells treated with erlotinib; (v) all.dasat: H2286 (1 sample)
and H366 (1 sample) cells treated with dasatinib; (vi) all.drug: all samples from all.criz, all.erl,
and all.dasat as well as H1781 cells (1 sample) treated with afatinib. The drug-treated vs.
control ratio was calculated for each PTM in each sample, and, for each sample group, PTMs
with at least two observations and a median ratio of at least 2.25-fold up or down (ratio > 1.17 or
<-1.17 on a log2 scale) were considered drug-affected (2.25-fold change was chosen to ensure
robust statistical power). Drug-affected PTMs were mapped to CCCN clusters. For each sample
group, for each cluster, a 2x2 contingency matrix was constructed with the following values: the
number of drug-affected sites in the cluster, the number of drug-affected sites not in the cluster
(i.e., found in other clusters), the number of remaining (not drug-affected) sites in the cluster,

and the number of remaining (not drug-affected) sites not in the cluster, and a one-sided Fisher
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Test was performed in R to identify clusters with more drug-affected sites than expected by
chance. p-values were corrected for multiple testing using the Benjamini-Hochberg method. To
limit the number of tests, only clusters with at least three drug-affected sites were included in the
analysis. Clusters with corrected p-values < 0.05 were considered significantly enriched (Table

S5).

Cluster Heatmaps

Heatmaps were constructed using the R function heatmap.2 (gplots package) and display
sample groups (defined in the Cluster Enrichment Analysis section) as columns and PTM sites
from clusters of interest as rows. Cells are colored to indicate either: (i) the median of the logz
ratio of each PTM site in drug-treated vs. control cells or (ii) sites that met the threshold to be
selected for the enrichment analysis; sites with median log: ratios less than -1.17 (2.25-fold
down) in each sample group are shown in blue, and sites with median log2 ratios greater than
1.17 (2.25-fold up) are shown in yellow (black indicates sites below threshold). Sites that met
the down threshold were assigned a value of -1, sites that met the up threshold were assigned a
value of +1 and sites (rows) in the heatmap were ordered according to the sum of these values

across all sample groups.

K-core decomposition
Ak-core G of a graph G is the subgraph of G obtained by iteratively deleting all vertices (and

edges connected to it) with a degree less than k [45]. In other words, G*is the largest subgraph

of G where all the vertices have a degree of at least k.

k-core decomposition ranks vertices of a graph according to their connections and creates
groups of increasingly more ‘important’ or ‘central’ vertices. Such decomposition allows a
clarified view on vertices and facilitates researching the role of certain vertex groups in isolation.

We applied k-core decomposition to the CFN generated in this study and the CST CFN to
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identify the compositional differences between the two graphs in terms of the highest cores. The
graphs are not simple; 93 edges in our CFN and 47 edges in CST CFN connect two vertices V2
and V1, where an edge from V1 to V2 already exists. In the rest of our analysis, we use the
simplified versions of the two networks where we omit self loop edges of vertices and duplicate
edges of vertex pairs. CST CFN and our CFN networks shared 583 common vertices, and on
the networks these common vertices create 3504 unique edges. However only 239 of the 3504

edges existed in both networks.

Graph characteristics: Edge density values were 0.04 in both networks, which indicate high
sparsity. The highest degree was 124 in our CFN (HSP90AA1) and 54 in CST CFN (EEF2). The
distance between PTM pairs showed similar distribution on both networks; most node pairs
were 4-edges distant from each other. Our CFN had more nodes than CST CFN, but the
network diameter of our CFN was smaller than CST CFN. This indicates that the network had
shortened its diameter with increasing node count (similar to real-life social network dynamics).
In the hub analysis [82] we found that CST CFN contained more hub nodes in the network than
our CFN. That is, the CST CFN had more nodes that connect distant parts of the network. This
is surprising because our CFN had ten times more nodes in its higher cores, but they do not act
as hubs. Their coreness must be due to connections to each other which further indicates dense

subgraphs.

Acknowledgements

M.G. and K.R. were supported by the NIH LINCS program U54 RFA-HG-14-001. M.G. is also
supported by NIH R15DE028434 and a University of Montana Center for Translational
Medicine Pilot Grant. G.Z. was supported by Moffitt Innovative Core Project funding. Data for

this work has been obtained with support in part by the Proteomics & Metabolomics Core

38


https://doi.org/10.1101/2022.10.28.514170
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.28.514170; this version posted October 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Facility at the H. Lee Moffitt Cancer Center & Research Institute, an NCI designated
Comprehensive Cancer Center (P30-CA076292).

39


https://doi.org/10.1101/2022.10.28.514170
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.28.514170; this version posted October 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Figure Legends

Figure 1. Strategy. Sequential enrichment of post translational modification proteomics
(SEPTM-proteomics) procedure. (A) Principle of SEPTM peptide enrichment; modification-
specific antibodies pull down specific PTMs sequentially. (B) Proteomics data generation
procedure and drug-cell line combinations analyzed. (C) Graphical outline of workflow. PTMs
from PTM proteomics were subjected to t-SNE based clustering to create the CCCN; a cluster-
filtered network (CFN) was created by filtering PPI interactions to exclude all interactions save
those from proteins with co-clustered PTMs. Similarly, relationships between BioPlanet
pathways were defined by the extent to which their member proteins have PTMs that co-cluster
in the CCCN. Namely, two pathways, A and B, have potential crosstalk if protein(s) from

Pathway A and protein(s) from Pathway B have PTMs that co-cluster.

Figure 2. Pathway crosstalk networks with the EGF/EGFR signaling pathway. (A) Three
pathways linked by PTM clusters (purple edges represent PTM cluster evidence as edge
weight). Note that the EGF/EGFR signaling pathway has no genes in common with Glycolysis
and gluconeogenesis and Transmembrane transport of small molecules, but the latter two

pathways have 11 genes in common (green edges represents pathway Jaccard similarity). (B)

Nearest neighbors of pathways in A () with additional edges filtered to show only strong

associations (PTM cluster weight > 0.065; pathway Jaccard similarity > 0.5).

Figure 3. EGFR signaling and small molecule transport pathway interactions. (A)
Combined CFN/CCCN showing composite shortest paths from the Bioplanet pathways EGF/
EGFR signaling pathway (top row) and Transmembrane transport of small molecules (bottom
row). PTM clusters are apparent as cliques connected by yellow correlation edges. (B) same as
A but showing CFN edges only. (C) “Mutual friends” (center row) defined as proteins that

connect to at least one member of each pathway in the CFN. (D) CFN interactions between
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RTKs, SFKs and the Transmembrane transport of small molecules pathway. (E) Direct
interactions between members of the EGF/EGFR signaling and Transmembrane transport of
small molecules pathways. Shown are the PPIs from the CFN and the linked PTMs that were
significantly changed (>2.25-fold) in response to erlotinib. In these networks node size and color
represents the median logz fold change in response to TKils (A, B) erlotinib (C, D), or dasatinib
(E); color scale bar shown in B. Node border and shape and edge colors are defined in Figure

S2C.

Figure 4. EGFR glycolysis pathway crosstalk network. (A) Direct CFN and PTM CCCN
connections between proteins in the two pathways and their PTMs that are significantly
changed by erlotinib (median fold change in erlotinib-treated vs. control cells at least 2.25). (B)
CFN connections between RTKs and SFKs and the Glycoylsis and gluconeogenesis pathway
proteins. (C, D) CFN sub-network from EGFR-glycolysis pathway crosstalk CFN showing links
between EGFR and top proteins with dasatinib-inhibited PTMs. Node shape and edge color are
defined in Figure S2C. Node size and color represents log fold change (bar in A) for all EGFR-

mutant cell lines treated with erlotinib (A, C) or dasatinib (B, D).

Figure 5. Heatmaps showing subsets of drug-affected phosphorylation sites in cluster A,
grouped by cell signaling pathway. In the left hand panels, sites in cluster A whose median
abundance ratio in drug-treated vs. control cells was at least 2.25-fold lower are blue and those
that were at least 2.25-fold higher are yellow (black is below threshold). The right hand panels
show the drug-treated to control ratio (median of samples in each group) for each PTM site (see
key at right; black represents missing data). (A) Sites known to be phosphorylated by ABL-
family kinases. (B) Sites known to be phosphorylated by SRC-family kinases (SFKs). (C) Sites
that are phosphorylated directly by EGFR or downstream of EGFR activation. (D) Sites involved
in negative regulation of growth factor signaling. Sample groups: h3122.criz: H3122 cells treated

with crizotinb; hcc78.criz: HCC78 cells treated with crizotinib; pc9.erl: PC9 cells treated with
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erlotinib; all.criz: H3122, HCC78, H2228, and STE1 cells treated with crizotinib; all.erl: PC9,
HCC4006, and HCCB827 cells treated with erlotinib; all.dasat: H2286 and H366 cells treated with
dasatinib; all.drug: all samples from all.criz, all.erl, and all.dasat as well as H1781 cells treated
with afatinib. This cluster is the most enriched cluster for the hcc78.criz and all.dasat sample
groups. It is also enriched (corrected p-value < 0.05) in the h3122.criz, pc9.erl, and all.criz

groups (SupplementaryTable-ClusterEnrichmentResults.xIsx).

Figure 6. Heatmaps showing PTM sites in Clusters B and C. In the left hand panels, sites
whose median abundance ratio in drug-treated vs. control cells was at least 2.25-fold lower are
blue and those that were at least 2.25-fold higher are yellow (black is below threshold). The
right hand panels show the drug-treated to control ratio (median of samples in each group) for
each PTM site (see key at bottom; black represents missing data). Sample groups are as in
Figure 5. (A) Sites in cluster B changed at least 2.25-fold in at least one sample group that are
found in focal adhesions and/or are involved in actin dynamics. (B) Heatmaps of all PTM sites in
Cluster C. Many of these sites are involved in regulation of transcription and/or are histone

subunits.

Figure 7. Comparison of networks (CFNs) from different lung cancer PTM data sets. (A)
Shared core matrix. The CST CFN from a previous study [15] is plotted on the x-axis; the CFN
from this study on the y-axis. The numbers indicate the number of proteins in common in each
pair of cores. The networks contain common genes in lower cores (colored yellow, orange and
red by number of genes). Note that the CST-CFN lacks an 8th core, and the 9th and 10th cores
represent a clique of interconnected ribosomal proteins. (B) Number of genes in each core the
CFN from this study (left) and the CST-CFN (right). (C) The 43 genes that were in the highest
cores (excluding the ribosomal protein clique) of both CFNs graphed with CFN edges from this

study. Node size and color indicates PTM changes in PC9 cells treated with erlotinib.
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Figure S1. PTM changes in response to different TKIs. (A) Overlap of individual PTMs that
were changed more than 2.25-fold increased or decreased by different drugs, grouped by PTM
type. (B) Density plots showing changes greater than 2.25 fold for each PTM and drug.
Decreased PTM amounts in response to drug are highlighted in blue; increased amounts in
yellow. Changes below the 2.25-fold threshold are omitted to highlight significant changes.(C)
Correlation density between different PTMs on the same proteins for phosphorylation and
acetylation; phosphorylation and ubiquitination; and acetylation and ubiquitination. Negative
correlations selected for display as edges are highlighted in blue; positive correlations are

highlighted in yellow.

Figure S2. Construction of the co-cluster correlation network (CCCN). (A) Example three
dimensional t-SNE embedding of PTM data using Spearman-Euclidean dissimilarity (SED) from
PTM data. Co-clustered PTMs are close to one another share the same color. (B) CCCN of all
PTMs. Yellow edges are positive correlation between co-clustered PTMs; blue edges are
negative correlations, negative correlations <-0.5 among different PTMs on the same protein are
included even if these do not PTMs co-cluster. (C) Node and edge key. Protein families are
indicated by node shape and border color (left). Edges that represent interactions between
proteins are colored according to interaction type (right); PTM correlations edges are at the
bottom of the list. Edges that connect proteins to their PTMs in combined CFN/CCCN graphs

are black.

Figure S3. TKI effects on RTK and SFK PTMs. (A) Heatmap showing PTM log2 fold changes
(key below A) on all RTK and SFK PTMs, sorted by hierarchical clustering (dendrogram at left).
(B-D) CCCN interactions among RTK PTMs (left) and SFK PTMs (right). Node size and color
represents log2 fold change (bar under B): blue is down-regulated; yellow up-regulated, for cells

treated with erlotinib (B), crizotinib (C), and dasatinib (D). Node border and shape and edge
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colors are defined in Figure S2C. Edges connecting proteins to their PTMs were colored light

grey for clarity.

Figure S4. Cluster-filtered network (CFN) and combined CFN/CCCN. (A) CFN of PPIs
filtered by co-clustered PTMs. (B) Combined CFN and CCCN. Node shape and outline color,

and edge colors, are defined in Figure S2C.

Figure S5. Comparison of shortest paths networks from drug targets to drug-affected
sites. Heatmap depicting, for each pair of samples, the Jaccard similarity (intersection divided
by union) of the sets of genes comprising the shortest paths in the CFN connecting genes with
significantly changed PTMs to the drug target. PTMs with a fold-change of at least 2.25 in drug-
treated vs. control cells were defined as significantly changed. Drug targets were as follows:

Crizotinib-ALK, Erlotinib-EGFR, Afatinib-ERBB2.

Figure S6. Comparison of gene ontology (GO) biological process weight with co-cluster
weight for the BioPlanet pathway crosstalk network. Pathway-pathway interactions were
defined based on PTM clustering, BioPlanet Jaccard similarity, or GO similarity (see Methods).
(A) PTM cluster weight was poorly correlated with the BioPlanet Jaccard similarity (R2 =
0.02037). (B) GO similarity (not including genes in common between pathways) was moderately
correlated with BioPlanet Jaccard similarity (R2= 0.2208). (C) GO similarity vs. PTM cluster
weight (R2= 0.1336). 13% of pathway pair edges had zero GO similarity (points at 0 on graph),
but these edges represents only a small fraction (0.34%) of the total PTM cluster edge weight in
the network. Without these edges of zero GO similarity weight, the the R2 correlation between
PTM cluster weight and GO similarity was 0.1508 and in all cases save one the GO similarity
weight was greater than the PTM cluster weight. (D) Same as C but excluding pathway pairs
that have one or more genes in common (only interactions with Jaccard similarity = 0 were

plotted; R2=0.06078).
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Figure S7. Pathway Crosstalk Network (PCN) strongest cluster-based associations. PCN
filtered to show the top 997 out of 455988 pathway-pathway edges (PTM cluster weight > 0.05,
Jaccard similarity = 0). Purple edges represent PTM cluster weight. The pathways EGF/EGFR
signaling pathway, Glycolysis and gluconeogenesis, and Transmembrane transport of small

molecules, are highlighted in yellow.

Figure S8. PTM clusters containing transporters and EGFR. (A, B, C) ABC transporter
PTMs and CFN pathways connecting ABC transporters to the TKI targets EGFR, ALK, and
MET. (D, E, F) PTM clusters that contain EGF/EGFR and transmembrane transporter pathway
PTMs. Node size and color indicates response to erlotinib (A, D), crizotinib (B, E), and dasatinib

(C, F).

Figure S9. EGFR glycolysis networks. (A) Combined CFN/CCCN showing composite shortest
paths from the BioPlanet pathways EGF/EGFR signaling pathway (top) and Glycolysis and
gluconeogenesis (bottom), graphed as in Figure 3. (B) Same as A but showing CFN edges only.
(C) “Mutual friends” (center row) defined as proteins that connect to at least one member of both
pathways in the CFN. Node size and color represents logz fold change (bar in B) for all TKls (A,

B) and erlotinib (C).

Figure S$10. Drug-affected PTMs in cluster A. (A) CFN for proteins with PTM sites in Cluster
A. Node size and color indicates the logz ratio of PTM abundance (averaged over all PTMs for a
protein) in dasatinib treated vs. untreated cells. (B) Heatmaps graphed as in Figure 6. Left
panel: Sites in Cluster A with drug-treated to. control ratios that were at least 2.25-fold higher in
drug-treated cells or at least 2.25-fold lower in drug-treated cells are indicated in yellow and
blue, respectively. Right panel: the drug-treated to control ratio (median of samples in each

group) for each PTM site is shown. Sample groups: h3122.criz: H3122 cells treated with
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crizotinb; hcc78.criz: HCC78 cells treated with crizotinib; pc9.erl: PC9 cells treated with erlotinib;
all.criz: H3122, HCC78, H2228, and STE1 cells treated with crizotinib; all.erl: PC9, HCC4006,
and HCC827 cells treated with erlotinib; all.dasat: H2286 and H366 cells treated with dasatinib;
all.drug: all samples from all.criz, all.erl, and all.dasat as well as H1781 cells treated with

afatinib.

Figure S11. Drug-affected PTMs in cluster B. Heatmaps graphed as in Figure 6. Left panel:
Sites in Cluster B with drug-treated to control ratios that were at least 2.25-fold higher in drug-
treated cells or at least 2.25-fold lower in drug-treated cells are indicated in yellow and blue,
respectively. Right panel: the drug-treated to control ratio (median of samples in each group) for

each PTM site is shown. Sample groups are as in Figure S9.

Figure S12. Drug-affected PTMs involved in transcription regulation. (A) CFN for proteins
with PTM sites in Cluster C. 25/29 of the PTMs in this cluster were acetylations. Node size and
color indicates the log2 ratio of PTM abundance (averaged over all PTMs for a protein) in PC9
erlotinib treated vs. control cells. Note that there are fewer nodes than there are PTM proteins in
the cluster because some of the cluster proteins did not have any physical interactions with
each other in the PPI databases used for CFN construction. (B) Heatmaps graphed as in Figure
6. In the left hand panels, sites whose median abundance ratio in drug-treated vs. control cells
was at least 2.25-fold lower are blue. (No sites were at least 2.25-fold higher.) The right hand
panels show the drug-treated to untreated ratio (median of samples in each group) for each
PTM site. Sample groups: h3122.criz: H3122 cells treated with crizotinb; pc9.erl: PC9 cells

treated with erlotinib.

Figure S13. Common core node PTMs. (A) PTMs detected in this study from 43 proteins that

appear in the highest cores of both CFNs (Figure 8C) graphed as a CCCN using data from this

study. Node size and color reflects PTM changes in cells treated with all TKis.
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Figure 1. Strategy. Sequential enrichment of post translational modification proteomics
(SEPTM-proteomics) procedure. (A) Principle of SEPTM peptide enrichment; modification-
specific antibodies pull down specific PTMs sequentially. (B) Proteomics data generation
procedure and drug-cell line combinations analyzed. (C) Graphical outline of workflow. PTMs
from PTM proteomics were subjected to t-SNE based clustering to create the CCCN; a
cluster-filtered network (CFN) was created by filtering PPI interactions to exclude all
interactions save those from proteins with co-clustered PTMs. Similarly, relationships
between Bioplanet pathways were defined by the extent to which their member proteins have
PTMs that co-cluster in the CCCN. Namely, two pathways, A and B, have potential crosstalk
if protein(s) from Pathway A and protein(s) from Pathway B have PTMs that co-cluster.
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Figure S1. PTM changes in response to different TKis. (A) Overlap of individual PTMs that were
changed more than 2.25-fold increased or decreased by different drugs, grouped by PTM type. (B)
Density plots showing changes greater than 2.25 fold for each PTM and drug. Decreased PTM
amounts in response to drug are highlighted in blue; increased amounts in yellow. Changes below
the 2.25-fold threshold are omitted to highlight significant changes.(C) Correlation density between
different PTMs on the same proteins for phosphorylation and acetylation; phosphorylation and
ubiquitination; and acetylation and ubiquitination. Negative correlations selected for display as
edges are highlighted in blue; positive correlations are highlighted in yellow.
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Figure S2. Construction of the co-cluster correlation network (CCCN). (A) Example three
dimensional t-SNE embedding of PTM data using Spearman-Euclidean dissimilarity (SED) from PTM
data. Co-clustered PTMs are close to one another share the same color. (B) CCCN of all PTMs.
Yellow edges are positive correlation between co-clustered PTMs; blue edges are negative
correlations, negative correlations <-0.5 among different PTMs on the same protein are included even
if these PTMs do not co-cluster. (C) Node and edge key. Protein families are indicated by node shape
and border color (left). Edges that represent interactions between proteins are colored according to
interaction type (right); PTM correlations edges are at the bottom of the list. Edges that connect
proteins to their PTMs in combined CFN/CCCN graphs are black.
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Figure S3. TKI effects on RTK and SFK PTMs. (A) Heatmap showing PTM logz fold changes
(key below A) on all RTK and SFK PTMs, sorted by hierarchical clustering (dendrogram at
left). (B-D) CCCN interactions among RTK PTMs (left) and SFK PTMs (right). Node size and
color represents logz fold change (bar under B): blue is down-regulated; yellow up-regulated,
for cells treated with erlotinib (B), crizotinib (C), and dasatinib (D). Node border and shape and
edge colors are defined in Figure S2C. Edges connecting proteins to their PTMs were colored
light grey for clarity.
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Figure S4. Cluster-filtered network (CFN) and combined CFN/CCCN. (A) CFN of PPIs filtered by co-
clustered PTMs. (B) Combined CFN and CCCN. Node shape and outline color, and edge colors, are
defined in Figure S2C.
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Figure S5. Shortest paths analysis: Pairwise sample distance heatmap. Heatmap depicting, for
each pair of the samples, the Jaccard similarity (intersection divided by union) of the sets of genes
comprising the shortest paths in the CFN connecting genes with significantly changed PTMs to the
drug target. PTMs with a fold-change of at least 2.25 in drug-treated vs. control cells were defined as
significantly changed. Drug targets were as follows: Crizotinib-ALK, Erlotinib-EGFR, Afatinib-ERBB2.
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Figure S6. Comparison of gene ontology (GO) biological process weight with co-cluster
weight for the bioplanet pathway crosstalk network. Pathway-pathway interactions were
defined based on PTM clustering, Bioplanet Jaccard similarity, or GO similarity (see Methods). (A)
PTM cluster weight was poorly correlated with the Bioplanet Jaccard similarity (R2 = 0.02037). (B)
GO similarity (not including genes in common between pathways) was moderately correlated with
Bioplanet Jaccard similarity (R2 = 0.2208). (C) GO similarity vs. PTM cluster weight (R2 = 0.1336).
13% of edges had zero GO similarity (points at 0 on graph), but this represents only 0.34% of the
total PTM cluster edge weight in the network. Without these edges of zero GO similarity weight, the
the R2 correlation between PTM cluster weight and GO similarity was 0.1508 and in all cases save
one the GO similarity weight was greater than the PTM cluster weight. (D) Same as C but excluding
pathway pairs that have one or more genes in common (only interactions with Jaccard similarity =
0 were plotted; R2 = 0.06078).
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Figure 2. Pathway crosstalk networks with the EGF/EGFR signaling pathway. (A) Three
pathways linked by PTM clusters (purple edges represent PTM cluster evidence as edge
weight). Note that the EGF/EGFR signaling pathway has no genes in common with Glycolysis
and gluconeogenesis and Transmembrane transport of small molecules, but the latter two
pathways have 11 genes in common (green edges represents pathway Jaccard similarity). (B)
Nearest neighbors of pathways in A (x) with additional edges filtered to show only strong
associations (PTM cluster weight > 0.065; pathway Jaccard similarity > 0.5).
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Figure S7. Pathway Crosstalk Network (PCN) strongest cluster-based associations. PCN
filtered to show the top 997 out of 455988 pathway-pathway edges (PTM cluster weight >
0.05, Jaccard similarity = 0). Purple edges represent PTM cluster weight. The pathways EGF/
EGFR signaling pathway, Glycolysis and gluconeogenesis, and Transmembrane transport of
small molecules, are highlighted in yellow.
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Figure 3 EGFR signaling and small molecule transport pathway interactions. (A)
Combined CFN/CCCN showing composite shortest paths from the Bioplanet pathways EGF/
EGFR signaling pathway (top row) and Transmembrane transport of small molecules (bottom
row). PTM clusters are apparent as cliques connected by yellow correlation edges. (B) same
as A but showing CFN edges only. (C) “Mutual friends” (center row) defined as proteins that
connect to at least one member of each pathway in the CFN. (D) CFN interactions between
RTKs, SFKs and the Transmembrane transport of small molecules pathway. (E) (E) Direct
interactions between members of the EGF/EGFR signaling and Transmembrane transport of
small molecules pathways. Shown are the PPIs from the CFN and the linked PTMs that were
significantly changed (>2.25-fold) in response to erlotinib. In these networks node size and
color represents the median log fold change in response to TKils (A, B) erlotinib (C, D), or
dasatinib (E); color scale bar shown in B. Node border and shape and edge colors are defined
in Figure S2C.




Figure S8. PTM clusters containing transporters and EGFR. (A, B, C) PTM clusters that
contain EGF/EGFR and transmembrane transporter pathway PTMs. (D, E, F) ABC transporter
PTMs and CFN connections from the PCN between EGF/EGFR signaling pathway and
Transmembrane transport of small molecules. Node size and color indicates response to
erlotinib (A, D), crizotinib (B, E), and dasatinib (C, F).



Figure S9. EGFR glycolysis networks. (A) Combined CFN/CCCN showing composite shortest paths from the

Bioplanet pathways EGF/EGFR signaling pathway (top) and Glycolysis and gluconeogenesis (bottom), graphed
as in Figure 3. (B) Same as A but showing CFN edges only. (C) “Mutual friends” (center row) defined as proteins
that connect to at least one member of both pathways in the CFN. Node size and color represents log2 fold

change (bar in B) for all TKls (A, B) and erlotinib (C).
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Figure 4. EGFR glycolysis pathway crosstalk network. (A) Direct CFN and PTM CCCN connections
between proteins in the two pathways and their PTMs that are significantly changed by erlotinib
(median fold change in erlotinib-treated vs. control cells at least 2.25). (B) CFN connections between
RTKs and SFKs and the Glycoylsis and gluconeogenesis pathway proteins. (C, D) CFN sub-network
from EGFR-glycolysis pathway crosstalk CFN showing links between EGFR and top proteins with
dasatinib-inhibited PTMs. Node shape and edge color are defined in Figure S2C. Node size and color
represents logz fold change (bar in A) for all EGFR-mutant cell lines treated with erlotinib (A, C) or

dasatinib (B, D).
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Figure 5. Heatmaps showing subsets of drug-affected phosphorylation sites in cluster A, grouped
by cell signaling pathway. In the left hand panels, sites in cluster A whose median abundance ratio in
drug-treated vs. control cells was at least 2.25-fold lower are blue and those that were at least 2.25-fold
higher are yellow (black is below threshold). The right hand panels show the drug-treated to control ratio
(median of samples in each group) for each PTM site (see key at right; black represents missing data) (A)
Sites known to be phosphorylated by ABL-family kinases. (B) Sites known to be phosphorylated by
SRC-family kinases (SFKs). (C) Sites that are phosphorylated directly by EGFR or downstream of EGFR
activation. (D) Sites involved in negative regulation of growth factor signaling. Sample groups:
h3122.criz: H3122 cells treated with crizotinb; hcc78.criz: HCC78 cells treated with crizotinib; pc9.erl:
PC9 cells treated with erlotinib; all.criz: H3122, HCC78, H2228, and STE1 cells treated with crizotinib;
all.erl: PC9, HCC4006, and HCC827 cells treated with erlotinib; all.dasat: H2286 and H366 cells treated
with dasatinib; all.drug: all samples from all.criz, all.erl, and all.dasat as well as H1781 cells treated with
afatinib. This cluster is the most enriched cluster for the hcc78.criz and all.dasat sample groups. It is
also enriched (corrected p-value < 0.05) in the h3122.criz, pc9.erl, and all.criz groups.
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Figure S10. Drug-affected PTMs in cluster A. (A) CFN for proteins with PTM sites in Cluster A.
Node size and color indicates the log ratio of PTM abundance (averaged over all PTMs for a
protein) in dasatinib treated vs. untreated cells. (B) Heatmaps graphed as in Figure 6. Left panel:
Sites in Cluster A with drug-treated to control ratios that were at least 2.25-fold higher in drug-
treated cells or at least 2.25-fold lower in drug-treated cells are indicated in yellow and blue,
respectively. Right panel: the drug-treated to control ratio (median of samples in each group) for
each PTM site is shown. Sample groups: h3122.criz: H3122 cells treated with crizotinb;
hcc78.criz: HCC78 cells treated with crizotinib; pc9.erl: PC9 cells treated with erlotinib; all.criz:
H3122, HCC78, H2228, and STE1 cells treated with crizotinib; all.erl: PC9, HCC4006, and
HCC827 cells treated with erlotinib; all.dasat: H2286 and H366 cells treated with dasatinib;
all.drug: all samples from all.criz, all.erl, and all.dasat as well as H1781 cells treated with afatinib.
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Figure 6. Heatmaps showing PTM sites in Clusters B and C. In the left hand panels, sites whose
median abundance ratio in drug-treated vs. control cells was at least 2.25-fold lower are blue and those
that were at least 2.25-fold higher are yellow (black is below threshold). The right hand panels show the
drug-treated to control ratio (median of samples in each group) for each PTM site (see key at bottom;
black represents missing data). Sample groups are as in Figure 5. (A) Sites in cluster B changed at least
2.25-fold in at least one sample group that are found in focal adhesions and/or are involved in actin
dynamics. (B) Heatmaps of all PTM sites in Cluster C. Many of these sites are involved in regulation of
transcription and/or are histone subunits.
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Figure S11. Drug-affected PTMs in cluster B. Heatmaps graphed as in Figure 6. Left panel:
Sites in Cluster B with drug-treated to control ratios that were at least 2.25-fold higher in drug-
treated cells or at least 2.25-fold lower in drug-treated cells are indicated in yellow and blue,
respectively. Right panel: the drug-treated to control ratio (median of samples in each group) for
each PTM site is shown. Sample groups are as in Figure S9.
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Figure S12. Drug-affected PTMs involved in transcription regulation. (A) CFN for proteins
with PTM sites in Cluster C. 25/29 of the PTMs in this cluster were acetylations. Node size and
color indicates the logo ratio of PTM abundance (averaged over all PTMs for a protein) in PC9
erlotinib treated vs. control cells. Note that there are fewer nodes than there are PTM proteins in
the cluster because some of the cluster proteins did not have any physical interactions with each
other in the PPI databases used for CFN construction. (B) Heatmaps graphed as in Figure 6. In
the left hand panels, sites whose median abundance ratio in drug-treated vs. control cells was at
least 2.25-fold lower are blue. (No sites were at least 2.25-fold higher.) The right hand panels
show the drug-treated to control ratio (median of samples in each group) for each PTM site.
Sample groups: h3122.criz: H3122 cells treated with crizotinb; pc9.erl: PC9 cells treated with
erlotinib.



A CST CFN Cores
w g 2 g g 19 C Common CoreNodes

0 N OO g~ ODN -

CFN Cores

CST CFN

a
=]
=3

This Study 500

400

IS
=3
=3

@
<1
=3

300

N
=3
S

200

II Il 0
.l--—--—. 0 .--

123456789101112 12345678910
core number

number of genes
8

o

Figure 7. Comparison of networks (CFNs) from different lung cancer PTM data sets. (A) Shared
core matrix. The CST CFN from a previous study (15) is plotted on the x-axis; the CFN from this study on
the y-axis. The numbers indicate the number of proteins in common in each pair of cores. The networks
contain common genes in lower cores (colored yellow, orange and red by number of genes). Note that
the CST-CFN lacks an 8th core, and the 9th and 10th cores represent a clique of interconnected
ribosomal proteins. (B) Number of genes in each core the CFN from this study (left) and the CST-CFN
(right). (C) The 43 genes that were in the highest cores (excluding the ribosomal protein clique) of both
CFNs graphed with CFN edges from this study. Node size and color indicates PTM changes in PC9 cells
treated with erlotinib.



Figure S13. Common core node PTMs. (A) PTMs detected in this study from 43 proteins that appear
in the highest cores of both CFNs (Figure 8C) graphed as a CCCN using data from this study. Node
size and color reflects PTM changes in cells treated with all TKis.
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