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Abstract  15 

Neurons respond to changes in the levels of activity they experience in a variety of ways, 16 

including structural changes at pre- and postsynaptic terminals. An essential plasticity signal required 17 

for such activity-regulated structural adjustments are reactive oxygen species (ROS). To identify 18 

sources of activity-regulated ROS required for structural plasticity in vivo we used the Drosophila 19 

larval neuromuscular junction as a highly tractable experimental model system. For adjustments of 20 

presynaptic motor terminals, we found a requirement for both NADPH oxidases, Nox and Dual 21 

Oxidase (Duox), that are encoded in the Drosophila genome. This contrasts with the postsynaptic 22 

dendrites from which Nox is excluded. NADPH oxidases generate ROS to the extracellular space. 23 

Here, we show that two aquaporins, Bib and Drip, are necessary ROS conduits in the presynaptic 24 

motoneuron for activity regulated, NADPH oxidase dependent changes in presynaptic motoneuron 25 

terminal growth. Our data further suggest that different aspects of neuronal activity-regulated structural 26 

changes might be regulated by different ROS sources: changes in bouton number require both NADPH 27 

oxidases, while activity-regulated changes in the number of active zones might be modulated by other 28 

sources of ROS. Overall, our results show NADPH oxidases as important enzymes for mediating 29 

activity-regulated plasticity adjustments in neurons.   30 

 31 

 32 
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1 Introduction 33 

Reactive oxygen species (ROS) have commonly been associated with detrimental processes 34 

such as oxidative stress, toxicity, ageing, neurodegeneration and cell death because increases in ROS 35 

levels seen with ageing and neurodegenerative disorders, including Parkinson’s (Spina and Cohen; 36 

1989) and Alzheimer’s disease (Martins et al; 1986). However, it is appreciated that ROS are not 37 

simply cytotoxic agents, but more generally function as signalling molecules in a multitude of 38 

processes, including growth factor signalling (Suzukawa et al., 2000; Goldsmit et al., 2001; Kamata et 39 

al., 205; Nitte et al., 2010), wound healing (Razzell et al; 2013) and in development (Milton et al., 40 

2011; Oswald et al; 2018a; Dhawan et al., 2020; for a reviews see Owusu-Ansah and Banerjee, 2009; 41 

Massaad and Klann, 2011; Wilson and Gonzalez-Billaut, 2015; Oswald et al., 2018b; Terzi and Suter, 42 

2020).  43 

During nervous system development, ROS signalling is involved at all stages, from 44 

neurogenesis to pathfinding to synaptic transmission (Knapp and Klann, 2002; Kishida and Klann, 45 

2007; Massaad and Klann, 2011; Wilson and Gonzalez-Billaut, 2015; Wilson et al., 2018; Terzi and 46 

Suter, 2020). When studying ROS signalling in vivo, challenges include the ability to disentangle cell 47 

autonomous from indirect or systemic effects; or to determine sources and types of ROS. Using the 48 

fruit fly, Drosophila melanogaster, as a highly tractable experimental model system, genetic 49 

manipulations targeted to single motoneurons were able to identify hydrogen peroxide as a synaptic 50 

plasticity signal, generated as a consequence of neuronal overactivation and both necessary and 51 

sufficient for activity-regulated adaptive changes of synaptic terminal structure and transmission 52 

(Oswald et al., 2018; Dhawan et al., 2020). We found mitochondria to be a major source of activity-53 

regulated hydrogen peroxide with opposing effects on the growth of pre- vs postsynaptic terminals: at 54 

the presynaptic terminal of the neuromuscular junction (NMJ) overactivation and hydrogen peroxide 55 

cause increases in terminals (Milton et al., 2011; Oswald et al., 2018). This change in presynaptic 56 

terminal growth is mediated by activation of the JNK signalling pathway (Milton et al., 2011), and it 57 

utilises the conserved Parkinson’s disease-linked protein, DJ-1b, as a redox sensor, which regulates the 58 

PTEN-PI3 Kinase growth pathway (Oswald et al., 2018). In contrast, the size of postsynaptic dendritic 59 

arbors is negatively regulated by over-activation and activity-regulated hydrogen peroxide (Tripodi et 60 

al., 2008; Oswald et al., 2018; Dhawan et al., 2020). These studies using the Drosophila larval 61 

neuromuscular model system contrast with findings from cultured hippocampal neurons, which posit 62 

mitochondrially generated superoxide as the principal ROS signal downstream of over-activation 63 

(Hongpaisan et al. 2003; 2004).  The extent to which both types of ROS operate as neuronal plasticity 64 
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signals downstream of over-activation remains to be resolved, though it is possible that apparent 65 

discrepancies might be due to the use of different cellular models and/or a reflection of the degree of 66 

overactivation. 67 

 Another principal source of ROS are NADPH oxidases, whose location in the plasma 68 

membrane could facilitate sub-cellular signalling discrete from mitochondrial ROS production.  69 

NADPH oxidases are integral membrane proteins that mediate a single electron transfer from NADPH 70 

to oxygen, thereby converting it to superoxide (Lambeth, 2002). These enzymes are prevalent 71 

throughout the evolutionary ladder from Amoebozoa and fungi to higher plants and mammals. NADPH 72 

oxidases are involved in growth and plasticity during nervous system development (Kishida et al., 73 

2006; Munnamalai and Suter, 2009; Munnamalai et al., 2014; Olguín-Albuerne and Morán, 2015; 74 

Serrano et al., 2003; Tejada- Simon et al., 2005; Wilson et al., 2015; Wilson et al., 2016; Terzi and 75 

Suter, 2020). In contrast to mammalian genomes, which encode seven Nox isoforms (Nox 1-5, Duox 76 

1 and 2) (Lambeth et al., 2002; Kawahara et al., 2007), Drosophila melanogaster encodes just two 77 

NADPH oxidases: dual oxidase (Duox) and a Nox-5 homolog (Nox). Enzymatic activity of both is 78 

calcium-regulated, via their N-terminal calcium binding EF-hands (Razzell et al, 2013; Ha et al., 79 

2005b,  2009; S. Moreira et al., 2010). Curiously, the mouse genome does not encode a calcium-80 

regulated Nox-5 homologue, which has therefore not been studied extensively in vivo (Kawahara et al, 81 

2004). Recently, we identified the NADPH oxidase Duox as necessary in motoneurons to reduce their 82 

dendritic arbors in response to neuronal over-activation, an adaptive response to reduce the numbers 83 

of presynaptic inputs and thus synaptic drive (Zwart et al., 2013; Dhawan et al., 2020). We further 84 

found that these activity-regulated ROS generated by Duox at the extracellular face of the plasma 85 

membrane, required the aquaporins, Bib and Drip; presumably for efficient entry into the cytoplasm to 86 

regulate dendritic growth and/or stability (Dhawan et al., 2020). 87 

Here, we investigated the role of NADPH oxidases at the presynaptic terminal of the NMJ, 88 

whose growth response to neuronal over-activation is distinct to that of the dendritic compartment of 89 

the motoneuron. We show that the NADPH oxidases Duox and Nox are sources of activity-regulated 90 

ROS that mediate activity-regulated growth of NMJ terminals. In contrast to motoneuron dendrites, 91 

both NADPH oxidases function at the presynaptic NMJ, necessary and sufficient to elicit changes in 92 

growth. At the NMJ too, we find the aquaporins, Bib and Drip, are necessary for autocrine signalling 93 

at the NMJ. This arrangement at the presynaptic NMJ terminal contrasts with their dendritic function 94 

within these motoneurons, where only Duox, but not Nox, is required. This differential requirement of 95 

Nox mirrors its sub-cellular localisation, with Nox largely excluded from dendrites. Furthermore, at 96 
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the postsynaptic compartment extracellular ROS, including from other neurons in the vicinity, act as 97 

local plasticity signals that cause reductions in dendritic arbor size (Dhawan et al., 2020). 98 

 99 

2 Results 100 

NADPH oxidases, Duox and Nox, are both required for activity-regulated growth at the 101 

neuromuscular junction. 102 

Mitochondria are a major source of activity-generated ROS, notably within the cytoplasm. Here, 103 

we sought to investigate the role of membrane localised ROS generators, the NADPH oxidases Nox 104 

and Duox, during activity-regulated adjustment of presynaptic terminals. As a highly tractable 105 

experimental model we used the well characterised neuromuscular junction (NMJ) of the Drosophila 106 

larva (Frank et al., 2013). Specifically, we focused on the NMJ of the so called ‘anterior Corner Cell’ 107 

(aCC), which innervates the most dorsal body wall muscle, known as muscle 1 (Crossley 1978) or 108 

dorsal acute muscle 1 (DA1) (Sink and Whitington, 1991; Landgraf et al., 1997; Baines et al., 1999; 109 

Baines et al., 2001; Bate, 1993; Choi et al., 2004; Hoang and Chiba, 2001). For cell-specific over-110 

activation of aCC motoneurons, we used the established paradigm of targeted mis-expression of the 111 

warmth-gated cation channel, dTRPA1 (Hamada et al., 2008; Oswald et al., 2018; Dhawan et al., 112 

2020). This allows aCC motoneurons to be selectively over-activated simply by placing larvae at 113 

>24ºC, the temperature threshold for dTRPA1 ion channel opening (Pulver et al., 2009).  114 

First, we re-confirmed that at 25ºC dTrpA1 expression in aCC motoneurons leads to significant 115 

increases in bouton number at the aCC-DA1 NMJ relative to non-manipulated controls, as previously 116 

shown (Oswald et al., 2018) (Figure 1). An advantage of using cell-specific dTRPA1-mediated activity 117 

manipulations in this system is that these can be carried out at 25˚C, a temperature considered optimal 118 

for Drosophila melanogaster development (Lachaise et al., 1988; Pool et al., 2012) and therefore 119 

generally considered neutral, while sufficient to mildly activate neurons that mis-express dTRPA1 120 

(Pulver et al., 2009; Tsai et al., 2012). 121 
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 122 

Figure 1. NADPH oxidases, dDuox and dNox, are both required for activity-regulated growth 123 

of the neuromuscular junction. A) Representative images of aCC motoneuron terminals on their 124 

target muscle, DA1 [muscle 1, according to (Crossley, 1978)] in third instar larvae (100 hr ALH): 125 

control; dTrpA1 overactivated; dTrpA1 overactivated while either Duox or Nox is concomitantly 126 

knocked down via targeted RNAi (“TrpA1 + Duox KD” and “TrpA1 + Nox KD”). B) Dot-plot 127 

quantification shows NMJ bouton number increases in response to cell-specific activity increases. 128 

This phenotype is rescued by simultaneous NADPH oxidase knockdown. Triangles represent 129 

presence of UAS-dTrpA1 activity manipulation, while circle indicate absence of dTrpA1. 130 

Mean ± SEM, ANOVA, ** p<0.01, *** p<0.001, **** p<0.0001. Red asterisks indicate 131 

comparisons with the UAS-TrpA1 over-activation group, while black indicate comparison with the 132 

un-manipulated wild type control. Scale bar = 20 µm. 133 

 134 

 135 

 136 

 137 
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Next, we tested the requirement for the two NADPH oxidases encoded in the Drosophila genome, 138 

Duox and Nox, in mediating these activity-regulated structural changes at the NMJ. To this end, we 139 

expressed RNAi transgenes for knocking down endogenous Duox or Nox in aCC motoneurons. By 140 

themselves, expression of UAS-Duox-RNAi or UAS-Nox-RNAi transgenes in aCC motoneurons have 141 

no measurable effect on NMJ morphology. However, in motoneurons that have been overactivated by 142 

UAS-dTrpA1, the characteristic activity-induced bouton overgrowth phenotype is suppressed by co-143 

expression of UAS-Duox-RNAi or UAS-Nox-RNAi transgenes, individually or combined (Figure 1). 144 

Neuronal overactivation by UAS-dTrpA1 also causes a reduction in active zone numbers (Oswald et 145 

al., 2018). We find no statistically significant changes in active zone number following NADPH 146 

oxidases manipulations (Supplementary figure 1). These results show that the membrane localised 147 

ROS generators, Nox and Duox, are required primarily for activity-regulated changes in presynaptic 148 

terminal growth while not significantly impacting on the number of presynaptic release sites. 149 

 150 

 151 

Duox and Nox activity is sufficient for mediating structural changes at the NMJ 152 

We next asked if the activity of these NADPH oxidases might also be sufficient for regulating 153 

presynaptic terminal growth. To test this, we overexpressed UAS-Duox or UAS-Nox transgenes in aCC 154 

motoneurons. Quantification showed comparable increases in bouton number at the NMJ as a 155 

consequence of over-expression of either Duox or Nox. No enhancement of this phenotype occurs 156 

when both are co-expressed (Figure 2). In contrast, active zone numbers are not significantly impacted 157 

by overexpression of either NADPH oxidase (Supplementary figure 1).  158 

For the postsynaptic compartment, namely the dendritic arbor of motoneurons, we had previously 159 

shown that only Duox, but not Nox, has a role in activity-regulated plasticity (Dhawan et al., 2020). 160 

To further explore this difference in NADPH oxidase requirement between pre- vs postsynaptic 161 

compartments, we generated tagged transgenes of both NADPH oxidases, UAS-Duox::mRuby2::HA 162 

and UAS-Nox::YPet. When expressed in aCC motoneurons to reveal sub-cellular localisation, we see 163 

exclusion of Nox::YPet from the postsynaptic dendrites, while Duox::mRuby2::HA is fairly 164 

homogeneously distributed within the plasma membrane (Figure 2C).  These patterns of distinct sub-165 

cellular distributions, notably exclusion of Nox::YPet from dendrites,  are compatible with the genetic 166 

manipulations phenotypes and point to Nox being selectively sorted to soma and presynaptic 167 

compartments in these neurons. 168 

 169 
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 170 

Figure 2. dDuox or dNox activity is sufficient for mediating structural changes at the NMJ. A) 171 

Representative images of aCC presynaptic terminals on muscle DA1 from third instar larvae (100 172 

hr ALH) of control aCC and those overexpressing Duox and Nox. B) Dot-plot quantification shows 173 

NMJ bouton number increases in response to cell-specific over-expression of NADPH oxidases. C) 174 
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Duox and Nox, localization in neurons: representative confocal micrograph images of aCC somata 175 

and dendrites in the ventral nerve cord (VNC) and aCC presynaptic terminals at the DA1 muscle 176 

in third instar larvae (72 hr ALH), showing subcellular localisation of tagged over-expressed 177 

Duox::mRuby2::HA (in red) and Nox::YPet (in green). Mean ± SEM, ANOVA, **** p<0.0001. 178 

Comparisons are made with the control group. Scale bar = 20 µm. 179 

 180 

 181 

 182 

Aquaporin channel proteins Bib and Drip are necessary for NADPH oxidase-regulated 183 

structural changes at the NMJ 184 

The NADPH oxidases Duox and Nox are transmembrane proteins that generate ROS at the 185 

extracellular face of the plasma membrane (Lambeth, 2002; Panday et al., 2015). We reasoned that if 186 

NADPH oxidase-generated ROS are indeed instrumental in activity-regulated adjustment of synaptic 187 

terminals, then neutralisation of extracellular ROS should rescue NMJ phenotypes associated with 188 

NADPH oxidase overexpression. To test this, we mis-expressed in aCC motoneurons two different 189 

forms of catalases that are secreted to the extracellular space; a human version and the Drosophila 190 

immune-regulated catalase (Irc) (Ha et al., 2005b; Fogarty et al., 2016). These catalases neutralise 191 

extracellular hydrogen peroxide by conversion to water. On their own, their mis-expression in aCC 192 

motoneurons has no significant impact on NMJ structure or size. To test the model of neuronal activity 193 

leading to NADPH oxidase activation, leading to extracellular ROS production, we co-expressed 194 

secreted catalase in aCC motoneurons while over-activating these with dTRPA1. The presence of a 195 

secreted catalase suppresses the NMJ growth that would otherwise ensue with neuronal overactivation 196 

(Figure 3A). Similarly, NMJ over-growth stimulated by over-expression of Duox is also neutralised 197 

by co-expression of secreted catalase in the same neuron (Figure 3B). These experiments demonstrate 198 

that it is the presence of extracellular ROS, notably hydrogen peroxide generated by NADPH oxidases, 199 

which leads to activity-induced changes in NMJ growth. 200 

Because NAPDH oxidases generate ROS extracellularly, we wanted to explore how extra-cellular 201 

ROS might enter the cell so as to act on intracellular signalling pathways that would regulate NMJ 202 

growth. Several studies, including one from this lab, have postulated a role for aquaporin channels, 203 

specifically those encoded by the genes bib and Drip (Albertini and Bianche, 2010; Dhawan et al., 204 

2020; Dutta and Das, 2022). Indeed, for the presynaptic NMJ, we found that co-expression of UAS-205 

RNAi constructs designed to knock down bib or Drip, but not those for prip, rescue NMJ growth 206 

phenotypes caused by dTRPA1-mediated overactivation. Expression of the UAS-RNAi constructs alone 207 
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had no significant effect (Figure 3A). To further test the model that extracellular ROS generated by 208 

NADH oxidases cause structural change at the NMJ, we overexpressed Duox in aCC motoneurons and 209 

at the same time co-expressed UAS-RNAi constructs designed to knock down the aquaporin channel 210 

proteins Bib or Drip. In those neurons the Duox gain-of-function NMJ growth phenotype is fully 211 

rescued (Figure 3B). 212 

 213 

 214 

Figure 3. Aquaporins Bib and Drip are required for activity-regulated plasticity at the 215 

neuromuscular junction. A) Dot-plot quantification shows NMJ bouton number increases in 216 

response to cell-specific activity and the rescue of the phenotype when secreted catalases are 217 

expressed or aquaporins Bib or Drip are knock down. When the RNAi lines are represented by 218 

triangles, it indicates that it is in combination with dTrpA1, when the RNAi lines are represented 219 

by circles, it is without dTrpA1. B) Dot-plot quantification shows NMJ bouton number increases in 220 

response Duox and the rescue of the phenotype when secreted catalases are expressed or 221 

aquaporins Bib or Drip are knock down. Mean ± SEM, Kruskal-Wallis test, *p<0.05, ** p<0.01, 222 

*** p<0.001, **** p<0.0001. Comparisons are made with the TrpA1 group in A and with Duox 223 

group in B. 224 

 225 

 226 
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In summary, our observations suggest that at the presynaptic NMJ, neuronal overactivation leads 227 

to activation of both NADPH oxidases, Duox and Nox, at the plasma membrane. These enzymes 228 

generate ROS at the extracellular face, which are then brought into the cytoplasm by aquaporin 229 

channels comprising Bib and Drip. Inside the cell, the ROS act on intracellular membrane-localised 230 

signalling pathways that regulate synaptic terminal structure and size, including the phosphatase PTEN 231 

and DJ-1ß, as previously shown (Figure 4) (Oswald et al., 2018). 232 

 233 

 234 

 235 

Figure 4. Model of activity-regulated plasticity at the neuromuscular junction mediated by ROS 236 

signalling. Neuronal activity leads to activation of both calcium regulated NADPH oxidases, Duox 237 

and Nox, at the presynaptic motoneuron terminal. Extracellularly generated ROS reintroduced into 238 

the presynaptic cytoplasm via aquaporin channels, including Bib and Drip. ROS modulated 239 

PI3Kinase signalling at the plasma membrane via oxidation of DJ-1ß, which when oxidised 240 

increases binding and inhibition of the PTEN phosphatase, thus causing increased PI3Kinase 241 

signalling activity, stimulating growth and addition of synaptic release sites. 242 

 243 

 244 

3 Discussion 245 

 246 

ROS have increasingly been recognised as signalling molecules required for nervous system 247 

development and function, from regulating the dynamics of the growth cone cytoskeleton to synaptic 248 

transmission and learning (see Terzi and Suter, 2020). At the Drosophila NMJ, ROS have been shown 249 
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necessary for activity-induced synaptic terminal growth (Oswald et al., 2018). ROS have also been 250 

shown causative and sufficient to induce changes at synaptic terminals; when accumulating as a result 251 

of physiological dysfunction, leading to oxidative stress (Milton et al., 2011), or following 252 

manipulations that increase ROS levels (Milton et al., 2011; Hussain et al., 2018; Peng et al. 2019). 253 

While mitochondria are a major source of cellular ROS (Murphy, 2009; Zorov et al., 2014; Sanz, 2016), 254 

it has remained unclear to what extent mitochondrial ROS directly impact on events at the plasma 255 

membrane, such as modulation of PTEN-PI3Kinase signalling, which regulates synaptic terminal 256 

growth (Acebes, et al., 2012; Jordán-Álvarez et al., 2012; Martín-Peña et al., 2006; Oswald et al, 2018), 257 

or oxidation of ion channel subunits that modulate neuronal excitability (Kempf et al., 2019).  258 

 259 

Differential requirements for NADPH oxidases in pre- vs postsynaptic compartments 260 

In this study we focused on NADPH oxidases as generators of ROS that are ideally positioned to 261 

influence signalling at the plasma membrane. Working with the NMJ in the Drosophila larva as an 262 

experimental in vivo model system, we demonstrated that both NADPH oxidases, Nox and Duox, are 263 

required for activity-induced growth (Figure 1). Both enzymes are endowed with N-terminal calcium 264 

binding EF-hand motifs, linking their activity to intracellular calcium levels, as shown for Drosophila 265 

Duox (Ha et al; 2009; Rigutto et al., 2009; Razzell et al., 2013) and the vertebrate homologue, Nox5 266 

(Bánfi et al., 2004; Millana et al., 2020). Conversely, over-expression of either enzyme is sufficient to 267 

phenocopy such presynaptic terminal growth (Figure 2).  Curiously, the requirement for NADPH 268 

oxidases in regulating dendritic growth is different, with only Duox, but not Nox, mediating activity-269 

induced reduction of dendritic arbor size (Dhawan et al., 2020). This difference in pre- versus 270 

postsynaptic compartment regulation is mirrored by their differential sub-cellular localisation, with 271 

tagged Nox protein being effectively excluded from the postsynaptic dendritic arbors, unlike Duox 272 

(Figure 2C). Apart from this differential requirement in pre- versus postsysnaptic compartments, it is 273 

unclear to what extent Nox and Duox might perform different functions during activity-induced 274 

growth. At the NMJ, where both are present and required, we found no difference in phenotypes 275 

following RNAi knockdown or mis-expression. Curiously, phenotypes were also comparable 276 

regardless of whether the expression of both enzymes was manipulated simultaneously or individually, 277 

suggesting either a saturation of phenotype or, speculatively, that Nox and Duox might operate in the 278 

same signalling pathway with their activation contingent on one another. 279 

 280 

 281 

 282 
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NADPH oxidases generate extracellular ROS and mediate autocrine signalling 283 

Because Nox and Duox generate ROS at the extracellular face they have the potential for inter-284 

cellular signalling, for example as documented during wound healing (Razzell et al, 2013; Niethammer 285 

et al., 2009, 2016). Indeed, within the dense meshwork of neuronal processes and synapses of the CNS, 286 

we recently found that reduction of extracellular hydrogen peroxide in the immediate vicinity of  287 

dendritic processes (by mis-expression of a secreted catalase) or attenuation of ROS entry into those 288 

dendrites (by knock-down of aquaporins), both cause significant dendritic over-growth (Dhawan et al., 289 

2020). This suggests that within the densely innervated central neuropile, extracellular ROS generated, 290 

including those from activity-regulated NADPH oxidases, might function as local signals to which 291 

neurons respond with adjustments of their synaptic terminals. This contrasts with the peripheral 292 

Drosophila larval NMJ, where we did not see any significant changes in synaptic terminal morphology 293 

following manipulations that would either reduce entry of ROS into the presynaptic terminal or 294 

reductions of extracellular ROS (Figure 3). These observations suggest that at the presynaptic NMJ, 295 

NADPH oxidases might be required only under conditions of elevated neuronal activity. While these 296 

data further suggest that at the presynaptic NMJ, NADPH oxidase-generated ROS are principally 297 

engaged in autocrine signalling, we cannot currently exclude the potential for inter-cellular signalling 298 

to adjacent muscles and glia. 299 

 Autocrine ROS signalling at both pre- and postsynaptic compartments is underlined by the 300 

requirement for the aquaporin channel proteins, Bib and Drip (Figure 3) (Dhawan et al., 2020). Some 301 

studies have questioned the extent to which Bib might function as an aquaporin, as unable to form 302 

effective water channels in a heterologous expression system (Tatsumi et al., 2009; Kourghi et al., 303 

2017). However, in this and in a pervious study (Dhawan et al., 2020), Bib RNAi knockdown produces 304 

synaptic terminal phenotypes indistinguishable from knockdown of Drip, or from mis-expression of 305 

secreted forms of catalase (Dhawan et al., 2020). This suggests that Bib functions in the same pathway 306 

as the aquaporin Drip, potentially forming part of a heteromeric channel with permeability for 307 

hydrogen peroxide. 308 

 309 

Independent, local regulation of pre- and postsynaptic terminal growth 310 

Over-activation of neurons results in changes to both pre- and postsynaptic terminals, though it has 311 

been unclear in how far such changes in growth of input and output compartments might be co-312 

ordinately regulated. Working with this experimental system we happen to have identified two sets of 313 

manipulations that suggest the growth of pre- and postsynaptic terminals can be regulated 314 

independently of each other. First, in motoneurons that have been over-activated by mis-expression of 315 
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dTRPA1, RNAi knockdown of Nox has no effect on the activity-induced reduction of the postsynaptic 316 

dendrites, which receive all synaptic input from pre-motor interneurons (as Nox protein appears to be 317 

excluded from dendrites); yet at the output compartment, the presynaptic NMJ, of those same neurons, 318 

activity-linked overgrowth is significantly suppressed by knockdown of Nox. This contrasts with the 319 

effect of Duox knockdown under conditions of neuronal over-activation, with Duox RNAi suppressing 320 

over-activation phenotypes effectively at both pre- and postsynaptic terminals.  321 

Second, RNAi knockdown alone of the genes coding for aquaporin channel proteins Bib or Drip 322 

cause significant dendritic overgrowth, without affecting the presynaptic NMJ. These manipulations 323 

suggest that, at least in Drosophila larval motoneurons, synaptic terminal growth can be regulated 324 

locally through ROS signalling, such that pre- and postsynaptic compartments can adjust independently 325 

from each other. This makes sense when viewing extracellular ROS as local signals for over-activation, 326 

to which cells respond by adjusting their synaptic terminals. In this context, it remains to be seen to 327 

what extent extracellular ROS might impact on the regulation of synaptic transmission.  328 

In summary, it is increasingly appreciated that ROS are important signals, whose signalling 329 

capability is proportional to the spatiotemporal precision attained. Sub-cellular specificity of ROS 330 

generators, such as the NAPDH oxidases studied here, is an important facet.  331 

 332 

 333 

 334 

 335 

 336 

4 Materials and Methods 337 

Fly genetics 338 

Drosophila melanogaster strains were maintained on a standard apple juice-based agar medium at 339 

25°C. The following fly strains were used: OregonR (#2376 Bloomington Drosophila Stock 340 

Center), UAS-dTrpA1 in attP16 (Hamada et al., 2008; FBtp0089791), UAS-Duox.RNAi (1) (#32903 341 

BDSC; FBtp0064955), UAS-Duox.RNAi (2) (#38916 BDSC; FBgn0283531), UAS-Nox.RNAi (1) (Ha 342 

et al., 2005b; FBal0191562), UAS-Nox.RNAi (2) (#32433 BDSC; FBgn0085428), UAS-bib.RNAi (1) 343 

(#57493 BDSC; FBtp0096443), UAS-bib.RNAi (2) (#27691 BDSC; FBtp0052515), UAS-344 

Drip.RNAi (1) (#44661 BDSC; FBtp0090566), UAS-Drip.RNAi (2) (#106911 345 

Vienna Drosophila Resource Centre; FBtp0045814) (Begland et al., 2012),  UAS-Prip.RNAi (2) 346 

(#44464 BDSC; FBtp0090258), UAS-Duox (1) (Ha et al., 2005b), UAS-Duox::mRuby2::HA (2) (this 347 
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paper), UAS-Nox::YPet (this paper), UAS-hCatS (human secreted catalase) (FBal0190351; Ha et al., 348 

2005b; Fogarty et al., 2016), UAS-extracellular immune-regulated catalase (Irc) (FBal0191070, Ha et 349 

al., 2005b). 350 

Transgene expression was carried out at 25oC, unless otherwise noted, targeted to RP2 and aCC 351 

motoneurons using the following Gal4 expression line: RN2-O-Gal4, UAS-FLP, tubulin84b-FRT-352 

CD2-FRT-Gal4; RRFa-Gal4, 20xUAS-6XmCherry::HA (Pignoni and Zipursky, 1997; Fujioka et al., 353 

2003; Shearin et al., 20014). Briefly, RN2-GAL4 expression in RP2 and aCC motoneurons is restricted 354 

to the embryo, but is maintained subsequently by FLPase-gated tubulin84B-FRT-CD2-FRT-355 

GAL4  (Ou et al., 2008). mCherry::HA was used as morphological reporter. To study the localisation 356 

of the tagged Nox::YPet and Duox::mRuby2::HA transgene expression was targeted to aCC 357 

motoneurons using the GMR94G06-Gal4 (#40701 BDSC; FBgn0053512; Pérez-Moreno and O'Kane, 358 

2019). pJFRC12-10XUAS-IVS-Nox-YPet (GenBank OP716753) in landing site VK00040 [cytogenetic 359 

location 87B10] was generated by Klenow assembly cloning (tinyurl.com/4r99uv8m). Briefly, from 360 

pJFRC12-10XUAS-IVS-myr-GFP plasmid DNA we removed the coding sequence for myr::GFP 361 

using XhoI and XbaI, and replaced it with Nox cDNA from DGRC clone FI15205 (pOTB7 vector 362 

backbone; kindly provided by Kenneth H. Wan, DGRC Stock 1661239 ; 363 

https://dgrc.bio.indiana.edu//stock/1661239 ; RRID:DGRC_1661239), its 3’ stop codon replaced by a 364 

flexible glycine-serine linker, followed by YPet (Nguyen and Daugherty, 2005). Similarly, we created 365 

pJFRC12-10XUAS-IVS-Duox-mRuby2-HA (GenBank OP716753) in landing site VK00022 366 

[cytogenetic position 57A5] using Duox cDNA kindly provided by Won-Jae Lee, its 3’ stop codon 367 

replaced by a flexible glycine-serine linker, followed by mRuby2 (Lam et al, 2012), followed by 368 

another glycine-serine flexible linker and four tandem repeats of the hemagglutinin (HA) epitope. 369 

Transgenics were generated via phiC31 integrase-mediated recombination (Bischof et al.; 2007) into 370 

defined landing sites by the FlyORF Injection Service (Zürich, Switzerland). 371 

 372 

Dissections and immunocytochemistry 373 

Flies were allowed to lay eggs on apple-juice agar based medium overnight at 25 ̊C. Larvae were then 374 

reared at 25oC on yeast paste, while avoiding over-crowding. Precise staging of the late wandering 375 

third instar stage was achieved by: a) checking that a proportion of animals from the same time-376 

restricted egg lay had initiated pupariation; b) larvae had reached a certain size and  c) showed gut-377 

clearance of food (yeast paste supplemented with Bromophenol Blue Sodium Salt (Sigma-Aldrich)). 378 

Larvae were dissected in Sorensen’s saline, fixed for 5 min at room temperature in Bouins fixative or 379 
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10 min paraformaldehyde (Agar Scientific) when staining for GFP/YPet epitopes, as previously 380 

detailed (Oswald et al., 2018).  Wash solution was Sorensen’s saline containing 0.3% Triton X-100 381 

(Sigma-Aldrich) and 0.25% BSA (Sigma-Aldrich). Primary antibodies, incubated overnight at 10ºC, 382 

were: Goat-anti-HRP Alexa Fluor 488 (1:1000) (Jackson ImmunoResearch Cat. No. 123-545-021), 383 

Rabbit-anti-dsRed (1:1000) (ClonTech Cat. No. 632496), Mouse nc82 (Bruchpilot; Developmental 384 

Studies Hybridoma Bank Cat No nc82), Chicken anti-GFP (1:5000) (abcam Cat No ab13970); 385 

secondary antibodies, 2 hr at room temperature: Donkey anti-mouse Alexa Fluor 647; Donkey-anti-386 

Rabbit CF568 (1:1200) (Biotium Cat. No. 20098), Donkey anti-Chicken CF488 (1:1000) (Cambridge 387 

Bioscience Cat No 20166) and goat anti-Rabbit Atto594 (1:1000) (Sigma-Aldrich Cat No 77671-1ML-388 

F). Specimens were cleared in 70% glycerol, overnight at 4oC, then mounted in Mowiol. 389 

Image acquisition and analysis 390 

Specimens were imaged using a Leica SP5 point-scanning confocal, and a 63x/1.3 N.A. (Leica) 391 

glycerol immersion objective lens and LAS AF (Leica Application Suite Advanced Fluorescence) 392 

software. Confocal images were processed using ImageJ (to quantify active zones) and Affinity Photo 393 

(Adobe; to prepare figures). Bouton number of the NMJ on muscle DA1 from segments A3-A5 was 394 

determined by counting every distinct spherical varicosity along the NMJ branch.  395 

To study if genetic manipulations targeted to aCC and RP2 motoneurons change muscle size 396 

we measured surface area of DA1 muscles, imaged under DIC optics using a Zeiss Axiophot compound 397 

microscope and a Zeiss Plan-Neofluar 10x/0.3 N.A. objective lens. Images were taken with an Orca 398 

CCD camera (Hamamatsu) and muscle surface area was determined using ImageJ by multiplying 399 

muscle length by width. Quantification of key representative experiments, covering most transgenic 400 

lines used and conditions where genetic manipulation of aCC motoneurons cause significant changes 401 

in bouton number, show no statistically significant differences in average muscle size, which is used 402 

as an indicator of overall animal size. Correlation between individual muscle sizes and bouton numbers 403 

show that the biggest differences in muscle surface area is due to dissection artefact of differences to 404 

the extent that larval filets are stretched, rather than differences in animal or muscle growth, which 405 

would lead to clear correlations between measured muscle surface area and NMJ bouton number (see 406 

supplementary figure 2). Taking account of this, bouton numbers are shown as raw counts, not 407 

normalized to average muscle surface area. 408 

 409 
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 410 

Representative schematics, drawings and plates of photomicrographs were generated with 411 

Affinity Photo (Serif Ltd., United Kingdom). 412 

Statistical analysis 413 

All data handling was performed using Prism software (GraphPad). NMJ bouton number data 414 

was tested for normal/Gaussian distribution using the D’Agostino-Pearson omnibus normality test. 415 

When normal distribution was confirmed the statistically comparisons were done using one-way 416 

analysis of variance (ANOVA), with Tukey’s multiple comparisons test. When non-normal 417 

distribution was confirmed the statistically comparisons were done using Kruskal-Wallis test. 418 

 419 

 420 

 421 
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6 Supplementary Figures 702 

 703 

Supplementary Figure 1. NADPH oxidases, dDuox and dNox, are not necessary for activity-704 

regulated synaptic number at the neuromuscular junction.  Dot-plot quantification shows 705 

active zone number increases following overactivation (dTrpA), but there are not significant 706 

differences when manipulating NADPH oxidases. Mean ± SEM, ANOVA, * p<0.05, **** 707 

p<0.0001. 708 
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 709 

Supplementary Figure 2. Muscles size. A) Dot-plot quantification shows no statistically 710 

significant differences between genotypes in average muscle surface area (MSA). Mean ± SEM, 711 

Kruskal-Wallis test. B) Linear regression using the control data shows not correlation between 712 

aCC NMJ terminal bouton numbers and muscle size, p-value = 0.7866. 713 
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