

1 Evaluating metabolic and genomic data for predicting
2 grain traits under high night temperature stress in rice

3 Ye Bi¹, Rafael Massahiro Yassue^{1,2}, Puneet Paul³, Balpreet Kaur Dhatt³,
4 Jaspreet Sandhu³, Thi Phuc Do^{4,5}, Harkamal Walia³, Toshihiro Obata⁵, and
5 Gota Morota^{*,1,6}

6 ¹School of Animal Sciences, Virginia Polytechnic Institute and State
7 University, Blacksburg, VA, USA

8 ²Department of Genetics, 'Luiz de Queiroz' College of Agriculture,
9 University of São Paulo, São Paulo, Brazil

10 ³Department of Agronomy and Horticulture, University of
11 Nebraska-Lincoln, Lincoln, NE, USA

12 ⁴Faculty of Biology, VNU University of Science, Vietnam National
13 University, Hanoi, Vietnam

14 ⁵Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE,
15 USA

16 ⁶Center for Advanced Innovation in Agriculture, Virginia Polytechnic
17 Institute and State University, Blacksburg, VA, USA

18 Running title: Predictive modeling of rice metabolites

19
20 Keywords: binary classification, genomic prediction, grain size, high night temperature,
21 metabolic prediction, rice

22
23 * Corresponding author

24
25 ORCID: 0000-0001-7871-5856 (YB), 0000-0002-7424-2227 (RMY), 0000-0001-8220-8021 (PP),
26 0000-0002-3577-962X (BKD), 0000-0002-2893-8223 (TPD), 0000-0002-9712-5824 (HW), 0000-
27 0001-8931-7722 (TO), and 0000-0002-3567-6911 (GM)

28
29 Email addresses: yebi@vt.edu (YB), rafael.yassue@usp.br (RMY), puneet6288@gmail.com
30 (PP), bdhatt@huskers.unl.edu (BKD), jsandhu0292@gmail.com (JS), dothiphuc13380@gmail.com
31 (TPD), hwalia2@unl.edu (HW), tobata2@unl.edu (TO), and morota@vt.edu (GM)

32 Abstract

33 The asymmetric increase in average nighttime temperatures relative to increase in average
34 daytime temperatures due to climate change is decreasing grain yield and quality in rice.
35 Therefore, a better understanding of the impact of higher night temperature on single grain
36 at whole genome level is essential for future development of more resilient rice. We inves-
37 tigated the utility of metabolites obtained from grains to classify high night temperature
38 conditions of genotypes, and metabolites and single nucleotide polymorphisms to predict
39 grain length, width, and perimeter phenotypes using a rice diversity panel. We found that
40 the metabolic profiles of rice genotypes alone could be used to classify control and high night
41 temperature conditions with high accuracy using random forest or extreme gradient boost-
42 ing. The best linear unbiased prediction and BayesC showed greater metabolic prediction
43 performance than machine learning models for grain-size phenotypes. Metabolic prediction
44 was most effective for grain width, resulting in the highest prediction performance. Ge-
45 nomic prediction performed better than metabolic prediction. Integrating metabolites and
46 genomics simultaneously in a prediction model slightly improved prediction performance. We
47 did not observe a difference in prediction between the control and high night temperature
48 conditions. Several metabolites were identified as auxiliary phenotypes that could be used
49 to enhance the multi-trait genomic prediction of grain-size phenotypes. Our results showed
50 that, in addition to single nucleotide polymorphisms, metabolites collected from grains of-
51 fer rich information to perform predictive analyses, including classification modeling of high
52 night temperature responses and regression modeling of grain size-related phenotypes in rice.

53 Background

54 Sustainable increase in food production is paramount to meet the demands of the growing
55 population. However, rising temperatures threaten the productivity of major food crops
56 including rice (*O. Sativa*) (Peng et al., 2004; Wheeler and Von Braun, 2013; Zhao et al.,
57 2017). Rice is the staple food in many countries, however, its productivity is threatened by
58 an increase in the average minimum (nighttime) temperatures. There has been a greater rise
59 in the rate of nighttime temperatures than that of daytime temperatures (Vose et al., 2005;
60 Donat and Alexander, 2012; Xia et al., 2014). Recent studies have indicated that high night
61 temperatures (HNT) negatively impact photosynthesis and respiration, and hence, rice grain
62 yield (Welch et al., 2010; Peng et al., 2013; Jagadish et al., 2015; Wang et al., 2017; Impa
63 et al., 2021). Importantly, HNT not only impacts grain yield-related traits but also grain
64 width (Dhatt et al., 2021) and grain quality (Sreenivasulu et al., 2015; Wada et al., 2019)
65 in rice. Given the increasing trend of global warming, understanding the variety of omic
66 responses and their associations during grain development in rice is essential for improving
67 its resilience to HNT.

68 Genomic prediction has been widely used to predict responses of plants and animals
69 (Meuwissen et al., 2001). It is a powerful quantitative genetic approach to predict the genetic
70 value of unphenotyped lines for diverse arrays of traits in rice (Bartholomé et al., 2022). In
71 addition to DNA polymorphisms, metabolites have emerged as omics data sources that can be
72 used to investigate biological responses. Plant metabolites play a multitude of critical roles in
73 growth and development, and abiotic and biotic stress responses. The metabolites of plants
74 are associated with nutrition, fragrance, and agronomic performance (Obata and Fernie,
75 2012). Differential metabolic abundance has been reported in rice grains between the control
76 and HNT treatment (Dhatt et al., 2019), suggesting that the differences in biochemical
77 or physiological signals between the two conditions are reflected in the metabolic profiles.
78 Hence, it is worthwhile to investigate whether the metabolic profiles of genotypes alone can

79 be used to classify control and HNT conditions. When single nucleotide polymorphism (SNP)
80 data are used as predictors, a classification accuracy of 0.5 is expected because genomics is
81 irrelevant to the presence or absence of HNT stress.

82 Prediction of phenotypes using metabolites, known as metabolic prediction, has been car-
83 ried out in maize (Riedelsheimer et al., 2012; Guo et al., 2016; Westhues et al., 2017; Schrag
84 et al., 2018) and rice (Xu et al., 2016), obtaining an encouraging result for its predictive
85 ability. Metabolic prediction captures the molecular composition of a plant, such as changes
86 in biochemical or physiological signals that influence phenotypes, which may not be directly
87 explained by genomic prediction (Riedelsheimer et al., 2012). Thus, metabolic data can be
88 used to evaluate plant growth- or stress-related phenotypes in response to HNT.

89 Despite its potential, metabolic responses to HNT stress and the use of metabolites as
90 covariates for complex trait prediction have not been fully explored relative to genetic anal-
91 ysis in rice yet. Overall, we hypothesized that the inclusion of all available metabolites
92 would be useful for metabolic classification and prediction in HNT studies. Therefore, the
93 objectives of this study were threefold: 1) evaluate the classification ability of metabolites
94 to distinguish HNT conditions, 2) compare the predictive ability of metabolic prediction,
95 genomic prediction, and their multi-omic integration for grain-size phenotypes, and 3) in-
96 vestigate whether the use of metabolites as auxiliary phenotypes improves the predictive
97 performance of multi-trait genomic prediction of grain-size phenotypes under control and
98 HNT conditions.

99 Materials and Methods

100 Plant materials and growth conditions

101 Rice diversity panel 1 lines (Zhao et al., 2011) were phenotyped for grain length (major
102 axis), grain width (minor axis), and grain perimeter in this study. Six seedlings per acces-
103 sion were transplanted into 4-inch pots containing natural soil. The HNT experiment was
104 performed as previously described (Dhatt et al., 2021). Briefly, all the plants were grown
105 under controlled conditions until flowering. When approximately 50% of the primary pani-
106 cle completed fertilization, half of the plants from each accession were transferred to HNT
107 conditions until maturity. All the plants were harvested at physiological maturity. Dehulled
108 mature grains from primary panicles were scanned using an Epson Expression 12000 XL
109 scanner (Epson America Inc., Los Alamitos, CA, USA) at a resolution of 600 dpi. Mor-
110 phometric measurements, including grain length, width, and perimeter, were obtained from
111 mature grains using the MATLAB software (Zhu et al., 2021). Morphometric phenotypes
112 were adjusted for downstream genetic analyses by deriving the best linear unbiased estima-
113 tors for each accession in each condition while accounting for replication. All the lines were
114 genotyped using a high-density rice array (HDRA) of 700k SNP markers (McCouch et al.,
115 2016). A total of 385,118 SNP markers were used for analysis after removing SNP markers
116 with minor allele frequencies less than 0.05.

117 Metabolic profiling

118 Five dehusked mature grains of each genotype were taken from the pool of all plant individ-
119 uals and used for metabolite profiling. The grains were frozen and ground to fine powder
120 by a ball mill (TissuelyzerII, Qiagen, Düsseldorf, Germany) at liquid nitrogen temperature.
121 Around 50 mg of aliquot was weighed and used for the metabolite extraction and profiling

122 using a 7200 GC-QTOF system (Agilent, Santa Clara, CA, USA) according to the proto-
123 col previously described (Wase et al., 2022). The chromatography peaks were annotated
124 to metabolites according to the retention time and mass spectral information in the Fiehn
125 Metabolomics database (Agilent). The peak heights of representative ions for individual
126 metabolites were normalized by that of internal standard, ribitol (m/z 319), and the fresh
127 weights of materials to determine relative metabolite contents. The retention time and
128 representative ion m/z of each peak and the relative metabolite contents are found in the
129 Supplementary Files. Relative metabolite abundance was corrected for run and experimental
130 batch effects by treating them as random, separately for the control and HNT conditions.

131 **Statistical analyses**

132 A total of 192 and 188 rice lines with phenotypes, genotypes, and metabolites were used
133 for the control and HNT conditions, respectively. These lines consisted of tropical japonica
134 (25.11%), temperate japonica (22.37%), indica (18.72%), aus (17.35%), admixed japonica
135 (9.13%), aromatic (3.20%), admixed indica (2.74%), and admixed (1.38%) (McCouch et al.,
136 2016). The utility of metabolic profiles to classify control and HNT conditions was evaluated.
137 This was followed by a comparison of the predictive abilities of genomic prediction, metabolic
138 prediction, and their combination for grain length, width, and perimeter. Finally, potential
139 auxiliary metabolites that can be used to increase the multi-trait genomic prediction of
140 grain-size phenotypes were explored under control and HNT conditions.

141 **Classification of HNT stress status**

142 The following classification models were used to classify HNT stress from the control con-
143 ditions based on the metabolic profiles of 380 (192 + 188) plants. Our hypothesis was that
144 there is sufficient differential metabolic abundance between the control and HNT conditions
145 that can be used to classify HNT stress status.

¹⁴⁶ **Logistic regression:** Logistic regression (LR), which is built on the logit link function,
¹⁴⁷ models the probability that the metabolic profile of each plant belongs to the control or
¹⁴⁸ HNT stress status.

¹⁴⁹ **Support vector machine:** Support vector machines (SVM) coupled with a radial basis
¹⁵⁰ function kernel was used to find the nonlinear separation boundary. The idea behind the
¹⁵¹ SVM is to maximize the margin around the separating hyperplane (control or HNT status)
¹⁵² by solving quadratic programming.

¹⁵³ **Random forest:** Random forest (RF) is an ensemble learner based on numerous decision
¹⁵⁴ tree classifiers constructed from subsamples of the data. Each tree in the RF predicts the
¹⁵⁵ category (control or HNT status) under which a new plant in the testing set belongs. The
¹⁵⁶ final category was assigned to a new plant according to the majority vote.

¹⁵⁷ **Extreme gradient boosting:** Extreme gradient boosting (XGBoost) is an ensemble ma-
¹⁵⁸ chine learning framework that uses gradient boosted decision trees. Relative to the gradient
¹⁵⁹ boosting machine, XGBoost is faster and delivers higher prediction performance. We imple-
¹⁶⁰ mented LR, SVM, RF, and XGBoost in the caret R package (Kuhn, 2015).

¹⁶¹ **Metabolic prediction of grain-size phenotypes**

¹⁶² In addition to the regression versions of SVM (i.e., support vector regression or SVR), RF,
¹⁶³ and XGBoost, ordinary least squares (OLS), best linear unbiased prediction (BLUP), and
¹⁶⁴ BayesC were used for the metabolic prediction of grain-size phenotypes.

Ordinary least squares: Metabolic OLS (MOLS) was constructed using metabolic abun-
dance as a predictor in the OLS framework.

$$\mathbf{y} = \mathbf{1}\mu + \mathbf{W}_m \mathbf{a}_m + \epsilon,$$

¹⁶⁵ where \mathbf{y} is a vector of phenotypes (grain length, grain width, and grain perimeter); $\mathbf{1}$ is
¹⁶⁶ the vector of ones; μ is the overall mean; \mathbf{W}_m is a centered and standardized metabolic

167 abundance matrix; \mathbf{a}_m is a vector of fixed metabolic effect, and $\epsilon \sim N(\mathbf{0}, \mathbf{I}\sigma_\epsilon^2)$, is a vector of
168 residuals. Here σ_ϵ^2 is the residual variance, and \mathbf{I} is an identity matrix. The MOLS model
169 was fitted using the lm function in R (R Core Team, 2022). This model was only used for
170 metabolic prediction because the number of SNP markers was greater than the number of
171 accessions in genomic prediction.

BayesC: A Bayesian shrinkage and variable selection model, BayesC (Kizilkaya et al., 2010),
was used to estimate the metabolic effect using the following model.

$$y_i = \mu + \sum_{j=1}^{m_m} w_{m_{ij}} a_{m_j} + \epsilon_i,$$

where y_i is the vector of phenotypes for the i th accession; m_m is the total number of metabolites;
 $w_{m_{ij}}$ is the j th metabolic abundance of i th accession; and a_{m_j} is the j th metabolic abundance effect. The prior of a_{m_j} was assumed to follow a mixture distribution

$$a_{m_j} | \pi, \sigma_a^2 = \begin{cases} 0 & \text{with probability } \pi \\ \sim N(0, \sigma_a^2) & \text{with probability } 1 - \pi, \end{cases}$$

172 where σ_a^2 is the common metabolic abundance variance and π is a mixture proportion set to
173 0.99.

Metabolic best linear unbiased prediction: Best linear unbiased prediction regresses
the vector of phenotypes on a kernel relationship matrix derived from the biological profiles
of individuals (Morota and Gianola, 2014). The model considered for the metabolic best
linear unbiased prediction (MBLUP) was

$$\mathbf{y} = \mathbf{1}\mu + \mathbf{Z}_m \mathbf{u}_m + \epsilon,$$

174 where \mathbf{Z}_m is the incidence matrix relating metabolites to phenotypic records, \mathbf{u}_m is the vector
175 of the random metabolic values of the accessions, and ϵ is the vector of the residuals. The

176 distributions of random metabolic effect was assumed to follow $\mathbf{u}_m \sim N(\mathbf{0}, \mathbf{M}\sigma_{u_m}^2)$, where
177 \mathbf{M} is the metabolic relationship matrix and $\sigma_{u_m}^2$ is the metabolic variance. The metabolic
178 relationship matrix represents the similarity of metabolic profiles among accessions, which
179 was computed as a function of the metabolic abundance cross-product $\mathbf{M} = \frac{\mathbf{W}_m \mathbf{W}'_m}{m_m}$.

180 **Genomic prediction of grain-size phenotypes**

Performance of the metabolic prediction was compared with that of genomic best linear unbiased prediction (GBLUP), which is the most commonly used genomic prediction model (VanRaden, 2008). Here, metabolic abundance covariates were replaced with SNP marker covariates. The GBLUP model used was

$$\mathbf{y} = \mathbf{1}\mu + \mathbf{Z}_g \mathbf{u}_g + \boldsymbol{\epsilon},$$

181 where \mathbf{Z}_g is the incidence matrix relating gene content to phenotypic records and \mathbf{u}_g is the
182 vector of the random additive genetic values of the accessions. We assumed $\mathbf{u}_g \sim N(\mathbf{0}, \mathbf{G}\sigma_{u_g}^2)$,
183 where $\mathbf{G} = \frac{\mathbf{W}_g \mathbf{W}'_g}{m_g}$ is the genomic relationship matrix; $\sigma_{u_g}^2$ is the additive genetic variance;
184 \mathbf{W}_g is a centered and standardized gene content matrix; and m_g is the total number of SNP
185 markers.

186 Metabolic ($h_m^2 = \frac{\sigma_{u_m}^2}{\sigma_{u_m}^2 + \sigma_{\epsilon}^2}$) and genomic ($h_g^2 = \frac{\sigma_{u_g}^2}{\sigma_{u_g}^2 + \sigma_{\epsilon}^2}$) heritability estimates were ob-
187 tained from MBLUP and GBLUP, respectively. These estimates can be interpreted as the
188 proportion of phenotypic variance explained by metabolic or genomic relationship among
189 lines.

Additionally, the extent of increased performance due to the integration of metabolites and SNP markers was evaluated by extending MBLUP and GBLUP via multiple kernel learning as follows (Baba et al., 2021).

$$\mathbf{y} = \mathbf{1}\mu + \mathbf{Z}_m \mathbf{u}_m + \mathbf{Z}_g \mathbf{u}_g + \boldsymbol{\epsilon},$$

190 This approach was named integrated genomic metabolic best linear unbiased prediction
191 (GMBLUP). Also, we performed the Mantel test to investigate whether the correlation
192 between the **G** and **M** matrices is statistically different (Mantel, 1967).

193 The aforementioned BayesC, MBLUP, GBLUP, and GMBLUP were implemented in a
194 Bayesian manner using the BGLR R package (Pérez and de los Campos, 2014). A flat prior
195 was assigned to μ . The variance components, $\sigma_{u_m}^2$, $\sigma_{u_g}^2$, and σ_ϵ^2 were drawn from a scaled
196 inverse χ^2 distribution with the degrees of freedom $\nu = 5$ and scale parameter s such that
197 the prior means of variance components equal half of the phenotypic variance. A total of
198 30,000 Markov Chain Monte Carlo samples after 10,000 burn-in with a thinning rate of 10
199 were used to obtain the posterior means for all the unknowns.

200 **Multi-trait genomic prediction of grain-size phenotypes**

We evaluated the gain in genomic prediction performance of grain-size phenotypes by fitting bivariate GBLUP, when metabolites were used as a correlated trait. We hypothesized that some metabolites could enhance the genomic prediction via a correlated response. All possible combinations of the phenotypes (target responses) and metabolites (auxiliary responses) were investigated. Genetic and residual variances in single-trait GBLUP were extended to the following variance-covariance structure.

$$\Sigma_g = \begin{bmatrix} \sigma_{u_{g1}}^2 & \sigma_{u_{g12}}^2 \\ \sigma_{u_{g21}}^2 & \sigma_{u_{g1}}^2 \end{bmatrix}, \quad \Sigma_\epsilon = \begin{bmatrix} \sigma_{\epsilon_1}^2 & \sigma_{\epsilon_{12}} \\ \sigma_{\epsilon_{21}} & \sigma_{\epsilon_2}^2 \end{bmatrix},$$

201 where subscripts 1 and 2 refer to the phenotype and metabolite, respectively. An inverse
202 Wishart distribution was assigned to Σ_g and Σ_ϵ with degrees of freedom $\nu = 4$ and scale
203 matrix S such that the prior means of Σ_g and Σ_ϵ equal half of the phenotypic variance.
204 The bivariate GBLUP was fitted using 30,000 Markov chain Monte Carlo samples, 10,000
205 burn-ins, and a thinning rate of 10, implemented in the BGLR R package (Pérez-Rodríguez
206 and de Los Campos, 2022).

207 Cross-validation strategies

208 Repeated random subsampling cross-validation (CV) was used to evaluate the classification
209 and prediction model performance. For classification, we first split the accessions into train-
210 ing (80%) and test (20%) sets separately for the control and HNT, so that each condition
211 was represented in the training and testing sets equally (Figure 1A). The training set for
212 each condition was further split into inner training and validation sets to fine-tune the hy-
213 perparameters. The inner training set was used for hyperparameter tuning using five-fold
214 CV. The training sets from the control and HNT groups were combined to form a unified
215 training set. The final model performance was evaluated in an independent testing set com-
216 bined with the control and HNT conditions, which were never used in the model training.
217 Repeated random sub-sampling CV for classification was performed 25 times. The accuracy
218 of classification performance was derived as $\frac{TP+TN}{TP+TN+FN+FP}$, where TP, TN, FN, and FP are
219 the number of accessions in the true positive, true negative, false negative, and false posi-
220 tive classes, respectively. Since the number of accessions in the control and HNT conditions
221 were not exactly the same (192 and 188, respectively), we also evaluated classification per-
222 formance using the F1 score and the area under a receiver operating characteristic (ROC)
223 curve (AUC). The F1 score is robust to imbalanced data and is defined as the harmonic
224 mean of the precision and recall $2 \times \frac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}} = \frac{\text{TP}}{\text{TP} + \frac{1}{2}(\text{FP} + \text{FN})}$. The AUC measures the
225 area under the entire ROC curve, which plots the TP rate ($\frac{\text{TP}}{\text{TP} + \text{FN}}$) vs. the FP rate ($\frac{\text{FP}}{\text{FP} + \text{TN}}$).
226 The accuracy and F1 score were derived using the Metrics R package (Hamner and Frasco,
227 2018) and the AUC was derived using the pROC R package (Robin et al., 2011). In addition
228 to evaluating the utility of the whole metabolic profile for classification, we investigated the
229 classification performance of random subsets of 10, 20, 30, 40, 50, and 60 metabolites by
230 randomly reconstructing each subset 20 times.

231 The performance of metabolic and genomic predictions of grain-size phenotypes was
232 evaluated similar to the classification, except that the predictions were performed separately

233 for the control and HNT conditions (Figure 1B). The predictive performance of the models
234 was assessed using Pearson correlation between the predictive values and phenotypes of the
235 accessions. The repeated random subsampling CV for metabolic and genomic prediction was
236 repeated 100 times. In metabolic prediction, we also evaluated whether metabolic effects
237 estimated in one condition could be used to predict phenotypes in another. Specifically, we
238 trained metabolites in the HNT and predicted phenotypes in the control and vice versa.
239 This scenario investigate the transferability of the metabolic signal across stress conditions.

240 Two scenarios were considered for the multi-trait genomic prediction of grain-size pheno-
241 types (Figure 2). Scenario 1 included splitting the accessions into training (80%) and testing
242 (20%) sets. The models were trained in the training sets, and the predictive performance of
243 the genomic prediction was evaluated in the remaining testing sets. Scenario 2 included the
244 metabolic information of all accessions in a training set and assessed the genomic prediction
245 performance of grain-size phenotypes using a testing set. The repeated random sub-sampling
246 CV for multi-trait genomic prediction was repeated 25 times.

247 Data availability

248 Phenotypic and metabolic data used herein are available in the Supplementary Files at
249 Figshare. Genotypic data regarding the rice accessions are available at the rice diversity
250 panel website (<http://www.ricediversity.org/>). Scripts used in this work are publicly
251 available in GitHub (https://github.com/yebigithub/VTUNL_Rice).

252 Results

253 Correlation analysis

254 Metabolic profiling of rice grains detected 73 metabolites (Table S1). Pairwise comparisons
255 (r) of metabolic abundance revealed correlated metabolites (Figure S1). Under control
256 conditions, four metabolites, citraconic acid, arabinose, lyxose, and ribose were positively
257 associated with each other ($|r| > 0.9$) (Figure S1A). Pairs of leucine and valine, isoleucine
258 and valine, isoleucine and leucine, and ornithine and citrulline also showed notable positive
259 correlations. Under HNT, leucine was positively associated with isoleucine, arabinose, and
260 ribose ($|r| > 0.9$). Citraconic acid was positively associated with ribose, adenine, and uridine
261 ($|r| > 0.9$). Furthermore, pairs of dihydrouracil and asparagine, glutamine and asparagine,
262 ribose and arabinose, and isomaltose and lyxose showed notable positive correlations ($|r| >$
263 0.9) (Figure S1A). When the metabolic abundance was expressed in terms of the ratio
264 of control to HNT, arabinose and citraconic acid, arabinose and ribose appeared as two
265 positively correlated metabolic pairs ($|r| > 0.9$) (Figure S2). Grain width was associated with
266 many metabolites (Figure 3). In particular, proline, serine, aspartic acid, tyrosine, glucose,
267 lysine, tryptophan, galactinol, and sucrose were positively correlated ($r > 0.3$), whereas
268 trehalose was negatively correlated ($r < -0.3$) with grain width under control conditions
269 (Figure 3A). In contrast, melibiose was positively correlated ($r > 0.3$), while trehalose was
270 negatively correlated ($r < -0.3$) with grain width under HNT conditions (Figure 3B).

271 Evaluation of metabolic classification performance

272 RF and XGBoost delivered the best classification accuracy equally, followed by SVM and
273 LR (Figure 4). The means of classification for RF and XGBoost were both 0.98, suggesting
274 that the metabolic profiles of the control and HNT conditions could be accurately used for

275 classification. The mean SVM accuracy decreased moderately to 0.78. However, the LR
276 classification performance was worse than that of a random classifier with a mean accuracy
277 of 0.41 and a large CV uncertainty. Because slightly different number of accessions were used
278 between the control and HNT conditions, the classification performance of the four models
279 was evaluated using alternative measures. The F1 scores (Figure S3) and AUC (Figure S4)
280 corroborated the accuracy results, suggesting that the classification accuracy performance
281 obtained was robust. Classification accuracy was proportional to the number of metabolites
282 included in the model (Figure S5). The opposite was observed in CV uncertainty, which was
283 disproportional to the number of metabolites included in the model. A set of 10 metabolites
284 alone achieved an accuracy above 0.8, albeit with a large CV uncertainty in RF and XGBoost.
285 As the number of metabolites in the model increased, the accuracy increased and the CV
286 uncertainty decreased. The accuracy of the 60 metabolites was slightly lower than that of
287 all the metabolites. A set of 10 metabolites alone achieved an SVM accuracy of above 0.7,
288 which gradually approached the accuracy achieved by the full set of metabolites. However,
289 the LR did not follow this pattern. It consistently performed poorly regardless of the number
290 of metabolites included in the model. The results of the F1 scores and AUC classification
291 measures agreed with the classification accuracy (Figures S6 and S7).

292 **Evaluation of metabolic prediction performance**

293 The performance of the metabolic prediction of grain-size phenotypes using MOLS, RF,
294 SVM, XGBoost, BayesC, and MBLUP is shown in Figures 5, 6, and 7. Points below the
295 straight line indicate that the model shown on the x-axis performed better, whereas points
296 above the straight line indicate the model shown on the y-axis performed better. BayesC and
297 MBLUP were the equally best metabolic prediction models for grain length and delivered
298 similar predicted values (Figure 5). Their mean predictive correlations were 0.35 and 0.33
299 in control and 0.33 and 0.31 in HNT conditions, respectively. However, although the means
300 were similar, BayesC was better than MBLUP in 69% (control) and 80% (HNT) of the CV

301 resampling runs. MOLS resulted in the worst performance, with mean predictive correlations
302 of 0.20 (control) and 0.14 (HNT). The prediction performance of BayesC and MBLUP were
303 higher than that of MOLS in more than 75% (control) and 84% (HNT) of the resampling runs.
304 The metabolic prediction performance of the remaining models, RF, SVR, and XGBoost,
305 was between that of BayesC or MBLUP and MOLS. For example, BayesC performed better
306 than RF, SVR, and XGBoost in 84%, 77%, and 76% of the resampling runs in the control
307 and 59%, 61%, and 59% of the resampling runs in the HNT.

308 For grain width measured under control conditions, RF was the best metabolic prediction
309 model with a predictive correlation of 0.57, closely followed by MBLUP of 0.54 (Figure 6).
310 RF was better than MOLS, BayesC, MBLUP, SVR, and XGBoost in 98%, 73%, 73%, 76%,
311 and 73% of resampling runs, respectively. SVR, XGBoost, and BayesC performed equally
312 well, and their predictive performance was better than that of MOLS. In the case of grain
313 width measured under HNT conditions, BayesC and MBLUP equally delivered the best
314 predictive correlation of 0.54, followed by SVR and XGBoost. For example, MBLUP showed
315 a higher predictive performance than MOLS, BayesC, SVR, and XGBoost in 89%, 50%,
316 65%, and 70% of the resampling runs, respectively. Under both conditions, MOLS was the
317 worst prediction machine.

318 For grain perimeter, BayesC consistently produced the best prediction (Figure 7). Its
319 mean predictive correlations were 0.35 and 0.29 in the control and HNT conditions, respec-
320 tively. BayesC performed better than MOLS, MBLUP, SVR, RF, and XGBoost in 88%,
321 75%, 69%, 89%, and 70% of the resampling runs in the control, whereas it performed better
322 in 90%, 73%, 63%, 57%, and 51% of the resampling runs in the HNT.

323 Overall, BayesC and MBLUP produced similar predicted metabolic values across the
324 three phenotypes (Figures 5, 6, and 7). We obtained the highest prediction for grain width,
325 whereas the predictive correlations of grain length and grain perimeter were similar and had
326 slightly lower predictive outcomes. No significant difference was observed between the con-
327 trol and HNT conditions with respect to the predicted results. Additionally, we investigated

328 whether the metabolic abundance obtained in one condition could be used to predict pheno-
329 types under another condition. Overall, we found a decrease in metabolic prediction across
330 HNT stress conditions (Figure S8). For example, when control phenotypes were predicted
331 from HNT metabolites, we observed 23%, 4%, and 31% decrease in grain length, grain width,
332 and grain perimeter, respectively, whereas when HNT phenotypes were predicted from con-
333 trol metabolites, we observed 18% and 4% decrease in grain width and grain perimeter,
334 respectively. However, no decrease was observed in grain length.

335 **Evaluation of genomic prediction performance**

336 The Mantel test showed that the correlation between **G** and **M** matrices are statistically
337 different from each other. The performance of GBLUP and GMBLUP for grain-size phe-
338 notypes relative to that of MBLUP is shown in Figure 8. MBLUP was chosen to repre-
339 sent a metabolic prediction model because it performed well across the three traits under
340 both conditions with a relatively faster computational time than BayesC. Overall, GBLUP
341 consistently provided a better prediction than MBLUP in at least 98%, 87%, and 95% of
342 CV resampling runs under both conditions for grain length, width, and perimeter, respec-
343 tively. The mean predictive correlations were 0.64, 0.73, and 0.57 for grain length, width,
344 and perimeter in control conditions, respectively, whereas 0.64, 0.67, 0.63 for grain length,
345 width, and perimeter in HNT conditions, respectively. We observed mixed results for a ge-
346 nomics and metabolite integration model. In the case of grain length, GMBLUP did not
347 improve the prediction when compared with that by GBLUP. GMBLUP performed better
348 than GBLUP in only 48% (control) and 18% (HNT) of the resampling runs. However, in
349 the case of grain width, GMBLUP performed better than GBLUP in 69% (control) and
350 72% (HNT) of the resampling runs. The results obtained for grain perimeter were mixed.
351 Although the prediction performance of GMBLUP was better than that of GBLUP in 66%
352 of the resampling runs under control conditions, GMBLUP performed better than GBLUP
353 in only 37% of the resampling runs under HNT conditions. Overall, GMBLUP achieved a

354 marginal gain in prediction than that achieved by GBLUP, with an average increase of 1.5%.

355 **Estimates of metabolic and genomic heritability**

356 The metabolic and genomic heritabilities of grain-size phenotypes were estimated using
357 MBLUP, GBLUP, and GMBLUP (Table 1). Under control conditions, genomic heritability
358 estimates of grain length, width, and perimeter were similar, and explained at least 75% of
359 the phenotypic variance. Grain width showed the highest metabolic heritability estimate,
360 reaching more than half of the estimated genomic heritability. Grain length and grain perime-
361 ter showed lower metabolic heritability estimates than grain width. When the metabolites
362 and SNP markers were fitted together, the majority of variations were captured by genomics.
363 The estimates obtained from the HNT conditions were similar to those obtained from the
364 control conditions. Grain width showed larger metabolic heritability estimates than grain
365 length and perimeter. Genomics captured a large proportion of the variation when SNP
366 markers and metabolites were simultaneously included in the model. However, the grain
367 perimeter genomic heritability estimate was slightly lower than that of grain length and
368 width.

369 **Evaluation of multi-trait genomic prediction performance**

370 The utility of metabolites as an auxiliary phenotype for multi-trait genomic prediction of
371 grain-size phenotypes under control and HNT conditions was investigated in CV Scenarios
372 1 and 2. In Scenario 1, multi-trait GBLUP consistently produced a greater predictive cor-
373 relation for grain width than single-trait GBLUP under the control conditions (Figure 9).
374 All the metabolites included in the analyses contributed to increased prediction. We did not
375 observe any increase in the prediction of grain length and perimeter. In Scenario 2, we iden-
376 tified at least one metabolite that increased the multi-trait genomic prediction performance
377 for each trait (Figure 10). Three metabolites, glutamic acid, allantoin-2, and allantoin-3,

378 increased multi-trait GBLUP prediction more than single-trait GBLUP for grain length un-
379 der HNT conditions. No metabolites were found in grain length predictions under control
380 conditions. A total of 46 metabolites improved predictions of grain width under control con-
381 ditions. In particular, the gain in multi-trait GBLUP achieved by trehalose was statistically
382 significant compared to that by single-trait GBLUP based on the paired one-sided t-test and
383 paired one-sided Wilcoxon signed-rank test. Under HNT conditions, 11 metabolites, includ-
384 ing ethanolamine, malic acid, dihydrouracil, asparagine, glutamine, allantoin-2, pantothenic
385 acid, glucosaminic acid, ferulic acid, 3,5-dimethoxy-4-hydroxycinnamic acid, and trehalose,
386 increased the genomic prediction performance for grain width. These metabolites were also
387 identified in control conditions except for allantoin-2 and glucosaminic acid. Two metabo-
388 lites, dihydroxybenzoic acid and catechin, increased the multi-trait GBLUP prediction for
389 grain perimeter under control conditions. These values were statistically different from those
390 of single-trait GBLUP. No metabolites were found in grain perimeter under HNT.

391 Discussion

392 Advances in genomics and metabolic profiling have provided a new resource for studying HNT
393 responses in rice. In this study, we evaluated the utility of metabolites for classifying HNT
394 stress conditions and predicting grain-size-related phenotypes. In regression modeling, the
395 performance of metabolic prediction and usefulness of metabolites as auxiliary phenotypes
396 were evaluated in the context of genomic prediction. We found that several pairs of metabo-
397 lites were correlated under the control and HNT conditions. Among the three phenotypes
398 investigated, metabolite abundance was strongly associated with grain width. Mostly amino
399 acids and sugars were correlated with grain width under the control condition (Figure 3),
400 indicating the relationship between grain shapes and carbohydrate and protein metabolism.
401 The correlation between tryptophan and seed longevity has been also reported (Ren et al.,
402 2020), supporting our result. Under the HNT condition, oligosaccharides showed correlations
403 with grain width, which may indicate that carbohydrate metabolism plays a crucial role in
404 determining grain shape. Interestingly, carbohydrates are a major class of metabolites which
405 are affected by HNT in our previous studies of cereals grains (Dhatt et al., 2019; Impa et al.,
406 2019). The correlation may reflect the changes in carbohydrate metabolism in rice grains
407 under HNT. However, it should also be considered that differences in grain shapes among
408 cultivars could affect metabolite composition due to the difference in the ratios of cell types
409 with varying metabolite compositions. The relationships between metabolite accumulation
410 and grain shapes must be carefully assessed in future experiments.

411 Grain length and width are prominent grain size factors that substantially impact the
412 rice grain yield parameters (Olsen, 2004; Xing et al., 2010; Huang et al., 2013). Grain length
413 is known to be directed by the elongation of the pericarp tissue, defined at the early stages
414 of grain development (Lizana et al., 2010; Pielot et al., 2015). In contrast, the grain width
415 is largely determined by cell division and proliferation of the endosperm tissue (after the
416 fertilization event) and is a driving force for the sucrose allocation to be used for endosperm

417 development and grain storage reserves production (Brocklehurst, 1977; Martinez-Carrasco
418 and Thorne, 1979). The endosperm cell number and proliferation (determinant of grain
419 width) are affected by the supply of photoassimilates (sucrose) during the active grain filling
420 stage, thus, substantially influencing the final grain weight parameters (Brocklehurst, 1977).
421 Likewise, another study reported that final grain weight is highly correlated with the grain
422 width than the grain length in the diverse winter wheat population (Philipp et al., 2018).
423 The improvement in grain width is stated to be one of the major causes leading to incre-
424 ment in the final grain weight parameters for the elite wheat varieties (Philipp et al., 2018),
425 signifying the importance of this phenotypic trait for the enhancement of crop yields. Addi-
426 tionally, previous studies have reported that deviation from optimal temperature conditions
427 alters the endosperm cellularization timing in rice, causing a detrimental impact on the final
428 grain size parameters (Chen et al., 2016; Folsom et al., 2014). Therefore, it is likely that the
429 prolonged occurrence of HNT during grain filling stages impairs the sucrose allocation in the
430 endosperm cells, leading to a more negative impact on the grain width than grain length,
431 which is established before grain width. Furthermore, the genetic determinants regulating
432 these two grain size traits (grain length and width) have distinct responses to temperature
433 abnormalities within rice diversity panel 1 accessions (Dhatt et al., 2021). Only a few acces-
434 sions of rice diversity panel 1 retained both grain length and width under HNT, signifying
435 unique genetic regulation for these grain size traits in rice (Dhatt et al., 2021).

436 **Utility of metabolites for classification**

437 Using all available metabolites resulted in the appropriate classification of HNT conditions
438 with high accuracy when suitable classification models, such as RF or XGBoost, were used.
439 This suggests that there is a differential metabolic abundance between control and HNT
440 conditions. Logistic regression, which is a simpler classification model, was not sufficient
441 to distinguish the signals between the control and HNT conditions. A random subset of
442 only 10 metabolites produced moderate classification accuracy. However, this accuracy was

443 unstable with high uncertainty. Increasing the number of metabolites contributed to making
444 the classification more robust than increasing its accuracy. The accuracy achieved from a
445 random subset of 60 metabolites was similar to that achieved from a full set of metabolites.
446 This implies that most metabolites are altered during HNT and contributes to increasing the
447 classification power. Although there are no previous reports investigating the classification
448 performance of metabolites to distinguish between control and HNT conditions, our results
449 showed that we can obtain reasonable classification accuracy.

450 **Utility of metabolites for prediction and heritability anal- 451 ysis compared to SNP markers**

452 Overall, BayesC and MBLUP showed relatively high and stable predictive correlations for
453 grain length, width, and perimeter, suggesting that prediction models commonly used in ge-
454 nomic prediction are equally applicable to metabolic abundance data. In particular, BLUP
455 appeared to be the most efficient method in terms of predictability and computational time.
456 The extent of predictive correlations ranged from low to moderate. As expected from the
457 correlation analysis, we observed the greatest predictive correlation for grain width. How-
458 ever, genomic prediction performance based on a 700k array was consistently better than
459 that of metabolites. Our results agree with those of previous studies in oats, which found
460 that metabolic prediction was not superior to genomic prediction for agronomic traits, in-
461 cluding seed length and width (Hu et al., 2021). Similarly, no improvement was observed in
462 1000-grain weight and grain number per plant in hybrid rice (Xu et al., 2016; Wang et al.,
463 2019; Xu et al., 2021). In contrast, metabolic prediction has been reported to be better than
464 genomic prediction for oat fatty acids (Hu et al., 2021). In addition, other related studies
465 reported lower or comparable predictive performance of metabolites relative to SNP markers
466 for agronomic traits related to maturity, morphology, bioenergy, or yield-related in inbred
467 maize (Guo et al., 2016; Xu et al., 2017), hybrid maize (Riedelsheimer et al., 2012; Westhues

468 et al., 2017; Schrag et al., 2018), and hybrid wheat (Zhao et al., 2015). Simultaneous integra-
469 tion of metabolites and SNP markers in a single model moderately improved predictions for
470 grain width in control and HNT conditions and grain perimeter in control conditions. This
471 is partly in line with Hu et al. (2021), who reported a gain in GMBLUP prediction for seed
472 length and width in oats. On an average, the estimates of metabolic heritability were approx-
473 imately half of those of genomic heritability. A smaller number of available metabolites may
474 lead to lower estimates. Another reason could be that the metabolite-phenotype relationship
475 is affected by the time of measurement in metabolite profiling. Unlike SNP markers, metabo-
476 lite abundance varies with plant developmental stages. Nevertheless, metabolites explained
477 a greater proportion of variability when compared at the per metabolite or per SNP level.
478 For example, in grain width, each metabolite explained 0.6% of the metabolic heritability,
479 whereas each SNP explained 0.0001% of the genomic heritability.

480 Utility of metabolites as auxiliary phenotypes in ge- 481 nomic prediction

482 We identified several metabolites that contributed to increased multi-trait genomic predic-
483 tion of grain-size-related phenotypes. In particular, several metabolites aided the genomic
484 prediction of grain width. Trehalose is a metabolite whose levels in grains were correlated
485 with grain width (Figures 3, S1, and S2) and significantly contributed to the grain width
486 prediction (Figures 9 and 10) in both control and HNT conditions. Trehalose is closely
487 related to trehalose-6-phosphate (T6P), a signaling metabolite involved in the regulations
488 of photosynthesis, carbon partitioning, and reproductive development (Oszvald et al., 2018;
489 Ponnu et al., 2011; Smeekens, 2015). T6P accumulation correlates with the levels of sucrose
490 and other major sugars in wheat spikes (Martínez-Barajas et al., 2011). Therefore, it is likely
491 that the differences in trehalose and T6P metabolism that appeared as the accumulation of
492 trehalose in grains among rice cultivars affected grain development and shape. It is also

493 interesting to note that trehalose accumulation is affected by HNT in developing rice and
494 wheat grains (Dhatt et al., 2019; Impa et al., 2019). The correlation between trehalose and
495 grain width and the trehalose contribution to the prediction may suggest the influences of
496 trehalose metabolism in determining grain shape under HNT conditions.

497 Conclusions

498 This study showed that the metabolic profiles of rice genotypes could be used solely to classify
499 control and HNT conditions with high accuracy. Although the metabolic prediction of grain-
500 size phenotypes was low to moderate, they were the most effective for grain width. Genomic
501 prediction delivered better results than metabolic prediction. The simultaneous integration
502 of metabolites and genomics in a single statistical model yielded a minor improvement in
503 prediction. No significant differences in metabolic or genomic predictions were observed
504 between the control and HNT conditions. We identified several metabolites that can be used
505 to enhance multi-trait genomic prediction as auxiliary phenotypes. These metabolites could
506 be candidates for further studies to understand their role in the tolerance to HNT. Taken
507 together, this study demonstrates the usefulness of rice metabolites for classification and
508 prediction tasks under control and HNT conditions.

509 Author contribution statement

510 PP, BKD, JS, and HW performed the high night temperature stress experiments. TPD and
511 TO performed the metabolic analysis. YB analyzed the data. RMY supported YB on the
512 data analysis. YB and GM drafted the manuscript. GM supervised the study and designed
513 the data analysis. RMY, PP, BKD, JS, TPD, HW, and TO edited the manuscript.

514 Acknowledgments

515 TPD acknowledges support from the Fulbright visiting scholar program.

516 Funding

517 This work was supported by the National Science Foundation Award #1736192 to HW, TO,
518 and GM.

519 References

520 Baba, T., Pegolo, S., Mota, L. F., Peñagaricano, F., Bittante, G., Cecchinato, A., and
521 Morota, G. (2021). Integrating genomic and infrared spectral data improves the prediction
522 of milk protein composition in dairy cattle. *Genetics Selection Evolution*, 53(1):1–14.

523 Bartholomé, J., Prakash, P. T., and Cobb, J. N. (2022). Genomic prediction: progress and
524 perspectives for rice improvement. *Complex Trait Prediction*, pages 569–617.

525 Brocklehurst, P. (1977). Factors controlling grain weight in wheat. *Nature*, 266(5600):348–
526 349.

527 Chen, C., Begcy, K., Liu, K., Folsom, J. J., Wang, Z., Zhang, C., and Walia, H. (2016). Heat
528 stress yields a unique mads box transcription factor in determining seed size and thermal
529 sensitivity. *Plant physiology*, 171(1):606–622.

530 Dhatt, B. K., Abshire, N., Paul, P., Hasanthika, K., Sandhu, J., Zhang, Q., Obata, T.,
531 and Walia, H. (2019). Metabolic dynamics of developing rice seeds under high night-time
532 temperature stress. *Frontiers in Plant Science*, 10:1443.

533 Dhatt, B. K., Paul, P., Sandhu, J., Hussain, W., Irvin, L., Zhu, F., Adviento-Borbe, M. A.,
534 Lorence, A., Staswick, P., Yu, H., et al. (2021). Allelic variation in rice fertilization
535 independent endosperm 1 contributes to grain width under high night temperature stress.
536 *New Phytologist*, 229(1):335–350.

537 Donat, M. G. and Alexander, L. V. (2012). The shifting probability distribution of global
538 daytime and night-time temperatures. *Geophysical Research Letters*, 39(14).

539 Folsom, J. J., Begcy, K., Hao, X., Wang, D., and Walia, H. (2014). Rice fertilization-
540 independent endosperm1 regulates seed size under heat stress by controlling early en-
541 dosperm development. *Plant Physiology*, 165(1):238–248.

542 Guo, Z., Magwire, M. M., Basten, C. J., Xu, Z., and Wang, D. (2016). Evaluation of
543 the utility of gene expression and metabolic information for genomic prediction in maize.
544 *Theoretical and applied genetics*, 129(12):2413–2427.

545 Hamner, B. and Frasco, M. (2018). *Metrics: Evaluation Metrics for Machine Learning*. R
546 package version 0.1.4.

547 Hu, H., Campbell, M. T., Yeats, T. H., Zheng, X., Runcie, D. E., Covarrubias-Pazaran,
548 G., Broeckling, C., Yao, L., Caffe-Treml, M., Gutiérrez, L., et al. (2021). Multi-omics
549 prediction of oat agronomic and seed nutritional traits across environments and in distantly
550 related populations. *Theoretical and Applied Genetics*, 134(12):4043–4054.

551 Huang, R., Jiang, L., Zheng, J., Wang, T., Wang, H., Huang, Y., and Hong, Z. (2013).
552 Genetic bases of rice grain shape: so many genes, so little known. *Trends in plant science*,
553 18(4):218–226.

554 Impa, S. M., Raju, B., Hein, N. T., Sandhu, J., Prasad, P. V., Walia, H., and Jagadish,
555 S. K. (2021). High night temperature effects on wheat and rice: Current status and way
556 forward. *Plant, Cell & Environment*, 44(7):2049–2065.

557 Impa, S. M., Sunoj, V. J., Krassovskaya, I., Bheemanahalli, R., Obata, T., and Jagadish,
558 S. K. (2019). Carbon balance and source-sink metabolic changes in winter wheat exposed
559 to high night-time temperature. *Plant, Cell & Environment*, 42(4):1233–1246.

560 Jagadish, S., Murty, M., and Quick, W. (2015). Rice responses to rising temperatures—
561 challenges, perspectives and future directions. *Plant, cell & environment*, 38(9):1686–1698.

562 Kizilkaya, K., Fernando, R., and Garrick, D. (2010). Genomic prediction of simulated multi-
563 breed and purebred performance using observed fifty thousand single nucleotide polymor-
564 phism genotypes. *Journal of animal science*, 88(2):544–551.

565 Kuhn, M. (2015). Caret: classification and regression training. *Astrophysics Source Code*
566 *Library*, pages ascl-1505.

567 Lizana, X. C., Riegel, R., Gomez, L. D., Herrera, J., Isla, A., McQueen-Mason, S. J., and
568 Calderini, D. F. (2010). Expansins expression is associated with grain size dynamics in
569 wheat (*triticum aestivum* l.). *Journal of experimental botany*, 61(4):1147–1157.

570 Mantel, N. (1967). The detection of disease clustering and a generalized regression approach.
571 *Cancer research*, 27(2_Part_1):209–220.

572 Martínez-Barajas, E., Delatte, T., Schluemann, H., de Jong, G. J., Somsen, G. W., Nunes,
573 C., Primavesi, L. F., Coello, P., Mitchell, R. A., and Paul, M. J. (2011). Wheat grain
574 development is characterized by remarkable trehalose 6-phosphate accumulation pregrain
575 filling: tissue distribution and relationship to snf1-related protein kinase1 activity. *Plant*
576 *physiology*, 156(1):373–381.

577 Martinez-Carrasco, R. and Thorne, G. N. (1979). Physiological factors limiting grain size in
578 wheat. *Journal of experimental botany*, 30(4):669–679.

579 McCouch, S. R., Wright, M. H., Tung, C.-W., Maron, L. G., McNally, K. L., Fitzgerald,
580 M., Singh, N., DeClerck, G., Agosto-Perez, F., Korniliev, P., et al. (2016). Open access
581 resources for genome-wide association mapping in rice. *Nature communications*, 7(1):1–14.

582 Meuwissen, T. H. E., Hayes, B. J., and Goddard, M. E. (2001). Prediction of total genetic
583 value using genome-wide dense marker maps. *Genetics*, 157(4):1819–1829.

584 Morota, G. and Gianola, D. (2014). Kernel-based whole-genome prediction of complex traits:
585 a review. *Frontiers in Genetics*, 5:363.

586 Obata, T. and Fernie, A. R. (2012). The use of metabolomics to dissect plant responses to
587 abiotic stresses. *Cellular and Molecular Life Sciences*, 69(19):3225–3243.

588 Olsen, O.-A. (2004). Nuclear endosperm development in cereals and *arabidopsis thaliana*.
589 *The Plant Cell*, 16(suppl_1):S214–S227.

590 Oszvald, M., Primavesi, L. F., Griffiths, C. A., Cohn, J., Basu, S. S., Nuccio, M. L., and Paul,
591 M. J. (2018). Trehalose 6-phosphate regulates photosynthesis and assimilate partitioning
592 in reproductive tissue. *Plant Physiology*, 176(4):2623–2638.

593 Peng, S., Huang, J., Sheehy, J. E., Laza, R. C., Visperas, R. M., Zhong, X., Centeno, G. S.,
594 Khush, G. S., and Cassman, K. G. (2004). Rice yields decline with higher night temperature
595 from global warming. *Proceedings of the National Academy of Sciences*, 101(27):9971–
596 9975.

597 Peng, S., Piao, S., Ciais, P., Myneni, R. B., Chen, A., Chevallier, F., Dolman, A. J., Janssens,
598 I. A., Penuelas, J., Zhang, G., et al. (2013). Asymmetric effects of daytime and night-time
599 warming on northern hemisphere vegetation. *Nature*, 501(7465):88–92.

600 Pérez, P. and de los Campos, G. (2014). Bblr: a statistical package for whole genome
601 regression and prediction. *Genetics*, 198(2):483–495.

602 Pérez-Rodríguez, P. and de Los Campos, G. (2022). Multitrait bayesian shrinkage and
603 variable selection models with the bblr-r package. *Genetics*, 222(1):iyac112.

604 Philipp, N., Weichert, H., Bohra, U., Weschke, W., Schulthess, A. W., and Weber, H. (2018).
605 Grain number and grain yield distribution along the spike remain stable despite breeding
606 for high yield in winter wheat. *PLoS One*, 13(10):e0205452.

607 Pielot, R., Kohl, S., Manz, B., Rutten, T., Weier, D., Tarkowská, D., Rolčík, J., Strnad,
608 M., Volke, F., Weber, H., et al. (2015). Hormone-mediated growth dynamics of the barley
609 pericarp as revealed by magnetic resonance imaging and transcript profiling. *Journal of
610 Experimental Botany*, 66(21):6927–6943.

611 Ponnu, J., Wahl, V., and Schmid, M. (2011). Trehalose-6-phosphate: connecting plant
612 metabolism and development. *Frontiers in Plant Science*, 2:70.

613 R Core Team (2022). *R: A Language and Environment for Statistical Computing*. R Foun-
614 dation for Statistical Computing, Vienna, Austria.

615 Ren, R.-J., Wang, P., Wang, L.-N., Su, J.-P., Sun, L.-J., Sun, Y., Chen, D.-F., and Chen,
616 X.-W. (2020). Os4bglu14, a monolignol β -glucosidase, negatively affects seed longevity by
617 influencing primary metabolism in rice. *Plant Molecular Biology*, 104(4):513–527.

618 Riedelsheimer, C., Czedik-Eysenberg, A., Grieder, C., Lisec, J., Technow, F., Sulpice,
619 R., Altmann, T., Stitt, M., Willmitzer, L., and Melchinger, A. E. (2012). Genomic
620 and metabolic prediction of complex heterotic traits in hybrid maize. *Nature genetics*,
621 44(2):217–220.

622 Robin, X., Turck, N., Hainard, A., Tiberti, N., Lisacek, F., Sanchez, J.-C., and Müller, M.
623 (2011). proc: an open-source package for r and s+ to analyze and compare roc curves.
624 *BMC bioinformatics*, 12(1):1–8.

625 Schrag, T. A., Westhues, M., Schipprack, W., Seifert, F., Thiemann, A., Scholten, S., and
626 Melchinger, A. E. (2018). Beyond genomic prediction: combining different types of omics
627 data can improve prediction of hybrid performance in maize. *Genetics*, 208(4):1373–1385.

628 Smeekens, S. (2015). From leaf to kernel: trehalose-6-phosphate signaling moves carbon in
629 the field. *Plant Physiology*, 169(2):912–913.

630 Sreenivasulu, N., Butardo Jr, V. M., Misra, G., Cuevas, R. P., Anacleto, R., and Kavi Kishor,
631 P. B. (2015). Designing climate-resilient rice with ideal grain quality suited for high-
632 temperature stress. *Journal of Experimental Botany*, 66(7):1737–1748.

633 VanRaden, P. (2008). Efficient methods to compute genomic predictions. *Journal of Dairy
634 Science*, 91(11):4414–4423.

635 Vose, R. S., Easterling, D. R., and Gleason, B. (2005). Maximum and minimum temperature
636 trends for the globe: An update through 2004. *Geophysical Research Letters*, 32(23).

637 Wada, H., Hatakeyama, Y., Onda, Y., Nonami, H., Nakashima, T., Erra-Balsells, R., Morita,
638 S., Hiraoka, K., Tanaka, F., and Nakano, H. (2019). Multiple strategies for heat adaptation
639 to prevent chalkiness in the rice endosperm. *Journal of experimental botany*, 70(4):1299–
640 1311.

641 Wang, K., Li, Y., Wang, Y., and Yang, X. (2017). On the asymmetry of the urban daily air
642 temperature cycle. *Journal of Geophysical Research: Atmospheres*, 122(11):5625–5635.

643 Wang, S., Wei, J., Li, R., Qu, H., Chater, J. M., Ma, R., Li, Y., Xie, W., and Jia, Z. (2019).
644 Identification of optimal prediction models using multi-omic data for selecting hybrid rice.
645 *Heredity*, 123(3):395–406.

646 Wase, N., Abshire, N., and Obata, T. (2022). High-throughput profiling of metabolic pheno-
647 types using high-resolution gc-ms. In *High-Throughput Plant Phenotyping*, pages 235–260.
648 Springer.

649 Welch, J. R., Vincent, J. R., Auffhammer, M., Moya, P. F., Dobermann, A., and Dawe, D.
650 (2010). Rice yields in tropical/subtropical asia exhibit large but opposing sensitivities to
651 minimum and maximum temperatures. *Proceedings of the National Academy of Sciences*,
652 107(33):14562–14567.

653 Westhues, M., Schrag, T. A., Heuer, C., Thaller, G., Utz, H. F., Schipprack, W., Thiemann,
654 A., Seifert, F., Ehret, A., Schlereth, A., et al. (2017). Omics-based hybrid prediction in
655 maize. *Theoretical and applied genetics*, 130(9):1927–1939.

656 Wheeler, T. and Von Braun, J. (2013). Climate change impacts on global food security.
657 *Science*, 341(6145):508–513.

658 Xia, J., Chen, J., Piao, S., Ciais, P., Luo, Y., and Wan, S. (2014). Terrestrial carbon cycle
659 affected by non-uniform climate warming. *Nature Geoscience*, 7(3):173–180.

660 Xing, Y., Zhang, Q., et al. (2010). Genetic and molecular bases of rice yield. *Annual review*
661 *of plant biology*, 61(1):421–442.

662 Xu, S., Xu, Y., Gong, L., and Zhang, Q. (2016). Metabolomic prediction of yield in hybrid
663 rice. *The Plant Journal*, 88(2):219–227.

664 Xu, Y., Xu, C., and Xu, S. (2017). Prediction and association mapping of agronomic traits
665 in maize using multiple omic data. *Heredity*, 119(3):174–184.

666 Xu, Y., Zhao, Y., Wang, X., Ma, Y., Li, P., Yang, Z., Zhang, X., Xu, C., and Xu, S. (2021).
667 Incorporation of parental phenotypic data into multi-omic models improves prediction of
668 yield-related traits in hybrid rice. *Plant biotechnology journal*, 19(2):261–272.

669 Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D. B., Huang, Y., Huang, M., Yao, Y.,
670 Bassu, S., Ciais, P., et al. (2017). Temperature increase reduces global yields of major
671 crops in four independent estimates. *Proceedings of the National Academy of Sciences*,
672 114(35):9326–9331.

673 Zhao, K., Tung, C.-W., Eizenga, G. C., Wright, M. H., Ali, M. L., Price, A. H., Norton,
674 G. J., Islam, M. R., Reynolds, A., Mezey, J., et al. (2011). Genome-wide association
675 mapping reveals a rich genetic architecture of complex traits in *oryza sativa*. *Nature*
676 *communications*, 2(1):1–10.

677 Zhao, Y., Li, Z., Liu, G., Jiang, Y., Maurer, H. P., Würschum, T., Mock, H.-P., Matros,
678 A., Ebmeyer, E., Schachschneider, R., et al. (2015). Genome-based establishment of a
679 high-yielding heterotic pattern for hybrid wheat breeding. *Proceedings of the National*
680 *Academy of Sciences*, 112(51):15624–15629.

681 Zhu, F., Paul, P., Hussain, W., Wallman, K., Dhatt, B. K., Sandhu, J., Irvin, L., Morota, G.,

682 Yu, H., and Walia, H. (2021). Seedextractor: an open-source gui for seed image analysis.

683 *Frontiers in plant science*, 11:581546.

684 **Tables**

Table 1: Metabolic heritability (h_M^2) and genomic heritability (h_G^2) of grain size phenotypes in control and high night temperature stress conditions.

Method	Grain length		Grain width		Grain perimeter	
	h_G^2	h_M^2	h_G^2	h_M^2	h_G^2	h_M^2
Control						
GBLUP ¹	0.78	-	0.76	-	0.75	-
MBLUP ²	-	0.33	-	0.44	-	0.33
GMBLUP ³	0.70	0.09	0.63	0.14	0.63	0.12
High night temperature						
GBLUP	0.76	-	0.76	-	0.70	-
MBLUP	-	0.30	-	0.43	-	0.26
GMBLUP	0.67	0.08	0.60	0.15	0.61	0.08

¹ Genomic best linear unbiased prediction

² Metabolic best linear unbiased prediction

³ Genomic metabolic best linear unbiased prediction

685 **Figures**

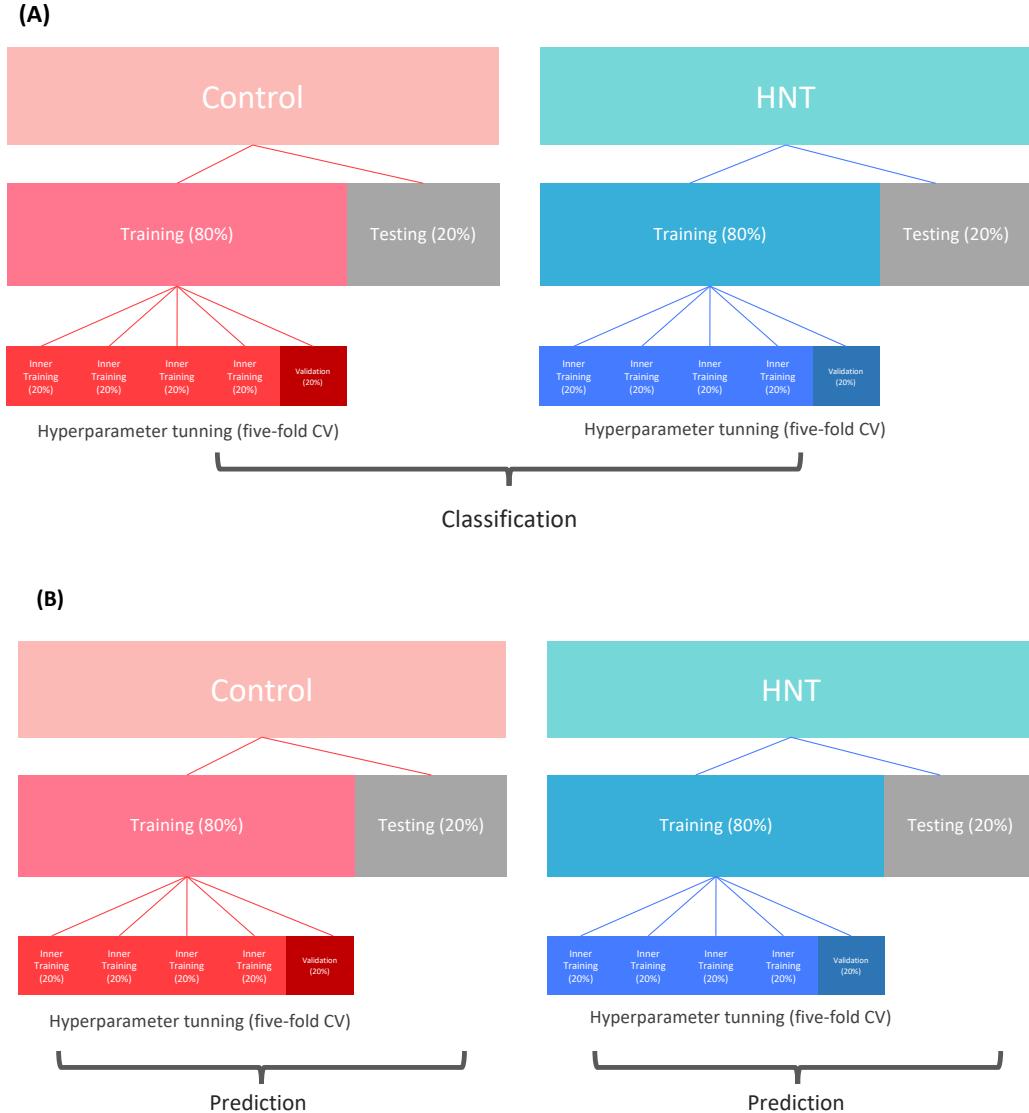


Figure 1: Cross-validation (CV) design for binary classification of high night temperature stress conditions (A) and metabolomic and genomic prediction of grain size related phenotypes (B).

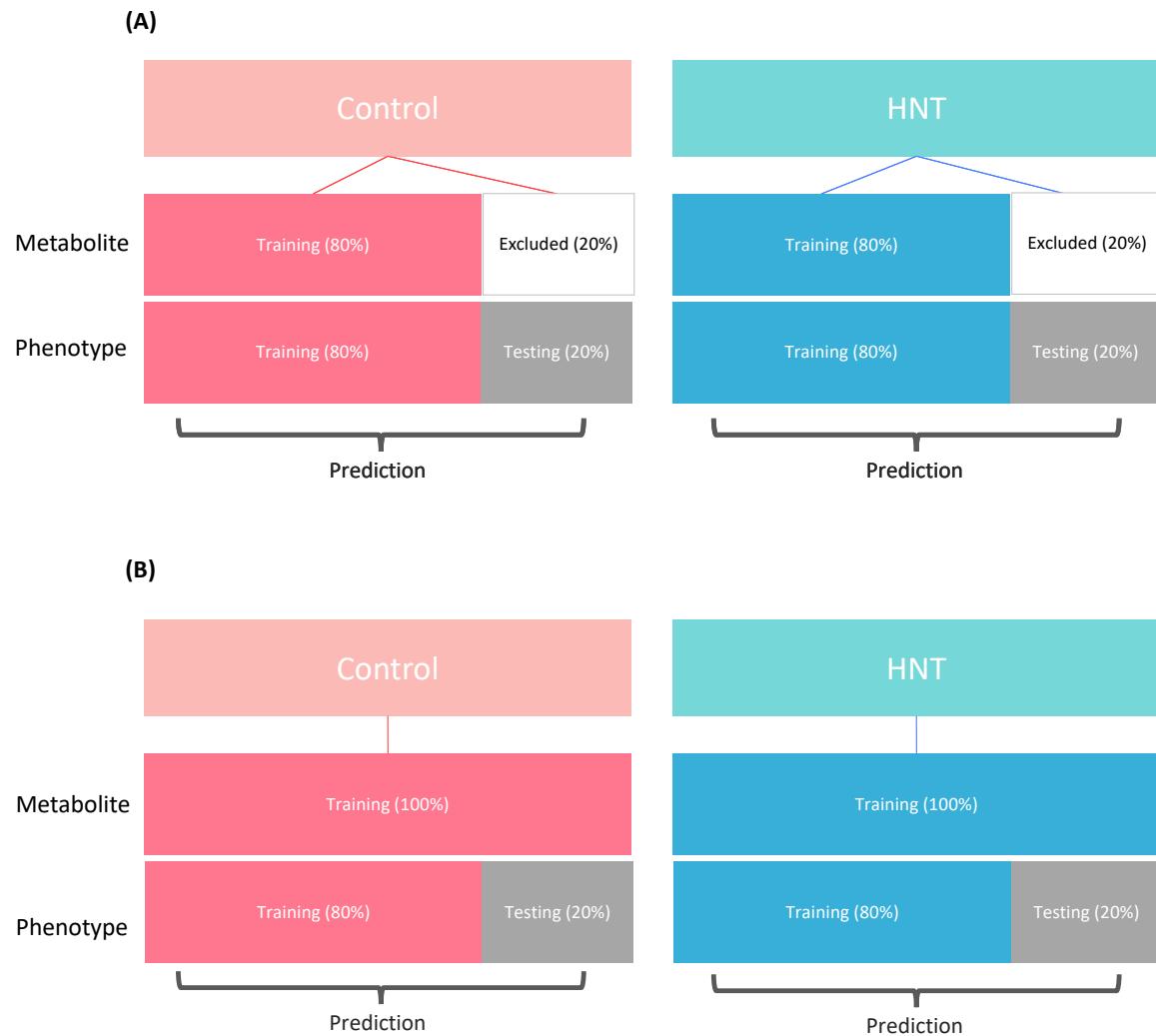


Figure 2: Cross-validation design for multi-trait prediction. Scenario 1 (A) and Scenario 2 (B).

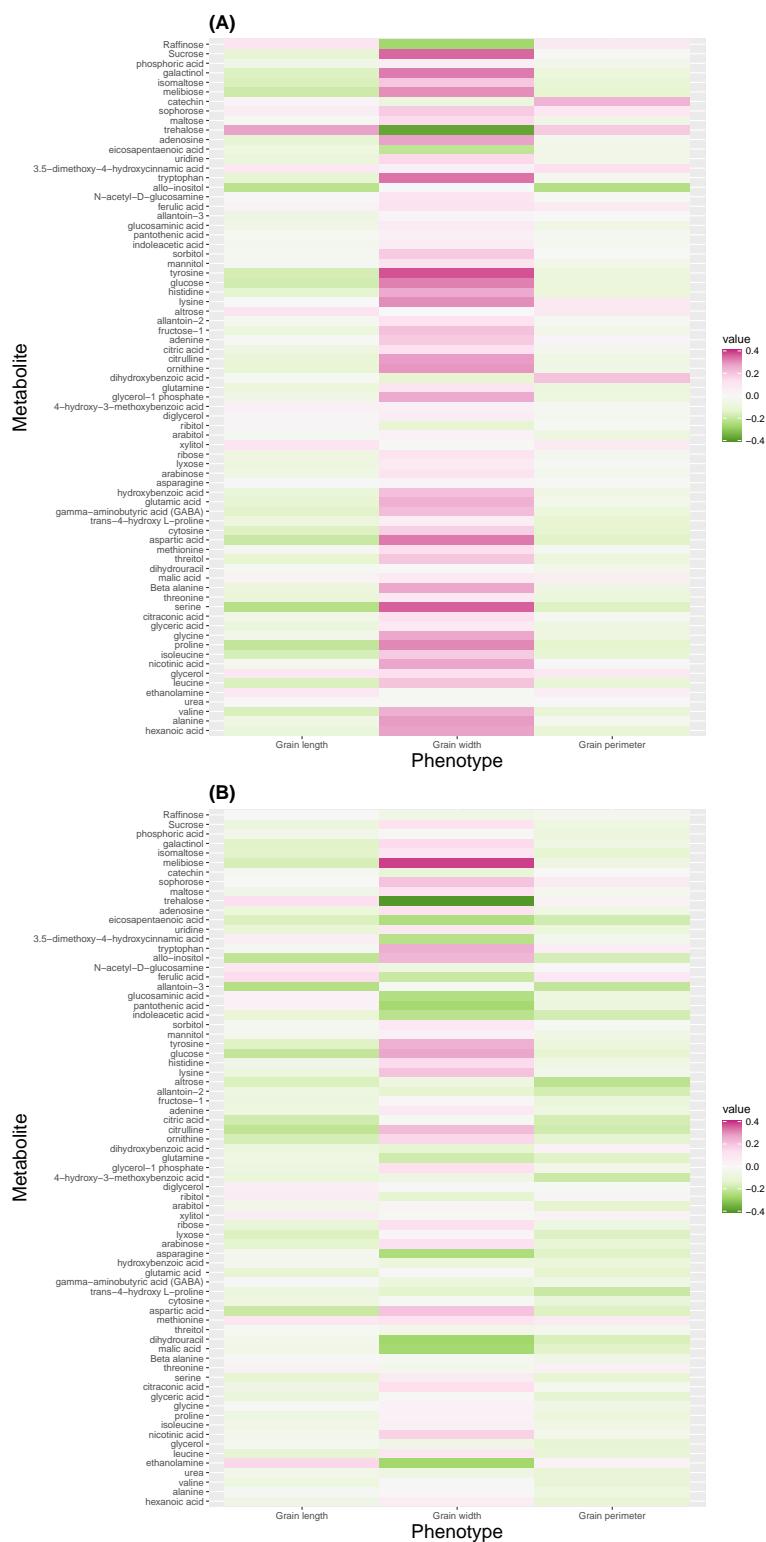


Figure 3: Correlation between metabolites and grain size phenotypes in control (A) and high night time temperature stress (B) conditions.

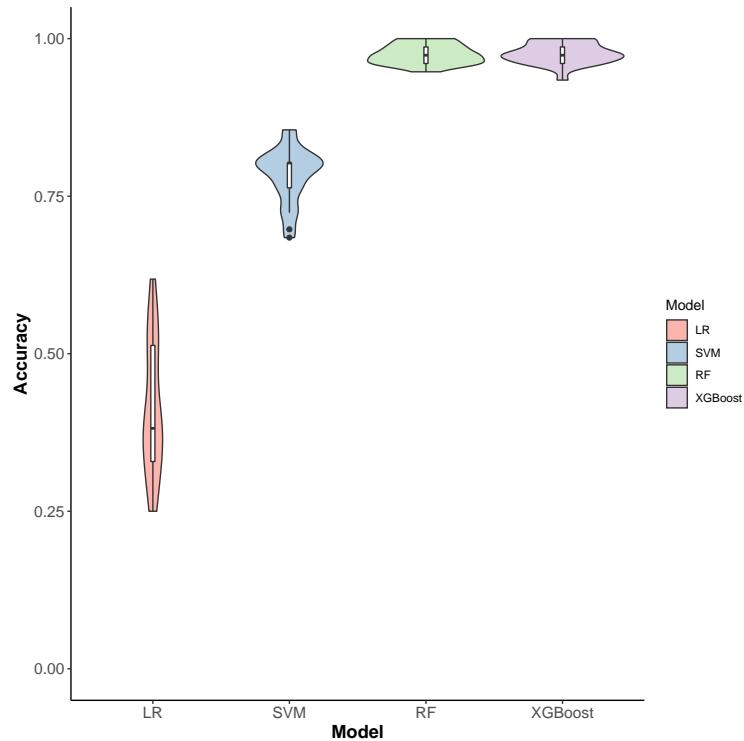


Figure 4: Classification accuracy of high night time temperature conditions (control and stress) using 73 metabolites. LR: logistic regression; SVM: support vector machine; RF: random forest; and XGBoost: extreme gradient boosting.

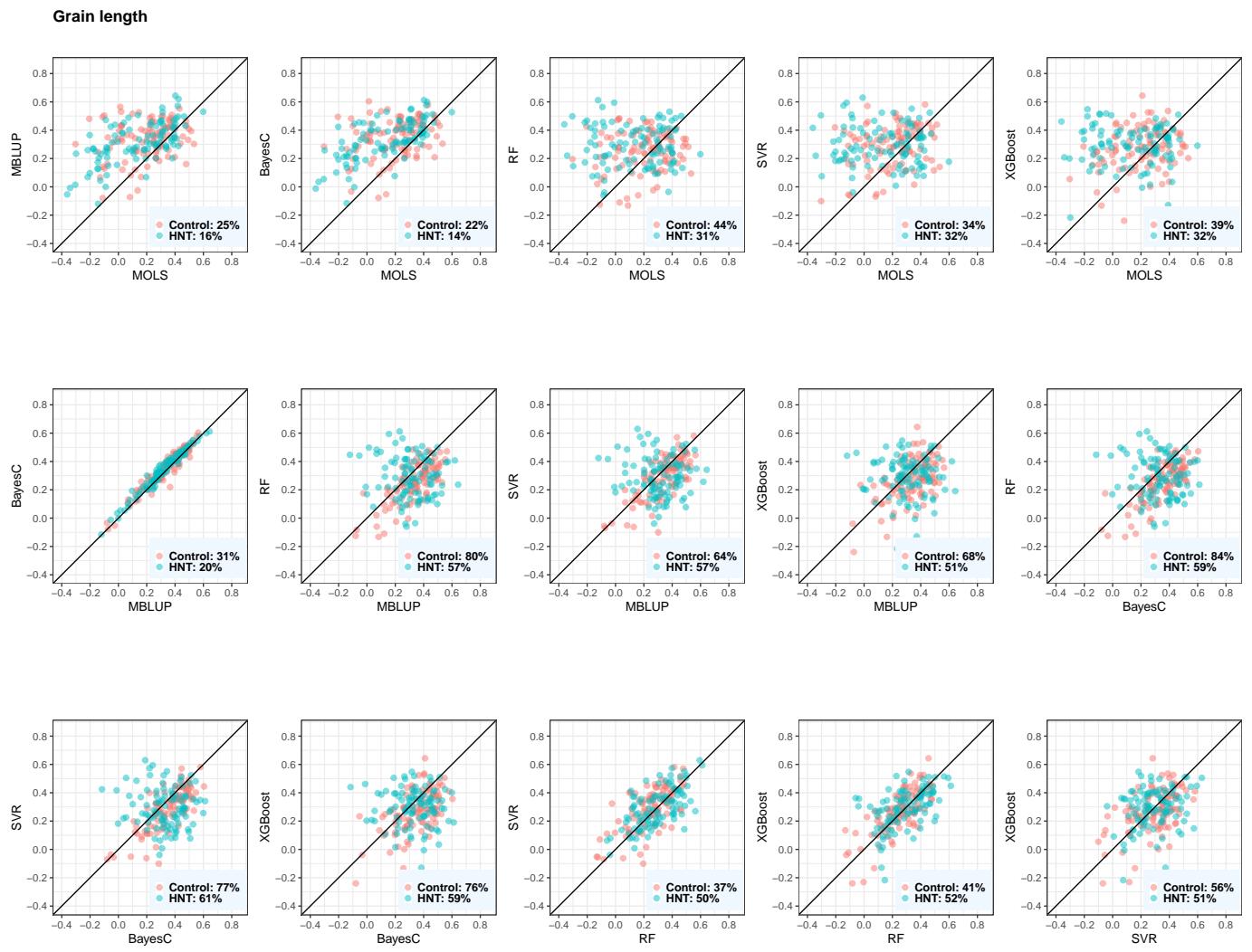


Figure 5: Predictive correlations of grain length using metabolic prediction in control and high night time temperature stress conditions. The percentages on the bottom right show the number of cross-validation resampling runs that the model on the x-axis performed better than the model on the y-axis. MOLS: metabolic ordinary least squares; MBLUP: metabolic best linear unbiased prediction; RF: random forests; SVR: support vector regression; and XGBoost: extreme gradient boosting.

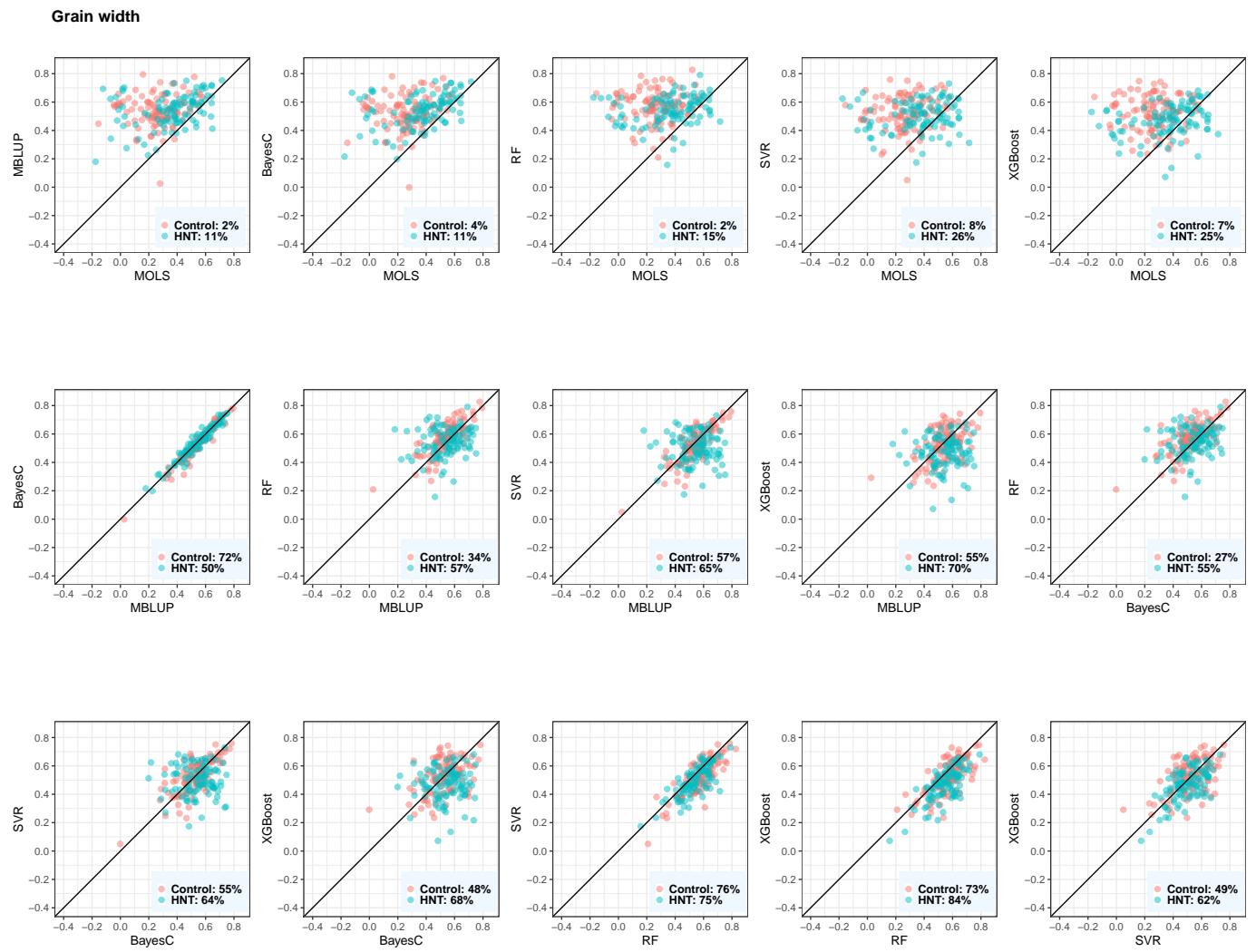


Figure 6: Predictive correlations of grain width using metabolic prediction in control and high night time temperature stress conditions. The percentages on the bottom right show the number of cross-validation resampling runs that the model on the x-axis performed better than the model on the y-axis. MOLS: metabolic ordinary least squares; MBLUP: metabolic best linear unbiased prediction; RF: random forests; SVR: support vector regression; and XGBoost: extreme gradient boosting.

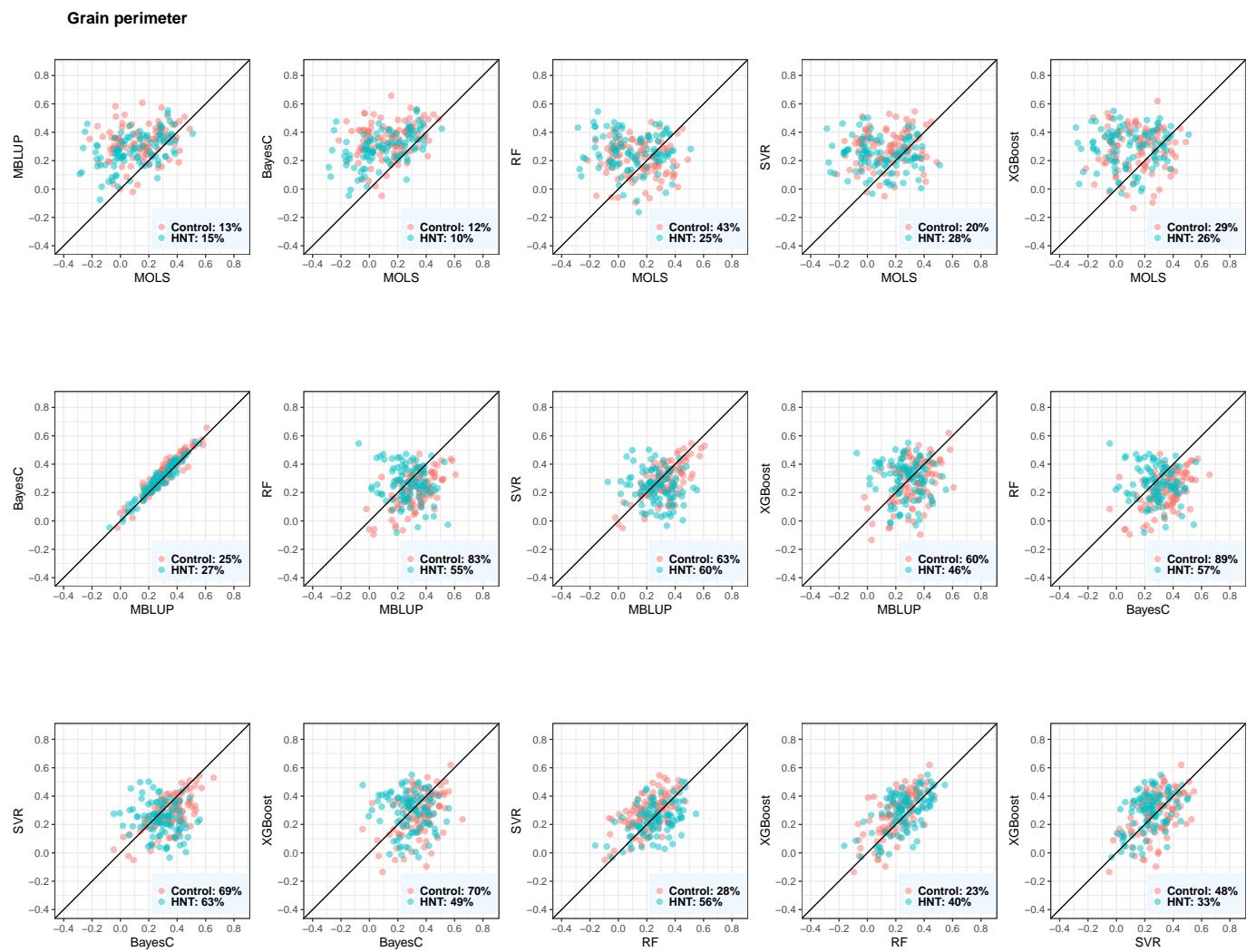


Figure 7: Predictive correlations of grain perimeter using metabolic prediction in control and high night time temperature stress conditions. The percentages on the bottom right show the number of cross-validation resampling runs that the model on the x-axis performed better than the model on the y-axis. MOLS: metabolic ordinary least squares; MBLUP: metabolic best linear unbiased prediction; RF: random forests; SVR: support vector regression; and XGBoost: extreme gradient boosting.

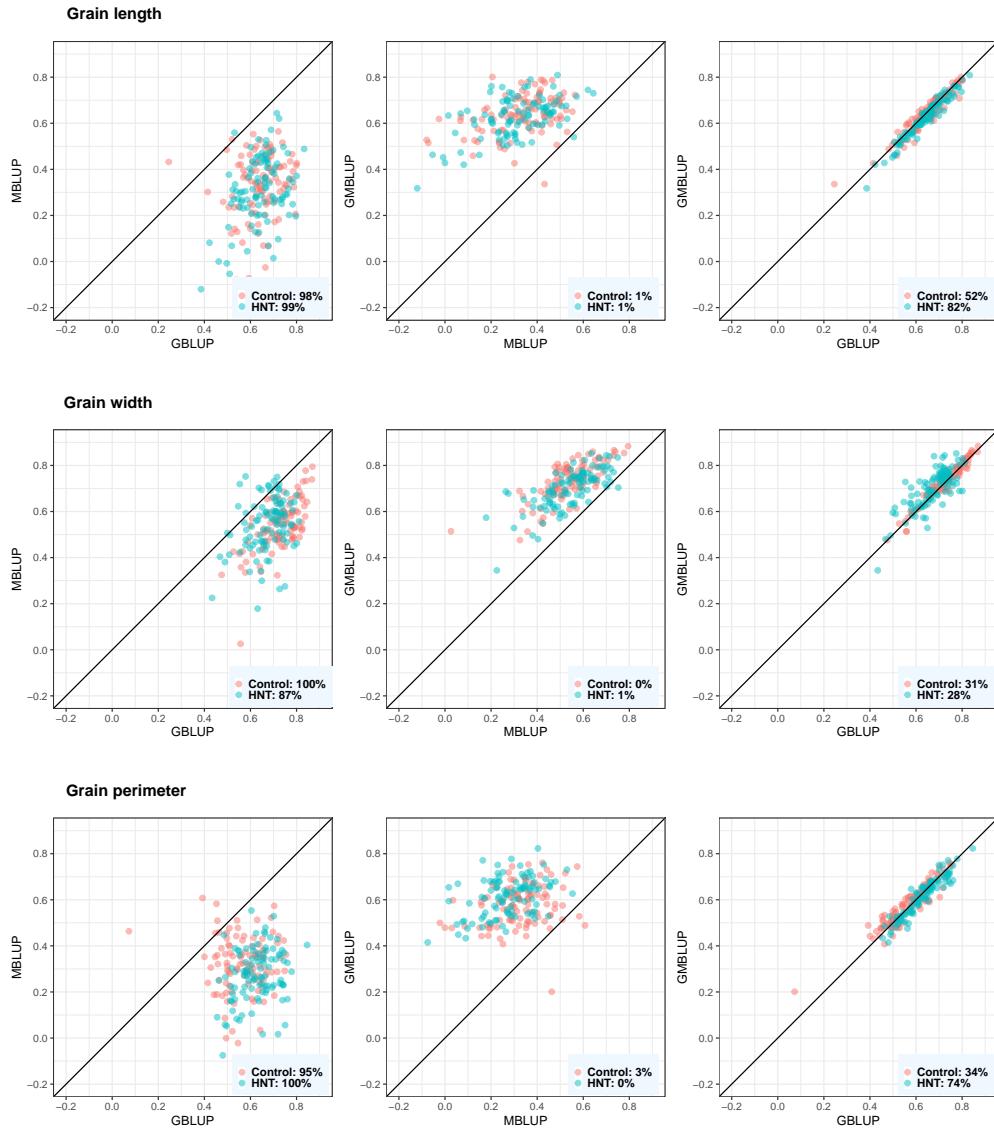


Figure 8: Predictive correlations of grain length, grain width, and grain perimeter using metabolic, genomic, and multi-omic prediction models in control and high night time temperature stress conditions. The percentages on the bottom right show the number of cross-validation resampling runs that the model on the x-axis performed better than the model on the y-axis. MBLUP: metabolic best linear unbiased prediction; GBLUP: genomic best linear unbiased prediction; and GMBLUP: genomic and metabolic best linear unbiased prediction.

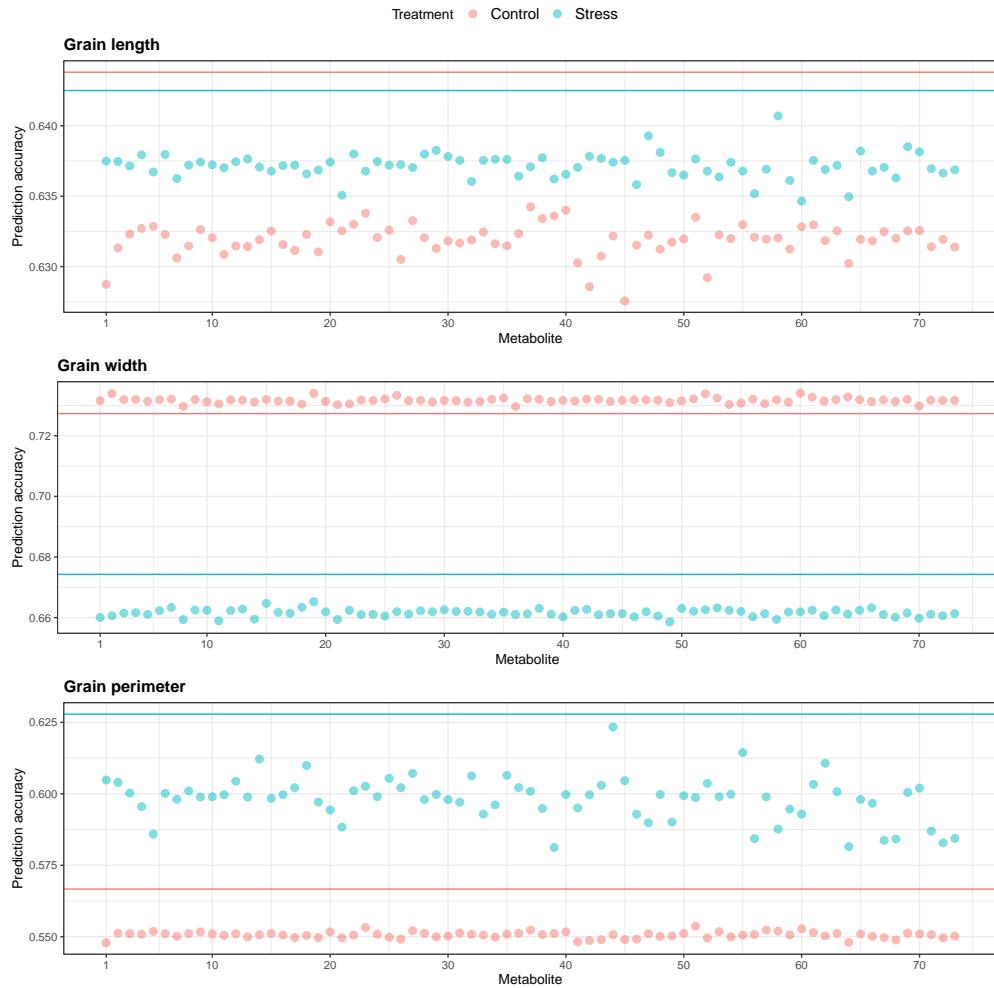


Figure 9: Predictive correlations of Scenario 1 multi-trait (bivariate) genomic prediction for grain length, grain width, and grain perimeter when metabolites were used as a secondary phenotype under control and high night time temperature stress conditions. The horizontal lines indicate the predictive correlations of single-trait genomic prediction.

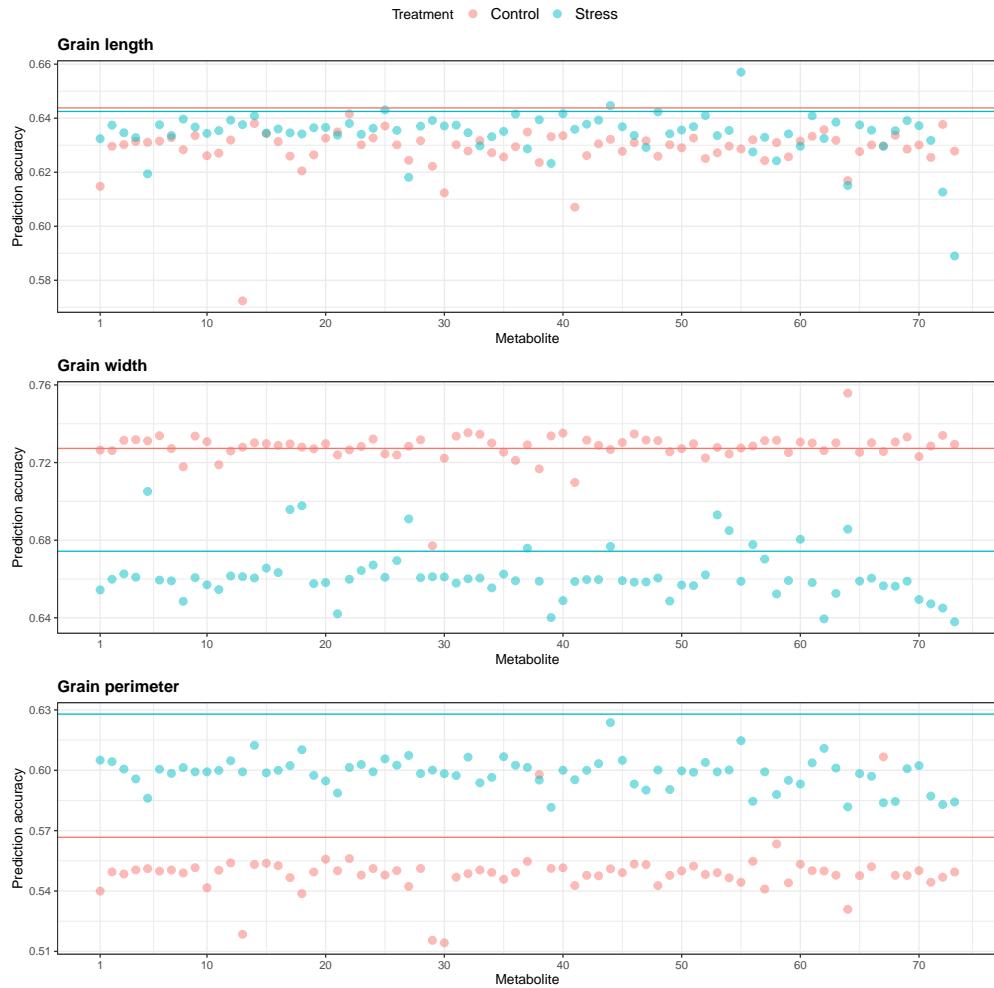


Figure 10: Predictive correlations of Scenario 2 multi-trait (bivariate) genomic prediction for grain length, grain width, and grain perimeter when metabolites were used as a secondary phenotype under control and high night time temperature stress conditions. The horizontal lines indicate the predictive correlations of single-trait genomic prediction.