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Abstract32

The asymmetric increase in average nighttime temperatures relative to increase in average33

daytime temperatures due to climate change is decreasing grain yield and quality in rice.34

Therefore, a better understanding of the impact of higher night temperature on single grain35

at whole genome level is essential for future development of more resilient rice. We inves-36

tigated the utility of metabolites obtained from grains to classify high night temperature37

conditions of genotypes, and metabolites and single nucleotide polymorphisms to predict38

grain length, width, and perimeter phenotypes using a rice diversity panel. We found that39

the metabolic profiles of rice genotypes alone could be used to classify control and high night40

temperature conditions with high accuracy using random forest or extreme gradient boost-41

ing. The best linear unbiased prediction and BayesC showed greater metabolic prediction42

performance than machine learning models for grain-size phenotypes. Metabolic prediction43

was most effective for grain width, resulting in the highest prediction performance. Ge-44

nomic prediction performed better than metabolic prediction. Integrating metabolites and45

genomics simultaneously in a prediction model slightly improved prediction performance. We46

did not observe a difference in prediction between the control and high night temperature47

conditions. Several metabolites were identified as auxiliary phenotypes that could be used48

to enhance the multi-trait genomic prediction of grain-size phenotypes. Our results showed49

that, in addition to single nucleotide polymorphisms, metabolites collected from grains of-50

fer rich information to perform predictive analyses, including classification modeling of high51

night temperature responses and regression modeling of grain size-related phenotypes in rice.52
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Background53

Sustainable increase in food production is paramount to meet the demands of the growing54

population. However, rising temperatures threaten the productivity of major food crops55

including rice (O. Sativa) (Peng et al., 2004; Wheeler and Von Braun, 2013; Zhao et al.,56

2017). Rice is the staple food in many countries, however, its productivity is threatened by57

an increase in the average minimum (nighttime) temperatures. There has been a greater rise58

in the rate of nighttime temperatures than that of daytime temperatures (Vose et al., 2005;59

Donat and Alexander, 2012; Xia et al., 2014). Recent studies have indicated that high night60

temperatures (HNT) negatively impact photosynthesis and respiration, and hence, rice grain61

yield (Welch et al., 2010; Peng et al., 2013; Jagadish et al., 2015; Wang et al., 2017; Impa62

et al., 2021). Importantly, HNT not only impacts grain yield-related traits but also grain63

width (Dhatt et al., 2021) and grain quality (Sreenivasulu et al., 2015; Wada et al., 2019)64

in rice. Given the increasing trend of global warming, understanding the variety of omic65

responses and their associations during grain development in rice is essential for improving66

its resilience to HNT.67

Genomic prediction has been widely used to predict responses of plants and animals68

(Meuwissen et al., 2001). It is a powerful quantitative genetic approach to predict the genetic69

value of unphenotyped lines for diverse arrays of traits in rice (Bartholomé et al., 2022). In70

addition to DNA polymorphisms, metabolites have emerged as omics data sources that can be71

used to investigate biological responses. Plant metabolites play a multitude of critical roles in72

growth and development, and abiotic and biotic stress responses. The metabolites of plants73

are associated with nutrition, fragrance, and agronomic performance (Obata and Fernie,74

2012). Differential metabolic abundance has been reported in rice grains between the control75

and HNT treatment (Dhatt et al., 2019), suggesting that the differences in biochemical76

or physiological signals between the two conditions are reflected in the metabolic profiles.77

Hence, it is worthwhile to investigate whether the metabolic profiles of genotypes alone can78
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be used to classify control and HNT conditions. When single nucleotide polymorphism (SNP)79

data are used as predictors, a classification accuracy of 0.5 is expected because genomics is80

irrelevant to the presence or absence of HNT stress.81

Prediction of phenotypes using metabolites, known as metabolic prediction, has been car-82

ried out in maize (Riedelsheimer et al., 2012; Guo et al., 2016; Westhues et al., 2017; Schrag83

et al., 2018) and rice (Xu et al., 2016), obtaining an encouraging result for its predictive84

ability. Metabolic prediction captures the molecular composition of a plant, such as changes85

in biochemical or physiological signals that influence phenotypes, which may not be directly86

explained by genomic prediction (Riedelsheimer et al., 2012). Thus, metabolic data can be87

used to evaluate plant growth- or stress-related phenotypes in response to HNT.88

Despite its potential, metabolic responses to HNT stress and the use of metabolites as89

covariates for complex trait prediction have not been fully explored relative to genetic anal-90

ysis in rice yet. Overall, we hypothesized that the inclusion of all available metabolites91

would be useful for metabolic classification and prediction in HNT studies. Therefore, the92

objectives of this study were threefold: 1) evaluate the classification ability of metabolites93

to distinguish HNT conditions, 2) compare the predictive ability of metabolic prediction,94

genomic prediction, and their multi-omic integration for grain-size phenotypes, and 3) in-95

vestigate whether the use of metabolites as auxiliary phenotypes improves the predictive96

performance of multi-trait genomic prediction of grain-size phenotypes under control and97

HNT conditions.98
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Materials and Methods99

Plant materials and growth conditions100

Rice diversity panel 1 lines (Zhao et al., 2011) were phenotyped for grain length (major101

axis), grain width (minor axis), and grain perimeter in this study. Six seedlings per acces-102

sion were transplanted into 4-inch pots containing natural soil. The HNT experiment was103

performed as previously described (Dhatt et al., 2021). Briefly, all the plants were grown104

under controlled conditions until flowering. When approximately 50% of the primary pani-105

cle completed fertilization, half of the plants from each accession were transferred to HNT106

conditions until maturity. All the plants were harvested at physiological maturity. Dehulled107

mature grains from primary panicles were scanned using an Epson Expression 12000 XL108

scanner (Epson America Inc., Los Alamitos, CA, USA) at a resolution of 600 dpi. Mor-109

phometric measurements, including grain length, width, and perimeter, were obtained from110

mature grains using the MATLAB software (Zhu et al., 2021). Morphometric phenotypes111

were adjusted for downstream genetic analyses by deriving the best linear unbiased estima-112

tors for each accession in each condition while accounting for replication. All the lines were113

genotyped using a high-density rice array (HDRA) of 700k SNP markers (McCouch et al.,114

2016). A total of 385,118 SNP markers were used for analysis after removing SNP markers115

with minor allele frequencies less than 0.05.116

Metabolic profiling117

Five dehusked mature grains of each genotype were taken from the pool of all plant individ-118

uals and used for metabolite profiling. The grains were frozen and ground to fine powder119

by a ball mill (TissuelyzerII, Qiagen, Düsseldorf, Germany) at liquid nitrogen temperature.120

Around 50 mg of aliquot was weighed and used for the metabolite extraction and profiling121
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using a 7200 GC-QTOF system (Agilent, Santa Clara, CA, USA) according to the proto-122

col previously described (Wase et al., 2022). The chromatography peaks were annotated123

to metabolites according to the retention time and mass spectral information in the Fiehn124

Metabolomics database (Agilent). The peak heights of representative ions for individual125

metabolites were normalized by that of internal standard, ribitol (m/z 319), and the fresh126

weights of materials to determine relative metabolite contents. The retention time and127

representative ion m/z of each peak and the relative metabolite contents are found in the128

Supplementary Files. Relative metabolite abundance was corrected for run and experimental129

batch effects by treating them as random, separately for the control and HNT conditions.130

Statistical analyses131

A total of 192 and 188 rice lines with phenotypes, genotypes, and metabolites were used132

for the control and HNT conditions, respectively. These lines consisted of tropical japonica133

(25.11%), temperate japonica (22.37%), indica (18.72%), aus (17.35%), admixed japonica134

(9.13%), aromatic (3.20%), admixed indica (2.74%), and admixed (1.38%) (McCouch et al.,135

2016). The utility of metabolic profiles to classify control and HNT conditions was evaluated.136

This was followed by a comparison of the predictive abilities of genomic prediction, metabolic137

prediction, and their combination for grain length, width, and perimeter. Finally, potential138

auxiliary metabolites that can be used to increase the multi-trait genomic prediction of139

grain-size phenotypes were explored under control and HNT conditions.140

Classification of HNT stress status141

The following classification models were used to classify HNT stress from the control con-142

ditions based on the metabolic profiles of 380 (192 + 188) plants. Our hypothesis was that143

there is sufficient differential metabolic abundance between the control and HNT conditions144

that can be used to classify HNT stress status.145
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Logistic regression: Logistic regression (LR), which is built on the logit link function,146

models the probability that the metabolic profile of each plant belongs to the control or147

HNT stress status.148

Support vector machine: Support vector machines (SVM) coupled with a radial basis149

function kernel was used to find the nonlinear separation boundary. The idea behind the150

SVM is to maximize the margin around the separating hyperplane (control or HNT status)151

by solving quadratic programming.152

Random forest: Random forest (RF) is an ensemble learner based on numerous decision153

tree classifiers constructed from subsamples of the data. Each tree in the RF predicts the154

category (control or HNT status) under which a new plant in the testing set belongs. The155

final category was assigned to a new plant according to the majority vote.156

Extreme gradient boosting: Extreme gradient boosting (XGBoost) is an ensemble ma-157

chine learning framework that uses gradient boosted decision trees. Relative to the gradient158

boosting machine, XGBoost is faster and delivers higher prediction performance. We imple-159

mented LR, SVM, RF, and XGBoost in the caret R package (Kuhn, 2015).160

Metabolic prediction of grain-size phenotypes161

In addition to the regression versions of SVM (i.e., support vector regression or SVR), RF,162

and XGBoost, ordinary least squares (OLS), best linear unbiased prediction (BLUP), and163

BayesC were used for the metabolic prediction of grain-size phenotypes.164

Ordinary least squares: Metabolic OLS (MOLS) was constructed using metabolic abun-

dance as a predictor in the OLS framework.

y = 1µ+Wmam + ϵ,

where y is a vector of phenotypes (grain length, grain width, and grain perimeter); 1 is165

the vector of ones; µ is the overall mean; Wm is a centered and standardized metabolic166
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abundance matrix; am is a vector of fixed metabolic effect, and ϵ ∼ N(0, Iσ2
ϵ ), is a vector of167

residuals. Here σ2
ϵ is the residual variance, and I is an identity matrix. The MOLS model168

was fitted using the lm function in R (R Core Team, 2022). This model was only used for169

metabolic prediction because the number of SNP markers was greater than the number of170

accessions in genomic prediction.171

BayesC: A Bayesian shrinkage and variable selection model, BayesC (Kizilkaya et al., 2010),

was used to estimate the metabolic effect using the following model.

yi = µ+
mm∑
j=1

wmij
amj

+ ϵi,

where yi is the vector of phenotypes for the ith accession; mm is the total number of metabo-

lites; wmij
is the jth metabolic abundance of ith accession; and amj

is the jth metabolic

abundance effect. The prior of amj
was assumed to folllow a mixture distribution

amj
|π, σ2

a =


0 with probability π

∼ N(0, σ2
a) with probability 1− π,

where σ2
a is the common metabolic abundance variance and π is a mixture proportion set to172

0.99.173

Metabolic best linear unbiased prediction: Best linear unbiased prediction regresses

the vector of phenotypes on a kernel relationship matrix derived from the biological profiles

of individuals (Morota and Gianola, 2014). The model considered for the metabolic best

linear unbiased prediction (MBLUP) was

y = 1µ+ Zmum + ϵ,

where Zm is the incidence matrix relating metabolites to phenotypic records, um is the vector174

of the random metabolic values of the accessions, and ϵ is the vector of the residuals. The175
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distributions of random metabolic effect was assumed to follow um ∼ N(0,Mσ2
um), where176

M is the metabolic relationship matrix and σ2
um is the metabolic variance. The metabolic177

relationship matrix represents the similarity of metabolic profiles among accessions, which178

was computed as a function of the metabolic abundance cross-product M = WmW′
m

mm
.179

Genomic prediction of grain-size phenotypes180

Performance of the metabolic prediction was compared with that of genomic best linear

unbiased prediction (GBLUP), which is the most commonly used genomic prediction model

(VanRaden, 2008). Here, metabolic abundance covariates were replaced with SNP marker

covariates. The GBLUP model used was

y = 1µ+ Zgug + ϵ,

where Zg is the incidence matrix relating gene content to phenotypic records and ug is the181

vector of the random additive genetic values of the accessions. We assumed ug ∼ N(0,Gσ2
ug),182

where G = WgW′
g

mg
is the genomic relationship matrix; σ2

ug is the additive genetic variance;183

Wg is a centered and standardized gene content matrix; and mg is the total number of SNP184

markers.185

Metabolic (h2
m =

σ2
um

σ2
um+σ2

ϵ
) and genomic (h2

g =
σ2
ug

σ2
ug+σ2

ϵ
) heritability estimates were ob-186

tained from MBLUP and GBLUP, respectively. These estimates can be interpreted as the187

proportion of phenotypic variance explained by metabolic or genomic relationship among188

lines.189

Additionally, the exent of increased performance due to the integration of metabolites

and SNP markers was evaluated by extending MBLUP and GBLUP via multiple kernel

learning as follows (Baba et al., 2021).

y = 1µ+ Zmum + Zgug + ϵ,

9
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This approach was named integrated genomic metabolic best linear unbiased prediction190

(GMBLUP). Also, we performed the Mantel test to investigate whether the correlation191

between the G and M matrices is statistically different (Mantel, 1967).192

The aforementioned BayesC, MBLUP, GBLUP, and GMBLUP were implemented in a193

Bayesian manner using the BGLR R package (Pérez and de los Campos, 2014). A flat prior194

was assigned to µ. The variance components, σ2
um , σ

2
ug , and σ2

ϵ were drawn from a scaled195

inverse χ2 distribution with the degrees of freedom ν = 5 and scale parameter s such that196

the prior means of variance components equal half of the phenotypic variance. A total of197

30,000 Markov Chain Monte Carlo samples after 10,000 burn-in with a thinning rate of 10198

were used to obtain the posterior means for all the unknowns.199

Multi-trait genomic prediction of grain-size phenotypes200

We evaluated the gain in genomic prediction performance of grain-size phenotypes by fitting

bivariate GBLUP, when metabolites were used as a correlated trait. We hypothesized that

some metabolites could enhance the genomic prediction via a correlated response. All possi-

ble combinations of the phenotypes (target responses) and metabolites (auxiliary responses)

were investigated. Genetic and residual variances in single-trait GBLUP were extended to

the following variance-covariance structure.

Σg =

σ2
ug1

σ2
ug12

σ2
ug21

σ2
ug1

 , Σϵ =

σ2
ϵ1

σϵ12

σϵ21 σ2
ϵ2

 ,

where subscripts 1 and 2 refer to the phenotype and metabolite, respectively. An inverse201

Wishart distribution was assigned to Σg and Σϵ with degrees of freedom ν = 4 and scale202

matrix S such that the prior means of Σg and Σϵ equal half of the phenotypic variance.203

The bivariate GBLUP was fitted using 30,000 Markov chain Monte Carlo samples, 10,000204

burn-ins, and a thinning rate of 10, implemented in the BGLR R package (Pérez-Rodŕıguez205

and de Los Campos, 2022).206
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Cross-validation strategies207

Repeated random subsampling cross-validation (CV) was used to evaluate the classification208

and prediction model performance. For classification, we first split the accessions into train-209

ing (80%) and test (20%) sets separately for the control and HNT, so that each condition210

was represented in the training and testing sets equally (Figure 1A). The training set for211

each condition was further split into inner training and validation sets to fine-tune the hy-212

perparameters. The inner training set was used for hyperparameter tuning using five-fold213

CV. The training sets from the control and HNT groups were combined to form a unified214

training set. The final model performance was evaluated in an independent testing set com-215

bined with the control and HNT conditions, which were never used in the model training.216

Repeated random sub-sampling CV for classification was performed 25 times. The accuracy217

of classification performance was derived as TP+TN
TP+TN+FN+FP

, where TP, TN, FN, and FP are218

the number of accessions in the true positive, true negative, false negative, and false posi-219

tive classes, respectively. Since the number of accessions in the control and HNT conditions220

were not exactly the same (192 and 188, respectively), we also evaluated classification per-221

formance using the F1 score and the area under a receiver operating characteristic (ROC)222

curve (AUC). The F1 score is robust to imbalanced data and is defined as the harmonic223

mean of the precision and recall 2 × precision×recall
precision+recall

= TP
TP+ 1

2
(FP+FN)

. The AUC measures the224

area under the entire ROC curve, which plots the TP rate
(

TP
TP+FN

)
vs. the FP rate

(
FP

FP+TN

)
.225

The accuracy and F1 score were derived using the Metrics R package (Hamner and Frasco,226

2018) and the AUC was derived using the pROC R package (Robin et al., 2011). In addition227

to evaluating the utility of the whole metabolic profile for classification, we investigated the228

classification performance of random subsets of 10, 20, 30, 40, 50, and 60 metabolites by229

randomly reconstructing each subset 20 times.230

The performance of metabolic and genomic predictions of grain-size phenotypes was231

evaluated similar to the classification, except that the predictions were performed separately232
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for the control and HNT conditions (Figure 1B). The predictive performance of the models233

was assessed using Pearson correlation between the predictive values and phenotypes of the234

accessions. The repeated random subsampling CV for metabolic and genomic prediction was235

repeated 100 times. In metabolic prediction, we also evaluated whether metabolic effects236

estimated in one condition could be used to predict phenotypes in another. Specifically, we237

trained metabolites in the HNT and predicted phenotypes in the control and vice versa.238

This scenario investigate the transferability of the metabolic signal across stress conditions.239

Two scenarios were considered for the multi-trait genomic prediction of grain-size pheno-240

types (Figure 2). Scenario 1 included splitting the accessions into training (80%) and testing241

(20%) sets. The models were trained in the training sets, and the predictive performance of242

the genomic prediction was evaluated in the remaining testing sets. Scenario 2 included the243

metabolic information of all accessions in a training set and assessed the genomic prediction244

performance of grain-size phenotypes using a testing set. The repeated random sub-sampling245

CV for multi-trait genomic prediction was repeated 25 times.246

Data availability247

Phenotypic and metabolic data used herein are available in the Supplementary Files at248

Figshare. Genotypic data regarding the rice accessions are available at the rice diversity249

panel website (http://www.ricediversity.org/). Scripts used in this work are publicly250

available in GitHub (https://github.com/yebigithub/VTUNL_Rice).251
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Results252

Correlation analysis253

Metabolic profiling of rice grains detected 73 metabolites (Table S1). Pairwise comparisons254

(r) of metabolic abundance revealed correlated metabolites (Figure S1). Under control255

conditions, four metabolites, citraconic acid, arabinose, lyxose, and ribose were positively256

associated with each other (|r| > 0.9) (Figure S1A). Pairs of leucine and valine, isoleucine257

and valine, isoleucine and leucine, and ornithine and citrulline also showed notable positive258

correlations. Under HNT, leucine was positively associated with isoleucine, arabinose, and259

ribose (|r| > 0.9). Citraconic acid was positively associated with ribose, adenine, and uridine260

(|r| > 0.9). Furthermore, pairs of dihydrouracil and asparagine, glutamine and asparagine,261

ribose and arabinose, and isomaltose and lyxose showed notable positive correlations (|r| >262

0.9) (Figure S1A). When the metabolic abundance was expressed in terms of the ratio263

of control to HNT, arabinose and citraconic acid, arabinose and ribose appeared as two264

positively correlated metabolic pairs (|r| > 0.9) (Figure S2). Grain width was associated with265

many metabolites (Figure 3). In particular, proline, serine, aspartic acid, tyrosine, glucose,266

lysine, tryptophan, galactinol, and sucrose were positively correlated (r > 0.3), whereas267

trehalose was negatively correlated (r < −0.3) with grain width under control conditions268

(Figure 3A). In contrast, melibiose was positively correlated (r > 0.3), while trehalose was269

negatively correlated (r < −0.3) with grain width under HNT conditions (Figure 3B).270

Evaluation of metabolic classification performance271

RF and XGBoost delivered the best classification accuracy equally, followed by SVM and272

LR (Figure 4). The means of classification for RF and XGBoost were both 0.98, suggesting273

that the metabolic profiles of the control and HNT conditions could be accurately used for274
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classification. The mean SVM accuracy decreased moderately to 0.78. However, the LR275

classification performance was worse than that of a random classifier with a mean accuracy276

of 0.41 and a large CV uncertainty. Because slightly different number of accessions were used277

between the control and HNT conditions, the classification performance of the four models278

was evaluated using alternative measures. The F1 scores (Figure S3) and AUC (Figure S4)279

corroborated the accuracy results, suggesting that the classification accuracy performance280

obtained was robust. Classification accuracy was proportional to the number of metabolites281

included in the model (Figure S5). The opposite was observed in CV uncertainty, which was282

disproportional to the number of metabolites included in the model. A set of 10 metabolites283

alone achieved an accuracy above 0.8, albeit with a large CV uncertainty in RF and XGBoost.284

As the number of metabolites in the model increased, the accuracy increased and the CV285

uncertainty decreased. The accuracy of the 60 metabolites was slightly lower than that of286

all the metabolites. A set of 10 metabolites alone achieved an SVM accuracy of above 0.7,287

which gradually approached the accuracy achieved by the full set of metabolites. However,288

the LR did not follow this pattern. It consistently performed poorly regardless of the number289

of metabolites included in the model. The results of the F1 scores and AUC classification290

measures agreed with the classification accuracy (Figures S6 and S7).291

Evaluation of metabolic prediction performance292

The performance of the metabolic prediction of grain-size phenotypes using MOLS, RF,293

SVM, XGBoost, BayesC, and MBLUP is shown in Figures 5, 6, and 7. Points below the294

straight line indicate that the model shown on the x-axis performed better, whereas points295

above the straight line indicate the model shown on the y-axis performed better. BayesC and296

MBLUP were the equally best metabolic prediction models for grain length and delivered297

similar predicted values (Figure 5). Their mean predictive correlations were 0.35 and 0.33298

in control and 0.33 and 0.31 in HNT conditions, respectively. However, although the means299

were similar, BayesC was better than MBLUP in 69% (control) and 80% (HNT) of the CV300
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resampling runs. MOLS resulted in the worst performance, with mean predictive correlations301

of 0.20 (control) and 0.14 (HNT). The prediction performance of BayesC and MBLUP were302

higher than that of MOLS in more than 75% (control) and 84% (HNT) of the resampling runs.303

The metabolic prediction performance of the remaining models, RF, SVR, and XGBoost,304

was between that of BayesC or MBLUP and MOLS. For example, BayesC performed better305

than RF, SVR, and XGBoost in 84%, 77%, and 76% of the resampling runs in the control306

and 59%, 61%, and 59% of the resampling runs in the HNT.307

For grain width measured under control conditions, RF was the best metabolic prediction308

model with a predictive correlation of 0.57, closely followed by MBLUP of 0.54 (Figure 6).309

RF was better than MOLS, BayesC, MBLUP, SVR, and XGBoost in 98%, 73%, 73%, 76%,310

and 73% of resampling runs, respectively. SVR, XGBoost, and BayesC performed equally311

well, and their predictive performance was better than that of MOLS. In the case of grain312

width measured under HNT conditions, BayesC and MBLUP equally delivered the best313

predictive correlation of 0.54, followed by SVR and XGBoost. For example, MBLUP showed314

a higher predictive performance than MOLS, BayesC, SVR, and XGBoost in 89%, 50%,315

65%, and 70% of the resampling runs, respectively. Under both conditions, MOLS was the316

worst prediction machine.317

For grain perimeter, BayesC consistently produced the best prediction (Figure 7). Its318

mean predictive correlations were 0.35 and 0.29 in the control and HNT conditions, respec-319

tively. BayesC performed better than MOLS, MBLUP, SVR, RF, and XGBoost in 88%,320

75%, 69%, 89%, and 70% of the resampling runs in the control, whereas it performed better321

in 90%, 73%, 63%, 57%, and 51% of the resampling runs in the HNT.322

Overall, BayesC and MBLUP produced similar predicted metabolic values across the323

three phenotypes (Figures 5, 6, and 7). We obtained the highest prediction for grain width,324

whereas the predictive correlations of grain length and grain perimeter were similar and had325

slightly lower predictive outcomes. No significant difference was observed between the con-326

trol and HNT conditions with respect to the predicted results. Additionally, we investigated327
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whether the metabolic abundance obtained in one condition could be used to predict pheno-328

types under another condition. Overall, we found a decrease in metabolic prediction across329

HNT stress conditions (Figure S8). For example, when control phenotypes were predicted330

from HNT metabolites, we observed 23%, 4%, and 31% decrease in grain length, grain width,331

and grain perimeter, respectively, whereas when HNT phenotypes were predicted from con-332

trol metabolites, we observed 18% and 4% decrease in grain width and grain perimeter,333

respectively. However, no decrease was observed in grain length.334

Evaluation of genomic prediction performance335

The Mantel test showed that the correlation between G and M matrices are statistically336

different from each other. The performance of GBLUP and GMBLUP for grain-size phe-337

notypes relative to that of MBLUP is shown in Figure 8. MBLUP was chosen to repre-338

sent a metabolic prediction model because it performed well across the three traits under339

both conditions with a relatively faster computational time than BayesC. Overall, GBLUP340

consistently provided a better prediction than MBLUP in at least 98%, 87%, and 95% of341

CV resampling runs under both conditions for grain length, width, and perimeter, respec-342

tively. The mean predictive correlations were 0.64, 0.73, and 0.57 for grain length, width,343

and perimeter in control conditions, respectively, whereas 0.64, 0.67, 0.63 for grain length,344

width, and perimeter in HNT conditions, respectively. We observed mixed results for a ge-345

nomics and metabolite integration model. In the case of grain length, GMBLUP did not346

improve the prediction when compared with that by GBLUP. GMBLUP performed better347

than GBLUP in only 48% (control) and 18% (HNT) of the resampling runs. However, in348

the case of grain width, GMBLUP performed better than GBLUP in 69% (control) and349

72% (HNT) of the resampling runs. The results obtained for grain perimeter were mixed.350

Although the prediction performance of GMBLUP was better than that of GBLUP in 66%351

of the resampling runs under control conditions, GMBLUP performed better than GBLUP352

in only 37% of the resampling runs under HNT conditions. Overall, GMBLUP achieved a353
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marginal gain in prediction than that achieved by GBLUP, with an average increase of 1.5%.354

Estimates of metabolic and genomic heritability355

The metabolic and genomic heritabilities of grain-size phenotypes were estimated using356

MBLUP, GBLUP, and GMBLUP (Table 1). Under control conditions, genomic heritability357

estimates of grain length, width, and perimeter were similar, and explained at least 75% of358

the phenotypic variance. Grain width showed the highest metabolic heritability estimate,359

reaching more than half of the estimated genomic heritability. Grain length and grain perime-360

ter showed lower metabolic heritability estimates than grain width. When the metabolites361

and SNP markers were fitted together, the majority of variations were captured by genomics.362

The estimates obtained from the HNT conditions were similar to those obtained from the363

control conditions. Grain width showed larger metabolic heritability estimates than grain364

length and perimeter. Genomics captured a large proportion of the variation when SNP365

markers and metabolites were simultaneously included in the model. However, the grain366

perimeter genomic heritability estimate was slightly lower than that of grain length and367

width.368

Evaluation of multi-trait genomic prediction performance369

The utility of metabolites as an auxiliary phenotype for multi-trait genomic prediction of370

grain-size phenotypes under control and HNT conditions was investigated in CV Scenarios371

1 and 2. In Scenario 1, multi-trait GBLUP consistently produced a greater predictive cor-372

relation for grain width than single-trait GBLUP under the control conditions (Figure 9).373

All the metabolites included in the analyses contributed to increased prediction. We did not374

observe any increase in the prediction of grain length and perimeter. In Scenario 2, we iden-375

tified at least one metabolite that increased the multi-trait genomic prediction performance376

for each trait (Figure 10). Three metabolites, glutamic acid, allantoin-2, and allantoin-3,377
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increased multi-trait GBLUP prediction more than single-trait GBLUP for grain length un-378

der HNT conditions. No metabolites were found in grain length predictions under control379

conditions. A total of 46 metabolites improved predictions of grain width under control con-380

ditions. In particular, the gain in multi-trait GBLUP achieved by trehalose was statistically381

significant compared to that by single-trait GBLUP based on the paired one-sided t-test and382

paired one-sided Wilcoxon signed-rank test. Under HNT conditions, 11 metabolites, includ-383

ing ethanolamine, malic acid, dihydrouracil, asparagine, glutamine, allantoin-2, pantothenic384

acid, glucosaminic acid, ferulic acid, 3.5-dimethoxy-4-hydroxycinnamic acid, and trehalose,385

increased the genomic prediction performance for grain width. These metabolites were also386

identified in control conditions except for allantoin-2 and glucosaminic acid. Two metabo-387

lites, dihydroxybenzoic acid and catechin, increased the multi-trait GBLUP prediction for388

grain perimeter under control conditions. These values were statistically different from those389

of single-trait GBLUP. No metabolites were found in grain perimeter under HNT.390
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Discussion391

Advances in genomics and metabolic profiling have provided a new resource for studying HNT392

responses in rice. In this study, we evaluated the utility of metabolites for classifying HNT393

stress conditions and predicting grain-size-related phenotypes. In regression modeling, the394

performance of metabolic prediction and usefulness of metabolites as auxiliary phenotypes395

were evaluated in the context of genomic prediction. We found that several pairs of metabo-396

lites were correlated under the control and HNT conditions. Among the three phenotypes397

investigated, metabolite abundance was strongly associated with grain width. Mostly amino398

acids and sugars were correlated with grain width under the control condition (Figure 3),399

indicating the relationship between grain shapes and carbohydrate and protein metabolism.400

The correlation between tryptophan and seed longevity has been also reported (Ren et al.,401

2020), supporting our result. Under the HNT condition, oligosaccharides showed correlations402

with grain width, which may indicate that carbohydrate metabolism plays a crucial role in403

determining grain shape. Interestingly, carbohydrates are a major class of metabolites which404

are affected by HNT in our previous studies of cereals grains (Dhatt et al., 2019; Impa et al.,405

2019). The correlation may reflect the changes in carbohydrate metabolism in rice grains406

under HNT. However, it should also be considered that differences in grain shapes among407

cultivars could affect metabolite composition due to the difference in the ratios of cell types408

with varying metabolite compositions. The relationships between metabolite accumulation409

and grain shapes must be carefully assessed in future experiments.410

Grain length and width are prominent grain size factors that substantially impact the411

rice grain yield parameters (Olsen, 2004; Xing et al., 2010; Huang et al., 2013). Grain length412

is known to be directed by the elongation of the pericarp tissue, defined at the early stages413

of grain development (Lizana et al., 2010; Pielot et al., 2015). In contrast, the grain width414

is largely determined by cell division and proliferation of the endosperm tissue (after the415

fertilization event) and is a driving force for the sucrose allocation to be used for endosperm416
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development and grain storage reserves production (Brocklehurst, 1977; Martinez-Carrasco417

and Thorne, 1979). The endosperm cell number and proliferation (determinant of grain418

width) are affected by the supply of photoassimilates (sucrose) during the active grain filling419

stage, thus, substantially influencing the final grain weight parameters (Brocklehurst, 1977).420

Likewise, another study reported that final grain weight is highly correlated with the grain421

width than the grain length in the diverse winter wheat population (Philipp et al., 2018).422

The improvement in grain width is stated to be one of the major causes leading to incre-423

ment in the final grain weight parameters for the elite wheat varieties (Philipp et al., 2018),424

signifying the importance of this phenotypic trait for the enhancement of crop yields. Addi-425

tionally, previous studies have reported that deviation from optimal temperature conditions426

alters the endosperm cellularization timing in rice, causing a detrimental impact on the final427

grain size parameters (Chen et al., 2016; Folsom et al., 2014). Therefore, it is likely that the428

prolonged occurrence of HNT during grain filling stages impairs the sucrose allocation in the429

endosperm cells, leading to a more negative impact on the grain width than grain length,430

which is established before grain width. Furthermore, the genetic determinants regulating431

these two grain size traits (grain length and width) have distinct responses to temperature432

abnormalities within rice diversity panel 1 accessions (Dhatt et al., 2021). Only a few acces-433

sions of rice diversity panel 1 retained both grain length and width under HNT, signifying434

unique genetic regulation for these grain size traits in rice (Dhatt et al., 2021).435

Utility of metabolites for classification436

Using all available metabolites resulted in the appropriate classification of HNT conditions437

with high accuracy when suitable classification models, such as RF or XGBoost, were used.438

This suggests that there is a differential metabolic abundance between control and HNT439

conditions. Logistic regression, which is a simpler classification model, was not sufficient440

to distinguish the signals between the control and HNT conditions. A random subset of441

only 10 metabolites produced moderate classification accuracy. However, this accuracy was442
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unstable with high uncertainty. Increasing the number of metabolites contributed to making443

the classification more robust than increasing its accuracy. The accuracy achieved from a444

random subset of 60 metabolites was similar to that achieved from a full set of metabolites.445

This implies that most metabolites are altered during HNT and contributes to increasing the446

classification power. Although there are no previous reports investigating the classification447

performance of metabolites to distinguish between control and HNT conditions, our results448

showed that we can obtain reasonable classification accuracy.449

Utility of metabolites for prediction and heritability anal-450

ysis compared to SNP markers451

Overall, BayesC and MBLUP showed relatively high and stable predictive correlations for452

grain length, width, and perimeter, suggesting that prediction models commonly used in ge-453

nomic prediction are equally applicable to metabolic abundance data. In particular, BLUP454

appeared to be the most efficient method in terms of predictability and computational time.455

The extent of predictive correlations ranged from low to moderate. As expected from the456

correlation analysis, we observed the greatest predictive correlation for grain width. How-457

ever, genomic prediction performance based on a 700k array was consistently better than458

that of metabolites. Our results agree with those of previous studies in oats, which found459

that metabolic prediction was not superior to genomic prediction for agronomic traits, in-460

cluding seed length and width (Hu et al., 2021). Similarly, no improvement was observed in461

1000-grain weight and grain number per plant in hybrid rice (Xu et al., 2016; Wang et al.,462

2019; Xu et al., 2021). In contrast, metabolic prediction has been reported to be better than463

genomic prediction for oat fatty acids (Hu et al., 2021). In addition, other related studies464

reported lower or comparable predictive performance of metabolites relative to SNP markers465

for agronomic traits related to maturity, morphology, bioenergy, or yield-related in inbred466

maize (Guo et al., 2016; Xu et al., 2017), hybrid maize (Riedelsheimer et al., 2012; Westhues467
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et al., 2017; Schrag et al., 2018), and hybrid wheat (Zhao et al., 2015). Simultaneous integra-468

tion of metabolites and SNP markers in a single model moderately improved predictions for469

grain width in control and HNT conditions and grain perimeter in control conditions. This470

is partly in line with Hu et al. (2021), who reported a gain in GMBLUP prediction for seed471

length and width in oats. On an average, the estimates of metabolic heritability were approx-472

imately half of those of genomic heritability. A smaller number of available metabolites may473

lead to lower estimates. Another reason could be that the metabolite-phenotype relationship474

is affected by the time of measurement in metabolite profiling. Unlike SNP markers, metabo-475

lite abundance varies with plant developmental stages. Nevertheless, metabolites explained476

a greater proportion of variability when compared at the per metabolite or per SNP level.477

For example, in grain width, each metabolite explained 0.6% of the metabolic heritability,478

whereas each SNP explained 0.0001% of the genomic heritability.479

Utility of metabolites as auxiliary phenotypes in ge-480

nomic prediction481

We identified several metabolites that contributed to increased multi-trait genomic predic-482

tion of grain-size-related phenotypes. In particular, several metabolites aided the genomic483

prediction of grain width. Trehalose is a metabolite whose levels in grains were correlated484

with grain width (Figures 3, S1, and S2) and significantly contributed to the grain width485

prediction (Figures 9 and 10) in both control and HNT conditions. Trehalose is closely486

related to trehalose-6-phosphate (T6P), a signaling metabolite involved in the regulations487

of photosynthesis, carbon partitioning, and reproductive development (Oszvald et al., 2018;488

Ponnu et al., 2011; Smeekens, 2015). T6P accumulation correlates with the levels of sucrose489

and other major sugars in wheat spikes (Mart́ınez-Barajas et al., 2011). Therefore, it is likely490

that the differences in trehalose and T6P metabolism that appeared as the accumulation of491

trehalose in grains among rice cultivars affected grain development and shape. It is also492
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interesting to note that trehalose accumulation is affected by HNT in developing rice and493

wheat grains (Dhatt et al., 2019; Impa et al., 2019). The correlation between trehalose and494

grain width and the trehalose contribution to the prediction may suggest the influences of495

trehalose metabolism in determining grain shape under HNT conditions.496
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Conclusions497

This study showed that the metabolic profiles of rice genotypes could be used solely to classify498

control and HNT conditions with high accuracy. Although the metabolic prediction of grain-499

size phenotypes was low to moderate, they were the most effective for grain width. Genomic500

prediction delivered better results than metabolic prediction. The simultaneous integration501

of metabolites and genomics in a single statistical model yielded a minor improvement in502

prediction. No significant differences in metabolic or genomic predictions were observed503

between the control and HNT conditions. We identified several metabolites that can be used504

to enhance multi-trait genomic prediction as auxiliary phenotypes. These metabolites could505

be candidates for further studies to understand their role in the tolerance to HNT. Taken506

together, this study demonstrates the usefulness of rice metabolites for classification and507

prediction tasks under control and HNT conditions.508
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Tables684

Table 1: Metabolic heritability (h2
M) and genomic heritability (h2

G) of grain size phenotypes
in control and high night temperature stress conditions.

Method
Grain length Grain width Grain perimeter
h2
G h2

M h2
G h2

M h2
G h2

M

Control
GBLUP1 0.78 - 0.76 - 0.75 -
MBLUP2 - 0.33 - 0.44 - 0.33
GMBLUP3 0.70 0.09 0.63 0.14 0.63 0.12

High night temperature
GBLUP 0.76 - 0.76 - 0.70 -
MBLUP - 0.30 - 0.43 - 0.26
GMBLUP 0.67 0.08 0.60 0.15 0.61 0.08

1 Genomic best linear unbiased prediction
2 Metabolic best linear unbiased prediction
3 Genomic metabolic best linear unbiased prediction
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Figure 1: Cross-validation (CV) design for binary classification of high night temperature
stress conditions (A) and metabolimic and genomic prediction of grain size related pheno-
types (B).
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Figure 2: Cross-validation design for multi-trait prediction. Scenario 1 (A) and Scenario 2
(B).
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Figure 3: Correlation between metabolites and grain size phenotypes in control (A) and high
night time temperature stress (B) conditions.
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Figure 4: Classification accuracy of high night time temperature conditions (control and
stress) using 73 metabolites. LR: logistic regression; SVM: support vector machine; RF:
random forest; and XGBoost: extreme gradient boosting.
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Figure 5: Predictive correlations of grain length using metabolic prediction in control and
high night time temperature stress conditions. The percentages on the bottom right show the
number of cross-validation resampling runs that the model on the x-axis performed better
than the model on the y-axis. MOLS: metabolic ordinary least squares; MBLUP: metabolic
best linear unbiased prediction; RF: random forests; SVR: support vector regression; and
XGBoost: extreme gradient boosting.
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Figure 6: Predictive correlations of grain width using metabolic prediction in control and
high night time temperature stress conditions. The percentages on the bottom right show the
number of cross-validation resampling runs that the model on the x-axis performed better
than the model on the y-axis. MOLS: metabolic ordinary least squares; MBLUP: metabolic
best linear unbiased prediction; RF: random forests; SVR: support vector regression; and
XGBoost: extreme gradient boosting.
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Figure 7: Predictive correlations of grain perimeter using metabolic prediction in control and
high night time temperature stress conditions. The percentages on the bottom right show the
number of cross-validation resampling runs that the model on the x-axis performed better
than the model on the y-axis. MOLS: metabolic ordinary least squares; MBLUP: metabolic
best linear unbiased prediction; RF: random forests; SVR: support vector regression; and
XGBoost: extreme gradient boosting.
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Figure 8: Predictive correlations of grain length, grain width, and grain perimeter using
metabolic, genomic, and multi-omic prediction models in control and high night time tem-
perature stress conditions. The percentages on the bottom right show the number of cross-
validation resampling runs that the model on the x-axis performed better than the model on
the y-axis. MBLUP: metabolic best linear unbiased prediction; GBLUP: genomic best linear
unbiased prediction; and GMBLUP: genomic and metabolic best linear unbiased prediction.
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Figure 9: Predictive correlations of Scenario 1 multi-trait (bivariate) genomic prediction for
grain length, grain width, and grain perimeter when metabolites were used as a secondary
phenotype under control and high night time temperature stress conditions. The horizontal
lines indicate the predictive correlations of single-trait genomic prediction.
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Figure 10: Predictive correlations of Scenario 2 multi-trait (bivariate) genomic prediction for
grain length, grain width, and grain perimeter when metabolites were used as a secondary
phenotype under control and high night time temperature stress conditions. The horizontal
lines indicate the predictive correlations of single-trait genomic prediction.
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