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. Abstract

;3 The asymmetric increase in average nighttime temperatures relative to increase in average
u  daytime temperatures due to climate change is decreasing grain yield and quality in rice.
55 Therefore, a better understanding of the impact of higher night temperature on single grain
s at whole genome level is essential for future development of more resilient rice. We inves-
s tigated the utility of metabolites obtained from grains to classify high night temperature
;s conditions of genotypes, and metabolites and single nucleotide polymorphisms to predict
3 grain length, width, and perimeter phenotypes using a rice diversity panel. We found that
» the metabolic profiles of rice genotypes alone could be used to classify control and high night
s temperature conditions with high accuracy using random forest or extreme gradient boost-
22 ing. The best linear unbiased prediction and BayesC showed greater metabolic prediction
s performance than machine learning models for grain-size phenotypes. Metabolic prediction
s was most effective for grain width, resulting in the highest prediction performance. Ge-
s nomic prediction performed better than metabolic prediction. Integrating metabolites and
s genomics simultaneously in a prediction model slightly improved prediction performance. We
s did not observe a difference in prediction between the control and high night temperature
s conditions. Several metabolites were identified as auxiliary phenotypes that could be used
s to enhance the multi-trait genomic prediction of grain-size phenotypes. Our results showed
so that, in addition to single nucleotide polymorphisms, metabolites collected from grains of-
si fer rich information to perform predictive analyses, including classification modeling of high

s night temperature responses and regression modeling of grain size-related phenotypes in rice.
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. Background

s« Sustainable increase in food production is paramount to meet the demands of the growing
ss  population. However, rising temperatures threaten the productivity of major food crops
ss including rice (O. Sativa) (Peng et al., 2004; Wheeler and Von Braun, 2013; Zhao et al.,
s7 2017). Rice is the staple food in many countries, however, its productivity is threatened by
s an increase in the average minimum (nighttime) temperatures. There has been a greater rise
s9 in the rate of nighttime temperatures than that of daytime temperatures (Vose et al., 2005;
oo Donat and Alexander, 2012; Xia et al., 2014). Recent studies have indicated that high night
s temperatures (HNT) negatively impact photosynthesis and respiration, and hence, rice grain
2 yield (Welch et al., 2010; Peng et al., 2013; Jagadish et al., 2015; Wang et al., 2017; Impa
3 et al., 2021). Importantly, HNT not only impacts grain yield-related traits but also grain
s« width (Dhatt et al., 2021) and grain quality (Sreenivasulu et al., 2015; Wada et al., 2019)
s in rice. Given the increasing trend of global warming, understanding the variety of omic
s responses and their associations during grain development in rice is essential for improving
7 its resilience to HNT.

68 Genomic prediction has been widely used to predict responses of plants and animals
oo (Meuwissen et al., 2001). It is a powerful quantitative genetic approach to predict the genetic
70 value of unphenotyped lines for diverse arrays of traits in rice (Bartholomé et al., 2022). In
7 addition to DNA polymorphisms, metabolites have emerged as omics data sources that can be
22 used to investigate biological responses. Plant metabolites play a multitude of critical roles in
7z growth and development, and abiotic and biotic stress responses. The metabolites of plants
74 are associated with nutrition, fragrance, and agronomic performance (Obata and Fernie,
75 2012). Differential metabolic abundance has been reported in rice grains between the control
s and HNT treatment (Dhatt et al., 2019), suggesting that the differences in biochemical
77 or physiological signals between the two conditions are reflected in the metabolic profiles.

7z Hence, it is worthwhile to investigate whether the metabolic profiles of genotypes alone can
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79 be used to classify control and HNT conditions. When single nucleotide polymorphism (SNP)
2o data are used as predictors, a classification accuracy of 0.5 is expected because genomics is
s1 irrelevant to the presence or absence of HNT stress.

82 Prediction of phenotypes using metabolites, known as metabolic prediction, has been car-
g3 ried out in maize (Riedelsheimer et al., 2012; Guo et al., 2016; Westhues et al., 2017; Schrag
s« et al., 2018) and rice (Xu et al., 2016), obtaining an encouraging result for its predictive
s ability. Metabolic prediction captures the molecular composition of a plant, such as changes
& in biochemical or physiological signals that influence phenotypes, which may not be directly
&7 explained by genomic prediction (Riedelsheimer et al., 2012). Thus, metabolic data can be
ss used to evaluate plant growth- or stress-related phenotypes in response to HNT.

89 Despite its potential, metabolic responses to HNT stress and the use of metabolites as
o covariates for complex trait prediction have not been fully explored relative to genetic anal-
a1 ysis in rice yet. Overall, we hypothesized that the inclusion of all available metabolites
oo would be useful for metabolic classification and prediction in HN'T studies. Therefore, the
3 objectives of this study were threefold: 1) evaluate the classification ability of metabolites
u to distinguish HNT conditions, 2) compare the predictive ability of metabolic prediction,
s genomic prediction, and their multi-omic integration for grain-size phenotypes, and 3) in-
s vestigate whether the use of metabolites as auxiliary phenotypes improves the predictive
o performance of multi-trait genomic prediction of grain-size phenotypes under control and

s HNT conditions.
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Materials and Methods

Plant materials and growth conditions

Rice diversity panel 1 lines (Zhao et al., 2011) were phenotyped for grain length (major
axis), grain width (minor axis), and grain perimeter in this study. Six seedlings per acces-
sion were transplanted into 4-inch pots containing natural soil. The HNT experiment was
performed as previously described (Dhatt et al., 2021). Briefly, all the plants were grown
under controlled conditions until flowering. When approximately 50% of the primary pani-
cle completed fertilization, half of the plants from each accession were transferred to HNT
conditions until maturity. All the plants were harvested at physiological maturity. Dehulled
mature grains from primary panicles were scanned using an Epson Expression 12000 XL
scanner (Epson America Inc., Los Alamitos, CA, USA) at a resolution of 600 dpi. Mor-
phometric measurements, including grain length, width, and perimeter, were obtained from
mature grains using the MATLAB software (Zhu et al., 2021). Morphometric phenotypes
were adjusted for downstream genetic analyses by deriving the best linear unbiased estima-
tors for each accession in each condition while accounting for replication. All the lines were
genotyped using a high-density rice array (HDRA) of 700k SNP markers (McCouch et al.,
2016). A total of 385,118 SNP markers were used for analysis after removing SNP markers

with minor allele frequencies less than 0.05.

Metabolic profiling

Five dehusked mature grains of each genotype were taken from the pool of all plant individ-
uals and used for metabolite profiling. The grains were frozen and ground to fine powder
by a ball mill (Tissuelyzerll, Qiagen, Diisseldorf, Germany) at liquid nitrogen temperature.

Around 50 mg of aliquot was weighed and used for the metabolite extraction and profiling
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122 using a 7200 GC-QTOF system (Agilent, Santa Clara, CA, USA) according to the proto-
13 col previously described (Wase et al., 2022). The chromatography peaks were annotated
124 to metabolites according to the retention time and mass spectral information in the Fiehn
13 Metabolomics database (Agilent). The peak heights of representative ions for individual
126 metabolites were normalized by that of internal standard, ribitol (m/z 319), and the fresh
127 weights of materials to determine relative metabolite contents. The retention time and
s representative ion m/z of each peak and the relative metabolite contents are found in the
129 Supplementary Files. Relative metabolite abundance was corrected for run and experimental

1o batch effects by treating them as random, separately for the control and HNT conditions.

= Statistical analyses

12 A total of 192 and 188 rice lines with phenotypes, genotypes, and metabolites were used
133 for the control and HNT conditions, respectively. These lines consisted of tropical japonica
13 (25.11%), temperate japonica (22.37%), indica (18.72%), aus (17.35%), admixed japonica
s (9.13%), aromatic (3.20%), admixed indica (2.74%), and admixed (1.38%) (McCouch et al.,
136 2016). The utility of metabolic profiles to classify control and HNT conditions was evaluated.
137 This was followed by a comparison of the predictive abilities of genomic prediction, metabolic
s prediction, and their combination for grain length, width, and perimeter. Finally, potential
139 auxiliary metabolites that can be used to increase the multi-trait genomic prediction of

1o grain-size phenotypes were explored under control and HN'T conditions.

i Classification of HNT stress status

12 The following classification models were used to classify HNT stress from the control con-
13 ditions based on the metabolic profiles of 380 (192 + 188) plants. Our hypothesis was that
s there is sufficient differential metabolic abundance between the control and HNT conditions

us  that can be used to classify HNT stress status.
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s Logistic regression: Logistic regression (LR), which is built on the logit link function,
17 models the probability that the metabolic profile of each plant belongs to the control or
us HN'T stress status.

o Support vector machine: Support vector machines (SVM) coupled with a radial basis
1o function kernel was used to find the nonlinear separation boundary. The idea behind the
51 SVM is to maximize the margin around the separating hyperplane (control or HNT status)
152 by solving quadratic programming.

155 Random forest: Random forest (RF) is an ensemble learner based on numerous decision
15« tree classifiers constructed from subsamples of the data. Each tree in the RF predicts the
155 category (control or HNT status) under which a new plant in the testing set belongs. The
156 final category was assigned to a new plant according to the majority vote.

157 Extreme gradient boosting: Extreme gradient boosting (XGBoost) is an ensemble ma-
158 chine learning framework that uses gradient boosted decision trees. Relative to the gradient

159 boosting machine, XGBoost is faster and delivers higher prediction performance. We imple-

o mented LR, SVM, RF, and XGBoost in the caret R package (Kuhn, 2015).

s IMetabolic prediction of grain-size phenotypes

162 In addition to the regression versions of SVM (i.e., support vector regression or SVR), RF,
165 and XGBoost, ordinary least squares (OLS), best linear unbiased prediction (BLUP), and
1« BayesC were used for the metabolic prediction of grain-size phenotypes.

Ordinary least squares: Metabolic OLS (MOLS) was constructed using metabolic abun-

dance as a predictor in the OLS framework.

y =1pu+ Wpa, + €,

165 where y is a vector of phenotypes (grain length, grain width, and grain perimeter); 1 is

16 the vector of ones; p is the overall mean; Wy, is a centered and standardized metabolic
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167 abundance matrix; ay, is a vector of fixed metabolic effect, and € ~ N(0,Ic?), is a vector of

2

s residuals. Here o

is the residual variance, and I is an identity matrix. The MOLS model
160 was fitted using the lm function in R (R Core Team, 2022). This model was only used for
o metabolic prediction because the number of SNP markers was greater than the number of
i1 accessions in genomic prediction.

BayesC: A Bayesian shrinkage and variable selection model, BayesC (Kizilkaya et al., 2010),

was used to estimate the metabolic effect using the following model.

Mm
Yi =+ E W, ; Am; + €i,
j=1

where y; is the vector of phenotypes for the ¢th accession; my, is the total number of metabo-
lites; wp,; is the jth metabolic abundance of ith accession; and a,,, is the jth metabolic

abundance effect. The prior of a,,; was assumed to folllow a mixture distribution

0 with probability =
A, |TT, o

~ N(0,02) with probability 1 — ,

12 where o2 is the common metabolic abundance variance and 7 is a mixture proportion set to
w3 0.99.
Metabolic best linear unbiased prediction: Best linear unbiased prediction regresses
the vector of phenotypes on a kernel relationship matrix derived from the biological profiles
of individuals (Morota and Gianola, 2014). The model considered for the metabolic best

linear unbiased prediction (MBLUP) was
y =1pu+ Zyuy, + €,

s where Z,, is the incidence matrix relating metabolites to phenotypic records, uy, is the vector

s of the random metabolic values of the accessions, and € is the vector of the residuals. The
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s distributions of random metabolic effect was assumed to follow u,, ~ N(0,Mo? ), where
w7 M is the metabolic relationship matrix and ¢ is the metabolic variance. The metabolic

s relationship matrix represents the similarity of metabolic profiles among accessions, which

M = VW

Mm

19 was computed as a function of the metabolic abundance cross-product

1w (Genomic prediction of grain-size phenotypes

Performance of the metabolic prediction was compared with that of genomic best linear
unbiased prediction (GBLUP), which is the most commonly used genomic prediction model
(VanRaden, 2008). Here, metabolic abundance covariates were replaced with SNP marker

covariates. The GBLUP model used was
y = 1pu+ Zgu, + €,

11 where Z, is the incidence matrix relating gene content to phenotypic records and u, is the
1.2 vector of the random additive genetic values of the accessions. We assumed u, ~ N(O, Gaﬁg),
183 where G = W‘%T‘;V/g is the genomic relationship matrix; aﬁg is the additive genetic variance;
s Wy is a centered and standardized gene content matrix; and m, is the total number of SNP
155 markers.

2

o2 . 04 . .1 .
186 Metabolic (h;, = ) and genomic (h] = ——%) heritability estimates were ob-
€ Ug €

Um

17 tained from MBLUP and GBLUP, respectively. These estimates can be interpreted as the

188 proportion of phenotypic variance explained by metabolic or genomic relationship among
189 lines.

Additionally, the exent of increased performance due to the integration of metabolites

and SNP markers was evaluated by extending MBLUP and GBLUP via multiple kernel

learning as follows (Baba et al., 2021).

y=1p+Zyuy, + Zu, + €,
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1o This approach was named integrated genomic metabolic best linear unbiased prediction
o1 (GMBLUP). Also, we performed the Mantel test to investigate whether the correlation
102 between the G and M matrices is statistically different (Mantel, 1967).

193 The aforementioned BayesC, MBLUP, GBLUP, and GMBLUP were implemented in a
s Bayesian manner using the BGLR R package (Pérez and de los Campos, 2014). A flat prior
2 2

o
Um’ ug’

15 was assigned to p. The variance components, o and o2 were drawn from a scaled
w6 inverse x? distribution with the degrees of freedom v = 5 and scale parameter s such that
17 the prior means of variance components equal half of the phenotypic variance. A total of

108 30,000 Markov Chain Monte Carlo samples after 10,000 burn-in with a thinning rate of 10

109 were used to obtain the posterior means for all the unknowns.

w0 Multi-trait genomic prediction of grain-size phenotypes

We evaluated the gain in genomic prediction performance of grain-size phenotypes by fitting
bivariate GBLUP, when metabolites were used as a correlated trait. We hypothesized that
some metabolites could enhance the genomic prediction via a correlated response. All possi-
ble combinations of the phenotypes (target responses) and metabolites (auxiliary responses)
were investigated. Genetic and residual variances in single-trait GBLUP were extended to

the following variance-covariance structure.

2 2 2
g g g ag
o Ugy Ugqo o €1 €12
Eg - 9 Ee - 9
2 2 2
Uggy Ugy Oen Oey

21 where subscripts 1 and 2 refer to the phenotype and metabolite, respectively. An inverse
20 Wishart distribution was assigned to X, and >, with degrees of freedom v = 4 and scale
203 matrix S such that the prior means of >, and ¥, equal half of the phenotypic variance.
20 The bivariate GBLUP was fitted using 30,000 Markov chain Monte Carlo samples, 10,000
205 burn-ins, and a thinning rate of 10, implemented in the BGLR R package (Pérez-Rodriguez

206 and de Los Campos, 2022).

10
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7 Cross-validation strategies

28 Repeated random subsampling cross-validation (CV) was used to evaluate the classification
200 and prediction model performance. For classification, we first split the accessions into train-
20 ing (80%) and test (20%) sets separately for the control and HNT, so that each condition
au was represented in the training and testing sets equally (Figure 1A). The training set for
212 each condition was further split into inner training and validation sets to fine-tune the hy-
213 perparameters. The inner training set was used for hyperparameter tuning using five-fold
au CV. The training sets from the control and HNT groups were combined to form a unified
215 training set. The final model performance was evaluated in an independent testing set com-
216 bined with the control and HNT conditions, which were never used in the model training.
217 Repeated random sub-sampling CV for classification was performed 25 times. The accuracy
28 of classification performance was derived as %, where TP, TN, FN, and FP are
210 the number of accessions in the true positive, true negative, false negative, and false posi-
20 tive classes, respectively. Since the number of accessions in the control and HNT conditions
21 were not exactly the same (192 and 188, respectively), we also evaluated classification per-

22 formance using the F1 score and the area under a receiver operating characteristic (ROC)

23 curve (AUC). The F1 score is robust to imbalanced data and is defined as the harmonic

24 mean of the precision and recall 2 x ggzi:zﬁiizzﬁ = 51 %(TFPP oL The AUC measures the
2s area under the entire ROC curve, which plots the TP rate (%) vs. the FP rate (FPFJF%).
26 The accuracy and F1 score were derived using the Metrics R package (Hamner and Frasco,
27 2018) and the AUC was derived using the pROC R package (Robin et al., 2011). In addition
28 to evaluating the utility of the whole metabolic profile for classification, we investigated the
29 classification performance of random subsets of 10, 20, 30, 40, 50, and 60 metabolites by
20 randomly reconstructing each subset 20 times.

231 The performance of metabolic and genomic predictions of grain-size phenotypes was

2 evaluated similar to the classification, except that the predictions were performed separately

11
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23 for the control and HNT conditions (Figure 1B). The predictive performance of the models
24 was assessed using Pearson correlation between the predictive values and phenotypes of the
235 accessions. The repeated random subsampling CV for metabolic and genomic prediction was
236 repeated 100 times. In metabolic prediction, we also evaluated whether metabolic effects
237 estimated in one condition could be used to predict phenotypes in another. Specifically, we
2 trained metabolites in the HNT and predicted phenotypes in the control and vice versa.
230 This scenario investigate the transferability of the metabolic signal across stress conditions.
240 Two scenarios were considered for the multi-trait genomic prediction of grain-size pheno-
a1 types (Figure 2). Scenario 1 included splitting the accessions into training (80%) and testing
22 (20%) sets. The models were trained in the training sets, and the predictive performance of
23 the genomic prediction was evaluated in the remaining testing sets. Scenario 2 included the
s metabolic information of all accessions in a training set and assessed the genomic prediction
x5 performance of grain-size phenotypes using a testing set. The repeated random sub-sampling

26 CV for multi-trait genomic prediction was repeated 25 times.

« Data availability

xus  Phenotypic and metabolic data used herein are available in the Supplementary Files at
29 Figshare. Genotypic data regarding the rice accessions are available at the rice diversity
0 panel website (http://www.ricediversity.org/). Scripts used in this work are publicly

251 available in GitHub (https://github.com/yebigithub/VTUNL_Rice).

12
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= Results

= (Correlation analysis

¢ Metabolic profiling of rice grains detected 73 metabolites (Table S1). Pairwise comparisons
25 (1) of metabolic abundance revealed correlated metabolites (Figure S1). Under control
6 conditions, four metabolites, citraconic acid, arabinose, lyxose, and ribose were positively
257 associated with each other (|r| > 0.9) (Figure S1A). Pairs of leucine and valine, isoleucine
»s  and valine, isoleucine and leucine, and ornithine and citrulline also showed notable positive
0 correlations. Under HNT, leucine was positively associated with isoleucine, arabinose, and
20 ribose (|| > 0.9). Citraconic acid was positively associated with ribose, adenine, and uridine
21 (|r] > 0.9). Furthermore, pairs of dihydrouracil and asparagine, glutamine and asparagine,
22 ribose and arabinose, and isomaltose and lyxose showed notable positive correlations (|r| >
23 0.9) (Figure S1IA). When the metabolic abundance was expressed in terms of the ratio
x4 of control to HNT, arabinose and citraconic acid, arabinose and ribose appeared as two
265 positively correlated metabolic pairs (|r| > 0.9) (Figure S2). Grain width was associated with
26 many metabolites (Figure 3). In particular, proline, serine, aspartic acid, tyrosine, glucose,
27 lysine, tryptophan, galactinol, and sucrose were positively correlated (r > 0.3), whereas
s trehalose was negatively correlated (r < —0.3) with grain width under control conditions
20 (Figure 3A). In contrast, melibiose was positively correlated (r > 0.3), while trehalose was

20 negatively correlated (r < —0.3) with grain width under HNT conditions (Figure 3B).

- Evaluation of metabolic classification performance

o2 RF and XGBoost delivered the best classification accuracy equally, followed by SVM and
o3 LR (Figure 4). The means of classification for RF and XGBoost were both 0.98, suggesting

o that the metabolic profiles of the control and HNT conditions could be accurately used for

13
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s classification. The mean SVM accuracy decreased moderately to 0.78. However, the LR
a6 classification performance was worse than that of a random classifier with a mean accuracy
o7 0of 0.41 and a large CV uncertainty. Because slightly different number of accessions were used
s between the control and HNT conditions, the classification performance of the four models
29 was evaluated using alternative measures. The F1 scores (Figure S3) and AUC (Figure S4)
20 corroborated the accuracy results, suggesting that the classification accuracy performance
21 obtained was robust. Classification accuracy was proportional to the number of metabolites
22 included in the model (Figure S5). The opposite was observed in CV uncertainty, which was
283 disproportional to the number of metabolites included in the model. A set of 10 metabolites
28« alone achieved an accuracy above 0.8, albeit with a large CV uncertainty in RF and XGBoost.
s As the number of metabolites in the model increased, the accuracy increased and the CV
286 uncertainty decreased. The accuracy of the 60 metabolites was slightly lower than that of
27 all the metabolites. A set of 10 metabolites alone achieved an SVM accuracy of above 0.7,
28 which gradually approached the accuracy achieved by the full set of metabolites. However,
20 the LR did not follow this pattern. It consistently performed poorly regardless of the number
200 of metabolites included in the model. The results of the F1 scores and AUC classification

21 measures agreed with the classification accuracy (Figures S6 and S7).

- KEvaluation of metabolic prediction performance

23 The performance of the metabolic prediction of grain-size phenotypes using MOLS, RF,
20 SVM, XGBoost, BayesC, and MBLUP is shown in Figures 5, 6, and 7. Points below the
205 straight line indicate that the model shown on the x-axis performed better, whereas points
206 above the straight line indicate the model shown on the y-axis performed better. BayesC and
27 MBLUP were the equally best metabolic prediction models for grain length and delivered
208 similar predicted values (Figure 5). Their mean predictive correlations were 0.35 and 0.33
200 in control and 0.33 and 0.31 in HN'T conditions, respectively. However, although the means

30 were similar, BayesC was better than MBLUP in 69% (control) and 80% (HNT) of the CV
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s resampling runs. MOLS resulted in the worst performance, with mean predictive correlations
22 of 0.20 (control) and 0.14 (HNT). The prediction performance of BayesC and MBLUP were
303 higher than that of MOLS in more than 75% (control) and 84% (HNT) of the resampling runs.
ss 'The metabolic prediction performance of the remaining models, RF, SVR, and XGBoost,
305 was between that of BayesC or MBLUP and MOLS. For example, BayesC performed better
w6 than RF, SVR, and XGBoost in 84%, 77%, and 76% of the resampling runs in the control
s and 59%, 61%, and 59% of the resampling runs in the HNT.

308 For grain width measured under control conditions, RF was the best metabolic prediction
30 model with a predictive correlation of 0.57, closely followed by MBLUP of 0.54 (Figure 6).
s0 RF was better than MOLS, BayesC, MBLUP, SVR, and XGBoost in 98%, 73%, 73%, 76%,
su and 73% of resampling runs, respectively. SVR, XGBoost, and BayesC performed equally
sz well, and their predictive performance was better than that of MOLS. In the case of grain
sz width measured under HNT conditions, BayesC and MBLUP equally delivered the best
s predictive correlation of 0.54, followed by SVR and XGBoost. For example, MBLUP showed
a5 a higher predictive performance than MOLS, BayesC, SVR, and XGBoost in 89%, 50%,
a6 65%, and 70% of the resampling runs, respectively. Under both conditions, MOLS was the
a1z worst prediction machine.

318 For grain perimeter, BayesC consistently produced the best prediction (Figure 7). Its
si9 mean predictive correlations were 0.35 and 0.29 in the control and HNT conditions, respec-
20 tively. BayesC performed better than MOLS, MBLUP, SVR, RF, and XGBoost in 88%,
s 75%, 69%, 89%, and 70% of the resampling runs in the control, whereas it performed better
2 in 90%, 73%, 63%, 57%, and 51% of the resampling runs in the HNT.

323 Overall, BayesC and MBLUP produced similar predicted metabolic values across the
»e three phenotypes (Figures 5, 6, and 7). We obtained the highest prediction for grain width,
s whereas the predictive correlations of grain length and grain perimeter were similar and had
26 slightly lower predictive outcomes. No significant difference was observed between the con-

327 trol and HNT conditions with respect to the predicted results. Additionally, we investigated
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18 whether the metabolic abundance obtained in one condition could be used to predict pheno-
29 types under another condition. Overall, we found a decrease in metabolic prediction across
30 HNT stress conditions (Figure S8). For example, when control phenotypes were predicted
s from HNT metabolites, we observed 23%, 4%, and 31% decrease in grain length, grain width,
;2 and grain perimeter, respectively, whereas when HN'T phenotypes were predicted from con-
33 trol metabolites, we observed 18% and 4% decrease in grain width and grain perimeter,

s respectively. However, no decrease was observed in grain length.

= Kvaluation of genomic prediction performance

16 The Mantel test showed that the correlation between G and M matrices are statistically
a7 different from each other. The performance of GBLUP and GMBLUP for grain-size phe-
18 notypes relative to that of MBLUP is shown in Figure 8. MBLUP was chosen to repre-
139 sent a metabolic prediction model because it performed well across the three traits under
s both conditions with a relatively faster computational time than BayesC. Overall, GBLUP
s consistently provided a better prediction than MBLUP in at least 98%, 87%, and 95% of
sz CV resampling runs under both conditions for grain length, width, and perimeter, respec-
sz tively. The mean predictive correlations were 0.64, 0.73, and 0.57 for grain length, width,
s and perimeter in control conditions, respectively, whereas 0.64, 0.67, 0.63 for grain length,
us  width, and perimeter in HN'T conditions, respectively. We observed mixed results for a ge-
us nomics and metabolite integration model. In the case of grain length, GMBLUP did not
s7  improve the prediction when compared with that by GBLUP. GMBLUP performed better
1s  than GBLUP in only 48% (control) and 18% (HNT) of the resampling runs. However, in
10 the case of grain width, GMBLUP performed better than GBLUP in 69% (control) and
30 72% (HNT) of the resampling runs. The results obtained for grain perimeter were mixed.
551 Although the prediction performance of GMBLUP was better than that of GBLUP in 66%
2 of the resampling runs under control conditions, GMBLUP performed better than GBLUP

353 in only 37% of the resampling runs under HNT conditions. Overall, GMBLUP achieved a
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s« marginal gain in prediction than that achieved by GBLUP, with an average increase of 1.5%.

= Hstimates of metabolic and genomic heritability

6 The metabolic and genomic heritabilities of grain-size phenotypes were estimated using
37 MBLUP, GBLUP, and GMBLUP (Table 1). Under control conditions, genomic heritability
s estimates of grain length, width, and perimeter were similar, and explained at least 75% of
0 the phenotypic variance. Grain width showed the highest metabolic heritability estimate,
s0 reaching more than half of the estimated genomic heritability. Grain length and grain perime-
1 ter showed lower metabolic heritability estimates than grain width. When the metabolites
2 and SNP markers were fitted together, the majority of variations were captured by genomics.
3 The estimates obtained from the HNT conditions were similar to those obtained from the
s control conditions. Grain width showed larger metabolic heritability estimates than grain
s length and perimeter. Genomics captured a large proportion of the variation when SNP
6 markers and metabolites were simultaneously included in the model. However, the grain
7 perimeter genomic heritability estimate was slightly lower than that of grain length and

368 Width.

«» HKvaluation of multi-trait genomic prediction performance

s The utility of metabolites as an auxiliary phenotype for multi-trait genomic prediction of
sn grain-size phenotypes under control and HNT conditions was investigated in CV Scenarios
sz 1 and 2. In Scenario 1, multi-trait GBLUP consistently produced a greater predictive cor-
w: relation for grain width than single-trait GBLUP under the control conditions (Figure 9).
s All the metabolites included in the analyses contributed to increased prediction. We did not
ws observe any increase in the prediction of grain length and perimeter. In Scenario 2, we iden-
se  tified at least one metabolite that increased the multi-trait genomic prediction performance

sn for each trait (Figure 10). Three metabolites, glutamic acid, allantoin-2, and allantoin-3,
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srs  increased multi-trait GBLUP prediction more than single-trait GBLUP for grain length un-
srs  der HN'T conditions. No metabolites were found in grain length predictions under control
;0 conditions. A total of 46 metabolites improved predictions of grain width under control con-
ss1  ditions. In particular, the gain in multi-trait GBLUP achieved by trehalose was statistically
;2 significant compared to that by single-trait GBLUP based on the paired one-sided t-test and
;3 paired one-sided Wilcoxon signed-rank test. Under HNT conditions, 11 metabolites, includ-
s« ing ethanolamine, malic acid, dihydrouracil, asparagine, glutamine, allantoin-2, pantothenic
s acid, glucosaminic acid, ferulic acid, 3.5-dimethoxy-4-hydroxycinnamic acid, and trehalose,
;s increased the genomic prediction performance for grain width. These metabolites were also
sz identified in control conditions except for allantoin-2 and glucosaminic acid. Two metabo-
s lites, dihydroxybenzoic acid and catechin, increased the multi-trait GBLUP prediction for
;9 grain perimeter under control conditions. These values were statistically different from those

s00 of single-trait GBLUP. No metabolites were found in grain perimeter under HNT.

18
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- Discussion

32 Advances in genomics and metabolic profiling have provided a new resource for studying HNT
33 responses in rice. In this study, we evaluated the utility of metabolites for classifying HNT
s stress conditions and predicting grain-size-related phenotypes. In regression modeling, the
35 performance of metabolic prediction and usefulness of metabolites as auxiliary phenotypes
s were evaluated in the context of genomic prediction. We found that several pairs of metabo-
so7  lites were correlated under the control and HNT conditions. Among the three phenotypes
;e investigated, metabolite abundance was strongly associated with grain width. Mostly amino
10 acids and sugars were correlated with grain width under the control condition (Figure 3),
w00 indicating the relationship between grain shapes and carbohydrate and protein metabolism.
s The correlation between tryptophan and seed longevity has been also reported (Ren et al.,
w2 2020), supporting our result. Under the HNT condition, oligosaccharides showed correlations
w3 with grain width, which may indicate that carbohydrate metabolism plays a crucial role in
w4 determining grain shape. Interestingly, carbohydrates are a major class of metabolites which
ws are affected by HNT in our previous studies of cereals grains (Dhatt et al., 2019; Impa et al.,
ws 2019). The correlation may reflect the changes in carbohydrate metabolism in rice grains
w7 under HNT. However, it should also be considered that differences in grain shapes among
w8 cultivars could affect metabolite composition due to the difference in the ratios of cell types
w0 with varying metabolite compositions. The relationships between metabolite accumulation
a0 and grain shapes must be carefully assessed in future experiments.

a1t Grain length and width are prominent grain size factors that substantially impact the
a2 rice grain yield parameters (Olsen, 2004; Xing et al., 2010; Huang et al., 2013). Grain length
a3 is known to be directed by the elongation of the pericarp tissue, defined at the early stages
s of grain development (Lizana et al., 2010; Pielot et al., 2015). In contrast, the grain width
as is largely determined by cell division and proliferation of the endosperm tissue (after the

s fertilization event) and is a driving force for the sucrose allocation to be used for endosperm
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ar  development and grain storage reserves production (Brocklehurst, 1977; Martinez-Carrasco
sg and Thorne, 1979). The endosperm cell number and proliferation (determinant of grain
a9 width) are affected by the supply of photoassimilates (sucrose) during the active grain filling
20 stage, thus, substantially influencing the final grain weight parameters (Brocklehurst, 1977).
a1 Likewise, another study reported that final grain weight is highly correlated with the grain
s2 width than the grain length in the diverse winter wheat population (Philipp et al., 2018).
w3 The improvement in grain width is stated to be one of the major causes leading to incre-
2¢ ment in the final grain weight parameters for the elite wheat varieties (Philipp et al., 2018),
w5 signifying the importance of this phenotypic trait for the enhancement of crop yields. Addi-
w6 tionally, previous studies have reported that deviation from optimal temperature conditions
a7 alters the endosperm cellularization timing in rice, causing a detrimental impact on the final
w8 grain size parameters (Chen et al., 2016; Folsom et al., 2014). Therefore, it is likely that the
a0 prolonged occurrence of HNT during grain filling stages impairs the sucrose allocation in the
a0 endosperm cells, leading to a more negative impact on the grain width than grain length,
s which is established before grain width. Furthermore, the genetic determinants regulating
a2 these two grain size traits (grain length and width) have distinct responses to temperature
a3 abnormalities within rice diversity panel 1 accessions (Dhatt et al., 2021). Only a few acces-
s sions of rice diversity panel 1 retained both grain length and width under HN'T, signifying

s5 unique genetic regulation for these grain size traits in rice (Dhatt et al., 2021).

= Utility of metabolites for classification

a7 Using all available metabolites resulted in the appropriate classification of HN'T conditions
a3 with high accuracy when suitable classification models, such as RF or XGBoost, were used.
a0 This suggests that there is a differential metabolic abundance between control and HNT
mo conditions. Logistic regression, which is a simpler classification model, was not sufficient
a1 to distinguish the signals between the control and HNT conditions. A random subset of

a2 only 10 metabolites produced moderate classification accuracy. However, this accuracy was
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a3 unstable with high uncertainty. Increasing the number of metabolites contributed to making
as  the classification more robust than increasing its accuracy. The accuracy achieved from a
as  random subset of 60 metabolites was similar to that achieved from a full set of metabolites.
ws This implies that most metabolites are altered during HN'T and contributes to increasing the
a7 classification power. Although there are no previous reports investigating the classification
ag  performance of metabolites to distinguish between control and HN'T conditions, our results

uo  showed that we can obtain reasonable classification accuracy.

= Utility of metabolites for prediction and heritability anal-

= ysis compared to SNP markers

2 Overall, BayesC and MBLUP showed relatively high and stable predictive correlations for
»s3 grain length, width, and perimeter, suggesting that prediction models commonly used in ge-
s« nomic prediction are equally applicable to metabolic abundance data. In particular, BLUP
ss5  appeared to be the most efficient method in terms of predictability and computational time.
s The extent of predictive correlations ranged from low to moderate. As expected from the
s correlation analysis, we observed the greatest predictive correlation for grain width. How-
s ever, genomic prediction performance based on a 700k array was consistently better than
o that of metabolites. Our results agree with those of previous studies in oats, which found
w0 that metabolic prediction was not superior to genomic prediction for agronomic traits, in-
w1 cluding seed length and width (Hu et al., 2021). Similarly, no improvement was observed in
w2 1000-grain weight and grain number per plant in hybrid rice (Xu et al., 2016; Wang et al.,
w3 2019; Xu et al., 2021). In contrast, metabolic prediction has been reported to be better than
se  genomic prediction for oat fatty acids (Hu et al., 2021). In addition, other related studies
w5 reported lower or comparable predictive performance of metabolites relative to SNP markers
w6 for agronomic traits related to maturity, morphology, bioenergy, or yield-related in inbred

w7 maize (Guo et al., 2016; Xu et al., 2017), hybrid maize (Riedelsheimer et al., 2012; Westhues
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ws et al., 2017; Schrag et al., 2018), and hybrid wheat (Zhao et al., 2015). Simultaneous integra-
w0 tion of metabolites and SNP markers in a single model moderately improved predictions for
a0 grain width in control and HNT conditions and grain perimeter in control conditions. This
a1 is partly in line with Hu et al. (2021), who reported a gain in GMBLUP prediction for seed
a2 length and width in oats. On an average, the estimates of metabolic heritability were approx-
a3 imately half of those of genomic heritability. A smaller number of available metabolites may
aa lead to lower estimates. Another reason could be that the metabolite-phenotype relationship
a5 is affected by the time of measurement in metabolite profiling. Unlike SNP markers, metabo-
a  lite abundance varies with plant developmental stages. Nevertheless, metabolites explained
ar a greater proportion of variability when compared at the per metabolite or per SNP level.
s For example, in grain width, each metabolite explained 0.6% of the metabolic heritability,

w9 whereas each SNP explained 0.0001% of the genomic heritability.

«» Utility of metabolites as auxiliary phenotypes in ge-

= nomic prediction

2 We identified several metabolites that contributed to increased multi-trait genomic predic-
i3 tion of grain-size-related phenotypes. In particular, several metabolites aided the genomic
ss  prediction of grain width. Trehalose is a metabolite whose levels in grains were correlated
5 with grain width (Figures 3, S1, and S2) and significantly contributed to the grain width
s prediction (Figures 9 and 10) in both control and HNT conditions. Trehalose is closely
s related to trehalose-6-phosphate (T6P), a signaling metabolite involved in the regulations
a3 of photosynthesis, carbon partitioning, and reproductive development (Oszvald et al., 2018;
0 Ponnu et al., 2011; Smeekens, 2015). T6P accumulation correlates with the levels of sucrose
w0 and other major sugars in wheat spikes (Martinez-Barajas et al., 2011). Therefore, it is likely
w1 that the differences in trehalose and T6P metabolism that appeared as the accumulation of

w2 trehalose in grains among rice cultivars affected grain development and shape. It is also
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interesting to note that trehalose accumulation is affected by HNT in developing rice and
wheat grains (Dhatt et al., 2019; Impa et al., 2019). The correlation between trehalose and
grain width and the trehalose contribution to the prediction may suggest the influences of

trehalose metabolism in determining grain shape under HN'T conditions.
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« Conclusions

w8 This study showed that the metabolic profiles of rice genotypes could be used solely to classify
w0 control and HNT conditions with high accuracy. Although the metabolic prediction of grain-
so0 size phenotypes was low to moderate, they were the most effective for grain width. Genomic
so0 prediction delivered better results than metabolic prediction. The simultaneous integration
s of metabolites and genomics in a single statistical model yielded a minor improvement in
so3 prediction. No significant differences in metabolic or genomic predictions were observed
sa between the control and HNT conditions. We identified several metabolites that can be used
sos to enhance multi-trait genomic prediction as auxiliary phenotypes. These metabolites could
s be candidates for further studies to understand their role in the tolerance to HNT. Taken
sor together, this study demonstrates the usefulness of rice metabolites for classification and

sos prediction tasks under control and HNT conditions.
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« Tlables

Table 1: Metabolic heritability (h%;) and genomic heritability (h%) of grain size phenotypes
in control and high night temperature stress conditions.

Grain length Grain width Grain perimeter

Method hZ, h3, hZ, h3, hZ, h3,
Control
GBLUP' 0.78 - 0.76 - 0.75 -
MBLUP? - 0.33 - 0.44 - 0.33

GMBLUP? 0.70 0.09 0.63 0.14 0.63 0.12

High night temperature
GBLUP  0.76 - 0.76 - 0.70 -
MBLUP - 0.30 - 0.43 - 0.26
GMBLUP 0.67 0.08 0.60 0.15 0.61 0.08

! Genomic best linear unbiased prediction
2 Metabolic best linear unbiased prediction
3 Genomic metabolic best linear unbiased prediction
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Figure 1: Cross-validation (CV) design for binary classification of high night temperature
stress conditions (A) and metabolimic and genomic prediction of grain size related pheno-

types (B).
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Figure 2: Cross-validation design for multi-trait prediction. Scenario 1 (A) and Scenario 2

(B)-
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Figure 3: Correlation between metabolites and grain size phenotypes in control (A) and high

night time temperature stress (B) conditions.
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Figure 4: Classification accuracy of high night time temperature conditions (control and
stress) using 73 metabolites. LR: logistic regression; SVM: support vector machine; RF:
random forest; and XGBoost: extreme gradient boosting.
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Figure 5: Predictive correlations of grain length using metabolic prediction in control and
high night time temperature stress conditions. The percentages on the bottom right show the
number of cross-validation resampling runs that the model on the x-axis performed better
than the model on the y-axis. MOLS: metabolic ordinary least squares; MBLUP: metabolic
best linear unbiased prediction; RF: random forests; SVR: support vector regression; and
XGBoost: extreme gradient boosting.

39



https://doi.org/10.1101/2022.10.27.514071
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.27.514071; this version posted October 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Grain width
- 0.8+ s 08 0.8+ 0.8+
# o e 30 coff® 2 Jo ® & 7 S @
) & o ¢ o < °
%o o 06+ I 06 Y SRS 06+ . s oS 0.6 e ° e
5 ~ W'Q; Y A FO ot (] % .y 2,
P8 % o ° 89 o i 8 /5 % e o WA ®e &
2] 04 04 % 0.4+ 8. = 0.4 Y T Cal
. O (8 o %o 7] ® X
@ ® : @ Q f
L 02 & o2- ' > 02+ @ 02- S
S o2 @ 02 3 o g o
@ X
0.0+ 0.0+ 0.0+ 0.0+
-02 -02 -024 -024
Control: 2% Control: 4% Control: 2% Control: 8% Control: 7%
HNT: 11% HNT: 11% HNT: 15% HNT: 26% HNT: 25%
-04 -04 -044 044
04 -02 00 02 04 06 08 04 -02 00 02 04 06 08 04 02 00 02 04 06 08 04 02 00 02 04 06 08 04 02 00 02 04 06 08
MOLS MOLS MOLS MOLS MOLS
0.8+ 08 0.8+ 0.8+
v / ks
88, P
0.6+ 0.6 e v 0.6+ Y - 0.6+ 5
' Sy
X &s ‘e rD) > £ B
04 04 3 = 04+ . ? 044 4
f » 3 ) 8
s o 4 3 'y
w i 3 i 3 i w i
@ 02 3 02 g o2 @ 02
X
0.0+ 0.0+ 0.0+ 0.0+
-02 -02 024 -024
Control: 72% Control: 34% Control: 57% Control: 55% Control: 27%
> HNT: 50% ) HNT: 57% > HNT: 65% ) HNT: 70% > HNT: 55%
044 044 044 -044
04 -02 00 02 04 06 08 04 -02 00 02 04 06 08 04 -02 00 02 04 06 08 04 -02 00 02 04 06 08 04 -02 00 02 04 06 08
MBLUP MBLUP MBLUP MBLUP BayesC
0.8+ 08 0.8+ 0.8+
A
o8 ® o TS » y
g 0.6+ of o 06 0.6+ ) 0.6+
o 1 04 % r‘ 0.4 0.4 0.4 :
5 : = = 0.4 = 0.4 of »
s LA 2 ol o ¢ 3 e 2 v
(] <] /[ 3 <] > <] o
@ 02- 3 02- @ 02- @ 02-
Q Q Q
X X X
0.0+ 0.0+ 0.0+ 0.0+
02 -02 -024 -024
Control: 55% Control: 48% Control: 76% Control: 73% Control: 49%
> HNT: 64% > HNT: 68% > HNT: 75% > HNT: 84% > HNT: 62%
044 044 044 044
04 -02 00 02 04 06 08 04 -02 00 02 04 06 08 04 -02 00 02 04 06 08 04 -02 00 02 04 06 08 04 -02 00 02 04 06 08
BayesC BayesC RF SVR

Figure 6: Predictive correlations of grain width using metabolic prediction in control and
high night time temperature stress conditions. The percentages on the bottom right show the
number of cross-validation resampling runs that the model on the x-axis performed better
than the model on the y-axis. MOLS: metabolic ordinary least squares; MBLUP: metabolic
best linear unbiased prediction; RF: random forests; SVR: support vector regression; and
XGBoost: extreme gradient boosting.
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Figure 7: Predictive correlations of grain perimeter using metabolic prediction in control and
high night time temperature stress conditions. The percentages on the bottom right show the
number of cross-validation resampling runs that the model on the x-axis performed better
than the model on the y-axis. MOLS: metabolic ordinary least squares; MBLUP: metabolic
best linear unbiased prediction; RF: random forests; SVR: support vector regression; and
XGBoost: extreme gradient boosting.
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Figure 8: Predictive correlations of grain length, grain width, and grain perimeter using
metabolic, genomic, and multi-omic prediction models in control and high night time tem-
perature stress conditions. The percentages on the bottom right show the number of cross-
validation resampling runs that the model on the x-axis performed better than the model on
the y-axis. MBLUP: metabolic best linear unbiased prediction; GBLUP: genomic best linear
unbiased prediction; and GMBLUP: genomic and metabolic best linear unbiased prediction.
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Figure 9: Predictive correlations of Scenario 1 multi-trait (bivariate) genomic prediction for
grain length, grain width, and grain perimeter when metabolites were used as a secondary
phenotype under control and high night time temperature stress conditions. The horizontal
lines indicate the predictive correlations of single-trait genomic prediction.
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Figure 10: Predictive correlations of Scenario 2 multi-trait (bivariate) genomic prediction for
grain length, grain width, and grain perimeter when metabolites were used as a secondary
phenotype under control and high night time temperature stress conditions. The horizontal
lines indicate the predictive correlations of single-trait genomic prediction.
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