

1 **Title**

2 • **Full titles:** Proliferative Exhausted CD8 T Cells Exacerbate Long-lasting
3 Anti-tumor Effects in Human Papillomavirus Positive Head and Neck
4 Squamous Cell Carcinoma
5 • **Short title:** Role of Tumor Proliferative Exhausted CD8 T Cells

6
7 **Authors**

8 Danni Cheng^{1†}, Ke Qiu^{1†}, Yufang Rao^{1†}, Minzi Mao^{1†}, Li Li³, Yan Wang⁴, Yao
9 Song¹, Junren Chen², Xiaowei Yi¹, Xiuli Shao¹, Shao Hui Huang⁵, Yi Zhang⁴,
10 Xuemei Chen⁴, Sisi Wu⁴, Shuaishuai Yu⁴, Jun Liu¹, Haiyang Wang¹, Xingchen Peng⁶,
11 Daibo Li¹, Lin Yang⁷, Li Chen⁷, Zhiye Ying², Yongbo Zheng¹, Meijun Zheng¹, Binwu
12 Ying⁸, Xiaoxi Zeng², Wei Zhang², Wei Xu⁹, Geoffrey Liu^{10,11‡}, Fei Chen^{1*}, Haopeng
13 Yu^{2*}, Yu Zhao^{1,2*}, Jianjun Ren^{1,2*}

14
15 **Affiliations**

16 ¹ Department of Oto-Rhino-Laryngology, and National Clinical Research Center for
17 Geriatrics, West China Hospital, West China Medical School, Sichuan University,
18 Chengdu, Sichuan, China

19 ² West China Biomedical Big Data Center, West China Hospital, Sichuan University,
20 Chengdu, China

21 ³ Institute of Clinical Pathology, West China Hospital, Sichuan University,
22 Chengdu, China

23 ⁴ Research Core Facility of West China Hospital, Sichuan University, Chengdu, China

24 ⁵ Department of Radiation Oncology, Princess Margaret Cancer Centre, University of
25 Toronto, Toronto, Ontario, Canada;

26 ⁶ Department of Biotherapy and National Clinical Research Center for Geriatrics,
27 Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China

28 ⁷ MinSheng Ear-Nose-Throat Hospital, Chengdu, Sichuan, China

29 ⁸ Department of Laboratory Medicine, West China Hospital, Sichuan University,
30 Chengdu, Sichuan, China

31 ⁹ Department of Biostatistics, Princess Margaret Cancer Centre and Dalla Lana
32 School of Public Health, Toronto, Ontario, Canada

33 ¹⁰ Medical Oncology and Hematology, Princess Margaret Cancer Centre, and
34 Department of Medicine, University of Toronto

35 ¹¹ Department of Medicine, Division of Medical Oncology and Hematology, Princess
36 Margaret Cancer Center, University Health Network, University of Toronto, Toronto,
37 Canada

38

39 † *These authors contributed equally to this work*

40 ‡ *Senior author*

41

42 *** Corresponding authors:**

43 Jianjun Ren, Department of Oto-Rhino-Laryngology and West China Biomedical Big
44 Data Center, West China Hospital, Sichuan University, Chengdu, China, Email:
45 Jianjun.Ren@scu.edu.cn

46 Yu Zhao, Department of Oto-Rhino-Laryngology and West China Biomedical Big
47 Data Center, West China Hospital, Sichuan University, Chengdu, China, Email:
48 yutzhao@VIP.163.com
49 Haopeng Yu, West China Biomedical Big Data Center, West China Hospital, Sichuan
50 University, Chengdu, China, yuhaopeng@wchscu.cn
51 Fei Chen, Department of Oto-Rhino-Laryngology, West China Hospital, Sichuan
52 University, Chengdu, China, Email: hxchenfei@163.com

53

54 **Word count:** 3634

55

56 **Funding**

57 National Natural Youth Science Foundation of China grant 82002868 (RJJ)
58 National Natural Youth Science Foundation of China grant 32100927 (YHP)
59 China Postdoctoral Science Foundation grant 2020M673250 (RJJ)
60 The Science and Technology Department of Sichuan Province grant 2022YFS0066
61 (ZYB)
62 The Science and Technology Department of Sichuan Province grant 2020YFS0111
63 (RJJ)
64 The Science and Technology Department of Sichuan Province grant 2021YFS0158
65 (YHP)
66 West China Hospital, Sichuan University grant ZYJC21027 (ZY)
67 West China Hospital, Sichuan University grant 2019HXBH079 (RJJ)
68 Sichuan University grant 2020SCU12049 (RJJ)
69 The Health Department of Sichuan Province grant 20PJ030 (RJJ)

70

71 **Conflicts of interest**

72 The authors declare no potential conflicts of interest.

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

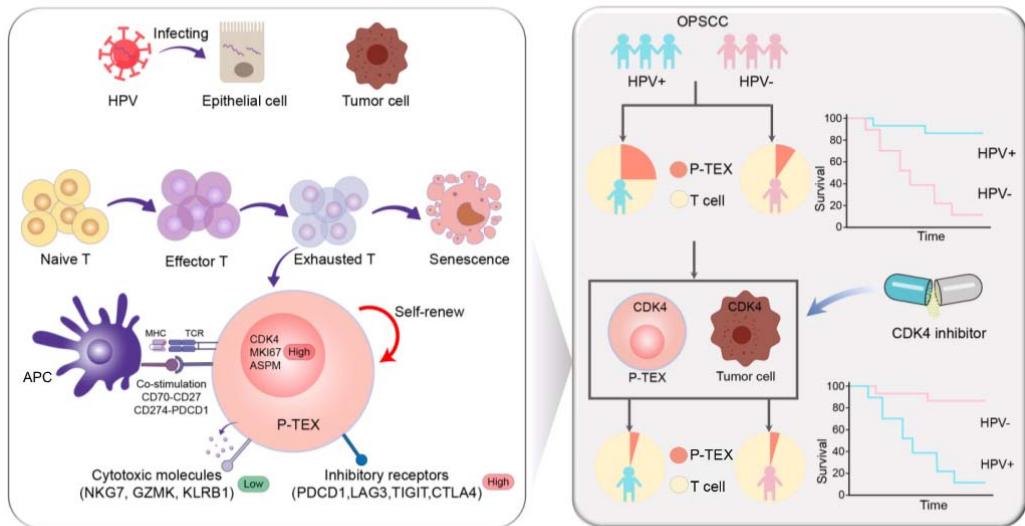
88

89

90

91 **Abstract**

92 The survival prognosis of human papillomavirus (HPV)-positive and
93 HPV-negative head and neck squamous cell carcinoma (HNSCC) is largely different,
94 and little is known about the anti-tumor mechanism of tumor-infiltrated CD8⁺
95 exhausted T cells (Tex) in HNSCC. We performed cell level multi-omics sequencing
96 on human HNSCC samples to decipher the multi-dimensional characteristics of Tex
97 cells. A proliferative exhausted CD8⁺ T cell cluster (P-Tex) which was beneficial to
98 survival outcomes of patients with HPV-positive HNSCC was identified. Interestingly,
99 P-Tex cells expressed CDK4 genes as high as cancer cells, which could be
100 simultaneously inhibited by CDK4 inhibitors and might be a potential reason for the
101 ineffectiveness of CDK4 inhibitors in treating HPV-positive HNSCC. P-Tex cells
102 could aggregate in the antigen presenting cell niches and activate certain signaling
103 pathways. Together, our findings suggest a promising role for P-Tex cells in the
104 prognosis of patients with HPV-positive HNSCC by providing modest but persistent
105 anti-tumor effects.


106

107 **Key words:** proliferative CD8⁺ exhausted T cells, tumor microenvironment, head and
108 neck squamous cell carcinoma, human papillomavirus, CDK4 inhibitor

109

110

Graphic abstract

112 **Introduction**

113 The incidence of head and neck squamous cell carcinoma (HNSCC) has continued
114 to rise and an annual increase of 1.08 million new cases is estimated by 2030, which is
115 greatly attributed to the increasing rates of human papillomavirus (HPV) infection(1-3).
116 HPV-positive HNSCC and HPV-negative HNSCC displayed markedly different
117 characteristics from pathogenesis to treatment outcomes and are visualized as two
118 distinct clinical entities(4,5).

119 T cell exhaustion within the tumor microenvironment (TME) is a newly
120 discovered phenomenon resulting from persistent antigen stimulation from chronic
121 virus infection or tumors, in which tumor-infiltrated CD8⁺ T cells experience gradual
122 alterations in their functional capacity while highly expressing multiple inhibitory
123 receptors, including PD1, TIM3, LAG3, CTLA4 and TIGIT(6,7). Recent studies have
124 revealed that heterogeneity is a hallmark of T cell exhaustion, and several distinct
125 subsets of exhausted CD8⁺ T cells (Tex) have been identified, each with unique gene
126 signatures, functional characteristics and epigenetic modifications(8,9). Meanwhile,
127 specific transitions among those subsets have also been illustrated under certain
128 circumstances and might be associated with retained effector function and enforced
129 tumor control(10,11). However, how T cell exhaustion affects the prognosis of
130 HNSCC patients and how it differs in HPV-positive and HPV-negative HNSCC remain
131 to be further clarified.

132 Recently, there has been increasing evidences showing that HPV-positive HNSCC
133 displays a T cell-inflamed phenotype distinct from its HPV-negative counterparts,
134 indicating that HPV infection is associated with increased T cell infiltration and
135 effector cell activation(12,13). Meanwhile, HPV infection has also been proven to be
136 associated with T cell exhaustion, in which HPV-positive HNSCC expressed higher
137 levels of multiple T-cell exhaustion markers such as PD1, TIM3, LAG3 and TIGIT
138 compared to HPV-negative HNSCC, suggesting of stronger antigen-specific T cell
139 immunity in HPV-positive HNSCC(12,14). However, more sophisticated T cell
140 landscapes related to the HPV status of HNSCC remain to be further clarified.

141 Cyclin-dependent kinase 4 (CDK4) inhibitors are introduced as novel drugs by
142 targeting and disrupting the CDK4-related cell cycle progression of cancer cells in
143 recent years(15,16). However, promising treatment outcomes of CDK4 inhibitors were
144 only observed in HPV-negative HNSCC rather than HPV-positive HNSCC(17-19) due
145 to the mutation differences of cell cycle related genes in cancer cells, and less attention
146 has been paid to the effects of CDK4 inhibitors on infiltrating T cells.

147 To address these questions, we applied cell-level multi-omics sequencing
148 techniques to decipher the multi-dimensional characterization of tumor infiltrating T
149 cells and its association with overall survival (OS) in human HNSCC with different
150 HPV status.

151

152

153 **Results**

154 ***P-Tex cells were identified in the transcriptomic landscape of T cells in HNSCC***

155 ***patients***

156 To decipher the multi-dimensional characterization of tumor infiltrating T cells

157 in human HNSCC, we integrated multi-omics sequencing based on 5' droplet-based

158 single-cell RNA (scRNA-seq), single-cell TCR sequencing (scTCR-seq) and spatial

159 transcriptomics in HNSCC samples (mainly oropharyngeal cell carcinoma, OPSCC,

160 the most representative type of HPV-related HNSCC), and further verified in vitro

161 (n=24, Table S1 and Figure. 1a). A total of 49,813 CD3⁺ T cells in 14 paired HNSCC

162 tumor and normal adjacent samples were obtained after quality control. And 11 T cell

163 clusters with distinct gene signatures were defined (Fig. 1b, Table S2), including four

164 CD8⁺ T cell clusters (C1, C4, C7 and C9), five CD4⁺ T cell clusters (C2: naïve CD4⁺ T

165 cells, C3: regulatory T cells [Treg], C5: T helper cells, C8: CD4-Tex, and C10: T

166 follicular helper cells [Tfh]), one $\gamma\delta$ T cell cluster (C6) and one double negative T cell

167 cluster (C0: DN, CD4⁻CD8⁻), with marker genes(20) shown in Table S3.

168 We specifically characterized marker genes of CD8⁺ T cell into several panels

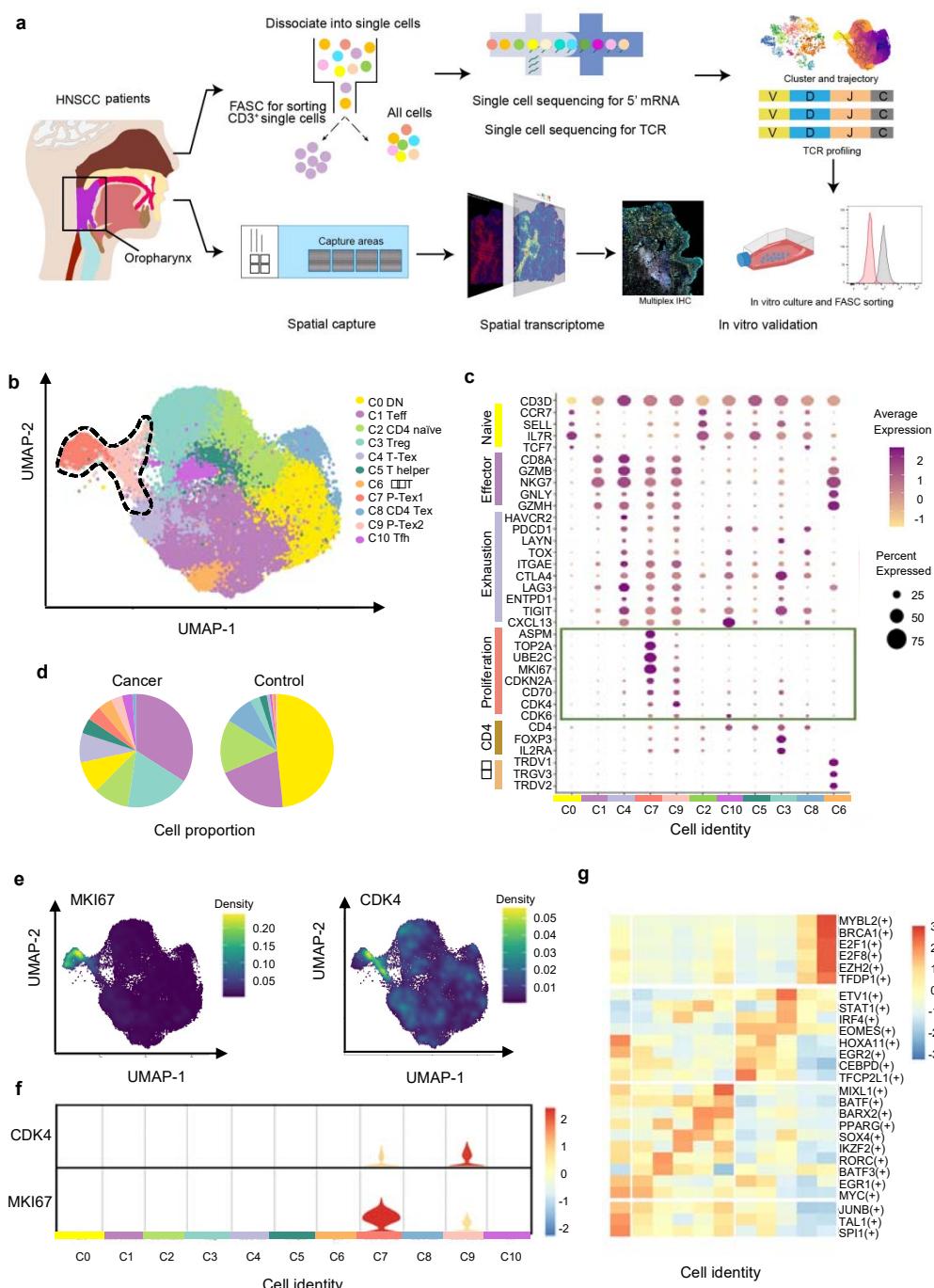
169 based on their canonical biological function (proliferation, exhaustion and cytotoxicity,

170 shown in Fig. 1c). Among the four CD8⁺ T cell clusters, C1 was characterized by

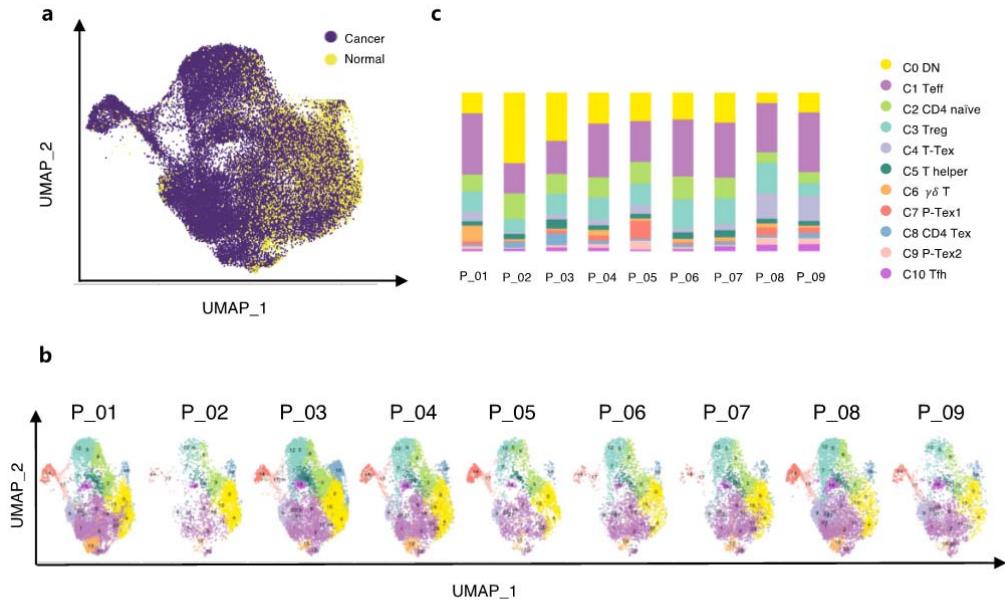
171 expressing multiple effector genes, including *NKG7*, *GZMH*, *IFNG* and *KLRG1*, with a

172 high cytotoxicity score but a low exhaustion score, thus representing effective CD8⁺ T

173 cell (Teff) (21). C4 showed high expression of checkpoint marker genes, including


174 *PDCD1*, *HAVCR2*, *LAG3*, and *TNFRSF9*, with both high cytotoxicity and exhaustion
175 scores, which was consistent with the cell identity of terminally differentiated
176 exhausted CD8⁺ T cells (T-Tex)(6). Notably, in addition to high expression of the
177 above-mentioned checkpoint marker genes, C7 and C9 also displayed high expression
178 levels of cell cycle-related genes, including *CCNA2*, *UBE2C* and *CDK4*, as well as
179 stem-like genes *MKI67* (marker gene of proliferation) and *ASPM* (involved in
180 regulation of the mitotic spindle and coordination of mitotic processes), with high
181 cytotoxicity, exhaustion and proliferation genes, featuring a gene expression profile
182 reminiscent of a previously reported Tex subset with high proliferative capacity(22),
183 which we defined as P-Tex in the present study.

184 Meanwhile, T cells appeared to exhibit distinct tissue distributions, with higher
185 proportions of Treg, Teff, T-Tex and P-Tex cells being observed in tumor tissues while
186 more DN and CD4-Tex cells being observed in adjacent normal tissues (Fig. 1d,
187 Supplementary Fig. 1a). To evaluate individual heterogeneity, we further clustered the
188 cells of each HNSCC sample and confirmed the existence of all cell clusters across all
189 samples (Supplementary Fig. 1b-c).


190 Notably, the P-Tex cluster (~2819 cells) could be further partitioned into two
191 sub-clusters, which we annotated as P-Tex1 and P-Tex2. More specifically, *CDK4* (a
192 canonical cell cycle-related marker gene) was mainly expressed in P-Tex2, whereas
193 *MKI67* (the most canonical marker gene for proliferation) was mainly expressed in
194 P-Tex1 (Fig. 1e-f), indicating that these two cell clusters might fulfill their proliferative

195 capacity through different mechanisms. Moreover, to further investigate the potential
196 upstream regulatory mechanisms in shaping the molecular characteristics of each
197 unique T cell cluster, we analyzed the transcription factor networks that driving the
198 expression of the top expression genes in each T cell cluster (shown in Fig. 1g and
199 Table S4). Specifically, MYBL2, BRCA1, E2F1, E2F8, EZH2 and TFDP1 were the
200 identified upstream regulatory transcription factors that predominantly drove the
201 expression of proliferation-related genes of P-Tex1 and P-Tex2.

202 Taken together, our clustering strategy generated 11 distinct T cell clusters in
203 HNSCC, among which P-Tex cells with both exhausted and proliferative phenotypes
204 were identified.

Figure 1. The P-Tex cell clusters identified in the T cell landscapes of HNSCC patients by scRNA-seq. **a**, The flow chart of this study. **b**, UMAP plot of all single T cells from 14 samples via 10 \times Genomics. Eleven T cell clusters with different functions are identified. **c**, Dotplot of selected T cell function-associated genes across different T cell clusters, showing both gene expression level (the color gradient) and the percentage of cells (the size of circle) in a given cluster. **d**, Pie charts of cell-type fractions identified in cancer and normal adjacent tissues, colored by cell types. **e**, The kernel density estimation plot showing the distribution of MKI67 and CDK4 genes of T cells. **f**, The gene expression levels of CDK4 and MKI67 shown by violin plots. **g**, Heatmap of the transcriptional regulators of top expressed genes in each T cell clusters.

Extended Figure 1. The extended summary of functional properties of T cell clusters in Figure 1. a, The distribution of T cells in cancer and adjacent normal tissues in UMAP plots. b, The distribution of T cells in each patient in UMAP plots. c, The distribution of cell proportions in each sample.

207 ***Functional characteristics of P-Texs***

208 To further investigate the functional characteristics of P-Tex cells, we

209 characterized the function of marker genes by comparing with Teff and T-Tex clusters.

210 Specifically, Gene Ontology (GO) enrichment analysis showed that T cell activation,

211 lymphocyte differentiation and viral gene expression were enriched in all three Tex cell

212 clusters, whereas the regulation of the cell cycle, apoptosis and certain immune

213 responses were enriched in P-Texs, showing divergent functional specialization (Fig.

214 2a). Meanwhile, The activation states of CD8 T cells were compared by evaluating

215 paired sc-RNA Seq and sc-TCR seq data, which reflects the magnitude of TCR

216 signaling driving the differentiation of activated T cells into specific T cell

217 subtypes(23). Our results showed that the T-Tex cluster was the most activated,

218 followed by the two P-Tex clusters (Fig. 2b left). In addition, CD8 T cells in tumor

219 tissues were more activated than those in adjacent normal tissues (Fig. 2b, right top).

220 And no significant difference in T cell activation states was observed between

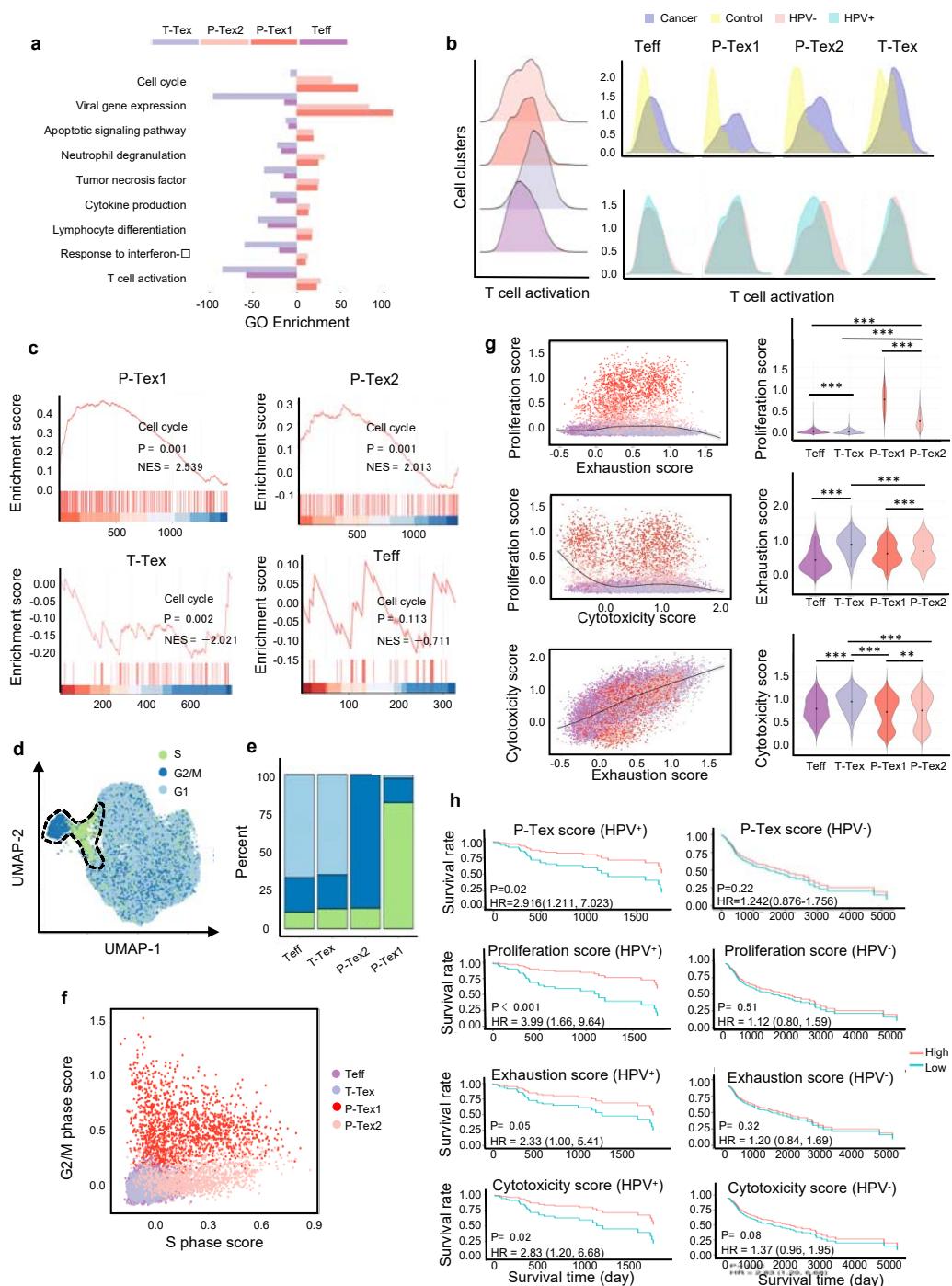
221 HPV-positive and HPV-negative samples (Fig. 2b right bottom).

222 Additionally, to further confirm that P-Texs displayed high cell cycle-related

223 function, we performed Gene Set Enrichment Analysis (GSEA) using the gene set that

224 represents the cell cycle pathway, and the results showed that two P-Tex clusters were

225 more enriched in the cell cycle signal pathway than the T-Tex and Teff clusters


226 ($p < 0.001$, Fig. 2c). To further investigate the cell cycle phase of each T cell cluster, we

227 calculated cell cycle scores and visualized them on UMAP plots (Fig 2d, Table S5).

228 P-Tex1 was mainly in G2/M phase, indicating cells were under a proliferative burst,
229 which was consistent with the high expression of proliferation marker gene *MKI67*(24),
230 whereas P-Tex2 was mainly in S phase, an essential phase for DNA replication before
231 undergoing mitosis, which was consistent with the high expression of *CDK4*
232 (initiating the G1 to S phase transition) (Fig 2e-f)(24-26). Taken together, P-Tex1 and
233 P-Tex2 might represent proliferation cells in two distinct cell cycle phases.

234 It is also noteworthy that HPV-positive HNSCC patients in TCGA (The Cancer
235 Genome Atlas) cohort with higher P-Tex scores (5-year OS: 55.8% vs 22.6%, p=0.02),
236 proliferation score (*MKI67*-related genes, 5-year OS: 49.1% vs 15.8%, p<0.001),
237 exhaustion score (*PDCD1*-related genes, 5-year OS: 56.2% vs 23.1%, p=0.05), or
238 cytotoxic score (*GZMB*-related genes, 5-year OS: 55.4% vs 21.9%, p=0.02) had better
239 survival outcomes, whereas similar trends were not observed in HPV-negative HNSCC
240 patients (Fig. 2g-h, Table S5) It is probably related to the difference in tumor
241 microenvironment between HPV⁺ vs HPV HNSCC.

242 Taken together, the P-Tex cluster displayed high expression levels of
243 proliferation- and cell cycle-related genes. More importantly, HPV⁺ positive HNSCC
244 patients with higher P-Tex score, proliferation score, exhaustion score or cytotoxic
245 score had better survival outcomes, while this trend was not observed in HPV-negative
246 HNSCC patients.

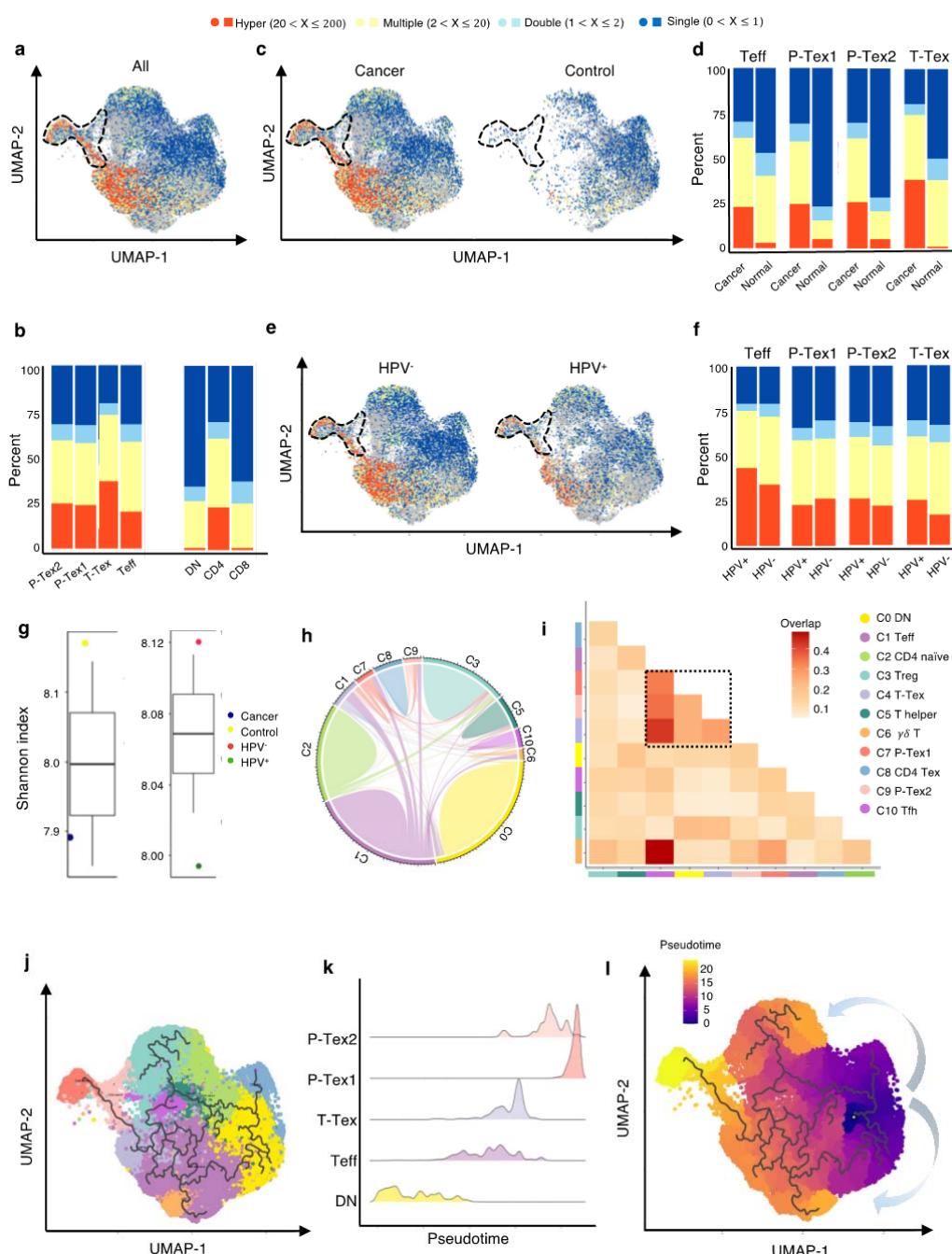
Figure 2. The comparison of functional characteristics between P-Texs and other CD8 T cell clusters. **a**, Gene ontology (GO) analysis of differentially expressed genes in each CD8 T cell clusters, colored by cell types. **b**, Histogram of activation states of all CD8 T cells (left) and CD8 T cells separated by tissue types (right top) or HPV status (right bottom) using paired single-Cell TCR Seq and RNA-Seq data. **c**, The GSEA diagrams show the enrichment profiles of cell cycle pathway in each CD8 T cell clusters. **d-f**, The distribution and scores of cell cycle phases of each CD8 T cells. **g**, The proliferation, exhaustion and cytotoxic scores of each CD8 T cell clusters. Proliferation score: averaged expression of MKI67 related genes; exhaustion score: averaged expression of PDCD1 related genes; cytotoxic score: averaged expression of GZMB related genes. **h**, The Kaplan-Meier curves show the overall survival rate of HPV+/HPV- HNSCC patients with different proliferation, exhaustion and cytotoxic scores in TCGA cohort, adjusted for age and gender.

***: $p < 0.001$, **: $p < 0.01$, *: $p < 0.05$.

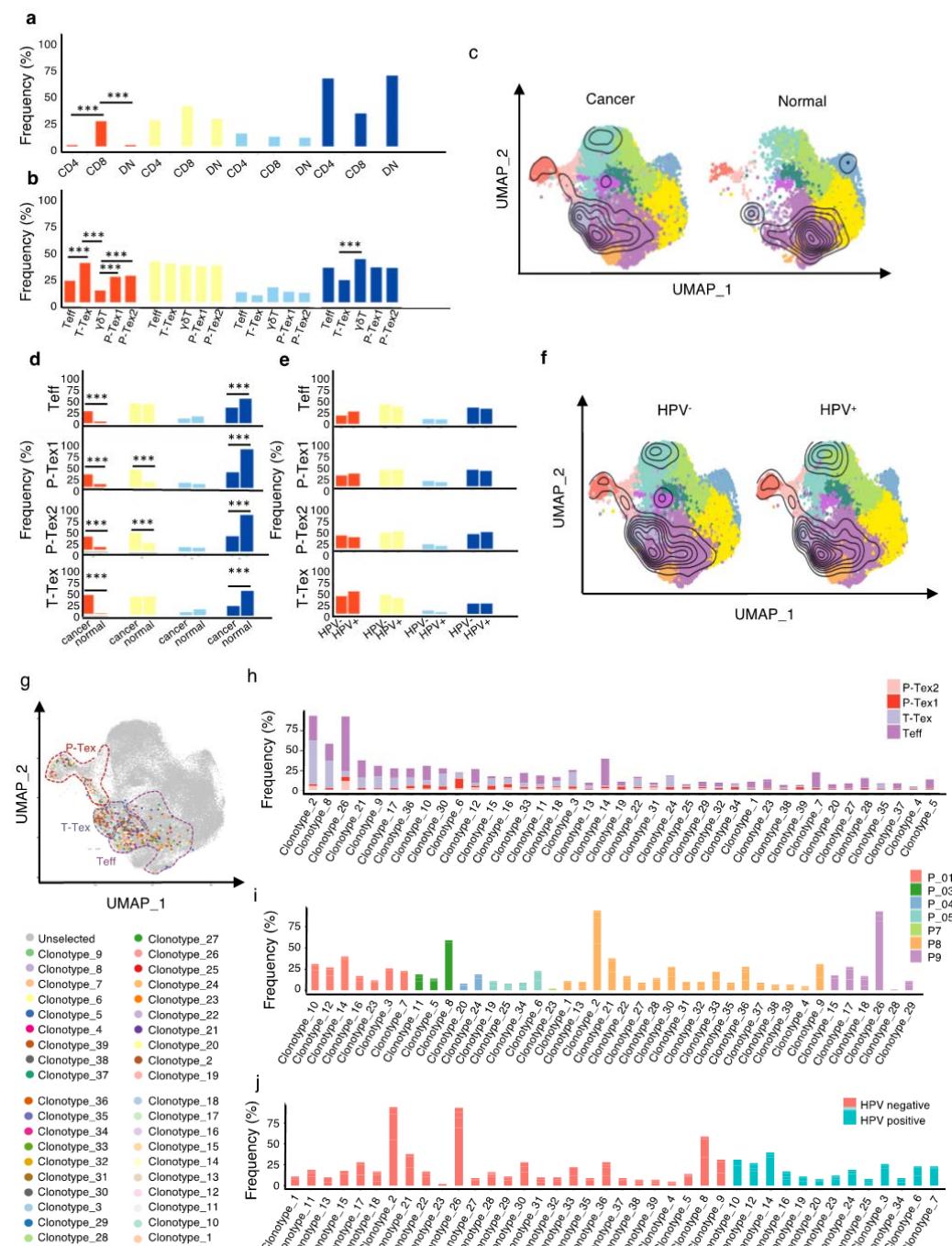
248 ***Paired scRNA-seq and TCR-seq Revealed the developmental trajectory of P-Tex***

249 Given the clonal accumulation of CD8 T cells was a result of local T cell
250 proliferation and activation in the tumor environment(27), we integrated paired
251 scRNA-seq and TCR-seq data and performed pseudotime trajectory analysis to further
252 quantitatively assess the activation states and to trace the lineage relationships of T
253 cells(28). After quality control, we obtained TCRs with both alpha and beta chains for
254 33,897 T cells, including 20,607 unique TCRs, 2,798 double TCRs and 10,492 clonally
255 expanded TCRs, with clonal sizes ranging from 2 to 162.

256 To further confirm whether the T cell clonality was associated with TME and HPV
257 status, we systematically compared the clonality by cell clusters, tissue origin and HPV
258 status, respectively. The CD8⁺ T cell clusters harbored more clonally expanded cells
259 than CD4⁺ T cell clusters and DN cell clusters in general, among which Tex harbored
260 the highest proportions of clonal cells, followed by the two P-Tex clusters, which were
261 more abundant than the Teff cells (Fig. 3a-b, Supplementary Fig. 2a-b). Our results
262 showed that hyperexpanded TCR clonotypes were more enriched in tumors than
263 adjacent normal tissues (Fig. 3c-d, Supplementary Fig. 2c-d). However, the proportions
264 of hyperexpanded TCR clonotypes of Teff, P-Tex1 and T-Tex showed no significant
265 difference between HPV-positive samples and HPV-negative samples (Fig. 3e-f,
266 Supplementary Fig. 2e-f). Correspondingly, a higher diversity of TCRs was observed
267 in adjacent normal tissues and HPV-negative samples (Fig. 3g), indicating the absence


268 of a strong antigen-specific immune response, which further confirmed the crucial roles
269 of virus and tumor play in local T cell proliferation and activation(29,30).

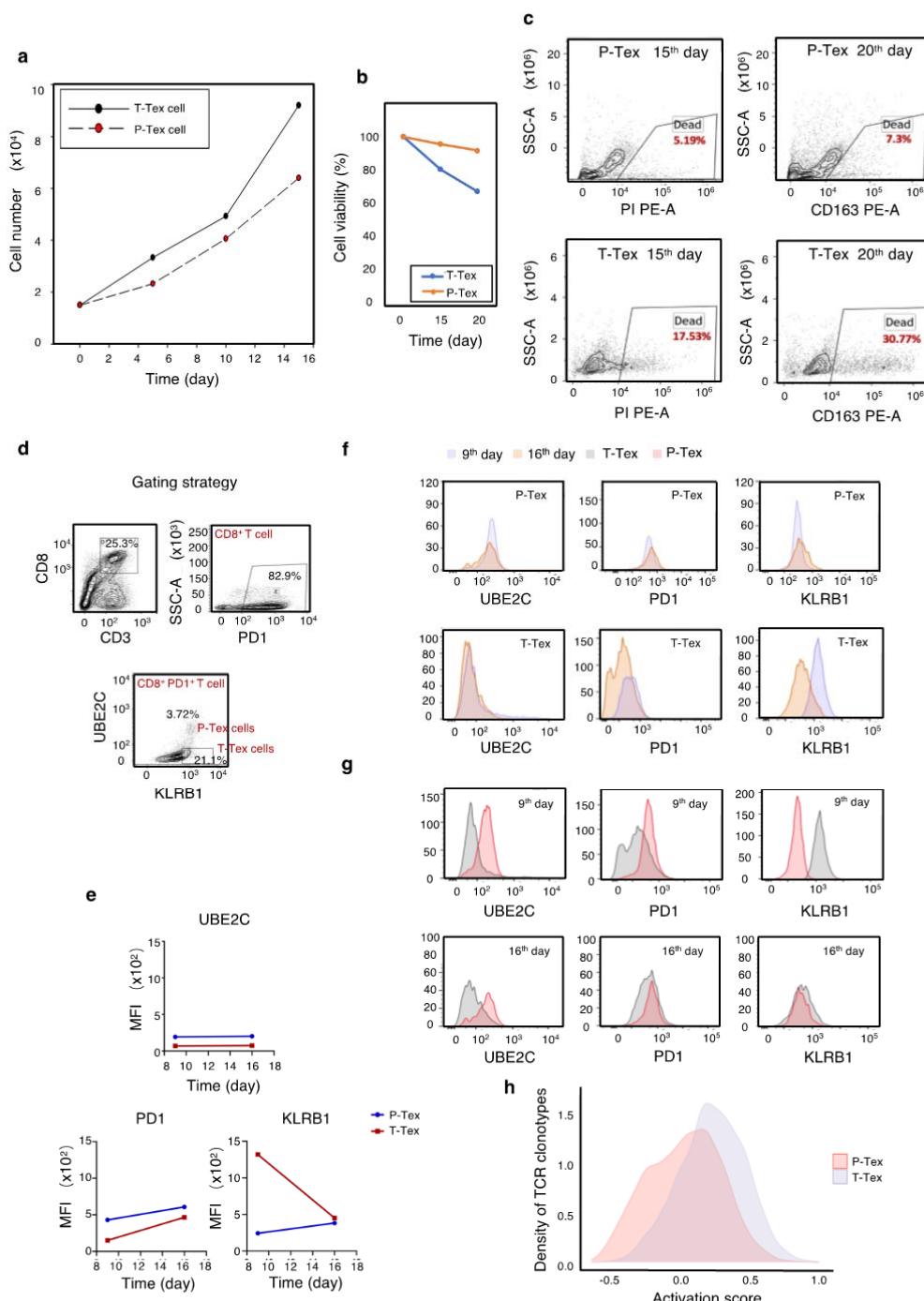
270 We further examined the TCR clonotype occupation among each cluster and
271 revealed that most of the shared TCRs were observed among the T-Tex, P-Tex and Teff
272 clusters (Fig. 3h-i, Table S6-7). The Teff cluster had higher proportion of TCRs shared
273 with the $\gamma\delta$ T (overlap coefficient, $oc=0.49$), Tex ($oc=0.43$), P-Tex2 ($oc=0.35$) and
274 P-Tex1 ($oc=0.33$) clusters, respectively, indicating they had common ancestry of origin.
275 Besides, Supplementary Fig. 2g-j and Supplementary Fig. 3a-c shows the distribution
276 of the top shared clonotypes across CD8⁺ T cell clusters, individuals and HPV status.
277 There was almost no shared TCRs across individuals, indicating the highly
278 heterogeneous characteristics of T cells among individuals.


279 To further investigate their lineage relationships, we performed pseudotime
280 analysis for CD3⁺ T cells on the basis of transcriptional similarities (Fig. 3j-l,
281 Supplementary Fig. 3d). The starting point of pseudotime was the DN cluster, with
282 CD4⁺ T cell and CD8⁺ T cell clusters differentiating toward two different directions,
283 suggesting of their distinct developmental paths. Notably, two P-tex clusters primarily
284 aggregated at the end of the pseudotime backbone of CD8⁺ T cells, and presented to be
285 a specific branch originating from T-Tex, demonstrating its specific activation state and
286 characteristic, which was distinct from other T-Tex cells. Besides, P-Tex2 was located
287 ahead of P-Tex1 on the pseudotime, which was consistent with the results in Fig. 2d-e,

288 where P-Tex2 cells mainly entered the S phase of the cell cycle (early phase), while
289 P-Tex1 mainly entered the G2/M phase (later phase).

290 Taken together, given that two P-Tex clusters were located at the end of the
291 developmental trajectory of the Teff and T-Tex cells and that P-Tex clusters partially
292 shared TCRs with the T-Tex cluster, we speculated that Teff cells transformed from an
293 activated to exhausted state (T-Tex cells), and some of the T-Tex cells could further
294 gradually transform into a unique P-Tex subpopulation with a highly specific
295 proliferation state.

Figure 3. The developmental trajectory and lineage relationships among T cell clusters. **a-f**, Single-cell TCR profiling of HNSCC in all samples (**a-b**), cancer tissues vs. normal tissues (**c-d**), HPV- vs. HPV+ (**e-f**). Bar plots show the fractions of each clonotype frequencies. The clonotype frequencies are defined as unique ($n = 1$), double ($n=2$), multiple clones ($2 < n \leq 20$) and hyper clones ($20 < n \leq 200$) according to the numbers of clonotypes. **g**, The TCR diversity of cancer tissues vs. normal tissues and HPV+ vs. HPV- samples, calculated using Shannon metric. **h-i**, Cell state transition of T cell clusters inferred by shared TCRs. The chord Diagram (**h**) showing the fraction of shared clonotypes among each cell clusters. Lines connecting different clusters are based on the degree of TCR sharing, with the width of lines representing the number of shared TCRs. The clonal overlap diagram (**i**) measures the clonal similarity among each cluster. Color gradient in the grid refers to the overlap coefficient. The higher the index score, the higher the clonal diversity. **j-l**, Potential developmental trajectory of T cells inferred by Monocle3 based on gene expressions.


Extended Figure 2, Extended summary of TCR properties of Figure 3. **a-b**, The supplementary comparison of the clonotype frequencies of clusters in each cluster (**a-b**), cancer tissues vs. normal tissues (**c-d**), HPV+ vs. HPV- (**e-f**). The clonotypes are defined as unique ($n = 1$), double ($n=2$), multiple ($2 < n \leq 20$), and hyper clonal ($20 < n \leq 200$) according to their clonotype numbers. The clonalOverlay diagrams show the clonal expansion in HPV+ vs. HPV- and cancer tissues vs. normal tissues by overlaying the cells with specific clonal frequency onto the UMAP plots in Seurat (**c and f**). The density contours indicate the frequencies of TCR, with the number of clones ≥ 3 to be the cut-off value of the outermost circle layer, and the most central circle layer represents the area with the highest TCR expansion. **g-j**, The distribution of shared CD8+ clones on the UMAP plot. Colored dots were CD8+ cells of identical clonotypes. The colored circles highlight the cluster information of each cell, as defined in Figure 1a, with fractional Teff, T-Tex and P-Tex cells sharing the same TCRs shown in colors. Bar charts show the proportion of each clonotype in each cluster (**h**), samples (**i**) and different HPV status (**j**), respectively.

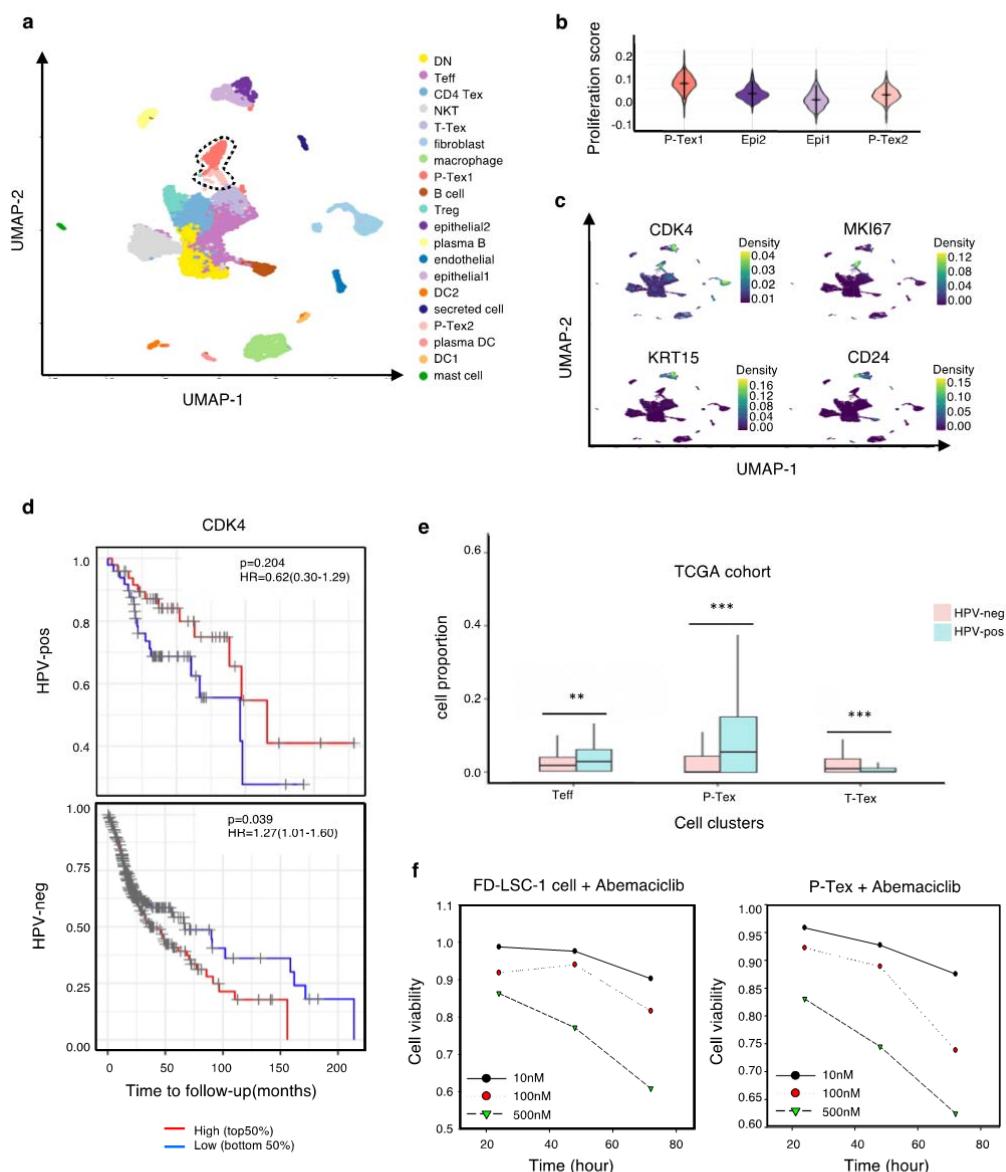
298 ***The self-renewal, proliferation capacity and cytotoxicity of P-Texs in vitro.***

299 To further verify the aforementioned function of P-Tex cells, we sorted P-Tex
300 cells ($CD3^+CD8^+UBE2C^+PD1^+$) and T-Tex cells ($CD3^+CD8^+UBE2C^-KLRB1^+PD1^+$)
301 via flow cytometry to compare their functions in vitro (Fig. 4a-g). Unexpectedly, our
302 flow cytometry results showed that the proliferation rate of P-Tex cells cultured with
303 IL-2 for 15 days and 20 days in vitro was much slower than that of T-Tex cells (Fig. 4a),
304 whereas the cell viability of P-Tex cells was much higher than that of T-Tex cells (Fig.
305 4b-c), indicating that instead of showing high proliferation capacity when stimulated in
306 vitro, the P-Tex cells mainly maintained high self-renewal capacity.

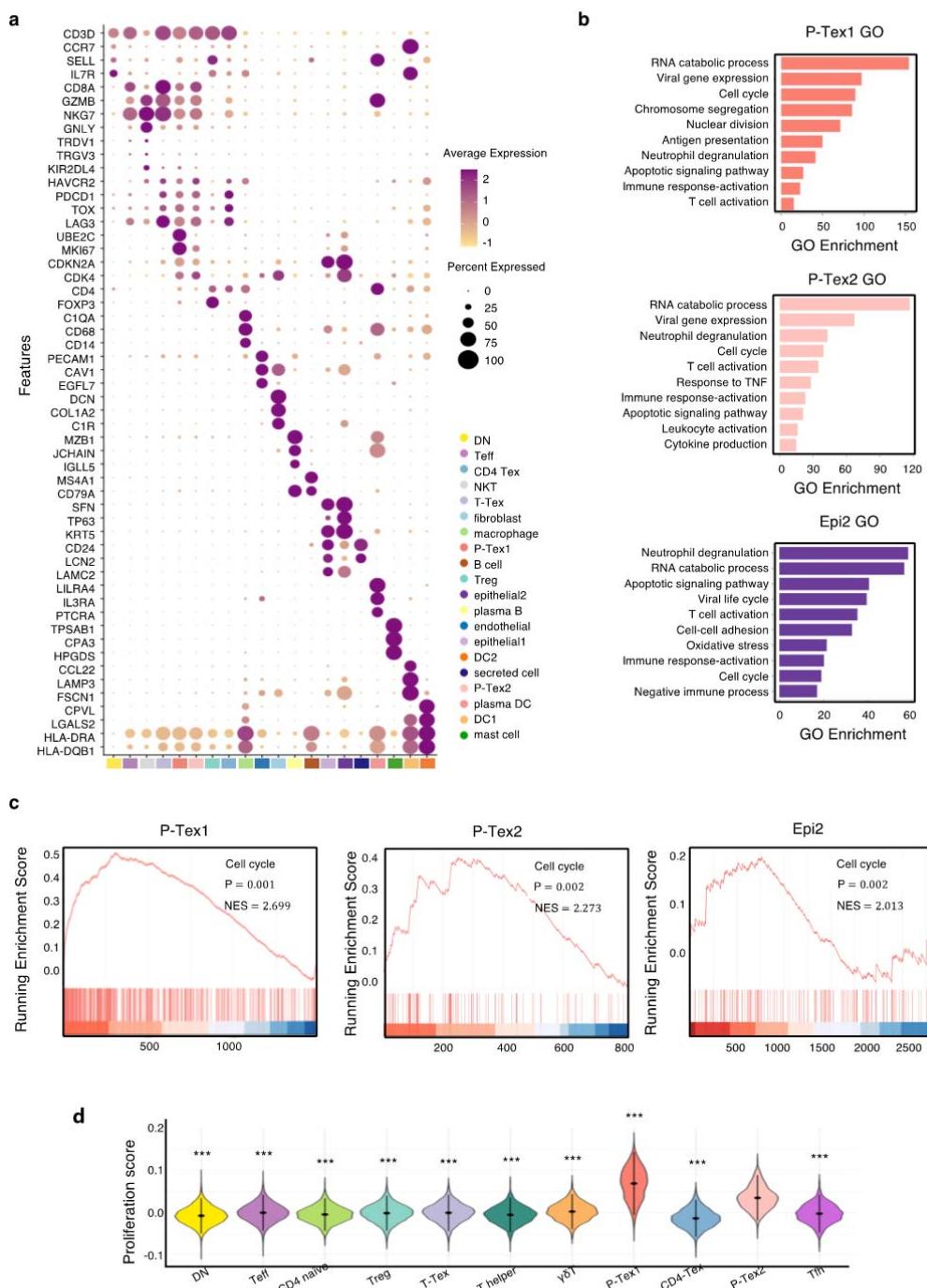
307 Moreover, P-Tex cells expressed higher levels of proliferation-related marker
308 UBE2C, as measured by flow cytometry, and the variations of UBE2C in P-Tex and
309 T-Tex cells between 9 days and 16 days were relatively stable (Fig. 4d-g). Besides,
310 compared with T-Tex cells, P-Tex cells expressed higher exhaustion-related markers
311 (PD1), and the expression of PD1 in P-Tex and T-Tex cells gradually increased from
312 Day 9 to Day 16. Meanwhile, a larger proportion of T-Tex cells produced more
313 cytotoxic-related markers (KLRB1) than P-Tex cells after stimulated with CD3/CD28
314 microbeads and IL-2 for 9 days and 16 days in vitro, whereas the expression of KLRB1
315 in T-Tex gradually decreased since Day 9, and the expression of KLRB1 in P-Tex was
316 relatively stable. Meanwhile, the results of our in vitro experiments were consistent
317 with the paired single-cell RNA-Seq and TCR-seq data showing that the activation
318 states of T-Tex cells were higher than those of P-Tex cells (Fig. 4h).

319 Taken together, P-Tex cells represent a unique sub-cluster of the exhausted CD8 T
320 cells, which maintain high self-renewal capacity in vitro and could provide modest but
321 persistent anti-tumor effects.

Figure 4. The self-renew and proliferation capacity of P-Texs in vitro. **a-c**: Comparing the proliferation (a) and self-renew (b-c) capacity of P-Tex and T-Tex cells cultured with IL-2 for 15 days and 20 days in vitro measured by CCK8 experiment. **d-g**: Representative flow cytometry assay of UBE2C, PD1, and KLRB1 of P-Tex cells after 9 and 15 days of stimulation with anti-CD3/CD28 microbeads in vitro. **d**: The gating strategies of PD1, KLRB1 and UBE2C. **e-g**: Mean Fluorescence Intensity (e) and cell count (f-g) of UBE2C, PD1, and KLRB1 in P-Tex and T-Tex cells at different days detected by flow cytometry. **h**: Histogram of activation states of P-Tex and T-Tex cells by paired Single-Cell TCR Sequencing and RNA-Seq data.


323 ***The effect of CDK4 inhibitor on P-Tex cells might be a reason for its ineffectiveness***
324 ***in HPV-positive HNSCC patients.***

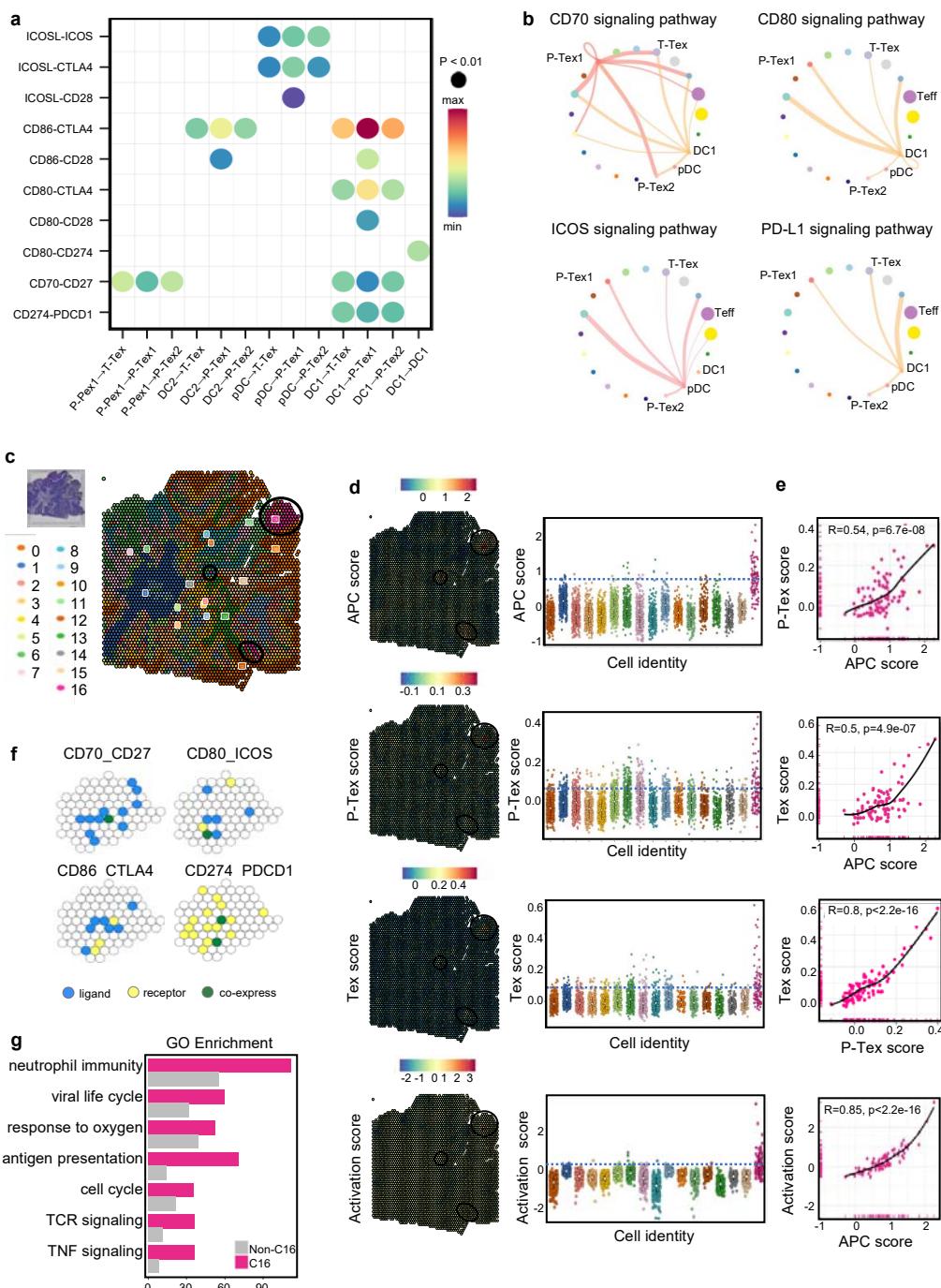
325 To better understand the anti-tumor role of P-Tex within the TME, we additionally
326 conducted 5' droplet-based scRNA-seq profiles (10 \times Genomics) for primary tumors
327 with paired adjacent normal tissues from two HNSCC patients. All biopsies were
328 histologically examined by two independent pathologists. After quality control, a total
329 of 13,515 cells from tumors (9,040 cells) and adjacent normal tissues (4,476 cells) were
330 obtained. Given the fact that higher heterogeneity of cellular compositions exists in the
331 TME than pure T cells, we recategorized all cells into 20 cell clusters according to
332 previously reported markers (Fig. 5a, Supplementary Fig. 4a, Table S8). We
333 consistently identified that P-Tex cells highly expressed proliferation- and cell
334 cycle-related genes and functions as the cancer epithelial cluster (Fig. 5b,
335 Supplementary Fig. 4b-d).


336 P-Tex clusters were predominantly tumor-derived (Supplementary Fig. 5a-b)
337 cells. We further investigated the expression and distribution of proliferation-related
338 (*CDK4*, *MKI67*) and cancer-related epithelial (*KRT15*, *CD24*) cell marker genes among
339 each cluster (Fig. 5c). Notably, *CDK4* was highly expressed in P-Tex2 cells, cancer
340 epithelial cells and fibroblasts, while *MKI67* was highly expressed in P-Tex1 clusters.
341 *CDK4* is a well-known cancer treatment target, and *CDK4* inhibitors (e.g., abemaciclib
342 and palbociclib) have demonstrated cytostatic activity in HPV-negative HNSCC,
343 whereas their effects on HPV-positive HNSCC are not obvious(17,18,31). And it was

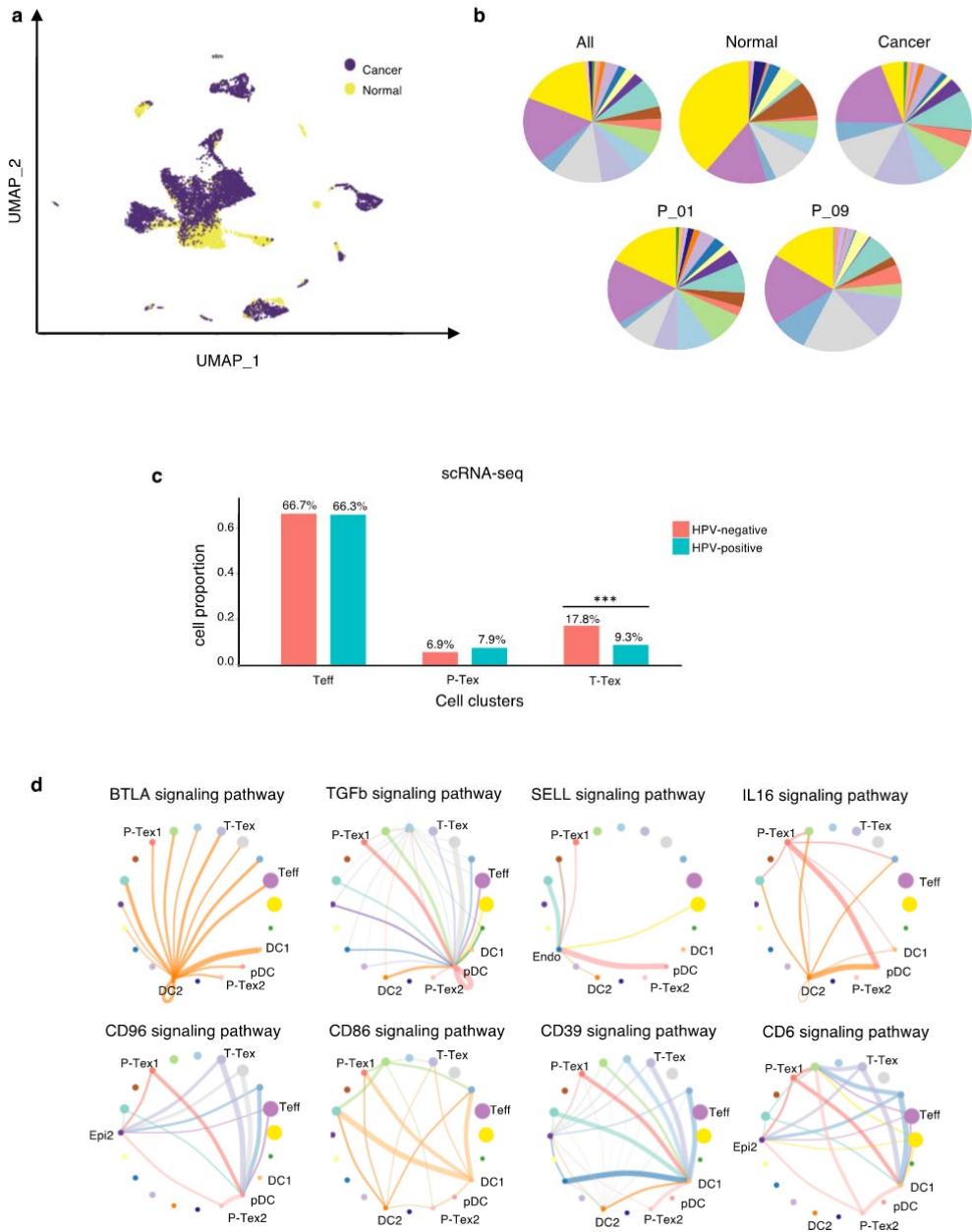
344 interesting that HPV-positive HNSCC patients with higher *CDK4* expression levels
345 showed better survival than patients with lower *CDK4* expression, whereas
346 HPV-negative HNSCC patients with higher *CDK4* expression levels showed worse
347 prognosis (Fig. 5d). Besides, compared with HPV-negative patients, the proportion of
348 P-Tex was higher in the TME of HPV-positive HNSCC patients (TCGA cohort, Fig. 5e,
349 Supplementary Fig. 5c, Table S9). These findings raised the question of whether P-Tex
350 cells that were beneficial to the prognosis of HPV-positive HNSCC patients would be
351 simultaneously suppressed by *CDK4* inhibitors.

352 To answer this question, we compared the cell viability of P-Tex cells and cancer
353 epithelial cells by culturing with abemaciclib in vitro, respectively. As expected,
354 abemaciclib inhibited the cell viability of both cancer cells (FD-LSC-1 cells) and P-Tex
355 cells (Fig. 5f). Therefore, we speculated that the inhibition of *CDK4* inhibitor on the
356 cell viability of P-Tex cells (which were beneficial to the survival prognosis of
357 HPV-positive HNSCC patients) might be a potential reason why *CDK4* inhibitors were
358 ineffective in treating HPV-positive HNSCC patients.

Figure 5. The expression of CDK4 gene in P-Tex2 cluster is associate with the treatment outcomes of HPV+ HNSCC patients. **a**, Single-cell transcriptomic profiling of HNSCC TME. Twenty cell clusters are identified, colored by cell types. **b**, The proliferation status of P-Tex and epithelial cells in violin plot. **c**, The kernel density estimate distribution of proliferation markers (CDK4 and MK167) and epithelial cancer cell markers (KRT15 and CD24) in UMAP plots. **d**, The overall survival rate of HPV+/HPV- HNSCC patients in TCGA cohort related to the expression levels of CDK4 gene, adjusted for age and gender. **e**, The proportion of P-Texs, T-Tex and TEFF clusters in HPV+ and HPV- samples in TCGA cohort by using the deconvolution algorithm. Marker genes that were used to define cell clusters in Figure 5a are deconvoluted into the TCGA data to obtain the proportion of P-Texs, T-Tex and Teff clusters in the TCGA cohort. **f**, The cell viability of P-Tex and cancer epithelial cells assessed by CCK8 experiment after Abemaciclib treated in vitro.



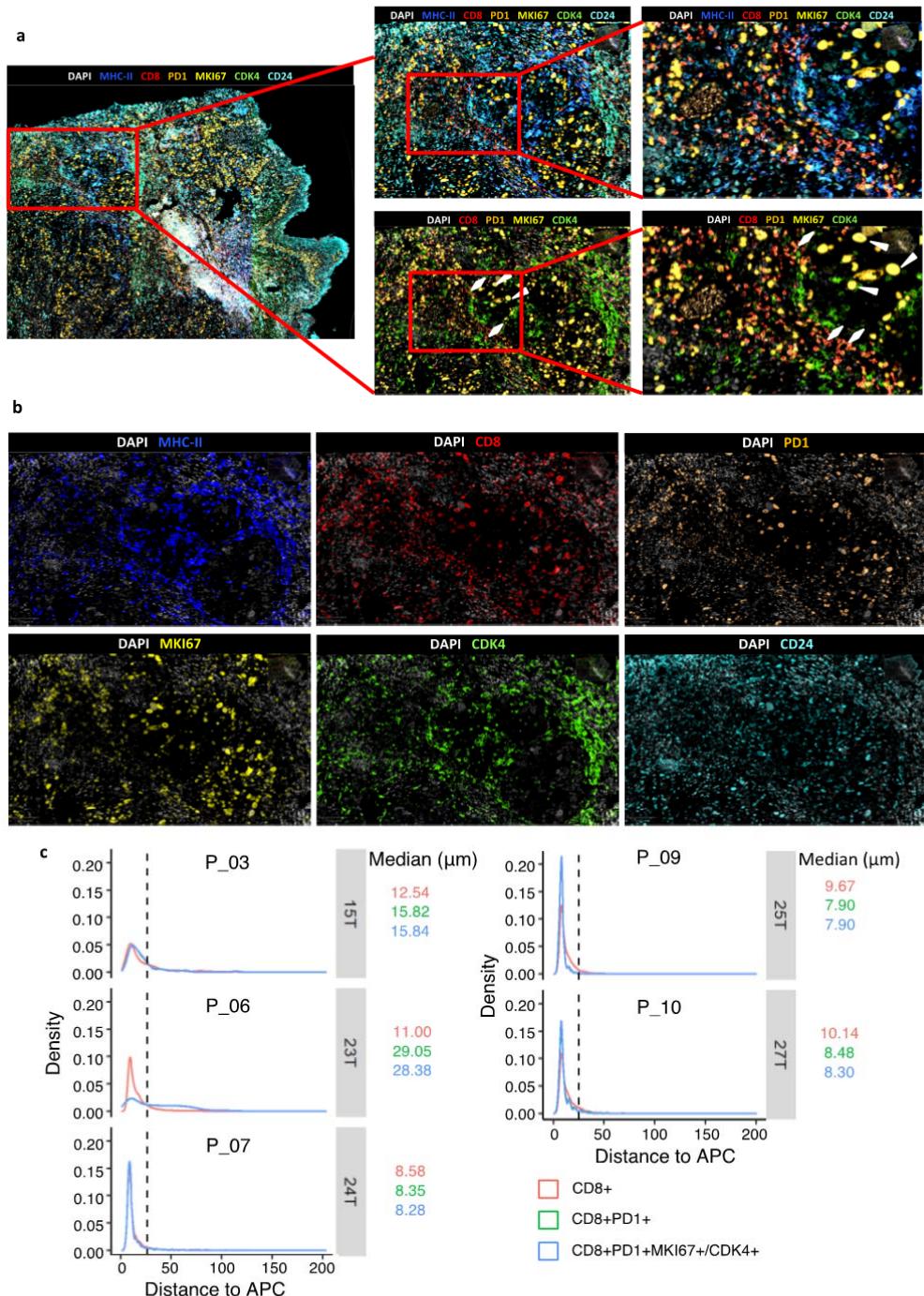
Extended Figure 4. The extended summary of functional properties of cell clusters in Figure 5. **a**, Average expression of selected T cell function-associated genes across different cell clusters. **b**, Gene ontology (GO) analysis of differentially expressed genes in two P-Tex and cancer epithelial cell clusters. **c**, The GSEA diagrams show the enrichment of cell cycle genes in P-Tex clusters and cancer epithelia cluster. **d**, The proliferation status of each T cell cluster.


361 **The cell–cell interactions between T cells and APCs in the HNSCC TME.**

362 To determine the underlying mechanism by which P-Tex cells fulfill their
363 proliferation-related and anti-tumor function, we systematically explored the crosstalk
364 between T cells and other cells in the HNSCC tumor microenvironment (TME). The
365 results showed that the interactions between P-Tex and Tex clusters and APCs
366 (especially DCs) in the HNSCC TME were mainly enriched in T cell activation and
367 proliferation signaling pathways, such as CD70-, CD80-, ICOS- and PD-L1-related
368 signaling pathways (Fig. 6a-b, Supplementary Fig. 5d, Table S10). Given the fact that
369 the colocalization of APCs and T cells is the precondition for fulfilling their function
370 related to antigen presentation and T cell activation, we further conducted spatial
371 transcriptome (ST) analysis for representative fresh HNSCC tumor (P_08) to verify
372 their spatial distribution characteristics. We identified 17 spatial cluster areas, among
373 which cluster 16 were defined as APC area (Fig. 6c). The P-Tex and Tex cells were
374 characterized by the co-localization in the APC aggregation area with significantly
375 higher P-Tex scores and Tex scores than other non-APC areas ($P<0.001$), and the
376 correlations among the three scores in the APC area were higher than those in other
377 non-APC areas. As expected, the activation score of T cells were higher in APC area
378 (Fig. 6d-e, Supplementary Fig. 6, Table S11). Besides, the aforementioned ligand–
379 receptor interactions of T cell activation and proliferation signaling pathways
380 (CD70-CD27, CD80-ICOS, CD86-CTLA4, CD274-PDCD1) were also detected in the
381 APC areas (Fig. 6f). We also observed enriched signaling pathways in APC areas

382 involving the cell cycle, neutrophil activation and RNA splicing (Fig. 6g), supporting
383 that these antigen-presenting cells play a role in modulating the immune response
384 within the TME by promoting T-cell activation(32,33).

Figure 6. The cell-cell interactions between T cells and APC cells are enriched in the proliferation and cell activation pathways in HNSCC TME. **a**, The communication probabilities mediated by selected ligand–receptor pairs among different cell types. The color gradient shows the level of interaction. **b**, Network circle graphs visualize the inferred communication network of signaling pathways among different cell clusters derived by ligand–receptor interactions. The color of lines are consistent with the ligands. The width of lines are proportional to the interaction strength, and the circle sizes are proportional to the number of cells in each clusters. **c**, The spatial transcriptomic landscape of representative HNSCC samples. **d–e**, P-Tex and Tex features were co-expressed in APC area (cluster 16). The circles in SpatialDimPlot (**d**, left) represent APC, P-Tex and Tex scores enriched in the APC area (cluster 16). The Tex and P-Tex scores were higher in the APC aggregation area (**d**, right). The correlation of P-Tex, Tex, Activation scores and APC scores in the spatial transcriptome (**e**). **f**, Spatial feature plots of selected ligands–receptor interactions enriched in APC area. Spatial feature plots showing the expression pattern of single ligand genes (CD70, CD80, CD86, CD274, yellow spots), single receptor genes (CD27, ICOS, CTLA4, blue spots) and co-expression pattern (green spots) in APC area. **g**, GO analysis identified the enriched gene functions in APC area of spatial transcriptome.



Extended Figure 5. The extended summary of function properties of cell clusters in Figure 5. **a**, The distribution of cells in cancer and normal tissues in UMAP plots. **b**, The proportion of each cell cluster in all samples, cancer vs. normal tissue samples, and individual samples, colored by cell types. **c**, Comparing the proportion of P-Texs, T-Tex and Teff clusters in HPV+ and HPV- samples in single-cell sequencing data. **d**, The supplementary cell-cell interactions of HNSCC TME for Figure 6b.

Extended Figure 6. The correlation of Tex, P-Tex and Activation scores with APC scores for each cluster in spatial transcriptomics.

388 To further confirm the ST results (transcriptomic level) at the proteomic level, we
389 performed multiplex immunofluorescence (mIF) of both canonical APC markers
390 (MHC-II⁺) and selected markers for P-Tex cells (CD8⁺PD1⁺CDK4⁺/MKI67⁺), bulk
391 Tex cells (CD8⁺PD1⁺CDK4⁺MKI67⁺) and bulk CD8⁺ T cells (CD8⁺) on
392 formalin-fixed paraffin embedded (FFPE) tissue originating from HNSCC patients
393 (Fig. 7a-b). Next, we explored average distances of APCs to P-Tex cells, bulk Tex
394 cells and bulk CD8+ T cells (Fig. 7c), respectively. As expected, 90% of the P-Tex
395 cells, bulk Tex and bulk CD8+ cells enriched within a distance of 25um from APCs,
396 forming an intra-tumoral niche(34).

Figure 7. The spatial characteristics of APC, pro-Tex cells and Tex cells in the HNSCC TME. **a-b**, Representative example of HNSCC tumor stained by multiplex IHC, with white triangles and rhombus showing the Texs and P-Tex aggregates in the APC area, respectively. **c**, Measured distances to APC (MHCII+) cells from CD8+ T cells, CD8+PD1+ T cells (Tex cells) or CD8+PD1+MKI67+/CDK4+ T cells (P-Tex cells) in five representative samples. The dashed lines represent the cutoff distance of 25 μ m, which indicate that 90% of CD8+T, Tex or P-Tex cells are enriched within a distance of 25 μ m from APCs.

398 Taken together, P-Tex cells were enriched in the APC aggregation areas, and the
399 signal pathways related to T cell activation and proliferation were activated in these
400 areas, indicating that P-Tex might act as a specific T cell pool that provides modest
401 but persistent effects through its interactions with APCs.

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417 **Discussion**

418 Our current study provided a comprehensive multi-omics characterization of over
419 49,000 tumor-infiltrating CD3⁺ T cells in HNSCC patients. A special novel P-Tex
420 cluster that expressed high levels of proliferation- and cell cycle-related genes as well
421 as cytotoxic and checkpoint molecules was identified. Our results showed that
422 HPV-positive HNSCC patients who had higher proportions of P-Tex cells had a better
423 survival prognosis. Unexpectedly, we also found that P-Tex cells expressed CDK4
424 genes as high as cancer cells, which could be simultaneously inhibited by the CDK4
425 inhibitors. Therefore, we speculated it might be a potential reason for the
426 ineffectiveness of CDK4 inhibitors in treating HPV-positive HNSCC. Furthermore,
427 P-Tex cells were found to be aggregated in the APC areas where their T cell activation
428 and proliferation signaling pathways were activated. Together, our findings reveal a
429 promising role for P-Tex cells in the prognosis of HPV-positive HNSCC patients by
430 providing modest but persistent anti-tumor effects.

431 There is accumulating evidences showing that heterogeneity is a hallmark of T
432 cell exhaustion, and a typical three-stage differentiation trajectory
433 (progenitor-transitional-terminal) has been established to depict the corresponding
434 spatiotemporally sequential alterations of gene signatures, functional characteristics as
435 well as epigenetic modifications(9,35). Despite several previous studies have identified
436 similar proliferation Tex clusters in chronic LCMV-infected mouse models using
437 scRNA-seq, little attention was paid to their potential roles in anti-tumor

438 immunity(8,22,36). In this sutudy, we systematically investigated the functional
439 characteristics and developmental trajectory of P-Tex cells by comparing with other
440 CD8⁺ T cell clusters. Our results suggested that P-Tex was an independent branch of
441 Tex cells and might act as a T cell pool, providing modest but persistent anti-tumor
442 immunity through its highly specialized self-renewal and cytotoxic capacity. However,
443 this beneficial on long-term survival outcomes was only observed in HPV-positive
444 HNSCC who had higher proportion of P-Tex.

445 CDK4/6 inhibitors (e.g., palbociclib, ribociclib and abemaciclib) are promising
446 drugs for various cancers(37), working by specifically inhibiting CDK4/6 proteins,
447 blocking the transition from the G1 to the S phase of the cell cycle and preventing
448 cancer cell progression(38). Notably, *CDK4*, which was highly expressed in cancer
449 cells, was also found to be highly expressed in the P-Tex cells. Our in vitro results
450 showed that CDK4 inhibitors could simultaneously inhibit the cell viability of both
451 cancer cells and P-Tex cells. Due to the fact that P-Tex cells was benefit to the
452 prognosis of HPV-positive HNSCC patients, we speculated that the inhibition of CDK4
453 inhibitors on P-Tex cells might be one of the reasons why promising treatment
454 outcomes of CDK4 inhibitors were not observed in HPV-positive HNSCC
455 patients(17-19).

456 Overall, a novel promising P-Tex cluster, which was mainly identified in APC
457 areas of TME, was beneficial to the survival prognosis of HPV-positive HNSCC.,

458 Besides, the inhibitory effect of CDK4 inhibitors on P-Tex cells helps clarify its
459 ineffectiveness in HPV-positive HNSCC patients.

460

461 **Materials and Methods**

462 **Ethical statement**

463 This study was conducted in accordance with the Declaration of Helsinki (as
464 revised in 2013) and was approved by the Biomedical Research Ethics Committee of
465 West China Hospital (2021-908), with the individual consent for each participant.

466 **Specimen collection and processing**

467 Patient's information was summarized in Table S1. HNSCC tumor tissues and
468 paired adjacent normal tissues were collected during the surgery. Then the tissues
469 were rinsed by 1X PBS, with surrounding necrotic areas being carefully removed and
470 were cut into small pieces of 2–4 mm and reserved in the mixture of 1X DMEM
471 medium (Gibco) and Penicillin-Streptomycin solution (Hyclone). The remaining
472 tissues were fixed into formalin fixed paraffin-embedded blocks (FFPE) for HE
473 staining and multiplex immunofluorescence.

474 **Preparation of single cell suspensions**

475 The tissue pieces were rapidly transferred into the gentleMACS C Tube
476 containing Human Tumor Dissociation Kit (Miltenyi Biotec, #130-095-929)
477 according to the manufacturer's recommendation. The dissociated cells were filtered
478 through 40-μm cell strainers to remove clumps. Cell pellets were resuspended in
479 binding buffer after centrifuged and sorted via human CD3 MicroBeads (Miltenyi
480 Biotec, #130-050-101) according to the manufacturer's recommendation (Note: as for
481 the experiment of sc-RNA seq of overall cells, CD3 sorting was not needed). The
482 overall cells and the sorted CD3⁺ T cells were separately resuspended in HBSS
483 (Gibco) plus 0.04% bovine serum albumin (BSA; Sigma-Aldrich) and tested for cell
484 viability. Cell viability >80% was required for subsequent library constructions.

485 **Library construction and sequencing**

486 Sc-RNA seq was performed using Chromium Single Cell 5' Gel Bead and
487 Library Construction Kit (10x Genomics, #PN-1000006, PN-1000020) and Single
488 Cell V(D)J Enrichment Kit Human T cell (10x Genomics, #PN-1000005). Reverse
489 transcription, cDNA recovery, cDNA amplification and library construction were
490 performed according to the manufacturer's protocol. The constructed libraries were
491 sequenced on NovaSeq 6000 (Illumina) with paired-end sequencing and single
492 indexing.

493 **Quality control and preprocessing of sequencing data**

494 Cell Ranger count (v3.0)(39) was used to process the raw FASTQ files, align the
495 sequencing reads to Ensembl GRCh38 reference genome
496 (<http://cf.10xgenomics.com/supp/cell-exp/refdata-cellranger-GRCh38-3.0.0.tar.gz>)
497 and exclude background noise to generate a filtered UMI expression matrix for each
498 cell. The package Seurat (v4.0.4)(40) were used to filter cells that were empty
499 droplets or doublets and that have >5% mitochondrial counts. Next, we normalized
500 the expression matrix via "LogNormalize" and log-transform method. Then, we apply
501 a linear transformation to prepare the expression matrix for next step dimensional
502 reduction.

503 **Unsupervised clustering of cells and uniform manifold approximation and
504 projection (UMAP) visualization**

505 The high cell-to-cell variable features (top 2000) between cells were used as input
506 to perform Principal Component Analysis (PCA) on the scaled matrix. Subsequently,
507 we employed Harmony (v1.0, R package)(41) to integrate multiple samples and the
508 top 30 dimensions were selected for UMAP with the reduction of 'harmony'.

509 We performed Seurat to cluster cells using the Louvain algorithm. The previous
510 reported marker genes (Table S3) were used for the cell cluster annotation with gene
511 functional description and gene expression. Nebulosa (v1.3.0, R package)(42) was
512 applied to perform gene kernel density estimation and visualize cell features on
513 UMAP plot.

514 **Differential expression and analysis of signaling pathways**

515 To characterize the function of defined clusters, we used Seurat to calculate
516 differentially expressed genes (DEGs) among each cluster, identified marker genes as
517 DEGs with adjusted p value <0.05 and put marker genes into clusterProfiler (v4.0.2,
518 R package)(43) to perform Gene Ontology (GO) enrichment analysis ($p <0.01$) and
519 Gene Set Enrichment Analysis (GSEA) and visualization.

520 **Transcription factor regulatory network analysis**

521 To predict the gene regulatory network within cell clusters, we used previous
522 selected top 2000 variable features-barcode matrix from scRNA-seq data as input and
523 applied pySCENIC (v0.11.2)(44) to infer the network activity in each cell cluster.

524 **Cell score (CS) calculation**

525 We applied AddModuleScore function embedded in Seurat to calculate the
526 specific cell scores in different clusters, which was defined as: the average gene
527 expression of specific gene panel in each cluster, subtract the average gene expression
528 of random control gene sets (45)(Table S3). Functional module scores were based on
529 the expression levels of top 30 genes which were highly correlated with GZMB
530 (cytotoxicity score), PDCD1 (exhaustion score) or MKI67 (proliferation), respectively.
531 TCR-dependend T cell activation score was calculated based on the activation gene
532 signature(46). Proliferation score was calculated based on the genes enriched in the
533 GO molecular function term of “cell cycle phase transition”. The specific cluster
534 score (P-Tex, Tex and APC score) were calculated based on marker genes of each
535 cluster listed in Table S3.

536 We assigned cell cycle scores based on the expression of G2/M and S phase
537 marker genes and predicted the classification of each cell in either G2/M, S or G1
538 phase in the CellCycleScoring function embedded in Seurat.

539 **Trajectory analyses**

540 To determine the potential development lineages of T cell subclusters, we
541 converted the previous Seurat object into Monocle3 (v1.0.0, R package)(47) object and

542 inferred the trajectory of T cell subclusters at its proper position in pseudotime. Besides,
543 to visualize the major non-linear components of variation across cells, we applied
544 destiny package (v3.1.1, R package)(48) to perform the 3D diffusion maps to compute
545 the diffusion components of each cell type.

546 **TCR Clonotype analysis**

547 Cell Ranger VDJ pipeline (v6.1.1, 10 \times Genomics) was used to process the raw
548 TCR sequence data with default augments and align them to the Ensembl GRCh38
549 reference

550 (<https://cf.10xgenomics.com/supp/cell-vdj/refdata-cellranger-vdj-GRCh38-alts-ensem>
551 bl-5.0.0.tar.gz). We performed scRepertoire (v1.3.2, R package)(49) to integrate the
552 TCR sequence data with mRNA expression data and used absolute frequency of V(D)J
553 genes to define clonotype groups. The total frequency assigned for different extents of
554 clonal expansion were categorized as follows: Hyperexpanded ($20 < X \leq 200$), Multiple
555 ($2 < X \leq 20$), Double ($1 < X \leq 2$), Single ($0 < X \leq 1$).

556 **Ligand–receptor interactions**

557 To understand communications among tumor cell clusters, we applied CellChat
558 (v1.1.3, R package)(50) to identify the cell-cell signaling links, inferred the cellular
559 communication network and visualized the major ligand-receptor interaction between
560 each cell cluster.

561 **Library construction of spatial transcriptome**

562 Representative HNSCC tumor samples were collected for the spatial
563 transcriptomic sequencing. Samples were cut into 6.5 x 6.5 mm pieces, embedded in
564 Optimal Cutting Compound (OCT) media and quickly frozen on dry ice. The frozen
565 tissues were cryosectioned at 10- μ m thickness by using the Thermo Scientific CryoStar
566 NX50 cryostat and were placed in the capture area frames on the 10x Visium Spatial
567 slides. Each sample slide was stained with H&E (Hematoxylin Dako #S3309, Eosin,
568 Dako #CS701, bluing buffer #CS702) and the brightfield images were captured via
569 Leica whole-slide scanner at 10X resolution.

570 Following tissue permeabilization, reverse transcription and cDNA amplification
571 were processed by using Reagent Kit (10 \times Genomics, #PN-1000184,
572 PN-1000193). Visum spatial libraries were constructed using Visum Spatial Library
573 Construction kit (10 \times Genomics, #PN-1000184) according to the manufacturer's
574 protocols. Finally, the libraries were sequenced using the Illumina Novaseq6000 at
575 least 100,000 reads per spot via pair-end 150 bp (PE150) reading strategy (performed
576 by CapitalBio Technology, Beijing).

577 **Functional scoring and visualization of spatial transcriptome data**

578 We performed alignment, filtering, barcode counting, and UMI counting by the
579 Spaceranger count (v1.3.0) to generate feature-barcode matrix. We performed
580 normalization, high-variance features detection (top 2000 genes), dimensionality
581 reduction and clusters identification (resolution = 1.0) for the spatially barcoded gene
582 expression data via the standard Seurat pipeline. The P-Tex, Tex and APC scoring
583 algorithms of spatial transcriptome were similar to the module scoring algorithm of
584 scRNA transcriptome (AddModuleScore) and the gene list of each module was list in
585 Table S5. Co-localization of P-Tex, Tex and APC scores were verified by cor.test (stats,
586 v3.6.2, R package)(51).

587 **Multiplex immunohistochemistry**

588 Ten formalin-fixed paraffin-embedded tissue (FFPE) of HNSCC tumors were
589 sectioned to 4- μ m thick for the subsequent multiplex immunohistochemistry via the
590 OPAL Polaris system (Akoya Biosciences). After deparaffinization and hydration, the
591 FFPE slides were manually stained with the CD8 (clone C8/144B, CST, #70306S),
592 PD-1 (clone D7D5W, CST, #84651T), anti-Ki67 (clone SP6, Abcam, #ab16667),
593 CDK4 (clone D9G3E, CST, #12790), CD24 (10600-1-AP, Proteintech, #10600-1-AP),
594 Anti-EPCAM (clone EPR20532-225, Abcam, #ab223582) and Anti-HLA-DR (clone
595 EPR3692, Abcam, #ab92511) antibodies. The sections were counterstained with
596 spectral DAPI (Akoya Biosciences). The stained slides were imaged and scanned using
597 the Vectra Polaris multispectral imaging system.

598 **Cell staining strategies for flow cytometry**

599 Single cell suspensions (100 μ L) of HNSCC tumor tissues were stained with CD3
600 (BD PharmingenTM, #555332), CD8(CST, #300908), PD1(Biolegend, #329920),
601 UBE2C (Santacruz, #Sc271050), and KLRLB1(Biolegend, #339917) antibodies at 4 °C
602 for 30 min under dark conditions. And 7-Aminoactinomycin D (7-AAD) was used for
603 live/dead discrimination. P-Tex cells were defined as 7AAD-CD3⁺CD8⁺PD1⁺UBE2C⁺
604 cells and T-Tex cells were defined as 7AAD-CD3⁺CD8⁺PD1⁺KLRLB1⁺UBE2C⁻ cells.

605 **In vivo cell function assays**

606 *Cell culture and proliferation assay*

607 The sorted P-Tex cells and T-Tex cells were cultured in RPMI media containing 10%
608 FBS, penicillin, streptomycin and 20 IU/mL IL-2, and stimulated with T Cell TransAct
609 (Diluted at 1:100, T Cell TransActTM, human, Miltenyi Biotec, #130-111-160), with
610 fresh medium replaced every 3 days. After 14 consecutive days, proliferation rate of
611 cells was assessed by flow cytometry.

612 *Self - renew assay*

613 The sorted P-Tex and T-Tex cells were cultured in the RPMI media containing
614 10%FBS, human IL-2 (20 IU/mL), penicillin and streptomycin in 96-well plates
615 (15,000 cells/well). At the 5th, 10th and 15th day of growth, cell counting was performed
616 by flow cytometry. Cell viability was determined by propidium iodide (PI) staining on
617 the 15th and 20th day of cell growth. And on the 9th and 16th day, P-Tex and T-Tex cells
618 were stained by UBE2C (Santacruz, #Sc271050), PD1 (Biolegend, #329920), KLRLB1
619 (Biolegend, #339917) and the protein expression was detected by flow cytometry.
620 Software FlowJo was used for data analysis.

621 *CDK4/6 inhibition test*

622 The sorted P-Tex and T-Tex cells (50000 cells/well) and the cancer cell line
623 (FD-LSC-1, 4000 cells/well, donated by State Key Laboratory of Biotherapy, West
624 China Medical School, Sichuan University)(52) were transferred into 96-well plates,
625 treated with Abemaciclib in gradient concentrations (0nM, 10nM, 100nM and 500nM)

626 for 24h, 48h and 72h, respectively. Cell proliferation was detected by Cell Counting
627 Kit-8 (CCK-8) according to the manufacture's instruction.

628 **Survival analysis**

629 We further analyzed the transcriptome data of 500 HNSCC tumor samples (HPV
630 negative: n=410; HPV positive: n=90) in TCGA cohort(53). Survival analysis related
631 to gene expression level and functional module score in different HPV status was
632 conducted through the Tumor Immune Estimation Resource (TIMER;
633 cistrome.shinyapps.io/timer)(54). Besides, to predict the proportion of P-Teff, and
634 T-Tex cells in HPV positive and HPV negative HNSCC TCGA cohort, we used
635 CIBERSORT software to deconvolve our scRNA seq data (534 specific marker genes,
636 Table S3) into the TCGA bulk transcription data for clustering.

637 **Statistical analysis**

638 Statistical analysis was performed using R (Version 3.6.3). Wilcoxon rank-sum
639 tests and Chi-square tests were used to compare variables. The hazard ratio (HR) and
640 survival curves was estimated via a Cox regression model. A statistical significance
641 was considered at P < 0.05.

642

643 **Data availability statement**

644 Sequencing data have been deposited in GSA for human under accession codes
645 PRJCA012438.

646

647

649 **Reference**

650 1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer
651 statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36
652 cancers in 185 countries. CA Cancer J Clin **2018**;68(6):394-424 doi
653 10.3322/caac.21492.

654 2. Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Piñeros M, *et al.* Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources
655 and methods. Int J Cancer **2019**;144(8):1941-53 doi 10.1002/ijc.31937.

656 3. Näsman A, Du J, Dalianis T. A global epidemic increase of an HPV-induced tonsil and
658 tongue base cancer - potential benefit from a pan-gender use of HPV vaccine. J Intern
659 Med **2020**;287(2):134-52 doi 10.1111/joim.13010.

660 4. Ang KK, Harris J, Wheeler R, Weber R, Rosenthal DI, Nguyen-Tân PF, *et al.* Human
661 papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med
662 **2010**;363(1):24-35 doi 10.1056/NEJMoa0912217.

663 5. Wansom D, Light E, Worden F, Prince M, Urba S, Chepeha DB, *et al.* Correlation of
664 cellular immunity with human papillomavirus 16 status and outcome in patients with
665 advanced oropharyngeal cancer. Arch Otolaryngol Head Neck Surg
666 **2010**;136(12):1267-73 doi 10.1001/archoto.2010.211.

667 6. Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev
668 Immunol **2015**;15(8):486-99 doi 10.1038/nri3862.

669 7. Blank CU, Haining WN, Held W, Hogan PG, Kallies A, Lugli E, *et al.* Defining 'T cell
670 exhaustion'. Nat Rev Immunol **2019**;19(11):665-74 doi 10.1038/s41577-019-0221-9.

671 8. Miller BC, Sen DR, Al Abosy R, Bi K, Virkud YV, LaFleur MW, *et al.* Subsets of
672 exhausted CD8(+) T cells differentially mediate tumor control and respond to
673 checkpoint blockade. *Nat Immunol* **2019**;20(3):326-36 doi
674 10.1038/s41590-019-0312-6.

675 9. Beltra JC, Manne S, Abdel-Hakeem MS, Kurachi M, Giles JR, Chen Z, *et al.*
676 Developmental Relationships of Four Exhausted CD8(+) T Cell Subsets Reveals
677 Underlying Transcriptional and Epigenetic Landscape Control Mechanisms. *Immunity*
678 **2020**;52(5):825-41 e8 doi 10.1016/j.jimmuni.2020.04.014.

679 10. Im SJ, Hashimoto M, Gerner MY, Lee J, Kissick HT, Burger MC, *et al.* Defining CD8+
680 T cells that provide the proliferative burst after PD-1 therapy. *Nature*
681 **2016**;537(7620):417-21 doi 10.1038/nature19330.

682 11. Kim K, Park S, Park SY, Kim G, Park SM, Cho JW, *et al.* Single-cell transcriptome
683 analysis reveals TOX as a promoting factor for T cell exhaustion and a predictor for
684 anti-PD-1 responses in human cancer. *Genome Med* **2020**;12(1):22 doi
685 10.1186/s13073-020-00722-9.

686 12. Gameiro SF, Ghasemi F, Barrett JW, Koropatnick J, Nichols AC, Mymryk JS, *et al.*
687 Treatment-naive HPV+ head and neck cancers display a T-cell-inflamed phenotype
688 distinct from their HPV- counterparts that has implications for immunotherapy.
689 *Oncoimmunology* **2018**;7(10):e1498439 doi 10.1080/2162402X.2018.1498439.

690 13. Wang J, Sun H, Zeng Q, Guo XJ, Wang H, Liu HH, *et al.* HPV-positive status
691 associated with inflamed immune microenvironment and improved response to

692 anti-PD-1 therapy in head and neck squamous cell carcinoma. *Sci Rep*

693 2019;9(1):13404 doi 10.1038/s41598-019-49771-0.

694 14. Kansy BA, Concha-Benavente F, Srivastava RM, Jie HB, Shayan G, Lei Y, *et al.* PD-1

695 Status in CD8(+) T Cells Associates with Survival and Anti-PD-1 Therapeutic

696 Outcomes in Head and Neck Cancer. *Cancer Res* 2017;77(22):6353-64 doi

697 10.1158/0008-5472.CAN-16-3167.

698 15. Goel S, DeCristo MJ, McAllister SS, Zhao JJ. CDK4/6 Inhibition in Cancer: Beyond

699 Cell Cycle Arrest. *Trends Cell Biol* 2018;28(11):911-25 doi 10.1016/j.tcb.2018.07.002.

700 16. Deng J, Wang ES, Jenkins RW, Li S, Dries R, Yates K, *et al.* CDK4/6 Inhibition

701 Augments Antitumor Immunity by Enhancing T-cell Activation. *Cancer Discov*

702 2018;8(2):216-33 doi 10.1158/2159-8290.CD-17-0915.

703 17. Adkins D, Ley J, Neupane P, Worden F, Sacco AG, Palka K, *et al.* Palbociclib and

704 cetuximab in platinum-resistant and in cetuximab-resistant human

705 papillomavirus-unrelated head and neck cancer: a multicentre, multigroup, phase 2

706 trial. *Lancet Oncol* 2019;20(9):1295-305 doi 10.1016/s1470-2045(19)30405-x.

707 18. Oppelt P, Ley JC, Worden F, Palka K, Maggiore R, Liu J, *et al.* Palbociclib and

708 cetuximab in cetuximab-resistant human papillomavirus-related oropharynx

709 squamous-cell carcinoma: A multicenter phase 2 trial. *Oral Oncol* 2021;114:105164

710 doi 10.1016/j.oraloncology.2020.105164.

711 19. van Caloen G, Machiels JP. Potential role of cyclin-dependent kinase 4/6 inhibitors in

712 the treatment of squamous cell carcinoma of the head and neck. *Curr Opin Oncol*

713 2019;31(3):122-30 doi 10.1097/cco.0000000000000513.

714 20. Brummelman J, Pilipow K, Lugli E. The Single-Cell Phenotypic Identity of Human
715 CD8(+) and CD4(+) T Cells. *Int Rev Cell Mol Biol* 2018;341:63-124 doi
716 10.1016/bs.ircmb.2018.05.007.

717 21. Galletti G, De Simone G, Mazza EMC, Puccio S, Mezzanotte C, Bi TM, *et al.* Two
718 subsets of stem-like CD8(+) memory T cell progenitors with distinct fate commitments
719 in humans. *Nat Immunol* 2020;21(12):1552-62 doi 10.1038/s41590-020-0791-5.

720 22. Wagle MV, Vervoort SJ, Kelly MJ, Van Der Byl W, Peters TJ, Martin BP, *et al.*
721 Antigen-driven EGR2 expression is required for exhausted CD8(+) T cell stability and
722 maintenance. *Nat Commun* 2021;12(1):2782 doi 10.1038/s41467-021-23044-9.

723 23. Daniels MA, Teixeiro E. TCR Signaling in T Cell Memory. *Front Immunol* 2015;6:617
724 doi 10.3389/fimmu.2015.00617.

725 24. Bertoli C, Skotheim JM, de Bruin RA. Control of cell cycle transcription during G1 and
726 S phases. *Nat Rev Mol Cell Biol* 2013;14(8):518-28 doi 10.1038/nrm3629.

727 25. Romero-Pozuelo J, Figlia G, Kaya O, Martin-Villalba A, Teleman AA. Cdk4 and Cdk6
728 Couple the Cell-Cycle Machinery to Cell Growth via mTORC1. *Cell Rep*
729 2020;31(2):107504 doi 10.1016/j.celrep.2020.03.068.

730 26. Rubin SM, Sage J, Skotheim JM. Integrating Old and New Paradigms of G1/S Control.
731 *Mol Cell* 2020;80(2):183-92 doi 10.1016/j.molcel.2020.08.020.

732 27. Tanchot C, Terme M, Pere H, Tran T, Benhamouda N, Strioga M, *et al.*
733 Tumor-infiltrating regulatory T cells: phenotype, role, mechanism of expansion in situ

734 and clinical significance. *Cancer Microenviron* **2013**;6(2):147-57 doi
735 10.1007/s12307-012-0122-y.

736 28. Han A, Glanville J, Hansmann L, Davis MM. Linking T-cell receptor sequence to
737 functional phenotype at the single-cell level. *Nat Biotechnol* **2014**;32(7):684-92 doi
738 10.1038/nbt.2938.

739 29. Hwang JR, Byeon Y, Kim D, Park SG. Recent insights of T cell receptor-mediated
740 signaling pathways for T cell activation and development. *Exp Mol Med*
741 **2020**;52(5):750-61 doi 10.1038/s12276-020-0435-8.

742 30. Poropatich K, Fontanarosa J, Swaminathan S, Dittmann D, Chen S, Samant S, *et al.*
743 Comprehensive T-cell immunophenotyping and next-generation sequencing of human
744 papillomavirus (HPV)-positive and HPV-negative head and neck squamous cell
745 carcinomas. *J Pathol* **2017**;243(3):354-65 doi 10.1002/path.4953.

746 31. Robinson AM, Rathore R, Redlich NJ, Adkins DR, VanArsdale T, Van Tine BA, *et al.*
747 Cisplatin exposure causes c-Myc-dependent resistance to CDK4/6 inhibition in
748 HPV-negative head and neck squamous cell carcinoma. *Cell Death Dis*
749 **2019**;10(11):867 doi 10.1038/s41419-019-2098-8.

750 32. Mehrfeld C, Zenner S, Kornek M, Lukacs-Kornek V. The Contribution of
751 Non-Professional Antigen-Presenting Cells to Immunity and Tolerance in the Liver.
752 *Front Immunol* **2018**;9:635 doi 10.3389/fimmu.2018.00635.

753 33. Wosen JE, Mukhopadhyay D, Macaubas C, Mellins ED. Epithelial MHC Class II
754 Expression and Its Role in Antigen Presentation in the Gastrointestinal and

755 Respiratory Tracts. *Front Immunol* **2018**;9:2144 doi 10.3389/fimmu.2018.02144.

756 34. Jansen CS, Prokhnevskaya N, Master VA, Sanda MG, Carlisle JW, Bilen MA, *et al.* An
757 intra-tumoral niche maintains and differentiates stem-like CD8 T cells. *Nature*
758 **2019**;576(7787):465-70 doi 10.1038/s41586-019-1836-5.

759 35. Im SJ, Ha SJ. Re-defining T-Cell Exhaustion: Subset, Function, and Regulation.
760 *Immune Netw* **2020**;20(1):e2 doi 10.4110/in.2020.20.e2.

761 36. Yao C, Sun HW, Lacey NE, Ji Y, Moseman EA, Shih HY, *et al.* Single-cell RNA-seq
762 reveals TOX as a key regulator of CD8(+) T cell persistence in chronic infection. *Nat
763 Immunol* **2019**;20(7):890-901 doi 10.1038/s41590-019-0403-4.

764 37. Du Q, Guo X, Wang M, Li Y, Sun X, Li Q. The application and prospect of CDK4/6
765 inhibitors in malignant solid tumors. *J Hematol Oncol* **2020**;13(1):41 doi
766 10.1186/s13045-020-00880-8.

767 38. Álvarez-Fernández M, Malumbres M. Mechanisms of Sensitivity and Resistance to
768 CDK4/6 Inhibition. *Cancer Cell* **2020**;37(4):514-29 doi 10.1016/j.ccr.2020.03.010.

769 39. Zheng GX, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, *et al.* Massively
770 parallel digital transcriptional profiling of single cells. *Nat Commun* **2017**;8:14049 doi
771 10.1038/ncomms14049.

772 40. Hao Y, Hao S, Andersen-Nissen E, Mauck WM, 3rd, Zheng S, Butler A, *et al.*
773 Integrated analysis of multimodal single-cell data. *Cell* **2021**;184(13):3573-87.e29 doi
774 10.1016/j.cell.2021.04.048.

775 41. Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, *et al.* Fast, sensitive

776 and accurate integration of single-cell data with Harmony. *Nat Methods*

777 **2019;16(12):1289-96 doi 10.1038/s41592-019-0619-0.**

778 42. Alquicira-Hernandez J, Powell JE. Nebulosa recovers single cell gene expression

779 signals by kernel density estimation. *Bioinformatics* **2021** doi

780 10.1093/bioinformatics/btab003.

781 43. Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, *et al.* clusterProfiler 4.0: A universal

782 enrichment tool for interpreting omics data. *Innovation (N Y)* **2021**;2(3):100141 doi

783 10.1016/j.xinn.2021.100141.

784 44. Aibar S, González-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G,

785 *et al.* SCENIC: single-cell regulatory network inference and clustering. *Nat Methods*

786 **2017;14(11):1083-6 doi 10.1038/nmeth.4463.**

787 45. Puram SV, Tirosh I, Parikh AS, Patel AP, Yizhak K, Gillespie S, *et al.* Single-Cell

788 Transcriptomic Analysis of Primary and Metastatic Tumor Ecosystems in Head and

789 Neck Cancer. *Cell* **2017**;171(7):1611-24.e24 doi 10.1016/j.cell.2017.10.044.

790 46. Azizi E, Carr AJ, Plitas G, Cornish AE, Konopacki C, Prabhakaran S, *et al.* Single-Cell

791 Map of Diverse Immune Phenotypes in the Breast Tumor Microenvironment. *Cell*

792 **2018;174(5):1293-308.e36 doi 10.1016/j.cell.2018.05.060.**

793 47. Cao J, Spielmann M, Qiu X, Huang X, Ibrahim DM, Hill AJ, *et al.* The single-cell

794 transcriptional landscape of mammalian organogenesis. *Nature*

795 **2019;566(7745):496-502 doi 10.1038/s41586-019-0969-x.**

796 48. Angerer P, Haghverdi L, Büttner M, Theis FJ, Marr C, Buettner F. *destiny: diffusion*

797 maps for large-scale single-cell data in R. *Bioinformatics* **2016**;32(8):1241-3 doi
798 10.1093/bioinformatics/btv715.

799 49. Borcherding N, Bormann NL, Kraus G. *scRepertoire: An R-based toolkit for single-cell*
800 *immune receptor analysis.* *F1000Res* **2020**;9:47 doi
801 10.12688/f1000research.22139.2.

802 50. Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan CH, *et al.* *Inference*
803 *and analysis of cell-cell communication using CellChat.* *Nat Commun* **2021**;12(1):1088
804 doi 10.1038/s41467-021-21246-9.

805 51. Maurage P, Heeren A, Pesenti M. *Does chocolate consumption really boost Nobel*
806 *Award chances? The peril of over-interpreting correlations in health studies.* *J Nutr*
807 **2013**;143(6):931-3 doi 10.3945/jn.113.174813.

808 52. Liu J, Ma T, Gao M, Liu Y, Liu J, Wang S, *et al.* *Proteomic Characterization of*
809 *Proliferation Inhibition of Well-Differentiated Laryngeal Squamous Cell Carcinoma*
810 *Cells Under Below-Background Radiation in a Deep Underground Environment.* *Front*
811 *Public Health* **2020**;8:584964 doi 10.3389/fpubh.2020.584964.

812 53. Liu C, Sadat SH, Ebisumoto K, Sakai A, Panuganti BA, Ren S, *et al.* *Cannabinoids*
813 *Promote Progression of HPV-Positive Head and Neck Squamous Cell Carcinoma via*
814 *p38 MAPK Activation.* *Clin Cancer Res* **2020**;26(11):2693-703 doi
815 10.1158/1078-0432.Ccr-18-3301.

816 54. Li T, Fan J, Wang B, Traugh N, Chen Q, Liu JS, *et al.* *TIMER: A Web Server for*
817 *Comprehensive Analysis of Tumor-Infiltrating Immune Cells.* *Cancer Res*

818 **2017;77(21):e108-e10 doi 10.1158/0008-5472.Can-17-0307.**

819

820

821 **Acknowledgments**

822 We would like to thank the staff and students in the Department of
823 Oto-Rhino-Laryngology, West China Biomedical Big Data Center, and Research Core
824 Facility of West China Hospital for giving us kind support of sample collection and
825 experiments.

826

827 **Author contributions**

828 Conceptualization: RJJ, ZY, YHP, ZW, CF

829 Methodology: YHP, CDN, RYF, MMZ, LL, WY, ZY, CXM, WSS, LJ

830 Investigation: QK, SY, CJR, YXW, SXL, HSH, YSS, WHY, PXC, LDB, YL

831 Visualization: CL, YZY, ZYB, ZMJ, YBW, ZXX

832 Supervision: XW, LG

833 Writing—original draft: RJJ, CDN, QK, RYF, MMZ

834 Writing—review & editing: RJJ, ZY, YHP, ZW, CF, XW, LG

835

836 **Competing interests**

837 Authors declare that they have no competing interests.

838

839 **Supplementary Tables**

840 **Supplementary Table 1:** Patients information.

841 **Supplementary Table 2:** Cell numbers of single T cells from 14 HNSCC samples by
842 scRNA-seq.

843 **Supplementary Table 3:** Marker genes of different cell clusters applied in scRNA-seq.

844 **Supplementary Table 4:** Transcriptional regulators of top expressed genes in each T
845 cell clusters.

846 **Supplementary Table 5:** Functional cell scores of each cell cluster.

847 **Supplementary Table 6:** Numbers of shared clonotypes among each cell clusters.

848 **Supplementary Table 7:** The overlap coefficients among each cluster.

849 **Supplementary Table 8:** Cell numbers of different HNSCC TME subclusters by
850 scRNA-seq.

851 **Supplementary Table 9:** The proportion of P-Texs, T-Tex and Teff clusters in HPV⁺
852 and HPV⁻ HNSCC samples in TCGA database.

853 **Supplementary Table 10:** The communication network of signaling pathways among
854 different cell clusters derived by ligand–receptor interactions.

855 **Supplementary Table 11:** The P-Tex, Tex and APC scores in spatial transcriptomic.

856 **Supplementary Table 12:** The key resources.

857