

1 **IntestLine: a Shiny-based application to map the rolled intestinal tissue onto a line**

2

3 Altay Yuzeir¹, David Bejarano¹, Stephan Grein², Jan Hasenauer^{2,3,#}, Andreas Schlitzer^{1,#}, Jiangyan Yu^{1,#}

4 ¹Quantitative Systems Biology, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115

5 Bonn, Germany

6 ²Interdisciplinary Research Unit for Mathematics and Life Sciences, Life & Medical Sciences (LIMES)

7 Institute, University of Bonn, 53115 Bonn, Germany

8 ³Institute for Computational Biology, Helmholtz Center Munich – German Research Center for

9 Environmental Health, 85764 Neuherberg, Germany

10 [#] Correspondence to Jiangyan Yu (Jiangyan.yu@uni-bonn.de), Andreas Schlitzer

11 (andreas.schlitzer@uni-bonn.de) and Jan Hasenauer (jan.hasenauer@uni-bonn.de).

12

13 **ABSTRACT**

14 To allow the comprehensive histological analysis of the whole intestine in one image, the tissue is often
15 rolled to a spiral before imaging. This Swiss-rolling technique facilitates robust experimental
16 procedures, but it limits the possibilities to comprehend changes along the intestine. Here, we present
17 IntestLine, a Shiny-based open-source application to map imaging data of intestinal tissues in spiral
18 shape onto a line. The mapping of intestinal tissues improves the visualization of the whole intestine in
19 both proximal-distal and serosa-luminal axis, and facilitates the observation of location-specific cell
20 types and markers. In summary, IntestLine serves as a tool to visualize and characterize intestine in
21 future imaging studies.

22

23 **Keywords:** Swiss-rolling, Intestine, CODEX image, Linear coordinate system, Spiral

24

25 **Introduction**

26 A comprehensive assessment of large organs is a key challenge in many biomedical research fields.
27 Therefore, different strategies have been devised to reduce the spatial field of view for spatial analysis.
28 A commonly used approach for the intestine research is the Swiss-rolling technique, which has been
29 shown to facilitate the study of the intestinal structure along the proximal-distal axis in a single image¹.
30 Combination of the Swiss-rolling technique and multiplexed imaging approaches such as co-detection
31 by indexing (CODEX) has allowed to identify intestinal immune and stromal cells and their location
32 along the whole intestinal structure at single-cell resolution². In addition, embedding the spiral shape of
33 intestine on the 10x Visium slide has provided the spatial gene expression of all cells of the complete
34 intestinal structure³. These cutting-edge techniques facilitate the identification of location-specific cell
35 types, molecular markers and cell-cell interactions along the intestinal proximal-distal and serosal-
36 luminal axis³. Yet, the visualization of the imaging data for the intestinal tissue as an artificial spiral
37 (created by Swiss-rolling technique) is highly non-intuitive and limits the comprehension. Thus, a tool
38 which maps rolling tissue to the natural linear coordinate system would be of great benefit for the
39 research community.

40 A theoretical possibility to unroll the imaging data obtained from the Swiss-rolling technique, would be
41 to fit the rolled tissue to the Archimedean spiral model ($r = a + b * \theta$, where r is the distance from the
42 center and θ is the angle from the horizontal axis, and a and b are constants), and to use the path length
43 on the spiral as the position in a linear coordinate system. However, for the established experimental
44 procedures, the distance between layers is often non-uniform along the coordinates of the spiral. Thus,
45 a perfect spiral is an insufficient model for the rolled tissue.

46 A recent study by Parigi et al.³ has reported a custom pipeline to convert the intestinal tissue in the
47 spiral shape from 10x Visium technique into a linear coordinate system. The pipeline implements three
48 steps: (1) Selection of the base layer using Photoshop (which will act as a skeleton for the
49 reconstruction); (2) Ordering of base layer points from proximal to distal by constructing a shortest

50 path from the defined start to the end; and (3) Assignment of all spots (cells) to the ordered base layer.
51 The use of the ordering position of the based layer point as a (linear) coordinate allows the
52 visualization of genes enriched in distal and proximal regions. Yet, while this pipeline is helpful, it is
53 not available as an open-source tool. Furthermore, only about 100 points were used for the base layer,
54 severely limiting the resolution. Therefore, new tools are demanded to visualize the whole intestine in a
55 linear coordinate system with higher resolution.

56 Here, we present IntestLine, a Shiny-based tool to map intestinal tissue with spiral shape onto a line.
57 We adopted the general strategy described in Parigi et al.³, which includes the manual selecting points
58 for the base layer, the assignment of other spots (cells) to the closest proxy on the base layer and the
59 visualization of the intestine in a linear coordinate system using the positioning implied by the
60 coordinate on the base layer. To allow for a problem-specific resolution, IntestLine allows for the
61 selection of a flexible number of points for base layer from the inner (distal) to outer (proximal) side of
62 the image. The mapping can be exported for downstream process such as visualization of marker
63 intensity or for analysis of other relevant parameters at single-cell resolution.

64 **Results**

65 **Workflow of IntestLine**

66 IntestLine is an open-source application and is implemented in a docker with the pre-installed Shiny
67 app. To create linear visualization of the intestine from the images of a slice prepared by the Swiss-
68 rolling method, users first upload a text file in the CSV format containing cell locations to the
69 IntestLine application (**Figure 1**). In order to assign all cells to the base layer, a center point needs to be
70 selected by the user. Next the dataset will be uploaded into the Shiny app to allow users to select points
71 for the base layer. IntestLine makes use of the order of points picked in the Shiny app to reconstruct the
72 base layer of the linear coordinate system and thus it is important to select points from inner (distal) to
73 outer (proximal) in order. The selected points for base layer could be downloaded as a text file and be
74 re-uploaded for future analysis. After that, each spot (or cell) in the image will be assigned to the

75 nearest base layer point, which has a larger distance to the center point than the query spot. Meanwhile
76 the distance of the spot to the corresponding base layer point is calculated and will be later used as the
77 thickness (as y-axis) in the linear coordinate system. Later, in order to remove noisy signals in the gap
78 of two intestinal layers, for the group of spots assigned to the same base layer point, the Z-score of
79 distances within the group of spots will be calculated. Users can define their own threshold on the
80 thickness and the Z-score in the filtering step within the app. Finally, the rolled image will be converted
81 into a linear coordinate system using thickness as y-axis, and the cumulative length of base layer points
82 as x-axis. The linear mapping can be exported for further visualization and analysis.

83 **Application of IntestLine**

84 To evaluate IntestLine, we consider a CODEX image of the murine intestine that was prepared by
85 Swiss-rolling technique and was stained with a 15-plex antibody panel. The resulting image was
86 segmented using the CODEX processor V1.7, yielding a total of 150,793 cells (**Figure 2A**). First, we
87 uploaded the file containing cell locations (xy-coordinates) exported from the CODEX processor into
88 the IntestLine application. Next, we manually selected a base layer containing 1,059 points (**Figure**
89 **2B**). After assigning cells to the base layer (**Figure 2C**), we performed a stringent filtering by removing
90 noisy assignment with thickness $>1,000$ or Z-score >2 (**Figure 2D-E**). As a result, more than 93% of
91 cells were successfully assigned to the outer adjacent base layer (**Figure 2F**). Finally, we visualized the
92 image in a linear coordinate system as shown in **Figure 2G**. The mapping of the intestine on a line
93 allows us to observe clear thickness differences in proximal-distal axis. The results show that IntestLine
94 is able to provide a high-resolution mapping of an image of a rolled intestinal tissue to a line.

95 **Capabilities of converted linear coordinate system to visualize fluorescent marker intensity**

96 To demonstrate the importance of the data provided by IntestLine, we compared the fluorescent
97 intensities of several markers between the original coordinate system and the converted linear
98 coordinate system. While the direct visualization of the data does not facilitate the identification and
99 quantification of trends, the unrolling provides a clear picture of the change along the serosal-luminal

100 axis of the tissue (**Figure 3**). For example, Villin staining clearly highlighted the epithelium on top of
101 the structure⁴, whereas olfactomedin-4 (Olfm4) and Ki67 staining accurately revealed the location of
102 proliferating intestinal stem cells at the base of the crypts of the murine small intestine⁵. Meanwhile,
103 lysozyme staining labeled Paneth cells at the base of distal intestinal region⁶. Moreover, the linear
104 representation within the intestinal wall allowed the identification of regions with abnormal marker
105 expression levels. For instance, the region highlighted in Figure 3B is with low expression of Ki67 and
106 lysozyme, suggesting a disrupted structure in this neighborhood. In comparison, this information is less
107 obvious from the intestinal image in the spiral shape. Taken together, the linear coordinate system
108 would allow better visualization in both proximal-distal and serosa-luminal axes of the whole intestinal
109 structure.

110 **Conclusion**

111 The processing of imaging data is key for the assessment of biological processes. Here, we have
112 presented IntestLine, one first open-source application to map rolled intestinal tissue images onto a
113 line. We have shown that the mapping to a linear coordinate system facilitate the data visualization and
114 the understanding of intestine anatomy as well as regions enriched with specific markers and cell types.
115 Beyond this, the linear representations enable the embedding of all other available parameters
116 generated by the CODEX processor or downstream analyses (e.g., cell clustering). Therefore,
117 IntestLine application will provide a unique opportunity to characterize intestines in its natural linear
118 shape for future mechanistic studies.

119 **Author contributions**

120 J.Y. and A.S. conceived the project. D.B. provided CODEX images. J.Y. and A.Y. developed the
121 pipeline. A.Y. designed the user interface. S.G. and J.H. provided critical feedback on the pipeline
122 development. J.Y. and J.H. wrote the manuscript. All authors discussed the results and commented on
123 the manuscript.

124 **Conflict of interests**

125 All authors declare that they have no conflicts of interest.

126 **Data availability statement**

127 Source code can be found at Zenodo (<https://doi.org/10.5281/zenodo.7081864>) and Github

128 (<https://github.com/JiangyanYu/IntestLine>). An open-source web application is available at

129 FASTGenomics (<https://beta.fastgenomics.org/a/intestline>).

130 **References**

131 1. Bialkowska, A. B., Ghaleb, A. M., Nandan, M. O. & Yang, V. W. Improved Swiss-rolling
132 technique for intestinal tissue reparation for immunohistochemical and immunofluorescent
133 analyses. *J. Vis. Exp.* (2016). doi:10.3791/54161

134 2. Hickey, J. W., Tan, Y., Nolan, G. P. & Goltsev, Y. Strategies for accurate cell type identification
135 in CODEX multiplexed imaging data. *Frontiers in Immunology* **12**, (2021).

136 3. Parigi, S. M. *et al.* The spatial transcriptomic landscape of the healing mouse intestine following
137 damage. *Nat. Commun.* **13**, 828 (2022).

138 4. Braunstein, E. M. *et al.* Villin: A marker for development of the epithelial pyloric border. *Dev.*
139 *Dyn.* **224**, 90–102 (2002).

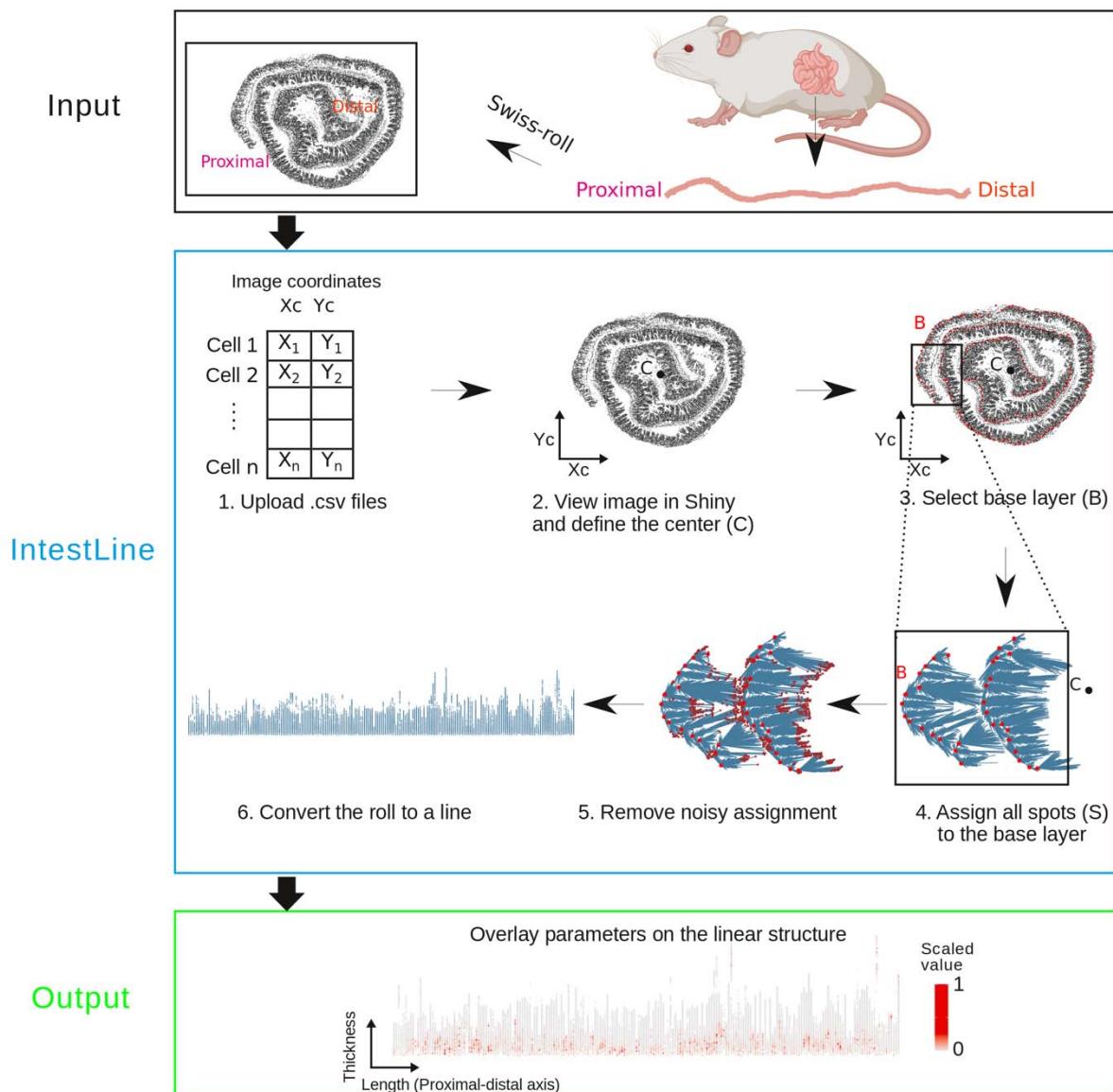
140 5. Schuijers, J., Van Der Flier, L. G., Van Es, J. & Clevers, H. Robust cre-mediated recombination
141 in small intestinal stem cells utilizing the Olfm4 locus. *Stem Cell Reports* **3**, 234–241 (2014).

142 6. Yu, S. *et al.* Paneth cell-derived lysozyme defines the composition of mucolytic microbiota and
143 the inflammatory tone of the intestine. *Immunity* **53**, 398-416.e8 (2020).

144

145

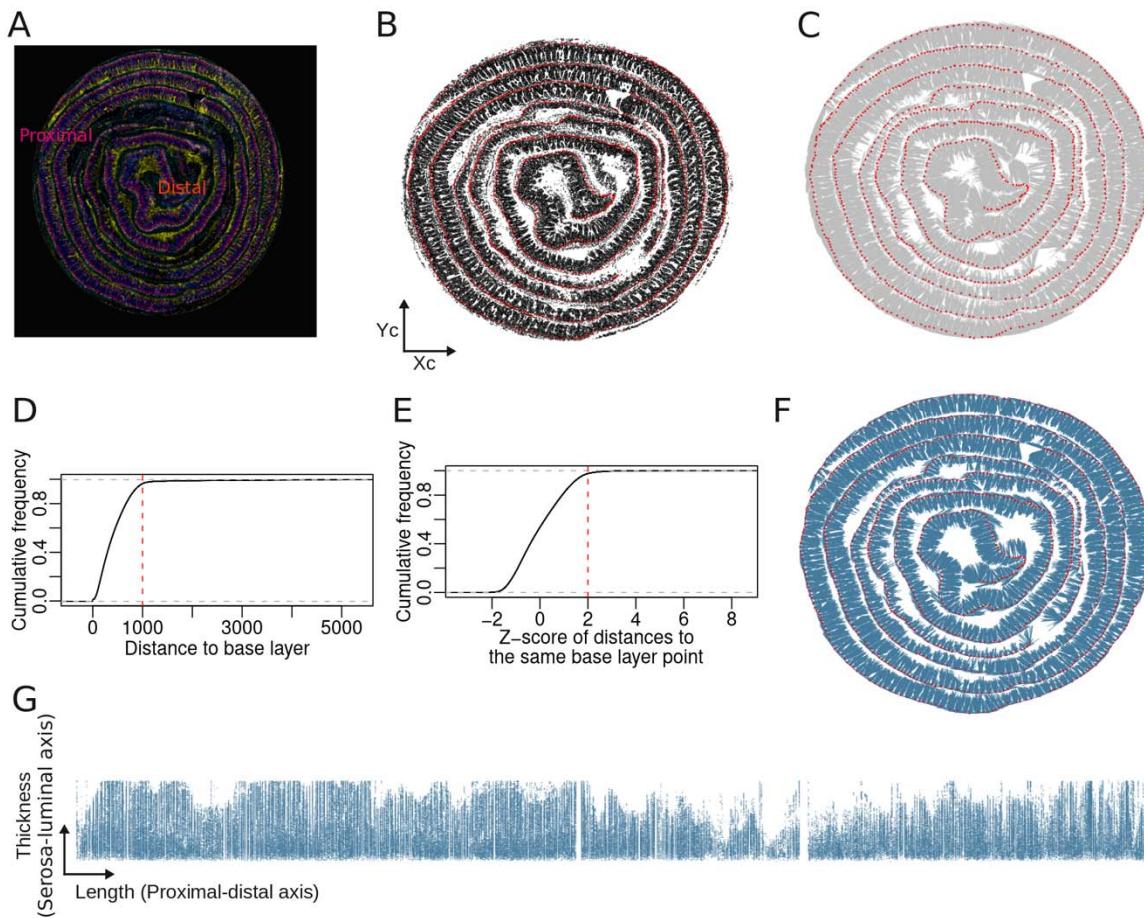
146 **Figure legends**


147

148 **Figure 1.** Workflow of IntestLine. After uploading the csv file containing xy-coordinates from
149 individual cells, a center (C) point will be manually defined in the image. Next points to form a base
150 layer (B, denoted in red in steps 3-5) from inner to outer will be manually selected in the implemented
151 Shiny app. Later all cells or spots (S) in the image will be assigned to the nearest outer adjacent base
152 layer point that is with larger distance to the center point. Finally, after setting the user-defined noisy
153 threshold including distance to the base layer (thickness) and Z-scores (denoted in dark red in step 5).
154 Here the Z-score of distance is calculated within a group of spots assigned to the same base layer point.
155 The image will be automatically converted into a linear coordinate system with thickness as y-axis and
156 cumulative length of base layer points as x-axis.

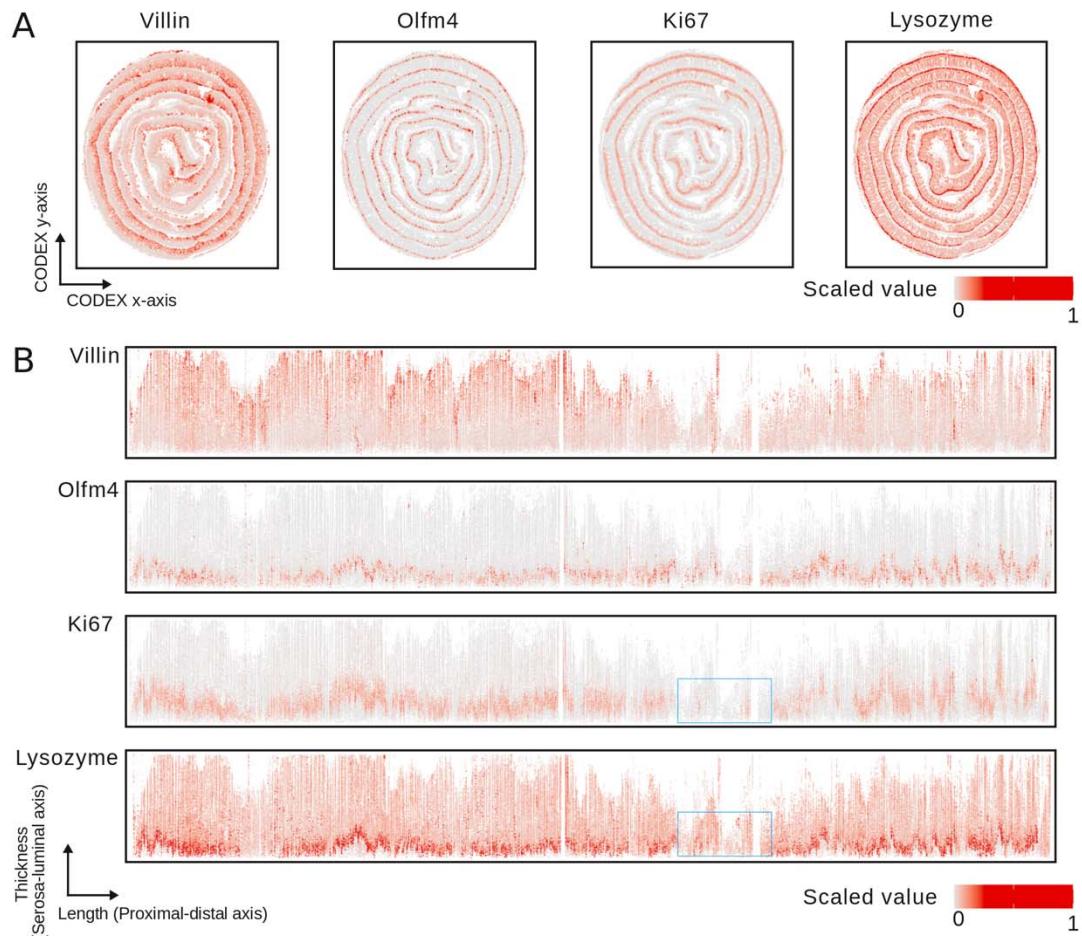
157 **Figure 2.** Pilot study of mapping an intestinal tissue onto a line. (A) The rolled intestinal tissue imaged
158 by the CODEX technique. (B) Manually selected base layer (depicted in red) for the image. (C)
159 Visualization of assigning spots to base layer before filtering process. The grey line connects the cell or
160 spot to its corresponding base layer point (denoted in red). (D) Cumulative distribution of the thickness
161 (distance of the spot to its corresponding base layer point). (E) Cumulative distribution of Z-score of
162 distances within a group of spots assigned to the same base layer point. (F) Visualization of the
163 successful assignment after filtering out assignment with thickness > 1,000 or Z-score > 2. (G)
164 Converted linear coordinate system of the tissue. Thickness (y-axis) is the distance of the spot to its
165 corresponding base layer point. Length (x-axis) is the cumulative length of base layer points.

166 **Figure 3.** Visualization of fluorescent marker intensities on the tissue. (A) Fluorescent signal intensities
167 of Villin, Olfm4 (intestinal stem cell marker), Ki67 (proliferation marker) and lysozyme in original
168 CODEX xy-coordinates. (B) Fluorescent signal intensities of Villin, Olfm4, Ki67 and lysozyme in the
169 converted linear coordinate system. The region lacking of Ki67 and lysozyme expression is highlighted
170 in a blue box.


172 **Figures**

173

174 **Figure 1.** Workflow of IntestLine.


175

176

177 **Figure 2.** Pilot study of mapping an intestinal tissue onto a line.

178

179

180 **Figure 3.** Visualization of fluorescent marker intensity on the tissue.