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The female reproductive tract (FRT) undergoes extensive remodeling during each reproductive cycle, regulated by 
systemic changes in sex hormones. Whether this recurrent remodeling influences a specific organ’s aging trajectory is 
unknown. To address this, we systematically characterized at single-cell resolution the morphological and transcriptional 
changes that occur in ovary, oviduct, uterus, cervix, and vagina at each phase of the mouse estrus cycle, during 
decidualization, and into aging. Transcriptional and cell-to-cell communication networks in estrus cycle and aging are 
enriched for ECM reorganization and inflammation, two essential components of FRT remodeling. We directly link the 
organ-specific level of these two processes over reproductive lifespan with the gradual, age-related development of fibrosis 
and chronic inflammation. Our data represent a comprehensive atlas of the FRT lifespan, revealing pathological 
consequences of incomplete resolution of recurrent inflammation and tissue repair. 
  

Introduction 
During	the	estrus	cycle	the	mammalian	female	reproductive	
tract	(FRT)	undergoes	extensive	remodeling	in	preparation	
for	ovulation	and	pregnancy.	The	physiological	changes	to	
the	 FRT,	 which	 occur	 in	 response	 to	 ovarian	 steroid	
hormones,	 are	 conserved	 between	 humans	 and	 other	
mammals,	 with	 the	 exception	 of	 the	 human-specific	
spontaneous	 terminal	 differentiation	 of	 the	 endometrial	
stromal	cells	in	the	process	of	decidualization	(Bellofiore	et	
al.,	 2018).	 These	 decidualized	 stromal	 cells	 are	
subsequently	expelled	during	human	menstruation.	In	most	
other	 mammals	 this	 final	 step	 of	 differentiation	 can	 be	
modeled	 by	 pregnancy	 induction	 (Miller	 and	 Takahashi,	
2014;	 Rajkovic	 et	 al.,	 2004).	 The	 reproductive	 cycle	
influences	 important	 functions	 of	 other	 organ	 systems,	
including	 shaping	 the	 immune	 response	 to	 infection	 and	
neural	 plasticity	 (Fernández	 et	 al.,	 2003;	 Gallichan	 and	
Rosenthal,	1996),	yet	 remains	poorly	characterized.	Prior	
analyses	of	mammalian	estrus	cycle	have	had	a	number	of	

limitations:	they	were	often	microscopy-based	(Garry	et	al.,	
2010;	Hickey	et	al.,	2013;	Jurgensen	et	al.,	1996;	Sato	et	al.,	
1997;	 Schulke	 et	 al.,	 2008;	 Wang	 et	 al.,	 2000),	 analyzed	
single	organs	of	the	FRT	(Garcia-Alonso	et	al.,	2021;	Jemt	et	
al.,	2016;	Roberson	et	al.,	2021;	Saare	et	al.,	2016;	Wang	et	
al.,	2020),	assayed	the	activity	of	 few	genes	(Cornet	et	al.,	
2002;	Von	Wolff	et	al.,	1999),	used	bulk	tissues	(Kim	et	al.,	
2018),	and/or	have	been	primarily	qualitative	(Igarashi	et	
al.,	1995).	

Although	the	FRT	organs	are	regulated	systemically	by	
sex	hormones,	they	vary	extensively	in	their	susceptibility	
to	 age-related	 pathologies.	 Development	 of	 chronic	
degenerative	 diseases	 during	 aging	 is	 triggered	 by	
numerous	changes	in	the	cell	microenvironment	and	cell-
to-cell	 interactions.	 Systemic	 inflammation,	 known	 as	
inflammaging,	 significantly	 contributes	 to	 age-related	
morbidities.	 Inflammation	 is	 often	 accompanied	 by	
excessive	 accumulation	 of	 extracellular	 matrix	 (ECM),	
resulting	 in	 fibrosis.	 Progressive	 development	 of	 fibrosis	
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with	 aging	 can	 lead	 to	 organ	 function	 impairment	
(Horowitz	and	Thannickal,	2019).		

In	mammals,	many	conserved	 reproductive	 processes,	
including	 ovulation	 in	 the	 ovary,	 menstruation	 and	
decidualization/implantation	 in	 the	 uterus,	 and	 the	
remodeling	of	the	vaginal	epithelium	throughout	the	estrus	
cycle,	display	hallmark	signs	of	inflammation	(Jabbour	et	al.,	
2009)	and	ECM	remodeling	(Salamonsen	et	al.,	2002).	The	
female	 reproductive	 tract	 can	 resolve	 these	 cyclical	
inflammatory	events	rapidly	and	thus	re-establish	normal	
reproductive	function.	Multiple	cell	types	cooperate	to	fine-
tune	 the	 complex	 process	 of	 inflammation,	with	 immune	
cells	 and	 fibroblasts	 playing	 major	 roles.	 Immune	 cells	
recognize	 and	 eliminate	 inflammatory	 triggers,	 while	
fibroblasts	 reorganize	 the	 microenvironment	 through	
expression	of	inflammatory	cytokines,	extracellular	matrix	
(ECM)	 components	 and	 remodeling	 enzymes.	 When	
inflammation	is	not	normally	resolved,	because	of	aging	or	
other	 factors,	 chronic	 inflammation	 and	 fibrosis	 can	
develop.	Fibroblasts	likely	shape	inflammation	persistence	
(Davidson	et	al.,	2021)	by	failing	to	return	to	a	homeostatic	
state,	thereby	contributing	to	inflammatory	memory	(Kirk	
et	al.,	2021).	As	the	main	ECM	producers,	they	play	key	roles	
in	 tissue	 remodeling.	 Excessive	 and/or	 frequent	 tissue	
remodeling	as	a	consequence	of	reoccurring	injury	can	lead	
to	fibrosis	development	(Rockey	et	al.,	2015),	but	current	
models	 assume	 that	 the	 FRT	 cyclical	 remodeling	 is	 scar-
free.	

To	systematically	explore	the	female	reproductive	cycle,	
we	characterized	at	single-cell	resolution	the	morphological	
and	 transcriptional	 changes	 that	 occur	 in	 ovary,	 oviduct,	
uterus,	cervix,	and	vagina	at	each	phase	of	the	mouse	estrus	
cycle,	during	decidualization,	and	into	old	age.	Specifically	
to	enable	inter-organ	comparisons	at	the	same	cycle	stages,	
all	 five	 FRT	 organs	 were	 simultaneously	 collected	 and	
analyzed	from	over	20	individual	mice.	Our	analyses	newly	
reveal	how	the	physiological	differences	between	the	upper	
(ovary,	 oviduct,	 uterus)	 and	 lower	 reproductive	 tract	
(cervix,	vagina)	are	closely	mirrored	by	compositional	and	
transcriptional	 differences.	 To	 explore	whether	 the	cyclic	
inflammation	 and	 remodeling	 that	 naturally	 occur	 during	
the	 reproductive	 lifespan	 of	 young	 mice	 result	 in	 age-
related	chronic	 inflammation	and	 fibrosis,	we	extensively	
characterized	 the	 inflammatory	 status	 of	 fibroblasts	 and	
their	 cell-to-cell	 communication	 networks	 during	 normal	
cycling	and	aging.	We	determined	that	transcription	factor	
and	 cell-to-cell	 communication	 networks	 active	 in	
fibroblasts	during	estrus	cycling	and	aging	are	enriched	for	
ECM	 remodeling	 and	 inflammation,	 and	 are	 conserved	
between	humans	and	mouse	uteruses.	Our	analysis	reveals	
that	re-occurring	cyclic	changes	in	inflammation	and	ECM	
activity	in	each	reproductive	cycle	significantly	contribute	
to	FRT	aging	linking	the	number	of	elapsed	cycles	with	the	
age-related	accumulation	of	fibrosis	and	inflammation.	

Results 
Single-cell characterization of the cycling female 
reproductive tract 
We	profiled	how	the	female	reproductive	tract	is	remodeled	
during	 the	 estrus	 cycle,	 decidualization,	 and	 aging	 using	
single-cell	RNA-sequencing	(scRNA-seq).	We	characterized	

the	cellular	composition	and	transcriptional	states	present	
in	ovary,	oviduct,	uterus,	cervix,	and	vagina	(with	spleen	as	
a	 control	 organ)	 by	 collecting	 378,516	 single-cell	
transcriptomes	from	normally	cycling	young	mice	in	each	of	
the	four	cycle	phases	(P	-	proestrus,	E	-	estrus,	M	-	metestrus	
and	 D	 -	 diestrus),	 as	 well	 as	 30,966	 cells	 from	 early	
pregnancy	and	74,129	cells	 from	acyclic	old	mice	 (Figure	
1a-b,	Table	S1).	All	experiments	were	performed	in	three	to	
seven	biological	 replicates	 to	 allow	 for	 the	assessment	of	
statistical	significance	in	all	comparisons.	

We	 analyzed	 the	 single-cell	 transcriptomes	 from	 all	
cycle	phases	and	organs	(76,600	cells	per	organ	on	average)	
in	young	cycling	mice	to	identify	cell	types	and	their	organ-
specificity.	 To	 ensure	 the	 accuracy	 of	 the	 cell	 type	
annotation,	we	combined	two	automated	approaches	with	
an	extensive	manual	comparison	of	marker	gene	expression	
(Methods).	 These	 approaches	 	 identified	 approximately	
fifty	cell	types,	including	all	expected	stromal,	epithelial	and	
immune-cell	sub-populations	(Figure	1c,d,	S1a-c,	S2,	Table	
S2).	Cell	 types	were	defined	 independently	 in	each	organ	
and	 all	 organs	were	 subsequently	 integrated	 together	 for	
visualization	purposes	(Figure	1e).	
By	evaluating	the	cellular	composition	of	all	five	FRT	organs	
simultaneously,	 we	 identified	 a	 collection	 of	 cell	 types	
shared	across	the	entire	FRT,	and	quantified	the	extent	to	
which	 the	 FRT	 shows	 a	 pronounced	 shift	 in	 its	 cellular	
composition	 between	 the	 upper	 and	 lower	 tracts	 (Figure	
1c,e,	 S1c).	 The	 cell	 types	 shared	 across	 the	 FRT	 include	
stromal	 fibroblasts,	 dendritic	 cells,	 macrophages,	 mural	
cells,	 a	 number	 of	 T	 cell	 subtypes,	 and	 endothelial	 cells,	
among	others.		

As	 expected,	 substantial	 variation	 in	 cellular	
composition	 occurs	 among	 the	 FRT	 organs.	 For	 instance,	
stromal	cells	outnumber	epithelial	cells	 in	the	upper	FRT,	
whereas	 epithelial	 cells	 are	more	 numerous	 in	 the	 lower	
reproductive	tract	(Figure	1c,e,	S1c,d).	The	composition	of	
the	 immune	compartment	also	profoundly	shifts	between	
the	upper	and	lower	tracts.	The	upper	tract	is	characterized	
by	 an	 enrichment	 of	 adaptive	 immune	 cells,	 including	
mucosa-associated	 T	 cells,	 memory	 T	 cells,	 and	 Natural	
Killer	 cells.	The	 lower	reproductive	 tract	 is	dominated	by	
the	 innate	 immune	 system,	 with	 a	 higher	 proportion	 of	
dendritic	cells	and	neutrophils	(Figure	1f,	S1c).	In	addition,	
the	balance	between	M1	and	M2	macrophages	profoundly	
changes	between	organs	(Figure	1g,	S1c).	In	the	uterus	and	
oviduct,	 wound-healing	 associated	 M2	 macrophages	
dominate	 the	 cellular	 landscape,	 where	 they	 are	 likely	
involved	in	hormonally	induced	tissue	remodeling	(Madsen	
et	al.,	2013).	 In	contrast,	 the	classically	activated	and	pro-
inflammatory	 M1	 macrophages	 dominate	 the	 ovary,	
consistent	 with	 previous	 reports	 that	 M1	 but	 not	 M2	
macrophages	are	 required	 for	 folliculogenesis	 (Ono	et	al.,	
2018).	M1	macrophages	 are	 also	 prevalent	 in	 cervix	 and	
vagina,	 consistent	 with	 these	 organs’	 higher	 exposure	 to	
pathogens.	 Natural	 killer	 cells	 are	 concentrated	 in	 the	
uterus	 (and	 to	 a	 small	 extent	 in	 the	 oviduct),	where	 they	
have	been	suggested	 to	 regulate	decidualization	 (Sojka	et	
al.,	2019).		
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Figure 1 | Single-cell characterization of the female reproductive tract. (a) Single-cell analysis of the reproductive tract (FRT) was performed on 
ovary, oviduct, uterus, cervix and vagina, with spleen as a non reproductive, control organ. (b) All organs of the FRT were profiled in multiple biological 
replicates at the four phases of the mouse estrus cycle, during aging, and during decidualization in pregnancy. Occurrence of leukocytes, and 
nucleated and cornified epithelial cells (see Figure S3a) was used to stage tissues in Proestrus (P), Estrus (E), Metestrus (M) and Diestrus (D). (c) 
Proportional heatmap of the most abundant cell types by organ (full list in Figure S1c), revealed a pronounced shift between the upper and lower 
FRT from stromal dominance to epithelial dominance in young cycling mice. (d) Selected marker genes used to classify ovarian cell types. Complete 
plots of marker genes used to classify all FRT organs are shown in Figure S2. (e) UMAP plot of the young cycling mouse cells. Cell types were 
integrated between organs for visualization purposes only. Cell types were assigned to epithelial (red), immune (green), stroma (blue), and endothelial 
(gray) compartments. (f) Log ratio of innate (N, DC, M1Mp, M2Mp, Mp and MaC) and adaptive (NKC, BC, iNkT, MAIT, MTC) immune cells 
abundances in the FRT organs. (g) Log ratio of M1 to M2 macrophages in the FRT organs. 
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Our	analyses	identified	major	cell	types	present	across	the	
entire	FRT,	including	stromal	fibroblasts	and	macrophages;	
and	 revealed	 an	 anti-	 vs	 pro-inflammatory	 transition	
between	the	upper	and	the	lower	reproductive	tract.	
	
Estrus cycling dramatically remodels the cervix and vagina 
immune compartments 
To	 understand	 how	 tissue-environment,	 hormone	 state,	
and	 intrinsic	 cell	 identity	 combine	 to	 shape	 each	 organ’s	
tissue	 landscape,	 we	 compared	 how	 the	 cellular	
composition	of	the	entire	female	reproductive	tract	varies	
across	the	cycle	in	young	female	mice.	We	precisely	staged	
the	cycle	by	the	emergence	of	specific	cell	types	in	vaginal	
smears	(Figure	S3a,	Methods).	The	correct	identification	of	
the	phases	was	confirmed	by	an	unbiased	reconstruction	of	
a	 transcriptional	 pseudo-time	 trajectory	 of	 uterine	
fibroblasts,	which	ordered	the	mice	according	to	the	smear-
assigned	 phases	 (Figure	 S3b).	 Indeed,	 the	 substantial	
changes	observed	in	vagina	by	single-cell	data	(Figure	2a)	
are	consistent	with	the	vaginal	smears	used	to	stage	each	
mouse’s	 cycle.	 For	 example,	 the	 proportion	 of	 nucleated	
epithelial	cells	(such	as	BEpC	and	IEpcC)	is	at	its	highest	in	
proestrus	and	lowest	at	metestrus	(statistically	significant	
by	compositional	 regression,	Methods,	Table	S3).	We	also	
observed	 other	 expected	 features,	 including	 a	 large	
expansion	of	the	stroma	from	proestrus	to	estrus	(Jin,	2019;	
Wood	et	al.,	2007)	and	an	expansion	of	glandular	cells	at	
proestrus	in	the	uterus	(Sato	et	al.,	1997)	(Figure	S3c).		

We	analyzed	the	cellular	population	dynamics	from	both	
an	 organ-specific	 and	 cell	 type	 specific	 point	 of	 view.	 To	
quantify	 the	magnitude	 of	 remodeling	 in	 each	 organ,	we	
determined	the	fraction	of	each	cell	type	at	each	phase	of	
the	 cycle	 and	 plotted	 the	 cycle	 inter-quartile	 range.	 This	
comparative	 approach	 revealed	 that	 vagina	 has	 the	most	
cycle-variable	 cell	 types,	 as	 well	 as	 the	 highest	 average	
amplitude	of	compositional	changes	in	the	FRT	(Figure	2b).	
The	variability	in	cell	composition	across	the	cycle	tends	to	
decrease	 along	 the	 FRT:	 in	 uterus	 and	 cervix	 fewer	 cell	
types	 vary	 across	 the	 cycle,	 while	 oviduct	 and	 ovary	 are	
relatively	invariant	in	their	composition.		

We	 then	 asked	 how	 the	 immune	 compartment	 of	 the	
female	 reproductive	 tract	 is	 remodeled	 across	 the	 cycle	
(Figure	2c,	S4a).	We	found	that	the	fraction	of	immune	cells	
is	 lowest	 during	 proestrus	 in	 all	 organs,	 and	 is	 also	 low	
during	diestrus	in	the	upper	reproductive	tract.	The	vagina	
and	 cervix	 show	 considerably	 greater	 variation	 in	 their	
content	of	immune	cells,	with	a	maximum	at	metestrus.	For	
vagina,	 we	 independently	 confirmed	 the	 sharp	 peak	 in	
immune	 cell	 numbers	 in	 metestrus	 by	 quantifying	 the	
fraction	of	immune	cells	across	the	cycle	via	flow	cytometry	
(Figure	2d,	S4b).	In	the	uterus,	in	contrast,	the	immune-cell	
proportion	 peaks	 earlier	 at	 estrus,	 followed	 by	 a	 slower	
decline	back	to	the	minimum	at	proestrus.	Interestingly,	the	
immune	fraction	of	the	ovary	and	oviduct	remains	relatively	
invariant.	Within	specific	immune	cell	populations,	immune	
cells	in	the	oviduct	transition	from	M1	during	estrus	to	M2	
during	metestrus	(Figure	2e,	S3c).	In	the	uterus,	M1	and	M2	
abundance	also	peaks	during	estrus,	whereas	metestrus	is	
characterized	by	a	specific	abundance	of	NK	cells.		

Our	analyses	newly	quantified	how	the	different	organs	
of	 the	 FRT	 are	 immunologically	 distinct.	 The	 lower	

reproductive	tract	undergoes	cyclical,	acute	immune	influx,	
which	is	also	seen	to	a	smaller	but	significant	extent	in	the	
uterus	and	oviduct,	while	the	ovary	maintains	an	invariant	
population	 of	 immune	 cells	 throughout	 the	 cycle.	 Our	
characterization	 of	 the	 cycle	 dynamics	 of	 cellular	
abundance	can	be	explored	in	an	interactive	online	tool	(see	
Data	Availability).	

	
Uterus undergoes profound cyclical epithelial/stromal re-
modeling 

Cell	proliferation	and	death	can	be	regulated	by	systemic	
steroid	hormones	 (Wood	et	al.,	2007).	Leveraging	on	our	
simultaneous	 profiling	 of	 the	 five	 organs	 of	 the	 FRT,	we	
asked	 whether	 tissue	 proliferation/remodeling	 is	
synchronized	 between	 them.	 To	 determine	 if	 the	 relative	
abundances	of	stroma	and	epithelia	are	coordinated	across	
organs	 and	 across	 the	 cycle	 we	 calculated	 the	 ratio	 of	
epithelium	to	stroma	across	the	FRT	(Figure	2f,	S4c).	In	all	
FRT	 organs,	 this	 ratio	 is	 lowest	 during	 diestrus	 and	
increases	on	the	transition	to	proestrus;	this	coincides	with	
the	known	progesterone	minimum	at	diestrus	 (Figure	2f)	
(Nilsson	 et	 al.,	 2015).	 With	 the	 exception	 of	 uterus,	 FRT	
organs	are	relatively	stable	in	the	transition	from	proestrus	
to	 estrus	 and	 peak	 at	 metestrus.	 In	 uterus,	 proestrus	
profoundly	 changes	 the	 ratio	 of	 epithelia	 to	 stroma,	 and	
therefore	 we	 asked	 if	 proliferation	 contributes	 to	 these	
dynamic	changes.	We	derived	proliferation	scores	using	the	
scRNA-seq	 data	 (Methods),	 which	 revealed	 that	
proliferation	 rates	 of	 epithelia	 are	 highest	 during	 the	
estrogen	 (E2)	surge	at	proestrus	and	 lowest	at	metestrus	
(Figure	 2g).	 In	 contrast,	 stromal	 proliferation	 peaks	 at	
estrus	 and	 metestrus	 (Figure	 S4d),	 coinciding	with	 peak	
progesterone	 (P4)	 levels,	 which	 promotes	 stromal	
proliferation	 and	 inhibition	 of	 the	 E2-induced	 epithelial	
proliferation	(Li	et	al.,	2011).		

The	 most	 notable	 contrast	 in	 tissue	 remodeling	 is	
between	 vagina	 and	 uterus,	 providing	 a	 high-resolution	
quantification	 for	 the	 current	 models	 obtained	 from	
histopathological	 analyses	 (Sato	 et	 al.,	 1997).	 In	 vagina,	
there	 are	 cell	 type	 specific	 changes	 within	 the	 epithelial	
compartment	 across	 the	 cycle	 (Figure	 2b)	 which	 do	 not	
impact	the	overall	balance	of	epithelia	to	stroma	(Figure	2f).	
In	contrast,	the	uterus	shows	strong	changes	in	its	epithelial	
to	stromal	ratio	(Figure	2f).		

In	sum,	our	data	reveals	how	proliferation	and	immune	
activation	 are	 precisely	 regulated	 during	 the	 cycle.	 The	
regulation	of	cell	type	abundances	and	immune	infiltration	
in	 the	 FRT	 is	 highly	 organ	 specific,	 despite	 their	 equal	
exposure	to	circulating	hormones.	

	
Tissue morphological changes are tracked by gene 
expression 
We	considered	the	possibility	that	organs	such	as	ovary	and	
oviduct,	where	cell	abundances	are	relatively	stable	across	
the	 cycle,	 might	 instead	 show	 substantial	 changes	 in	
transcription.	We	scored	the	magnitude	of	transcriptional	
change	 between	 phases	 of	 the	 cycle	 for	 each	 cell	 type	 in	
every	 FRT	 organ	 using	 optimal	 transport	 analysis	
(Methods)	 (Figure	 2h).	 This	analysis	 revealed	 that	 cycle–
related	variation	in	cell	type	abundance	is	accompanied	by	
a	corresponding	scale	of	transcriptional	change.	Vagina	and	
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cervix	 are	 high	 in	 both	 cell	 type	 variability	 and	 gene	
expression;	 in	 contrast,	 the	 cells	 in	 uterus,	 oviduct,	 and	
ovary	show	less	of	both	(Figure	2b,h).	When	considered	by	
cell	types,	we	observed	the	same	effect:	the	abundance	of	
immune	 cells	 closely	 corresponds	 to	 their	 functional	
activation,	which	we	orthogonally	measured	by	single-cell	
scoring	 of	 inflammation	 markers	 and	 cytokine	 gene	
expression	 (Figure	 2i,	 Table	 S9),	 in	 agreement	with	 total	

cytokine	and	chemokine	concentration	found	in	vaginal	and	
uterine	lavages	(Hickey	et	al.,	2013;	Sonoda,	Y.	et	al.,	1998).	

Our	 data	 show	 that	 organs	 with	 the	 largest	
morphological	changes	also	have	the	largest	transcriptional	
changes	across	all	cell	types,	suggesting	a	positive	feedback	
loop	 interaction	 between	 morphological	 and	
transcriptional	change.	

Figure 2 | Estrus cycle drives organ-specific compositional changes. (a) Barplot showing the % of each cell type in vagina at each phase of the 
cycle (P-proestrus, E-estrus, M-metestrus, D-diestrus). The values shown are the averages across biological replicates, barplots per biological 
replicate are shown in Figure S3c. (b) The compositional variability across the cycle was plotted for each cell type in each organ. The y-axis shows 
the variability plotted as an interquartile range; for each organ, the two most variable cell types are indicated. (c) The ratio of immune to other cells 
across the cycle was plotted. The values shown are average across biological replicates, standard errors are shown in Figure S4c. The immune 
compartment is invariant in the ovary and oviduct, peaks during estrus in the uterus, and during metestrus in vagina and cervix. The ratios shown 
are the average across biological replicates, standard errors are omitted for clarity and shown in Figure S4a. (d) The cyclical changes in the vaginal 
immune compartment were independently confirmed using flow cytometry (‘n’ indicates the number of biological replicates). (e) Compositional 
changes across the cycle in all FRT organs were plotted for M1Mp, M2Mp and NK cells. (f) The ratio of epithelia to stroma across the cycle was 
plotted; uterus uniquely and extensively reshapes its cellular composition. The relative concentration of estradiol (E2) and progesterone (P4) at each 
stage from (Nilsson et al., 2015) is shown above (black is the maximum value of the cycle, white is 0). (g) Average  activity score of genes promoting 
cell proliferation (GO:0008284) calculated in epithelial cells using AUCell. (h) Similarity of gene expression between the cycle phases for each cell 
type was quantified using optimal transport, and displayed as a flower plot (inset). Petal lengths indicate magnitude of transcriptional changes; for 
example, most cell types are more transcriptionally dynamic in cervix and vagina than in the upper FRT. (i) Average activity score of cytokine 
regulatory genes (GO:0001816) calculated in immune cells using AUCell.  
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Fibroblast functions are dynamically regulated throughout 
the cycle, but not coordinated between organs 
Fibroblasts	 are	 key	 regulators	 of	 wound	 healing	 and	
inflammation	 in	 multiple	 organs,	 we	 therefore	 asked	 if	
fibroblasts	play	the	same	functional	roles	in	the	cycling	FRT	
organs,	and	whether	these	roles	are	coordinated	between	
them.	We	first	used	over-representation	analysis	(ORA)	to	
identify	 the	 functional	 pathways	 enriched	 among	 cycling	
genes	with	significant	differential	expression	between	any	
two	 adjacent	 phases	 of	 the	 cycle	 (Figure	 3a,	 Table	 S7,	
Methods).	This	revealed	that	ECM	remodeling	and	Tumor	
necrosis	 factor	 (Tnf)	 regulation	 of	 inflammation	 are	 core	
programmes	of	fibroblasts	during	the	cycle.	However,	the	
activity	of	 these	 two	specific	 functional	pathways	 is	often	
out	 of	 phase	 or	 even	 anti-correlated	 between	 organs,	
despite	 equal	 exposure	 of	 the	 organs	 to	 circulating	
hormones	(Figure	3b,c).		

The	activation	of	inflammatory	pathways	in	fibroblasts	
shows	 two	 organ-specific	 patterns	 (Figure	 3b,	 Table	 S9,	
Methods):	 in	 vagina,	 cervix,	 and	 oviduct,	 inflammatory	
activity	 peaks	 at	 metestrus,	 and	 in	 uterus	 and	 ovary	 at	
proestrus.	 Thus,	 the	 vaginal	 immune	 cell	 infiltration	 we	
previously	 observed	 at	 metestrus	 (Figure	 2c)	 is	
accompanied	 by	 fibroblast	 inflammatory	 activation.	 In	
contrast,	ECM	organization	shows	no	coordinated	pattern	
across	 FRT	 organs	 (Figure	 3c).	 Compared	 to	 the	 other	
organs,	 uterus	 has	 the	 most	 extensive	 ECM	 remodeling	
which	peaks	at	proestrus	and	reaches	its	minimum	during	
estrus.		

Our	 data	 confirms	 that	 cycling	 fibroblast	 programmes	
are	 similar	 between	 organs,	 yet	 often	 out	 of	 phase,	
suggesting	 that	 fibroblast	 functions	 are	 regulated	 by	 a	
combination	of	systemic	and	local	cues.	

	
Cell-to-cell communication and transcription factor activity 
reveal high inflammation in the lower FRT and extensive 
ECM remodeling in the uterus 
Fibroblasts	coordinate	organ	function	and	homeostasis	via	
communication	 with	 other	 cell	 types	 through	 ligand–
receptor	 interactions	 (Davidson	 et	 al.,	 2021;	 DeLeon-
Pennell	 et	 al.,	 2020).	We	 therefore	 performed	 cell-to-cell	
communication	 analysis	 to	 identify	 the	 organ-specificity	
and	 activity	 of	 ligand-receptor	 interactions	 (Figure	 3d,	
Methods)	 (Jin	 et	 al.,	 2021;	 Shao	 et	 al.,	 2021).	 We	 first	
focused	 on	 how	 ligands	 from	all	 cell	 types	 converged	 on	
fibroblasts,	 by	 calculating	 communication	 scores	 as	 the	
product	 between	 a	 and	 b,	 where	 a	 is	 the	 expression	 of	
ligands	 averaged	 over	 all	 cell	 types	 in	 all	 phases	 (the	
‘ambient’	 ligand	 expression),	 and	 b	 is	 the	 expression	 of	
receptors	averaged	over	fibroblasts	in	all	phases.	

Vaginal	 and	 cervical	 fibroblasts	 have	 the	 highest	
communication	scores	for	pro-inflammatory	Interleukin	1	
beta	 (Il1b)	 and	 Tnf;	 and	 the	 lowest	 scores	 for	 anti-
inflammatory	 Interleukin	 10	 (Il10),	 Interleukin	 11	 (Il11)	
and	 Transforming	 growth	 factor	 beta	 (Tgfb)	 cell-to-cell	
signaling	 (Figure	3e,	S5a,	Table	S4,	Methods).	 In	contrast,	
uterine	 fibroblasts	 receive	 primarily	 anti-inflammatory	
signaling,	and	oviduct	and	ovary	have	a	mixture	of	anti-	and	
pro-inflammatory	 signaling.	 By	 summarizing	 the	 cycle	
average	fibroblast	inflammation	scores	by	organ,	we	found	

that	 vagina	 has	 the	 strongest	 cyclical	 inflammatory	
transcriptional	 responses	 (Figure	 3f),	 consistent	 with	 its	
cell	 type	 compositional	 changes	 (Figure	 2c).	 A	 similar	
summative	 analysis	 of	 ECM	 reorganization	 demonstrated	
that	 uterus	 and	 oviduct	 undergo	 the	 largest	 structural	
remodeling	across	the	cycle,	followed	by	vagina	(Figure	3g).	
Indeed,	 fibroblasts	 in	 the	 uterus	 and	 oviduct	 show	 the	
highest	communication	scores	for	ECM-associated	signaling	
(Figure	3e,	S5a).	

To	 verify	 that	 increased	 cell-to-cell	 communication	
results	 in	upregulation	of	downstream	pathways,	 for	each	
of	the	ligands,	we	scored	the	activity	in	fibroblasts	in	each	
FRT	organ	for	their	predicted	target	genes	(Browaeys	et	al.,	
2020).	 Most	 ligand	 targets	 have	 a	 strong	 positive	
correlation	with	their	organ	receptor-ligand	scores	(Figure	
3h,	Methods).	 In	other	words,	 if	an	organ	has	high	ligand-
receptor	activity,	then	it	also	has	high	ligand-target	activity.		

We	 then	 sought	 to	 identify	 which	 cell	 types	 were	
responsible	for	signaling	to	fibroblasts	by	partitioning	the	
transcription	 of	 each	 ligand	 by	 cell-of-origin	 (Figure	 S5b,	
S6a,	 Methods).	 In	 the	 lower	 reproductive	 tract,	 M1	
macrophages	(source	of	Il1b,	Tnf,	Il12a)	and	memory	T-cells	
(source	 of	 Ifng,	 Csf2)	 appear	 responsible	 for	 most	 pro-
inflammatory	signaling.	In	the	upper	reproductive	tract,	M2	
macrophages	 (source	 of	 Il10)	 and	 fibroblasts/theca	 cells	
(source	 of	 Il11)	 generate	 the	 predominantly	 anti-
inflammatory	environment	(Figure	S5b,	S6a).		

Our	 data	 reveal	 that	 the	 cell	 types	 responsible	 for	
inflammatory	 ligand	 production	 are	 often	 organ-specific.	
Prior	 studies	 in	humans	and	cows	have	suggested	organ-
specificity	 in	TNF	signaling	arising	from	uterine	glandular	
cells	 (Okuda	et	al.,	2010;	Tabibzadeh,	1991,	1999),	which	
we	 confirmed	 in	 the	 mouse	 (Figure	 S5b).	 As	 another	
example	of	organ-specific	signaling,	we	identified	the	cell-
of-origin	of	Il10	(Figure	3i).	Il10	is	highly	active	in	oviduct	
(see	Figure	3e),	where	 the	major	source	of	 ligand	are	M2	
macrophages	 (Figure	 3i,	 S5b).	 In	 vagina,	 where	 there	 is	
substantially	less	IL10	signaling	and	few	M2	macrophages,	
the	 strongest	 source	 is	 dendritic	 cells	 (Figure	 3i,	 S6a).	 In	
contrast	 to	 inflammatory	 signaling	which	 is	 often	 organ-
specific	 and	 paracrine,	 fibroblast	 ECM	 is	 often	 autocrine	
controlled	by	signaling	from	stromal	cells	(Figure	S5b,	S6a).		

TGFB	 is	 one	 of	 the	 most	 potent	 regulators	 of	 ECM	
activity	 and	 inflammation	 (Derynck	 and	 Zhang,	 2003).	
Using	scRNA-seq	data	we	determined	that	Tgfb1	is	highly	
active	in	the	organs	of	the	upper	FRT	(Figure	S5a).	 In	the	
ovary,	 the	 main	 sources	 of	 Tgfb1	 are	 stromal	 cells	 and	
macrophages,	 and	 to	 a	 smaller	 extent	 granulosa	 cells	
(Figure	 3j).	 To	 validate	 the	 TGFB	 signaling	 in	 the	 ovary	
between	 fibroblasts	 and	 their	 partner	 cells	we	 generated	
spatially	resolved	transcriptomics	data	using	Visium.	Using	
spatial	and	 transcriptional	 information,	we	calculated	 the	
proportion	of	spots	with	stromal	cells	that	expressed	Tgfb1	
receptors	 and	 neighboured	 a	 spot	 with	 stromal	 cells,	
macrophages	or	granulosa	cells	that	expressed	Tgfb1	ligand	
(Figure	 3k).	We	 confirmed	 that	 indeed	 ligand-expressing	
stromal	 cells	 and	 macrophages	 co-localize	 significantly	
more	 frequently	 with	 receptor-expressing	 fibroblasts	
compared	to	granulosa	cells	(Figure	3l).				
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Figure 3 | Gene expression dynamics of fibroblasts across the female reproductive tract. (a) Functional pathways, including inflammation and 
ECM, enriched in genes differentially expressed between phases of the cycle in fibroblasts. (b) Activity scores of inflammatory genes (Sup. Table 
S9) determined by AUCell and averaged across all fibroblasts in each cycle phase (P-proestrus, E-estrus, M-metestrus, D-diestrus). (c) Activity 
scores of ECM organization genes (Sup. Table S9), as in (b). (d) Schematic of the cell-to-cell ligand-receptor and ligand target analyses. (e) Heatmap 
showing the z-scores of ligand-receptor products averaged across phases. Ligand expression is averaged across all cell types; receptors are in 
fibroblasts only. A full version of the heatmap is shown in Figure S5a. The receptor-ligand interactions shown were deemed statistically significantly 
different in at least one FRT organ in comparison to the rest by a permutation test (p-values in Table S4). (f) Activity scores of inflammatory genes 
averaged across all fibroblasts in each phase in each organ. The scores shown here are the average of the scores shown in panel (b), weighted by 
phase length (Methods). (g) Activity scores of ECM genes averaged across all fibroblasts in each phase in each organ. The scores shown here are 
the average of the scores shown in panel (c), weighted by phase length (Methods).  
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In	addition	to	the	cycle-averaged	communication	above,	
we	 evaluated	 the	 dynamics	 of	 cell-to-cell	 communication	
across	the	cycle	in	uterus	and	vagina,	which	had	the	highest	
levels	of	ECM	and	inflammation,	respectively.	In	uterus,	we	
observed	 that	 ECM-related	 cell-to-cell	 communication	 is	
lowest	 in	the	estrus	phase	(Figure	S6b),	consistent	with	a	
corresponding	decline	in	ECM-related	gene	activity	(Figure	
3c).	Similarly,	in	vagina,	the	highest	pro-inflammatory	and	
lowest	 anti-inflammatory	 cell-to-cell	 communication	 are	
found	 in	 metestrus	 (Figure	 S6b),	 consistent	 with	
inflammation	peaking	in	metestrus	(Figure	3b).	

Finally,	 to	 identify	 candidate	 regulators	 involved	 in	
organ-specific	 inflammatory	 and	 ECM	 processes,	 we	
quantified	the	associated	transcription	factor	(TF)	activity	
across	the	cycle	using	SCENIC	(Figure	3m,	S6c,	S7a,	Table	
S5).	As	expected,	we	found	that	the	activity	of	inflammation-
associated	transcription	factors	is	highest	in	vagina,	while	
activity	 of	 ECM-related	 transcription	 factors	 is	 highest	 in	
the	uterus	(Figure	3m).	For	example,	in	vaginal	fibroblasts,	
both	 canonical	 (Nfkb1,	 Rela)	 and	 noncanonical	 NFKB	
pathways	(Nfkb2,	Relb,	Bcl3)	are	activated	by	IL1B	and	TNF	
ligands	(Figure	S6c),	suggesting	that	the	synergistic	action	
of	 these	 ligands	 on	 NFKB	 pathways	 contributes	 to	
inflammation	(Di	Paolo	et	al.,	2015).	Overall,	we	observed	
that	 the	 dynamics	 of	 transcription	 factor	 activity	
correspond	 closely	 with	 changes	 in	 cell-to-cell	
communication	(Figure	S7b).	

We	confirmed	that	fibroblasts	are	central	regulators	of	
inflammation	and	ECM	across	the	FRT.	We	discovered	that	
the	 timing	 and	 underlying	 transcriptional	 regulators	 of	
fibroblast	 activation	 are	 highly	 organ	 specific.	 The	
differentially	expressed	genes,	co-expressed	gene	clusters,	
cell-to-cell	communication,	and	transcription	factor	activity	
can	 be	 explored	 in	 our	 interactive	 online	 tool	 (Data	
Availability).	

	
Modeling the human menstrual cycle using mouse 
decidualization 
The	human	reproductive	cycle	includes	a	step	of	terminal	
differentiation	 (decidualization)	 of	 the	 uterine	 stromal	
cells,	which	in	other	mammals	only	happens	in	the	presence	
of	 a	 fertilized	 egg.	 During	 the	 first	 trimester	 of	 human	
pregnancy,	 the	 immune	microenvironment	of	 the	decidua	
prevents	 inflammatory	 responses	 (Vento-Tormo	 et	 al.,	
2018).	Here	we	 first	asked	whether	mouse	 decidual	 cells	
also	display	an	anti-inflammatory	profile,	and	then	sought	
to	 quantify	 the	 degree	 of	 transcriptional	 conservation	
between	humans	and	mouse	cycling	fibroblasts.	

To	 parallel	 the	 spontaneous	 decidual	 reaction	 that	
occurs	during	the	human	cycle,	we	induced	decidualization	
in	 mice	 by	 inducing	 pregnancy,	 and	 characterized	 the	
uterine	architecture	at	embryonic	day	5.5	by	scRNA-seq	in	
seven	 biological	 replicates	 (Figure	 4a,	 S8a,b).	 A	 subset	of	

stromal	 cells	 unique	 to	 pregnant	 mice	 transcriptionally	
expresses	 the	 classical	 markers	 of	 decidualization:	 Alpl,	
Bmp2	 and	 Prl8a2	 (Figure	 4b,	 S8c)	 (Finn	 and	 Hinchliffe,	
1964;	 Ramathal	 et	 al.,	 2010;	 Soares	 et	 al.,	 1998).	 As	
expected,	many	stromal	cells	from	pregnant	uteruses	do	not	
express	 these	 markers,	 because	 the	 mouse	 uterus	
decidualizes	 heterogeneously	 (Zhao	 et	 al.,	 2017).	 For	
instance,	 Bmp2	 is	 only	 expressed	 in	 stromal	 cells	
surrounding	 the	 implanted	 embryo.	 We	 confirmed	
decidualization	 histologically	 using	 H&E	 staining	 (Figure	
4c).	Compared	to	the	metestrus	phase,	the	pregnant	uterus	
is	 characterized	 by	 the	 appearance	 of	 decidual	 cells,	
accompanied	 by	a	 proportional	 increase	 in	NK,	 glandular	
cells	(GlC)	and	fibroblasts,	and	a	decrease	in	columnar	(CC),	
ciliated	epithelial	cells	(CEpC),	mural	(MC),	dendritic	(DC)	
and	 MAIT	 cells	 (Figure	 4d).	 Additionally	 to	 cell	
compositional	 changes,	 decidualization	 in	 mouse	 causes	
extensive	 transcriptional	 changes	 in	 inflammation,	 ECM	
and	embryo	development	pathways	(Figure	S8d).		

We	asked	whether	the	decidualized	cells	and	fibroblasts	
in	 mice	 express	 the	 same	 transcriptional	 programs	
previously	identified	in	human	uterine	fibroblasts	(Figure	
4e,	Figure	S9a,	Table	S6)	(Wang	et	al.,	2020).	First,	we	used	
the	same	mutual	information	approach	as	the	original	study	
to	 re-identify	 1670	 human	 genes	 that	 are	 differentially	
expressed	between	specific	phases	of	the	menstrual	cycle.	
We	 then	 tested	whether	 the	same	genes	are	differentially	
regulated	in	the	corresponding	estrus	phases	in	mice	using	
the	same	approach	(Figure	S8e,	Methods).	At	every	phase	of	
the	cycle,	the	dynamic	gene	expression	changes	in	human	
and	mouse	 are	more	conserved	 than	 expected	 by	 chance	
(Methods),	 and	 the	 phase	 of	 decidualization	 has	 an	
especially	 high	 percentage	 of	 conserved	 transcription	
(Figure	 4e).	 These	 genes	 are	 enriched	 for	 ECM,	
inflammation,	 and	 cycle	 regulation	 and	 implantation	
pathways	 (Figure	 S9b).	 Most	 of	 these	 processes	 show	
species-specific	 differences	 in	 activity	 across	 the	 cycle;	
however,	 the	 transition	 to	 decidualization	 is	 largely	
conserved	 (Figure	 4f-h,	 Figure	 S9c).	 When	 compared	 to	
fibroblasts,	decidual	stromal	cells	show	consistently	lower	
activity	 of	 ECM-	 and	 inflammation-related	 genes	 (Figure	
4g,h)	and	transcription	factors	(Figure	4i).	

In	sum,	our	analyses	revealed	that	mouse	decidual	cells	
display	 a	 markedly	 anti-inflammatory	 transcriptional	
profile	and	that	the	transition	to	decidualization	is	largely	
conserved	between	mouse	and	human.	

	
Inflammaging in the FRT 
The	 FRT	 shows	 signs	 of	 accelerated	 aging	 compared	 to	
other	organs.	It	undergoes	extensive	physiological	changes	
following	 its	 decline	 in	 mid-life,	 which	 culminates	 in	
menopause/acyclicity	 (Broekmans	 et	 al.,	 2009).	 We	
therefore	 asked	 which	 age-related	 changes	 occur	 in	 the	

Figure 3 (cont.) (h) Heatmap of Spearman correlation values between the expression product of a ligand-receptor pair and the AUCell activity score 
of predicted targets of the ligand (Browaeys et al., 2020). (i) Top 5 cell types with the largest expression of Il10 in vagina and oviduct. (j) Contribution 
of stromal cells, macrophages and granulosa cells to Tgfb1 expression calculated using 10x scRNA-seq data. (k) Schematic showing cell-to-cell 
communication scoring strategy in spatial transcriptomics analysis. Communication between spots containing fibroblast and ligand source cells was 
considered possible if: the fibroblast spot expressed receptor (Tgfbr3 or Tgfbr1/Tgfbr2), and neighborhood spots expressed ligand (Tgfb1) together 
with the correct cell type marker. (l) Proportion of stromal spots which are communicating with respective ligand source spots. Spots were scored 
using the strategy shown in (k). (m) Estimated activity scores of targets of transcription factors associated with inflammation and ECM regulation in 
fibroblasts. Shown are TFs whose activity scores were statistically significantly different between the FRT organs through a permutation test (Table 
S5, Methods).  
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aged	 FRT	 compared	 to	 young.	 Our	 pathological	 analysis	
confirmed	 that	 18	month	 old	mice	 often	 display	 immune	
infiltration	in	most	organs	(Finch,	2014;	Nelson	et	al.,	1984),	
ovarian	atrophy,	as	well	as	localized	ovarian	and/or	uterine	
hyperplasias	(Figure	5a,	Figure	S10,	Table	S10).	To	quantify	
how	 age-associated	 cessation	 of	 the	 estrus	 cycle	 changes	

the	cellular	composition	and	transcription	in	reproductive	
organs,	we	collected	 in	 triplicate	and	analyzed	 the	single-
cell	 transcriptomes	 of	all	 reproductive	 organs	and	 spleen	
from	18-month	old	female	mice	(Figure	5b,	S11a).		

We	identified	extensive	changes	in	cell	type	abundances	
by	comparing	cell	type	proportions	between	the	aged	and	

Figure 4 | Regulation of reproductive cycle and decidualization is conserved between mouse and human. (a) UMAP plot of the integration of 
the pregnant with the metestrus samples. Shown in this panel is a subsample of 19,724 of the total 40,828 cells used in the analyses. (b) UMAP from 
panel a) subsetted to stromal cells and split by condition showing the expression of marker gene of decidualization Alpl. (c) H&E staining of pregnant 
mouse uterus showing decidualization at the implantation site. (d) Cell abundance compositional changes in early pregnancy compared to metestrus. 
Heatmap shows the difference in average % of each cell type between pregnant and metestrus samples. Pregnancy in mice is characterized by the 
appearance of decidual cells. To be able to compare the changes in all other cell types upon decidualization, decidual cells were omitted from the 
comparison and cell abundances were re-calculated. (e) Conserved differentially regulated genes in mouse uterine fibroblasts and decidual cells and 
human fibroblasts across the cycles. Barplot indicates in red the % of homologous differentially regulated genes that showed the same or opposite 
directionality of regulation in comparison to adjacent cycle phases in paired mouse-human cycle phases. For instance, a mouse gene upregulated in 
proestrus compared to diestrus and the homologous human gene upregulated in proliferative early compared to secretory late. Genes that showed 
opposite directionality of regulation (e.g. up-regulation in humans, down-regulation in mice) were considered divergent and their % is shown in gray. 
Black line shows the proportion of the conserved genes expected by chance in each cycle phase. As bar labels only mouse phase comparisons are 
shown (P-proestrus, E-estrus, M-metestrus, D-diestrus, Pr-pregnant, F-fibroblast, DeC- stromal decidual cells). (f) Activity scores of genes that 
regulate embryo implantation (GO:0007566) (Sup. Table S9) determined by AUCell and averaged across all mouse and human fibroblasts in each 
phase of the cycle (P-proestrus, E-estrus, M-metestrus, D-diestrus, Pe-proliferative early, Pl-proliferative late, Se-secretory early, Sm-secretory mid, 
Sl-secretory late). Red dot indicates the activity score in mouse decidual cells. (g) Activity scores of inflammation genes as in (f). (h) Activity scores 
of ECM genes as in (f). (i) Estimated activity scores of targets of transcription factors associated with inflammation and ECM regulation in mouse 
fibroblasts, across the cycle and in pregnancy, as well as decidual cells in pregnancy. 
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young	mice	 in	diestrus	 (Figure	5c,	S11b),	 the	phase	most	
similar	 to	 acyclicity	 (Felicio	 et	 al.,	 1984).	 Ovary	 shows	 a	
decrease	in	the	proportion	of	follicle-associated	cells	such	
as	ThC,	MGC,	 and	 LC,	which	 is	 to	 be	expected	 due	 to	 the	
exhaustion	of	ovarian	follicles	and	corpora	lutea	in	acyclic	
mice	 (Lliberos	 et	al.,	 2021).	We	 independently	 confirmed	
this	decrease	by	both	histopathology	and	RNAscope	(Figure	

S10,	S11d,e).	As	expected,	we	found	that	the	proportion	of	
fibroblasts	 increases	 in	 ovary	 (Lliberos	 et	 al.,	 2021)	 and	
decreases	in	the	oviduct	and	uterus	(Craig	and	Jollie,	1985).		

By	evaluating	the	entire	FRT,	we	newly	quantified	how	
aging	 increases	 the	 fraction	of	 immune	cells	 in	 the	upper	
reproductive	 tract,	whereas	 aging	 decreases	 the	 immune	
cells	in	the	lower	reproductive	tract.	Prior	studies	on	single	

Figure 5 | Organ-specific impact of aging on the FRT. (a) Photograph and H&E staining of young and aged ovaries. Arrows point to follicles in the 
young ovary. Aged ovary is atrophied and contains no follicles. (b) UMAP plot of the integration of the aged mouse samples with the diestrus samples. 
(c) Cell abundance compositional changes in aging compared to diestrus. Heatmap shows difference in average % of each cell type between aged 
and diestrus samples. (d) Similarity of gene expression programs between the aging and diestrus for each cell type quantified using optimal transport. 
Line lengths indicate magnitude of transcriptional changes. Optimal transport distances of fibroblasts are colored in red. (e) Number of genes with 
increased differential Shannon entropy (ShE) of all cell types in ovary, oviduct, uterus, cervix and vagina in diestrus compared to old age.   
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organs	found	similar	results	in	isolation	(Elmes	et	al.,	2015;	
Rodriguez-Garcia	 et	 al.,	 2021;	 Yaakov	 et	 al.,	 2021).	 The	
remodeling	of	the	immune	compartment	is	organ-specific:	
uterus	 shows	 an	 increase	 in	 M1	 and	 M2	 macrophages,	
cervix	 and	 vagina	 have	 a	 decrease	 in	 M1	 macrophages,	
while	oviduct	has	an	increase	in	NK,	B	and	dendritic	cells.	
The	control	organ,	 spleen,	displays	statistically	 significant	
differences	 only	 in	 iNKT	 and	 PC	 proportions	 (Figure	 5c,	
S11b,c,	 Table	 S3),	 in	 agreement	 with	 previous	 reports	
(Kimmel	et	al.,	2019).	

	
Age-related gene expression changes are organ-specific 
We	then	compared	the	gene	expression	programs	between	
young	 and	 old	 mice	 using	 optimal	 transport	 analysis.	 In	
contrast	 to	 the	 transcriptional	 changes	 associated	 with	
estrus,	 which	 are	 concentrated	 in	 the	 lower	 FRT,	 during	
aging	both	the	upper	and	lower	FRT	show	extensive	gene	
expression	 changes	 (Figure	 5d).	 We	 found	 that	 the	
magnitude	of	age-related	changes	in	cell	type	transcription	
is	 highly	 organ-specific.	 For	 example,	 fibroblasts	 show	
transcriptional	 changes	 during	 aging	 in	 all	 organs,	 but	 in	
ovary	they	are	the	most	strongly	altered	cell	type.	

Increase	 in	 cell-to-cell	 transcriptional	 variability	 has	
also	been	shown	 to	be	associated	with	aging	 (Enge	et	al.,	
2017;	Martinez-jimenez	et	al.,	2017),	though	this	variability	
may	 be	 cell	 type	 specific	 (Kimmel	 et	 al.,	 2019).	
Simultaneously	profiling	all	 five	FRT	organs	allowed	us	to	
investigate	 how	 gene-wise	 transcriptional	 variability	
changes	during	aging	for	over	50	different	cell	 types,	and	
whether	 cell	 types	 that	 are	 common	 between	 organs	
transcriptionally	age	 in	a	 similar	manner	 (Figure	5e,	S12,	
Table	 S8).	 Importantly,	 we	 scored	 the	 age-associated	
transcriptional	 variability	 against	 the	 natural	 cyclical	
variation	found	in	these	organs,	using	Shannon-entropy,	a	
metric	commonly	used	for	quantifying	diversity	in	ecology.		

Taking	ovary	as	an	example,	aging	strongly	increases	the	
cell-to-cell	 variability	 in	 the	 majority	 of	 cell	 types,	 when	
compared	 with	 other	 FRT	 organs.	 This	 age-related	
transcriptional	variability	 is	often	cell	 type	specific:	MAIT	
and	EpC	cells	increase	substantially	with	age,	whereas	M1	
and	 M2	 macrophages	 are	 largely	 unaffected	 (Figure	 5e,	
S12).	As	a	cell	type	shared	among	all	FRT	organs,	fibroblasts	
show	modest	cell-to-cell	variability	between	young	and	old	
mice.	Other	cell	types	found	across	the	FRT	such	as	MAIT	
cells	are	more	variable	(Figure	5e,	S12).	The	transcriptional	
variability	of	many	epithelial	cells	(BEpC,	CEpC	and	IEpCs)	
is	 substantially	 changed	 with	 age	 in	 uterus,	 cervix	 and	
vagina;	however,	these	age-related	differences	are	smaller	
than	 the	 variation	 observed	 in	 the	 normal	 cycle	 (Figure	
S12).		

In	sum,	aging	results	 in	substantial	changes	to	the	cell	
type	 composition	 of	 FRT	 organs,	 most	 notably	 immune	
infiltration	 in	 the	 upper	 reproductive	 tract,	 and	 the	 age-
related	 gene	 expression	 changes	 for	 each	 cell	 type	 are	
organ-specific.	Unlike	the	cyclic	FRT,	both	upper	and	lower	
aged	 FRT	 show	 profound	 changes	 in	 their	 transcription	
programs.	Comparison	of	FRT	organs	shows	that	the	ovary	
is	 more	 affected	 by	 changes	 in	 the	 gene-wise	 cell-to-cell	
variability.			
	

Organ-specific impact of chronic inflammation during FRT 
aging 
Fibroblasts	 can	 retain	 inflammatory	memory	 (Kirk	 et	 al.,	
2021),	 and	 thus	 shape	 age-related	 changes	 to	 organ	
physiology	and	 function.	To	 test	 the	extent	and	 impact	of	
inflammatory	responses	in	aged	fibroblasts,	we	evaluated	
the	 difference	 in	 inflammation	 scores	 between	 young	
diestrus	 and	 old	 acyclic	 FRT	 organs	 and	 then	 applied	 a	
linear	mixed	model	(Figure	6a).	Aging	results	in	a	significant	
increase	 in	 fibroblast	 inflammation	 in	 all	 organs	 except	
ovary.	 Interestingly,	 the	 rate	 of	 increase	 is	 significantly	
different	between	FRT	organs	(p-value	<	0.05	of	the	organ-
age	 interaction	 terms,	 Methods),	 with	 cervix	 and	 uterus	
displaying	the	most	pronounced	increase	in	inflammation.		

We	quantified	what	fraction	of	this	inflammation	is	due	
to	 a	 subset	 of	 highly	 active	 fibroblasts	 versus	 a	 general	
increase	in	all	fibroblasts.	For	each	young	and	old	uterus,	we	
plotted	 the	 distribution	 of	 inflammation	 scores	 of	 the	
fibroblasts	 (Figure	 6b).	 We	 statistically	 evaluated	 the	
observed	differences	using	the	waddR	package	(Schefzik	et	
al.,	2021),	revealing	that	the	distributions	of	inflammation	
scores	are	significantly	different	(p-value	=	0.002)	between	
young	 and	 old	 mice.	 We	 further	 dissected	 these	
distributions	 via	 decompositional	 analysis	 using	 a	 2-
wasserstein	distance-based	approach,	 revealing	 that	 their	
shape,	 location,	 and	 sizes	 equally	 contribute	 to	 their	
differences.	 In	 other	words,	 the	 increase	we	 observed	 in	
fibroblast	 inflammation	is	driven	by	both	an	expansion	of	
sub-populations	with	high	 inflammation	scores	as	well	as	
an	 overall	 increase	 in	 expression	 of	 inflammatory	 genes	
throughout	the	population.	

We	 tested	 the	 hypothesis	 that	 recurrent,	 cycle-related	
inflammation	of	fibroblasts	across	the	reproductive	lifespan	
might	 accumulate	 into	 age-related	 chronic	 inflammation.	
We	 quantified	 the	 amplitude	 of	 the	 organ-wide	
inflammation	scores	in	young	mouse	fibroblasts	during	the	
cycle	and	compared	it	to	age-related	inflammation.	Indeed,	
the	higher	an	organ’s	amplitude	of	inflammation	is	during	
the	cycle	at	a	young	age,	the	higher	the	organ’s	fibroblast	
inflammation	 score	 is	 in	 old	 age	 (Figure	 6c).	 In	 contrast,	
immune	cells	do	not	display	such	an	association	(Figure	6d).	
These	results	suggest	that	fibroblasts	incompletely	resolve	
recurrent	inflammation	from	the	cycle,	thereby	retaining	a	
cumulative	memory	of	past	inflammation.	

	
Tissue fibrosis accumulates gradually in oviduct, uterus 
and vagina 
Inflammation	 is	 closely	 linked	with	 fibrosis	 (Flavell	et	al.,	
2008;	Kendall	and	Feghali-Bostwick,	2014),	and	increased	
collagen	 deposition	 and	 fibrosis	 can	 be	 the	 end	 result	 of	
chronic	exposure	of	fibroblasts	to	inflammatory	cytokines	
(Lliberos	et	al.,	2021;	Selman	and	Pardo,	2021).		

We	 previously	 observed	 significant	 ECM	 tissue	
remodeling	during	the	cycle	of	young	mice	(Figure	3c).	We	
considered	that	-	similar	to	inflammation	-	the	incomplete	
resolution	 of	 this	 remodeling	 could	 lead	 to	 age-related	
pathological	accumulation	of	collagen,	and	thus	to	fibrosis.	
We	 thus	 measured	 intercellular	 collagen	 in	 FRT	 organs	
using	 Picrosirius	 red	 staining	 to	 label	 collagen	 I	 and	 III	
fibers	in	3	and	18	month-old	mice,	in	triplicate,	and	in	12,	
15	 and	 21	month-old	mice	 in	 duplicate.	 Accumulation	 of	
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fibrosis	in	uterus	can	lead	to	infertility	(Sahin	Ersoy	et	al.,	
2017;	Secomandi	et	al.,	2022),	and	we	found	that	collagen	

increases	 in	 uterus	 both	 at	 an	 early	 stage	 and	 increases	
most	steeply	than	the	other	organs	over	aging	(increase	of	

Figure 6 | Inflammation and fibrosis in the FRT accumulate gradually with aging. (a) Activity scores of genes in inflammation determined by 
AUCell and averaged across all mouse fibroblasts in diestrus and old age (Table S9). (b) Density plot of fibroblasts inflammation scores in each 
biological replicate of young and old mice. (c, d) The relationship between the amplitude of organ-wide inflammation scores of young mice during the 
cycle (Figure 3b, Sup. Table S9) and the inflammation score of fibroblasts (Figure 6a,  Table S9) and immune cells (Table S9) from the different 
organs in old age. (e) % area of stained collagen deposition in ovarian, oviductal, uterine, cervical and vaginal tissue of 3 and 18 month old mice. (f) 
Quantification of % area of stained collagen deposition in all FRT tissues of 3, 12, 15, 18 and 21 month-old mice. (g) The relationship between the 
maximum of organ-wide ECM reorganization scores of young mice during the cycle (Figure 3c, Sup. Table S9) and the fibrosis score of different FRT 
organs in old age. Fibrosis score was calculated as the difference in % area of stained collagen deposition in old (18 months) and young mice (3 
months). (h) Heatmap showing the log2 fold changes of ECM-associated and inflammatory ligand-receptor products in old age compared to diestrus 
of all FRT organs. Ligand expression is averaged across all cell types; receptors are in fibroblasts only. (i) Activity scores of targets of ECM and 
inflammation-associated transcription factors in aged samples compared to diestrus. 
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3.2%	 per	 six	 months,	 p-value=0.013)	 (Figure	 6e,f,	 S13).	
Oviduct	 (2.7%,	 p-value=0.022)	 and	 vagina	 (2.3%,	 p-
value=0.033)	 also	 showed	 steady	 increases	 in	 collagen;	
ovary	and	cervix	did	not	 show	collagen	 increases	 (Figure	
6e,f,	 S13).	 Independent	 pathological	 analysis	 confirmed	
prevalent	fibrosis	in	the	stroma	of	oviduct	and	uterus	(Table	
S10).	 For	 each	 FRT	 organ,	 the	 age-related	 collagen	
accumulation	 rate	 was	 best	 predicted	 by	 the	 maximum	
phase-specific	ECM	activity	in	the	cycle	(Figure	6g).	In	other	
words,	 the	 intensity	 of	 ECM	 remodeling	 in	 fibroblasts	
during	 the	 cycle	 corresponds	 with	 the	 severity	 of	 age-
related	fibrosis.		

We	 asked	 whether	 our	 observed	 inflammation	 and	
fibrosis	 accumulation	 was	 reflected	 in	 organ-specific	
fibroblast	regulatory	and	signaling	networks.	Using	SCENIC,	
we	found	that	the	aging	uterus	showed	a	large	increase	in	
both	the	number	and	intensity	of	transcriptional	regulatory	
modules	associated	with	inflammation	and	ECM	(Figure	6i).	
Other	FRT	organs	showed	more	moderate	(oviduct,	cervix,	
ovary)	 or	 low	 (vagina)	 increases.	 Similarly,	 we	 found	
elevated	 inflammation	 and	 ECM	 activity	 in	 the	 ligand-
receptor	 interactions	 centering	 on	 uterine	 fibroblasts	
(Figure	6h).		

Our	results	indicate	that	ECM	accumulation	as	a	result	of	
incompletely	 resolved	 cyclic	 ECM	 remodeling	 can	 lead	 to	
gradual	fibrosis	development.	Intensity	of	ECM	remodeling	
in	each	organ	corresponds	with	the	severity	of	fibrosis	and	
predisposes	each	organ	differently	to	fibrosis	development.		

Discussion 
In	 humans,	 like	 most	 other	 mammals,	 oocyte	 release	
involves	 large-scale,	 cyclical	 tissue	remodeling	across	 five	
hormonally-controlled	organs,	which	functionally	degrade	
by	mid-life.	To	better	understand	this	system,	we	mapped	
the	cellular	compositional	and	transcriptional	changes	that	
occur	during	each	estrus	cycle	phase,	arising	from	earliest	
pregnancy,	and	upon	aging	at	single-cell	resolution	in	every	
organ	of	the	mouse	female	reproductive	tract.	These	data	
quantified	 the	 compositional	 transition	 between	 ovary,	
oviduct	 and	uterus,	which	 are	 dominated	 by	 stroma,	 and	
cervix	 and	 vagina,	 which	 are	 largely	 epithelial.	 Most	
importantly,	our	data	provided	unprecedented	insight	into	
how	 tissue	 remodeling	 by	 the	 stromal	 cells	 and	
inflammatory	 stimulus	 by	 the	 immune	 compartment	 can	
lead	 to	 the	 functional	degradation	of	and	susceptibility	to	
disease	within	the	female	reproductive	tract.	

Our	 data	 showed	 that	 the	 adaptive	 immune	 cells	 are	
more	prevalent	 in	 the	upper	 tract	compared	 to	 the	 lower	
reproductive	 tract	which	shows	a	profound	shift	 towards	
innate	 immunity.	 Oviduct	 and	 uterus	 have	 an	 anti-
inflammatory	 environment,	 dominated	 by	wound-healing	
associated	 M2	 macrophages	 (Madsen	 et	 al.,	 2013).	 In	
contrast,	 cervix	 and	 vagina	 have	 a	 pro-inflammatory	
environment,	 dominated	 by	 M1	 macrophages	 consistent	
with	potential	microbial	exposure	 (Zhou	et	al.,	2018).	We	
found	 that	M1	macrophages	were	more	 numerous	 in	 the	
ovary,	where	they	are	required	for	folliculogenesis	(Ono	et	
al.,	 2018).	We	 quantified	 how	 the	 immune	 compartment	
displays	highly	dynamic	remodeling	across	the	estrus	cycle,	
with	 the	 more	 caudal	 organs	 such	 as	 vagina	 displaying	
stronger	changes	in	the	immune	compartment.	The	lower	

FRT	 has	 recurrent	 acute	 inflammation	 during	 the	 cycle,	
contrasting	 with	 the	 persistent	 low-grade	 inflammation	
found	in	the	ovary.		

Previous	 experiments	 revealed	 that	 mouse	 uteruses	
infected	during	the	estrus	phase	had	significantly	increased	
resistance	 to	 bacterial	 infection,	 compared	 to	 diestrus	
(Islam	et	al.,	2016).	Our	data	suggests	a	mechanism	for	this	
enhanced	surveillance:	we	observed	that	during	estrus	the	
immune	 cell	 compartment	 expands	 in	 the	 uterus.	 More	
generally,	 the	 variation	 in	 immune	 cell	 composition	 and	
activation	 could	 explain	 why	 immune	 responses	 and	
protection	of	the	reproductive	system	has	been	previously	
reported	 to	vary	along	 the	cycle;	 indeed,	vaccine-induced	
immunity	 is	 influenced	 by	 the	 cycle	 (Gallichan	 and	
Rosenthal,	1996).		

Uniquely	in	the	uterus,	drastic	ECM	remodeling	and	cell	
proliferation	recurrently	occur	in	each	cycle	to	prepare	the	
endometrium	for	successful	implantation	and	placentation	
(Kaloglu	 and	 Onarlioglu,	 2010).	 In	 the	 absence	 of	
pregnancy,	 the	 proliferated	 tissue	 and	 secreted	 ECM	 are	
reabsorbed	 and	 degraded	 via	 scar-free	 remodeling	
mediated	by	fibroblasts	(Bellofiore	et	al.,	2018;	Salamonsen	
et	 al.,	 2002).	Our	 data	allowed	us	 to	 interrogate	whether	
incomplete	 resolution	 of	 collagen	 deposition	 might	
contribute	 to	 development	 of	 organ	 fibrosis	 and	 thus	
reproductive	 senescence.	 Our	 single-cell	 transcriptomes	
across	 the	 cycle	 quantified	 ECM	 remodeling	 and	 stroma	
proliferation,	which	are	particularly	elevated	in	uterus	and	
oviduct.	 By	 longitudinally	 profiling	 the	 accumulation	 of	
fibrosis	across	the	FRT	during	aging,	we	discovered	that	the	
scale	 of	 ECM	 remodeling	 found	 in	 each	 organ	 during	 the	
cycle	 closely	 predicts	 fibrosis	 development	 in	 old	 age.	
Previous	studies	reported	evidence	of	fibrosis	development	
in	 post-menopausal	 endometrium	 (Jiménez-Ayala	 and	
Jiménez-Ayala,	 2008;	 Noci	 et	 al.,	 1996);	 our	 data	 newly	
reveals	that	this	fibrosis	accumulates	steadily	across	aging	
and	that	the	age-related	decrease	in	hormonal	stimulation	
is	not	the	primary	driver	of	fibrosis	development.		

Within	 fibroblasts,	 aging	 also	 increased	 inflammation	
scores	in	all	FRT	organs,	except	ovary.	The	best	predictor	of	
an	organ’s	fibroblast	 inflammatory	activity	 in	old	age	was	
the	amplitude	of	organ-wide	inflammation	during	the	cycle	
in	young	mice.	This	suggests	a	model	whereby	fibroblasts	
accumulate	the	memory	of	past	inflammation,	thus	leading	
to	age-related	chronic	inflammation.	

In	women,	reproductive	organs	lose	functionality	faster	
than	the	somatic	organs	and	display	chronic	inflammation	
and	fibrosis	by	mid-life	(Farage	and	Maibach,	2011;	Noci	et	
al.,	1996).	Our	data	suggest	mechanisms	that	could	explain	
the	different	organs’	susceptibility	to	cancer	risk.	Organs	of	
lower	FRT	undergo	recurrent	cyclic	acute	inflammation	and	
develop	 high-grade	 chronic	 inflammation	 in	 old	 age.	
Previous	studies	linked	inflammation	with	cervical	cancer	
progression	(Mhatre	et	al.,	2012).	Our	results	revealed	that	
the	 uterus	 was	 particularly	 susceptible	 to	 age-associated	
increases	in	inflammation	and	fibrosis.	Endometrial	cancer	
is	 the	 six	 most	 commonly	 occurring	 cancer	 in	 women	
worldwide	 (Ferlay	 et	 al.,	 2021).	 Elevated	 levels	 of	 pro-
inflammatory	 cytokines	 pose	a	major	 risk	 in	 endometrial	
cancer	 development	 (Dossus	 et	 al.,	 2013),	 and	 a	 fibrotic	
microenvironment	 appears	 to	 contributes	 to	 endometrial	

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 27, 2022. ; https://doi.org/10.1101/2022.10.26.513823doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.26.513823
http://creativecommons.org/licenses/by-nc-nd/4.0/


	

Winkler, Tolkachov et al. 2022 (preprint)   14 

tumor	 aggressiveness	 and	 drug	 resistance	 (Pradip	 et	 al.,	
2021).	The	risk	of	developing	endometrial	carcinomas	may	
also	be	shaped	by	events	that	alter	the	number	of	menstrual	
cycles,	 such	 as	 oral	 contraception	 usage,	 number	 of	
pregnancies,	 and	 age	 of	 menarche	 and	 menopause	
(Havrilesky	et	al.,	2013;	Iversen	et	al.,	2017;	Michels	et	al.,	
2018).	 On	 balance,	 the	 fewer	 the	 number	 of	 cycles,	 the	
lower	 the	 cancer	 risk.	 This	 hypothesis	 could	 be	 directly	
addressed	 by	 reducing	 the	 number	 of	 estrus	 cycles,	 and	
evaluating	 the	 impact	 on	 FRT	 organ	 composition	 and	
inflammation.	 Age-related	 fibrosis	 and	 chronic	
inflammation	development	in	the	oviduct	is	comparable	to	
the	uterus.	Inflammation	and	ECM-rich	microenvironment	
were	shown	to	directly	contribute	to	seeding	of	cancer	cells	
that	originated	in	 the	oviduct	 to	ovary	 thus	causing	high-
grade	serous	ovarian	cancer	development	(Alshehri	et	al.,	
2022;	Jia	et	al.,	2018).			

Our	work	directly	 links	 intensity	 of	 inflammation	 and	
ECM	activity	during	the	estrus	cycle	and	number	of	cycles	
with	 the	 severity	 of	 inflammation	 and	 fibrosis	 in	 old	age.	
Our	 data	 supports	 a	 model	 wherein	 the	 incomplete	
resolution	of	inflammation	and	ECM	remodeling	during	an	
increasing	number	of	cycles	adds	to	fibrosis	inflammatory	
memory	 and	 ECM	 accumulation	 and	 lead	 to	 gradual	
development	 of	 fibrosis	 and	 chronic	 inflammation,	
predisposing	organs	to	disease	development.		
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Materials and Methods 
Mouse colony management 
The	 C57BL/6	 substrains	 J,	 N	 and	 Ly5.1	 were	 obtained	 from	 Jackson	
Laboratories	or	Janvier.	Females	were	maintained	as	virgins	and	housed	in	
groups	of	up	to	six	mice	in	Tecniplast	GM500	IVC	cages	with	a	12-hour	light	
/	 12-hour	 dark	 cycle.	 Mice	 had	 ad	 libitum	 access	 to	 water,	 food	 (Kliba	
3437),	 and	 environmental	 enrichments.	 All	 colonies	 were	 regularly	
controlled	for	infections	using	sentinel	mice	to	ensure	a	healthy	status.	All	
experiments	 were	 carried	 out	 in	 accordance	 with	 and	 approval	 of	 the	
German	Cancer	Research	Center	ethical	committee	and	local	governmental	
regulations	 (Regierungspräsidium	 Karlsruhe,	 animal	 license	 number	
DKFZ366).		
	
Estrus cycle staging cytology 
Vaginal	smears	were	collected	using	a	pasteur	pipette	containing	PBS	and	
leaned	towards	or	inserted	in	the	vagina	of	the	restrained	mouse.	Mucous	
tissue	was	then	trickled	on	dry	glass	slides	and	stained	by	crystal	violet	
staining	solution	 (Sigma-Aldrich	 61135)	or	panoptic	 staining	 (Carl	Roth	
6487.1).	 Cellular	 composition	 of	 the	 smears	 was	 analyzed	 according	 to	
known	 cell	 distribution	 patterns	 (Byers	 et	 al.,	 2012)	 using	 a	 ZEISS	

Discovery.V12	 Stereoscope	 and	 images	 were	 acquired	 via	 a	 ZEISS	 Cell	
Observer®	 system	with	AxioCam	MRc	camera.	 If	 possible,	 smears	were	
collected	and	analyzed	from	multiple	consecutive	days	to	better	estimate	
estrus	cycle	course.	On	the	day	of	tissue	collection,	estimation	of	the	estrus	
cycle	 phase	 by	 smears	 was	 further	 complemented	 by	 the	 state	 of	 the	
vaginal	opening	and	the	thickness	and	vascularization	of	the	uterine	horns	
(Parker	and	Picut,	2016).	
 
Induction of decidualization  
Three	months	old	female	C57BL/6J	virgin	mice	were	synchronized	3	days	
prior	to	mating	by	housing	in	cages	containing	bedding	from	C57BL/6	male	
mice.	These	females	were	allowed	to	mate	with	C57BL/6	males	in	one	to	
one	matings	overnight.	On	the	following	morning,	all	plug-positive	females	
were	housed	together	and	kept	for	5	days	(5.5	days	post	coitum)	until	sac-
rifice	for	organ	harvesting.	On	average,	two	out	of	three	plug-positive	mice	
were	pregnant	at	the	day	of	sacrifice.	Two	uterine	pieces,	each	enveloping	
an	implanted	embryo	were	removed	per	mouse	and	further	processed	for	
10x	or	histology	as	described	below.		
 
Histopathology and fibrosis quantification 
After	 overnight	 fixation	 in	 10%	 buffered	 formalin,	 representative	
specimens	of	 the	ovary,	oviduct,	uterus,	 cervix,	vagina,	and	 spleen	were	
routinely	 dehydrated,	 embedded	 in	 paraffin,	 and	 cut	 into	 4	 μm-thick	
sections.	All	tissue	sections	were	stained	using	a	H&E	standard	protocol.	In	
selected	tissue	sections,	a	Giemsa,	Picrosirius	Red,	Congo	Red,	and	AFOG	
(Acid	 Fuchsin	 Orange	 G)	 stain	 were	 performed	 according	 to	 respective	
standard	 protocols.	 To	 detect	 potential	 tumors,	 tumor	 classification	
immunohistochemistry	was	 performed	with	 anti-a	 smooth	muscle	 actin	
(Abcam,	ab5694),	anti-desmin	(ThermoFisher,	RB-9014-Po),	and	anti-pan-
cytokeratin	 (DAKO,	 Z0622).	Whole-slide	 scans	were	 acquired	 using	 the	
Aperio	AT2	slide	scanner	 (Leica)	at	 40x	resolution.	Raw	 image	 files	are	
available	from	BioStudies	(see	data	availability).	

To	 quantify	 fibrosis,	 high-resolution	whole	 tissue	 section	 images	 of	
Picrosirius	 red	 stained	samples	were	acquired	 at	20x	 using	 a	ZEISS	Cell	
Observer®	 brightfield	 microscope	 and	 an	 AxioCam	 MRc	 camera.	 Fiji	
software	(ImageJ	ver.	1.53f51)	was	used	to	quantify	percent	of	fibrotic	area	
by	 setting	 a	 signal	 threshold	 in	 stroma-containing	 regions.	 RGB	 images	
were	split	into	three	channels.	Signal	quantification	was	performed	on	the	
green	channel.	Regions	of	interest	were	drawn	around	stroma	areas	and	a	
threshold	was	set	to	correspond	with	the	fibrotic	area	previously	assessed	
by	a	pathologist.	Collagen	accumulations	were	defined	as	%	of	area	with	
positive	signal.	Two	replicates	were	used	for	12,	15	and	21	month	old	mice,	
and	three	replicates	were	used	for	3	and	18	month	old	mice.	Analyses	were	
performed	independently	by	two	authors	(I.W.	and	A.T.)	to	reduce	stroma	
area	 selection	 bias.	 The	 macro	 is	 available	 from	 the	 GitHub	 repository	
(Code	availability).	Technical	 replicates	or	quantified	regions	of	 interest	
from	 the	 same	 sample	 were	 averaged	 and	 treated	 as	 one	 biological	
replicate	in	a	linear	regression	model.	
 
RNA in situ hybridization 
To	detect	and	quantify	Collagen,	Type	1,	alpha	1	(Col1a1,	ACD	319371)	and	
Epithelial	Cell	Adhesion	Molecule	(Epcam,	ACD	418151-C2)	mRNA,	an	ISH	
was	performed	using	the	RNAScope	Multiplex	Fluorescent	V2	Assay	(ACD	
323100)	with	Opal	fluorophore	reagents	(Akoya	Biosciences)	according	to	
the	manufacturers’	 instructions.	 In	brief,	 fresh	and	 fixed	 frozen	 samples	
were	 collected	 according	 to	 manufacturers’	 protocol	 and	 cut	 at	 10µm	
thickness	 using	 a	 Leica	 CM	 3050S	 cryotome.	 Target	 probes	 (Col1a1,	
319371-C1;	Epcam,	418151-C2)	were	applied	to	the	sample	and	baked	at	
40°C	for	2h.	Opal	dyes	520	(FP1487001KT),570	(FP1488001KT)	and	690	
(FP1497001KT)	 were	 applied	 at	 a	 1:1000	 to	 1:750	 dilution	 and	
counterstained	 with	 DAPI.	 Images	 were	 taken	 using	 the	 ZEISS	 Cell	
Observer®	fluorescence	microscope	and	a	ZEISS	AxioCam	MRm	camera	at	
20x	resolution.	

Collagen	signal	was	quantified	as	percent	area	of	total	DAPI	area	using	
ImageJ.	 Samples	 which	 were	 run	 with	 negative	 control	 probes	 (ACD	
320871)	were	used	to	subtract	background	signals	beforehand.	The	macro	
for	assessing	signal	thresholds	is	available	from	GitHub	(Code	availability).	
	
Tissue collection and preparation  
All	four	phases	of	estrus	cycle	in	ovary,	oviduct,	uterus,	cervix,	vagina,	and	
spleen	were	collected	in	triplicate	from	3	and	18	month	old	mice.	Seven	
replicates	 were	 collected	 for	 decidualized	 tissues.	 Additional	 biological	
replicates	 for	 samples	 that	 failed	 QC	 requirements	 were	 generated	 as	
deemed	necessary.		
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Samples	 “Ind001-vagina06”	 and	 “Ind001-uterus07”,	 “18mo_Ind001-
ovary01”,	 “18mo_Ind001-spleen01”	 	 and	 “18mo_Ind001-ovary02”	 were	
excluded	from	the	analysis	due	to	problematic	sample	preparation	(Table	
S1).	 Instead,	 additional	 mice	 were	 sacrificed	 to	 collect	 the	 vagina	 in	
proestrus	 (“Ind001-vagina13”),	 uterus	 in	 diestrus	 (“Ind001-uterus16”),	
ovary	from	18	months	old	mice	(“18mo_Ind001-ovary04”,	“18mo_Ind001-
ovary05”)	and	spleen	“18mo_Ind001-spleen05”.		

Reproductive	 tract	 organs	 and	 spleen	 were	 collected	 from	 mice	
immediately	 following	 cervical	 dislocation.	 All	 organs	 were	 manually	
dissected	using	a	ZEISS	Discovery.V12	Stereoscope	to	remove	surrounding	
fat	 and	 connective	 tissue.	 Samples	 were	 then	 either	 processed	 by	
enzymatic	digestion	for	single	cell	 sequencing,	fixed	in	10%	formalin	for	
FFPE-histology,	 or	 fixed	 and	 slowly	 frozen	 in	 O.C.T.	 Medium	
(ThermoFisher)	for	cryo-histology.		
 
Generation of single cell suspensions 
To	 generate	 single	 cell	 suspensions,	 freshly	 isolated	 whole	 organs	
including	ovary,	oviduct	and	tissue	pieces	from	uterus,	cervix,	vagina	and	
spleen	 were	 treated	 by	 enzymatic	 digestion.	 All	 tissues	 were	 initially	
incubated	separately	in	2	ml	Eppendorf	tubes	containing	600	µl	of	0,25%	
trypsin	in	HBSS	and	digested	at	37°C	with	gentle	rocking.	After	30	minutes,	
600µL	of	a	second	digestion	buffer	containing	Collagenase	I	(1.25	mg/mL),	
II	(0.5	mg/mL),	IV	(0.5	mg/mL),	and	Hyaluronic	acid	(0.1	mg/uL)	in	HBSS	
was	added	for	another	2	hours.	After	quenching	the	digestion	by	adding	
600µL	HBSS	with	 10%	FBS,	 the	cell	 suspensions	were	 passed	 through	a	
40µm	 cell	 strainer	 (Greiner	 Bio	 One)	 to	 remove	 cell	 debris	 and	 buffer	
residue.	Cell	suspensions	were	gently	centrifuged	at	350g	for	8	min	at	4°C.	
Cells	were	 resuspended	 in	 PBS	 containing	 0,04%	BSA,	 1 mM	 EDTA	 and	
propidium	iodide	(PI)	was	added	to	final	concentration	of	1 µg/ml	prior	to	
fluorescence-activated	cell	sorting	(FACS).	Larger	cells	such	as	oocytes	and	
smooth	muscle	cells	were	excluded	in	the	cell	straining	step.	
 
Flow cytometry staining and acquisition 
After	 dissection	 and	 digestion,	 cells	 were	 filtered	 through	 40	 µm	 cell	
strainers	(Falcon),	followed	by	washing	and	centrifugation	for	5	min	at	250	
g	at	4°C.	For	flow	cytometric	analysis,	cells	were	resuspended	in	20	µl	PBS	
plus	Viability	Dye	eF506	(eBioscience,	conc.	1:500)	and	incubated	for	10	
min	at	RT	in	the	dark.	Proceeding	with	cell	staining,	100	µl	PBS	plus	2%	
FCS	with	corresponding	antibodies	(see	Table	1)	was	added	and	cells	were	
incubated	for	30	min	at	4°C	in	the	dark.	Post	staining,	cells	were	washed	
again	 and	 analyzed	 using	 the	 BD	 LSR	 II	 cytometer	 according	 to	
manufacturer’s	 instructions	 and	 marker	 combinations	 and	 gating	
strategies	(Figure	S3b).	
	

Table 1: Anti-mouse antibodies / Hematopoietic cells panel 

Antigen:Fluoro
phore	

	Antibody	dilution	 Clone	 Company	

F4/80:PB	 BV421	(F4/80)	–	1:100	 MF48028	 Invitrogen	

NK1.1:BV785	 BV785	(NK1.1)	–	1:700	 PK136	 BioLegend	

CD11C:PE-Cy7	 PECY7	(Cd11c)	–	1:300	 N418	 BioLegend	

CD11b:APC	 APC	(Cd11b)	–	1:1000	 M1/70	 eBioscience	

CD45:AF700	 AF700	(Cd45)	–	1:200	 30-F11	 Invitrogen	

Gr1:APC-eF786	 APCCy7	(Gr1)	–	1:500	 RB6-8C5	 eBioscience	

 
FAC	sorting	as	preparation	for	single-cell	transcriptional	analysis	was	

performed	on	the	FACSAria	II	from	BD	Biosciences	using	an	85µm	nozzle.	
Gating	 of	 live	 cells	was	 achieved	 by	 exclusion	 of	 PI-high	 cells.	 Doublets	
were	 excluded	 by	 plotting	 SSC	 width	 versus	 SSC	 area.	 Approximately	
70.000	cells	were	collected	in	sorting	media	(containing	0.04%	BSA	and	
1mM	 EDTA	 in	 PBS)	 in	 1.5	 ml	 Eppendorf	 tubes,	 chilled	 on	 ice,	 and	
immediately	processed	for	single-cell	transcriptional	analysis.	
 
Generation of single cell transcriptomes 
Mouse	reproductive	tissues	and	spleen	were	enzymatically	dissociated	and	
FAC	sorted,	and	the	undiluted	single-cell	suspension	at	a	concentration	of	
467	cells/µl	was	loaded	per	channel	of	either	the	ChromiumTM	Single	Cell	
B	or	G	Chip	(10X	Genomics®	Chromium	Single	Cell	3’	Reagent	Kits	v3.0	and	

Chromium	Next	GEM	Single	Cell	3’	Reagents	Kits	v3.1,	respectively),	aiming	
for	a	recovery	of	5,000	cells.	Reverse	transcription	and	library	construction	
were	 carried	 out	 according	 to	 the	 manufacturer’s	 recommendations.	
Libraries	were	sequenced	on	Illumina	NovaSeq	6000	using	a	paired-end	
run	sequencing	26	bp	on	read	1	and	98	bp	on	read	2	(Table	S1).		
 
Spatial transcriptomics 
12-14	weeks	old	Mus	musculus	(C57Bl6/J)	female	mice	were	sacrificed	at	
diestrus.	Ovaries	were	dissected	and	embedded	into	an	optimum	cutting	
temperature	matrix	(O.C.T.,	Tissue	Tek)	using	a	bath	of	pre-cooled	(-60-
70oC)	 isopentane	 (Sigma)	 on	 dry	 ice.	 Blocks	 were	 cut	 using	 cryo-
microtome	(CM3050	S,	Leica),	head	temperature	set	at	-10oC.	10	µm	thick	
tissue	slices	were	placed	on	Visium	Spatial	Gene	Expression	 Slides	 (10X	
Genomics)	and	stained	with	Hematoxylin	and	Eosin	(H&E)	with	reduced	
time	to	5	min	for	hematoxylin	and	30s	 for	blueing	agent.	Libraries	were	
prepared	by	manufacturer’s	recommendations,	using	Dual	Index	Kit	TT	Set	
A	(10X	Genomics)	for	indexing.	Samples	were	sequenced	on	NovaSeq6000.	
 
Computational quality control, normalization, cell type annotation 
and batch correction  
Raw	sequencing	reads	were	processed	using	Cell	Ranger	analysis	pipeline	
(v	3.0.1).	The	"cellranger	count"	command	was	used	to	generate	 filtered	
and	raw	matrices.	Reads	were	aligned	against	the	mouse	genome	version	
mm10	(Ensembl	release	93).	Filtered	gene-barcode	count	matrices	were	
further	analyzed	using	the	R	package	Seurat	(Hao	et	al.,	2021).		

To	remove	low	quality	cells,	an	adaptive	filtering	threshold	approach	
was	used	based	on	high	mitochondrial	RNA	content,	extreme	numbers	of	
counts	 (count	 depth),	and	extreme	numbers	of	genes	per	barcode.	Cells	
were	filtered	based	on	the	median	absolute	deviation	(MAD)	from	the	me-
dian	value	of	each	metric	across	all	cells.	Specifically,	we	considered	a	value	
as	an	outlier	when	differing	by	more	than	3	MADs	from	the	median.	The	
filtering	step	was	performed	using	the	R	package	Scater	(McCarthy	et	al.,	
2017).	Counts	were	normalized	using	the	ScTransform	normalization	ap-
proach	of	Seurat.	Cell	cycle	gene	effect	was	regressed	out	using	the	Cell-
CycleScoring	function	in	Seurat.	All	clusters	in	all	samples	showed	consist-
ently	low	doublet	scores	using	doubletCluster	and	doubletCells	of	R	pack-
age	Scran	(Lun,	2016).		

Each	organ	was	processed	independently	for	cell	type	annotation.	Or-
gan-specific	UMAPs	were	constructed	using	a	 subset	of	 features	 (genes)	
exhibiting	high	cell-to-cell	variation	which	were	identified	by	modeling	the	
mean-variance	relationship.	The	top	2000	features	were	used	to	perform	
PCA	analysis.	To	cluster	the	cells,	a	K-nearest	neighbor	(kNN)	graph	based	
on	the	euclidean	distance	in	PCA	space	was	first	constructed	using	the	first	
30	PC	components	as	input.	Next,	the	Louvain	algorithm	was	applied	to	it-
eratively	group	cells.	We	identified	the	cell	 types	 in	each	cluster	using	a	
combination	of	manual	 and	 automated	approaches	 from	known	marker	
genes	(Table	S2).	First,	clusters	were	assigned	to	known	cell	populations	
using	 cell	 type–specific	 markers	 obtained	 through	 the	 FindAllMarkers	
function.	 Multiple	 testing	 correction	 was	 performed	 using	 Benjamini-
Hochberg	procedure.	Second,	the	R	package	Garnett	(Pliner	et	al.,	2019)	in	
cluster	 extension	mode	was	used	 to	annotate	cells	 in	a	 semi-automated	
manner.	Because	some	clusters	remained	unclassified	by	either	the	manual	
or	semi-automated	approach	-	or	in	rare	cases	were	differently	classified	
by	the	two	approaches	-	a	Support	vector	Machine	with	rejection	(SVMrej)	
was	applied	as	an	additional	automated	classifier.	Cluster	annotations	 in	
agreement	between	the	manual	and	automated	approach	were	used	as	the	
training	set	for	the	SVMrej.	The	e1071	library	was	used	to	implement	the	
SVMrej	classifier.	Classification	was	performed	using	a	linear	kernel	with	
the	cost	function	set	to	10.	Rejection	rates	of	10%	and	30%	were	used	to	
classify	 level	 1	 and	 level	 2	 annotations,	 respectively.	 Cell	 clusters	 of	 18	
month	old	and	pregnant	mice	were	annotated	using	an	SVMrej	classifier	
trained	on	cell	clusters	of	normally	cycling	young	mice.		

Cells	from	multiple	organs	in	the	estrus	cycle	were	integrated	together	
for	visualization	purposes.	Integration	and	batch	correction	of	samples	of	
young	cycling	mice	was	performed	using	the	Reciprocal	PCA	together	with	
“LogNormalize”	normalization	method	from	Seurat.	For	each	organ,	in	or-
der	to	remove	batch	effects	we	chose	the	sample	with	the	highest	number	
of	cells	(regardless	of	its	cycle	phase)	to	anchor	pairwise	comparisons.	In-
tegration	of	young	(diestrus)	and	old	mice	followed	a	similar	approach.	

Integration	of	samples	of	pregnant	mice	with	metestrus	samples	was	
performed	separately	using	Canonical	correlation	analysis	together	with	
SCT	normalization	(Seurat).	Batch	corrected	data	was	used	only	for	UMAP	
visualization	purposes;	all	other	downstream	analyses	including	differen-
tial	expression	were	performed	on	uncorrected	data.	To	improve	the	visu-
alization	 of	 gene	 expression	 in	UMAP	plots,	we	 used	 a	 kNN-pooling	 ap-
proach	(Frauhammer,	Felix	and	Anders,	Simon,	2022).	A	kNN	graph	was	
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constructed	based	on	euclidean	distance	in	PCA	space,	and	cell	counts	were	
pooled	across	50	nearest	neighbor	cells,	thus	decreasing	technical	noise	in	
scRNA-seq	caused	by	dropout	events.	
Differential cell abundance analysis 
To	assess	if	the	proportions	of	cell	populations	in	individual	organs	change	
along	the	estrus	cycle	and	in	aging,	a	compositional	regression	model	was	
used.	Cell	population	compositions	were	used	as	dependent	variables,	and	
estrus	cycle	phases	or	age	as	independent	variables.	Estrus	cycle	phases	
were	compared	in	a	pair-wise	manner.	Components	of	 the	compositions	
were	amalgamated	and	expressed	as	compositions	of	two	components	due	
to	 low	 number	 of	 replicates.	 Prior	 to	 model	 fitting,	 composition	
components	were	transformed	using	isometric	Log-Ratio	Transformation.	
The	 R	 package	 Compositions	 was	 used	 to	 perform	 the	 Log-Ratio	
transformation	and	compositional	regression.	Innate	vs	adaptive	immune	
cells	ratio	was	calculated	as	ratio	of	number	of	innate	immune	cells	(N,	DC,	
M1Mp,	M2Mp,	Mp	and	MaC)	and	number	of	adaptive	immune	cells	(NKC,	
BC,	iNkT,	MAIT,	MTC)	in	each	individual.	
	
Optimal transport 
Balanced	 optimal	 transport	 (OT)	 analysis	 was	 performed	 to	 assess	 the	
magnitude	 of	 transcriptional	 changes	 between	 cell	 populations	 of	 all	
organs	 in	 different	 phases	 of	 the	 estrus	 cycle,	 as	well	 as	 old	 and	 young	
(diestrus)	 cell	 populations.	 For	 specific	 subgroups	 of	 samples,	 we	
performed	simultaneous	NMF	embeddings;	these	two	subgroups	included	
all	organs	of	all	estrus	phases	and	all	organs	of	young	(diestrus)	together	
with	all	organs	of	old	mice.	NMF	embeddings	were	calculated	on	the	set	of	
top	 2000	most	 highly-variable	 genes	 using	 the	Block	 Principal	 Pivoting	
method	of	the	PLANC	library	(Ramakrishnan	et	al.,	2016).	Rank	10	of	NMF	
embeddings,	chosen	based	on	decrease	in	cophenetic	coefficient	(Brunet	
et	 al.,	 2004),	 was	 used	 for	 OT	 distance	 calculation.	 OT	 distances	 were	
calculated	for	all	cell	populations	which	contained	at	least	100	cells	in	any	
of	 the	 compared	 groups.	 As	 the	 balanced	 optimal	 transport	 problem	 is	
constrained	with	a	mass	balance	condition,	the	OT	distance	between	two	
cell	populations	was	calculated	as	an	average	of	100	random	samples	of	
100	cells	in	a	stochastic	sampling	approach.	The	OT	distance	was	defined	
as	a	minimum-cost	flow	solution	problem	and	was	solved	using	Munkres	
algorithm	(Kimmel	et	al.,	2019).	
	
Differential gene expression (DGE) analysis 
DGE	 analysis	 was	 performed	 using	 a	 multi-level	 generalized	 negative	
binomial	 regression	 model	 with	 a	 random	 intercept.	 Normalized	 gene	
counts	were	used	as	the	dependent	variable,	while	estrus	cycle	phases	or	
age	were	used	as	the	 independent	variable,	and	sample	label	as	random	
effect.	 The	model	was	 fitted	 gene-wise	 for	 each	 cell	 subpopulation.	 The	
cycle	phases	were	compared	in	a	pair-wise	manner.	The	model	fitting	was	
performed	using	 the	 glm.nb	 function	of	 the	 lme4	R	package.	Only	genes	
that	were	 expressed	 across	 10	 cells	with	 at	 least	 1	 count	were	 used	 in	
model	 fitting.	 If	 the	 model	 fitting	 showed	 a	 singular	 fit	 (indicating	
overfitting)	the	p-value	was	set	to	NA.	P-values	were	corrected	for	multiple	
testing	using	Benjamini-Hochberg	procedure.	All	genes	with	corrected	p-
values	smaller	than	0.05	were	considered	differentially	expressed.	
 
Overrepresentation analysis (ORA) 
A	hypergeometric	test	was	used	to	perform	ORA	analysis.	Gene	sets	used	
in	 ORA	 analysis	 are	 part	 of	 the	 MsigDB	 (https://www.gsea-
msigdb.org/gsea/msigdb/)	 pathway	 collection	 (H;	 C2:	 Kegg,	 Reactome;	
and	C5:	GO	Biological	Process).	For	the	ORA	in	figure	3,	we	used	MSigDB	H	
and	Reactome,	 and	 excluded	 pathways	with	 the	 term	 “Disease”	 in	 their	
descriptor.	 Multiple	 testing	 correction	 was	 performed	 using	 the	
Benjamini-Hochberg	procedure.		
	
Scoring of gene set activity in single-cell RNA-seq data  
Scoring	 of	 gene	 set	 activity	was	 performed	 using	 the	AUCell	 R	 package	
(Aibar	et	al.,	 2017).	AUCell	was	 used	 to	 assess	 if	 certain	 gene	 sets	were	
enriched	within	the	top	5%	expressed	genes	for	each	cell.	Gene	sets	used	
in	the	analysis	are	the	same	as	gene	sets	used	in	ORA.	For	the	scoring	of	the	
activity	of	target	genes	of	each	ligand	in	fibroblasts,	we	used	the	NicheNet	
ligand-target	 model	 to	 obtain	 a	 list	 of	 predicted	 targets	 for	 each	 ligand	
(Browaeys	et	al.,	 2020).	AUCell	 scores	were	calculated	 for	 each	cell	 and	
averaged	across	conditions	for	each	cell	population.	Average	scores	across	
the	cycle	were	weighted	 to	account	 for	 the	 different	 phase	 lengths	 (the	
cycle	 was	 roughly	 estimated	 to	 be	 partitioned	 60%	 diestrus	 and	 the	
remainder	 equally	 divided	 between	 proestrus,	 estrus	 and	 metestrus,	
(Byers	et	al.,	2012).	
	

Genes expression association with cycle phase using Mutual-
information (MI) and comparison to human endometrium dataset 
Human	endometrium	dataset	was	retrieved	from	NCBI’s	Gene	Expression	
Omnibus	(accession	code GSE111976).	Raw	count	matrices	of	Fluidigm	C1	
dataset	were	normalized	using	the	ScTransform	normalization	approach.	
Cycle	phase	labels	of	human	samples	were	assigned	based	on	the	original	
publication’s	metadata	(Wang	et	al.,	2020).	

Dependence	 of	 gene	 expression	 and	 cycle	 phase	 label	 in	 fibroblasts	
and	decidual	cells	was	calculated	as	the	MI	between	these	two	variables,	as	
described	in	(Wang	et	al.,	2020).	The	same	calculation	was	performed	for	
the	human	fibroblasts.	Briefly,	for	each	gene,	MI	was	calculated	using	the	
Java	implementation	of	ARACNe-AP	(Lachmann	et	al.,	2016).	The	statistical	
significance	of	MI	was	evaluated	using	the	permutation	approach,	in	which	
MI	value	 for	each	gene	was	compared	 to	a	null	 distribution	obtained	 by	
permuting	cycle	phase	labels	1,000	times.	Multiple	testing	correction	was	
performed	 using	 Benjamini-Hochberg.	 As	 the	 mouse	 dataset	 was	
substantially	bigger	than	the	human	dataset,	MI	and	its	associated	p-value	
for	 the	mouse	 dataset	were	calculated	on	 100	random	samples	of	 2000	
cells	in	a	stochastic	sampling	approach.	P-values	associated	with	genes	in	
all	 mouse	 random	 samples	 were	 aggregated	 using	 Fisher's	 method	 (R	
package	aggregate).	Genes	associated	with	p-value	smaller	than	0.05	were	
considered	as	cycle-associated	genes	in	mouse	and	human.		

We	 identified	 the	set	of	 conserved	 transcriptional	 changes	between	
human	 and	 mouse	 cycles	 by	 identifying	 homologous	 cycle-associated	
genes	that	showed	the	same	directionality	of	regulation	in	comparison	to	
adjacent	cycle	phases	in	paired	mouse-human	cycle	phases.	For	instance,	a	
mouse	 gene	 upregulated	 in	 proestrus	 compared	 to	 diestrus	 and	 the	
homologous	human	gene	upregulated	in	proliferative	early	compared	 to	
secretory	late.	Genes	that	showed	opposite	directionality	of	regulation	(e.g.	
up-regulation	 in	 humans,	 down-regulation	 in	 mice)	 were	 considered	
divergent.	Mouse	and	human	cycle	phases	were	paired	based	on	ovulation	
timing	 and	 uterine	 cycle	 events	 (proliferation	 vs	 secretion)	 (Ajayi	 and	
Akhigbe,	 2020;	 Greaves,	 2012).	 Proestrus	was	 paired	with	 proliferative	
early	phase,	estrus	with	proliferative	late,	metestrus	with	secretory	early,	
decidualization	with	secretory	mid	and	diestrus	with	secretory	late.	Cells	
of	 menstruation	 phase	 in	 humans	 could	 not	 be	 paired	 with	 normally	
cycling	mouse	cells	and	were	excluded	from	this	analysis.	To	calculate	the	
proportion	of	the	conserved	genes	expected	by	chance	in	each	cycle	phase,	
labels	 of	 upregulated,	 downregulated	 and	 neutral	 (not	 up-	 or	 down-	
regulated)	genes	of	all	homologs	in	mouse	and	human	for	corresponding	
cycle	 phases	 were	 permuted	 100	 times	 and	 proportions	 of	 the	
conserved/divergent	genes	were	calculated	per	cycle	phase.	Final	value	of	
conserved	genes	proportion	was	calculated	as	an	average	of	proportion	of	
conserved	downregulated	and	upregulated	genes	in	all	permutations	runs.	

	
Cell-to-cell communication analysis 
To	assess	cellular	communication	from	different	cell	types	to	fibroblasts,	
we	 used	 a	 multiplication	 of	 expression	 between	 receptors	 and	 ligands	
(expression	product)	as	a	communication	score.	The	list	of	mouse	ligand-
receptor	pairs	 that	was	used	in	the	analysis	was	extracted	from	CellChat	
(Jin	et	al.,	2021)	and	CelltalkDB	repositories	(Shao	et	al.,	2021).	To	compare	
cellular	 crosstalk	 among	 the	 different	 organs,	 we	 first	 focused	 on	 the	
average	 expression	 values	 of	 ligands	 in	 all	 cell	 types	 and	 receptors	 in	
fibroblasts,	 regardless	 of	 the	 source	 of	 the	 ligand.	 To	 calculate	 the	
communication	score,	averaged	ligand	expression	counts	in	all	cells	from	
all	 cycle	 phases	 were	 multiplied	 with	 averaged	 receptor	 counts	 in	
fibroblasts.	 For	multi-subunit	 receptors,	 the	 subunit	with	 the	minimum	
average	expression	was	used	in	our	calculations	as	previously	proposed	
(Efremova	et	al.,	2020).		

The	statistical	significance	of	the	difference	of	expression	product	in	
all	reproductive	organs	was	evaluated	using	a	permutation	approach.	All	
pairwise	combinations	of	log	ratios	of	expression	product	in	all	organs	for	
each	ligand-receptor	pair	were	compared	to	null	distribution	obtained	by	
permuting	 the	organ	 labels	 1000	 times.	A	similar	approach	was	 used	 to	
evaluate	the	statistical	significance	of	the	difference	of	expression	product	
upon	aging.	For	each	organ,	 log	 ratios	of	 expression	 product	of	old	and	
young	fibroblasts	in	diestrus	were	compared	to	null	distribution	obtained	
by	permuting	the	age	labels	1000	times.	Multiple	testing	correction	was	
performed	using	Benjamini-Hochberg	procedure.	

For	selected	ligand-receptor	pairs,	we	then	determined	which	cell	type	
was	the	likely	source	of	the	ligand.	The	number	of	ligand	counts	that	each	
cell	 of	 respective	 cell	 type	 produced	 was	 calculated,	 thus	 taking	 into	
consideration	the	cell	abundance	and	average	expression	of	ligand	in	each	
cell	type.	We	chose	to	closely	analyze	the	ligand-receptor	pairs	related	to	
inflammation	 and	 ECM,	 based	 on	 the	 known	 role	 of	 receptor-ligand	
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interactions	in	shaping	their	functions	(Gurtner	et	al.,	2008;	Koliaraki	et	al.,	
2020;	Turner	et	al.,	2014).	
 
Spatial cell-to-cell communication analysis 
To	 validate	 the	 cell-to-cell	 communication	 results,	we	 generated	 spatial	
transcriptomics	data	using	Visium	(10X	Genomics).	The	raw	reads	were	
processed	using	spaceranger	(10X	Genomics,	v1.3.1).	The	data	was	 then	
analyzed	using	Seurat	(v4.0.3	in	R	4.0.0)	(Hao	et	al.,	2021)	and	raw	counts	
were	corrected	using	the	SCT	method.	

For	each	spot,	the	neighborhood	refers	to	the	combination	of	the	spot	
itself	 and	 the	 directly	 adjacent	 spots.	 All	 spots	 containing	 stromal	 cells	
(corrected	 counts	 for	 Col1a1	 above	 1)	 and	 having	 stromal	 cells,	
macrophages	 (expression	of	Cd68),	or	granulosa	cells	 (corrected	counts	
for	 Serpine2	 above	 3)	 in	 their	 neighborhood	 were	 considered.	
Communication	between	spots	containing	stromal	cells	and	ligand	source	
cells	 was	 considered	 possible	 if:	 1)	 the	 stromal	 spot	 expressed	 any	 of	
Tgfbr3	or	Tgfbr1+Tgfbr2,	and	2)	Tgfb1	and	the	correct	cell	type	marker	
were	expressed	in	any	of	the	neighborhood	spots.	

	
Single-Cell Regulatory Network Inference and Clustering (SCENIC) 
analysis 
pySCENIC	was	used	to	perform	single-cell	regulatory	network	analysis	in	
fibroblasts	 (Van	 de	 Sande	 et	 al.,	 2020)	 by	 using	 normalized	 gene	
expression	values	of	specific	subsets	of	cells,	i.e.	fibroblasts	of	all	organs	in	
all	phases	of	the	cycle,	fibroblast	of	all	organs	in	diestrus	and	aged	samples,	
and	uterine	fibroblasts	in	metestrus	and	pregnant	samples.	The	gene	co-
expression	 networks	 were	 determined	 using	 grnboost2,	 enriched	
transcription	factor	motifs	were	predicted	using	ctx	function	and	regulon	
activity	 scores	 were	 calculated	 using	 AUCell.	 To	 assess	 if	 regulons	 are	
differentially	active	 across	FRT	organs	or	 in	aging,	 the	activity	 score	 for	
each	regulon	was	compared	to	null	distributions	obtained	by	permuting	
organ-	or	age-labels	1000	times.	Multiple	testing	correction	was	performed	
using	Benjamini-Hochberg	procedure.		

Selection	of	the	subset	of	transcription	factors	related	to	inflammation	
and	ECM	was	based	on	the	overlap	and	enrichment	of	transcription	factor	
target	 genes	 and	 target	 genes	 of	 selected	 ligands	 obtained	 from	 the	
NicheNet	database.	Additionally,	classification	of	transcription	factors	as	
fibrosis	 and/or	 inflammation	 associated	 was	 based	 on	 the	 enrichment	
score	 of	 transcription	 factor	 target	 genes	 in	 inflammation	 (Hallmark	
collection)	 and	 ECM	 organization	 (Reactome	 collection)	 pathways.	
Transcription	 factor	 target	 genes	 were	 identified	 in	 pySCENIC	 analysis.	

Jaccard	 index	 was	 used	 to	 quantify	 overlap	 between	 target	 genes	 and	
pathway	related	genes,	and	a	hypergeometric	test	was	used	to	assess	the	
enrichment.	
	
Single-cell trajectory inference 
Slingshot	was	used	 to	 infer	 fibroblast	 trajectories	 along	 the	estrus	cycle	
(Street	 et	 al.,	 2018).	 Linear	 discriminant	 analysis	 (LDA)	 was	 used	 to	
perform	 dimensionality	 reduction.	 LDA	 was	 performed	 on	 cycle-
associated	genes	determined	in	MI	approach	using	the	mda	R	package.	We	
clustered	the	cells	using	k-Means,	and	we	fitted	the	principal	curve	through	
fibroblast	clusters	using	the	Slingshot	function.		
	
Differential cell heterogeneity analysis 
Differential	Shannon	Entropy	(ShE)	was	used	to	assess	the	differences	in	
transcriptional	 heterogeneity	 between	 young	 (diestrus)	 and	 old	 cell	
populations.	 Differential	 ShE	 was	 calculated	 using	 the	 EntropyExplorer	
package	 (Wang	 et	 al.,	 2015).	Multiple	 testing	 correction	was	 performed	
using	Benjamini-Hochberg	procedure.		
	
Linear mixed models of inflammation 
To	estimate	 the	rate	of	 inflammaging	in	the	different	organs,	we	fitted	a	
linear	mixed	model	at	the	cell	level	including	age,	organ	and	the	interaction	
of	 age	 and	 organ	 as	 fixed	 effects,	 and	 individual	 (mouse)	 as	 a	 varying	
intercept	random	effect.	
	
Data availability  
All	 sequencing	 data	 and	 expression	 count	 matrices	 are	 deposited	 in	
Arrayexpress	under	accession	number	E-MTAB-11491.	Imaging	raw	and	
processed	 data,	 as	 well	 as	 flow	 cytometry	 raw	 data	 together	 with	 the	
MIFlowCyt	 protocol	 are	 available	 at	 Biostudies	 (S-BIAD482,	 S-BIAD476	
and	S-BSST864).	Dynamics	of	cellular	abundance,	gene	expression,	cell-to-
cell	communication	and	transcription	factor	regulatory	networks	in	FRT	
organs	in	estrus	cycle,	decidualization	and	aging,	can	be	explored	through	
an	interactive	tool	at	https://cancerevolution.dkfz.de/estrus/	
	
Code availability  
Code	used	in	this	study	is	available	in	github	repository:		
https://github.com/goncalves-lab/estrus_cycle_study.	
	
	

	

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 27, 2022. ; https://doi.org/10.1101/2022.10.26.513823doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.26.513823
http://creativecommons.org/licenses/by-nc-nd/4.0/

