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The female reproductive tract (FRT) undergoes extensive remodeling during each reproductive cycle, regulated by
systemic changes in sex hormones. Whether this recurrent remodeling influences a specific organ’s aging trajectory is
unknown. To address this, we systematically characterized at single-cell resolution the morphological and transcriptional
changes that occur in ovary, oviduct, uterus, cervix, and vagina at each phase of the mouse estrus cycle, during
decidualization, and into aging. Transcriptional and cell-to-cell communication networks in estrus cycle and aging are
enriched for ECM reorganization and inflammation, two essential components of FRT remodeling. We directly link the
organ-specific level of these two processes over reproductive lifespan with the gradual, age-related development of fibrosis
and chronic inflammation. Our data represent a comprehensive atlas of the FRT lifespan, revealing pathological
consequences of incomplete resolution of recurrent inflammation and tissue repair.

limitations: they were often microscopy-based (Garry et al,,
2010; Hickey et al., 2013; Jurgensen et al., 1996; Sato et al,,
1997; Schulke et al.,, 2008; Wang et al,, 2000), analyzed
single organs of the FRT (Garcia-Alonso et al,, 2021; Jemt et
al, 2016; Roberson et al., 2021; Saare et al, 2016; Wang et
al,, 2020), assayed the activity of few genes (Cornet et al,,

Introduction

During the estrus cycle the mammalian female reproductive
tract (FRT) undergoes extensive remodeling in preparation
for ovulation and pregnancy. The physiological changes to
the FRT, which occur in response to ovarian steroid

hormones, are conserved between humans and other
mammals, with the exception of the human-specific
spontaneous terminal differentiation of the endometrial
stromal cells in the process of decidualization (Bellofiore et
al, 2018). These decidualized stromal cells are
subsequently expelled during human menstruation. In most
other mammals this final step of differentiation can be
modeled by pregnancy induction (Miller and Takahashi,
2014; Rajkovic et al, 2004). The reproductive cycle
influences important functions of other organ systems,
including shaping the immune response to infection and
neural plasticity (Fernandez et al, 2003; Gallichan and
Rosenthal, 1996), yet remains poorly characterized. Prior
analyses of mammalian estrus cycle have had a number of
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2002; Von Wolff et al,, 1999), used bulk tissues (Kim et al,,
2018), and/or have been primarily qualitative (Igarashi et
al., 1995).

Although the FRT organs are regulated systemically by
sex hormones, they vary extensively in their susceptibility
to age-related pathologies. Development of chronic
degenerative diseases during aging is triggered by
numerous changes in the cell microenvironment and cell-
to-cell interactions. Systemic inflammation, known as
inflammaging, significantly contributes to age-related
morbidities. Inflammation is often accompanied by
excessive accumulation of extracellular matrix (ECM),
resulting in fibrosis. Progressive development of fibrosis
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with aging can lead to organ function impairment
(Horowitz and Thannickal, 2019).

In mammals, many conserved reproductive processes,
including ovulation in the ovary, menstruation and
decidualization/implantation in the uterus, and the
remodeling of the vaginal epithelium throughout the estrus
cycle, display hallmark signs of inflammation (Jabbour et al.,
2009) and ECM remodeling (Salamonsen et al,, 2002). The
female reproductive tract can resolve these cyclical
inflammatory events rapidly and thus re-establish normal
reproductive function. Multiple cell types cooperate to fine-
tune the complex process of inflammation, with immune
cells and fibroblasts playing major roles. Immune cells
recognize and eliminate inflammatory triggers, while
fibroblasts reorganize the microenvironment through
expression of inflammatory cytokines, extracellular matrix
(ECM) components and remodeling enzymes. When
inflammation is not normally resolved, because of aging or
other factors, chronic inflammation and fibrosis can
develop. Fibroblasts likely shape inflammation persistence
(Davidson et al,, 2021) by failing to return to a homeostatic
state, thereby contributing to inflammatory memory (Kirk
etal, 2021). As the main ECM producers, they play key roles
in tissue remodeling. Excessive and/or frequent tissue
remodeling as a consequence of reoccurring injury can lead
to fibrosis development (Rockey et al,, 2015), but current
models assume that the FRT cyclical remodeling is scar-
free.

To systematically explore the female reproductive cycle,
we characterized at single-cell resolution the morphological
and transcriptional changes that occur in ovary, oviduct,
uterus, cervix, and vagina at each phase of the mouse estrus
cycle, during decidualization, and into old age. Specifically
to enable inter-organ comparisons at the same cycle stages,
all five FRT organs were simultaneously collected and
analyzed from over 20 individual mice. Our analyses newly
reveal how the physiological differences between the upper
(ovary, oviduct, uterus) and lower reproductive tract
(cervix, vagina) are closely mirrored by compositional and
transcriptional differences. To explore whether the cyclic
inflammation and remodeling that naturally occur during
the reproductive lifespan of young mice result in age-
related chronic inflammation and fibrosis, we extensively
characterized the inflammatory status of fibroblasts and
their cell-to-cell communication networks during normal
cycling and aging. We determined that transcription factor
and cell-to-cell communication networks active in
fibroblasts during estrus cycling and aging are enriched for
ECM remodeling and inflammation, and are conserved
between humans and mouse uteruses. Our analysis reveals
that re-occurring cyclic changes in inflammation and ECM
activity in each reproductive cycle significantly contribute
to FRT aging linking the number of elapsed cycles with the
age-related accumulation of fibrosis and inflammation.

Results

Single-cell characterization of
reproductive tract

We profiled how the female reproductive tract is remodeled
during the estrus cycle, decidualization, and aging using
single-cell RNA-sequencing (scRNA-seq). We characterized

the cycling female
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the cellular composition and transcriptional states present
in ovary, oviduct, uterus, cervix, and vagina (with spleen as
a control organ) by collecting 378,516 single-cell
transcriptomes from normally cycling young mice in each of
the four cycle phases (P - proestrus, E - estrus, M - metestrus
and D - diestrus), as well as 30,966 cells from early
pregnancy and 74,129 cells from acyclic old mice (Figure
1la-b, Table S1). All experiments were performed in three to
seven biological replicates to allow for the assessment of
statistical significance in all comparisons.

We analyzed the single-cell transcriptomes from all

cycle phases and organs (76,600 cells per organ on average)
in young cycling mice to identify cell types and their organ-
specificity. To ensure the accuracy of the cell type
annotation, we combined two automated approaches with
an extensive manual comparison of marker gene expression
(Methods). These approaches identified approximately
fifty cell types, including all expected stromal, epithelial and
immune-cell sub-populations (Figure 1c,d, S1la-c, S2, Table
S2). Cell types were defined independently in each organ
and all organs were subsequently integrated together for
visualization purposes (Figure 1e).
By evaluating the cellular composition of all five FRT organs
simultaneously, we identified a collection of cell types
shared across the entire FRT, and quantified the extent to
which the FRT shows a pronounced shift in its cellular
composition between the upper and lower tracts (Figure
1c,e, S1c). The cell types shared across the FRT include
stromal fibroblasts, dendritic cells, macrophages, mural
cells, a number of T cell subtypes, and endothelial cells,
among others.

As expected, substantial variation in cellular
composition occurs among the FRT organs. For instance,
stromal cells outnumber epithelial cells in the upper FRT,
whereas epithelial cells are more numerous in the lower
reproductive tract (Figure 1c,e, S1c,d). The composition of
the immune compartment also profoundly shifts between
the upper and lower tracts. The upper tractis characterized
by an enrichment of adaptive immune cells, including
mucosa-associated T cells, memory T cells, and Natural
Killer cells. The lower reproductive tract is dominated by
the innate immune system, with a higher proportion of
dendritic cells and neutrophils (Figure 1f, S1c). In addition,
the balance between M1 and M2 macrophages profoundly
changes between organs (Figure 1g, S1c). In the uterus and
oviduct, wound-healing associated M2 macrophages
dominate the cellular landscape, where they are likely
involved in hormonally induced tissue remodeling (Madsen
et al, 2013). In contrast, the classically activated and pro-
inflammatory M1 macrophages dominate the ovary,
consistent with previous reports that M1 but not M2
macrophages are required for folliculogenesis (Ono et al,,
2018). M1 macrophages are also prevalent in cervix and
vagina, consistent with these organs’ higher exposure to
pathogens. Natural killer cells are concentrated in the
uterus (and to a small extent in the oviduct), where they
have been suggested to regulate decidualization (Sojka et
al,, 2019).
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Figure 11 Single-cell characterization of the female reproductive tract. (a) Single-cell analysis of the reproductive tract (FRT) was performed on
ovary, oviduct, uterus, cervix and vagina, with spleen as a non reproductive, control organ. (b) All organs of the FRT were profiled in multiple biological
replicates at the four phases of the mouse estrus cycle, during aging, and during decidualization in pregnancy. Occurrence of leukocytes, and
nucleated and cornified epithelial cells (see Figure S3a) was used to stage tissues in Proestrus (P), Estrus (E), Metestrus (M) and Diestrus (D). (c)
Proportional heatmap of the most abundant cell types by organ (full list in Figure S1c), revealed a pronounced shift between the upper and lower
FRT from stromal dominance to epithelial dominance in young cycling mice. (d) Selected marker genes used to classify ovarian cell types. Complete
plots of marker genes used to classify all FRT organs are shown in Figure S2. (e) UMAP plot of the young cycling mouse cells. Cell types were
integrated between organs for visualization purposes only. Cell types were assigned to epithelial (red), immune (green), stroma (blue), and endothelial
(gray) compartments. (f) Log ratio of innate (N, DC, M1Mp, M2Mp, Mp and MaC) and adaptive (NKC, BC, iNkT, MAIT, MTC) immune cells
abundances in the FRT organs. (g) Log ratio of M1 to M2 macrophages in the FRT organs.
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Our analyses identified major cell types present across the
entire FRT, including stromal fibroblasts and macrophages;
and revealed an anti- vs pro-inflammatory transition
between the upper and the lower reproductive tract.

Estrus cycling dramatically remodels the cervix and vagina
immune compartments

To understand how tissue-environment, hormone state,
and intrinsic cell identity combine to shape each organ'’s
tissue landscape, we compared how the cellular
composition of the entire female reproductive tract varies
across the cycle in young female mice. We precisely staged
the cycle by the emergence of specific cell types in vaginal
smears (Figure S3a, Methods). The correct identification of
the phases was confirmed by an unbiased reconstruction of
a transcriptional pseudo-time trajectory of uterine
fibroblasts, which ordered the mice according to the smear-
assigned phases (Figure S3b). Indeed, the substantial
changes observed in vagina by single-cell data (Figure 2a)
are consistent with the vaginal smears used to stage each
mouse’s cycle. For example, the proportion of nucleated
epithelial cells (such as BEpC and IEpcC) is at its highest in
proestrus and lowest at metestrus (statistically significant
by compositional regression, Methods, Table S3). We also
observed other expected features, including a large
expansion of the stroma from proestrus to estrus (Jin, 2019;
Wood et al.,, 2007) and an expansion of glandular cells at
proestrus in the uterus (Sato et al,, 1997) (Figure S3c).

We analyzed the cellular population dynamics from both
an organ-specific and cell type specific point of view. To
quantify the magnitude of remodeling in each organ, we
determined the fraction of each cell type at each phase of
the cycle and plotted the cycle inter-quartile range. This
comparative approach revealed that vagina has the most
cycle-variable cell types, as well as the highest average
amplitude of compositional changes in the FRT (Figure 2b).
The variability in cell composition across the cycle tends to
decrease along the FRT: in uterus and cervix fewer cell
types vary across the cycle, while oviduct and ovary are
relatively invariant in their composition.

We then asked how the immune compartment of the
female reproductive tract is remodeled across the cycle
(Figure 2c, S4a). We found that the fraction of immune cells
is lowest during proestrus in all organs, and is also low
during diestrus in the upper reproductive tract. The vagina
and cervix show considerably greater variation in their
content of immune cells, with a maximum at metestrus. For
vagina, we independently confirmed the sharp peak in
immune cell numbers in metestrus by quantifying the
fraction of immune cells across the cycle via flow cytometry
(Figure 2d, S4b). In the uterus, in contrast, the immune-cell
proportion peaks earlier at estrus, followed by a slower
decline back to the minimum at proestrus. Interestingly, the
immune fraction of the ovary and oviduct remains relatively
invariant. Within specific immune cell populations, immune
cells in the oviduct transition from M1 during estrus to M2
during metestrus (Figure 2e, S3c). In the uterus, M1 and M2
abundance also peaks during estrus, whereas metestrus is
characterized by a specific abundance of NK cells.

Our analyses newly quantified how the different organs
of the FRT are immunologically distinct. The lower
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reproductive tract undergoes cyclical, acute immune influx,
which is also seen to a smaller but significant extent in the
uterus and oviduct, while the ovary maintains an invariant
population of immune cells throughout the cycle. Our
characterization of the cycle dynamics of -cellular
abundance can be explored in an interactive online tool (see
Data Availability).

Uterus undergoes profound cyclical epithelial/stromal re-
modeling

Cell proliferation and death can be regulated by systemic
steroid hormones (Wood et al., 2007). Leveraging on our
simultaneous profiling of the five organs of the FRT, we
asked whether tissue proliferation/remodeling is
synchronized between them. To determine if the relative
abundances of stroma and epithelia are coordinated across
organs and across the cycle we calculated the ratio of
epithelium to stroma across the FRT (Figure 2f, S4c). In all
FRT organs, this ratio is lowest during diestrus and
increases on the transition to proestrus; this coincides with
the known progesterone minimum at diestrus (Figure 2f)
(Nilsson et al, 2015). With the exception of uterus, FRT
organs are relatively stable in the transition from proestrus
to estrus and peak at metestrus. In uterus, proestrus
profoundly changes the ratio of epithelia to stroma, and
therefore we asked if proliferation contributes to these
dynamic changes. We derived proliferation scores using the
scRNA-seq data (Methods), which revealed that
proliferation rates of epithelia are highest during the
estrogen (E2) surge at proestrus and lowest at metestrus
(Figure 2g). In contrast, stromal proliferation peaks at
estrus and metestrus (Figure S4d), coinciding with peak
progesterone (P4) levels, which promotes stromal
proliferation and inhibition of the E2-induced epithelial
proliferation (Lietal, 2011).

The most notable contrast in tissue remodeling is
between vagina and uterus, providing a high-resolution
quantification for the current models obtained from
histopathological analyses (Sato et al, 1997). In vagina,
there are cell type specific changes within the epithelial
compartment across the cycle (Figure 2b) which do not
impact the overall balance of epithelia to stroma (Figure 2f).
In contrast, the uterus shows strong changes in its epithelial
to stromal ratio (Figure 2f).

In sum, our data reveals how proliferation and immune
activation are precisely regulated during the cycle. The
regulation of cell type abundances and immune infiltration
in the FRT is highly organ specific, despite their equal
exposure to circulating hormones.

Tissue morphological
expression

We considered the possibility that organs such as ovary and
oviduct, where cell abundances are relatively stable across
the cycle, might instead show substantial changes in
transcription. We scored the magnitude of transcriptional
change between phases of the cycle for each cell type in
every FRT organ using optimal transport analysis
(Methods) (Figure 2h). This analysis revealed that cycle-
related variation in cell type abundance is accompanied by
a corresponding scale of transcriptional change. Vagina and

changes are tracked by gene
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Figure 2 | Estrus cycle drives organ-specific compositional changes. (a) Barplot showing the % of each cell type in vagina at each phase of the
cycle (P-proestrus, E-estrus, M-metestrus, D-diestrus). The values shown are the averages across biological replicates, barplots per biological
replicate are shown in Figure S3c. (b) The compositional variability across the cycle was plotted for each cell type in each organ. The y-axis shows
the variability plotted as an interquartile range; for each organ, the two most variable cell types are indicated. (c) The ratio of immune to other cells
across the cycle was plotted. The values shown are average across biological replicates, standard errors are shown in Figure S4c. The immune
compartment is invariant in the ovary and oviduct, peaks during estrus in the uterus, and during metestrus in vagina and cervix. The ratios shown
are the average across biological replicates, standard errors are omitted for clarity and shown in Figure S4a. (d) The cyclical changes in the vaginal
immune compartment were independently confirmed using flow cytometry (‘n’ indicates the number of biological replicates). (e) Compositional
changes across the cycle in all FRT organs were plotted for M1Mp, M2Mp and NK cells. (f) The ratio of epithelia to stroma across the cycle was
plotted; uterus uniquely and extensively reshapes its cellular composition. The relative concentration of estradiol (E2) and progesterone (P4) at each
stage from (Nilsson et al., 2015) is shown above (black is the maximum value of the cycle, white is 0). (g) Average activity score of genes promoting
cell proliferation (GO:0008284) calculated in epithelial cells using AUCell. (h) Similarity of gene expression between the cycle phases for each cell
type was quantified using optimal transport, and displayed as a flower plot (inset). Petal lengths indicate magnitude of transcriptional changes; for
example, most cell types are more transcriptionally dynamic in cervix and vagina than in the upper FRT. (i) Average activity score of cytokine
regulatory genes (GO:0001816) calculated in immune cells using AUCell.

cervix are high in both cell type variability and gene
expression; in contrast, the cells in uterus, oviduct, and
ovary show less of both (Figure 2b,h). When considered by
cell types, we observed the same effect: the abundance of
immune cells closely corresponds to their functional
activation, which we orthogonally measured by single-cell
scoring of inflammation markers and cytokine gene
expression (Figure 2i, Table S9), in agreement with total
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cytokine and chemokine concentration found in vaginal and
uterine lavages (Hickey et al,, 2013; Sonoda, Y. et al., 1998).

Our data show that organs with the largest
morphological changes also have the largest transcriptional
changes across all cell types, suggesting a positive feedback
loop interaction  between morphological and
transcriptional change.
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Fibroblast functions are dynamically regulated throughout
the cycle, but not coordinated between organs

Fibroblasts are key regulators of wound healing and
inflammation in multiple organs, we therefore asked if
fibroblasts play the same functional roles in the cycling FRT
organs, and whether these roles are coordinated between
them. We first used over-representation analysis (ORA) to
identify the functional pathways enriched among cycling
genes with significant differential expression between any
two adjacent phases of the cycle (Figure 3a, Table S7,
Methods). This revealed that ECM remodeling and Tumor
necrosis factor (Tnf) regulation of inflammation are core
programmes of fibroblasts during the cycle. However, the
activity of these two specific functional pathways is often
out of phase or even anti-correlated between organs,
despite equal exposure of the organs to circulating
hormones (Figure 3b,c).

The activation of inflammatory pathways in fibroblasts
shows two organ-specific patterns (Figure 3b, Table S9,
Methods): in vagina, cervix, and oviduct, inflammatory
activity peaks at metestrus, and in uterus and ovary at
proestrus. Thus, the vaginal immune cell infiltration we
previously observed at metestrus (Figure 2c) is
accompanied by fibroblast inflammatory activation. In
contrast, ECM organization shows no coordinated pattern
across FRT organs (Figure 3c). Compared to the other
organs, uterus has the most extensive ECM remodeling
which peaks at proestrus and reaches its minimum during
estrus.

Our data confirms that cycling fibroblast programmes
are similar between organs, yet often out of phase,
suggesting that fibroblast functions are regulated by a
combination of systemic and local cues.

Cell-to-cell communication and transcription factor activity
reveal high inflammation in the lower FRT and extensive
ECM remodeling in the uterus

Fibroblasts coordinate organ function and homeostasis via
communication with other cell types through ligand-
receptor interactions (Davidson et al, 2021; DeLeon-
Pennell et al, 2020). We therefore performed cell-to-cell
communication analysis to identify the organ-specificity
and activity of ligand-receptor interactions (Figure 3d,
Methods) (Jin et al., 2021; Shao et al, 2021). We first
focused on how ligands from all cell types converged on
fibroblasts, by calculating communication scores as the
product between a and b, where a is the expression of
ligands averaged over all cell types in all phases (the
‘ambient’ ligand expression), and b is the expression of
receptors averaged over fibroblasts in all phases.

Vaginal and cervical fibroblasts have the highest
communication scores for pro-inflammatory Interleukin 1
beta (/l11b) and Tnf, and the lowest scores for anti-
inflammatory Interleukin 10 (/110), Interleukin 11 (/I11)
and Transforming growth factor beta (Tgfb) cell-to-cell
signaling (Figure 3e, S5a, Table S4, Methods). In contrast,
uterine fibroblasts receive primarily anti-inflammatory
signaling, and oviduct and ovary have a mixture of anti- and
pro-inflammatory signaling. By summarizing the cycle
average fibroblast inflammation scores by organ, we found
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that vagina has the strongest cyclical inflammatory
transcriptional responses (Figure 3f), consistent with its
cell type compositional changes (Figure 2c). A similar
summative analysis of ECM reorganization demonstrated
that uterus and oviduct undergo the largest structural
remodeling across the cycle, followed by vagina (Figure 3g).
Indeed, fibroblasts in the uterus and oviduct show the
highest communication scores for ECM-associated signaling
(Figure 3e, S5a).

To verify that increased cell-to-cell communication
results in upregulation of downstream pathways, for each
of the ligands, we scored the activity in fibroblasts in each
FRT organ for their predicted target genes (Browaeys et al,,
2020). Most ligand targets have a strong positive
correlation with their organ receptor-ligand scores (Figure
3h, Methods). In other words, if an organ has high ligand-
receptor activity, then it also has high ligand-target activity.

We then sought to identify which cell types were
responsible for signaling to fibroblasts by partitioning the
transcription of each ligand by cell-of-origin (Figure S5b,
S6a, Methods). In the lower reproductive tract, M1
macrophages (source of I11b, Tnf, Il112a) and memory T-cells
(source of Ifng, CsfZ2) appear responsible for most pro-
inflammatory signaling. In the upper reproductive tract, M2
macrophages (source of [110) and fibroblasts/theca cells
(source of II111) generate the predominantly anti-
inflammatory environment (Figure S5b, S6a).

Our data reveal that the cell types responsible for
inflammatory ligand production are often organ-specific.
Prior studies in humans and cows have suggested organ-
specificity in TNF signaling arising from uterine glandular
cells (Okuda et al., 2010; Tabibzadeh, 1991, 1999), which
we confirmed in the mouse (Figure S5b). As another
example of organ-specific signaling, we identified the cell-
of-origin of 1110 (Figure 3i). 1110 is highly active in oviduct
(see Figure 3e), where the major source of ligand are M2
macrophages (Figure 3i, S5b). In vagina, where there is
substantially less IL10 signaling and few M2 macrophages,
the strongest source is dendritic cells (Figure 3i, S6a). In
contrast to inflammatory signaling which is often organ-
specific and paracrine, fibroblast ECM is often autocrine
controlled by signaling from stromal cells (Figure S5b, S6a).

TGFB is one of the most potent regulators of ECM
activity and inflammation (Derynck and Zhang, 2003).
Using scRNA-seq data we determined that Tgfb1 is highly
active in the organs of the upper FRT (Figure S5a). In the
ovary, the main sources of Tgfbl are stromal cells and
macrophages, and to a smaller extent granulosa cells
(Figure 3j). To validate the TGFB signaling in the ovary
between fibroblasts and their partner cells we generated
spatially resolved transcriptomics data using Visium. Using
spatial and transcriptional information, we calculated the
proportion of spots with stromal cells that expressed Tgfb1
receptors and neighboured a spot with stromal cells,
macrophages or granulosa cells that expressed Tgfb1 ligand
(Figure 3k). We confirmed that indeed ligand-expressing
stromal cells and macrophages co-localize significantly
more frequently with receptor-expressing fibroblasts
compared to granulosa cells (Figure 31).
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Figure 3 | Gene expression dynamics of fibroblasts across the female reproductive tract. (a) Functional pathways, including inflammation and
ECM, enriched in genes differentially expressed between phases of the cycle in fibroblasts. (b) Activity scores of inflammatory genes (Sup. Table
S9) determined by AUCell and averaged across all fibroblasts in each cycle phase (P-proestrus, E-estrus, M-metestrus, D-diestrus). (c) Activity
scores of ECM organization genes (Sup. Table S9), as in (b). (d) Schematic of the cell-to-cell ligand-receptor and ligand target analyses. (e) Heatmap
showing the z-scores of ligand-receptor products averaged across phases. Ligand expression is averaged across all cell types; receptors are in
fibroblasts only. A full version of the heatmap is shown in Figure S5a. The receptor-ligand interactions shown were deemed statistically significantly
different in at least one FRT organ in comparison to the rest by a permutation test (p-values in Table S4). (f) Activity scores of inflammatory genes
averaged across all fibroblasts in each phase in each organ. The scores shown here are the average of the scores shown in panel (b), weighted by
phase length (Methods). (g) Activity scores of ECM genes averaged across all fibroblasts in each phase in each organ. The scores shown here are
the average of the scores shown in panel (c), weighted by phase length (Methods).
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In addition to the cycle-averaged communication above,
we evaluated the dynamics of cell-to-cell communication
across the cycle in uterus and vagina, which had the highest
levels of ECM and inflammation, respectively. In uterus, we
observed that ECM-related cell-to-cell communication is
lowest in the estrus phase (Figure S6b), consistent with a
corresponding decline in ECM-related gene activity (Figure
3c). Similarly, in vagina, the highest pro-inflammatory and
lowest anti-inflammatory cell-to-cell communication are
found in metestrus (Figure S6b), consistent with
inflammation peaking in metestrus (Figure 3b).

Finally, to identify candidate regulators involved in
organ-specific inflammatory and ECM processes, we
quantified the associated transcription factor (TF) activity
across the cycle using SCENIC (Figure 3m, S6c, S7a, Table
S5). As expected, we found that the activity of inflammation-
associated transcription factors is highest in vagina, while
activity of ECM-related transcription factors is highest in
the uterus (Figure 3m). For example, in vaginal fibroblasts,
both canonical (Nfkb1l, Rela) and noncanonical NFKB
pathways (Nfkb2, Relb, Bcl3) are activated by IL1B and TNF
ligands (Figure S6c), suggesting that the synergistic action
of these ligands on NFKB pathways contributes to
inflammation (Di Paolo et al., 2015). Overall, we observed
that the dynamics of transcription factor activity
correspond closely with changes in cell-to-cell
communication (Figure S7b).

We confirmed that fibroblasts are central regulators of
inflammation and ECM across the FRT. We discovered that
the timing and underlying transcriptional regulators of
fibroblast activation are highly organ specific. The
differentially expressed genes, co-expressed gene clusters,
cell-to-cell communication, and transcription factor activity
can be explored in our interactive online tool (Data
Availability).

Modeling the human menstrual
decidualization

The human reproductive cycle includes a step of terminal
differentiation (decidualization) of the uterine stromal
cells, which in other mammals only happens in the presence
of a fertilized egg. During the first trimester of human
pregnancy, the immune microenvironment of the decidua
prevents inflammatory responses (Vento-Tormo et al,
2018). Here we first asked whether mouse decidual cells
also display an anti-inflammatory profile, and then sought
to quantify the degree of transcriptional conservation
between humans and mouse cycling fibroblasts.

To parallel the spontaneous decidual reaction that
occurs during the human cycle, we induced decidualization
in mice by inducing pregnancy, and characterized the
uterine architecture at embryonic day 5.5 by scRNA-seq in
seven biological replicates (Figure 4a, S8a,b). A subset of

cycle using mouse

stromal cells unique to pregnant mice transcriptionally
expresses the classical markers of decidualization: Alpl,
Bmp2 and Pri8a2 (Figure 4b, S8c) (Finn and Hinchliffe,
1964; Ramathal et al., 2010; Soares et al, 1998). As
expected, many stromal cells from pregnant uteruses do not
express these markers, because the mouse uterus
decidualizes heterogeneously (Zhao et al, 2017). For
instance, BmpZ is only expressed in stromal -cells
surrounding the implanted embryo. We confirmed
decidualization histologically using H&E staining (Figure
4c). Compared to the metestrus phase, the pregnant uterus
is characterized by the appearance of decidual cells,
accompanied by a proportional increase in NK, glandular
cells (GIC) and fibroblasts, and a decrease in columnar (CC),
ciliated epithelial cells (CEpC), mural (MC), dendritic (DC)
and MAIT cells (Figure 4d). Additionally to cell
compositional changes, decidualization in mouse causes
extensive transcriptional changes in inflammation, ECM
and embryo development pathways (Figure S8d).

We asked whether the decidualized cells and fibroblasts
in mice express the same transcriptional programs
previously identified in human uterine fibroblasts (Figure
4e, Figure S9a, Table S6) (Wang et al., 2020). First, we used
the same mutual information approach as the original study
to re-identify 1670 human genes that are differentially
expressed between specific phases of the menstrual cycle.
We then tested whether the same genes are differentially
regulated in the corresponding estrus phases in mice using
the same approach (Figure S8e, Methods). At every phase of
the cycle, the dynamic gene expression changes in human
and mouse are more conserved than expected by chance
(Methods), and the phase of decidualization has an
especially high percentage of conserved transcription
(Figure 4e). These genes are enriched for ECM,
inflammation, and cycle regulation and implantation
pathways (Figure S9b). Most of these processes show
species-specific differences in activity across the cycle;
however, the transition to decidualization is largely
conserved (Figure 4f-h, Figure S9c). When compared to
fibroblasts, decidual stromal cells show consistently lower
activity of ECM- and inflammation-related genes (Figure
4g,h) and transcription factors (Figure 4i).

In sum, our analyses revealed that mouse decidual cells
display a markedly anti-inflammatory transcriptional
profile and that the transition to decidualization is largely
conserved between mouse and human.

Inflammaging in the FRT

The FRT shows signs of accelerated aging compared to
other organs. It undergoes extensive physiological changes
following its decline in mid-life, which culminates in
menopause/acyclicity (Broekmans et al, 2009). We
therefore asked which age-related changes occur in the

Figure 3 (cont.) (h) Heatmap of Spearman correlation values between the expression product of a ligand-receptor pair and the AUCell activity score
of predicted targets of the ligand (Browaeys et al., 2020). (i) Top 5 cell types with the largest expression of //70 in vagina and oviduct. (j) Contribution
of stromal cells, macrophages and granulosa cells to Tgfb1 expression calculated using 10x scRNA-seq data. (k) Schematic showing cell-to-cell
communication scoring strategy in spatial transcriptomics analysis. Communication between spots containing fibroblast and ligand source cells was
considered possible if: the fibroblast spot expressed receptor (Tgfbr3 or Tgfbr1/Tgfbr2), and neighborhood spots expressed ligand ( Tgfb1) together
with the correct cell type marker. (I) Proportion of stromal spots which are communicating with respective ligand source spots. Spots were scored
using the strategy shown in (k). (m) Estimated activity scores of targets of transcription factors associated with inflammation and ECM regulation in
fibroblasts. Shown are TFs whose activity scores were statistically significantly different between the FRT organs through a permutation test (Table

S5, Methods).
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Figure 4 | Regulation of reproductive cycle and decidualization is conserved between mouse and human. (a) UMAP plot of the integration of
the pregnant with the metestrus samples. Shown in this panel is a subsample of 19,724 of the total 40,828 cells used in the analyses. (b) UMAP from
panel a) subsetted to stromal cells and split by condition showing the expression of marker gene of decidualization Alpl. (c) H&E staining of pregnant
mouse uterus showing decidualization at the implantation site. (d) Cell abundance compositional changes in early pregnancy compared to metestrus.
Heatmap shows the difference in average % of each cell type between pregnant and metestrus samples. Pregnancy in mice is characterized by the
appearance of decidual cells. To be able to compare the changes in all other cell types upon decidualization, decidual cells were omitted from the
comparison and cell abundances were re-calculated. (e) Conserved differentially regulated genes in mouse uterine fibroblasts and decidual cells and
human fibroblasts across the cycles. Barplot indicates in red the % of homologous differentially regulated genes that showed the same or opposite
directionality of regulation in comparison to adjacent cycle phases in paired mouse-human cycle phases. For instance, a mouse gene upregulated in
proestrus compared to diestrus and the homologous human gene upregulated in proliferative early compared to secretory late. Genes that showed
opposite directionality of regulation (e.g. up-regulation in humans, down-regulation in mice) were considered divergent and their % is shown in gray.
Black line shows the proportion of the conserved genes expected by chance in each cycle phase. As bar labels only mouse phase comparisons are
shown (P-proestrus, E-estrus, M-metestrus, D-diestrus, Pr-pregnant, F-fibroblast, DeC- stromal decidual cells). (f) Activity scores of genes that
regulate embryo implantation (GO:0007566) (Sup. Table S9) determined by AUCell and averaged across all mouse and human fibroblasts in each
phase of the cycle (P-proestrus, E-estrus, M-metestrus, D-diestrus, Pe-proliferative early, Pl-proliferative late, Se-secretory early, Sm-secretory mid,
Sl-secretory late). Red dot indicates the activity score in mouse decidual cells. (g) Activity scores of inflammation genes as in (f). (h) Activity scores
of ECM genes as in (f). (i) Estimated activity scores of targets of transcription factors associated with inflammation and ECM regulation in mouse
fibroblasts, across the cycle and in pregnancy, as well as decidual cells in pregnancy.

aged FRT compared to young. Our pathological analysis
confirmed that 18 month old mice often display immune
infiltration in most organs (Finch, 2014; Nelson et al., 1984),
ovarian atrophy, as well as localized ovarian and/or uterine
hyperplasias (Figure 5a, Figure S10, Table S10). To quantify
how age-associated cessation of the estrus cycle changes

Winkler, Tolkachov et al. 2022 (preprint)

the cellular composition and transcription in reproductive
organs, we collected in triplicate and analyzed the single-
cell transcriptomes of all reproductive organs and spleen
from 18-month old female mice (Figure 5b, S11a).

We identified extensive changes in cell type abundances
by comparing cell type proportions between the aged and
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Figure 5 | Organ-specific impact of aging on the FRT. (a) Photograph and H&E staining of young and aged ovaries. Arrows point to follicles in the
young ovary. Aged ovary is atrophied and contains no follicles. (b) UMAP plot of the integration of the aged mouse samples with the diestrus samples.
(c) Cell abundance compositional changes in aging compared to diestrus. Heatmap shows difference in average % of each cell type between aged
and diestrus samples. (d) Similarity of gene expression programs between the aging and diestrus for each cell type quantified using optimal transport.
Line lengths indicate magnitude of transcriptional changes. Optimal transport distances of fibroblasts are colored in red. (€) Number of genes with

increased differential Shannon entropy (ShE) of all cell types in ovary, oviduct, uterus, cervix and vagina in diestrus compared to old age.

young mice in diestrus (Figure 5c, S11b), the phase most
similar to acyclicity (Felicio et al, 1984). Ovary shows a
decrease in the proportion of follicle-associated cells such
as ThC, MGC, and LC, which is to be expected due to the
exhaustion of ovarian follicles and corpora lutea in acyclic
mice (Lliberos et al,, 2021). We independently confirmed
this decrease by both histopathology and RNAscope (Figure

Winkler, Tolkachov et al. 2022 (preprint)

S10, S11d,e). As expected, we found that the proportion of
fibroblasts increases in ovary (Lliberos et al, 2021) and
decreases in the oviduct and uterus (Craig and Jollie, 1985).

By evaluating the entire FRT, we newly quantified how
aging increases the fraction of immune cells in the upper
reproductive tract, whereas aging decreases the immune
cells in the lower reproductive tract. Prior studies on single
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organs found similar results in isolation (Elmes et al., 2015;
Rodriguez-Garcia et al, 2021; Yaakov et al., 2021). The
remodeling of the immune compartment is organ-specific:
uterus shows an increase in M1 and M2 macrophages,
cervix and vagina have a decrease in M1 macrophages,
while oviduct has an increase in NK, B and dendritic cells.
The control organ, spleen, displays statistically significant
differences only in iNKT and PC proportions (Figure 5c,
S11b,c, Table S3), in agreement with previous reports
(Kimmel et al,, 2019).

Age-related gene expression changes are organ-specific
We then compared the gene expression programs between
young and old mice using optimal transport analysis. In
contrast to the transcriptional changes associated with
estrus, which are concentrated in the lower FRT, during
aging both the upper and lower FRT show extensive gene
expression changes (Figure 5d). We found that the
magnitude of age-related changes in cell type transcription
is highly organ-specific. For example, fibroblasts show
transcriptional changes during aging in all organs, but in
ovary they are the most strongly altered cell type.

Increase in cell-to-cell transcriptional variability has
also been shown to be associated with aging (Enge et al,,
2017; Martinez-jimenez et al., 2017), though this variability
may be cell type specific (Kimmel et al, 2019).
Simultaneously profiling all five FRT organs allowed us to
investigate how gene-wise transcriptional variability
changes during aging for over 50 different cell types, and
whether cell types that are common between organs
transcriptionally age in a similar manner (Figure 5e, S12,
Table S8). Importantly, we scored the age-associated
transcriptional variability against the natural cyclical
variation found in these organs, using Shannon-entropy, a
metric commonly used for quantifying diversity in ecology.

Taking ovary as an example, aging strongly increases the
cell-to-cell variability in the majority of cell types, when
compared with other FRT organs. This age-related
transcriptional variability is often cell type specific: MAIT
and EpC cells increase substantially with age, whereas M1
and M2 macrophages are largely unaffected (Figure 5e,
S$12). Asacell type shared among all FRT organs, fibroblasts
show modest cell-to-cell variability between young and old
mice. Other cell types found across the FRT such as MAIT
cells are more variable (Figure 5e, S12). The transcriptional
variability of many epithelial cells (BEpC, CEpC and IEpCs)
is substantially changed with age in uterus, cervix and
vagina; however, these age-related differences are smaller
than the variation observed in the normal cycle (Figure
$12).

In sum, aging results in substantial changes to the cell
type composition of FRT organs, most notably immune
infiltration in the upper reproductive tract, and the age-
related gene expression changes for each cell type are
organ-specific. Unlike the cyclic FRT, both upper and lower
aged FRT show profound changes in their transcription
programs. Comparison of FRT organs shows that the ovary
is more affected by changes in the gene-wise cell-to-cell
variability.

Winkler, Tolkachov et al. 2022 (preprint)

Organ-specific impact of chronic inflammation during FRT
aging

Fibroblasts can retain inflammatory memory (Kirk et al,,
2021), and thus shape age-related changes to organ
physiology and function. To test the extent and impact of
inflammatory responses in aged fibroblasts, we evaluated
the difference in inflammation scores between young
diestrus and old acyclic FRT organs and then applied a
linear mixed model (Figure 6a). Aging results in a significant
increase in fibroblast inflammation in all organs except
ovary. Interestingly, the rate of increase is significantly
different between FRT organs (p-value < 0.05 of the organ-
age interaction terms, Methods), with cervix and uterus
displaying the most pronounced increase in inflammation.

We quantified what fraction of this inflammation is due
to a subset of highly active fibroblasts versus a general
increase in all fibroblasts. For each young and old uterus, we
plotted the distribution of inflammation scores of the
fibroblasts (Figure 6b). We statistically evaluated the
observed differences using the waddR package (Schefzik et
al,, 2021), revealing that the distributions of inflammation
scores are significantly different (p-value = 0.002) between
young and old mice. We further dissected these
distributions via decompositional analysis using a 2-
wasserstein distance-based approach, revealing that their
shape, location, and sizes equally contribute to their
differences. In other words, the increase we observed in
fibroblast inflammation is driven by both an expansion of
sub-populations with high inflammation scores as well as
an overall increase in expression of inflammatory genes
throughout the population.

We tested the hypothesis that recurrent, cycle-related
inflammation of fibroblasts across the reproductive lifespan
might accumulate into age-related chronic inflammation.
We quantified the amplitude of the organ-wide
inflammation scores in young mouse fibroblasts during the
cycle and compared it to age-related inflammation. Indeed,
the higher an organ’s amplitude of inflammation is during
the cycle at a young age, the higher the organ’s fibroblast
inflammation score is in old age (Figure 6¢). In contrast,
immune cells do not display such an association (Figure 6d).
These results suggest that fibroblasts incompletely resolve
recurrent inflammation from the cycle, thereby retaining a
cumulative memory of past inflammation.

Tissue fibrosis accumulates gradually in oviduct, uterus
and vagina

Inflammation is closely linked with fibrosis (Flavell et al,,
2008; Kendall and Feghali-Bostwick, 2014), and increased
collagen deposition and fibrosis can be the end result of
chronic exposure of fibroblasts to inflammatory cytokines
(Lliberos et al., 2021; Selman and Pardo, 2021).

We previously observed significant ECM tissue
remodeling during the cycle of young mice (Figure 3c). We
considered that - similar to inflammation - the incomplete
resolution of this remodeling could lead to age-related
pathological accumulation of collagen, and thus to fibrosis.
We thus measured intercellular collagen in FRT organs
using Picrosirius red staining to label collagen I and III
fibers in 3 and 18 month-old mice, in triplicate, and in 12,
15 and 21 month-old mice in duplicate. Accumulation of
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Figure 6 | Inflammation and fibrosis in the FRT accumulate gradually with aging. (a) Activity scores of genes in inflammation determined by
AUCell and averaged across all mouse fibroblasts in diestrus and old age (Table S9). (b) Density plot of fibroblasts inflammation scores in each
biological replicate of young and old mice. (¢, d) The relationship between the amplitude of organ-wide inflammation scores of young mice during the
cycle (Figure 3b, Sup. Table S9) and the inflammation score of fibroblasts (Figure 6a, Table S9) and immune cells (Table S9) from the different
organs in old age. (e) % area of stained collagen deposition in ovarian, oviductal, uterine, cervical and vaginal tissue of 3 and 18 month old mice. (f)
Quantification of % area of stained collagen deposition in all FRT tissues of 3, 12, 15, 18 and 21 month-old mice. (g) The relationship between the
maximum of organ-wide ECM reorganization scores of young mice during the cycle (Figure 3c, Sup. Table S9) and the fibrosis score of different FRT
organs in old age. Fibrosis score was calculated as the difference in % area of stained collagen deposition in old (18 months) and young mice (3
months). (h) Heatmap showing the log2 fold changes of ECM-associated and inflammatory ligand-receptor products in old age compared to diestrus
of all FRT organs. Ligand expression is averaged across all cell types; receptors are in fibroblasts only. (i) Activity scores of targets of ECM and
inflammation-associated transcription factors in aged samples compared to diestrus.

fibrosis in uterus can lead to infertility (Sahin Ersoy et al,  increases in uterus both at an early stage and increases
2017; Secomandi et al., 2022), and we found that collagen = most steeply than the other organs over aging (increase of
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3.2% per six months, p-value=0.013) (Figure 6e,f, S13).
Oviduct (2.7%, p-value=0.022) and vagina (2.3%, p-
value=0.033) also showed steady increases in collagen;
ovary and cervix did not show collagen increases (Figure
6e,f, S13). Independent pathological analysis confirmed
prevalent fibrosis in the stroma of oviduct and uterus (Table
S10). For each FRT organ, the age-related collagen
accumulation rate was best predicted by the maximum
phase-specific ECM activity in the cycle (Figure 6g). In other
words, the intensity of ECM remodeling in fibroblasts
during the cycle corresponds with the severity of age-
related fibrosis.

We asked whether our observed inflammation and
fibrosis accumulation was reflected in organ-specific
fibroblast regulatory and signaling networks. Using SCENIC,
we found that the aging uterus showed a large increase in
both the number and intensity of transcriptional regulatory
modules associated with inflammation and ECM (Figure 6i).
Other FRT organs showed more moderate (oviduct, cervix,
ovary) or low (vagina) increases. Similarly, we found
elevated inflammation and ECM activity in the ligand-
receptor interactions centering on uterine fibroblasts
(Figure 6h).

Our results indicate that ECM accumulation as a result of
incompletely resolved cyclic ECM remodeling can lead to
gradual fibrosis development. Intensity of ECM remodeling
in each organ corresponds with the severity of fibrosis and
predisposes each organ differently to fibrosis development.

Discussion

In humans, like most other mammals, oocyte release
involves large-scale, cyclical tissue remodeling across five
hormonally-controlled organs, which functionally degrade
by mid-life. To better understand this system, we mapped
the cellular compositional and transcriptional changes that
occur during each estrus cycle phase, arising from earliest
pregnancy, and upon aging at single-cell resolution in every
organ of the mouse female reproductive tract. These data
quantified the compositional transition between ovary,
oviduct and uterus, which are dominated by stroma, and
cervix and vagina, which are largely epithelial. Most
importantly, our data provided unprecedented insight into
how tissue remodeling by the stromal cells and
inflammatory stimulus by the immune compartment can
lead to the functional degradation of and susceptibility to
disease within the female reproductive tract.

Our data showed that the adaptive immune cells are
more prevalent in the upper tract compared to the lower
reproductive tract which shows a profound shift towards
innate immunity. Oviduct and uterus have an anti-
inflammatory environment, dominated by wound-healing
associated M2 macrophages (Madsen et al, 2013). In
contrast, cervix and vagina have a pro-inflammatory
environment, dominated by M1 macrophages consistent
with potential microbial exposure (Zhou et al., 2018). We
found that M1 macrophages were more numerous in the
ovary, where they are required for folliculogenesis (Ono et
al, 2018). We quantified how the immune compartment
displays highly dynamic remodeling across the estrus cycle,
with the more caudal organs such as vagina displaying
stronger changes in the immune compartment. The lower
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FRT has recurrent acute inflammation during the cycle,
contrasting with the persistent low-grade inflammation
found in the ovary.

Previous experiments revealed that mouse uteruses
infected during the estrus phase had significantly increased
resistance to bacterial infection, compared to diestrus
(Islam et al,, 2016). Our data suggests a mechanism for this
enhanced surveillance: we observed that during estrus the
immune cell compartment expands in the uterus. More
generally, the variation in immune cell composition and
activation could explain why immune responses and
protection of the reproductive system has been previously
reported to vary along the cycle; indeed, vaccine-induced
immunity is influenced by the cycle (Gallichan and
Rosenthal, 1996).

Uniquely in the uterus, drastic ECM remodeling and cell
proliferation recurrently occur in each cycle to prepare the
endometrium for successful implantation and placentation
(Kaloglu and Onarlioglu, 2010). In the absence of
pregnancy, the proliferated tissue and secreted ECM are
reabsorbed and degraded via scar-free remodeling
mediated by fibroblasts (Bellofiore etal., 2018; Salamonsen
et al, 2002). Our data allowed us to interrogate whether
incomplete resolution of collagen deposition might
contribute to development of organ fibrosis and thus
reproductive senescence. Our single-cell transcriptomes
across the cycle quantified ECM remodeling and stroma
proliferation, which are particularly elevated in uterus and
oviduct. By longitudinally profiling the accumulation of
fibrosis across the FRT during aging, we discovered that the
scale of ECM remodeling found in each organ during the
cycle closely predicts fibrosis development in old age.
Previous studies reported evidence of fibrosis development
in post-menopausal endometrium (Jiménez-Ayala and
Jiménez-Ayala, 2008; Noci et al,, 1996); our data newly
reveals that this fibrosis accumulates steadily across aging
and that the age-related decrease in hormonal stimulation
is not the primary driver of fibrosis development.

Within fibroblasts, aging also increased inflammation
scores in all FRT organs, except ovary. The best predictor of
an organ’s fibroblast inflammatory activity in old age was
the amplitude of organ-wide inflammation during the cycle
in young mice. This suggests a model whereby fibroblasts
accumulate the memory of past inflammation, thus leading
to age-related chronic inflammation.

In women, reproductive organs lose functionality faster
than the somatic organs and display chronic inflammation
and fibrosis by mid-life (Farage and Maibach, 2011; Noci et
al,, 1996). Our data suggest mechanisms that could explain
the different organs’ susceptibility to cancer risk. Organs of
lower FRT undergo recurrent cyclic acute inflammation and
develop high-grade chronic inflammation in old age.
Previous studies linked inflammation with cervical cancer
progression (Mhatre et al,, 2012). Our results revealed that
the uterus was particularly susceptible to age-associated
increases in inflammation and fibrosis. Endometrial cancer
is the six most commonly occurring cancer in women
worldwide (Ferlay et al, 2021). Elevated levels of pro-
inflammatory cytokines pose a major risk in endometrial
cancer development (Dossus et al., 2013), and a fibrotic
microenvironment appears to contributes to endometrial
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tumor aggressiveness and drug resistance (Pradip et al,
2021). The risk of developing endometrial carcinomas may
also be shaped by events that alter the number of menstrual
cycles, such as oral contraception usage, number of
pregnancies, and age of menarche and menopause
(Havrilesky et al., 2013; Iversen et al., 2017; Michels et al.,
2018). On balance, the fewer the number of cycles, the
lower the cancer risk. This hypothesis could be directly
addressed by reducing the number of estrus cycles, and
evaluating the impact on FRT organ composition and
inflammation. = Age-related fibrosis and chronic
inflammation development in the oviduct is comparable to
the uterus. Inflammation and ECM-rich microenvironment
were shown to directly contribute to seeding of cancer cells
that originated in the oviduct to ovary thus causing high-
grade serous ovarian cancer development (Alshehri et al,,
2022; Jiaetal,, 2018).

Our work directly links intensity of inflammation and
ECM activity during the estrus cycle and number of cycles
with the severity of inflammation and fibrosis in old age.
Our data supports a model wherein the incomplete
resolution of inflammation and ECM remodeling during an
increasing number of cycles adds to fibrosis inflammatory
memory and ECM accumulation and lead to gradual
development of fibrosis and chronic inflammation,
predisposing organs to disease development.
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Materials and Methods
Mouse colony management

The C57BL/6 substrains J, N and Ly5.1 were obtained from Jackson
Laboratories or Janvier. Females were maintained as virgins and housed in
groups of up to six mice in Tecniplast GM500 IVC cages with a 12-hour light
/ 12-hour dark cycle. Mice had ad libitum access to water, food (Kliba
3437), and environmental enrichments. All colonies were regularly
controlled for infections using sentinel mice to ensure a healthy status. All
experiments were carried out in accordance with and approval of the
German Cancer Research Center ethical committee and local governmental
regulations (Regierungsprasidium Karlsruhe, animal license number
DKFZ366).

Estrus cycle staging cytology

Vaginal smears were collected using a pasteur pipette containing PBS and
leaned towards or inserted in the vagina of the restrained mouse. Mucous
tissue was then trickled on dry glass slides and stained by crystal violet
staining solution (Sigma-Aldrich 61135) or panoptic staining (Carl Roth
6487.1). Cellular composition of the smears was analyzed according to
known cell distribution patterns (Byers et al, 2012) using a ZEISS
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Discovery.V12 Stereoscope and images were acquired via a ZEISS Cell
Observer® system with AxioCam MRc camera. If possible, smears were
collected and analyzed from multiple consecutive days to better estimate
estrus cycle course. On the day of tissue collection, estimation of the estrus
cycle phase by smears was further complemented by the state of the
vaginal opening and the thickness and vascularization of the uterine horns
(Parker and Picut, 2016).

Induction of decidualization

Three months old female C57BL/6] virgin mice were synchronized 3 days
prior to mating by housing in cages containing bedding from C57BL /6 male
mice. These females were allowed to mate with C57BL/6 males in one to
one matings overnight. On the following morning, all plug-positive females
were housed together and kept for 5 days (5.5 days post coitum) until sac-
rifice for organ harvesting. On average, two out of three plug-positive mice
were pregnant at the day of sacrifice. Two uterine pieces, each enveloping
an implanted embryo were removed per mouse and further processed for
10x or histology as described below.

Histopathology and fibrosis quantification

After overnight fixation in 10% buffered formalin, representative
specimens of the ovary, oviduct, uterus, cervix, vagina, and spleen were
routinely dehydrated, embedded in paraffin, and cut into 4 pm-thick
sections. All tissue sections were stained using a H&E standard protocol. In
selected tissue sections, a Giemsa, Picrosirius Red, Congo Red, and AFOG
(Acid Fuchsin Orange G) stain were performed according to respective
standard protocols. To detect potential tumors, tumor classification
immunohistochemistry was performed with anti-a smooth muscle actin
(Abcam, ab5694), anti-desmin (ThermoFisher, RB-9014-Po), and anti-pan-
cytokeratin (DAKO, Z0622). Whole-slide scans were acquired using the
Aperio AT2 slide scanner (Leica) at 40x resolution. Raw image files are
available from BioStudies (see data availability).

To quantify fibrosis, high-resolution whole tissue section images of
Picrosirius red stained samples were acquired at 20x using a ZEISS Cell
Observer® brightfield microscope and an AxioCam MRc camera. Fiji
software (Image] ver. 1.53f51) was used to quantify percent of fibrotic area
by setting a signal threshold in stroma-containing regions. RGB images
were split into three channels. Signal quantification was performed on the
green channel. Regions of interest were drawn around stroma areas and a
threshold was set to correspond with the fibrotic area previously assessed
by a pathologist. Collagen accumulations were defined as % of area with
positive signal. Two replicates were used for 12, 15 and 21 month old mice,
and three replicates were used for 3 and 18 month old mice. Analyses were
performed independently by two authors (I.W. and A.T.) to reduce stroma
area selection bias. The macro is available from the GitHub repository
(Code availability). Technical replicates or quantified regions of interest
from the same sample were averaged and treated as one biological
replicate in a linear regression model.

RNA in situ hybridization

To detect and quantify Collagen, Type 1, alpha 1 (Collal, ACD 319371) and
Epithelial Cell Adhesion Molecule (Epcam, ACD 418151-C2) mRNA, an ISH
was performed using the RNAScope Multiplex Fluorescent V2 Assay (ACD
323100) with Opal fluorophore reagents (Akoya Biosciences) according to
the manufacturers’ instructions. In brief, fresh and fixed frozen samples
were collected according to manufacturers’ protocol and cut at 10pm
thickness using a Leica CM 3050S cryotome. Target probes (Collal,
319371-C1; Epcam, 418151-C2) were applied to the sample and baked at
40°C for 2h. Opal dyes 520 (FP1487001KT),570 (FP1488001KT) and 690
(FP1497001KT) were applied at a 1:1000 to 1:750 dilution and
counterstained with DAPI. Images were taken using the ZEISS Cell
Observer® fluorescence microscope and a ZEISS AxioCam MRm camera at
20x resolution.

Collagen signal was quantified as percent area of total DAPI area using
Image]. Samples which were run with negative control probes (ACD
320871) were used to subtract background signals beforehand. The macro
for assessing signal thresholds is available from GitHub (Code availability).

Tissue collection and preparation

All four phases of estrus cycle in ovary, oviduct, uterus, cervix, vagina, and
spleen were collected in triplicate from 3 and 18 month old mice. Seven
replicates were collected for decidualized tissues. Additional biological
replicates for samples that failed QC requirements were generated as
deemed necessary.
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Samples “Ind001-vagina06” and “Ind001-uterus07”, “18mo_Ind001-
ovary01”, “18mo_Ind001-spleen01” and “18mo_Ind001-ovary02” were
excluded from the analysis due to problematic sample preparation (Table
S1). Instead, additional mice were sacrificed to collect the vagina in
proestrus (“Ind001-vaginal3”), uterus in diestrus (“Ind001-uterus16”),
ovary from 18 months old mice (“18mo_Ind001-ovary04”, “18mo_Ind001-
ovary05”) and spleen “18mo_Ind001-spleen05”.

Reproductive tract organs and spleen were collected from mice
immediately following cervical dislocation. All organs were manually
dissected using a ZEISS Discovery.V12 Stereoscope to remove surrounding
fat and connective tissue. Samples were then either processed by
enzymatic digestion for single cell sequencing, fixed in 10% formalin for
FFPE-histology, or fixed and slowly frozen in O.C.T. Medium
(ThermoFisher) for cryo-histology.

Generation of single cell suspensions

To generate single cell suspensions, freshly isolated whole organs
including ovary, oviduct and tissue pieces from uterus, cervix, vagina and
spleen were treated by enzymatic digestion. All tissues were initially
incubated separately in 2 ml Eppendorf tubes containing 600 ul of 0,25%
trypsin in HBSS and digested at 37°C with gentle rocking. After 30 minutes,
600uL of a second digestion buffer containing Collagenase I (1.25 mg/mL),
I1 (0.5 mg/mL), IV (0.5 mg/mL), and Hyaluronic acid (0.1 mg/uL) in HBSS
was added for another 2 hours. After quenching the digestion by adding
600pL HBSS with 10% FBS, the cell suspensions were passed through a
40um cell strainer (Greiner Bio One) to remove cell debris and buffer
residue. Cell suspensions were gently centrifuged at 350g for 8 min at 4°C.
Cells were resuspended in PBS containing 0,04% BSA, 1mM EDTA and
propidium iodide (PI) was added to final concentration of 1 pg/ml prior to
fluorescence-activated cell sorting (FACS). Larger cells such as oocytes and
smooth muscle cells were excluded in the cell straining step.

Flow cytometry staining and acquisition

After dissection and digestion, cells were filtered through 40 pm cell
strainers (Falcon), followed by washing and centrifugation for 5 min at 250
g at 4°C. For flow cytometric analysis, cells were resuspended in 20 pl PBS
plus Viability Dye eF506 (eBioscience, conc. 1:500) and incubated for 10
min at RT in the dark. Proceeding with cell staining, 100 ul PBS plus 2%
FCS with corresponding antibodies (see Table 1) was added and cells were
incubated for 30 min at 4°C in the dark. Post staining, cells were washed
again and analyzed using the BD LSR II cytometer according to
manufacturer’s instructions and marker combinations and gating
strategies (Figure S3b).

Table 1: Anti-mouse antibodies / Hematopoietic cells panel

Antigen:Fluoro | Antibody dilution Clone Company
phore

F4/80:PB BV421 (F4/80) - 1:100 MF48028 | Invitrogen
NK1.1:BV785 BV785 (NK1.1) - 1:700 PK136 BioLegend
CD11C:PE-Cy7 | PECY7 (Cd11c)-1:300 N418 BioLegend
CD11b:APC APC (Cd11b) - 1:1000 M1/70 eBioscience
CD45:AF700 AF700 (Cd45) - 1:200 30-F11 Invitrogen
Gr1:APC-eF786 | APCCy7 (Grl) - 1:500 RB6-8C5 | eBioscience

FAC sorting as preparation for single-cell transcriptional analysis was
performed on the FACSAria II from BD Biosciences using an 85um nozzle.
Gating of live cells was achieved by exclusion of PI-high cells. Doublets
were excluded by plotting SSC width versus SSC area. Approximately
70.000 cells were collected in sorting media (containing 0.04% BSA and
1mM EDTA in PBS) in 1.5 ml Eppendorf tubes, chilled on ice, and
immediately processed for single-cell transcriptional analysis.

Generation of single cell transcriptomes

Mouse reproductive tissues and spleen were enzymatically dissociated and
FAC sorted, and the undiluted single-cell suspension at a concentration of
467 cells/ul was loaded per channel of either the ChromiumTM Single Cell
Bor G Chip (10X Genomics® Chromium Single Cell 3’ Reagent Kits v3.0 and
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Chromium Next GEM Single Cell 3’ Reagents Kits v3.1, respectively), aiming
forarecovery of 5,000 cells. Reverse transcription and library construction
were carried out according to the manufacturer’s recommendations.
Libraries were sequenced on Illumina NovaSeq 6000 using a paired-end
run sequencing 26 bp on read 1 and 98 bp on read 2 (Table S1).

Spatial transcriptomics

12-14 weeks old Mus musculus (C57Bl16/]) female mice were sacrificed at
diestrus. Ovaries were dissected and embedded into an optimum cutting
temperature matrix (O.C.T., Tissue Tek) using a bath of pre-cooled (-60-
70°C) isopentane (Sigma) on dry ice. Blocks were cut using cryo-
microtome (CM3050 S, Leica), head temperature set at -10°C. 10 pm thick
tissue slices were placed on Visium Spatial Gene Expression Slides (10X
Genomics) and stained with Hematoxylin and Eosin (H&E) with reduced
time to 5 min for hematoxylin and 30s for blueing agent. Libraries were
prepared by manufacturer’s recommendations, using Dual Index Kit TT Set
A (10X Genomics) for indexing. Samples were sequenced on NovaSeq6000.

Computational quality control, normalization, cell type annotation
and batch correction

Raw sequencing reads were processed using Cell Ranger analysis pipeline
(v 3.0.1). The "cellranger count” command was used to generate filtered
and raw matrices. Reads were aligned against the mouse genome version
mm10 (Ensembl release 93). Filtered gene-barcode count matrices were
further analyzed using the R package Seurat (Hao etal., 2021).

To remove low quality cells, an adaptive filtering threshold approach
was used based on high mitochondrial RNA content, extreme numbers of
counts (count depth), and extreme numbers of genes per barcode. Cells
were filtered based on the median absolute deviation (MAD) from the me-
dianvalue of each metric across all cells. Specifically, we considered a value
as an outlier when differing by more than 3 MADs from the median. The
filtering step was performed using the R package Scater (McCarthy et al.,
2017). Counts were normalized using the ScTransform normalization ap-
proach of Seurat. Cell cycle gene effect was regressed out using the Cell-
CycleScoring function in Seurat. All clusters in all samples showed consist-
ently low doublet scores using doubletCluster and doubletCells of R pack-
age Scran (Lun, 2016).

Each organ was processed independently for cell type annotation. Or-
gan-specific UMAPs were constructed using a subset of features (genes)
exhibiting high cell-to-cell variation which were identified by modeling the
mean-variance relationship. The top 2000 features were used to perform
PCA analysis. To cluster the cells, a K-nearest neighbor (kNN) graph based
on the euclidean distance in PCA space was first constructed using the first
30 PC components as input. Next, the Louvain algorithm was applied to it-
eratively group cells. We identified the cell types in each cluster using a
combination of manual and automated approaches from known marker
genes (Table S2). First, clusters were assigned to known cell populations
using cell type-specific markers obtained through the FindAllMarkers
function. Multiple testing correction was performed using Benjamini-
Hochberg procedure. Second, the R package Garnett (Pliner et al.,, 2019) in
cluster extension mode was used to annotate cells in a semi-automated
manner. Because some clusters remained unclassified by either the manual
or semi-automated approach - or in rare cases were differently classified
by the two approaches - a Support vector Machine with rejection (SVMrej)
was applied as an additional automated classifier. Cluster annotations in
agreement between the manual and automated approach were used as the
training set for the SVMrej. The 1071 library was used to implement the
SVMrej classifier. Classification was performed using a linear kernel with
the cost function set to 10. Rejection rates of 10% and 30% were used to
classify level 1 and level 2 annotations, respectively. Cell clusters of 18
month old and pregnant mice were annotated using an SVMrej classifier
trained on cell clusters of normally cycling young mice.

Cells from multiple organs in the estrus cycle were integrated together
for visualization purposes. Integration and batch correction of samples of
young cycling mice was performed using the Reciprocal PCA together with
“LogNormalize” normalization method from Seurat. For each organ, in or-
der to remove batch effects we chose the sample with the highest number
of cells (regardless of its cycle phase) to anchor pairwise comparisons. In-
tegration of young (diestrus) and old mice followed a similar approach.

Integration of samples of pregnant mice with metestrus samples was
performed separately using Canonical correlation analysis together with
SCT normalization (Seurat). Batch corrected data was used only for UMAP
visualization purposes; all other downstream analyses including differen-
tial expression were performed on uncorrected data. To improve the visu-
alization of gene expression in UMAP plots, we used a kNN-pooling ap-
proach (Frauhammer, Felix and Anders, Simon, 2022). A kNN graph was
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constructed based on euclidean distance in PCA space, and cell counts were
pooled across 50 nearest neighbor cells, thus decreasing technical noise in
scRNA-seq caused by dropout events.

Differential cell abundance analysis

To assess if the proportions of cell populations in individual organs change
along the estrus cycle and in aging, a compositional regression model was
used. Cell population compositions were used as dependent variables, and
estrus cycle phases or age as independent variables. Estrus cycle phases
were compared in a pair-wise manner. Components of the compositions
were amalgamated and expressed as compositions of two components due
to low number of replicates. Prior to model fitting, composition
components were transformed using isometric Log-Ratio Transformation.
The R package Compositions was used to perform the Log-Ratio
transformation and compositional regression. Innate vs adaptive immune
cells ratio was calculated as ratio of number of innate immune cells (N, DC,
M1Mp, M2Mp, Mp and MaC) and number of adaptive immune cells (NKC,
BC, iNKT, MAIT, MTC) in each individual.

Optimal transport

Balanced optimal transport (OT) analysis was performed to assess the
magnitude of transcriptional changes between cell populations of all
organs in different phases of the estrus cycle, as well as old and young
(diestrus) cell populations. For specific subgroups of samples, we
performed simultaneous NMF embeddings; these two subgroups included
all organs of all estrus phases and all organs of young (diestrus) together
with all organs of old mice. NMF embeddings were calculated on the set of
top 2000 most highly-variable genes using the Block Principal Pivoting
method of the PLANC library (Ramakrishnan et al., 2016). Rank 10 of NMF
embeddings, chosen based on decrease in cophenetic coefficient (Brunet
et al,, 2004), was used for OT distance calculation. OT distances were
calculated for all cell populations which contained at least 100 cells in any
of the compared groups. As the balanced optimal transport problem is
constrained with a mass balance condition, the OT distance between two
cell populations was calculated as an average of 100 random samples of
100 cells in a stochastic sampling approach. The OT distance was defined
as a minimum-cost flow solution problem and was solved using Munkres
algorithm (Kimmel et al., 2019).

Differential gene expression (DGE) analysis

DGE analysis was performed using a multi-level generalized negative
binomial regression model with a random intercept. Normalized gene
counts were used as the dependent variable, while estrus cycle phases or
age were used as the independent variable, and sample label as random
effect. The model was fitted gene-wise for each cell subpopulation. The
cycle phases were compared in a pair-wise manner. The model fitting was
performed using the glm.nb function of the Ime4 R package. Only genes
that were expressed across 10 cells with at least 1 count were used in
model fitting. If the model fitting showed a singular fit (indicating
overfitting) the p-value was set to NA. P-values were corrected for multiple
testing using Benjamini-Hochberg procedure. All genes with corrected p-
values smaller than 0.05 were considered differentially expressed.

Overrepresentation analysis (ORA)

A hypergeometric test was used to perform ORA analysis. Gene sets used
in ORA analysis are part of the MsigDB (hitps:/www.gsea-
msigdb.org/gsea/msigdb/) pathway collection (H; C2: Kegg, Reactome;
and C5: GO Biological Process). For the ORA in figure 3, we used MSigDB H
and Reactome, and excluded pathways with the term “Disease” in their
descriptor. Multiple testing correction was performed using the
Benjamini-Hochberg procedure.

Scoring of gene set activity in single-cell RNA-seq data

Scoring of gene set activity was performed using the AUCell R package
(Aibar et al., 2017). AUCell was used to assess if certain gene sets were
enriched within the top 5% expressed genes for each cell. Gene sets used
in the analysis are the same as gene sets used in ORA. For the scoring of the
activity of target genes of each ligand in fibroblasts, we used the NicheNet
ligand-target model to obtain a list of predicted targets for each ligand
(Browaeys et al.,, 2020). AUCell scores were calculated for each cell and
averaged across conditions for each cell population. Average scores across
the cycle were weighted to account for the different phase lengths (the
cycle was roughly estimated to be partitioned 60% diestrus and the
remainder equally divided between proestrus, estrus and metestrus,
(Byersetal, 2012).
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Genes expression association with cycle phase using Mutual-
information (MI) and comparison to human endometrium dataset

Human endometrium dataset was retrieved from NCBI's Gene Expression
Omnibus (accession code GSE111976). Raw count matrices of Fluidigm C1
dataset were normalized using the ScTransform normalization approach.
Cycle phase labels of human samples were assigned based on the original
publication’s metadata (Wang et al., 2020).

Dependence of gene expression and cycle phase label in fibroblasts
and decidual cells was calculated as the MI between these two variables, as
described in (Wang et al., 2020). The same calculation was performed for
the human fibroblasts. Briefly, for each gene, MI was calculated using the
Javaimplementation of ARACNe-AP (Lachmann etal., 2016). The statistical
significance of MI was evaluated using the permutation approach, in which
MI value for each gene was compared to a null distribution obtained by
permuting cycle phase labels 1,000 times. Multiple testing correction was
performed using Benjamini-Hochberg. As the mouse dataset was
substantially bigger than the human dataset, MI and its associated p-value
for the mouse dataset were calculated on 100 random samples of 2000
cells in a stochastic sampling approach. P-values associated with genes in
all mouse random samples were aggregated using Fisher's method (R
package aggregate). Genes associated with p-value smaller than 0.05 were
considered as cycle-associated genes in mouse and human.

We identified the set of conserved transcriptional changes between
human and mouse cycles by identifying homologous cycle-associated
genes that showed the same directionality of regulation in comparison to
adjacent cycle phases in paired mouse-human cycle phases. For instance, a
mouse gene upregulated in proestrus compared to diestrus and the
homologous human gene upregulated in proliferative early compared to
secretory late. Genes that showed opposite directionality of regulation (e.g.
up-regulation in humans, down-regulation in mice) were considered
divergent. Mouse and human cycle phases were paired based on ovulation
timing and uterine cycle events (proliferation vs secretion) (Ajayi and
Akhigbe, 2020; Greaves, 2012). Proestrus was paired with proliferative
early phase, estrus with proliferative late, metestrus with secretory early,
decidualization with secretory mid and diestrus with secretory late. Cells
of menstruation phase in humans could not be paired with normally
cycling mouse cells and were excluded from this analysis. To calculate the
proportion of the conserved genes expected by chance in each cycle phase,
labels of upregulated, downregulated and neutral (not up- or down-
regulated) genes of all homologs in mouse and human for corresponding
cycle phases were permuted 100 times and proportions of the
conserved/divergent genes were calculated per cycle phase. Final value of
conserved genes proportion was calculated as an average of proportion of
conserved downregulated and upregulated genes in all permutations runs.

Cell-to-cell communication analysis

To assess cellular communication from different cell types to fibroblasts,
we used a multiplication of expression between receptors and ligands
(expression product) as a communication score. The list of mouse ligand-
receptor pairs that was used in the analysis was extracted from CellChat
(Jinetal, 2021) and CelltalkDB repositories (Shao etal.,2021). To compare
cellular crosstalk among the different organs, we first focused on the
average expression values of ligands in all cell types and receptors in
fibroblasts, regardless of the source of the ligand. To calculate the
communication score, averaged ligand expression counts in all cells from
all cycle phases were multiplied with averaged receptor counts in
fibroblasts. For multi-subunit receptors, the subunit with the minimum
average expression was used in our calculations as previously proposed
(Efremova et al., 2020).

The statistical significance of the difference of expression product in
all reproductive organs was evaluated using a permutation approach. All
pairwise combinations of log ratios of expression product in all organs for
each ligand-receptor pair were compared to null distribution obtained by
permuting the organ labels 1000 times. A similar approach was used to
evaluate the statistical significance of the difference of expression product
upon aging. For each organ, log ratios of expression product of old and
young fibroblasts in diestrus were compared to null distribution obtained
by permuting the age labels 1000 times. Multiple testing correction was
performed using Benjamini-Hochberg procedure.

For selected ligand-receptor pairs, we then determined which cell type
was the likely source of the ligand. The number of ligand counts that each
cell of respective cell type produced was calculated, thus taking into
consideration the cell abundance and average expression of ligand in each
cell type. We chose to closely analyze the ligand-receptor pairs related to
inflammation and ECM, based on the known role of receptor-ligand
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interactions in shaping their functions (Gurtner et al., 2008; Koliaraki et al.,
2020; Turner et al.,, 2014).

Spatial cell-to-cell communication analysis

To validate the cell-to-cell communication results, we generated spatial
transcriptomics data using Visium (10X Genomics). The raw reads were
processed using spaceranger (10X Genomics, v1.3.1). The data was then
analyzed using Seurat (v4.0.3 in R 4.0.0) (Hao et al,, 2021) and raw counts
were corrected using the SCT method.

For each spot, the neighborhood refers to the combination of the spot
itself and the directly adjacent spots. All spots containing stromal cells
(corrected counts for Collal above 1) and having stromal cells,
macrophages (expression of Cd68), or granulosa cells (corrected counts
for Serpine2 above 3) in their neighborhood were considered.
Communication between spots containing stromal cells and ligand source
cells was considered possible if: 1) the stromal spot expressed any of
Tgfbr3 or Tgfbr1+Tgfbr2, and 2) Tgfbl and the correct cell type marker
were expressed in any of the neighborhood spots.

Single-Cell Regulatory Network Inference and Clustering (SCENIC)
analysis

pySCENIC was used to perform single-cell regulatory network analysis in
fibroblasts (Van de Sande et al, 2020) by using normalized gene
expression values of specific subsets of cells, i.e. fibroblasts of all organs in
all phases of the cycle, fibroblast of all organs in diestrus and aged samples,
and uterine fibroblasts in metestrus and pregnant samples. The gene co-
expression networks were determined using grnboost2, enriched
transcription factor motifs were predicted using ctx function and regulon
activity scores were calculated using AUCell. To assess if regulons are
differentially active across FRT organs or in aging, the activity score for
each regulon was compared to null distributions obtained by permuting
organ- or age-labels 1000 times. Multiple testing correction was performed
using Benjamini-Hochberg procedure.

Selection of the subset of transcription factors related to inflammation
and ECM was based on the overlap and enrichment of transcription factor
target genes and target genes of selected ligands obtained from the
NicheNet database. Additionally, classification of transcription factors as
fibrosis and/or inflammation associated was based on the enrichment
score of transcription factor target genes in inflammation (Hallmark
collection) and ECM organization (Reactome collection) pathways.
Transcription factor target genes were identified in pySCENIC analysis.
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Jaccard index was used to quantify overlap between target genes and
pathway related genes, and a hypergeometric test was used to assess the
enrichment.

Single-cell trajectory inference

Slingshot was used to infer fibroblast trajectories along the estrus cycle
(Street et al, 2018). Linear discriminant analysis (LDA) was used to
perform dimensionality reduction. LDA was performed on cycle-
associated genes determined in MI approach using the mda R package. We
clustered the cells using k-Means, and we fitted the principal curve through
fibroblast clusters using the Slingshot function.

Differential cell heterogeneity analysis

Differential Shannon Entropy (ShE) was used to assess the differences in
transcriptional heterogeneity between young (diestrus) and old cell
populations. Differential ShE was calculated using the EntropyExplorer
package (Wang et al., 2015). Multiple testing correction was performed
using Benjamini-Hochberg procedure.

Linear mixed models of inflammation

To estimate the rate of inflammaging in the different organs, we fitted a
linear mixed model at the cell level including age, organ and the interaction
of age and organ as fixed effects, and individual (mouse) as a varying
intercept random effect.

Data availability

All sequencing data and expression count matrices are deposited in
Arrayexpress under accession number E-MTAB-11491. Imaging raw and
processed data, as well as flow cytometry raw data together with the
MIFlowCyt protocol are available at Biostudies (S-BIAD482, S-BIAD476
and S-BSST864). Dynamics of cellular abundance, gene expression, cell-to-
cell communication and transcription factor regulatory networks in FRT
organs in estrus cycle, decidualization and aging, can be explored through
an interactive tool at https://cancerevolution.dkfz.de/estrus/

Code availability

Code used in this study is available in github repository:
https://github.com/goncalves-lab/estrus_cycle_study.
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