

Activation of an injury-associated transient progenitor state in the epicardium is required for zebrafish heart regeneration

Yu Xia^{1,2,#}, Sierra Duca^{1,2,#}, Björn Perder^{1,2}, Friederike Dündar^{3,4,5}, Paul Zumbo^{3,5},
Miaoyan Qiu^{1,2}, Jun Yao^{1,2}, Yingxi Cao^{1,2}, Michael R. Harrison^{1,2}, Lior Zangi^{6,7,8}, Doron
Betel^{3,5}, Jingli Cao^{1,2,*}

¹Cardiovascular Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10021, USA

²Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10021, USA

³Institute for Computational Biomedicine, Department of Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10021, USA

⁴Department of Physiology and Biophysics, Weill Cornell Medical College, 1300 York Ave, New York, NY 10021, USA

⁵Applied Bioinformatics Core, Weill Cornell Medical College, 1300 York Ave, New York, NY 10021, USA

⁶Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;

⁷Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA

⁸Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA

*Lead Contact: jic4001@med.cornell.edu

#These authors contributed equally to this work.

1 **ABSTRACT**

2 The epicardium, a mesothelial cell tissue that encompasses vertebrate hearts, supports
3 heart regeneration after injury through paracrine effects and as a source of multipotent
4 progenitors. However, the progenitor state in the adult epicardium has yet to be defined.
5 Through single-cell RNA-sequencing of isolated epicardial cells from uninjured and
6 regenerating adult zebrafish hearts, we defined the epithelial and mesenchymal subsets
7 of the epicardium. We further identified a transiently activated epicardial progenitor cell
8 (aEPC) subpopulation marked by *ptx3a* and *col12a1b* expression. Upon cardiac injury,
9 aEPCs emerge from the epithelial epicardium, migrate to enclose the wound, undergo
10 epithelial-mesenchymal transition (EMT), and differentiate into mural cells and
11 *pdgfra⁺hapln1a⁺* mesenchymal epicardial cells. These EMT and differentiation processes
12 are regulated by the Tgf β pathway. Conditional ablation of aEPCs blocked heart
13 regeneration through reduced *Nrg1* expression and mesenchymal cell number. Our
14 findings identify a transient progenitor population of the adult epicardium that is
15 indispensable for heart regeneration and highlight it as a potential target for enhancing
16 cardiac repair.

17

18 **Key words:** epicardium; epicardial progenitor; heart regeneration; zebrafish; scRNAseq;
19 EMT; modRNA

20

21 **INTRODUCTION**

22 Adult zebrafish possess a remarkable capacity for scarless heart regeneration after injury,
23 which is achieved through the proliferation of existing cardiomyocytes (CMs)^{1, 2, 3, 4}. CM
24 proliferation is aided by the cellular and molecular environment provided by non-muscle
25 tissues, such as the epicardium, a mesothelial layer of vertebrate hearts^{5, 6, 7}. The
26 epicardium is a heterogeneous population containing stem cells or progenitors that
27 convert into other supporting cell types, such as mural cells (i.e., smooth muscle cells and
28 pericytes) and fibroblasts, during development and regeneration^{5, 8, 9, 10, 11}. Following
29 cardiac injury in adult zebrafish, epicardial cells are activated to turn on embryonic genes,
30 proliferate, and migrate to repopulate the wound site. In addition to supplying supporting
31 cell types, epicardial cells provide paracrine signals and extracellular matrix (ECM)
32 components for CM division and coronary angiogenesis, in addition to supplying the
33 supporting cell types^{5, 6, 7}. Recent studies have highlighted the vital roles of the epicardium
34 in zebrafish heart regeneration^{12, 13, 14}, and the mobilization of epicardial cells has been
35 reported to improve mammalian heart repair^{15, 16}. However, the epicardial progenitor state
36 during heart regeneration remains largely uncharacterized due to the lack of genetic tools
37 to label and trace epicardial subsets.

38 For unbiased assessment of the epicardial progenitor state in regenerating hearts,
39 we performed single-cell RNA-sequencing (scRNA-seq) of epicardial cells isolated from
40 hearts undergoing regeneration. Using scRNA-seq analysis and genetic approaches, we
41 defined the epithelial and mesenchymal subpopulations and the mural lineage of the
42 epicardium. We also identified a transiently activated epicardial progenitor cell (aEPC)
43 population and defined their molecular features. These aEPCs are indispensable for heart
44 regeneration as they differentiate into mural cells and mesenchymal epicardial cells and
45 supply pro-regenerative factors during regeneration. Therefore, our study reveals the
46 active driver of epicardium-mediated heart regeneration and provides the basis for
47 harnessing the epicardium for heart repair.

48

49 **RESULTS**

50 **Cellular heterogeneity and EMT of epicardial cells in the adult zebrafish heart**

51 In zebrafish, *tcf21* is a widely used epicardial marker that labels both quiescent and active
52 epicardial cells, while other epicardial markers, such as *tbx18* and *wt1*, only label part of
53 the epicardium¹⁷. We first examined the *tcf21*⁺ epicardial cell distribution in uninjured
54 hearts, using a nuclear EGFP reporter (nucEGFP) driven by the regulatory sequence of
55 *tcf21*¹⁷. As shown in Figures 1A and 1B, *tcf21*⁺ nuclei reside in multiple layers of the
56 uninjured ventricular wall. While the outermost layer expresses *aldh1a2* (it is expressed
57 in the endocardium as well; see also reference¹⁷), the inner layers of *tcf21*⁺ nuclei enter
58 the compact muscle and are *aldh1a2*-negative (Figures 1B and 1C). Thus, the *tcf21*
59 reporters label 2 distinct epicardial subsets in the uninjured adult zebrafish heart: the
60 epithelial epicardial cells (*aldh1a2*⁺ outermost layer) and the mesenchymal epicardial
61 cells that enter the compact muscle.

62 Previous studies have suggested that zebrafish epicardial cells undergo epithelial-
63 mesenchymal transition (EMT) during heart regeneration^{18, 19}. However, EMT cannot be
64 definitively identified without a transgenic tool specific to the epithelial layer of the
65 epicardium. To address this, we developed an approach of pericardial sac injection of
66 modified RNA (modRNAs)^{20, 21} for transient gene expression in the epicardium. We also
67 created a bacterial artificial chromosome (BAC) transgenic line in which the *tcf21*
68 regulatory sequences drive a Cre-releasable floxed BFP-stop cassette followed by an
69 mCherry-NTR cassette (*tcf21:loxP-BFP-Stop-loxP-mCherry-NTR* or *tcf21:Switch* for
70 short, Figure 1D). By injecting Cre modRNAs into fish carrying the *tcf21:Switch* line, we
71 labeled the epithelial layer of the epicardium with mCherry (Figures 1D and 1E, uninjured).
72 We did not observe a single labeled mesenchymal cell in the apex half of the uninjured
73 ventricle 10 days after injection (Figure 1F, Ctrl, 13 hearts analyzed). Although we could
74 not rule out labels of deeper *tcf21*⁺ cells upon injection, combined use of the *tcf21:Switch*
75 line with the pericardiac cavity injection of Cre modRNA injection specifically limits our
76 labeling to the epithelial epicardium at least by day 10 after injection in the adults. To
77 monitor EMT of epicardial cells, Cre modRNAs were injected 3 days before the
78 amputation injury, and hearts were collected at 7 dpa to assess mCherry expression. We
79 observed 26.8% on average of mCherry⁺ cells entering the mesenchymal layer (Figures
80 1E and 1F, 7 dpa), indicating an EMT process in which the epithelial epicardial cells give
81 rise to the mesenchymal epicardial cells during heart regeneration.

82

83 **scRNA-seq reveals distinct subsets of the ventricular epicardial lineage during**
84 **heart regeneration**

85 To systemically dissect epicardial subsets, we applied scRNA-seq analysis of *tcf21*⁺ cells
86 during heart regeneration. Following cardiac injury in adult zebrafish, the epicardial cells
87 turn on embryonic genes, a process called “activation”⁵. The epicardium is activated
88 organ-wide at 3 dpa before restricting activation to the injury site starting at 7 dpa¹⁸. We
89 injured *tcf21:nucEGFP* fish by partial ventricular amputation and collected ventricles at 3
90 or 7 dpa together with uninjured clutchmates (Ctrl). Single live nucEGFP⁺ cells were
91 isolated by FACS and subjected to library preparation and scRNA-seq on the 10x
92 Genomics Chromium platform (Figures 2A and S1). Three samples were collected that
93 comprised of 4,970, 3,743, and 6,428 cells passing the quality control for Ctrl, 3 dpa, and
94 7 dpa, respectively (Figure 2B). Unbiased clustering with all samples identified 12 clusters
95 (Figure 2C and Table S1). Eight clusters are grouped as the core epicardial population
96 (Figure 2C, clusters 0-5, 7, and 9). Three clusters, including 8, 10, and 11, appear to
97 represent contaminating non-epicardial cells (or doublets). Cells in cluster 8 express
98 protein tyrosine phosphatase receptor type C (*ptprc*), *cd74a*, and macrophage expressed
99 1 (*mpeg1*), therefore representing immune cells^{22, 23, 24}. Cluster 10 exhibits high
100 expression levels of myosin light chain 7 (*myl7*) and troponin T type 2a (*Tnnt2a*), markers
101 of CMs, indicating cardiac muscle identity^{25, 26}. Cluster 11 appears to comprise
102 endocardial and endothelial cells enriched for Fli-1 proto-oncogene ETS transcription
103 factor a (*fli1a*) and kinase insert domain receptor like (*kdr*) expression (Figures 2C, 2D,
104 and S2A-B)^{27, 28}.

105 Besides these contaminating clusters, cluster 6 was identified as mural cells
106 expressing platelet-derived growth factor receptor beta *pdgfrb* (Figure 2C)^{29, 30}. Further
107 analysis of the mural cells demonstrated enriched transcripts for known pericyte and
108 vascular smooth muscle cell markers, including tropomyosin 1 (*tpm1*), notch receptor 3
109 (*notch3*), regulator of G protein signaling 5a (*rgs5a*), myosin heavy chain 11a (*myh11a*),
110 actin alpha 2 smooth muscle (*acta2*), transgelin (*tagln*), ATP-binding cassette sub-family
111 C member 9 (*abcc9*), and chemokine C-X-C motif ligand 12b (*cxcl12b*), as well as two
112 recently identified mural cell markers NDUFA4 mitochondrial complex associated like 2a

113 (*ndufa4l2a*) and potassium voltage-gated channel Isk-related family member 4 (*kcne4*)³¹,
114 ³² (Figure S2C). While *ndufa4l2a* is restricted to a subset of mural cells, *kcne4* is highly
115 expressed in mural cells and also present in the core epicardial clusters at lower levels.
116 These gene expression profiles suggest diverse mural cell types (e.g., smooth muscle
117 cells and pericytes) in our FACS isolated samples.

118 We next examined the temporal dynamics of the core epicardial clusters across all
119 samples. Cluster 5 emerges at 3 dpa and is largely reduced by 7 dpa, while cluster 9 is
120 mainly present at 7 dpa (Figures 2E-G). Cluster 2 expanded during regeneration, while
121 the percentages of the remaining clusters (other than 2, 5, and 9) decreased at 3 dpa,
122 but rebounded by 7 dpa (Figures 2E-G). Our gene expression analysis demonstrates that
123 *tcf21* is an epicardial marker with broad expression across all core epicardial clusters and
124 different states of injury (Figures 2H and S2E). Of note, we found a relatively lower *tcf21*
125 expression level in the 3 dpa-specific cluster 5 than in other clusters (Figures 2H, S2D,
126 and S2E). This seems to match our recent discovery that the Tcf21 binding motifs are
127 enriched in chromatin regions with decreased accessibility in epicardial cells at 3 dpa,
128 which may suggest a transition in cell state³³. In contrast to the broad expression of *tcf21*,
129 other known epicardial markers such as *tbx18*, *wt1b*, *sema3d*, and *aldh1a2* are only
130 enriched in specific subpopulations^{17, 34}. For instance, *wt1b* expression is enriched in
131 Cluster 1, whereas *tbx18* is relatively depleted in that cluster compared to others (Figures
132 2H and S2D). *sema3d* is mainly expressed in cluster 2, while *aldh1a2* is expressed in
133 both clusters 2 and 5. In addition, vascular endothelial growth factor Aa (*vegfaa*), a pro-
134 angiogenic factor that was reported to be expressed by the epicardium and endocardium
135 upon heart injury³⁵, is enriched in the mural cells and core epicardial clusters 0 and 1
136 (Figures 2H and S2A). Collagen type I alpha 2 (*col1a2*), a marker of the epicardium and
137 cardiac fibroblasts³⁶, is highly expressed in all clusters, including the mural cells (Figure
138 2H). In all, these results suggest a dynamic cellular heterogeneity of the epicardium and
139 its derivatives during regeneration, and that clusters 5 (predominantly 3 dpa cells) and 9
140 (7 dpa) are likely the injury-induced pro-regenerative subsets.

141

142 **The epithelial and mesenchymal epicardium**

143 To explore the heterogeneity within the core epicardial populations, we identified marker
144 genes that distinguish these clusters. Clusters 0 and 1 have enriched expression of the
145 pro-angiogenic factor *vegfaa* (Figures 2H and S2A)³⁵, and clusterin (*clu*) is highly
146 expressed in clusters 3, 7, and 9 (Figure 2D). *sema3d*, *aldh1a2*, and podocalyxin-like
147 (*podxl*) define cluster 2 (Figures 2H and 3A). *Podxl* was reported to localize to the apical
148 plasma membrane of epithelial or endothelial cells^{37, 38}, and thus is a sign of epithelial
149 identity in the epicardium. The hyaluronic acid-organizing factors hyaluronan and
150 proteoglycan link protein 1a (*hapln1a*), the cardiac mesenchymal stem cell and cardiac
151 fibroblast marker platelet-derived growth factor receptor alpha (*pdgfra*), as well as the
152 myocardial mitogen neuregulin 1 (*nrg1*) mainly label clusters other than 2 and 5 (Figures
153 2H and 3A)^{12, 39, 40}. Interestingly, *podxl* and *aldh1a2* label clusters (clusters 2 and 5)
154 distinct from the *hapln1a*⁺*pdgfra*⁺ population (0, 1, 3, 4, 7, and 9; Figures 3A and B). HCR
155 staining results indicate that *podxl* is expressed in the epithelial layer of the epicardium
156 (Figure 3C). By contrast, *hapln1a* is expressed by the inner layer of *tcf21*⁺ epicardial cells,
157 which represent the mesenchymal layer (Figure 3D). In agreement with this finding, a
158 recent study showed that *hapln1a* is expressed in an epicardial subset residing in the
159 compact muscle that mediates hyaluronic acid (HA) secretion and myocardial
160 regeneration¹². Thus, the *hapln1a*⁺*pdgfra*⁺ cells (clusters 0, 1, 3, 4, 7, and 9) are
161 mesenchymal epicardial cells. Moreover, we noticed that a subset of the 3 dpa-specific
162 cluster 5 expresses *podxl* (Figure 3A), while the remainder of cluster 5 cells instead
163 express relatively high levels of *snai1a* (Figure 3E), likely representing cells undergoing
164 EMT. A re-clustering and focused analysis on only the core epicardial clusters
165 demonstrated the same findings (Figure S3 and Table S2). These analyses suggest that
166 cluster 5 is a transitional population, and that a subset of these cells is likely undergoing
167 an EMT process.

168

169 ***ptx3a* and *col12a1b* label a transient, pro-regenerative epicardial subtype**

170 We next focused on the markers of the 3 dpa-specific cluster 5 to characterize its identity.
171 This cluster is enriched with pro-regenerative ECM and related genes including pentraxin
172 3 long a (*ptx3a*), collagen type XII alpha 1b (*col12a1b*), myristoylated alanine-rich protein
173 kinase C substrate b (*marcksb*), and fibronectin 1a (*fn1a*) (Figures 3E and S4)^{41, 42, 43, 44},

174 45, 46, 47. In addition to the injury-induced epicardial expression of *fn1a* that is required for
175 heart regeneration⁴¹, collagen XII (Col XII) deposition was reported to be boosted in both
176 the epicardium and wounded tissues after cryoinjury in zebrafish⁴². However, the cellular
177 sources of Fn and Col XII within the epicardial population were unclear. Col XII is also an
178 axon growth-promoting ECM that helps zebrafish spinal cord regeneration^{43, 44}. Ptx3 is a
179 secreted humoral innate immunity factor that orchestrates inflammation and tissue
180 repair⁴⁵. Besides the interactions with pathogens and complement molecules, Ptx3 also
181 interacts with ECM components, such as fibrin and plasminogen, to promote a timely
182 removal of fibrotic ECM for efficient tissue repair^{48, 49}. Additionally, Ptx3 was reported to
183 have a cardioprotective function after acute myocardial infarction⁵⁰. MARCKS is a
184 ubiquitous substrate for protein kinase C and regulates the secretion of different
185 substances. It has been shown to be highly upregulated during optic nerve regeneration
186 in zebrafish, lens regeneration in newts, and cardiac tissue regeneration following
187 infarction in mice^{46, 47, 51}. Other cluster 5 enriched top markers include high mobility group
188 box 2b (*hmgb2b*), ATP synthase membrane subunit c locus 1 (*atp5mc1*), serpin peptidase
189 inhibitor clade H member 1a (*serpinh1a*), proteasome 20S subunit beta 1 (*psmb1*), and
190 heat shock protein 90 beta member 1 (*hsp90b1*) (Figure S5). In addition, almost all
191 proliferating cells (*top2a⁺*, a G2/M phase marker) are within the 3 dpa-specific cluster 5
192 (Figure 3E), suggesting that cluster 5 is likely the primary cellular driver to restore the
193 epicardial population after amputation injury. For an overview of the biological functions
194 of marker genes for each cluster, we performed Gene Ontology (GO) enrichment analysis
195 with specifically enriched transcripts in each core epicardial cluster (Figure S3E and Table
196 S3). Notable enriched GO terms in the 3 dpa-specific subset include ECM organization,
197 regeneration, metabolic processes, and translation. These results suggest that the 3 dpa-
198 specific cluster is a pro-regenerative subset that mediates ECM remodeling, immune
199 responses, and epicardial cell repopulation.

200 We next characterized marker gene expression for the 3 dpa-specific cluster
201 through HCR staining. *ptx3a* is undetectable in the epicardium in uninjured hearts (Figure
202 4A). Upon amputation injury, *ptx3a* is initially expressed in the *tcf21⁺* epithelial layer of the
203 entire ventricular epicardium at 1 dpa (Figure 4B). By 3 dpa, the epicardial *ptx3a*
204 transcripts are mostly restricted to the injury site in both the epithelial and mesenchymal

205 layers of the epicardium, labeling the leading front of the regenerating *tcf21*⁺ cells in the
206 wound region (Figures 4C and S4). Interestingly, *tcf21:nucEGFP* expression is reduced
207 in these *tcf21*⁺*ptx3a*⁺ leader cells (Figure 4C), which recapitulates the scRNA-seq result
208 that the 3 dpa-specific cells have relatively lower *tcf21* expression compared to cells of
209 the other core clusters (Figure 2H). This suggests changes in cell state including cell
210 proliferation. At 7 dpa, the injury site is repopulated with predominantly *tcf21*⁺ cells, and
211 *tcf21:nucEGFP* expression is comparable to the flanking regions. However, only the cells
212 in the most newly regenerated region of the apex are *ptx3a*⁺ (Figure 4D), further
213 suggesting that *ptx3a* marks the leading front of the regenerating epicardium. The
214 expression levels of *ptx3a* peak at 3 dpa, decrease at 7 dpa, and are minimal by 14 dpa
215 (Figure 4E). The results of *col12a1b* HCR staining demonstrated an expression pattern
216 similar to *ptx3a*, as suggested by our scRNA-seq analysis (Figures S4 and S6). These
217 results indicate that the 3 dpa-specific cluster labeled by *ptx3a* and *col12a1b* represents
218 a transient and pro-regenerative epicardial cell population.

219 To aid subset labeling and tracing, we generated knock-in alleles using the
220 Crispr/Cas9 technique. A mScarlet-P2A-NTR-polyA cassette was inserted right after the
221 start codon of the *ptx3a* gene using a double-stranded HDR template that has 463 bp and
222 372 bp homology arms flanking the cassette. A seamless insertion allele *ptx3a*^{mScarlet-P2A-}
223 *NTR* (*ptx3a*^{RNTR} for short) was recovered through genotyping and sequencing (Figure 4F).
224 No noticeable defect in heart development was observed in fish carrying the
225 heterozygous knock-in allele (data not shown). mScarlet signals in *ptx3a*^{RNTR} hearts
226 emerge in *tcf21*⁺ cells from 1 dpa, peak at 3 dpa in the regenerating epicardial cells
227 flanking the injury site, decrease at 7 dpa, and are barely detectable by 14 dpa (Figures
228 4G and S7), recapitulating the endogenous *ptx3a* expression pattern. Of note, the lower
229 mScarlet signals at 1 and 2 dpa is only visible after an anti-DsRed antibody staining. A
230 *col12a1b*^{EGFP} allele was also generated using the same strategy to visualize the
231 endogenous *col12a1b* expression (Figures 4H, 4I, and S8). We demonstrate that both
232 *ptx3a*^{RNTR} and *col12a1b*^{EGFP} drive the same expression pattern as the genes *ptx3a* and
233 *col12a1b*: labeling the 3 dpa-specific cluster after heart injury with no apparent epicardial
234 expression in the uninjured adult hearts. Thus, we can define the transient pro-
235 regenerative epicardial subtype labelled by expression of *ptx3a* or *col12a1b*.

236

237 **The *ptx3a*⁺*col12a1b*⁺ subset contains activated epicardial progenitor cells (aEPCs)**
238 **that differentiate into mural cells**

239 To infer the origin and fates of the *ptx3a*⁺*col12a1b*⁺ subset, we applied the Monocle3
240 trajectory reconstruction algorithm to all clusters⁵². We found that the 3 dpa-specific
241 subset sits on a branching point leading to the epithelial cluster 2 (branch a), part of the
242 mural population (cluster 6, branch b), and the mesenchymal subsets (branch c, Figures
243 5A and 5B). This suggests that the 3 dpa-specific cluster is a progenitor state with the
244 potential to give rise to different types of cells, which we thus named the activated
245 epicardial progenitor cell (aEPC) population. To define the origin of these aEPCs,
246 zebrafish carrying the *tcf21:Switch;tcf21:CreER*^{t2}*;col12a1b*^{EGFP} reporters were treated
247 with 4-Hydroxytamoxifen (4-HT) at both the embryonic (1 to 5 days post fertilization (dpf))
248 and adult stages (from 6 to 4 days before the heart injury, Figure 5C). Hearts were
249 collected at 3 dpa to assess colocalization of the mCherry and GFP signals. As shown in
250 Figure 5D, all EGFP⁺ cells around the wound are mCherry⁺, suggesting that these
251 *col12a1b*⁺ aEPCs are derived from the spared epicardial cells upon injury, particularly
252 from the epithelial layer of *tcf21*⁺ cells (i.e., cluster 2, *podxl*⁺).

253 Interestingly, we noticed a standalone population of mural cells (branch “d”) in
254 addition to the aEPC-derived branch “b” (Figure 5B). A recent study found that *pdgfrb*⁺
255 cardiac mural cells are originated from the epicardium during heart development²⁹.
256 However, whether epicardial cells give rise to *pdgfrb*⁺ cells during heart regeneration is
257 still unclear. Gene expression analysis indicates that the branch “b” mural cells express
258 *fn1a*, while the branch “d” cells are mostly negative (Figure 5E). Because *fn1a* expression
259 is restricted to the injury site after 1 dpa⁴¹, we hypothesized that the branch “b” (*fn1a*⁺)
260 mural cells in the wound are derived from aEPCs. We next crossed the *tcf21:H2A-*
261 *mCherry* (or *tcf21:H2R* for short) line with a *pdgfrb:EGFP* reporter²⁹. Upon heart injury,
262 we observed *pdgfrb:EGFP*⁺*tcf21:H2R*⁺ cells in the wound at 7 dpa (Figure 5F), further
263 suggesting an epicardial origin of these mural cells in the wound. To confirm the
264 differentiation capacity of aEPCs to mural cells, we generated a *ptx3a:CreER*^{t2} BAC line
265 and crossed it with the *ubi:loxP-EGFP-loxP-mCherry* (*ubi:Switch*) line⁵³. Adult zebrafish
266 carrying the *ubi:Switch;ptx3a:CreER*^{t2} reporters were treated with 4-HT from 2 to 5 dpa,

267 and hearts were collected at 14 dpa for whole-mount HCR staining of *pdgfrb* (Figure 5G).
268 We observed mCherry⁺*pdgfrb*⁺ cells in the injury site, confirming an aEPC-to-mural
269 differentiation (Figure 5H). These results support the scRNA-seq-inferred notion that the
270 3 dpa-specific cluster entails activated epicardial progenitor cells that can give rise to
271 mural cells in the regenerated hearts.

272

273 **aEPCs give rise to both the epithelial and mesenchymal epicardium**

274 To further characterize the additional aEPC differentiation potential for the mesenchymal
275 epicardium (branch “c” in Figure 5B), we focused on cells of the core clusters for which
276 we observed dynamic gene expression patterns along the pseudotime branches “a” and
277 “c” (Figures S3G). The epithelial epicardium initially expresses *fn1a*, *ptx3a*, and *col12a1b*
278 to become aEPCs, followed by a transition to *hapln1a*-expressing mesenchymal cells. To
279 confirm these gene expression dynamics, we performed HCR staining of *hapln1a* and
280 *ptx3a*. As shown in Figure 6A, cells expressing *hapln1a* in the mesenchymal epicardium
281 lag behind the *ptx3a*⁺ leader cells that repopulate the wound at 3 dpa. At 7 dpa, *hapln1a*
282 expression is enriched in the regenerated epicardial cells that flank the *ptx3a*⁺ cells in the
283 wound (Figure 6B). By 14 dpa, the regenerated *tcf21*⁺ cells in the wound are *hapln1a*⁺ but
284 *ptx3a*⁻. These observations support the notion that aEPCs are the first responders in
285 regenerating the epicardium, and that *hapln1a* likely marks the mature mesenchymal
286 epicardium. To confirm the differentiation of aEPCs to *hapln1a*⁺ cells and the final fate of
287 aEPCs upon completion of regeneration, adult zebrafish carrying the
288 *ubi:Switch;ptx3a:CreER*² reporters were treated with 4-HT from 2 to 5 dpa, and hearts
289 were collected at 30 dpa for whole-mount HCR staining of *hapln1a* and *podxl* (Figure 6D).
290 We observed prominent colocalization of mCherry with *hapln1a* or *podxl* expression at 30
291 dpa (Figures 6E-G). The mCherry⁺ cells reside in both the epithelial (Figures 6E-G,
292 arrowheads) and mesenchymal layer (Figures 6E-G, arrows) of the regenerated
293 epicardium, indicating a final fate of aEPCs to both epicardial layers (Figure 6H). In
294 conclusion, our cell tracing experiments demonstrate that aEPCs are derived from the
295 epithelial epicardium upon injury and serve as the cellular source to regenerate all three
296 epicardium-derived subsets, including mural cells and epithelial and mesenchymal
297 epicardial cells.

298

299 **aEPCs are indispensable for heart regeneration**

300 To test the requirement of aEPCs for heart regeneration, we used the *ptx3a^{RNTR}* line to
301 ablate aEPCs. Since the aEPCs emerge at 1 dpa and their number peaks at 3 dpa, we
302 applied amputation injury and then bathed fish in 5 mM metronidazole for 3 successive
303 days from 3 to 5 dpa with fish water being changed daily¹⁴. Hearts were collected at 7
304 dpa for analyses (Figure 7A). Blood clots and large pieces of extra tissues were observed
305 in the aEPC ablated hearts (13 of 14 hearts analyzed), while there is only a minor
306 noticeable wound in the vehicle-treated NTR-positive group (12 of 18 hearts analyzed)
307 and the Mtz-treated NTR-negative group (11 of 16 hearts analyzed, Figure 7B).
308 Remarkably, *tcf21⁺* cells failed to repopulate the wound region after aEPC ablation,
309 indicating impaired wound closure (Figures 7C and 7D). CM proliferation, a hallmark of
310 heart regeneration, is largely suppressed after aEPC ablation (~54% reduction compared
311 to both control groups; Figures 7E and 7F). By 30 dpa, Acid Fushin Orange G (AFOG)
312 staining results indicate resolved fibrin and collagen deposition in the wound of vehicle-
313 treated and Mtz-treated NTR-negative hearts. In contrast, prominent scar tissue is
314 observed in 10 of 13 aEPC-ablated hearts, indicating failed regeneration (Figures 7G and
315 H). These results suggest that aEPCs are indispensable for successful heart
316 regeneration.

317

318 **aEPCs are the primary source of pro-regenerative epicardial progenies and**
319 **paracrine factors for regeneration**

320 Recent single-cell analyses of epicardium and epicardial-derived cells have identified pro-
321 regenerative subpopulations in the adult heart. To assess how aEPCs relate to these
322 subpopulations, we re-analyzed the published scRNA-seq datasets and the defined pro-
323 regenerative genes. Kapuria et al. performed scRNA-seq of FACS-isolated *pdgfrb⁺* mural
324 cells from injured adult hearts and found that epicardium-derived *pdgfrb⁺* mural cells are
325 essential for coronary development and heart regeneration (Figures S9A and S9B)²⁹. We
326 demonstrated in our current study that at least part of these *pdgfrb⁺* mural cells in the
327 injury site are derived from aEPCs in adult hearts (Figure 5). Sun et al. recently profiled
328 single *tcf21⁺* cells isolated from adult hearts upon CM ablation¹². They found that an

329 *hapln1a*⁺ subset providing hyaluronic acid (HA) is required for heart regeneration and
330 compact muscle development. We processed their dataset and checked the expression
331 of aEPC markers. As shown in Figures S9C and S9D, *ptx3a* and *col12a1b* are expressed
332 in the injured 7-day sample but are merely detectable in the uninjured one. *Ptx3a* is
333 primarily expressed in their cluster 2, which was suggested by Sun et al. to give rise to
334 the adjacent clusters, including the *hapln1a*-enriched clusters¹². This analysis and our
335 results indicate the progenitor property of *ptx3a*⁺ epicardial cells in different heart injury
336 models, and that the pro-regenerative *hapln1a*⁺ epicardial cells are progenies of *ptx3a*⁺
337 aEPCs. In addition, we previously reported a transcriptomic profile of 31 isolated *tcf21*⁺
338 cells from uninjured adult hearts⁵⁴. We found that *caveolin-1* (*cav1*), a pan-epicardial
339 marker expressed in all 3 clusters, is required for heart regeneration. In our current
340 dataset, *cav1* expression is broadly observed across clusters, although it is relatively
341 higher in the epithelial and aEPC subpopulations (Figure S4). Similarly, De Bakkers et al.
342 found that deletion of another epicardial gene paired related homeobox 1b (*prrx1b*),
343 blocked heart regeneration with increased fibrosis¹³. In agreement with De Bakkers et
344 al.'s result, we found that *prrx1a* is expressed in both the outermost and inner layers of
345 the epicardium in our dataset, while *prrx1b* expression is much lower and only detected
346 in a few cells (Figure S4). Our re-analyses indicate that *ptx3a*⁺ cells are slightly reduced
347 in the *prrx1b* mutant (Figures S9E-G). Thus, the pro-regenerative *cav1*⁺ or *prrx1*⁺
348 epicardial cells are broader populations that include the aEPCs and their progenies in the
349 regenerating heart. These analyses define aEPCs as the primary cellular source of
350 essential epicardial cell progenies for heart regeneration in zebrafish.

351 We have shown that aEPCs express published pro-regenerative factors such as
352 *aldh1a2*, *fn1*, *fstl1*, *tmsb4x*, and *col12a1*^{15, 33, 41, 42, 55, 56} (Figure S4). Expression of these
353 factors is likely reduced upon aEPC ablation, which may contribute to regeneration
354 defects. To further assess how aEPCs support myocardium regeneration, we checked
355 the epicardium-derived mitogenic factor *nrg1*⁴⁰. scRNA-seq data shows that *nrg1*
356 expression is enriched in the mesenchymal epicardial cells (Figure 3A). We found that
357 aEPC ablation significantly reduced *nrg1* expressing cells in the wound at 7 dpa (41%
358 reduction compared to vehicle treatment and 43% reduction compared to the Mtz-treated
359 NTR-negative group: Figures 8A and 8B). In addition, Sun et al. demonstrated that the

360 *hapln1a*⁺ epicardial cells mediate HA deposition for myocardial regeneration¹². As
361 expected, aEPC ablation significantly reduced the number of *hapln1a*⁺ mesenchymal
362 epicardial cells in the wound by ~42% compared to the control groups at 7 dpa (Figures
363 8C and 8D). Thus, reduced Nrg1 signals and HA deposition in the aEPC-depleted heart
364 likely contribute to reduced CM proliferation and observed regeneration defects. In
365 summary, our results suggest that aEPCs are the primary cellular source of the essential
366 epicardial cell progenies and paracrine factors required for successful heart regeneration.
367 Nrg1, HA, and *hapln1a*⁺ cells are among the downstream effectors of aEPC activation in
368 supporting heart regeneration.

369

370 **Tgf β signaling regulates aEPC EMT and differentiation**

371 We next asked how epicardial EMT regulates heart regeneration. The Tgf β pathway is
372 known as a regulator of EMT and has been reported to play important roles in zebrafish
373 heart regeneration in epicardial cells after heart injury⁵⁷. However, the underlying
374 mechanism is not fully understood. Our scRNA-seq data indicate an injury-induced
375 upregulation of *tgfb1a* in part of the aEPCs, which matches the expression pattern of
376 *snai1a* at 3 dpa (Figure 9A). HCR staining showed co-expression of *tgfb1a* and *snail1a*
377 in *col12a1b*⁺ aEPCs in the wound at 3 dpa (Figure 9B). To further test the function of Tgf β
378 in aEPC EMT, we treated fish with SB431542 (a Tgf β pathway inhibitor) after amputation
379 injury and assessed heart regeneration at 7 dpa (Figure 9C)⁴². This treatment led to large
380 blood clots in all hearts (7 of 7 hearts), while DMSO-treated hearts are largely normal with
381 a minor noticeable wound (5 of 6 hearts; Figure 9D). We observed 55% and 53%
382 reductions of *tcf21*⁺ cells and *ptx3a*⁺ cells, respectively, in the wound after SB431542
383 treatment. The thickness of the epicardial cell cap that covers the wound is also reduced
384 by 71% on average (Figures 9E-H). Further HCR staining demonstrated a 68% reduction
385 of *hapln1a*⁺ mesenchymal epicardial cells entering the wound (Figures 9I and 9J),
386 suggesting defects of epicardial differentiation and EMT. Thus, Tgf β inhibition largely
387 mimicked the aEPC depletion phenotypes. These results suggest that Tgf β regulates
388 EMT and mesenchymal cell differentiation of aEPCs, which are essential processes for
389 heart regeneration.

390

391 **Comparison with mouse epicardial cells upon myocardial infarction**

392 To assess the similarities and differences between zebrafish and mouse epicardium, we
393 analyzed a published scRNA-seq dataset of adult mouse epicardial cells (Figure S10). In
394 the injured adult mouse heart, epicardial cells form a multi-cell layer in the wound⁵⁸. Hesse
395 et al. named these cells as epicardial stromal cells (EpiSC) and performed scRNA-seq of
396 FACS-isolated EpiSC 5 days after myocardial infarction (MI)¹⁰. The dataset comprises 11
397 clusters that are separated into 3 groups: I, II, and III (Figure S10A). Cells in group I
398 (expressing *Wt1*) are located in the outermost layer of the epicardium. Expression of
399 group III markers are present throughout the activated epicardium but mostly in the inner
400 layers of the epicardium. Group II has both epithelial clusters (expressing *Wt1*) and inner
401 layer clusters and is enriched with ECM-related pathways¹⁰. We examined the expression
402 of zebrafish cluster markers in the mouse dataset. As shown in Figures S10B-F, the
403 homologs of zebrafish epithelial epicardium markers *Podxl*, *Sema3d*, and *Aldh1a2* are
404 enriched in mouse EpiSC group I. The homologs of zebrafish aEPC makers *Ptx3*,
405 *Col12a1*, *Marcks*, *Lox*, *Hop90b1*, *Serpinh1*, and *Tmsb4x* are primarily expressed in
406 mouse EpiSC group II. The zebrafish mesenchymal or mural epicardium markers *Hapln1*,
407 *Pdgfra*, and *Pdgfrb* are enriched in mouse EpiSC group III. In addition, zebrafish *fn1a*,
408 *psmb1*, and *atp5mc1* are makers for aEPCs but are also expressed in part of the epithelial
409 epicardium cluster (Figure 3E and S5). Similarly, the mouse homologs *Fn1*, *Psmb1*, and
410 *Atp5g1* are highly expressed in EpiSC groups I and II (Figures S10B-F). Thus, mouse
411 EpiSC groups I, II, and III are comparable to zebrafish epithelial, aEPC, and
412 mesenchymal/mural subsets, respectively.

413 However, unlike in zebrafish, mouse epithelial epicardial cells do not give rise to
414 mesenchymal EpiSCs in the infarct¹⁰. This observation was also supported by other
415 studies^{6, 59}. Although group II of the mouse EpiSC does express makers of zebrafish
416 aEPCs, Hesse et al. study showed no differentiation trajectory from group II to cells in
417 other groups. These differentiation deficiencies may contribute to the limited regenerative
418 capacity of the adult mouse heart, which warrant further genetic studies in mice. In all,
419 this comparison demonstrates both similarities and differences in epicardial populations
420 between zebrafish and mice. It also implies that activating such a progenitor state in mice
421 has the potential to promote cardiac repair.

422

423 **DISCUSSION**

424 Here we have defined the epithelial, mesenchymal, and mural subsets of the epicardial
425 lineage in adult zebrafish. We identified the *ptx3a⁺col12a1b⁺* epicardial cells as the adult
426 progenitors - aEPCs. These aEPCs undergo EMT and orchestrate ECM remodeling and
427 cell differentiation to mediate heart regeneration (Figure 9K). Thus, augmenting the aEPC
428 activation after heart injury is of potential value for enhancing heart regeneration.

429 Our modRNA-assisted genetic tracing demonstrated an active epicardial EMT
430 process, for the first time, during heart regeneration in adult zebrafish. It was reported
431 that epicardial EMT occurs prior to fate specification in a chick heart development model⁶⁰.
432 Hampering epicardial EMT in mice abolishes epicardial lineages and leads to severe
433 heart development defects^{61, 62, 63}. In contrast to zebrafish, adult mammalian epicardial
434 cells have no or limited EMT upon heart injuries^{6, 59}. Our study further highlights that
435 deficiency in epicardial EMT may contribute to the limited regenerative capacity of the
436 adult mammalian heart. In addition, the pericardial sac injection of modRNA is a novel
437 approach for mechanistic studies of the epicardium. It can be applied in multiple contexts
438 in both zebrafish and mammals (e.g., gain- and loss-of-function assays for epicardial
439 activation and EMT).

440 Previous work with the *tcf21:CreER^{t2}* transgenic line discovered that epicardial
441 cells contribute to a large amount of perivascular (or mural) cells during zebrafish heart
442 regeneration¹⁷. However, since the *tcf21* reporters also marks part of the *pdgfrb⁺* mural
443 cells during regeneration, it was unclear whether these perivascular contributions
444 originated from the existing *tcf21:CreER⁺pdgfrb⁺* mural cells or epicardial progenitors. Our
445 pseudotime analysis uncovers the existence of both trajectories, and we confirm
446 experimentally that at least a subset of the mural cells in the injury site is derived from
447 aEPCs. The *hapln1a⁺* mesenchymal subset is divided into multiple clusters, which
448 indicates further heterogeneity. These subsets may have additional functions in
449 supporting regeneration even if their relative proportion remains unchanged. Gene
450 expression profiles suggest that some mesenchymal epicardial cells may have a
451 fibroblast identity, which warrants further investigation. Our GO term analysis suggests a
452 number of unique contributions that each core epicardial cluster makes during

453 regeneration. How these subsets coordinate with each other and with other cardiac cell
454 types to exert efficient regeneration warrants further investigation. A recent study by Sun
455 et al. demonstrated that the *hapln1a⁺* epicardial cells mediate HA secretion and
456 myocardial development and regeneration¹². Thus, both studies suggest that the entire
457 epicardial population actively participated in the regeneration process with diverse cellular
458 and paracrine contributions.

459 We showed that genetic ablation of *col12a1b*-expressing aEPCs upon heart injury
460 led to the formation of collagen-enriched scar tissues at 30 dpa. This suggests that the
461 initial deposition of the pro-regenerative collagen XII^{43, 44} may be necessary for
462 regeneration. Notably, it was reported that transient collagen deposition is required for
463 zebrafish heart regeneration in a cryoinjury model³⁶. The pro-regenerative collagen
464 remodeling, in terms of the composition of collagen components and the associated
465 deposition timing warrants further investigation. Although it has been shown that Tgf β
466 inhibition blocks heart regeneration⁵⁷, our results provide further cellular insights that
467 Tgf β -regulated EMT and differentiation of aEPCs contribute to heart regeneration.
468 Spatiotemporal activity of the Tgf β signaling may regulate dynamic ECM deposition.
469 Moreover, the function of *ptx3a* implies a major role of aEPCs in mediating inflammation
470 during regeneration⁴⁵. Thus, our discovery suggests aEPCs as a molecular hub
471 connecting ECM remodeling and immune responses during regeneration. Our findings
472 also open new research avenues to precisely manipulate the regeneration program.

473 In mammals, the adult epicardium shows analogous activation upon heart injury
474 (such as re-activation of embryonic gene expression, proliferation, and secretion), but this
475 activation is limited in term of mitogen secretion, EMT, and differentiation capacity^{6, 10, 59}.
476 The similarities between zebrafish aEPCs and mouse epicardial-derived cells suggest
477 that awakening the progenitor potential in the adult mammalian epicardium could promote
478 cardiac repair after myocardial infarction. In all, our study has revealed the plasticity of
479 adult epicardial cells and highlighted the aEPCs as a target for enhancing cardiac
480 regeneration.

481
482

483 **METHODS**

484 **Animal Maintenance and Procedures**

485 Animal procedures were approved by the Institutional Animal Care and Use Committee
486 (IACUC) at Weill Cornell Medical College. Adult zebrafish of the Ekkwill and Ekkwill/AB
487 strains were maintained as described^{2, 64}. Water temperature was maintained at 28°C,
488 and fish were kept on a 14/10 light/dark cycle at a density of 5-10 fish per liter. Animals
489 between 3 and 12 months of both sexes were used for adult experiments. Heart resection
490 injury was done as described previously². For aEPC ablation, we applied amputation
491 injury and then bathed fish in 5 mM metronidazole (Mtz, Sigma-Aldrich, M1547) for 3
492 successive days from 3 to 5 dpa with fish water being changed daily¹⁴. For lineage tracing,
493 embryos and larvae were treated with 10 µM 4-Hydroxytamoxifen (4-HT, Sigma-Aldrich,
494 H7904) in fish water for time periods as mentioned in the figures. Adult fish were placed
495 in a mating tank of aquarium water containing 5 or 10 µM 4-HT as noted in the figures.
496 Fish were maintained for 16 h, rinsed with fresh aquarium water, and returned to a
497 recirculating aquatic system for 8 h, before repeating this incubation, as noted in the
498 figures. For Tgfβ pathway inhibition, adult fish were incubated with 20 µM SB431542 as
499 noted in the Figures with daily water changes⁴². modRNAs of Cre were synthesized as
500 described previously⁶⁵. Up to 2 µl of 10 mg/ml modRNA was injected into the pericardial
501 sac of each fish without poking the heart under anesthesia as described previously²¹
502 except using a 10 µl hamilton syringe.

503 The following previously published lines were used: *Tg(tcf21:nucEGFP)^{pd41}* (Ref.
504 ¹⁷), *Tg(tcf21:H2A-mCherry)^{pd252}* (Ref. ⁶⁶), *Tg(pdgfrb:EGFP)^{ncv22}* (Ref. ⁶⁷), and *Tg(ubi:loxP-EGFP-⁵⁰⁵
506 loxP-mCherry)^{cz1701}* (*ubi:Switch*) (Ref. ⁵³). Newly generated lines are described
507 below. All reporters were analyzed as hemizygotes. Transgenic lines generated in this
study are readily available on request.

508

509 **Generation of knock-in lines**

510 We applied a Crispr/Cas9 knock-in strategy to insert EGFP-poly A, or mScarlet-P2A-
511 NTR-poly A cassette right after the start codon following a published protocol⁶⁸. Briefly,
512 2~3 sgRNAs close to the ATG site were selected by using a design tool from Integrated
513 DNA Technologies, Inc. HDR (Homology-directed repair) templates were designed to

514 include a mutated sgRNA target site, homology arms (HAs) flanking the ATG start codon,
515 and a cassette encoding EGFP, or mScarlet-P2A-NTR with polyA. Gene-specific Alt-R
516 crRNAs were synthesized by IDT. Bipartite synthetic sgRNAs were heteroduplexed by
517 using crRNAs and a tracrRNA according to manufacturer recommendations. HDR
518 sequences were synthesized by GENEWIZ and ligated to a pUC57 vector. HDR
519 templates were digested from the pUC57 vector with flanked blunt-ends restriction
520 enzymes and were column-purified. 250 ng/μl sgRNA, 250 ng/μl rCas9 (PNA Bio), and
521 50 ng/μl HDR templates were injected into one-cell stage embryos. Stable transgenic
522 lines with seamless insertion alleles were identified by genotyping and sequencing of F1s.
523 The following knock-in alleles were generated for this study:

524

525 *Tg(ptx3a:mScarlet-P2A-NTR)*

526 A mScarlet-P2A-NTR-poly A cassette was inserted right after the start codon using the
527 following gRNAs and HAs. sgRNA1: AACAAAGGAGGACCATCCAAG; sgRNA2:
528 GTCTTGCTCATATTAACACA. 5'HA: 5'-agtACTTGCATTAAATACAGATATTCCCAAAA
529 TGTTTCCAGAGCACTATTCAAAATTCTTGCTATTCCAGGTTCTACATCTTC
530 CCAACATCCTCCCCAAAATCTCTCTCTCTCTATGCCTGTGCTGCAGGAGCT
531 GTACAGCAATATGACTACCCAAACTACCTCCAACGAAGAATTCTCACTGGAGAAA
532 CTCACTCTCTCCCCACCACTCTCTCACTCTCTCTCTCTCTCACTCT
533 CTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCAGCGCAATGTTAAATAGACCACAGA
534 GCTGCTCTATCAGGCTCAGTTGCCTTCAGCTGCAGTCACCAAAACAAGCAGGAGT
535 CCAGCCAACAAATTGCTCAGCATCTAtGGtGGtCCAACCAtGAcGACAAAGACAA
536 TTATACACAAAGCTGAGTgTTcCaCAaATatACtC-3'; 3'HA: 5'-agtACTTATTGCATAC
537 TCAAAACACAATAGTCAAATACAGTAATCAATCAGTTATTCTAATTACATCATATCA
538 TGCATCCTGTTAAACTACAAGAAATATTCCAGCATTAACTCTTAACCTTTACTTT
539 AACATAACTCCTTCTGAAAGGTAGTGGATTATACATCTCTTACCTCACCTCTTAC
540 TCTGATCACAGTTGAGTATTCTTCTGGTTACTCACCTCCAACGGCCTCATCA
541 GGTATTCATTAAAATAATTGTGTCCAAAGCCCACCTCGATATCATCGTCATAATTGT
542 CAGATACCGCCATGGACAATGAAGGCCACCAGACACATGGTCTGGAGGAATGTCCG
543 CATGGACTTGCTGGC-3'. The underlined sequences are the mutated gRNA binding

544 sites with the mutations shown in lower case letters. The full name of this line is
545 *Tg(ptx3a:mScarlet-P2A-NTR)*^{wcm107} (*ptx3a^{RNTR}* for short).

546

547 **Tg(col12a1b:EGFP)**

548 An EGFP-poly A cassette were inserted right after the start codon using the following

549 gRNAs and HAs. sgRNA1: CCTGACCGACATCTTCACCC; sgRNA2:
550 CTGACATCAGTGAGAGCCCA, sgRNA3: AATTATTAGAGTCTTAACCA; 5'HA: 5'-
551 cccGGGTTTACAGTGCATGTAAAGTCTGAATTGTCCAGGCACAACAGGGGGCGC
552 AGAAGCCCTGCAGATGTTTCCATCCCTACCATGCAGGATCCTAAACCAGGCAGC
553 TTTCCAGACAATCCCATAAGTCTATGAACTCACAGTTCCAATGTTAAACTGATGA
554 ATCAGCAGGGTTGCGATGACATAAGCATATGCAGCCTATAATTGTTTTACAGTT
555 GAACTAAAATGTTCTTCTAATAACCGCACAGTGAATTATTTAATTAATCCCCCTT
556 TATTAATATTTCCAAAAaTAcTtGtGaCTTtACgAAcGAAAAAAAAACTTTCTTCTC
557 TGACCAAAGAACAGCTGGATTTGTATGAAAATATAATTAAAATCAGATTAAATT
558 GAGATCTCTCAATGCTGGAGTGGAGCATGTATTTCCCTTGATTGTGAGCTGTG
559 TGT
560 TGAATTTCAGATTGATTGATGTTCTGCTGATACCGGGGTGAAG-3'; 3'HA: 5'-
561 gatATCAATGCACATGAGGAATTATTGGCTCCAGTCCTTGTCATTCTGAACA
562 AAGGCAATGAAAAATAATGTAAGCACTTAATATAATGGGCATCTATTACAGTAAAGT
563 CGATATTATAGAGTTAAAACAGAAATCAGACTATGATCTAAACTGTTGGAAGAAA
564 GTGGTTAATTTACTGTAATTGGATGAATGGAAAGGCATTGTTGGCTTTTTTTTT
565 TTTTACCgTTGtGCcCgaACgGAaGTCAGTGCTCGAGTGTAAAGAGAGGCCACCGCT
566 GCCAAATGCCgcACtGA-3. The underlined sequences are the mutated gRNA binding
567 sites with the mutations shown in lower case letters. The lines in use were generated by
568 using sgRNA1. The full name of these lines are *Tg(col12a1b:EGFP)*^{wcm108} (*col12a1b^{EGFP}*
569 for short).

570

571 **Generation of *Tg(ptx3a:CreER^{t2})* zebrafish**

572 The translational start codon of *ptx3a* in the BAC clone CH211-272F3 was replaced with
573 a *CreER^{t2}-polyA* cassette in SW105 cells using recombineering^{69, 70}. The 5' and 3' HAs
574 for recombination are 300~500-base pair (bp) fragments upstream and downstream of

575 the start codon and were PCR amplified with restriction enzyme site and inserted into a
576 vector to flank the *CreER^{t2}-polyA* cassette. The primer sequences were: ptx3a-5HA-
577 forward: gcggccgcAGTACTTGC ATTTAATACAGAT; ptx3a-5HA-reverse:
578 gaattcGTGTTAATATGAGCAAGACTCA; ptx3a-3HA-forward:
579 gggcccAGtACTTATTGCATACTCAAAAC; and ptx3a-3HA-reverse:
580 GCCAGCAAGTCCATGCG. The same technology was used to replace the loxP site in
581 the BAC vector with a cassette containing the Tol2 fragments, as well as a lens-specific
582 crystallin promoter upstream of mCherry (iTol2Amp- γ -crystallin:RFP, a gift from Nadia
583 Mercader Huber; Addgene plasmid # 108455)⁷¹. The final BAC was purified with
584 Nucleobond BAC 100 kit (Clontech) and co-injected with 50 ng/ μ l Tol2 RNA into one-cell-
585 stage zebrafish embryos. Stable transgenic lines were selected. The full name of this line
586 is *Tg(ptx3a:CreER^{t2})wcm109*.

587

588 **Generation of *Tg(tcf21:loxP-BFP-pA-loxP-mCherry-NTR*) zebrafish**

589 To make a BAC construct, the translational start codon of *tcf21* in the BAC clone DKEYP-
590 79F12 was replaced with the *loxP-BFP-polyA-loxP-mCherry-NTR-polyA* cassette by
591 Red/ET recombineering technology (Gene Bridges)⁷². The 5' and 3' homologous arms
592 for recombination were a 50-base pair (bp) fragment upstream and downstream of the
593 start codon and were included in PCR primers to flank the *loxP-BFP-polyA-loxP-mCherry-*
594 *NTR-polyA* cassette. To avoid aberrant recombination between the insertion cassette and
595 the endogenous *loxP* site in the BAC vector, we replaced the vector-derived *loxP* site with
596 an I-Sce I site using the same technology. The final BAC was purified with Nucleobond
597 BAC 100 kit (Clontech) and co-injected with I-Sce I into one-cell-stage zebrafish embryos.
598 Stable transgenic lines with bright fluorescence were selected. The full name of this line
599 is *Tg(tcf21:loxP-BFP-pA-loxP-mCherry-NTR)*^{wcm110} (*tcf21:BsRNTR* for short).

600

601 **Single cell-RNA sequencing**

602 Ventricles were collected from adult *tcf21:nucEGFP* fish at 6 months of age. Ventricular
603 nucEGFP⁺ epicardial cells were isolated as described previously⁵⁴. Briefly, ventricles
604 were collected on ice and washed several times to remove blood cells. Ventricles were
605 digested in an Eppendorf tube with 0.5 ml HBSS plus 0.13 U/ml Liberase DH (Roche) at

606 37°C, while stirring gently with a Spinbar® magnetic stirring bar (Bel-Art Products).
607 Supernatants were collected every 5 min and neutralized with sheep serum. Dissociated
608 cells were spun down and re-suspended in DMEM plus 10% fetal bovine serum (FBS)
609 medium with 1.5 µg/ml propidium iodide (PI) and sorted using a Becton-Dickinson Aria II
610 sorter for EGFP-positive and PI-negative cells. The isolated cells were sent to the
611 Epigenomics Core Facility of Weill Cornell Medicine for single cell RNA-seq library
612 preparation using the 10x Genomics Chromium Single Cell 3' GEM, Library & Gel Bead
613 Kit v3, and Chromium Single Cell B Chip Kit. The libraries were sequenced on a pair-end
614 flow cell with a 2 x 50 cycles kit on Illumina HiSeq4000.

615

616 **scRNA-seq analysis**

617 The raw reads were aligned and processed with the CellRanger pipeline (v. 3.0.2) using
618 the zebrafish transcriptome version GRCz10. Subsequent analyses were performed in R
619 following the recommendations of Amezquita et al. (<https://osca.bioconductor.org/>)⁷³
620 using numerous functions provided in the R packages scater and scran^{74, 75} as well as
621 Seurat following the tutorials of the Satija Lab (<https://satijalab.org/seurat/>)⁷⁶. We first
622 removed low-quality droplets and rarely covered genes from all samples: cells were
623 required to have a minimum of 10^{2.5} genes and maximum of 5% mitochondrial reads; and
624 genes were removed if they were detected in either fewer than 0.2% of the cells or in
625 fewer than 5 cells per sample. Read counts of 3 samples were normalized using
626 *SCTransform* as implemented in Seurat v3.1 correcting for batch effects between the
627 samples⁷⁷. For visualizations and additional downstream analyses, the *SCTransform*-
628 normalized (log-transformed) expression values were used unless noted otherwise.

629 For identifying clusters of cells with similar global transcriptomes, a shared nearest
630 neighbor graph was constructed using Seurat's *FindNeighbors* function with default
631 settings (e.g. k = 20) and using the first 20 principal components following PCA. Clusters
632 were identified with Seurat's *FindClusters* function with the resolution parameter set to
633 0.3 (Ref. ⁷⁸). In addition, UMAP coordinates were calculated⁷⁹. We assessed the identity
634 of the cells within the resulting clusters using marker genes detected by Seurat's
635 *FindAllMarkers* function with default settings as well as marker genes identified by SC3
636 (Ref. ⁸⁰). Gene Ontology (GO) analysis was performed by using *clusterProfiler*⁸¹. By

637 focusing on the core clusters, we re-did all processing steps including removal of genes
638 that were expressed in fewer than 5 cells, calculation of normalized expression values
639 correcting for the batch effect of the different conditions, PCA, clustering, and UMAP
640 calculation.

641 To infer the developmental order of certain subpopulations within the regenerating
642 samples, we applied the trajectory reconstruction algorithm Monocle 3 (Ref. ⁵²). We
643 converted the read counts into a monocle object and re-processed the data using
644 *preprocess_cds* with the number of dimensions set to 100. Cells were clustered with
645 *cluster_cells* using the UMAP dimensions. To identify the trajectories of individual cells
646 through the UMAP space, *learn_graph* was used. To determine pseudotime values, root
647 nodes were identified for each partition (as determined in the previous step) and
648 pseudotime values were calculated based on each cell's projection on the principal graph.

649

650 **Histology and Microscopy**

651 Freshly collected hearts were fixed with 4% paraformaldehyde (PFA) for 2 h at room
652 temperature or overnight at 4C. Fixed hearts were mounted with Fluoromount G
653 (Southern Biotechnology, cat#0100-01) between two coverslips for imaging of both
654 ventricular surfaces, embedded in low-melting point agarose for whole-mount imaging, or
655 applied to cryosection at a 10 μ m thickness. Hybridization Chain Reaction (HCR 3.0)
656 staining of whole-mounted hearts or cryosections was done following the published
657 protocols⁸². HCR probes for *ptx3a*, *col12a1b*, *pdgfrb*, *hapln1a*, *podxl*, *atp5mc1*, *hmgb2b*,
658 *hsp90b1*, *loxa*, *psmb1*, *serpinh1a*, *nrg1*, *snai1a*, and *tgfb1a* were synthesized by
659 Molecular Instruments Inc. Immunostaining of whole-mounted hearts or heart sections
660 was done as described previously^{14, 66}. Primary antibodies used in this study include
661 rabbit anti-Mef2 (this study), mouse anti-PCNA (Sigma, P8825), rabbit anti-Aldh1a2
662 (GeneTex, GTX124302), rabbit anti-DsRed (Takara, 632496), and mouse anti-Tnnt
663 (ThermoFisher, MS-295-PABX). The Mef2 antibody was generated using a Mef2aa
664 peptide (amino acid 314-512 of XP_021323249.1) as an antigen and is now commercially
665 available at Boster Bio (DZ01398-1). Secondary antibodies (ThermoFisher) used in this
666 study were Alexa Fluor 488 goat anti-rabbit and goat anti-mouse, Alexa Fluor 546 goat

667 anti-rabbit and goat anti-mouse, and Alexa Fluor 633 goat anti-mouse. Acid Fuchsin-
668 Orange G staining was performed as described².

669 Bright-field images of whole-mounted hearts were captured using a Zeiss
670 Axiozoom V16 microscope. Fluorescent images of whole-mounted and sectioned heart
671 tissues were imaged using a Zeiss 800 confocal microscope. AFOG staining images were
672 captured on a Leica Dmi8 compound microscope. Analyses of CM proliferation were
673 performed as previously described by counting Mef2 and PCNA nuclei in wound sites⁵⁵.
674

675 **Data collection and statistics**

676 Clutchmates, or hearts collected from clutchmates, were randomized into different groups
677 for each treatment. No animal or sample was excluded from the analysis unless the
678 animal died during the procedure. All experiments were performed with at least 2
679 biological replicates. Sample sizes were chosen based on previous publications and
680 experiment types and are indicated in each figure legend. All measurements were taken
681 from distinct samples. All statistical values are displayed as Mean +/- Standard Deviation
682 (s.d.). Sample sizes, statistical tests, and *P* values are indicated in the figures or the
683 legends. All box plots show 5 elements: the minimum, lower quartile, median, upper
684 quartile, and maximum values. Student's *t*-tests (two-tailed) were applied when normality
685 and equal variance tests were passed. The Mann-Whitney Rank Sum test was used when
686 these failed. Fisher's exact test was used where appropriate.
687

688 **DATA AVAILABILITY**

689 The scRNA-seq datasets have been deposited at NCBI's Gene Expression Omnibus
690 under accession numbers GSE202836.
691

692 **CODE AVAILABILITY**

693 All scripts as well as the code and cell labels used for generating the scRNA-seq based
694 figures can be found at https://github.com/abcwcm/Cao_Epicardium.

695 **ACKNOWLEDGMENTS**

696 We thank Adedeji A. Afolalu, Chaim Shapiro, Soji Hosten, and Chelsea Quaies for fish
697 care, Naoki Mochizuki for the *Tg(pdgfrb:EGFP)^{ncv22}* line, Geoffrey Pitt, Junsu Kang, and
698 Todd Evans for comments on the manuscript. This work was supported by Rudin
699 Foundation fellowships to Y.X. and J.Y., a predoctoral training grant position (T32-
700 HD060600) and a predoctoral fellowship (F31-HL158168) from National Institutes of
701 Health (NIH) to S.D., a predoctoral training grant position in Stem Cell Biology and
702 Regenerative Medicine from New York State Stem Cell Science program (NYSTEM) to
703 B.P., American Heart Association (AHA) Career Development Award (AHA941434) to
704 M.R.H., NIH grants (R01HL142768 and R01HL149137) to L.Z., AHA Career
705 Development Award (18CDA34110108), Weill Cornell Start-up fund, and NIH grant
706 (R01HL155607) to J.C.

707

708 **AUTHOR CONTRIBUTIONS**

709 Conceptualization, J.C.; Methodology, F.D., P.Z., M.R.H., L.Z., D.B., and J.C.;
710 Investigation, Y.X., S.D., B.P., M.Q, J.Y., Y.C., F.D., and P.Z.; Resources, D.B., L.Z., and
711 J.C.; Writing and editing, Y.X., S.D., and J.C.; Funding Acquisition, Y.X., S.D., L.Z., and
712 J.C.

713

714 **COMPETING INTERESTS**

715 The authors declare no competing interests.

716 **REFERENCES**

- 717 1. Kikuchi K, *et al.* Primary contribution to zebrafish heart regeneration by gata4(+) 718 cardiomyocytes. *Nature* **464**, 601-605 (2010).
- 719
- 720 2. Poss KD, Wilson LG, Keating MT. Heart regeneration in zebrafish. *Science* **298**, 721 2188-2190 (2002).
- 722
- 723 3. Jopling C, Sleep E, Raya M, Marti M, Raya A, Izpisua Belmonte JC. Zebrafish 724 heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. 725 *Nature* **464**, 606-609 (2010).
- 726
- 727 4. Bertozzi A, *et al.* Is zebrafish heart regeneration "complete"? Lineage-restricted 728 cardiomyocytes proliferate to pre-injury numbers but some fail to differentiate in 729 fibrotic hearts. *Developmental biology* **471**, 106-118 (2021).
- 730
- 731 5. Cao J, Poss KD. The epicardium as a hub for heart regeneration. *Nat Rev 732 Cardiol* **15**, 631-647 (2018).
- 733
- 734 6. Quijada P, Trembley MA, Small EM. The Role of the Epicardium During Heart 735 Development and Repair. *Circ Res* **126**, 377-394 (2020).
- 736
- 737 7. Simoes FC, Riley PR. The ontogeny, activation and function of the epicardium 738 during heart development and regeneration. *Development* **145**, (2018).
- 739
- 740 8. Bollini S, *et al.* Re-activated adult epicardial progenitor cells are a heterogeneous 741 population molecularly distinct from their embryonic counterparts. *Stem cells and 742 development* **23**, 1719-1730 (2014).
- 743
- 744 9. Lupu IE, Redpath AN, Smart N. Spatiotemporal Analysis Reveals Overlap of Key 745 Proepicardial Markers in the Developing Murine Heart. *Stem Cell Reports* **14**, 746 770-787 (2020).
- 747
- 748 10. Hesse J, *et al.* Single-cell transcriptomics defines heterogeneity of epicardial 749 cells and fibroblasts within the infarcted murine heart. *eLife* **10**, (2021).
- 750
- 751 11. Ma H, *et al.* Functional coordination of non-myocytes plays a key role in adult 752 zebrafish heart regeneration. *EMBO Rep* **22**, e52901 (2021).
- 753
- 754 12. Sun J, *et al.* hapln1 Defines an Epicardial Cell Subpopulation Required for 755 Cardiomyocyte Expansion During Heart Morphogenesis and Regeneration. 756 *Circulation*, 101161CIRCULATIONAHA121055468 (2022).
- 757
- 758 13. de Bakker DEM, *et al.* Prrx1b restricts fibrosis and promotes Nrg1-dependent 759 cardiomyocyte proliferation during zebrafish heart regeneration. *Development* 760 **148**, (2021).
- 761

762 14. Wang J, Cao J, Dickson AL, Poss KD. Epicardial regeneration is guided by
763 cardiac outflow tract and Hedgehog signalling. *Nature* **522**, 226-230 (2015).

764

765 15. Wei K, *et al.* Epicardial FSTL1 reconstitution regenerates the adult mammalian
766 heart. *Nature* **525**, 479-485 (2015).

767

768 16. Bargehr J, *et al.* Epicardial cells derived from human embryonic stem cells
769 augment cardiomyocyte-driven heart regeneration. *Nature biotechnology* **37**,
770 895-906 (2019).

771

772 17. Kikuchi K, *et al.* tcf21+ epicardial cells adopt non-myocardial fates during
773 zebrafish heart development and regeneration. *Development* **138**, 2895-2902
774 (2011).

775

776 18. Lepilina A, *et al.* A dynamic epicardial injury response supports progenitor cell
777 activity during zebrafish heart regeneration. *Cell* **127**, 607-619 (2006).

778

779 19. Missinato MA, Tobita K, Romano N, Carroll JA, Tsang M. Extracellular
780 component hyaluronic acid and its receptor Hmmr are required for epicardial
781 EMT during heart regeneration. *Cardiovascular research* **107**, 487-498 (2015).

782

783 20. Hadas Y, Katz MG, Bridges CR, Zangi L. Modified mRNA as a therapeutic tool to
784 induce cardiac regeneration in ischemic heart disease. *Wiley Interdiscip Rev Syst
785 Biol Med* **9**, (2017).

786

787 21. Bise T, Jazwinska A. Intrathoracic Injection for the Study of Adult Zebrafish
788 Heart. *J Vis Exp*, (2019).

789

790 22. Ellett F, Pase L, Hayman JW, Andrianopoulos A, Lieschke GJ. mpeg1 promoter
791 transgenes direct macrophage-lineage expression in zebrafish. *Blood* **117**, e49-
792 56 (2011).

793

794 23. Shen YC, *et al.* The cytokine macrophage migration inhibitory factor (MIF) acts
795 as a neurotrophin in the developing inner ear of the zebrafish, *Danio rerio*.
796 *Developmental biology* **363**, 84-94 (2012).

797

798 24. Bertrand JY, Kim AD, Teng S, Traver D. CD41+ cmyb+ precursors colonize the
799 zebrafish pronephros by a novel migration route to initiate adult hematopoiesis.
800 *Development* **135**, 1853-1862 (2008).

801

802 25. Huang CJ, Tu CT, Hsiao CD, Hsieh FJ, Tsai HJ. Germ-line transmission of a
803 myocardium-specific GFP transgene reveals critical regulatory elements in the
804 cardiac myosin light chain 2 promoter of zebrafish. *Developmental dynamics : an
805 official publication of the American Association of Anatomists* **228**, 30-40 (2003).

806

807 26. Sehnert AJ, Huq A, Weinstein BM, Walker C, Fishman M, Stainier DY. Cardiac
808 troponin T is essential in sarcomere assembly and cardiac contractility. *Nat
809 Genet* **31**, 106-110 (2002).

810

811 27. Lawson ND, Weinstein BM. In vivo imaging of embryonic vascular development
812 using transgenic zebrafish. *Developmental biology* **248**, 307-318 (2002).

813

814 28. Jin SW, Beis D, Mitchell T, Chen JN, Stainier DY. Cellular and molecular
815 analyses of vascular tube and lumen formation in zebrafish. *Development* **132**,
816 5199-5209 (2005).

817

818 29. Kapuria S, *et al.* Heterogeneous pdgfrb+ cells regulate coronary vessel
819 development and revascularization during heart regeneration. *Development* **149**,
820 (2022).

821

822 30. Ando K, *et al.* Conserved and context-dependent roles for pdgfrb signaling during
823 zebrafish vascular mural cell development. *Developmental biology* **479**, 11-22
824 (2021).

825

826 31. Shih YH, Portman D, Idrizi F, Grosse A, Lawson ND. Integrated molecular
827 analysis identifies a conserved pericyte gene signature in zebrafish.
828 *Development* **148**, (2021).

829

830 32. Ando K, Ishii T, Fukuhara S. Zebrafish Vascular Mural Cell Biology: Recent
831 Advances, Development, and Functions. *Life (Basel)* **11**, (2021).

832

833 33. Cao Y, *et al.* Identification of enhancer regulatory elements that direct epicardial
834 gene expression during zebrafish heart regeneration. *Development* **149**, (2022).

835

836 34. Weinberger M, Simoes FC, Patient R, Sauka-Spengler T, Riley PR. Functional
837 Heterogeneity within the Developing Zebrafish Epicardium. *Dev Cell* **52**, 574-590
838 e576 (2020).

839

840 35. Karra R, Foglia MJ, Choi WY, Belliveau C, DeBenedittis P, Poss KD. Vegfaa
841 instructs cardiac muscle hyperplasia in adult zebrafish. *Proc Natl Acad Sci U S A*
842 **115**, 8805-8810 (2018).

843

844 36. Sanchez-Iranzo H, *et al.* Transient fibrosis resolves via fibroblast inactivation in
845 the regenerating zebrafish heart. *Proc Natl Acad Sci U S A* **115**, 4188-4193
846 (2018).

847

848 37. Navis A, Marjoram L, Bagnat M. Cftr controls lumen expansion and function of
849 Kupffer's vesicle in zebrafish. *Development* **140**, 1703-1712 (2013).

850

851 38. Meder D, Shevchenko A, Simons K, Fullekrug J. Gp135/podocalyxin and
852 NHERF-2 participate in the formation of a preapical domain during polarization of
853 MDCK cells. *J Cell Biol* **168**, 303-313 (2005).

854

855 39. Ivey MJ, Kuwabara JT, Riggsbee KL, Tallquist MD. Platelet-derived growth factor
856 receptor-alpha is essential for cardiac fibroblast survival. *American journal of*
857 *physiology Heart and circulatory physiology* **317**, H330-H344 (2019).

858

859 40. Gemberling M, Karra R, Dickson AL, Poss KD. Nrg1 is an injury-induced
860 cardiomyocyte mitogen for the endogenous heart regeneration program in
861 zebrafish. *eLife* **4**, (2015).

862

863 41. Wang J, Karra R, Dickson AL, Poss KD. Fibronectin is deposited by injury-
864 activated epicardial cells and is necessary for zebrafish heart regeneration.
865 *Developmental biology* **382**, 427-435 (2013).

866

867 42. Marro J, Pfefferli C, de Preux Charles AS, Bise T, Jazwinska A. Collagen XII
868 Contributes to Epicardial and Connective Tissues in the Zebrafish Heart during
869 Ontogenesis and Regeneration. *PLoS One* **11**, e0165497 (2016).

870

871 43. Wehner D, *et al.* Wnt signaling controls pro-regenerative Collagen XII in
872 functional spinal cord regeneration in zebrafish. *Nat Commun* **8**, 126 (2017).

873

874 44. Tsata V, *et al.* A switch in pdgfrb(+) cell-derived ECM composition prevents
875 inhibitory scarring and promotes axon regeneration in the zebrafish spinal cord.
876 *Dev Cell* **56**, 509-524 e509 (2021).

877

878 45. Doni A, Mantovani A, Bottazzi B, Russo RC. PTX3 Regulation of Inflammation,
879 Hemostatic Response, Tissue Repair, and Resolution of Fibrosis Favors a Role
880 in Limiting Idiopathic Pulmonary Fibrosis. *Front Immunol* **12**, 676702 (2021).

881

882 46. Veldman MB, Bemben MA, Thompson RC, Goldman D. Gene expression
883 analysis of zebrafish retinal ganglion cells during optic nerve regeneration
884 identifies KLF6a and KLF7a as important regulators of axon regeneration.
885 *Developmental biology* **312**, 596-612 (2007).

886

887 47. Sousounis K, *et al.* Molecular signatures that correlate with induction of lens
888 regeneration in newts: lessons from proteomic analysis. *Hum Genomics* **8**, 22
889 (2014).

890

891 48. Cappuzzello C, *et al.* Mesenchymal Stromal Cell-Derived PTX3 Promotes Wound
892 Healing via Fibrin Remodeling. *J Invest Dermatol* **136**, 293-300 (2016).

893

894 49. Doni A, *et al.* An acidic microenvironment sets the humoral pattern recognition
895 molecule PTX3 in a tissue repair mode. *The Journal of experimental medicine*
896 **212**, 905-925 (2015).

897

898 50. Salio M, *et al.* Cardioprotective function of the long pentraxin PTX3 in acute
899 myocardial infarction. *Circulation* **117**, 1055-1064 (2008).

900

901 51. Bock-Marquette I, *et al.* Thymosin beta4 mediated PKC activation is essential to
902 initiate the embryonic coronary developmental program and epicardial progenitor
903 cell activation in adult mice *in vivo*. *Journal of molecular and cellular cardiology*
904 **46**, 728-738 (2009).

905

906 52. Cao J, *et al.* The single-cell transcriptional landscape of mammalian
907 organogenesis. *Nature* **566**, 496-502 (2019).

908

909 53. Mosimann C, Kaufman CK, Li P, Pugach EK, Tamplin OJ, Zon LI. Ubiquitous
910 transgene expression and Cre-based recombination driven by the ubiquitin
911 promoter in zebrafish. *Development* **138**, 169-177 (2011).

912

913 54. Cao J, *et al.* Single epicardial cell transcriptome sequencing identifies Caveolin 1
914 as an essential factor in zebrafish heart regeneration. *Development* **143**, 232-243
915 (2016).

916

917 55. Kikuchi K, *et al.* Retinoic acid production by endocardium and epicardium is an
918 injury response essential for zebrafish heart regeneration. *Dev Cell* **20**, 397-404
919 (2011).

920

921 56. Bollini S, Riley PR, Smart N. Thymosin beta4: multiple functions in protection,
922 repair and regeneration of the mammalian heart. *Expert Opin Biol Ther* **15 Suppl**
923 **1**, S163-174 (2015).

924

925 57. Chablais F, Jazwinska A. The regenerative capacity of the zebrafish heart is
926 dependent on TGFbeta signaling. *Development* **139**, 1921-1930 (2012).

927

928 58. van Wijk B, Gunst QD, Moorman AF, van den Hoff MJ. Cardiac regeneration
929 from activated epicardium. *PLoS One* **7**, e44692 (2012).

930

931 59. Zhou B, *et al.* Adult mouse epicardium modulates myocardial injury by secreting
932 paracrine factors. *The Journal of clinical investigation* **121**, 1894-1904 (2011).

933

934 60. Mantri M, *et al.* Spatiotemporal single-cell RNA sequencing of developing
935 chicken hearts identifies interplay between cellular differentiation and
936 morphogenesis. *Nat Commun* **12**, 1771 (2021).

937

938 61. Jackson-Weaver O, *et al.* PRMT1-p53 Pathway Controls Epicardial EMT and
939 Invasion. *Cell Rep* **31**, 107739 (2020).

940

941 62. Liu X, *et al.* Wdpcp promotes epicardial EMT and epicardium-derived cell
942 migration to facilitate coronary artery remodeling. *Sci Signal* **11**, (2018).

943
944 63. Singh A, *et al.* Hippo Signaling Mediators Yap and Taz Are Required in the
945 Epicardium for Coronary Vasculature Development. *Cell Rep* **15**, 1384-1393
946 (2016).

947
948 64. Wang J, *et al.* The regenerative capacity of zebrafish reverses cardiac failure
949 caused by genetic cardiomyocyte depletion. *Development* **138**, 3421-3430
950 (2011).

951
952 65. Sultana N, Sharkar MTK, Hadas Y, Chepurko E, Zangi L. In Vitro Synthesis of
953 Modified RNA for Cardiac Gene Therapy. *Methods in molecular biology* **2158**,
954 281-294 (2021).

955
956 66. Cao J, *et al.* Tension Creates an Endoreplication Wavefront that Leads
957 Regeneration of Epicardial Tissue. *Dev Cell* **42**, 600-615 e604 (2017).

958
959 67. Ando K, *et al.* Clarification of mural cell coverage of vascular endothelial cells by
960 live imaging of zebrafish. *Development* **143**, 1328-1339 (2016).

961
962 68. DiNapoli SE, *et al.* Synthetic CRISPR/Cas9 reagents facilitate genome editing
963 and homology directed repair. *Nucleic acids research* **48**, e38 (2020).

964
965 69. Warming S, Costantino N, Court DL, Jenkins NA, Copeland NG. Simple and
966 highly efficient BAC recombineering using galK selection. *Nucleic acids research*
967 **33**, e36 (2005).

968
969 70. Suster ML, Sumiyama K, Kawakami K. Transposon-mediated BAC transgenesis
970 in zebrafish and mice. *BMC genomics* **10**, 477 (2009).

971
972 71. Sanchez-Iranzo H, *et al.* Tbx5a lineage tracing shows cardiomyocyte plasticity
973 during zebrafish heart regeneration. *Nat Commun* **9**, 428 (2018).

974
975 72. Singh SP, Holdway JE, Poss KD. Regeneration of amputated zebrafish fin rays
976 from de novo osteoblasts. *Dev Cell* **22**, 879-886 (2012).

977
978 73. Amezquita RA, *et al.* Orchestrating single-cell analysis with Bioconductor. *Nature
979 methods* **17**, 137-145 (2020).

980
981 74. McCarthy DJ, Campbell KR, Lun AT, Wills QF. Scater: pre-processing, quality
982 control, normalization and visualization of single-cell RNA-seq data in R.
983 *Bioinformatics* **33**, 1179-1186 (2017).

984
985 75. Lun AT, McCarthy DJ, Marioni JC. A step-by-step workflow for low-level analysis
986 of single-cell RNA-seq data with Bioconductor. *F1000Res* **5**, 2122 (2016).

987

988 76. Stuart T, *et al.* Comprehensive Integration of Single-Cell Data. *Cell* **177**, 1888-
989 1902 e1821 (2019).

990

991 77. Hafemeister C, Satija R. Normalization and variance stabilization of single-cell
992 RNA-seq data using regularized negative binomial regression. *Genome Biol* **20**,
993 296 (2019).

994

995 78. Waltman L, Eck NJv. A smart local moving algorithm for large-scale modularity-
996 based community detection. *European Physical Journal B*, (2013).

997

998 79. Becht E, *et al.* Dimensionality reduction for visualizing single-cell data using
999 UMAP. *Nature biotechnology*, (2018).

1000

1001 80. Kiselev VY, *et al.* SC3: consensus clustering of single-cell RNA-seq data. *Nature
1002 methods* **14**, 483-486 (2017).

1003

1004 81. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing
1005 biological themes among gene clusters. *OMICS* **16**, 284-287 (2012).

1006

1007 82. Choi HMT, *et al.* Third-generation *in situ* hybridization chain reaction:
1008 multiplexed, quantitative, sensitive, versatile, robust. *Development* **145**, (2018).

1009

1010

1011

FIGURE LEGENDS

Figure 1. Cellular heterogeneity and EMT of *tcf21*⁺ cells in the zebrafish heart.

(A) Cartoon of an adult zebrafish heart showing the ventricle and outflow tract (OFT). The frames indicate representative regions for cryosection-section images in B, C and E. **(B)** A cryosection image showing *tcf21*:nucEGFP in magenta, antibody staining against aldh1a2 in green. Nuclei were stained with DAPI (blue). A single-channel image of aldh1a2 signals is shown in grayscale on the right. Arrowheads indicate EGFP⁺adh1a2⁺ cells. Scale bar, 50 μ m. **(C)** A cryosection image showing *tcf21*:nucEGFP in magenta, antibody staining against Tnnt in green. Nuclei were stained with DAPI (blue). A single-channel image of EGFP is shown in grayscale on the right. Arrows indicate EGFP⁺ mesenchymal epicardial cells. Scale bar, 50 μ m. **(D)** Schematic of experimental design for modRNA injection. **(E)** Section images of uninjured (left) and 7 dpa (right) hearts carrying the *tcf21:Switch* reporter at 10 days post Cre modRNA injection. Arrows and arrowheads indicate representative mCherry⁺ mesenchymal and epithelial cells, respectively. Scale bar, 50 μ m. **(F)** Quantification of mCherry⁺ mesenchymal epicardial cells in the experiment of E. The largest cryosection of each heart was quantified for mCherry⁺ cells in the apex half of the ventricle. n = 13 (Ctrl) and 6 (7 dpa), respectively. Student's *t* test.

Figure 2. ScRNA-seq reveals distinct subsets of the ventricular epicardial lineage during heart regeneration.

(A) Experimental design for single epicardial cell isolation and transcriptome sequencing. **(B)** UMAP of three samples combined. After the removal of droplets with very few genes as well as genes that could not be detected in at least 5 cells, the final dataset comprised 4,970, 3,743, and 6,428 cells for Ctrl, 3 dpa, and 7 dpa, respectively. **(C)** UMAP of cell clusters with inferred cellular identities. **(D)** Expression of top 5 cluster marker genes across different clusters. This dot plot depicts the abundance and expression magnitude of individual genes across cells of given clusters. The size of the dot represents the fraction of cells with at least one UMI of the specified gene. **(E)** UMAPs showing changes of clusters across samples. **(F)** Proportions of the samples per cluster. **(G)** Cluster

proportions per sample. **(H)** Normalized expression of top marker genes on UMAPs (3 samples combined).

Figure 3. The epithelial and mesenchymal subsets of the epicardium.

(A) Normalized expression of marker genes on UMAPs (3 samples combined). **(B)** Heatmap of 3 marker genes: *tcf21*, *aldh1a2*, and *hapln1a*. Normalized expression values are shown; cells were sorted by cluster membership. Clusters 2 and 5 are highlighted in red frames. **(C)** Images of heart sections showing *tcf21*:nucEGFP in magenta, HCR staining of *podxl* in green. Nuclei were stained with DAPI (blue). A single-channel image of *podxl* is shown in grayscale on the right. Arrows indicate representative EGFP⁺*podxl*⁺ cells. Scale bar, 50 μ m. **(D)** Images of heart sections showing *tcf21*:nucEGFP in magenta, HCR staining of *hapln1a* in green. Nuclei were stained with DAPI (blue). A single-channel image of *hapln1a* is shown in grayscale on the right. Arrows indicate representative EGFP⁺*hapln1a*⁺ cells. Scale bar, 50 μ m. **(E)** Normalized expression levels of marker genes for the 3 dpa-specific cluster on UMAPs (3 samples combined).

Figure 4. *ptx3a* and *col12a1b* label a transient pro-regenerative epicardial subtype.

(A-E) HCR staining results of *ptx3a* (green) on heart sections collected at 1 (B), 3 (C), 7 (D), and 14 dpa (E) together with the uninjured control (Ctrl, A). *tcf21*:nucEGFP (magenta) labels the epicardial cells. Nuclei were stained with DAPI (blue). Single-channel images show signals of *ptx3a* or nucEGFP. White dashed lines indicate the injury sites. The framed regions are enlarged to show details on the right of each panel. Arrows denote representative *ptx3a*⁺EGFP⁺ cells. Scale bars, 100 μ m. **(F)** Schematic for generating the knock-in alleles for *ptx3a*. The gRNA binding site is marked with a cyan arrow. **(G)** The *ptx3a*^{RNTR} reporter recapitulates expression of *ptx3a* in the injured heart (3 dpa). No conclusive epicardial expression was observed in the uninjured heart (Ctrl). *tcf21*:nucEGFP (magenta) labels the epicardial cells. Nuclei were stained with DAPI (blue). Single-channel images show signals of *ptx3a*^{RNTR} (with anti-DsRed antibody staining) at the bottom. White dashed lines indicate the injury sites. The framed regions are enlarged to show details on the right. Arrows denote representative RNTR⁺EGFP⁺ cells. Images of additional timepoints are in Figure S7. Scale bar, 100 μ m. **(H)** Schematic

for generating the knock-in alleles for *col12a1b*. The gRNA binding site is marked with a cyan arrow. (I) Section images showing *col12a1b^{EGFP}* reporter expression in green and *ptx3a^{RNTR}* expression in magenta (with anti-DsRed antibody staining). No epicardial EGFP expression was observed in the uninjured heart (left). Nuclei were stained with DAPI (blue). Single-channel images show signals of *col12a1b^{EGFP}* or *ptx3a^{RNTR}*. White dashed lines indicate the injury sites. The framed regions are enlarged to show details on the right. Arrows denote representative EGFP⁺mCherry⁺ cells. Scale bar, 100 μ m.

Figure 5. aEPCs give rise to *pdgfrb*⁺ mural cells during regeneration.

(A, B) Cell trajectories suggested by pseudotime analysis with Monocle 3. Shown on a UMAP, the starting point of each trajectory was labeled with a number. The pseudotime is shown as a heatmap in (A). Red arrows and letters highlight different branches in (B). Clusters are labeled in the same number and color as in Figure 2C. (C) Schematic of transgenic lines and experimental design to define the origin of aEPCs. 4HT was used at 10 μ M. (D) Section images of 3 dpa hearts carrying the *tcf21:Switch*; *tcf21:CreER^{t2}*; *col12a1b^{EGFP}* reporters. 4HT treatment was performed as indicated in (C). mCherry and EGFP are shown in magenta and green, respectively in the merged image. Single-channel images are shown in grayscale. Arrows indicate representative EGFP⁺mCherry⁺ cells. White dashed lines indicate the injury sites. Scale bar, 100 μ m. (E) *fn1a* expression shown on the pseudotime UMAP. The mural cell trajectories are circled with red dashed lines. (F) Whole-mount images of the ventricular surface showing expression of *pdgfrb:EGFP* (green) and *tcf21:H2R* (magenta) in transgenic lines at 7 dpa. The framed regions are enlarged to show details on the right, with single-channel images shown in grayscale. Arrows indicate representative EGFP⁺mCherry⁺ cells. Scale bar, 100 μ m. (G) Schematic of transgenic lines and experimental design to define the fate of aEPCs. 4HT was used at 5 μ M. (H) Whole-mount images of the ventricular surface from hearts carrying the *ubi:Switch*; *ptx3a:CreER^{t2}* reporters. *pdgfrb* expression is detected by HCR staining (green). mCherry is shown in magenta, and nuclei were stained with DAPI (blue). Arrows indicate representative *pdgfrb*⁺mCherry⁺ cells. A maximum projection image is shown on the left. Z-stack images of the lettered frames are shown on the right. Scale bar, 50 μ m.

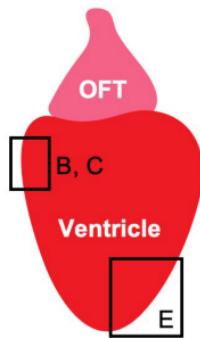
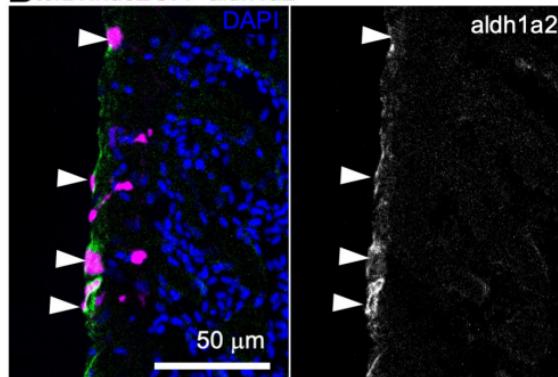
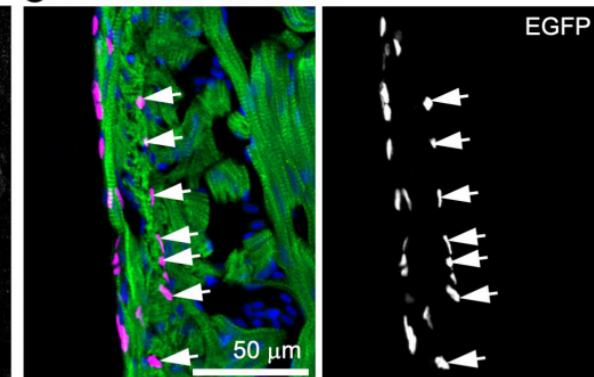
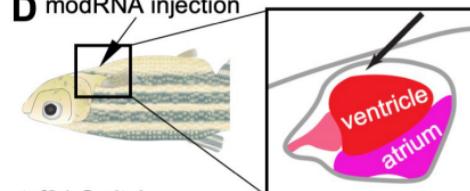
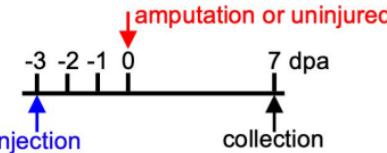
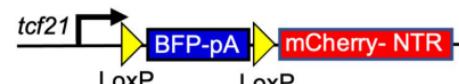
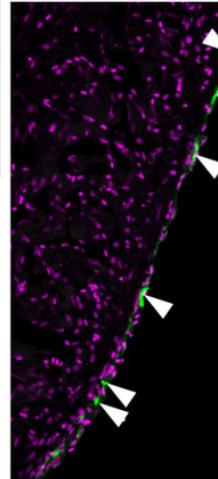
Figure 6. aEPCs give rise to the epithelial and mesenchymal epicardial cells.

(A-C) Section images showing HCR staining results of *hapln1a* (green) and *ptx3a* (magenta) at 3 (A), 7 (B), and 14 dpa (C). Epicardial cells are labeled with *tcf21:nucEGFP* (blue). Arrows in A-C indicate representative *hapln1a*⁺ cells. The brackets in B outline the regenerated regions that express *hapln1a*. White dashed lines indicate the injury sites. Scale bars, 50 μ m. **(D)** Schematic of transgenic lines and experimental design to define the fate of aEPCs. 4HT was used at 5 μ M. **(E)** Orthogonal view of a z-stack image showing the ventricular surface layers from hearts carrying the *ubi:Switch;ptx3a:CreER*^{t2} reporters. A maximum projection image of the x-y plane is shown with *hapln1a* expression (HCR staining) in green and mCherry in magenta. White lines and numbers indicate positions for views of the y-z planes (right) and the x-z planes (top), respectively. Nuclei were stained with DAPI (blue) and was omitted from the maximum projection image to keep image clarity. Arrows indicate representative *hapln1a*⁺mCherry⁺ cells. Arrowheads indicate mCherry⁺ cells in the epithelial layer. Scale bar, 50 μ m. The framed regions are enlarged to show details in F. **(F)** Optical section (z-stack) images of the framed regions in E. Arrows indicate *hapln1a*⁺mCherry⁺ cells. Scale bar, 20 μ m. **(G)** Orthogonal view of a z-stack image showing the ventricular surface layers from hearts carrying the *ubi:Switch;ptx3a:CreER*^{t2} reporters. An optical section image (x-y plane) is shown at the bottom, and the x-z plane of z-stacks is shown on top. mCherry and HCR staining signals of *podxl* are shown in magenta and green, respectively. The white line indicates position for the view of the x-z plane. Arrowheads indicate *podxl*⁺mCherry⁺ epithelial epicardial cells. **(H)** A UMAP highlights pseudotime trajectories a and c.

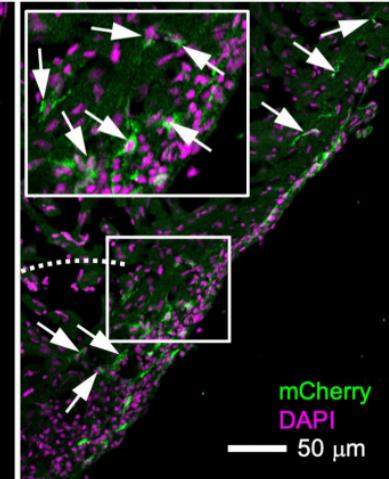
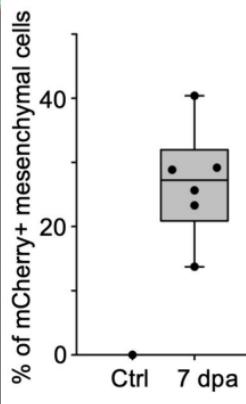
Figure 7. aEPC ablation blocks heart regeneration.

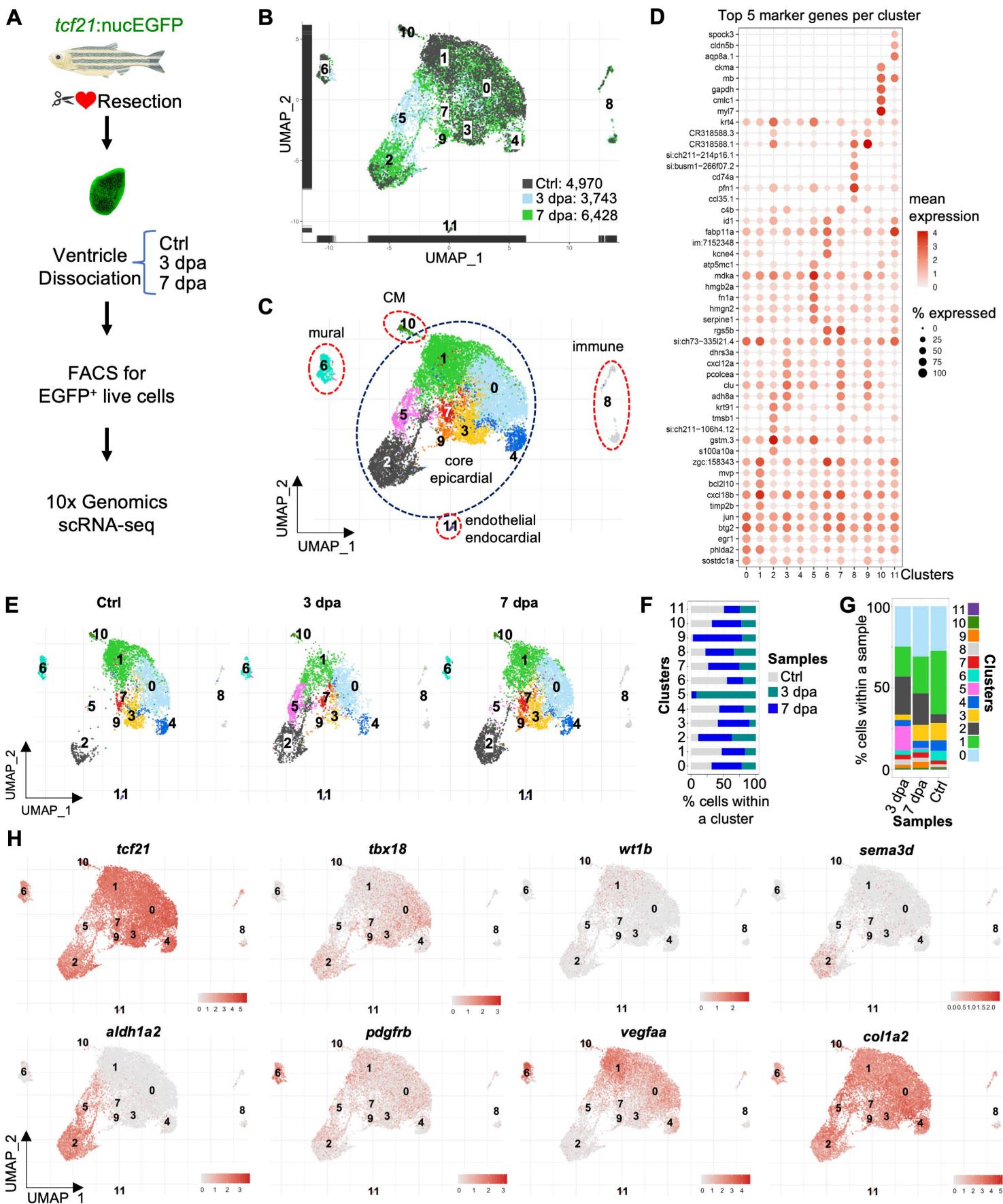
(A) Experimental design. Siblings carrying the *ptx3a*^{RNTR} allele and /or the *tcf21:nucEGFP* reporter were treated with 5 mM Mtz or vehicle (Ctrl) from 3 dpa to 5 dpa. **(B)** Whole mount images of hearts collected at 7 dpa. Dash lines denote the injury sites. Large blood clot and extra tissue were observed in hearts of Mtz treated NTR⁺ animals (13 of 14) but not in those from the vehicle-treated NTR⁺ fish (12 of 18) or Mtz treated NTR⁻ fish (11 of 16). Scale bar, 200 μ m. **(C)** Section images of injured ventricles from 3 treatment groups at 7 dpa. The epicardial cells are labeled with *tcf21:nucEGFP* (green). Nuclei were stained

with DAPI (magenta). White dashed lines indicate the injury sites. Scale bar, 100 μ m. (D) Quantification of EGFP $^+$ cells in the wound region from experiments in (C). From left to right, n = 8, 8, and 7, respectively. NS, not significant. Student's *t* test. (E) Section images of injured ventricles from 3 treatment groups at 7 dpa. Ventricular CM proliferation was assessed by anti-PCNA (green) and Mef2 (magenta) staining. Nuclei were stained with DAPI (blue). The framed regions are enlarged to show proliferating CMs (some denoted with arrowheads). (F) Quantified PCNA $^+$ CM indices in injury sites in experiments from (E). From left to right, n = 16, 16, and 14, respectively. NS, not significant. Student's *t* test. (G) Section images of ventricles at 30 dpa stained with Acid Fuchsin-Orange G to characterize non-muscle components in the injuries (blue for collagen, red for fibrin). (H) Semiquantitative assessment of cardiac injuries based on muscle and scar morphology (robust, partial, or blocked regeneration). Data were analyzed using Fisher's exact test. n = 13 for each treatment group. NS, not significant.








Figure 8. aEPC ablation reduced *nrg1* and *hapln1a* expression in the wound.

(A) Section images of the injury site showing HCR staining of *nrg1* in green and *tcf21:nucEGFP* in magenta. The framed regions are enlarged to show details with arrowheads denoting representative *nrg1* $^+$ EGFP $^+$ cells. Scale bar, 50 μ m. (B) Quantification of *nrg1* $^+$ epicardial cells in the wound regions shown in (A). From left to right, n = 8, 8, and 9, respectively. NS, not significant. Student's *t* test. (C) Section images of the injury site showing HCR staining of *hapln1a* in green and *tcf21:nucEGFP* in magenta. Arrowheads indicate representative *hapln1a* $^+$ EGFP $^+$ cells. Scale bar, 50 μ m. (D) Quantification of *hapln1a* $^+$ EGFP $^+$ cells in the wound regions shown in (C). From left to right, n = 9, 10, and 13, respectively. NS, not significant. Student's *t* test.



Figure 9. Tgf β signaling regulates aEPC EMT and differentiation.


(A) UMAPs showing *tgfb1a* and *snai1a* expression across samples. The aEPC population (cluster 5) is highlighted in frames. (B) Section images of the injury site showing HCR staining signals of *tgfb1a* and *snai1a* at 3 dpa in green and magenta, respectively. *col12a1b* EGFP is shown in blue. The white dash line denotes the injury site. The framed region is enlarged to show details on the right with different channel combinations. DAPI

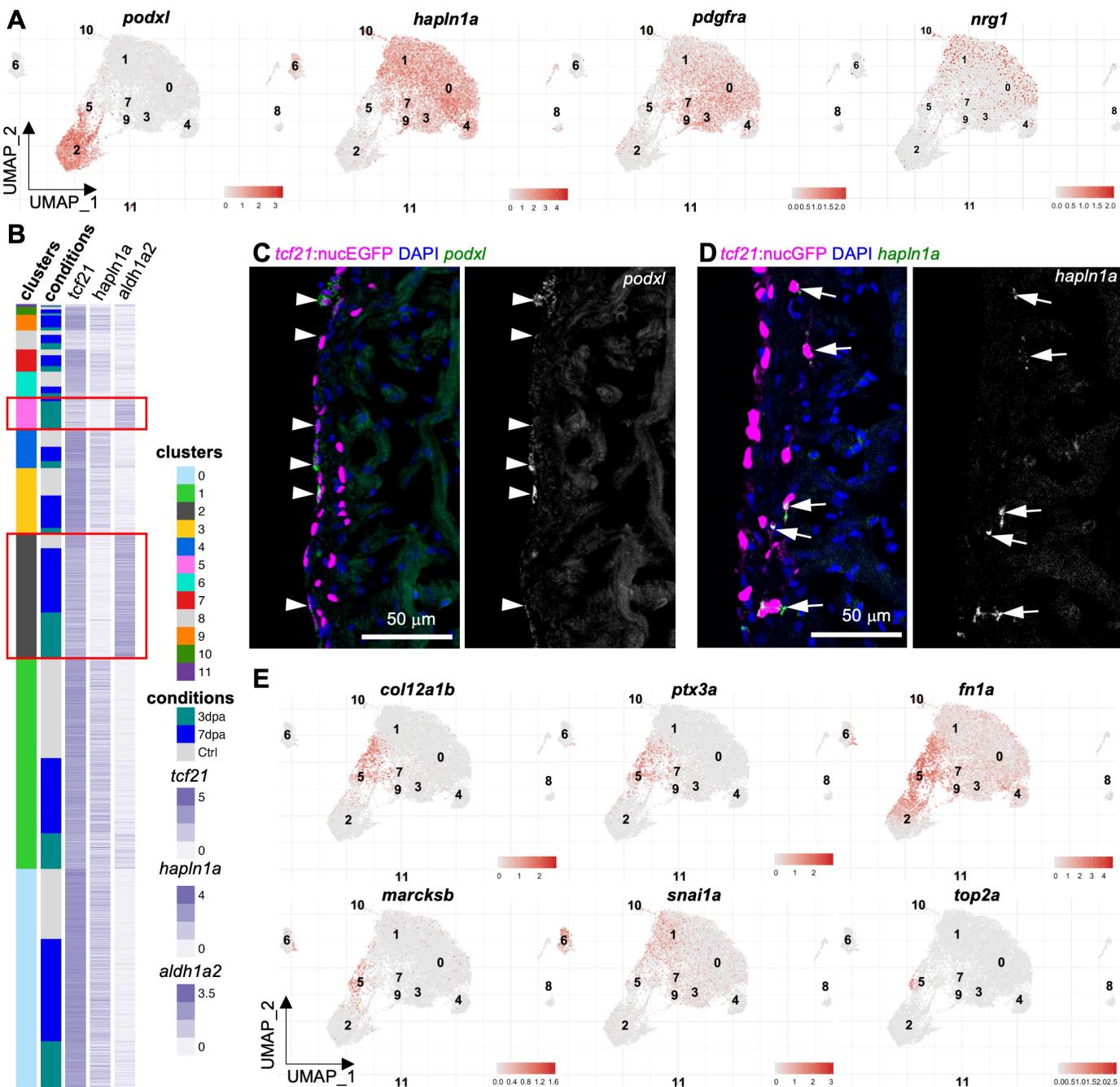
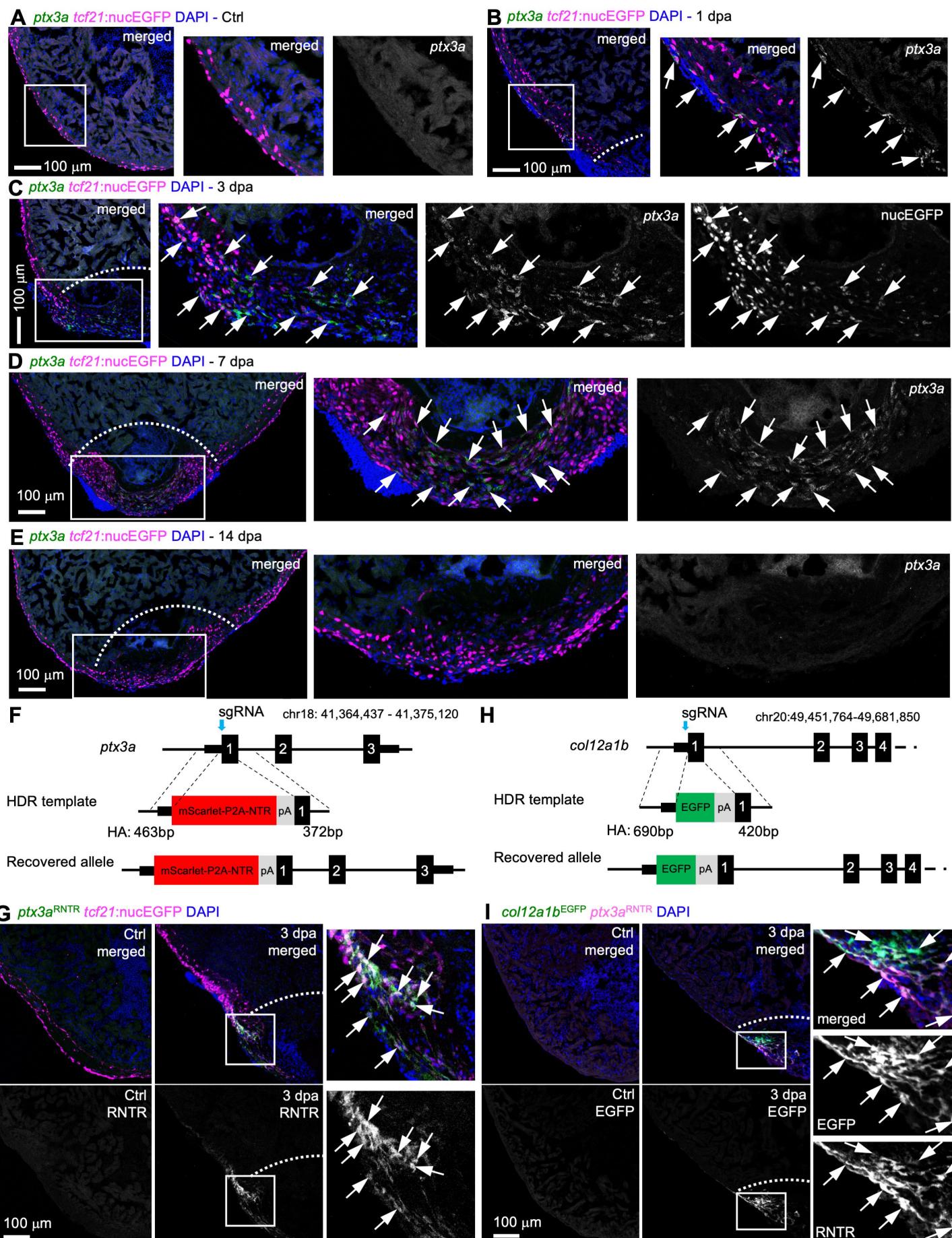
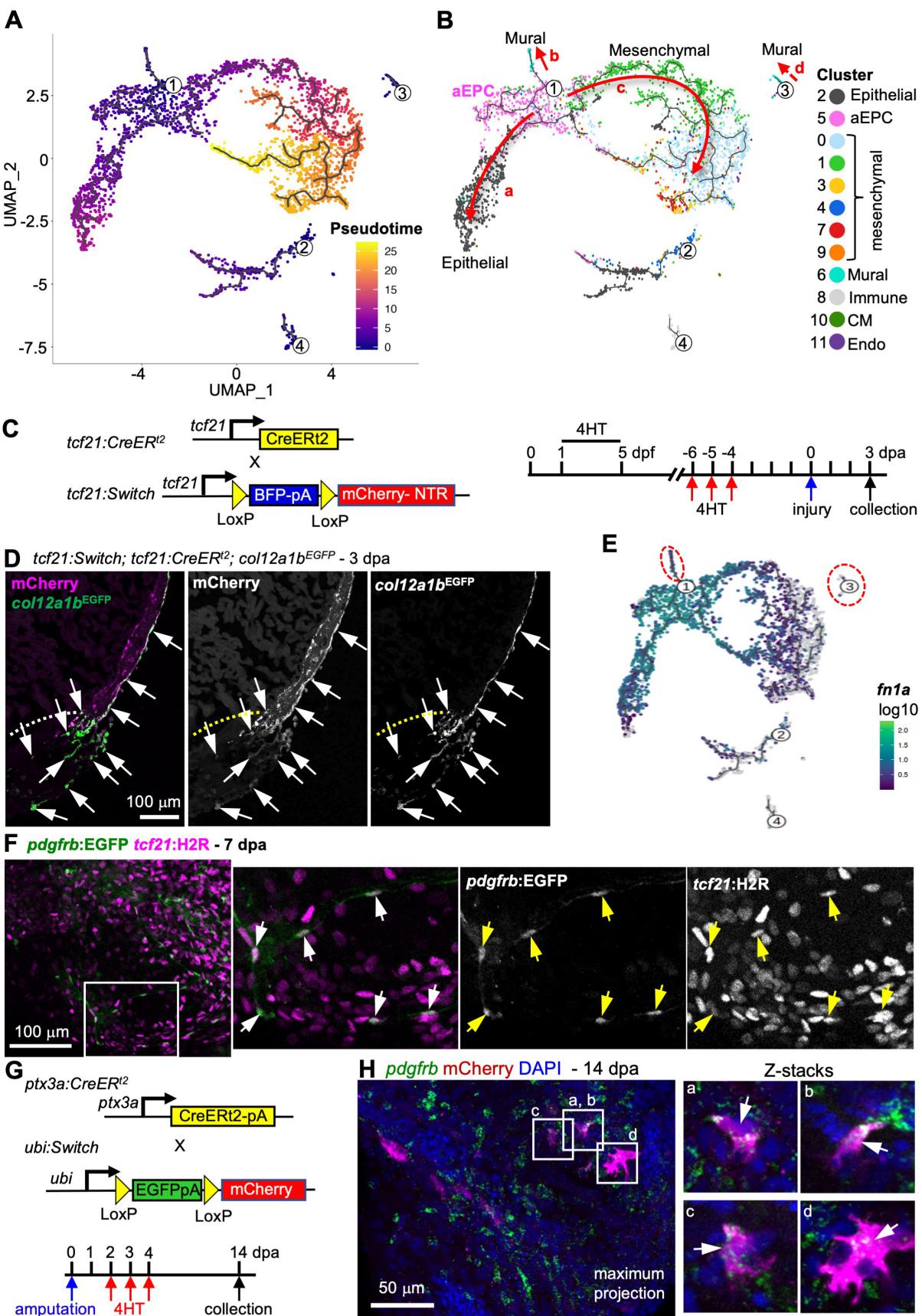
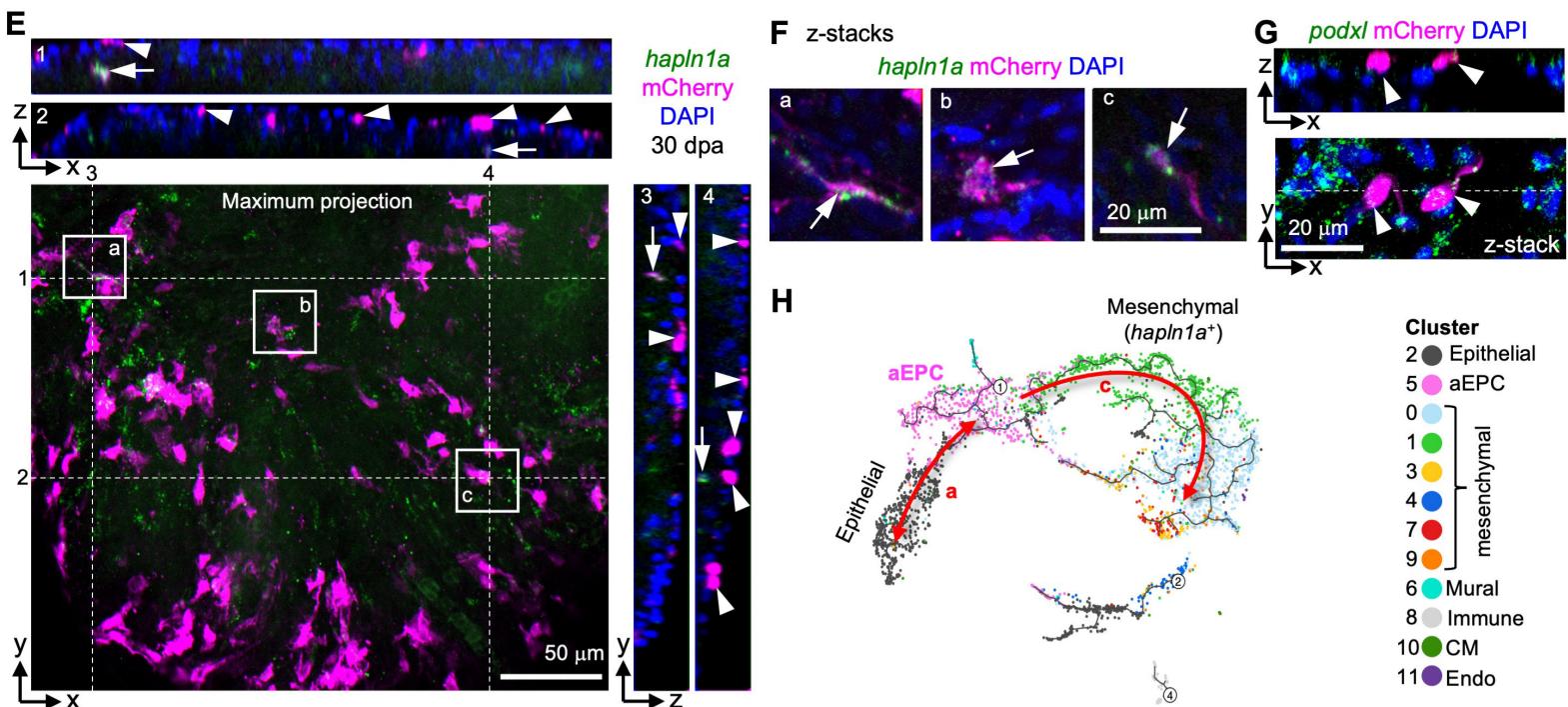
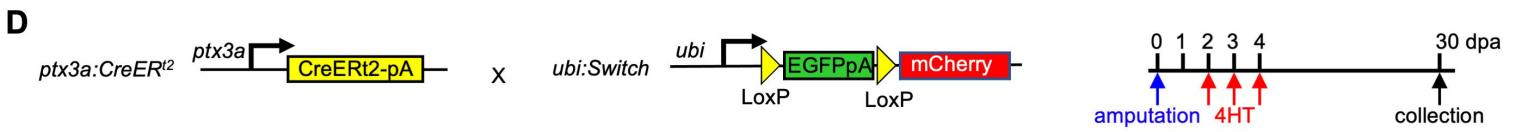
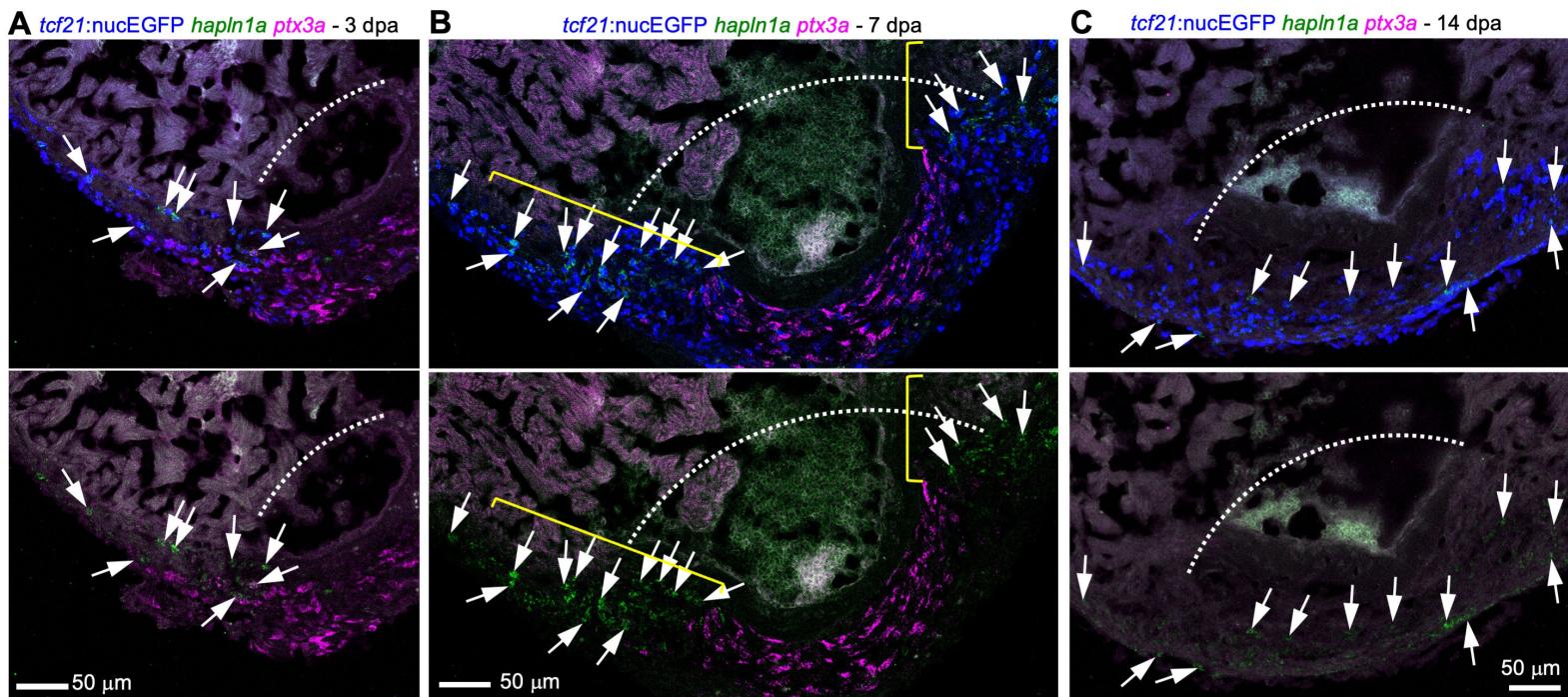

staining is shown in white in the last panel. Arrowheads indicate representative *tgfb1a*⁺*snai1a*⁺EGFP⁺ cells. **(C)** Experimental design for SB431542 treatment. **(D)** Whole-mount images of hearts collected at 7 dpa. Dash lines denote the injury sites. Large blood clot and extra tissue were observed in SB431542-treated hearts (7 of 7), but not in those from the DMSO-treated fish (5 of 6). Scale bar, 200 μ m. **(E)** Section images of injured ventricles at 7 dpa. The epicardial cells are labeled with *tcf21*:nucEGFP (magenta) and HCR staining signals of *ptx3a* in green. Nuclei were stained with DAPI (blue). White dashed lines indicate the injury sites. The framed regions are enlarged to show details with arrowheads indicating representative *ptx3a*⁺EGFP⁺ cells. Scale bar, 100 μ m. **(F-H)** Quantifications of *tcf21*:nucEGFP⁺ nuclei in the wound region (F), average thickness of the epicardial cap covering the wound (G), and number of *ptx3a*⁺ cells (H) from experiments in (E). n = 6 (DMSO) and 7 (SB431542), respectively, for each quantification. Student's *t* test. **(I)** Section images of the injury site showing HCR staining of *hapln1a* in green and *tcf21*:nucEGFP in magenta. The framed regions are enlarged to show details with arrowheads indicating representative *hapln1a*⁺EGFP⁺ cells. Scale bar, 100 μ m. **(J)** Quantification of *hapln1a*⁺EGFP⁺ cells in the wound regions shown in (I). n = 6 (DMSO) and 7 (SB431542), respectively. Student's *t* test. **(K)** The working model. For simplicity, mesenchymal epicardial cells away from the injury site are omitted. The dashed lines indicate predicted mechanisms.

Figure 1**A****B** *tcf21:nucEGFP* *aldh1a2***C** *tcf21:nucEGFP* *Tnt* *DAPI***D** modRNA injection*tcf21:Switch***E** Uninjured (Ctrl)


7 dpa


F $P < 0.0001$




Figure 2

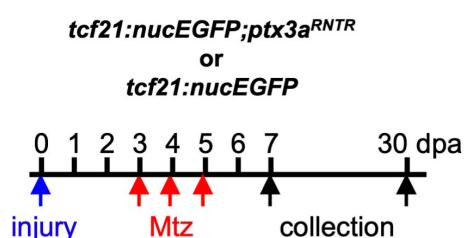
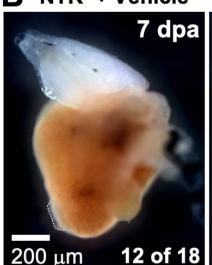
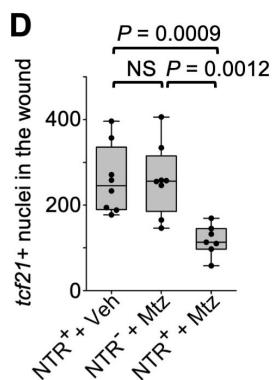
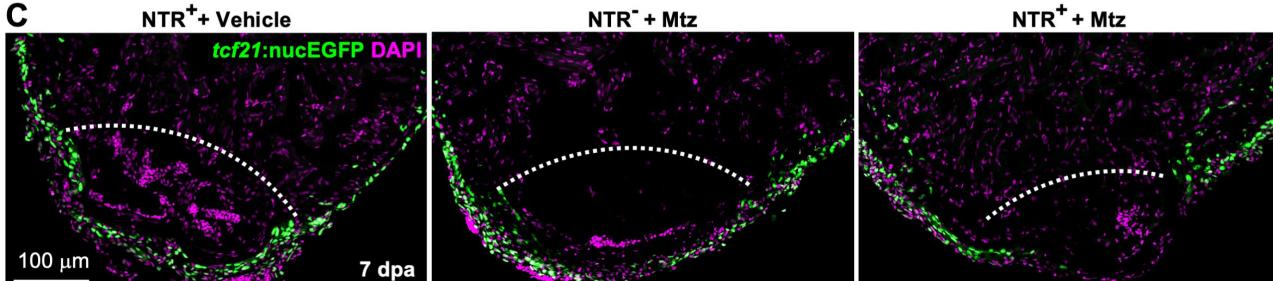
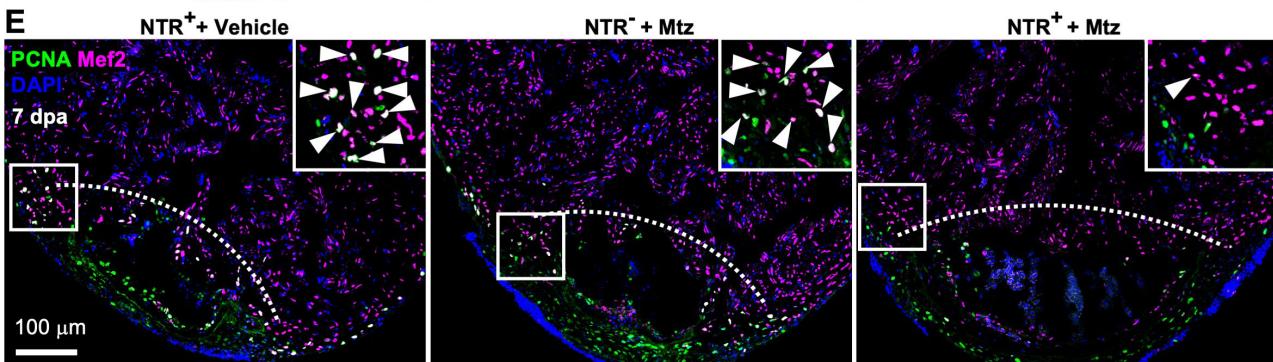
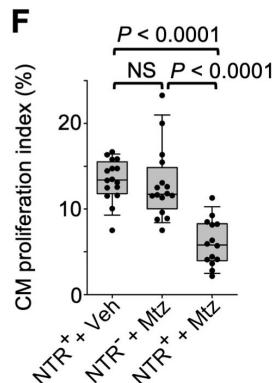
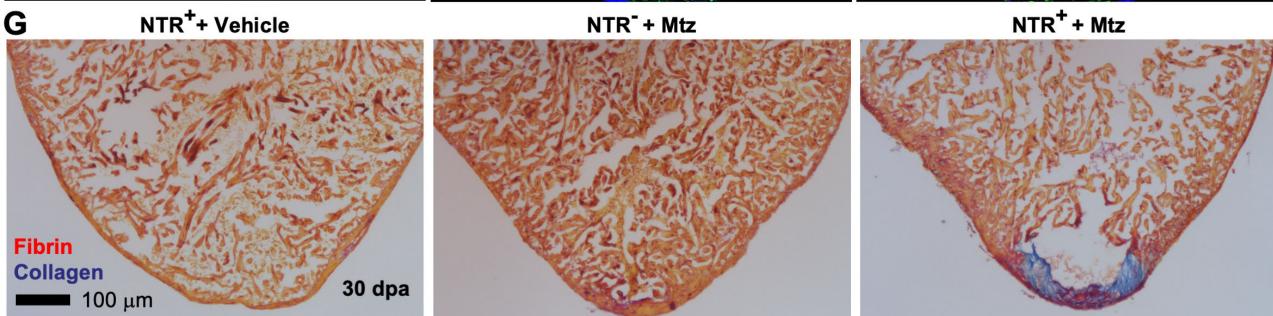
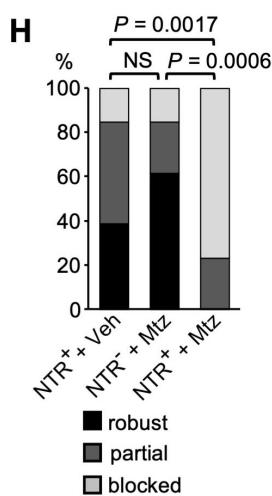








Figure 3

Figure 4

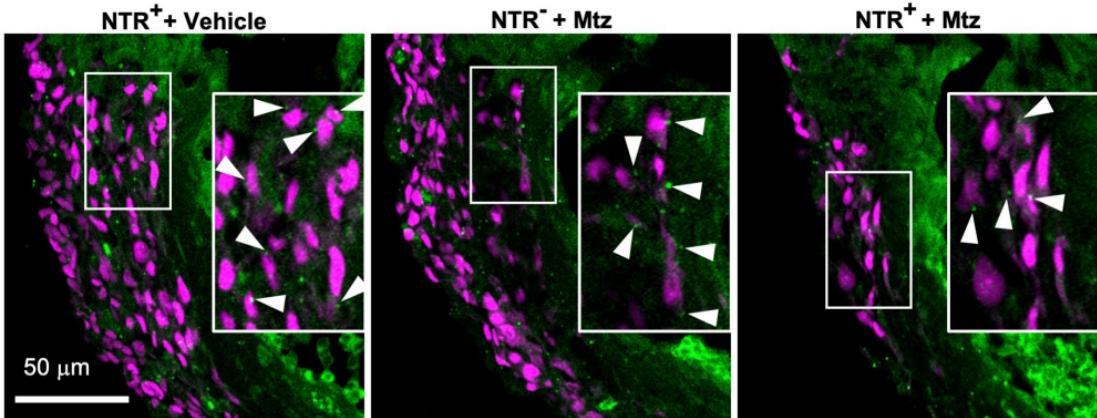
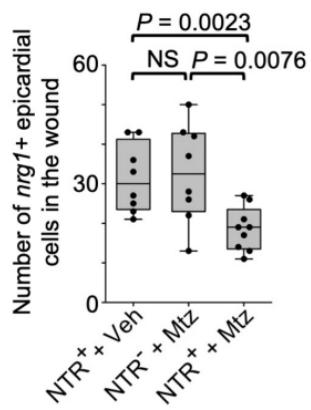
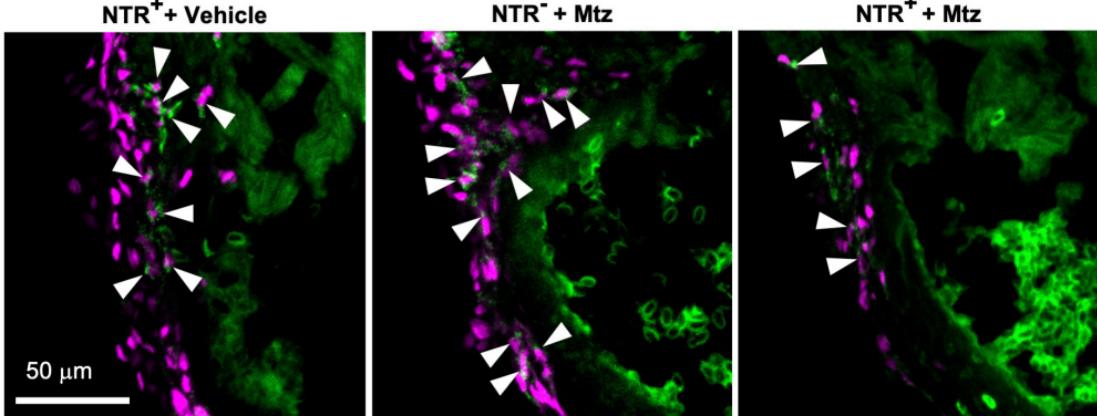
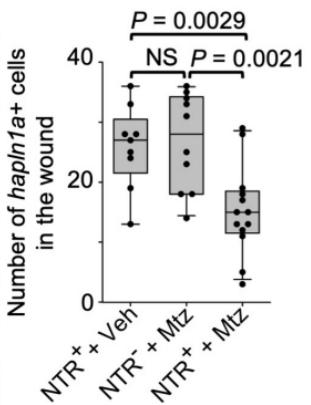
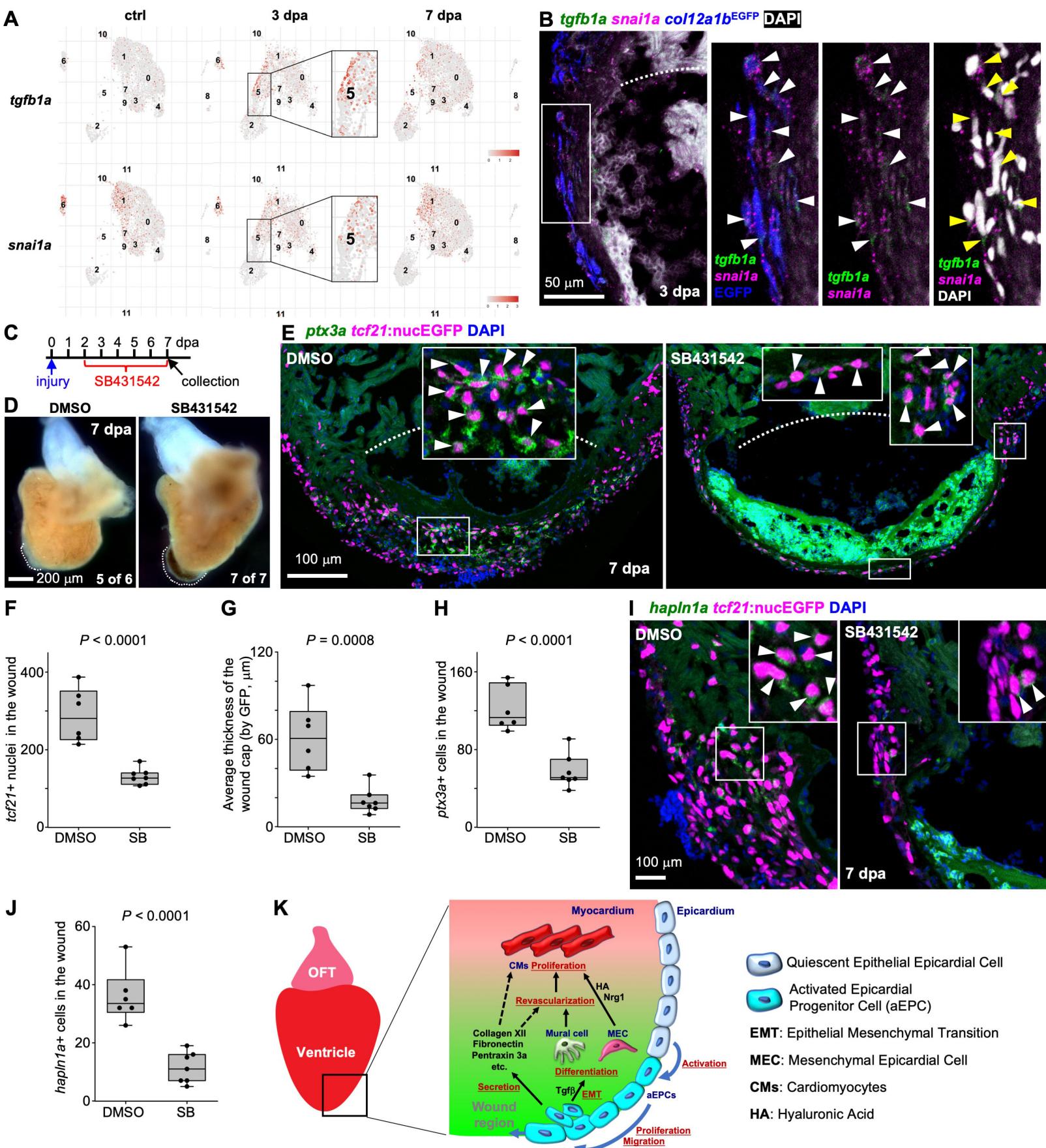


Figure 5

Figure 6



Figure 7**A****B** *NTR⁺ + Vehicle**NTR⁻ + Mtz**NTR⁺ + Mtz***D****C****E****F****G****H**


Figure 8

A *nrg1* *tcf21:nucEGFP*, 7 dpa

B

C *hapln1a* *tcf21:nucEGFP*, 7 dpa

D

Figure 9