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Abstract 
Our visual perception seems effortless, but the brain has a limited processing capacity 

which curtails the amount of sensory information that can be brought into conscious 

awareness at any moment in time. A widely studied exemplar of this limitation is the 

‘attentional blink’ (AB), in which observers are unable to report the second of two rapidly 

sequential targets if it appears within 200-500 ms of the first. Despite the apparent ubiquity 

of the AB effect, its computational and neurophysiological underpinnings have remained 

elusive. Here we propose a simple computational model of temporal attention that unifies 

the AB with spatial and feature-based attention. We took a novel, integrative approach 

involving human psychophysics and functional brain imaging, along with neuronal 

recordings in mice to test this model. Specifically, we demonstrate that the AB only arises 

when visual targets have dissimilar representations in the brain but is absent when both 

targets have the same representation. Similarity in this context can be determined either by 

elementary features such as edge orientation, or by acquired, high-level factors such as 

numerical or alphabetical order. In this parsimonious model of the AB, attention to an initial 

target establishes a perceptual filter that is tuned to its unique representation in the brain. 

Subsequent items that match the filter remain available for conscious report, whereas those 

that do not match elude awareness altogether.  
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Introduction 
One of the most persistently difficult challenges in sensory neuroscience has been to  

determine the limits on conscious awareness. It is generally understood that humans have 

limited capacity to bring all information that reaches their sensory receptors to the level of 

awareness. Attention allows us to prioritize just one or two items toward which we can 

guide our motor actions, at the expense of all others1,2. A prominent example of this 

limitation occurs when people are asked to monitor a stream of sequential items and report 

the identity of two target items embedded within the stream. People can typically report the 

identity of the first item (T1) but not the second (T2) when these items are separated by 

200-500 ms, a phenomenon known as the attentional blink (AB)3-5. There are currently 

multiple accounts for the AB, with most arguing that the deficit results from the target 

presentation rate exceeding the brain’s processing capacity. Here we propose an 

alternative account, which we call ‘representational enhancement’, which is derived from 

the same mechanism as spatial and feature-based attention. On this account, the second 

item within a sequential stream is not missed because of the limited capacity of working 

memory; rather, it is missed because the act of selecting the first item alters the filter 

controlling conscious awareness of the second item. That filter is tuned to items that 

possess a similar neural representation to the first target.  

 The neural underpinnings of many aspects of selective attention are now relatively 

well understood. Spatial attention increases neural responses to attended items with a 

corresponding decrease in responses to items in unattended locations1,6. Similarly, if 

attention is directed to specific features, neurons selective for those features show an 

enhanced response regardless of the item’s location7,8. Attending to one item has 

predictable effects, such as enhancing perceptual sensitivity for stimuli presented at the 

attended location and a degradation of sensitivity for items presented elsewhere9,10. 

Collectively, these findings suggest that the visual system has a homeostatic-like allocation 

of processing resources, such that the neural response is amplified for attended locations 

or features at the expense of unattended locations and features.   

Theories that account for the second-item deficit in an AB stream are generally 

considered separately from those proposed to account for the effects of spatial- and 

feature-based attention. One class broadly argues that missing T2 is due to extended 

processing of T1, resulting in insufficient resources being available for T23,4,11. Another 
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class instead argues the deficit reflects the cost of switching between target and distractor 

processing12-14. A third class posits the AB is caused by over-investment of attention to T1 

rather than a limit in processing resources15,16. This third class is motivated by findings that 

show a reduction in the AB when participants’ attention to the task is reduced due to mind 

wandering17  or surrounding distractor items15. Unlike theories of spatial attention, neural 

evidence for specific theories of the AB is relatively scarce. Human brain imaging studies 

have revealed a decreased late-stage component (P300) associated with missing T218  and 

a decrease in activity in the retinotopic location of T119  during the AB. As another example, 

the feature-selective representation of T2 is reduced in the presence of AB20,21. While these 

results provide some information about the neural underpinnings of the AB, no work has 

directly related the findings to the neurophysiological literature on spatial and feature-based 

attention. Overall, the three classes of theories seem to explain subsets of the AB features 

and the neural correlates of the AB in a manner that is distinct from the spatial and feature-

based attention literature.    

  The current work asks whether we can place the AB within the well-established 

framework of spatial and feature-based attention to create a unified theory. Recall that 

according to spatial and feature-based theories, attending to one item enhances its neural 

representation, with a corresponding decrease in neural representations of unattended 

items. A consequence of this enhancement is that items that are represented similarly will 

receive enhanced processing whereas those that have dissimilar representations will be 

suppressed. To explain the AB by the same mechanism, we propose that as T1 is attended 

for identification, its representation becomes enhanced, with the representational similarity 

of T1 and T2 determining the strength of the AB. If T2 has a dissimilar representation to T1, 

then its activity will be suppressed, whereas T2’s representation will be enhanced and 

accurately reported if it has a similar representation to T1. Note that most AB studies have 

used English alphanumeric characters as targets, which on average tend to have dissimilar 

representations from one another. In such studies, therefore, the AB is evident in most 

trials.  

Here we used a wide-ranging, multimodal approach to determine whether attending 

to T1 causes the brain to establish a filter for similarly represented targets. We combined 

human psychophysics and brain imaging, mouse imaging and computational modelling, to 
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provide support for this unifying account of the AB that places it within the existing 
framework of spatial and feature-based attention (the ‘representational similarity’ account). 

Results 

Computational model of attentional blink  
We began by creating a formalised model of attention based on representational 

similarity that is consistent with well-known spatial and feature-based accounts of 

attention1,2,7. We start with a simple model that uses orientation as a representational 

feature, which allows us to quantify differences in representation between the targets (T1 

and T2) in a well-established neural feature space. The model consists of six ‘neurons’, 

each tuned to a different orientation (0° to 150° in 30° steps). At the beginning of each trial, 

the population is equally sensitive to all orientations (Figure 1A), but this changes after T1 

presentation (Figure 1B). The sensitivity of the channels is adapted by the inverse of their 

response to the orientation of T1, thus suppressing the non-activated channels. This has 

the same effect as priming or enhancing the activated channels while not affecting the non-

activated channels, and is consistent with how spatial and feature-based attention affects 

neuronal population activity7,8,22,23. T1 therefore creates a filter which allows T2 to generate 

a large neural response only if its orientation is similar. When the orientation of T2 is 

different the response will be suppressed. There are many well-known studies and theories 

suggesting that we only consciously perceive targets if the corresponding neural response 

exceeds a certain threshold24,25. If this threshold is not reached then the global, brain wide 

‘ignition’ of activity which corresponds with conscious awareness does not occur.  

In our model, the response of the population to T2 depends on the difference in 

orientation between T1 and T2 (Figure 1C), with the largest response occurring when the 

orientations are most similar, and which is gradually diminished with greater orientation 

differences. This is consistent with psychophysical and neural data showing attention to an 

orientation has a greater effect on nearby, relative to distant, orientations26,27. The resulting 

T2 response (given by the vector sum of the population response) is also biased toward the 

T1 orientation. This arrangement predicts that the perceived orientation of the second target 

will be attracted toward the orientation of the first target. This is consistent with the well-

known serial dependency effect, in which the orientation of a target is attracted toward the 

orientation of the previously-presented target28,29.  
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Figure 1. Computational model of stimulus-selective attention to predict perceptual and 
neural data. The population of neurons is equally sensitive to all orientations before T1 (A) 
but after a 90° T1 is presented, the selectivity of the channels is enhanced relative to their 
response (B). (C) The response of the population to T2 depends on the difference in 
orientation between T1 and T2. The blue vertical line shows the presented T2 orientation 
and the red line shows the population decoding orientation given by the vector mean. It is 
evident that the decoded orientation will be biased toward the T1 orientation with the largest 
biases at 30° to 60° orientation difference between T1 and T2.  

Experiments 1 – Conscious awareness of the second target relies on target similarity 
We designed a simple visual task to test our representational-similarity model of the 

AB20. Participants (N = 22) were presented with a rapid (8.33 Hz) stream of 20 pseudo-

randomly oriented Gabor items and were asked to determine the orientation of the two 

targets (T1 and T2) which had higher spatial frequencies than the intervening distractor 

items (Figure 1AB). Using Gabors allowed us to quantify the difference between the 

successive targets’ orientations. To track any bias on a trial-to-trial basis, we used a 

reproduction task, where participants replicated the target orientations at the end of the trial. 

The Lag (the number of items T2 appeared after T1) was varied to measure the time course 

of attentional selection. We characterised accuracy for correctly reproducing the target 

orientation (within ±30 degrees of the presented orientation) separately for the two targets.  
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Figure 2. Using a Gabor RSVP task to determine the effect of similarity on temporal target 
selection in Experiments 1 and 2. (A) Schematic of the Gabor RSVP task. Participants 
viewed a stream of Gabors and were required to reproduce (B) the orientation of the two 
higher-spatial frequency targets. Trials where the participant reproduced the orientation 
within 30° of the true orientation were classified as correct. Lag is defined as the difference 
in item positions between T1 and T2. Trials were classified as similar or dissimilar 
depending on the orientation difference between the two targets. (C) Behavioural accuracy 
for T1 and T2 for each Lag for Experiment 1. (D) Accuracy as a function of the difference in 
orientation between T1 and T2. For T2, only trials where T1 was correctly reported were 
included. Dots are the psychophysical data, and the fitted line is the Gaussian function used 
to quantify the tuning. The right-most panel shows the amplitude of the Gaussian, fitted to 
each participant’s data separately, for all lags. The asterisks show when the amplitude was 
significantly greater than 0 (Bonferroni-corrected). (E) The bias in reported orientation by 
the difference in orientation between T1 and T2. Data have been replotted from Tang, et 
al.19. The fitted line is the first derivative of a Gaussian used to quantify the bias. Across all 
panels the error bars and shading indicate ±1 standard error. 

To provide an initial test of the model’s prediction, we first split trials depending on 

the degree of difference in orientation between the targets (Figure 2C). T1 accuracy was 
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significantly higher when the orientations of T1 and T2 were similar than when they were 

different (Figure 2C). This effect was more pronounced when the targets were presented 

sequentially at Lag 1. A 2 (Similarity; Similar, Dissimilar) x 5 (Lag; 1,2,3,5,7) repeated-

measures ANOVA confirmed a significant effect of Similarity (F(1,21) = 42.08, p < 0.001,Ƞ2 

= 0.23), Lag (F(2.64,55.38) = 29.22, p < 0.001,Ƞ2 = 0.24), and the interaction between 

these factors (F(2.43,51.00) = 10.20, p < 0.001,Ƞ2 = 0.08) on T1 accuracy. For T2 accuracy 

(calculated only on trials where T1 was correct), targets with dissimilar orientations showed 

the classic AB phenomenon, with significantly lower accuracy at Lags 2 and 3 which 

recovered by Lags 5 and 7.  

Notably, however, the AB was significantly reduced when the successive targets had 

similar orientations, with participants being able to report both items regardless of the 

interval. A 2 (Similarity) x 5 (Lag) repeated-measures ANOVA supported these 

observations. There were significant effects of Similarity (F(1,21) = 6.76, p = 0.01, Ƞp2 = 

0.24), Lag (F(2.29,48.08) = 9.56, p < 0.001, Ƞp2 = 0.31), and the interaction between these 

factors (F(3.11,65.32) = 8.31, p < 0.001, Ƞp2 = 0.28) on T2 accuracy. To confirm the 

difference between conditions, separate repeated-measures ANOVAs for each Similarity 

condition showed a significant effect of Lag for dissimilar (F(2.39,50.23) = 13.82, p < 0.001, 

Ƞp2 = 0.41), but not similar (F(3.10, 65.15) = 1.89, p = 0.12, Ƞp2 = 0.08), trials.  

The effect of target similarity on accuracy extends beyond a simple split between 

similar and dissimilar trials. We re-analysed the data from Experiment 1 but now plotted 

accuracy as a function of the difference in orientation between the two targets (Figure 2D). 

This revealed an orientation-selective effect of similarity on accuracy for both T1 and T2 

with the same tuning predicted by our model. The highest accuracy was observed when the 

target orientations were most similar, and this decreased as the orientations of the two 

targets became more dissimilar. Remarkably, when the targets were similar, T2 accuracy 

was comparable to overall T1 accuracy across all Lags, suggesting the AB was not present 

for similar targets. To further quantify this tuning, Gaussian functions were fit to each 

participant’s accuracy for each Lag (see Methods). This showed significant orientation 

modulation of accuracy for all targets and lags. A 2 (Target; T1, T2) x 5 (Lag; 1,2,3,5,7) 

within-subjects repeated-measures ANOVA showed the magnitude of the tuning decreased 

with Lag (F(4,84) = 6.84, p < 0.001,Ƞp2 = 0.25), with the decrease in Lag being dependent 
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on the interaction with Target (F(4,84) = 3.10, p = 0.02, Ƞp2 = 0.13), but with no main effect 

of Target (F(1,21)<1).  

The finding that accuracy is determined by the orientation difference between 

successive targets extends our previously-reported effect where the perceived orientations 

of targets are attracted to each other20. Figure 2E shows bias in reported orientation by the 

orientation difference between the targets. While on average the orientation errors are 

centred around 0°, there are systematic biases in perceived orientation that emerge 

depending on the orientation difference between the targets. When T1 is clockwise of T2, 

the perceived orientation of T2 is biased clockwise for positive differences and the 

corresponding effect when T1 is anti-clockwise of T2. These effects are directly analogous 

to serial dependency effects where the largest attraction occurs when the targets are ~45° 

apart28,29. This is true despite the fact that unlike most studies examining these effects, the 

targets in our task were presented much closer together in time and perceptual judgements 

were made after both stimuli had been presented. Similar to accuracy, a 2 (Target) x 5 

(Lag) within-subjects repeated-measures ANOVA revealed that the magnitude of the bias 

decreased across Lag (F(3.00,63.10) = 8.72, p < 0.001, Ƞp2 = 0.29), with the decrease in 

Lag dependent on the interaction with Target (F(3.00,63.06) = 4.22, p = 0.004, Ƞp2 = 0.17), 

but with no main effect of Target (F(1,21) = 2.35, p = 0.14, Ƞp2 = 0.10).  

Figure 3 uses the model to predict the exact pattern of behavioural results observed 

in Experiment 1. We first binned the trials into the orientation difference between T1 and T2 

for accuracy at the height of the AB (Lag 2, Figure 2A, red points). We then plotted the 

amplitude of the orientation channels (given by the vector sum) to these data for all 

differences in orientation between T1 and T2 (solid line). The figure shows that the model 

provides an excellent fit for the behavioural results with the magnitude of the population 

response showing the same orientation dependency. Next, we used the same trials but 

found the model’s prediction of the perceived orientation (given by the vector mean). There 

is a strong theoretical relationship between the population response and behavioural 

accuracy. Numerous previous studies have found that accuracy is higher when there is a 

larger neural response. Furthermore, global workspace theories predict that conscious 

awareness of targets only occurs when the neural response exceeds a certain 

threshold24,25. Our findings from Experiment 1 fit well with this prediction as T2 is more likely 
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to be missed when there is a large orientation difference and a predicted smaller neural 

response.  

 
Figure 3. (A) The model’s predictions (black line) against behavioural data (red points) from 
Experiment 1, replotted from Figure 1. Bias in reporting orientation. (B). Same as C but with 
accuracy for T2 Lag 2 (for T1 correct trials). Error bars indicate ±1 standard error.  
 
Experiment 2 – Testing the representational model of the AB against EEG activity 

 
To investigate the time course of these effects across different brain areas, we 

examined EEG activity from a second group of participants (N = 23) who completed the 

same dual-target Gabor RSVP task as used in Experiment 1. To increase experimental 

power, we only presented targets at Lags 3 and 7, but all other details of the experiment 

were the same. We first investigated the time course and neural loci of these representation 

effects on attention by examining the event-related potentials (ERPs; Figure 4A). The 

similarity between the targets caused two distinct patterns; one early sensory response and 

a later frontal effect (Supplementary Figure 1). Shortly after T2 presentation (203 to 257 

ms), there was a larger response to dissimilar relative to similar stimuli in clusters of both 

visuo-parietal and frontal electrodes. The effect was strongest over the occipital sensors, 

with the sign of the activity flipped in the frontal sensors suggesting a common EEG dipole 

located in the visuo-parietal areas. Furthermore, the time course suggests the effect 

originates in sensory processing areas, in which stimulus-driven activity is evoked rapidly. 

This was followed by a later effect (545 to 594 ms) in frontal electrodes, where again 

dissimilar trials resulted in a larger response compared with similar trials. Interestingly, the 

AB is commonly associated with late-stage ERP differences (P300, ~300-500 ms) following 

the second target18. We have also recently shown very early effects (~100-200 ms) using 
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this task20, which is consistent with the time course of other work examining the difference 

between consciously- and unconsciously-perceived stimuli30  and work showing the AB is 

related to changes in processing in the primary visual cortex (V1)19. The differences 

between the latency may reflect the different processing level for the stimuli (Gabors versus 

letters). These results point to the topography and timing (Supplementary Figure 1) of the 

changes in occipital activity, with the earliest difference likely reflecting a filter/template 

emerging early in the visual processing hierarchy following T1 presentation.    

 
Figure 4. (A) The event-related potentials (ERP) for Experiment 2. ERP signals are 
averaged across the cluster-permutation significant occipital-parietal electrodes. The 
shaded area indicates cluster-corrected significant differences between the two conditions 
(similar and dissimilar). (B) The response of the population of neurons to different T2 
orientations relative to T1. Forward encoding of orientation selectivity in EEG activity from 
Experiment 2 with different models used to predict orientation response. Results are 
averaged between 100 and 250 ms after the stimulus. (C) Time-resolved forward encoding. 
(D) Gaussians were fit to the time-resolved encoding results to quantify orientation 
selectivity with greater Gaussian amplitudes reflecting greater selectivity. Horizontal lines 
indicate significant cluster-permutated differences between Priming and No priming (blue) 
and Suppression and No-priming. Across all panels the error bars and shading indicate ±1 
standard error. 
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To provide a further test of the representational model, we used its outputs to predict 

the pattern of EEG activity recorded in Experiment 2. To do this, we used a modified 

version of forward encoding modelling, which uses a multivariate regression-based 

approach to find patterns of neural activity selective for feature-based activity, in this case 

orientation selectivity20,23,31-33. As this is a regression-based approach, it gives the 

opportunity to test different models of selectivity to see which most accurately predicts EEG 

activity on a trial-by-trial basis. We used three versions of the model to generate different 

regressors to predict the orientation of T2. In the first model, T1 was assumed to exert no 

influence on the response to T2 (no priming), with the regressor values being the same as 

the initial unbiased model (Figure 2A). The second model used the T1-priming model, 

where the channels selective for T1 have increased sensitivity relative to non-selective 

channels, to predict the response to T2 (Figure 4C). The third model was the classic 

adaptation model in which T1 decreased the sensitivity of the activated channels. The third 

model was included for two reasons. First, one theory argues that capacity limitations of 

channels determine the magnitude of the AB, with the largest AB occurring when the stimuli 

activate the same channels34. T1 would thus decrease the sensitivity of the activated 

channels in an adaptation-like fashion. Second, this model provides an important test to 

determine whether using the identity of T1 to modulate the activation pattern associated 

with T2 will necessarily lead to better multivariate decoding.  

This analysis revealed strong orientation selectivity for all three models (Figure F), 

with orientation presented at T2 being decoded significantly above chance. We fit Gaussian 

functions to each participant’s encoding results at each time point to quantify the time-

resolved orientation selectivity (Figure 4D). This showed that the priming model led to 

significantly better encoding of orientation selectivity, emerging ~100ms after stimulus 

presentation. The adaptation model, on the other hand, led to significantly worse decoding 

than the no-priming model. Overall, the model for orientation processing in which T1 primes 

the system for stimuli which are represented similarly captures the behavioural data well. 

As a bonus, this model explains more of the EEG activity than can be explained without this 

change in stimulus selectivity.   

Experiment 3 – Similarity effects extend to alpha-numeric digit targets 

 Experiments 1 and 2 provide support for our unifying model of temporal attention, in 

which attention decreases sensitivity to items that have dissimilar representations to the 
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target. Our results are consistent with the idea that attending to an initial target creates a 

transient filter that determines whether a second target will be consciously accessible. 

Priming the attended stimulus representation allows only similarly-represented stimuli to be 

accurately reported. 

We next examined whether this representational model of the AB extends beyond 

the simple orientation space into more complex feature space. To do this, we asked 

whether in a traditional RSVP stream consisting of alphanumeric items3,5, the AB is reduced 

when the targets are closely-spaced numbers. We chose an alphanumeric RSVP task 

because numerical representation follows a mental ‘number line’, with numbers increasing 

in magnitude from left to right along the line. This numerical representation has been 

demonstrated at both the cognitive and neural levels35-37. Furthermore, alphanumeric RSVP 

tasks are commonly used to measure the AB.  

 To test whether these similarity effects extend to numerical processing, we used a 

dual-target RSVP task in which the targets were numbers and the distractors were letters 

(Figure 5A38). Participants were required to report the targets using a keyboard. To 

determine whether target similarity affects conscious awareness, we calculated reporting 

accuracy by the numerical difference between the two targets (Figure 5B). Consistent with 

our model’s predictions, participants’ ability to report T2 depended on its similarity with T1, 

when the targets were separated by short (Lag 2) intervals, whereas this did not occur at 

longer intervals (Lag 7). Accuracy was maximal when the targets were only separated by 

one digit and worse at larger differences in magnitude, exhibiting the tuning-like effect seen 

in Experiment 1, but this time for numbers. Unlike the previous task, the targets in this 

experiment never had the same physical identity, which likely reduced the magnitude of the 

similarity effect. A 2 (Target; T1, T2) x 8 (Difference; -4 to +4) ANOVA on Lag 2 data 

confirmed that accuracy was higher for T1 than T2 (F(1,42) = 149.99, p < 0.001, Ƞp2 = 0.78) 

and the effect of Difference only occurred as an interaction with Target (F(5.68,238.70) = 

2.32, p = 0.04, Ƞp2 = 0.05), while there was no main effect of the Difference (F(5.63,236.34) 

= 1.45, p = 0.20, Ƞp2 = 0.03). For Lag 7 trials, accuracy was only higher for T1 than T2 

(F(1,43) = 16.87, p < 0.001, Ƞp2 = 0.28), while there was no significant interaction or main 

effect of Difference (Fs < 1). Overall, T1 appears to constrain conscious awareness of T2 

based on high-level, conceptual representations. 
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Figure 5. Similarity effects for target perception extend to more complex alphanumeric 
representations in Experiment 3 (N = 49). Targets were numbers and distractors were 
letters. In one trial, the identity of the target did not repeat, so targets were never the same 
number. The difference between targets was found for each trial. (B) Accuracy for Lag 2 
and 7 as a function of the difference between targets. The error bars indicate ±1 standard 
error. Data were originally published in Tang, et al. 33. 

Experiment 4 – Target priming in alphanumeric letters is driven by representational 

similarity  
 So far, we have shown that detecting a target causes the brain to create a temporary 

filter which allows for selection of targets items with similar neural representations. We have 

also shown that similarity can be defined by intrinsic, low-level features such as orientation 

as well as high-level representations like numerical value, which are known to have a 

relatively simple representation of sequential order. Our next goal was to extend our 

findings to alphabetical letter targets, which have been widely used to measure attentional 

selection in humans5,39. Letters have a very complex representational structure40,41, which is 

determined from low-level visual information, such as object form and orientation to high-

level information that is learnt through experience, for instance the order in which they 

commonly appear in language and through their alphabetical order. To examine how 

alphabetical representation affects the AB, we used a similar task as in the previous 

experiments, but now presented dual-target RSVPs (Figure 6A) with letter targets and 

number or letter-like distractors42,43. The participants (N = 119) were required to type the 

presented target letters at the end of the presentation (see Methods for details). Here we 

defined representational similarity as the difference in the alphabetical order between the 
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target letters. Seminal work suggests English speakers have a representation of 

alphabetical order that is analogous to the number line representation explored in 

Experiment 344-46. These studies found participants are significantly faster judging the 

relative order of two letters when they are close than when they are further apart in the 

alphabet.

 
Figure 6. Target similarity for letter targets defined by the difference in alphabetical order in 
Experiment 4 (N = 119). (A) Targets were letters and distractors were either digits or 
pseudo-letters which had a high structural similarity with letters. (B) Accuracy by the 
alphabetical difference between letters. The dashed horizontal line indicates the mean 
accuracy for all differences. (C) Accuracy for +1 and -1 difference relative to all other 
differences between T1 and T2. (D) Switching of perceived target order by the difference 
between T1 and T2 for all lags. Across all panels the error bars indicate ±1 standard error. 

  To quantify this effect, we compared the accuracy by Lag for +1,-1 and all other 

differences using a 3 (Difference; +1,-1, other positions) x 4 (Lag; 1,2,3,5) repeated-

measures ANOVA, separately for T1 and T2. For T2, this revealed accuracy was affected 

by the Difference (F(1.50,176.83) = 23.12, p < 0.001, Ƞp2 = 0.16), the Lag (F(2.76,326.27) = 

74.63, p<0.001, Ƞp2 = 0.39) and the interaction between these factors (F(4.50,531.32)=3.36, 

p = 0.007, Ƞp2 = 0.03). Post-hoc tests with a Bonferroni correction showed that the +1 
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difference condition had higher accuracy than -1 and the others (all ps < 0.001, whereas 

there was no difference between -1 and the others (p = 0.34).  For T1, there was no overall 

effect of the Difference (F(1.80,212.78) = 1.74, p = 0.18, Ƞp2 = 0.02), whereas Lag 

(F(2.86,337.81) = 25.97, p < 0.001, Ƞp2 = 0.18) and the interaction between these factors 

(F(4.74,558.88) = 3.33, p = 0.007, Ƞp2 = 0.03) significantly affected accuracy. The 

interaction is driven by the lower accuracy for -1 Difference at Lag 1 relative to the +1 and 

others (Bonferroni p=0.002).  

 Another aspect of these data worth noting is that accuracy in general was lower 

when there was a negative difference (e.g., D followed by B) relative to a positive difference 

(e.g., B followed by D). This is possibly because we more commonly rehearse the alphabet 

in one direction (A through to Z) and rarely in reverse (Z through to A). To quantify these 

effects, we compared accuracy for all negative and positive differences (Figure 6D). A 2 

(Difference; Positive and Negative) x 4 (Lag; 1,2,3,5) repeated-measure ANOVA was 

conducted for each target accuracy. For T1, accuracy was affected by the Difference 

(F(1,118) = 57.38, p < 0.001, Ƞp2 = 0.33), Lag (F(2.72,321.47) = 82.10, p < 0.001, Ƞp2 = 

0.41), and interaction between these factors (F(2.84,335.22) = 5.69, p = 0.001, Ƞp2 = 0.05). 

Follow-up post hoc tests indicated that the interaction arose because accuracy was 

significantly higher for Lags 1 and 2 (all Bonferroni ps < 0.01), but not Lags 3 and 5 (all ps > 

0.15), for Positive relative to Negative differences. For T2, accuracy was affected by the 

Difference (F(1,118) = 35.50, p < 0.001, Ƞp2 = 0.23), Lag (F(2.42,285.36) = 180.82, p < 

0.001, Ƞp2 = 0.60), and interaction between these factors (F(2.78,328.33) = 4.18, p = 0.006, 

Ƞp2 = 0.03). The significant interaction arose because accuracy was significantly higher for 

Lag 2 (Bonferroni p < 0.001), but not the other Lags (all ps > 0.5), for Positive relative to 

Negative differences. This suggests the representational similarity effect is largest for the 

Lag at the maximal depth of the AB (Lag 2), and aligns with the results from Experiment 1 

with Gabors.  

Experiment 5 - Representational similarity from mouse visual cortical neuronal 

activity and a Deep-neural network both predict human behavioural performance  
Alphanumeric letters are a powerful stimulus set for probing visual representations 

because they encompass multiple levels of abstraction; from low level properties such as 

line orientation and curvature, to high level statistical relationships which are learnt through 

experience with the language, such as the frequency with which two letters commonly 
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appear together (e.g., ‘th’ is the most common pair in English). Using letters, we have so far 

explored how a high-level feature, alphabetical order, affects the ability to bring multiple 

items into conscious awareness. In Experiment 5, our aim was to characterise the different 

contributions of low- and high-level features on the representational account of the AB.  

To determine how the low-level features of letters affect the AB, we examined 

representational similarity in population activity recorded from mouse (C57BL) visual 

cortical neurons. Mice are increasingly the dominant species used in visual neuroscience, 

and, like primates, have multiple visual cortical areas which respond to increasingly 

complex information. Furthermore, the majority of neurons in the primary visual cortex are 

selective for combinations of orientation, retinotopic location and spatial frequency47-49. 

Most importantly, representational similarity in the population response should only be due 

to low-level features because mice have limited (or no) exposure to visual letters.  

 First, we asked whether the activity evoked by letters in a large population of 

neurons could be used to predict the human AB from Experiment 4 (Figure 7A). Awake 

mice passively viewed the stimuli which were, as in Experiment 4, alphanumeric English 

letters presented in RSVP sequences at 10 Hz (Figure 7B; see Methods for details). We 

recorded activity in primary visual cortex using Neuropixel electrodes over 7 sessions in 

three mice (2510 units recorded). Many of the individual units showed strong selectivity for 

certain letters. The representative neuron shown in Figure 7C responded strongly to W, C, 

D, K, which all contain oblique orientations or curved features, whereas spiking was 

suppressed (relative to baseline) for T, V, and F. Across the entire population of neurons 

significant stimulus selectivity emerged shortly after stimulus presentation (Figure 7D). We 

trained a linear multivariate decoder to discriminate the identity of the letters presented in 

each trial from the population response recorded in each session. This decoder 

successfully predicted the presented letter on previously unused test trials, with significant 

decoding emerging around 150 ms after stimulus onset. These results reveal that letters 

drive unique patterns of activity at the population level in mouse primary visual cortex.  
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Figure 7.  Low-level representational similarity from mouse primary visual cortex neurons 
and a biologically-inspired Deep Neural Network (AlexNet) predict human conscious 
awareness in Experiment 4. (A) To determine representation similarity of letters in neuronal 
activity, awake head-fixed mice (N = 3) passively viewed 10 Hz RSVP streams consisting of 
the same target letters as those used in Experiment 4 while neuronal activity was recorded 
using high-density extracellular electrodes (Neuropixel, N = 2510 units across 7 session). 
(B) Spiking activity of all simultaneously recorded neurons (N = 512) in one of 7 sessions to 
the RSVP. Each line is one neuron, and each dot is a spike. The more superficial neurons 
show consistent evoked responses following presentation of the letters. (C) An example 
neuron’s response to all presentations of the letters across the experiment. The position of 
this neuron in B is shown by the red arrow. Each row is a presentation. The trials have been 
sorted by the most responsive letters for this neuron. The neuron shows maximum 
responses to W, B, and C, while showing suppression relative to baseline spiking activity, to 
T and V, which emerges most strongly ~180 ms after stimulus presentation. The unit’s 
waveform across 12 of the tightly spaced channels is shown in the insert. (D) Multivariate 
decoding of letter identity from population neuronal activity. (E) An example of 
representational similarity analysis for two letters. The responses of all recorded neurons 
(dots) in primary visual cortex evoked by letters W and S.  (F) The representational 
similarity analysis (RSA) results for mouse V1 representations shown using multi-
dimensional scaling. Letters that have more similar representations are plotted more closely 
to one another. (G) Asterisks show Bonferroni-corrected t-test differences between 
similarity conditions, calculated separately for T1 and T2. (H) The architecture of AlexNet. 
Each box is a separate layer. (I) RSA results for AlexNet (Conv2 layer) plotted using multi-
dimensional scaling. (J) Same as G, but based on AlexNet (Conv2) representations. Across 
all panels the error bars and shading indicate ±1 standard error. 
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 As the previous analysis confirmed letters are represented uniquely in mouse visual 

cortex, we next determined the representational similarity of the letters in mouse primary 

cortical activity. To do this, we performed a representation similarity analysis (RSA50,51) on 

the population responses of the recorded neurons. As expected, because mouse V1 

neurons are selectively responsive to both orientation and retinotopic location, and have 

had limited (or no) prior exposure to English characters, similarity mainly appears to be 

driven by low-level factors such as orientation and curvature (Figure 7F). For example, P, R 

and H were all represented similarly, perhaps by virtue of possessing a left vertical line-

segment and a horizontal line-segment at their midpoint. Likewise, O and D share basic 

geometric features and were represented similarly. To determine whether the low-level 

similarity between letters affected human observers’ ability to detect two stimuli presented 

in rapid sequence in Experiment 4, we examined whether the mouse similarity 

representation of the letters could be used to predict human behavioural performance 

(Figure 7G). To do this, we used a median split on the mouse V1 population data to classify 

the representation similarities of each pair of letters into high- and low-similarity pairs. We 

then used this to categorise each trial of the results in Experiment 4 as ‘high’ and ‘low’ 

similarity (Figure 7G). T2 performance was significantly higher when it had a high similarity 

with T1 for all Lags. T1 performance was relatively unaffected by its match with T2. How 

similarly the letters were represented in patterns of neuronal activity in mouse primary 

visual cortex therefore is related to the ability of humans to detect targets. This finding 

suggests that the low-level similarity of the targets, in addition to the learnt representations, 

strongly influence whether the second target reaches conscious awareness.  

We next used a deep neural network (DNN; AlexNet), which has been trained for 

image labelling of natural scenes, to determine low-level similarity in human participants52. 

The network (Figure 7H) is based on a processing hierarchy similar to that of the primate 

visual system53  and has been shown to predict the response of individual neurons in 

monkey area V454  in addition to visual responses in human fMRI and EEG activity55. We 

then performed an RSA for each layer by correlating the population response for all the 

letters (Figure 7I, Supplementary Figure 2). To do this, we found the activation for each 

level of the network for the 21 letters we presented to the participants in Experiment 4. This 

analysis revealed that low-level structural features largely drive the representational 
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similarity, especially for the earlier layers (Supplementary Figure 2). For layer Conv2, letters 

with oblique lines (X,V,A) had similar representations, as did the letters with curves (B,G,D). 

The low-level, feature-based aspects of the stimuli quantified by the DNN also affected 

performance. Like mouse V1 representations, T2 was more likely to be reported when T1 

was represented similarly in AlexNet (Figure 7J).  Overall, these results again suggest that 

human observers’ ability to bring the second of two rapidly presented stimuli to 

consciousness depends on its representational similarity to the first item.  

Finally, we aimed to unify our initial results showing low-level structural features, with 

high-level learnt factors, and determine the relative influence of each factor on whether 

targets reach the level of conscious awareness. To do this, we used a regression-based 

approach to determine the amount of variance explained by different high- and low-level 

representational factors. We correlated the human performance data in Experiment 4 with 

representational similarity, defined by Mouse V1 neuronal activity, AlexNet (Conv2), letter 

order and frequency of letter co-occurrence (Figure 8). Co-occurrence of letters (or 

bigrams) captures the probability that any two letters commonly occur together, and is 

measured from the Google Books One Million Book corpus analysis. We used this as a 

high-level factor that is superordinate over letters, as participants often report that they can 

detect both targets if they regularly co-occur (e.g., in NY, AM) and everyday exposure to 

language is expected to affect our representation in a similar manner to alphabetical order.  

 
Figure 8. The effects of intrinsic low-level and learnt high-level representational similarity 
on access to conscious awareness for Experiment 4 and 5. Asterisks show Bonferroni-
corrected one-sample t-test showing correlation is greater than 0, calculated separately for 
each target. Across all panels the error bars indicate ±1 standard error. 
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Like the previous results, this final analysis revealed that representations derived 

from mouse V1 neuronal activity best predicted whether participants could report T2. The 

letter order (Figure 8) was the next best predictor of T2 activity, again with the best 

performance during the depth of the AB. Similarly, if T2 frequently follows T1, participants 

were more likely to correctly report T2 for Lags 1, 2 and 3. Interestingly, T1 only showed a 

significant effect of T2 for Lags 1 and 5, those where T2 had the highest accuracy. Overall, 

it appears that both low-level intrinsic aspects and high-level learnt statistical relationships 

combine to determine neural representations of letters. When we see a target, it activates 

the representation which creates a temporal filter, allowing only similarly represented items 

to channel through but suppressing dissimilar items.  

 
Discussion  

One of the most consistently cited truisms in the neuroscientific and psychological 

literature is that limitations in conscious awareness occur when stimulus demands exceed 

the processing capacity of the brain. This belief is based on numerous demonstrations 

showing acute failures in awareness when multiple, competing demands occur56,57. The 

current results point to a new interpretation of one of the most widely cited of these 

perceptual limitations, the attentional blink (AB)3-5. Here we developed and tested a new 

unified model of temporal attention with several lines of converging evidence showing that 

the act of attending to one item causes automatic filtering of subsequent items with 

dissimilar representations. This is because the representation of the first target becomes 

enhanced relative to the unattended representations. The ability to bring the second item to 

conscious awareness depends strongly on its representational similarity with the first target. 

If the targets are represented in a similar manner, both can be reported whereas the 

second is suppressed from conscious awareness if it is represented differently to the first. 

This filtering is the cause of the AB and unifies it with spatial and feature-based attention.  

Experiments 1 and 2 showed this with simple, low-dimensional Gabor stimuli that 

have a well-characterised representational space which is easily quantifiable32. The EEG 

results showed similarity affects very early stages (~200-250 ms) of processing in visual-

parietal areas. This very early effect of similarity suggests that this may reflect a filter that 

was existing prior to T2 being presented and is due to the ongoing processing of T1. We 

found that the orientation-selective bias and accuracy results can be explained by a model 
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where the orientation of T1 suppresses the non-activated representations. This model was 

better at predicting the EEG activity recorded during the task than models where T1 does 

not affect the response to T2 or one that suppresses activity of the activated channels.  

Experiment 3 extended these findings to the representation of alpha-numeric 

numbers which differ in their position on the number line rather than low-level structural 

features of the stimuli. Consistent with the initial results, this experiment found that T2 was 

less likely to be missed if it had a similar number to the first (i.e., closer on the number line). 

The final experiment showed that T2 was more likely to be detected if it had a similar 

representation to T1 based on high-level learnt aspects (letter order, frequency) or low-level 

features of the letters. Our results suggest that detection of a target causes the brain to 

establish an automatic filter which results in selection of items matching the identity of the 

leading items and suppression from consciousness for those items which do not match. 

 The current work leads us to re-evaluate the most widely studied task used to 

interrogate human limitations in temporal awareness; the attentional blink (AB). This refers 

to the profound inability to detect the second of two targets when it follows within 200-500 

ms of the first3,5, and for which there have been numerous theories, mostly arguing that the 

second target deficit is caused by a lack of processing resources for consolidating targets 

into working memory. The current results instead point to an early sensory driven filter 

based on representational similarity. In some ways this idea builds on the over-investment 

account of the AB, where detecting T1 causes an over-allocation of attentional resources to 

the RSVP causing distractors to be selected. Our theory that attending T1 causes the brain 

to develop an involuntary filter based on the activated representation is not inherently based 

on resource limitations. In many ways this idea is consistent with a Bayesian predictive 

coding account of perception32,33,58,59. T1 establishes a ‘prior’. This idea fits with everyday 

perception, sensory input generally changes slowly60 most items that are drastically 

different to what came before should likely be discarded as noise.  

 A number of previous studies have examined the effect of target similarity on the 

magnitude of the AB. Consistent with the current results, the magnitude of the AB in those 

studies was reduced when the targets had the same features, but different orientations, 

compared to when they have different features61,62. The current results are consistent with 

the priming literature, where repetitions tend to lead to perceptual facilitation63It has also 

recently been reported that natural images that are similar to one another, with similarity 
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quantified using a DNN approach as in the current work, lead to a smaller AB51. But there 

are other studies, referred to collectively as repetition blindness studies, that seem to 

suggest that similarity of targets leads to a suppression of conscious awareness64,65 - the 

opposite effect as reported here. It is generally thought that different types (types, tokens) 

of visual information lead to these differences between repetition blindness and priming64,66.  

One potential explanation for the difference in outcome from the present results, is that 

repetition blindness is generally found by presenting words which form a sentence and are 

presented at a relatively slow rate64,65. It is possible that using these very complex stimuli, 

which require sentence comprehension, uses different brain mechanisms than for the 

stimuli used in the current work. It would be interesting to repeat the style of current tasks 

and analysis while using more complex stimuli and determine where the effects reverse. 

 Repetition blindness has also been found to occur even when simple alphanumeric 

letters are used as targets67,68. This study found the AB was largest when the targets 

repeated in identity (i.e., the same letter) compared to when the targets were different 

letters. While these results superficially contradict the current findings, the subtle 

differences in methods may have been critical. In all the current experiments, the target 

identities never exactly repeated (orientations were at least 1° different or the same letter or 

number was not used for both targets). Instead, of classifying trials are repeated or not, as 

is convention in repetition blindness studies, we instead used the graded similarity between 

targets. It is possible that we may have seen suppression for targets that exactly repeated 

in identity, but still the enhanced for similar, but not identical, targets.  

While the current work only focuses on the role of targets, properties of the 

distractors are also known to influence the ability to bring the post-T1 targets to conscious 

awareness42. One particularly powerful demonstration of this effect showed participants can 

report three sequential targets, whereas if the middle item is a distractor, they miss the final 

target69. Our previous work20 has shown that attention only boosts the neural representation 

of targets while distractors are unaffected, suggesting an early filtering of non-target 

features. Importantly for the current work, this sparing from filtering occurred regardless of 

the similarity between the two targets. We have previously shown that the perceived 

orientation of the target is also attracted towards the orientation of the following distractor, 

in addition to the other target19. These results collectively suggest that priming for the T1 

information which is selective only for targets is established when there has been one 
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distractor presented. Without the distractors, it is possible the system does not need to 

boost the gain of the T1 representation and therefore no target filtering occurs. It would be 

therefore interesting to test these similarity effects using a skeletal RSVP paradigm 

consisting of only two targets which reliably induce an AB70.  

The increased in accuracy of similar targets reported in Experiment 1, along with the 

attractive biasing of target orientations are reminiscent of serial dependency effects28,29 and 

opposite to tilt-aftereffects where adaptation to an orientation causes repulsion for similar 

orientations and decreased accuracy71,72. The repulsive tilt aftereffect is well predicted by 

simple information channel models72,73, which are consistent with the neurophysiological 

evidence that visual neurons exhibit orientation-selective adaptation with the most similar 

orientations causing the greatest adaptation74,75. Using the same simple model architecture, 

but having the adapter increase the sensitivity of the affected channels allows for attractive 

aftereffects which are consistent with serial dependency72. This increase in sensitivity is 

consistent with the increase in orientation-selectivity when attention is directed towards 

stimuli23,76. These results can, therefore, be explained by a channel-based model where 

attention causes a boost in the representation to the orientation of the first target.  

Methods 

Participants.   
Experiment 1 and 2. As previously reported for this dataset20, for Experiment 1, 22 

(13 females, 9 males) participants between the ages of 19 and 33 years (median age = 22 

years) were recruited from a paid participant pool and reimbursed at AUD$20/hr. For 

Experiment 2, 23 (14 females, 9 males) participants between the ages of 19 and 33 years 

(median age = 23 years) were recruited from the same pool. Each person provided written 

informed consent prior to participation and had normal or corrected-to-normal vision. The 

study was approved by The University of Queensland Human Research Ethics Committee 

and was in accordance with the Declaration of Helsinki. 
Experiment 3. As previously reported for this dataset38, 48 (26 female, 22 male) 

participants between the ages of 17 and 53 years (median age = 18 years) were recruited 

from the University of Western Australia psychology participant pool and given partial 

course credit. Each person provided written informed consent prior to participation and had 

normal or corrected-to-normal vision. The study was approved by the University of Western 
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Australia Human Research Ethics committee and was in accordance with the Declaration of 

Helsinki. 

Experiment 4. 119 (68 females, 51 males) participants between the ages of 17 and 

43 years (median age = 19 years) were recruited from the University of Western Australia 

psychology participant pool and given partial course credit. Each person provided written 

informed consent prior to participation and had normal or corrected-to-normal vision. The 

study was approved by the University of Western Australia Human Research Ethics 

committee and was in accordance with the Declaration of Helsinki. 

Experiment 5. Three (two females) mice (C57BL/6rl) were used in this experiment. 

The mice were housed in a ventilated and air filtered climate-controlled environment with a 

reversed 12-hour light -dark cycle. The mice were between 7 and 9 weeks old at the time of 

recordings. The methods were approved by the Australian National University Animal 

Experimentation and Ethics Committee (A2019/11).   

Tasks 

 Experiments 1 and 2. The RSVP stream consisted of 20 Gabors (~ 5° diameter, 

0.71° standard deviation), each presented for 40 ms with an 80 ms blank interval between 

stimuli, giving a presentation rate of 8.33 Hz. The participant was required to reproduce the 

orientation of the two higher-spatial frequency target Gabors (2 c/°) while ignoring the lower 

spatial-frequency distractors (1 c/°) in the order they were presented. Following the 

presentation of the final Gabor, a black circle appeared with a yellow line in the centre. The 

participants controlled the orientation of the line using the mouse and clicked when they 

were satisfied with the response. The participants were shown a feedback screen after 

making both responses for 600 ms before the next trial began. In both experiments, there 

were 600 trials equally distributed across the Lags (1, 2, 3, 5, 7 in Experiment 1; 3, 7 in 

Experiment 2). Between 4 and 8 distractors were presented before the first target. For 

Experiment 2, we recorded EEG using a BioSemi64 system while participants completed 

the task. The details for recording and pre-processing are reported in Tang, et al.20. 

 Experiment 3. The RSVP stream consisted of 10 items each displayed for 100 ms 

and followed immediately by the next item, giving a 10 Hz presentation rate. The targets 

consisted of the digits 2-9 and distractors were English upper-case letters, except B, I O 

and Q. The data was drawn from the assessment condition from the original paper38  which 

contained Lag 2 and 7 trials. There were 100 trials equally distributed across the two Lags. 
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Participants initiated the RSVP by pressing the space bar and were prompted to type the 

identity of the targets after the presentation after which they could initiate the next trial.  

 Experiment 4. The RSVP stream consisted of 10 items each displayed for 30 ms 

with a 70 ms inter-stimulus interval, giving a presentation rate of 10 Hz. The targets were 

English letters, except I, O, Q, Z which were omitted due to their structural similarity with 

numbers43. The distractors were the digits 0 through 9 or pseudo-letters which are 

geometric shapes with a letter-like appearance77. The different types of distractors were 

randomly intermixed across trials. There were 4 to 8 distractors before T1. The identity of 

the targets and distractors was chosen pseudo-randomly with the previous that targets 

could not repeat in one trial. Each trial began with the presentation of a fixation cross with 

the participants initiating the RSVP by pressing the space bar. Participants were required to 

type the targets in the order they were presented. Following the response, the fixation cross 

re-appeared and the participants could initiate the next trial when they were ready. There 

were 400 trials in total, equally distributed across the lags (1, 2, 3, 5, 7).  

Experiment 5. The mice initially had a surgery to implant a head bar, which allowed 

stable extracellular recordings, and for a craniotomy. For the surgery, the mice were initially 

anesthetized using 4% isoflurane delivered at 0.6 - 0.8 L\min. Following loss of 

consciousness, the animals were moved to a heated blanket (maintained at 37°, Physitemp 

Instruments) and were placed in a custom-designed stereotaxic head mount, with isoflurane 

delivered between 1 and 2% to maintain study anaesthesia. Consciousness was monitored 

throughout the surgery using foot pinches. The scalp and fascia over the dorsal surface of 

the skull were removed to allow for the headbar to be implanted and craniotomy to be 

made. Hydrogen peroxide (5%) was briefly applied to clean the site and to dry the bone. 

Headbars (International Brain Laboratory) were then attached to the scalp using UV-cured 

dental cement. Following this, a 3 mm circular craniotomy was made of left visual cortex 

(centred 3 mm lateral and 2 mm anterior to Lambda), which was then covered by a glass 

cover slip to protect the brain.  

 Following recovery, the mice were handled for one day and allowed to freely explore 

the recording setup for 30-60 mins for two days. Mice were then habituated for head fixation 

in a custom-designed head bar holder for 1 to 2 weeks. The mice were free to run on a 

circular disc that could freely rotate, with the movement captured by a rotary encoder. After 

the mice could tolerate head fixation for ~70-90 mins, the cover slip over the craniotomy 
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was removed during a brief (< 20 min) surgery under isoflurane and with the first recording 

starting 4-5 hours later. Recordings were made 5 days a week for 1 week.  

 The stimuli were presented using PsychToolbox on a 9.7-inch monitor (LP097QX1) 

on the right of the animal, angled ~30º parallel to their body. The target stimuli were the 

same letters used in Experiment 4, consisting of all English letters except, I, O, Q, and Z. 

The letters presented in the centre of the monitor and increased in size to extend over ~50º 

of visual angle. During 20-item RSVP, a pseudo random sequence, drawn without 

replacement, of letters was shown. Each item was presented for 33 ms with a 66 ms inter-

stimulus interval. A 1-1.1s inter-trial interval separated each of the 100 RSVP streams 

presented during the experiment. The mouse passively viewed the items and was not 

required to complete any task. Before the experiment, a high-density (960 channels, 384 

active electrodes) Neuropixel probe78 was inserted using a micro-manipulator 

(www.newscale.com) into the left primary visual cortex. The activity digitized at 30 kHz 

using SpikeGLX (www.github.com/billkarsh/SpikeGLX) and synced to visual stimulus 

presentation using a photodiode attached to the computer monitor. Recordings were spike 

sorted using Kilosort 379  with the results manually curated using Phy 

(https://github.com/cortex-lab/phy). 

Analysis  
 Experiment 1 and 2. Targets were marked as correct if the participant could 

reproduce the orientation within 30° of the presented orientation. In the initial analysis 

(Figure CF), similar trials were defined as those which the orientations of the two targets 

were within 30° of each other. For the later analyses (Figure D), accuracy was binned in 

from -90° to 90° in 20° steps of the difference between T1 and T2. To quantify the tuning, a 

Gaussian (Equation 1) was fit to the accuracy scores using non-linear least square:  

𝐺(𝑥) = 	𝐴	𝑒𝑥𝑝(− ("#$)!

&'!
) + 𝐶                                               (1) 

Where A is the amplitude, reflecting the number of responses around the reported 

orientation, 𝜑 is the orientation on which the function is centred (in degrees), 𝜎 is the 

standard deviation (degrees), which provides an index of the precision of participants’ 

responses, and C is a constant used to account for changes in the baseline rate.  

regression.  

 Following the original analysis20, the bias in accuracy was measured in a similar 

manner to accuracy (Figure E). For each trial, the mean orientation error (the difference 
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between presented and reported orientation) was found for each bin in the difference 

between T1 and T2. To quantify the bias, we fit first derivative of Gaussian functions using 

non-linear least-squared regression:  

D1(𝑥) 	= 	𝐴	 × (
'
	× 𝑥 − 𝜑 × 𝑒𝑥𝑝(− "#$!

&'!
)	                        (2) 

Where A is the amplitude, 𝜑 is the orientation on which the function is centred (in degrees), 

and 𝜎 is the standard deviation (degrees). 

Computational model of temporal processing. The model of orientation 

processing was based on previous work examining orientation and motion-selective 

adaptation72,73,80. The model consisted of six Gaussian orientation-selective “neurons”, 

maximally sensitive to orientations from 0° to 150° in 30° steps, each with a standard 

deviation of 25° (Figure 1A). The probability distribution of the Gaussian reflects the 

neuron’s sensitivity to the presented stimuli. At the beginning of each trial, all the neurons 

are equally sensitive, and the population is therefore equally sensitive to all orientations. To 

model the effect of attention, the sensitivity of the population is modulated by 1 minus the 

response to T1 which is multiplied by a gain factor (set as 0.65) to scale the magnitude of 

changes. These modulated channels are used to then find the response to T2. To quantify 

the response to T2 is fit with the Gaussian function in Equation 1 with factors A and sigma 

being used to measure magnitude of response and decoded orientation, respectively. To 

determine the how orientation T1 biased the perceived orientation of T2 (Figure 1C), the 

presented orientation was subtracted from the decoded orientation. To determine how the 

orientation of T1 affected the magnitude of the response to T1, which is serving as a proxy 

for accuracy, the magnitude of the response was used.  

Forward encoding modelling. To determine whether the computational model 

where T1 causes suppression of unattended representation, we used a forward (or 

inverted) encoding modelling approach to EEG activity. This approach determines patterns 

of EEG activity selective for feature-based representation, in this case orientation, 

information using regression. Typically, in the approach20,23,31-33, the regressors for any one 

orientation (e.g. 0°) are always the same regardless of the trial type. The regression matrix 

is then used to determine the patterns of activity selective for the presented orientations by 

regression against the measured pattern of neural activity. For the current work, we used a 

modified approach to forward encoding modelling to determine which model of orientation 

processing was the best fit for the recorded EEG activity. To do this, we used the 
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computational model to produce the regressors for T2, which can be modified on a trial-by-

trial basis by the orientation of T1. The gain parameter affected how T1 affects T2. A gain 

value of 0.65 was used for the priming model which decreases sensitivity of the orientations 

T1 did not activity. A gain value of -0.65 was used for the suppression model which 

enhances sensitivity of the orientations T1 did not activate. For the no priming models, a 

gain value of 1 was used which stops T1 affecting the response to T2.  

The different regression matrixes for the three models were used to determine 

orientation selectivity within the pattern of EEG activity by solving the linear equation 3.   

B1= WC1                                                      (3) 

where B1 is the electrode data (64 channels × N training trials) for the training data, C1 (6 

neurons/channels) is the regression matrix for the training data and W (64 electrodes x N 

test trials) is the weight matrix for the estimate sensors. Following previous work 19,27,76, we 

separately estimated the weights for each EEG electrode using least square regression to 

solving Equation 4: 

W = (C1 C1T)-1 C1T B1                                                             (4) 

In line with previous work20,33, we removed the correlation between EEG electrodes which 

can inhibit finding the correct linear solution. To do this, we estimated and removed the 

noise correlation between electrodes using regularization81 by dividing W. The channel 

response in test set C2 (6 neurons/channels × N test trials) was estimated using the weights 

in (4) applied it to activity in B2 (64 electrodes × N test trials) as per Equation 5.  

C2 = (W WT) WT B2                                                   (5)  

 We used a 10-fold cross-validation approach to avoid overfitting, where X-1 trials 

were used to train the model which was tested on the remaining (X) trials. The process was 

repeated until all trials had served as both test and training sets. The whole procedure was 

repeated for every time point in the trials (-100 ms before stimulus to 500 ms after). So the 

trials could be aligned across different orientations, we reconstructed the item 

representation20,23 by multiplying the channel result with the unbiased orientation model 

(180 orientations × N time × N trials). We averaged the trials for each model and used a 

filtered the reconstructions over time using a  32 ms Gaussian kernel20,32,33. To quantify the 

orientation encoding over subjects, we followed previous work20,32,33 by fitting the smoothed 

reconstructions with a Gaussian function (Equation 1) with the amplitude of the Gaussian 

reflecting orientation selectivity.  
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Mouse neuronal recordings in primary visual cortex 
The spiking data were epoched relative (-0.5 to 1 s in 10 ms bins) to the presentation 

of the stimulus. Both single and multi-unit activity, regardless of responsiveness to the 

stimulus, were included in the analysis. Multivariate linear decoding was used to determine 

the population selectivity to the letters. To do this, linear discriminant analysis was to predict 

which letter was presented on each trial from the neuronal recordings. We used the same 

cross-fold validation procedure which was applied at each time point. As spiking data is 

relatively sparse, we smoothed the data with a temporal Gaussian (50 ms sigma) to allow 

better decoding. Decoding accuracy was determined by the predicted trial label matching 

the actual label. Decoding was conducted on the simultaneously-recorded population data 

for each session.  

 We used Representational Similarity Analysis50,51, to determine the representational 

similarity of the population response in V1 neurons across the stimuli. To do this, we used 

all units/neurons recorded on the top 1500 um of the recording shank to only use those in 

visual cortex. We found the average response across all presentations of each letter and 

took the average spike count from 100 to 300 ms after stimulus presentation which 

corresponded with the best decoding time from the multivariate analysis. We used 2510 

units recorded across seven sessions to perform the RSA, which was given by correlating 

the average population response with each letter with all other letters. Following standard 

procedures, we used the dissimilarity (1 – r) as the metric. To determine whether similarly 

presented letters were more likely to be able to be consciously reported by the human 

participants, we found the difference in dissimilarity between the two targets.  

Deep neural network analysis. We used a AlexNet52, a DNN, to determine the low-

level similarity of the letters in a manner consistent with the visual system. We choose as 

AlexNet because it has previously been shown to be consistent with well-known aspects of 

the primate visual system53,55 and has a relatively simple architecture. The pre-trained 

network was implemented in MATLAB 2021a. AlexNet is organised in 8 major layers which 

feed hierarchically forward to the preceding layer (Figure 5A). The first five layers are 

convolutional layers (conv1, conv2, conv3, con4, conv5) which are organised in feature 

height x feature width x feature map channels. The final stages of the model are fully-

connected layers (fc6, fc7) with a 1D structure of neurons which are all connected. The 

network has pre-trained on 1.2 million labelled natural images to have 1000 object 
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categories. We presented the network with images of the letter stimuli used in the RSVP 

and found the activation for all the neurons within each layer. The same RSA approach was 

used as in the mouse V1 recordings.   

Statistics. Any NaN value was replaced by the participant’s average for that 

comparison for all analyses in the work. Sphericity was tested for all ANOVAs, and if 

violated, a Greenhouse-Geisler correction was applied. Bonferroni corrections were used 

for all multiple comparisons. Fieldtrip toolbox82 was used to calculate the 2D cluster-

permutation (n = 1,500) testing for the group level effects of EEG to determine whether the 

time course of topography difference between the conditions. For the time-resolved 

analysis (Figure 4D), cluster-based permutation testing was used to correct for multiple 

comparisons over the time series, with a cluster-form threshold of p<0.05 and significance 

threshold of p<0.05 used to determine whether there were differences between conditions.  

Data and Code availability  
 The data for Experiments 1 and 2 are available at: https://osf.io/f9g6h. The data for 

Experiments 3, 4 and 5 are available at: https://osf.io/unvyj. The code associated with the 

paper is available at: 

https://github.com/MatthewFTang/AttentionSelectivityTemporalDynamics .  

Acknowledgements 
This work was supported by the Australian Research Council (ARC) with a Discovery Early 

Career Award (DE210100508) to MFT, the Centre of Excellence for Integrative Brain 

Function (CE140100007) grant to JBM and EA, an Australian Laureate Fellowship 

(FL110100103) to JBM, and Discovery Projects to TAWV (DP120102313) and EA 

(DP170100908). MFT, JBM and EA were also supported by an NHMRC project grant 

(APP1165337). JBM was also supported by the Canadian Institute for Advanced Research 

(CIFAR). JTE was supported by a Discovery Grant from the Natural Sciences and 

Engineering Research Council (Canada). 

  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 27, 2022. ; https://doi.org/10.1101/2022.10.25.513789doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.25.513789
http://creativecommons.org/licenses/by-nc-nd/4.0/


Attention-derived filters determine the contents of awareness  
 

   
 

32 

Supplementary information 

 
Supplementary Figure 1. Topographic plots of EEG activity over time for Similar (top tow) 

and Dissimilar (middle row) stimuli in Experiment 2. The bottom row shows the difference 

between the conditions. The crosses indicate positivity cluster-permuted differences 80 

between the conditions while the crosses indicate negative differences.   
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Supplementary Figure 2. Using a deep neural network (AlexNet) trained on natural image 

classification to determine the effect of low-level similarity on target similarity effects in 

Experiment 4. (B) RSA visualised using multidimensional scaling for each layer. Similarly-

represented letters are shown close together. Examining Conv-1 you can see in the top-left 

quadrant there’s letters while a single vertical line (I, T, F), the top-right quadrant has letters 

with oblique angles (X, V, A), bottom left has letters with curves (G, B, D). (B) For each 

subject, the difference in order or representational similarity between the targets for each of 

the different AlexNet layers was found for each trial and correlated with T1 and T2 accuracy 

to determine whether it predicts the detection for each different lag and target. Asterixis 

show Bonferroni-corrected one-sample t-test showing correlation is greater than 0, 

calculated separately for each target.  The error bars indicate ±1 standard error. 
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