

1 **Mitoxantrone Targets Both Host and Bacteria to Overcome Vancomycin
2 Resistance in *Enterococcus faecalis***

3

4 Ronni A. G. da Silva^{1,2}, Jun Jie Wong^{2,3}, Haris Antypas², Pei Yi Choo², Karlyn Goh²,
5 Shreya Jolly², Cui Liang¹, Leona Tay Kwan Sing¹, Mark Veleba², Guangan Hu⁴,
6 Jianzhu Chen^{1,4 *}, Kimberly A. Kline^{1,2,5 *}

7 1- Singapore-MIT Alliance for Research and Technology, Antimicrobial Drug
8 Resistance Interdisciplinary Research Group, Singapore.

9 2- Singapore Centre for Environmental Life Sciences Engineering, Nanyang
10 Technological University, Singapore.

11 3- Interdisciplinary Graduate Programme, Nanyang Technological University,
12 Singapore.

13 4- Koch Institute for Integrative Cancer Research and Department of Biology,
14 Massachusetts Institute of Technology, Cambridge, MA, USA.

15 5- Department of Microbiology and Molecular Medicine, Faculty of Medicine,
16 University of Geneva, Switzerland.

17 * jchen@mit.edu

18 * kimberly.kline@unige.ch

19

20

21 **One sentence summary:** Mitoxantrone synergizes with vancomycin against
22 vancomycin resistant bacterial strains via direct antibiotic activity and by augmenting
23 both host macrophage recruitment to the site of infection and macrophage bactericidal
24 activity.

25

26 **Abstract**

27 Among Enterococci, intrinsic and acquired resistance to antibiotics such as β -lactams
28 and vancomycin critically limit treatment options for infection with these opportunistic
29 pathogens. Antimicrobials that enhance the host immune response are emerging as
30 alternative approaches, with the potential to overcome bacterial resistance. Here, we
31 investigate the antibiotic and immunological activity of the anticancer agent
32 mitoxantrone (MTX) *in vitro* and *in vivo* against vancomycin resistant *Enterococcus*
33 *faecalis* (VRE). We show that, *in vitro*, MTX is a potent antibiotic against Gram-positive
34 bacteria with a minimal inhibitory concentration (MIC) of \sim 1 μ g/ml through induction of

35 reactive oxygen species and DNA damage. MTX synergises with vancomycin and
36 lowers the vancomycin concentration required to kill VRE by over 140-fold. This
37 synergy is specific to vancomycin-resistant, but not susceptible strains because
38 vancomycin rendered the resistant strains more permeable to MTX and thus MTX-
39 mediated DNA damage. In a murine wound infection model, MTX treatment effectively
40 reduced VRE bacterial numbers by 120-fold and with further reduction when combined
41 with vancomycin. Wounds treated with MTX had significantly higher numbers of
42 macrophages and higher pro-inflammatory cytokines compared to untreated wounds.
43 In addition, MTX augmented intracellular bacterial killing by both murine and human
44 macrophages by upregulating the expression of lysosomal hydrolases cathepsins D
45 and H, and β -Hexosaminidase. These results show that MTX is a potent antibiotic
46 against Gram-positive bacteria, synergizes with vancomycin, enhances macrophage
47 recruitment and intracellular bactericidal activity, and represents a promising dual
48 bacterium- and host-targeted therapeutic for overcoming vancomycin resistance.

49

50

51 **Introduction**

52 Antibiotic resistance represents a major global health threat. Recent estimates
53 attribute 4.95 million deaths in 2019 to antimicrobial resistance (AMR) (1), with this
54 number predicted to climb to 10 million deaths annually by 2050 (2). Thus, multi-
55 pronged treatment approaches, including antimicrobials that overcome existing
56 resistance mechanisms and host-directed adjuvant therapies that enhance natural
57 immune responses are emerging as important alternatives to fight bacterial infections
58 (3).

59

60 *Enterococcus faecalis*, *Staphylococcus aureus*, and *Pseudomonas aeruginosa* are
61 among the most frequently isolated bacterial species from wounds including burns,
62 diabetic foot ulcers, surgical sites, and chronic wounds (4–7). *E. faecalis* possess
63 intrinsic resistance to penicillin, ampicillin, and cephalosporins (8). An estimated ~30%
64 of healthcare associated enterococcal infections are caused by vancomycin-resistant
65 strains, further reducing treatment options (9). Vancomycin-resistant enterococci
66 (VRE) are on the Centers for Disease Control and Prevention (CDC) serious threat
67 watch list, with \$539 million in estimated attributable healthcare costs in 2017 alone

68 (9). This public health threat will continue to grow as enterococci acquire resistance to
69 last resort antimicrobials such as quinupristin-dalfopristin, linezolid, daptomycin, and
70 tigecycline (8, 10).

71

72 Understanding the molecular mechanism behind resistance is fundamental to develop
73 new strategies to fight it. Vancomycin inhibits Gram-positive bacteria by targeting cell
74 wall synthesis (11). In vancomycin resistant strains, proteins of a two-component
75 regulatory system (such as VanRS) sense the binding of vancomycin to peptidoglycan
76 (PG) precursor D-alanyl-D-alanine (D-Ala-D-Ala) dipeptide termini. Cell wall
77 disturbances trigger the PG precursor replacement to D-alanyl-D-lactate (D-Ala-D-
78 Lac) by other proteins encoded by the *van* operon, impeding vancomycin binding.
79 Importantly, the D,D-carboxypeptidase VanY removes the terminal D-Ala residue from
80 PG in the cell wall, and the enzyme VanX hydrolyzes D-Ala-D-Ala, thereby reducing
81 the pool of available D-Ala-D-Ala (10, 12) that vancomycin could bind to.

82

83 In addition to intrinsic and acquired AMR that complicate the treatment of enterococcal
84 infection, we have previously shown that extracellular *E. faecalis* can subvert immune
85 activation during infection (13). Moreover, *E. faecalis* can be internalized by
86 keratinocytes and macrophages, alter endo-lysosomal trafficking, and replicate
87 intracellularly leading to a hyper-infective phenotype (14). Furthermore, persistent *E.*
88 *faecalis* wound infection is associated with lowered cytokine levels in the wound which
89 could impair wound healing (15). Thus, infections with *E. faecalis* are perfectly
90 positioned to benefit from host-targeted immunotherapies that may counteract the
91 immune-modulating action of this microbe.

92

93 One potential target for host-directed immunotherapy is to promote enterococcal
94 clearance by macrophages. Following phagocytosis, macrophages generate reactive
95 oxygen and nitrogen species (16, 17), mobilize transition metals to intoxicate microbial
96 cells (18), and acidify the phagosome to activate lysosomal enzymes to eliminate
97 internalized bacteria (19). Macrophages also present pathogen antigens to other
98 immune cells and secrete cytokines to recruit immune cells to the infected site (20).
99 Moreover, macrophages possess high transcriptional plasticity which allow them to
100 polarize and change their phenotypic profile depending on host or external stimuli (21,

101 22). Macrophage polarization can exist on a spectrum, including macrophages
102 associated with a pro-inflammatory state in response to infection, and macrophages
103 linked to tissue repair and remodelling (23). Altogether, due to their plasticity and pivotal
104 role in fighting infections and promoting tissue repair, drugs that can reprogram
105 macrophages toward an optimal response may improve infection outcomes.

106

107 Repurposed compounds offer an excellent opportunity in the pursuit of new therapies
108 that can target both the host and the pathogen. The vast knowledge and safety
109 validation of drugs deployed to treat other health conditions can drastically reduce the
110 time and cost in the development of new therapeutical approaches (24). From a pool
111 of 4126 compounds (including 760 FDA-approved drugs), we previously identified a
112 series of compounds as capable of re-programming macrophages into a pro-
113 inflammatory state or anti-inflammatory state (25). In this study, we evaluated selected
114 compounds for antibiotic activity and macrophage augmentation leading to enhanced
115 bacterial clearance. Here we report that mitoxantrone (MTX), an antineoplastic agent
116 commonly used to treat acute leukaemia, prostate, and breast cancer, as well as
117 multiple sclerosis by disrupting DNA replication in mammalian cells, is both
118 antimicrobial and immunomodulatory. Our data show that MTX both resensitizes VRE
119 to killing by vancomycin and promotes macrophage recruitment and activation,
120 rendering MTX an attractive candidate for difficult to treat VRE infections.

121

122 **Results**

123 **MTX exhibits potent antibiotic activities *in vitro* and *in vivo***

124 We evaluated 18 compounds that were previously shown to re-program macrophages
125 (26) for their ability to enhance macrophage-mediated killing of intracellular bacteria *in*
126 *vitro*. MTX was among the most potent compounds (**fig. S1, table S1**) and we
127 therefore tested its antibiotic activity by measuring minimal inhibitory concentration
128 (MIC) against a panel of both Gram-positive and Gram-negative bacterial strains in
129 the absence of macrophages. Bacteria were grown in increasing concentrations of
130 MTX, ranging from 0.4 μ g/ml to 51.2 μ g/ml, for 24 hours (h). MTX was 10-20-fold
131 more potent in inhibiting the growth of Gram-positive bacteria (\sim 1 μ g/ml MIC)
132 compared to Gram-negative bacteria (**Table 1**). Among the Gram-positive bacteria,
133 MTX similarly inhibited the growth of vancomycin-resistant *E. faecalis* V583 (our

134 prototypic VRE strain going forward), *E. faecium* AUS0004 and *E. faecium* E745, and
135 vancomycin-sensitive *E. faecalis* OG1RF and *S. aureus* USA300 (MRSA).

136 We tested the potency of MTX in inhibiting bacterial growth *in vivo* using a mouse
137 wound infection model (15). Wounds were infected with 10^7 colony forming units (CFU)
138 of VRE, followed with addition of 10 μ l of MTX (0.515 μ g/mL) or PBS. Twenty-four
139 hours post infection (hpi), the median CFU per wound was 6×10^8 for PBS controls,
140 whereas the median CFU was 4.9×10^6 for MTX-treated wounds, a reduction of ~120-
141 fold (Fig. 1A). Similarly, MTX treatment reduced the median CFU of MRSA USA300
142 and *P. aeruginosa* PAO1 by ~60 and ~3.5 fold (Fig. 1B-C), respectively. Moreover,
143 infected wounds presented with a purulent exudate which was visibly reduced with
144 MTX treatment, most prominently for VRE and *S. aureus* infection (Fig. 1D). These
145 results show that MTX exhibits potent antibiotic activity both *in vitro* and *in vivo*,
146 especially against Gram-positive bacterial species, including those resistant to
147 vancomycin.

148

149 **MTX synergizes with vancomycin to inhibit VRE *in vitro* and *in vivo***

150 We investigated whether MTX synergizes with vancomycin in inhibiting the growth of
151 VRE using a modified MIC assay in which the concentration of MTX was kept constant
152 at sub-MIC (0.515 μ g/mL) (Fig. 2A and fig. S2A), while the concentrations of
153 vancomycin were increased by 2-fold from 0.0625 μ g/mL to 75 μ g/mL. As expected,
154 VRE started to grow just below its breakpoint of 18 μ g/mL vancomycin and grew
155 without any inhibition at 1.5 μ g/mL vancomycin (Fig. 2A). However, the growth of VRE
156 was potently inhibited at 0.125 μ g/mL vancomycin in the presence of sub-MIC MTX
157 (Fig. 2A), indicating a 140-fold reduction of vancomycin MIC in the presence of sub-
158 MIC MTX (table S2). Combinatorial MTX and vancomycin treatment was initially
159 bacteriostatic but became bactericidal by 24 h (fig. S2B). Similarly, we tested
160 combination of MTX (0.515 μ g/mL) with other antibiotics against VRE. In the presence
161 of MTX, the MIC for ceftriaxone, daptomycin, ciprofloxacin, chloramphenicol and
162 Penicillin G was reduced by 8, 8, 4, 4 and 2-fold, respectively (table S2), suggesting
163 a general enhancement against VRE.

164

165 We further tested the synergy between MTX and vancomycin in the wound infection
166 model. Mice were first intraperitoneally injected with 100 mg/kg (human equivalent

167 dose of ~8 mg/kg) of vancomycin, which was lower than the minimum equivalent
168 recommended dose (>10 mg/kg) to treat Gram-positive bacterial infections in humans
169 (27). Then, mice were subjected to wound infection with VRE and MTX treatment as
170 described in **Fig. 1A**. As shown in **Fig. 2B**, vancomycin alone reduced the median
171 CFU by 11-fold and MTX alone reduced the median CFU by 42-fold, whereas
172 vancomycin and MTX combination reduced the median CFU by 1000-fold. Thus, MTX
173 and vancomycin synergize to inhibit VRE both *in vitro* and *in vivo*.

174

175 **MTX kills VRE by inducing reactive oxygen species and DNA damage**

176 MTX has been shown to stimulate the formation of reactive oxygen species (ROS) in
177 hepatocytes (28). Because ROS can kill bacteria directly (29), we examined the role of
178 ROS in MTX-mediated inhibition of bacterial growth by measuring the MIC of MTX
179 under oxic and anoxic conditions. Under oxic conditions, VRE growth was completely
180 inhibited by MTX at 1.6 μ g/mL, whereas under anoxic conditions, 51.2 μ g/mL of MTX
181 was required to completely inhibit VRE growth (**Fig. 3A**), a 32-fold decrease in MTX
182 MIC in the presence of oxygen. Quantification of intracellular ROS production using
183 dihydrorhodamine 123 (DHR123) revealed that the sub-MIC of MTX (0.515 μ g/mL),
184 but not vancomycin (4 μ g/mL), induced significant ROS production (**Fig. 3B**).
185 Consistently, MTX also induced elevation of 8-hydroxy-2'-deoxyguanosine (8-OHdG),
186 a by-product of ROS-induced DNA damage, to a level similar to that produced by 0.1
187 mM H₂O₂. (**Fig. 3C**). Addition of vancomycin to MTX-treated cultures did not further
188 increase the levels of ROS and 8-OHdG. Furthermore, when the ROS scavenger
189 MitoTEMPO was added to VRE cultures, VRE growth in the presence of vancomycin
190 plus MTX was similar to that in the presence of vancomycin alone (**Fig. 3D**), indicating
191 that the effect of MTX in synergizing with vancomycin was completely abolished by
192 ROS scavenger. These results suggest that induction of ROS and DNA damage is a
193 key mechanism by which MTX exhibits antibiotic activity and synergizes with
194 vancomycin.

195

196 **Vancomycin-treated VRE display increased permeability to MTX**

197 We noticed that MTX lowered the sensitivity of VRE strains to vancomycin but did not
198 further sensitize vancomycin-susceptible *E. faecalis* or other vancomycin-susceptible
199 bacterial species (**Table 2**), suggesting that the bacterial vancomycin resistance

200 mechanism itself might play a role in the observed synergistic effect between sub-MIC
201 doses of MTX and vancomycin. Vancomycin interferes with bacterial cell wall
202 synthesis and therefore increases cell wall permeability (30). We tested if vancomycin
203 increases the uptake of MTX by measuring MTX's fluorescence emission at 685 nm
204 (31). As shown in **Fig. 4A**, the fluorescence intensity of VRE doubled in the presence
205 of MTX as compared to medium alone. The fluorescence intensity quadrupled when
206 VRE were treated with both MTX and vancomycin. Consistently, mass-spectrometry
207 quantification of intracellular MTX showed that MTX levels were ~6x higher in VRE
208 cultures in the presence of both MTX and vancomycin than MTX alone (**Fig. 4B**).
209 Moreover, more propidium iodide (PI) was taken into VRE at 6 h following treatment
210 with both MTX and vancomycin as measured by flow cytometry (**Fig. 4C**) and
211 fluorescence microscopy (**Fig. 4D**) compared to MTX treatment alone. These results
212 show that vancomycin increases the uptake of MTX probably due to its interference
213 with bacterial cell wall synthesis, which is linked to the resistance mechanism itself in
214 VRE strains, indicating that the synergy between MTX and vancomycin is due to
215 vancomycin-induced uptake of MTX, which in turn kills bacteria by inducing ROS and
216 DNA damage.

217

218 **Mutation in a DEAD/DEAH box helicase confers resistance to MTX**

219 To further investigate the mechanism by which MTX inhibits bacterial growth, we
220 performed *in vitro* evolution to select for spontaneous mutants that were resistant to
221 MTX. We serially passaged VRE in medium with increasing concentrations of MTX
222 from a sub-MIC concentration of 0.515 μ g/mL to 2.84 μ g/mL. Among 16 colonies
223 obtained, one exhibited the highest MTX resistance at MIC of 20 μ g/mL (**Fig. 5A, table**
224 **S3**) or a 12.5-fold increase over the parental VRE. This mutant, henceforth named as
225 VRE MTX^R, was as sensitive to vancomycin alone as the parental strain (MIC = 18
226 mg/mL), but was over 300-fold more resistant to vancomycin in the presence of MTX
227 (MIC = 12.5 μ g/mL). Nevertheless, VRE MTX^R had similar growth kinetics as the
228 parental VRE in the absence of drugs (**Fig. 5B**). Whole genome sequencing (WGS)
229 revealed the presence of four mutations in the genome of VRE MTX^R (**Table S3**).
230 Among them, a point mutation (G --> A) occurred in a gene predicted to encode a
231 DEAD/DEAH box helicase, resulting in a substitution of glycine (G) by arginine (R) at
232 the amino acid position 389.

233

234 RNA helicases of the DEAD/DEAH box family have been linked to oxidative stress
235 resistance in bacteria (32). Compared to the parental VRE, VRE MTX^R exhibited a
236 similar increase in MTX uptake in the presence of vancomycin (**Fig. 5C**). However, in
237 contrast to the parental VRE, MTX treatment did not increase the intracellular ROS or
238 8-OHdG in VRE MTX^R (**Fig. 5D-E**). In fact, VRE MTX^R displayed a lower baseline DNA
239 damage or DNA damage in response to H₂O₂ (**Fig. 5E**), as compared to the parental
240 VRE (**Fig. 3D**). These results show that MTX does not induce ROS and DNA damage
241 in the mutant VRE, likely explaining its increased resistance to MTX.

242

243 Bioinformatic analysis of the vancomycin sensitive *E. faecalis* strain OG1RF showed
244 that it does not possess a homologue of the DEAD/DEAH box helicase gene. To
245 determine if the DEAD/DEAH box helicase could confer OG1RF resistance to MTX,
246 we constitutively expressed either the wildtype (WT) or the mutant DEAD/DEAH box
247 helicase gene in OG1RF. Despite an increase in the intracellular ROS upon MTX
248 exposure in all strains (**Fig. 5F**), *E. faecalis* OG1RF harbouring the WT gene (VRE
249 *dead/deah*) and the mutated copy of DEAD/DEAH box helicase gene (VRE MTX^R
250 *dead/deah*) was 2- and 8-fold more resistant to MTX than the parental OG1RF strain,
251 respectively (**Table 3**). Thus, the DEAD/DEAH box helicase plays a critical role in
252 protecting the VRE MTX^R from the effects of MTX by reducing ROS and DNA damage.

253

254 **MTX enhances macrophages to eliminate bacterial infection *in vivo***

255 We have previously shown that MTX can reprogram macrophages toward a
256 proinflammatory phenotype (26), which could lead to more effective bacterial killing.
257 Therefore, we investigated whether MTX immunomodulatory activity contributes to
258 reduced bacterial CFU in infected wounds *in vivo*. To distinguish between antibiotic
259 and immunomodulatory effects of MTX, we infected wounds with VRE MTX^R together
260 with MTX or PBS. MTX treatment resulted in ~290-fold fewer CFU compared to the
261 PBS control (**Fig. 6A**). Because the reductions in CFU were comparable (290-fold vs.
262 120-fold) when VRE and VRE MTX^R infected wounds were treated with the same
263 amount of MTX, and because VRE MTX^R is resistant to MTX, the reduction of VRE
264 MTX^R CFU is likely to be largely due to MTX immunomodulatory rather than antibiotic
265 activity.

266 To provide support for this interpretation, we quantified macrophages and neutrophils
267 in the wounds 24 h after VRE infection and MTX treatment. VRE infected wounds
268 treated with MTX contained twice the number of macrophages compared to that from
269 infected wounds treated with PBS (**Fig. 6B and fig. S3A**). Similarly, a significant
270 increase in the percentage of neutrophils was also observed in VRE infected wounds
271 treated with MTX (**fig. S3B**). Flow cytometry analysis of the infection-related markers
272 CD163, CD86, CD206 and MHCII (**fig. S3C-D**) (33) showed that macrophages
273 expressed a higher level of CD163, the high affinity scavenger receptor, but a lower
274 level of CD86 in VRE infected wounds treated with MTX as compared to PBS
275 treatment (**Fig. 6C**). Increased macrophage recruitment to the MTX-treated infected
276 wounds correlated with significant increases in the levels of the pro-inflammatory
277 cytokines 1L-1 β , IL-6, TNF- α , IFN- γ in MTX-treated wounds and a lower level of the
278 anti-inflammatory cytokine TGF- β 1 (**Fig. 6D**). Consistently, MTX treatment of infected
279 RAW264.7 macrophages resulted in significantly higher NF- κ B-driven transcription
280 than the PBS-treated infected cells (**fig. S3E**).

281

282 We further examined whether MTX promotes macrophage killing of intracellular
283 bacteria. RAW264.7 macrophages and primary murine bone-marrow derived
284 macrophages (BMDM) were infected with VRE for 3 h followed by 15 h of combined
285 treatment with MTX and gentamicin plus penicillin, which eliminate any residual
286 extracellular bacteria. MTX treatment resulted in ~3-log fewer intracellular CFU
287 compared to untreated infected cells at 18 hpi (**Fig. 6E**). Similarly, MTX promoted
288 intracellular killing of VRE in the human monocyte-like cell line (THP-1) and primary
289 human monocyte-derived macrophages (HMDM) (**Fig. 6E**), although the difference
290 was not statistically significant. Moreover, MTX also enhanced macrophage killing of
291 both Gram-positive and Gram-negative bacteria, including *E. faecium*, *S. aureus*, *P.*
292 *aeruginosa*, and multi-drug resistant *E. coli* EC958 (**fig. S4**).

293

294 To exclude a direct antibiotic effect of MTX on intracellular bacterial killing, we pre-
295 treated RAW 264.7 macrophages with MTX overnight, washed cells to remove
296 residual MTX in the culture, and then infected with VRE. The pre-treatment reduced
297 intracellular CFU by ~2-log by 18 hpi (**Fig. 6F**). Importantly, the same infection and
298 MTX pre-treatment did not promote host cell death (**fig. S3F**) or host cell membrane
299 permeability (**fig. S3G**). Taken together, these results show that MTX promotes

300 macrophage recruitment to the site of infection *in vivo* and re-programs macrophages
301 to pro-inflammatory phenotypes to more efficiently eliminate bacteria.

302

303 **MTX enhances bactericidal activity of macrophages by stimulating lysosomal
304 enzyme expression and activity**

305 To determine how MTX enhances macrophage bacterial killing, we investigated
306 whether MTX stimulates macrophage phagocytosis of bacteria. RAW264.7
307 macrophage cells were treated with MTX for 16 h and then incubated with fluorescent
308 fixed VRE. After 3 h of incubation, the fluorescence of extracellular bacteria was
309 quenched with Trypan Blue and phagocytosis of fluorescent bacteria was measured
310 by flow cytometry and visualized by confocal microscopy. Fluorescent bacteria were
311 visible inside RAW264.7 cells, but there was no significant difference in phagocytosis
312 by RAW264.7 with or without MTX treatment (**fig. S5A-C**). We also tested whether
313 MTX stimulates macrophages to produce ROS. In the absence of infection, MTX did
314 not induce ROS production by RAW264.7 (**fig. S5D**). Following VRE infection,
315 RAW264.7 cells produced ROS regardless of MTX addition. Consistently, addition of
316 the superoxide scavenger MitoTEMPO did not reduce bactericidal activity of
317 macrophages (**fig. S5E**). These results suggest that neither increased phagocytosis
318 nor ROS production explain why MTX enhances macrophage bactericidal activity.

319

320 We investigated whether MTX enhances macrophage killing of bacteria by stimulating
321 lysosomal activity. We quantified the transcript levels of 16 lysosomal pathway genes
322 by qRT-PCR in uninfected RAW264.7 macrophages following MTX treatment for 24 h
323 (**fig. S6**). Transcripts for lysosomal proteases Cathepsins D (*Ctsd*) and H (*Ctsh*), and
324 the enzyme β -Hexosaminidase (beta subunit) (*Hexb*), which cleaves glycosides, were
325 upregulated (**Fig. 7A and fig. S6**). We further verified the induction of CtsD protein in
326 MTX-treated RAW264.7 cells in both the presence and absence of bacterial infection
327 by Western blotting (**Fig. 7B-C**). Notably, fully processed CtsD heavy and light chains
328 were abundant (**Fig. 7C**), indicating activation of CtsD enzymatic activity in MTX-
329 treated macrophages. To directly test the role of CtsD and other lysosomal proteases
330 in bactericidal activity, we quantified the intracellular bacteria in the presence of
331 lysosomal protease inhibitor pepstatin A. While pepstatin A alone did not inhibit
332 macrophage killing of intracellular VRE or VRE MTX^R, it completely abolished MTX-
333 stimulated macrophage killing of intracellular bacteria (**Fig. 7D**). These results show

334 that MTX stimulates macrophages to kill bacteria by upregulating lysosomal enzyme
335 expression and activity.

336

337

338 **Discussion**

339 Ever-increasing antibiotic resistance requires new approaches that leverage both
340 antibiotics and the immune system in combating bacterial infection. In this study, we
341 investigated MTX, a chemotherapeutic initially approved for treating acute myeloid
342 leukaemia, for its antibiotic activity and its ability to recruit and activate macrophages
343 for bacterial clearance. We show: i) MTX possesses potent antibiotic activity against
344 Gram-positive bacteria, ii) MTX and vancomycin synergize to overcome vancomycin-
345 resistance, and iii) sub-MIC levels of MTX are sufficient to recruit and activate
346 macrophages to clear bacteria in a mouse model of wound infection. We determined
347 the molecular mechanisms that underlie MTX antibiotic activity, synergy with
348 vancomycin, and activation of macrophage bactericidal activity.

349

350 MTX was previously reported to exhibit antibiotic activity in MIC tests performed in
351 nutrient rich medium against *S. pneumoniae* and *S. aureus* (34, 35). Here we tested
352 MTX antibiotic activity against a panel of Gram-positive and Gram-negative bacterial
353 species and strains and found MTX to be 10-20-fold more potent against Gram-
354 positive bacteria with MIC ~1 µg/ml. We also show that sub-MIC MTX reduced the
355 growth of a vancomycin-resistant strain of *E. faecalis* (VRE) by ~100-fold in a murine
356 wound infection model. To our knowledge, this is the first time MTX has been used
357 topically to treat bacterial infections. Topical use at a low dose may limit the potential
358 side effects of MTX administered systemically.

359

360 As a chemotherapeutic, MTX is known to induce DNA damage as well as free radical
361 formation and lipid peroxidation in eukaryotic cells (28). As an antibiotic, it was
362 previously proposed that its main mode of action was inhibition of bacterial DNA
363 gyrase (35, 36). Here we show that MTX kills bacteria primarily by induction of ROS
364 and DNA damage with three lines of evidence. First, the antibiotic activity of MTX is
365 over 30-fold stronger in the presence of oxygen than in the absence of oxygen.
366 Second, a sub-MIC dose of MTX is sufficient to cause significant ROS elevation and

367 DNA damage in the bacterial cells. Third, addition of superoxide scavenger
368 MitoTEMPO to the culture completely abolished MTX's synergistic antibiotic activity
369 with vancomycin. This mechanism of action is supported by the generation of an MTX-
370 resistant mutant VRE, carrying a mutation in the gene encoding a predicted
371 DEAD/DEAH box helicase. Enzymes of the DEAD/DEAH box family are RNA
372 helicases implicated in many processes (34, 43), including oxidative stress resistance
373 in some bacterial species (32). Compared to the parental VRE, VRE MTX^R had similar
374 uptake of MTX, but produced lower levels of ROS, and had significantly reduced DNA
375 damage. Furthermore, heterologous expression of the VRE wildtype and mutant
376 DEAD/DEAH box helicase genes in *E. faecalis* OG1RF, which lacks this gene, was
377 sufficient to confer MTX resistance by 2- and 8-fold, respectively. These results
378 suggest that the induction of ROS and DNA damage is a key mechanism by which
379 MTX exhibits antibiotic activity.

380

381 Clinically, combinatorial therapy using antibiotics with different mechanisms of action
382 and different targets is used to prevent antibiotic resistance (37). In this study, we found
383 that MTX and vancomycin are a highly effective combination against vancomycin
384 resistant strains both in *in vitro* culture and in a murine model of wound infection.
385 Interestingly, the observed synergy was limited to vancomycin-resistant strains, not
386 vancomycin-sensitive strains, because the vancomycin resistant cells display
387 increased permeability to MTX, thereby enabling elevated ROS production and DNA
388 damage and therefore synergy. It is probable, that in VRE strains, vancomycin induces
389 the resistance mechanism, leading to cell wall remodelling which in turn facilitates
390 MTX uptake. This finding may have broader implications for the treatment of
391 vancomycin-resistant bacterial infections and suggests the possibility of combination
392 therapies where vancomycin may act as a permeability enhancer in strains otherwise
393 resistant to this antibiotic.

394

395 In addition to possessing direct antibiotic activity, MTX also stimulates macrophages
396 to more effectively clear bacteria both *in vitro* and *in vivo*. Because augmented
397 macrophage killing activity occurred with sub-MIC concentrations of MTX, we
398 conclude that MTX acts primarily by activating macrophages, rather than its antibiotic
399 activity. Consistent with this interpretation, MTX-stimulated macrophage killing of

400 bacteria is as effective for Gram-positive as for Gram-negative bacteria both *in vitro*
401 and *in vivo*. Pre-treatment of RAW264.7 macrophages-like cells with MTX enhanced
402 VRE killing, indicating re-programming of macrophages for enhanced bactericidal
403 activity. Furthermore, MTX stimulated macrophages clear VRE MTX^R nearly as
404 efficiently as the parental VRE strain in the wound infection, further supporting that re-
405 programming macrophages by MTX promotes bacterial clearance.

406

407 ROS and lysosomal activity form two crucial arms of intracellular bacterial killing (20).
408 *E. faecalis* can escape intracellular killing by manipulating the endosomal pathway to
409 prevent lysosomal fusion (15). We show that MTX-treated macrophages display an
410 enhanced bactericidal activity, rather than an enhanced phagocytosis rate, due to
411 higher levels of expression of lysosomal enzymes including cathepsin D which has
412 bactericidal activity against both Gram-positive and Gram-negative bacteria (40).
413 Inhibition of cathepsin D using Pepstatin A ablated MTX-driven killing, whereas
414 inhibiting ROS with MitoTEMPO had minimal effect on MTX-driven killing, suggesting
415 that MTX-induced ROS in macrophages unlikely contributes significantly to
416 intracellular bacterial killing. These results suggest that MTX re-programs
417 macrophages to express an elevated levels of lysosomal enzymes and therefore
418 stronger bactericidal activity.

419

420 In the more complex system of wound infection *in vivo*, MTX also augments
421 macrophages to kill bacteria through additional immunoregulatory mechanisms. MTX
422 has previously been shown to inhibit inflammatory responses and induce apoptosis in
423 innate and adaptive immune cells (36) and paradoxically, to induce inflammatory
424 responses and overexpression of M1 markers and NF- κ B in macrophages in a dose-
425 dependent manner (25, 41). MTX was also shown to induce inflammatory responses in
426 adult mice following intraperitoneal injection (41). In our study, we showed that MTX
427 serves as an immune attractant in infected wounds, is associated with higher levels of
428 pro-inflammatory cytokines, and the recruited macrophages have higher levels of
429 CD163 and lower expression of CD86. CD163, a macrophage scavenger receptor, is
430 important for bacterial clearance, with CD163^{-/-} mice being highly susceptible to *S.*
431 *aureus* infection (42). By contrast, CD86 can both enhance and impair immune
432 responses to infection, likely depending on the context (43). Taken together, these

433 results show that MTX promotes immunological changes within infected wounds,
434 including recruitment of macrophages with enhanced bactericidal activity, that may
435 contribute to better bacterial clearance.

436

437 In summary, we show that MTX possesses potent antibiotic activity by inducing ROS
438 and DNA damage, re-sensitizes vancomycin resistant bacterial strains to vancomycin,
439 and enhances immune cell mobilisation and intracellular clearance of bacteria. Our
440 findings support further evaluation of MTX, especially in combination with vancomycin,
441 for treating wound infections by vancomycin-resistant and other bacteria.

442

443 **Limitations of this study:**

444 Further validation of MTX as an antibiotic and an immunomodulatory agent,
445 incorporating factors of mode of delivery, time of treatment and dosage will be required
446 to confirm the suitability of this drug as a treatment for bacterial infection. We evaluated
447 the efficacy of MTX in a murine wound excision model of VRE, MRSA and *P.*
448 *aeruginosa* infection, but studies in larger animal models and ultimately humans are
449 needed to extend these results. For simplicity, and with an eye toward uncovering
450 mechanistic details, we focused on the effect of MTX upon innate immune cells, and
451 in particular macrophages following a single dose regime. The effect of multiple doses
452 of MTX, as well as the effect of MTX on other cells (both immune and otherwise) which
453 make up the wound bed milieu are both important avenues for further investigation.
454 Importantly, prolonged use of this compound has never been evaluated in infection
455 contexts, but some data suggest that bacteria may be able to metabolise MTX (69)
456 which could impact the spectrum of use and could also have implications in the context
457 of polymicrobial infections, if one species metabolically depletes MTX. An important
458 final consideration is that MTX, as a cancer therapeutic, possesses multiple
459 mechanisms of action and potential broad off-target effects. Moreover, tissues display
460 slow release of MTX (36), underscoring that the impact of MTX on tissue healing
461 (following bacterial clearance) will need to be closely monitored. Therefore, treatment
462 using MTX would need to be strategic, for example as adjuvant therapy or as a last
463 resort in cases of antibiotic resistant infections, particularly vancomycin resistant
464 bacteria.

465

466 **Materials and Methods**

467

468 **Study Design**

469 The study's objective was to determine the efficacy and the mechanism of action of
470 MTX as an antimicrobial and host-targeted immunotherapy for wound infections. The
471 efficacy of MTX was investigated using a mouse wound excisional model whereby
472 bacterial burden (CFU) was measured 24 h post-infection. Cells from *E. faecalis* V583
473 infected mouse wounds were profiled by flow cytometry to identify changes in cell
474 populations between MTX versus no treatment. Cytokines levels from treated and non-
475 treated *E. faecalis* V583 infected wounds were also investigated to investigate MTX's
476 mechanism of action. Additionally, *in vitro* assays with primary and cell lines of murine
477 and human macrophages were designed to identify the individual or combined
478 contributions of MTX and vancomycin in the enhanced bacterial killing observed *in*
479 *vivo*. The group sizes for each mouse strain included at least three mice per group
480 with at least two independent experiments to confirm results, which was sufficient to
481 ensure statistical significance, as previously established (44, 45). Experiments were
482 not blinded, and there were no exclusions of data or exclusion criteria to report in this
483 study.

484

485 **Ethics statement**

486 All animal experiments were performed with approval from the Institutional Animal
487 Care and Use Committee (IACUC) in Nanyang Technological University, School of
488 Biological Sciences under protocol ARF-SBS/NIE-A19061.

489

490 **Mouse wound excisional model**

491 The procedure for mouse wound infections was modified from a previous study (15).
492 Briefly, male C57BL/6 mice (6-8 weeks old, 22 to 25 g; NTU, Singapore) were
493 anesthetized with 3% isoflurane. Following dorsal hair trimming, the skin was then
494 disinfected with 70% ethanol before creating a 6-mm full-thickness wound using a
495 biopsy punch (Integra Miltex). Bacteria (10^7 CFU) were added to the wound site
496 followed with addition of either 10 μ L of PBS or 10 μ L MTX (0.515 μ g/mL). Then, the
497 wound site was sealed with a transparent dressing (Tegaderm 3M). Where co-

498 treatment with vancomycin was performed, intraperitoneal injections (IP) of PBS or
499 vancomycin (100 mg/kg in a maximum volume of 100 μ L) were performed before the
500 biopsy punch. After 24 h, mice were euthanized and a 1 cm by 1 cm squared piece of
501 skin surrounding the wound site was excised and collected in sterile PBS. Skin
502 samples were homogenized, and the viable bacteria enumerated by plating onto BHI
503 plates.

504

505 **Bacterial strains and growth conditions**

506 Bacterial strains used in this study are listed in **table S4**. Bacterial strains were grown
507 using Brain Heart Infusion (BHI) broth and agar (Becton, Dickinson and Company).
508 For experiments performed under anoxic conditions, Oxoid AnaeroGen 3.5L sachet
509 (Thermo Fisher Scientific) was used to create an anoxic atmosphere in the Oxoid
510 chamber. Bacterial strains were streaked from glycerol stocks stored at -80 °C,
511 inoculated and grown overnight statically for 16-20 h either in 10 mL of liquid BHI broth
512 or DMEM + 10% FBS medium. Cells were harvested by centrifugation at 8000 RPM
513 (25°C) for 5 min. The supernatant was discarded, and the pellet was then resuspended
514 in either DMEM + 10% FBS or sterile PBS to an optical density at 600 nm (OD_{600nm})
515 of 0.7 for VRE, equivalent to 2–3×10⁸ colony forming units (CFU).

516

517 **Antimicrobial and minimum inhibitory concentration assays**

518 Bacterial growth assays were carried out in complete DMEM medium as described
519 previously (46). 2 μ l of overnight cultures grown in DMEM were added to 200 μ l of
520 medium in a 96-well plate with the indicated concentrations of MTX and/or
521 vancomycin. In some assays, MitoTEMPO was also added to a final concentration of
522 80 μ M. The OD₆₀₀ at the zero-time point was established. Bacteria were grown
523 statically 96-well plates at 37°C for up to 24 h. Final OD₆₀₀ measurements were
524 acquired using a Tecan M200 microplate reader.

525 **Growth curve assay and kinetic killing assay**

526 Overnight cultures were diluted 1:100 into 96-well plates containing complete DMEM,
527 vehicle (DMSO) or MTX (0.515 μ g/ml, Sigma-Aldrich) and grown at 37°C in a Tecan
528 M200 microplate reader. Every hour OD₆₀₀ measurements were acquired up to 24 h.

529 For the kinetic killing assay, overnight cultures of VRE were diluted to a starting CFU
530 equivalent to 10^6 CFU/mL in 50 mL tubes with 10 mL of DMEM containing MTX (0.515
531 $\mu\text{g}/\text{mL}$) and/or vancomycin (4 $\mu\text{g}/\text{ml}$) and grown at 37 °C. At time points up to 24 h
532 post inoculation, 20 μl of culture was removed, serially diluted in sterile PBS, and spot
533 plated onto BHI agar for CFU calculation.

534

535 **MTX uptake assay**

536 VRE overnight cultures were diluted 10-fold into 10 mL of complete DMEM in 50 mL
537 tubes containing either MTX (0.515 $\mu\text{g}/\text{ml}$), or MTX (0.515 $\mu\text{g}/\text{ml}$) and vancomycin (4
538 $\mu\text{g}/\text{ml}$). After 6 h, 1 mL aliquots were removed from each sample and washed 3 times
539 with PBS. Next, 200 μL of each test sample was transferred to black-walled 96-well
540 plates to measure MTX fluorescence (excitation = 610 nm, emission = 685 nm) by
541 using a Tecan M200 microplate reader. MTX levels were normalized to OD_{600} to
542 account for differences in *E. faecalis* V583 viability.

543

544 **Bacterial cells permeability assay**

545 VRE overnight cultures were diluted 10-fold into 10 mL of complete DMEM in 50 mL
546 tubes containing either MTX (0.515 $\mu\text{g}/\text{ml}$), vancomycin (4 $\mu\text{g}/\text{ml}$) or MTX (0.515
547 $\mu\text{g}/\text{ml}$) and vancomycin (4 $\mu\text{g}/\text{ml}$). After 6 h, 1 mL aliquot was removed and washed
548 3X with PBS prior to addition of PI (1:1000). Cells were then fixed in 4% PFA for 15
549 min prior to PI fluorescence analysis using a BD LSRFortessa X-20 Cell Analyzer
550 (Becton Dickinson). In addition, epifluorescence microscopy VRE images after
551 permeability assay were acquired using a 63 \times oil objective (Zeiss) fitted onto a Zeiss
552 AxioObserver.Z1 inverted widefield microscope (Carl Zeiss, Göttingen, Germany).
553 Acquired images were visually analyzed using using ImageJ.

554

555

556 **Liquid chromatography-mass spectrophotometry**

557 Sample extraction and measurement followed the published reports with modifications
558 (47, 48). Overnight cultures of VRE were diluted in a ratio of 1:10 in DMEM + 10%

559 FBS and statically incubated in DMEM alone, 1 μ M of MTX and/or vancomycin 4
560 μ g/mL at 37 °C. Bacteria were harvested at 0, 1, 8 and 24 h and CFU were determined
561 by plating serial dilutions on BHI agar medium. The cell-free supernatant was collected
562 by filtration through a 0.22- μ m filter. MTX was extracted by adding ice cold 50:50
563 acetonitrile/methanol. After vortexing, the mixture was centrifuged and the supernatant
564 was collected and evaporated to dryness in a vacuum evaporator. The dry extracts
565 were redissolved in 50:50 water/methanol for liquid chromatography-mass
566 spectrometry (LC-MS) analysis. The calibration curve was prepared by spiking MTX
567 standard solutions into blank medium which proceeded as described above. LC-MS
568 analysis was performed with Agilent 1290 ultrahigh pressure liquid chromatography
569 system coupled to an electrospray ionization with iFunnel Technology on 6490 triple
570 quadrupole mass spectrometer. Chromatographic separation was achieved by using
571 a Waters Atlantis T3 column with mobile phases (A) 0.1% formic acid in water and (B)
572 0.1% formic acid in methanol. Electrospray ionization was performed in positive ion
573 mode and MTX was quantified in multiple reaction monitoring (MRM) mode with the
574 transitions of *m/z* 445>88 and *m/z* 445>70. Data acquisition and processing were
575 performed using MassHunter software (Agilent Technologies). The intracellular MTX
576 was calculated as: $[\text{MTX}]_{\text{drug-only control}} - [\text{MTX}]_{\text{filtrate}}$.

577

578 **DNA damage measurement**

579 VRE overnight cultures were diluted 10-fold into 10 mL of complete DMEM in 50 mL
580 tubes containing MTX (0.515 μ g/mL), vancomycin (4 μ g/mL), separately and in
581 combination, and the positive control H₂O₂ (0.1mM). After 6 h, 1 mL aliquot was
582 removed. Bacterial cells were pelleted by centrifugation (8000 RPM, 5 min) and
583 supernatant was used to determine the levels of 8-hydroxy-2'-deoxyguanosine (8-
584 OHdG) using a DNA Damage ELISA competitive assay as per manufacturer's
585 instructions.

586

587 **Bacterial reactive oxygen species quantification**

588 This assay was adapted from (46). *E. faecalis* V583 overnight cultures were diluted
589 10-fold into 200 μ L complete DMEM in black-walled 96-well plates containing 50 μ M
590 DHR123 (Thermo Fisher Scientific), vehicle (DMSO), MTX (0.515 μ g/ml), and/or

591 vancomycin (4 µg/ml). Plates were incubated with no shaking at 37°C for 6 h. At the
592 end, the optical density was measured at 600 nm to determine bacterial growth and
593 DHR123 fluorescence (excitation = 507 nm, emission = 529 nm) was measured using
594 a Tecan M200 microplate reader to determine cellular ROS levels. ROS levels were
595 normalized to OD600 to account for differences in VRE viability.

596

597 ***In vitro evolution of *E. faecalis* to MTX resistance***

598 The protocol was adapted from a previously published *in vitro* evolution experiment
599 done in *E. faecalis* V583 (49). Sixteen starting colonies were picked from an overnight
600 grown plate and grown in DMEM + 10% FBS overnight for performing parallel lines of
601 evolution experiment. 10X dilutions of overnight bacterial cultures of each strain were
602 made in DMEM + 10% FBS containing MTX from a starting sub-MIC concentration of
603 0.258 µg/mL and incubated at 37°C at static conditions for 22 to 26 h. Cultures of every
604 evolution line were examined for visible bacterial growth. Bacterial cultures were then
605 diluted again 10X into fresh MTX-containing medium at higher concentration. This was
606 repeated till MTX of 2.84 µg/mL was achieved. Bacterial cultures were then further
607 passaged 2 more times in the highest concentration, prior to genomic DNA extraction
608 using Wizard Genomic DNA Purification Kit (Promega, USA). Each of the 16 bacterial
609 cultures were also further evaluated for MIC method, as described above, to validate
610 their susceptibility to higher concentrations of MTX. Evolved strains were also
611 subjected to whole genome sequencing. Raw reads were imported into CLC
612 Genomics Workbench 8.0 (Qiagen), followed by quality trimming to remove bad quality
613 reads. The trimmed reads were then mapped to the reference genome before the
614 Basic Variant Detection module was used to detect for mutations using the default
615 parameters.

616 **Strain construction**

617 To construct the V583DEAD (*dead/deah* gene WT copy) and MTX^RV583DEAD
618 (*dead/deah* mutated gene copy) complementation plasmid, primers 1 and 2 (**table S4**)
619 were designed with *Xhol* restriction sites. These primers flank the gene of interest and
620 were used to amplify the DNA sequence from the isolated genomic DNA of the WT
621 and MTX^R strains. In-Fusion cloning (TaKaRa Bio) was performed using primers 1 and
622 2 with at least 15 bp complementary sequence for ligation into vector pGCP123 (50),

623 which was also digested with the same restriction enzyme. The pGCP123::V583DEAD
624 and pGCP123::MTX^RV583DEAD plasmid was generated in *E. coli* DH5 α , verified by
625 sequencing, and transformed into *E. faecalis* as described previously (50).

626

627 **Flow cytometry**

628 Flow cytometry was performed as described in (14) with some modifications. Excised
629 skin samples were placed in 1.5 ml Eppendorf tubes containing 2.5 U/ml liberase
630 prepared in DMEM with 500 μ g/ml of gentamicin and penicillin G (Sigma-Aldrich). The
631 mixture was then transferred into 6-well plates and incubated for 1 h at 37°C in a 5%
632 CO₂ humidified atmosphere with constant agitation. Dissociated cells were then
633 passed through a 70 μ m cell strainer to remove undigested tissues and spun down at
634 1350 RPM for 5 min at 4°C. The enzymatic solution was then aspirated, and cells were
635 blocked in 500 μ l of FACS buffer (2% FBS and 0.2 mM ethylenediaminetetraacetic
636 acid (EDTA) in PBS (Gibco, Thermo Fisher Scientific)). 10⁷ cells per sample were then
637 incubated with 10 μ l of Fc-blocker (anti-CD16/CD32 antibody, Biolegend) for 30 min,
638 followed by incubation with an anti-mouse CD45, CD11b, and Ly6G (neutrophils), or
639 CD45, CD11b and F4/80 (macrophages) plus CD86 and MHCII or CD163 and CD206
640 markers conjugated antibodies (Biolegend) (1:100 dilution) for 30 min at room
641 temperature. Cells were then centrifuged at 500 x g for 5 min at 4 °C and washed in
642 FACS buffer. Cells were fixed in 4 % PFA for 15 min at 4 °C, before final wash in FACS
643 buffer and final resuspension in this buffer. Following which, cells were analysed using
644 a BD LSRFortessa X-20 Cell Analyzer (Becton Dickinson). Compensation was done
645 using AbC Total Antibody Compensation Bead Kit (Thermo Fisher Scientific) as per
646 manufacturer's instructions. To evaluate MTX cytotoxicity in RAW264.7 cells, cells
647 were analysed using a BD LSRFortessa X-20 Cell Analyzer after being stained with
648 PI (1:1000) for 30 min on ice.

649

650 **Cytokine analysis**

651 Homogenized wound samples were stored at -80 °C until use. Samples were thawed
652 on ice, and centrifuged for 5 min at 500 x g to remove cell debris. Supernatants were
653 used to perform ELISA to quantify the levels of IL-1 β (Thermo Fisher Scientific), IL-6

654 (Biolegend), TNF- α (Biolegend), IFN- γ (Biolegend), TGF- β 1 (Thermo Fisher
655 Scientific), according to the manufacturer's instructions.

656

657 **Human blood derived macrophages (HBDM) and cell lines**

658 Isolated peripheral blood (PB) primary human monocytes were purchased from
659 StemCells Technologies. For *in vitro* differentiation of monocytes into human
660 macrophages, isolated monocytes were cultured in complete RPMI1640
661 supplemented with 10% heat-inactivated fetal bovine serum (FBS) (PAA, GE
662 Healthcare), 2 mM L-glutamine (Corning) and 1% PenStrep solution (Gibco, Thermo
663 Fisher Scientific) in the presence of 50 ng/mL recombinant human M-CSF (Biolegend)
664 for 7 days. The RAW264.7 murine macrophage-like cell line (InvivoGen), and the THP-
665 1 monocytic cells derived from an acute monocytic leukemia patient cell line (ATCC),
666 were cultured at 37°C in a 5% CO₂ humidified atmosphere. All cells were grown and
667 maintained in Dulbecco's modified Eagle's medium (DMEM) (Gibco; Thermo Fisher
668 Scientific) with 10% heat-inactivated FBS (PAA, GE Healthcare), and 100 U of
669 penicillin–streptomycin (Gibco, Thermo Fisher Scientific). The culture medium was
670 replaced every three days, and upon reaching 80% confluence, cultures were
671 passaged. RAW264.7 cells passaging was achieved by gentle cell scraping and
672 seeding cells at a density of 3x10⁶ cells/T75 flask (Nunc; Thermo Fisher Scientific).

673

674 **Mouse bone marrow-derived macrophages (BMDM)**

675 BMDMs were prepared as described previously (51). Briefly, fresh bone marrow cells
676 were isolated from mice, plated in complete RPMI with 50 ng/mL recombinant M-CSF
677 (Biolegend) and cultured for 6 days with medium change every 3 days.

678

679 **Intracellular infection assay**

680 Intracellular infection assays were performed as described in (14) with some
681 modifications. Cells were seeded at a density of 10⁶ cells/well or 8x10⁵ cells/well in a
682 6-well or 96-well tissue culture plate (Nunc; Thermo Fisher Scientific), respectively,
683 and allowed to attach overnight at 37°C in a 5% CO₂ humidified atmosphere. Cells
684 were infected at a multiplicity of infection (MOI) of 10 for up to 3 h. Following infection,
685 the media was aspirated, and the cells were washed three times in PBS and incubated

686 with 150 µg/ml of gentamicin (Sigma-Aldrich) and 50 µg/ml penicillin G (Sigma-Aldrich)
687 to kill extracellular bacteria and MTX (0.515 µg/ml), or varying concentrations of
688 vancomycin (0.06-75 µg/ml) (Sigma-Aldrich) and MTX (0.515 µg/ml), in complete
689 DMEM for 18-24 h to selectively kill extracellular bacteria. The antibiotic containing
690 medium was then removed, the cells were washed 3 times in PBS before addition of
691 2% Triton X-100 (Sigma-Aldrich) PBS solution to lyse the cells for enumeration of the
692 intracellular bacteria. Variations of this assay included pre-treatment of mammalian
693 cells, prior to bacterial infection, with MTX (0.515 µg/ml) followed by antibiotic
694 treatment only, or co-treatment of cells at the time of infection with either MitoTEMPO
695 (80 µM) (Sigma-Aldrich) or Pepstatin A (10 µg/mL) (Sigma-Aldrich).

696

697 **NF-κB reporter assay**

698 This assay was performed as described in (13) using RAW-blue cells (InvivoGen). Post
699 treatment of RAW267.4 cells for 16 h with MTX (0.515 µg/ml) or LPS (100 ng/mL) and
700 IFN-γ (50 ng/mL) or IL-4 (10 ng/mL) and IL-13 (10 ng/mL), 20 µl of supernatant was
701 added to 180 µl of Quanti-Blue reagent (Invivogen) and incubated overnight at 37°C.
702 SEAP levels were determined at 640 nm by using a Tecan M200 microplate reader.

703

704 **LDH cell viability assay**

705 As described before (13), post intracellular infection assays, culture supernatants were
706 collected from each well to measure lactate dehydrogenase (LDH) release by using
707 an LDH cytotoxicity assay (Clontech) according to the manufacturer's instructions.
708 Background LDH activity was determined using mock (PBS)-treated RAW264.7 cells.
709 Maximal LDH activity was determined by lysing cells with 1% Triton X. The percentage
710 of cytotoxicity was calculated as follows: % cytotoxicity = [(sample absorbance –
711 background absorbance)/(maximal absorbance – background absorbance)] × 100.

712

713 **Mammalian cell reactive oxygen species quantification**

714 Mammalian cells were seeded at a density of 8x10⁵ in a 96-well tissue culture plate
715 (Black Nunc; Thermo Fisher Scientific), respectively and allowed to attach overnight
716 at 37°C in a 5% CO₂ humidified atmosphere. Fluorescein (Abcam) was added to each

717 well to a final concentration of (120 nM) followed by addition of the positive control
718 (H_2O_2 , 1mM), vehicle (DMSO), and MTX (0.515 μ g/ml). Cells were then either infected
719 at a MOI 10 for up to 6 h or left uninfected. Plates were incubated with no shaking at
720 37°C. At the end, the fluorescence (excitation = 490 nm, emission = 525 nm) was
721 measured using a Tecan M200 microplate reader to determine cellular ROS levels.

722

723 **RNA isolation and qRT-PCR**

724 To quantify the levels of RNA transcripts, total RNA was extracted from non-treated,
725 DMSO-treated or MTX-treated RAW264.7 cells with RNeasy MinElute Kit (Qiagen)
726 and reverse transcribed using SuperScript III First-Strand Synthesis SuperMix
727 (Thermo Fisher), followed by amplification with KAPA SYBR Fast (Kapa Biosystems)
728 with specific primers (Table S4) and detected by Step One Plus Real time PCR
729 machine (Applied Biosystems). Relative quantification of gene expression was
730 performed using the comparative Ct Method (52) where the Ct values were normalized
731 with housekeeping gene GAPDH for comparison.

732

733 **Immunoblotting**

734 Whole cell (WC) lysates were prepared by adding 488 μ l of RIPA buffer (50 mM Tris-
735 HCl, pH 8.0; 1% Triton X-100; 0.5% Sodium deoxycholate; 0.1% SDS; 150 mM NaCl)
736 to the wells after intracellular infection assays, where cells were scraped and kept in
737 RIPA buffer for 30 min at 4 °C. Prior to the addition of 74.5 μ l of 1 M DTT and 187.5 μ l
738 NuPAGE LDS Sample Buffer (4X) (Thermo Fisher Scientific), cells were further
739 mechanically disrupted by passing the lysate through a 26g size needle. Samples
740 were then heated to 95°C for 5 min. 15 μ l of cell lysate proteins were then separated
741 in a 4–12% (w/v) NuPAGE Bis-Tris protein gel and transferred to PVDF membranes.
742 Membranes were incubated with Tris-buffered saline, TBS (50 mM Tris, 150 mM NaCl,
743 pH 7.5) containing 0.1% (v/v) Tween-20 (TBST) and 5% (w/v) BSA for 1 h at room
744 temperature. Membranes were incubated with 1:1000 for rabbit α -cathepsin D (Cell
745 Signaling Technology), or 1:1000 for rabbit α -GADPH (Cell Signaling Technology) in
746 TBST containing 1% (w/v) BSA overnight at 4°C. Membranes were washed for 60 min
747 with TBST at room temperature and then incubated for 2 h at room temperature with
748 goat anti-rabbit (H+L) HRP-linked secondary antibody (Invitrogen) respectively. After
749 incubation, membranes were washed with TBST for 30 min and specific protein bands

750 were detected by chemiluminescence using SuperSignal West Femto maximum
751 sensitivity substrate (Thermo Fisher Scientific). Band intensities were quantified
752 relatively to the lane's loading control using ImageJ (53).

753

754 **Phagocytosis Assay**

755 *E. faecalis* V583 cells were fixed with 4% PFA for 15 min and washed thrice with PBS,
756 prior to labelling with the membrane permeant DNA dye - Syto9 (Thermo Fisher
757 Scientific). Bacterial cells were then washed thrice with PBS and resuspended in
758 DMEM + 10% FBS. RAW264.7 cells were infected with MOI10 of Syto9-labelled
759 bacterial cells and incubated for 1 hour at 37°C and 5% CO₂. Following supernatant
760 removal, infected cells were harvested and resuspended in PBS. The fluorescence of
761 bacteria either free in the medium or attached to the RAW264.7 cell membranes were
762 quenched with a final concentration of 0.01% trypan blue. As trypan blue cannot enter
763 viable eukaryotic cells, the unquenched fluorescence reflected the bacterial cells that
764 were internalized in viable RAW264.7 cells. After staining, cells were immediately run
765 through the flow cytometer. All data were collected using the BD LSRIFortessa X-20
766 Cell Analyzer and analyzed with FlowJo V10.8.1 (BD Biosciences, USA). The samples
767 were initially gated side scatter area (SSC-A) by forward scatter area (FSC-A) to select
768 the RAW264.7 populations. The RAW264.7 population was subsequently gated
769 forward scatter width (FSC-W) by side scatter area (SSC-A) to remove doublet
770 populations. The resulting singlet cell population was then assessed for Syto9
771 fluorescent marker.

772

773 **Fluorescence Staining**

774 RAW264.7 cells were seeded at 2×10⁵ cells/well in a 24-well plate with 10 mm
775 coverslips, and allowed to attach overnight at 37°C and 5% CO₂. Infection with Syto9
776 fluorescent-labelled *E. faecalis* V583 was performed with MOI10 for 1 h. The
777 coverslips seeded with cells were then fixed with 4% PFA at 4°C for 15 min,
778 permeabilized with 0.1% Triton X-100 for 15 min at room temperature and washed
779 thrice in PBS. Cells were then blocked with PBS supplemented with 0.1% saponin and
780 2% bovine serum albumin (BSA). For actin labelling, the phalloidin–Alexa Fluor 555
781 conjugate (Thermo Fisher Scientific, USA) was diluted 1:40 in PBS and incubated for

782 1 h. Coverslips were then washed 3 times in PBS with 0.1% saponin. They were then
783 subjected to a final wash with PBS, thrice. Finally, the coverslips were mounted with
784 SlowFade Diamond Antifade (Thermo Fisher Scientific) and sealed. Confocal images
785 were then acquired on a 63x/NA1.4, Plan Apochromat oil objective fitted onto an Elyra
786 PS.1 with LSM 780 confocal unit (Carl Zeiss), using the Zeiss Zen Black 2012 FP2
787 software suite. Laser power and gain were kept constant between experiments. Z-
788 stacked images were processed using Zen 2.1 (Carl Zeiss). Acquired images were
789 visually analyzed using ImageJ (53).

790

791 **Statistical analysis**

792 Statistical analysis was done using Prism 9.2.0 (Graphpad, San Diego, CA). We used
793 non-parametric Mann-Whitney Test to compare ranks, and one-way analysis of
794 variance (ANOVA) with appropriate post-tests, as indicated in the figure legend for
795 each figure, to analyze experimental data comprising 3 independent biological
796 replicates, where each data point is typically the average of a minimum 2 technical
797 replicates (unless otherwise noted). In all cases, a p value of ≤ 0.05 was considered
798 statistically significant.

799

800 **Data and materials availability**

801 All data associated with this study are present in the paper or the Supplementary
802 Materials.

803

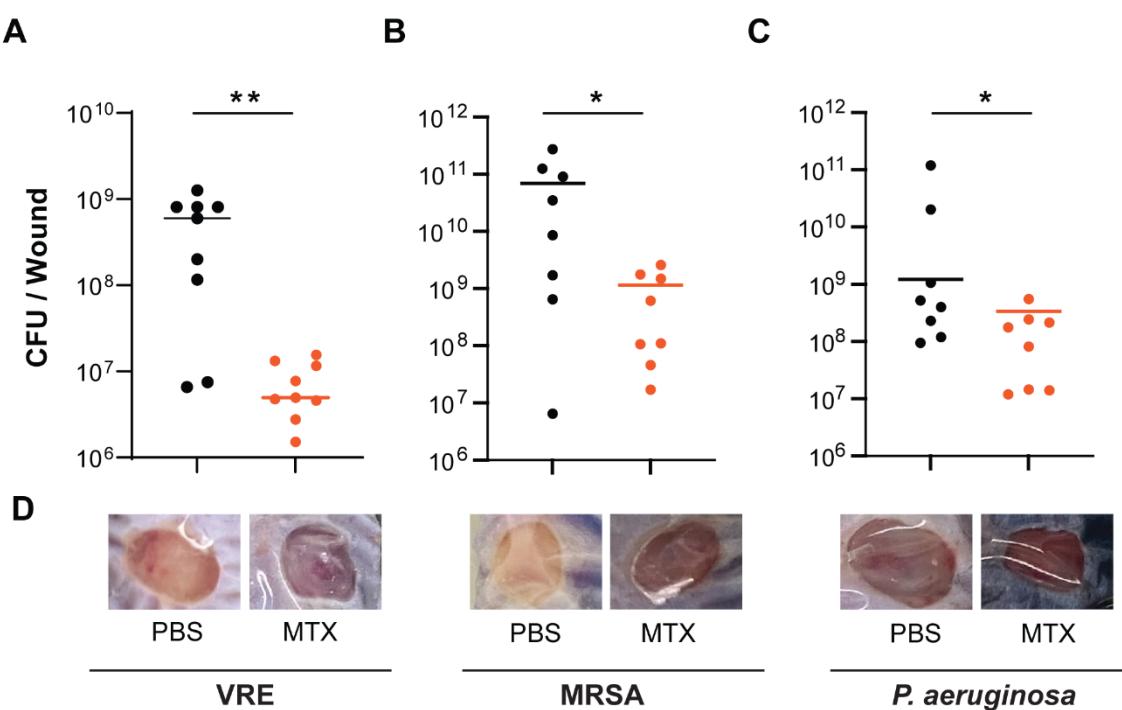
804

805

806

807

808


809

810

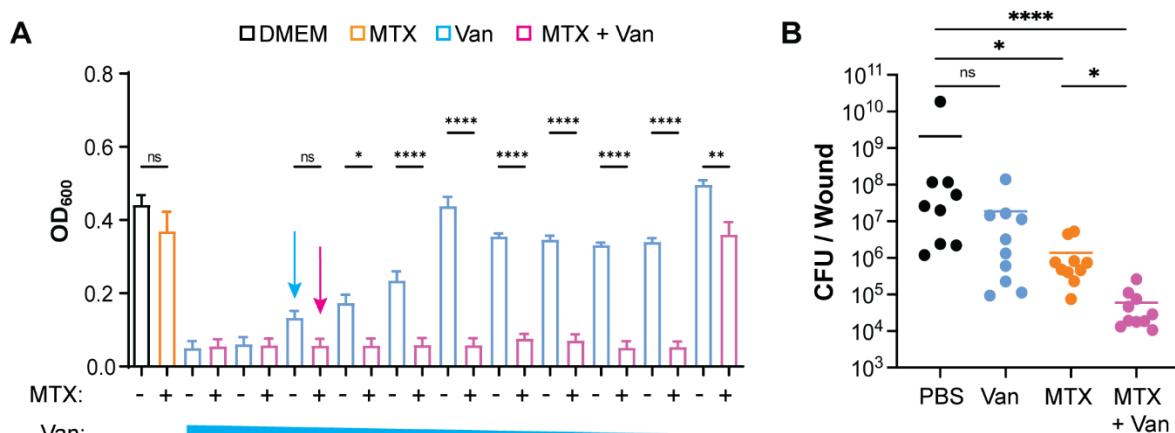
811

812

813 **Figures:**

814

815


816 **Fig. 1. MTX exhibits potent antibiotic activity *in vivo*.**

817 **A-C.** Comparison of VRE (A), MRSA (B) and *P. aeruginosa* (C) CFU per infected
818 wound treated with either PBS (black) or MTX (orange). Each symbol represents one
819 mouse with the median indicated by the horizontal line. Data were from two
820 independent experiments with 4-5 mice per experiment. Statistical analysis was
821 performed using the non-parametric Mann-Whitney Test to compare ranks, *p ≤ 0.05
822 and **p ≤ 0.01. **D.** Representative images of VRE, MRSA and *P. aeruginosa* infected
823 wounds treated with PBS or MTX.

824

825

826

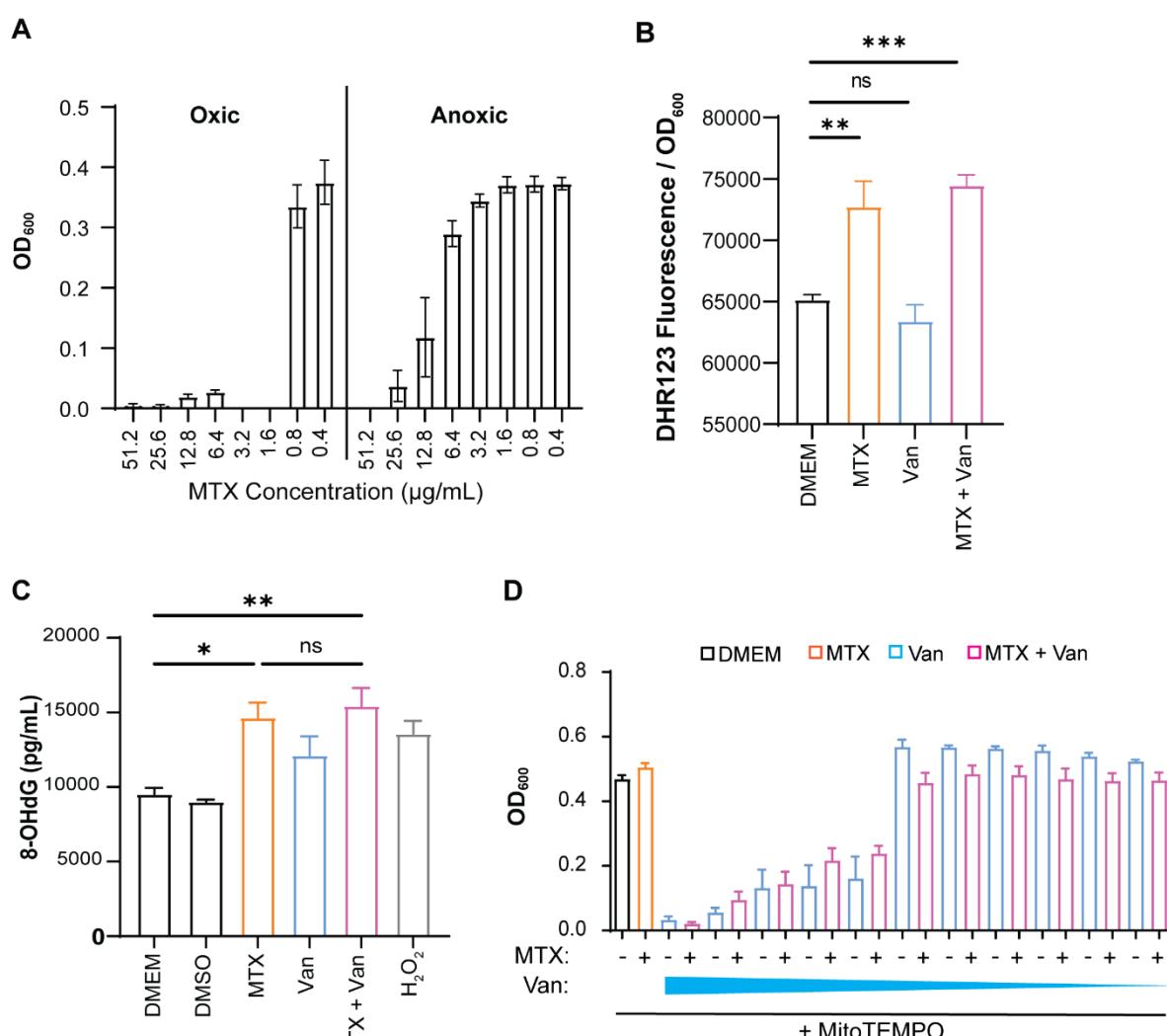


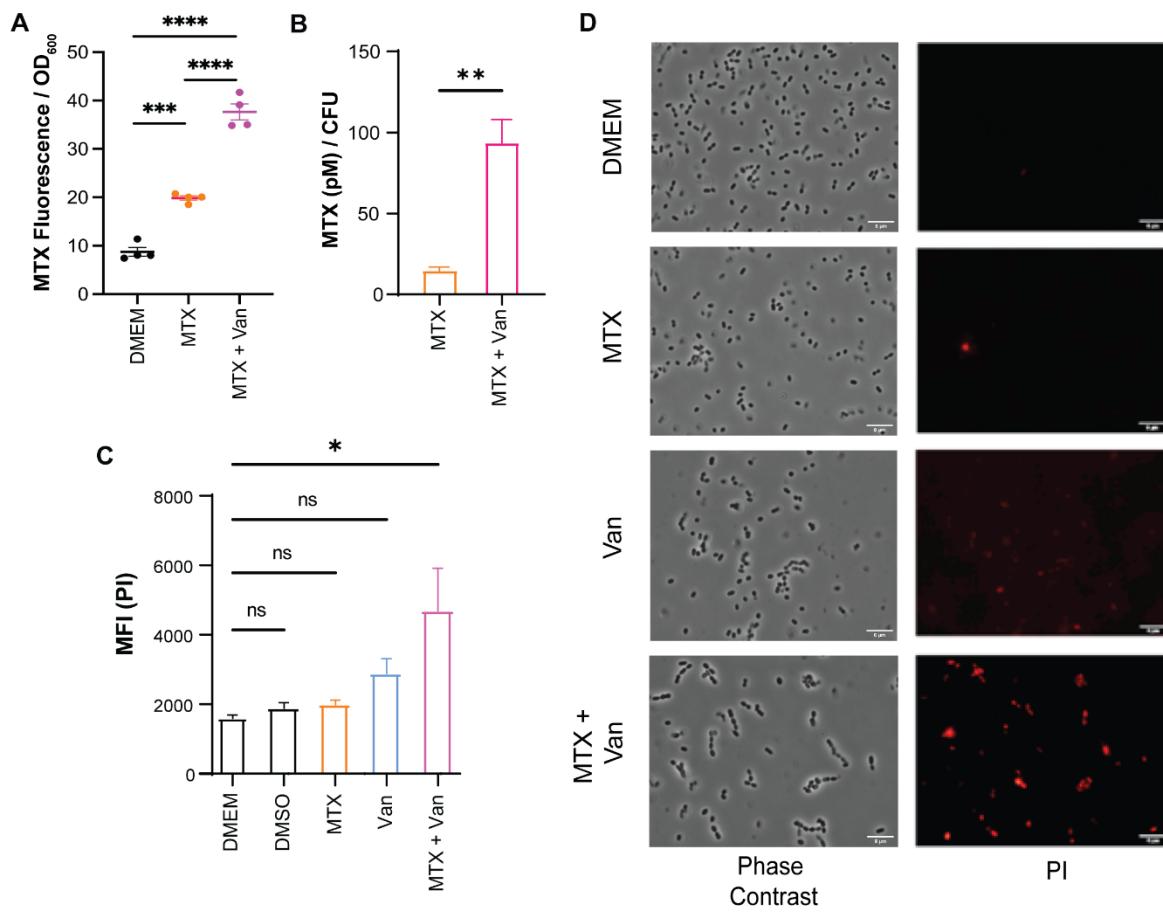
Fig. 2. MTX and vancomycin synergize to inhibit VRE *in vitro* and *in vivo*.

A. Comparison of VRE growth in DMEM medium (black), in the presence of MTX (0.515 μ g/mL) (orange), in the presence of decreasing concentrations (75 – 0.0625 μ g/mL) of vancomycin (blue), and combination of MTX and vancomycin (pink). Arrows represent breaking point where vancomycin concentration alone (blue, 18 μ g/mL) starts to differ from vancomycin concentration in presence of MTX (pink). Data (mean \pm SEM) were derived from three independent experiments with four technical replicates for each sample per experiment. Statistical analysis was performed using ordinary one-way ANOVA, followed by Tukey's multiple comparison test. **B.** Comparison of VRE CFU per wound without treatment (PBS), or treated with vancomycin, or MTX, or vancomycin plus MTX. Data were from two independent experiments with 4-5 mice per experiment. Each symbol represents one mouse with median indicated by the horizontal line. Statistical analysis was performed using Kruskal Wallis test with uncorrected Dunn's post-test. For all analyses, NS denotes Non-significant, * $p \leq 0.05$; ** $p \leq 0.01$; *** $p \leq 0.001$ and **** $p \leq 0.0001$.

844
845
846

847

848


849

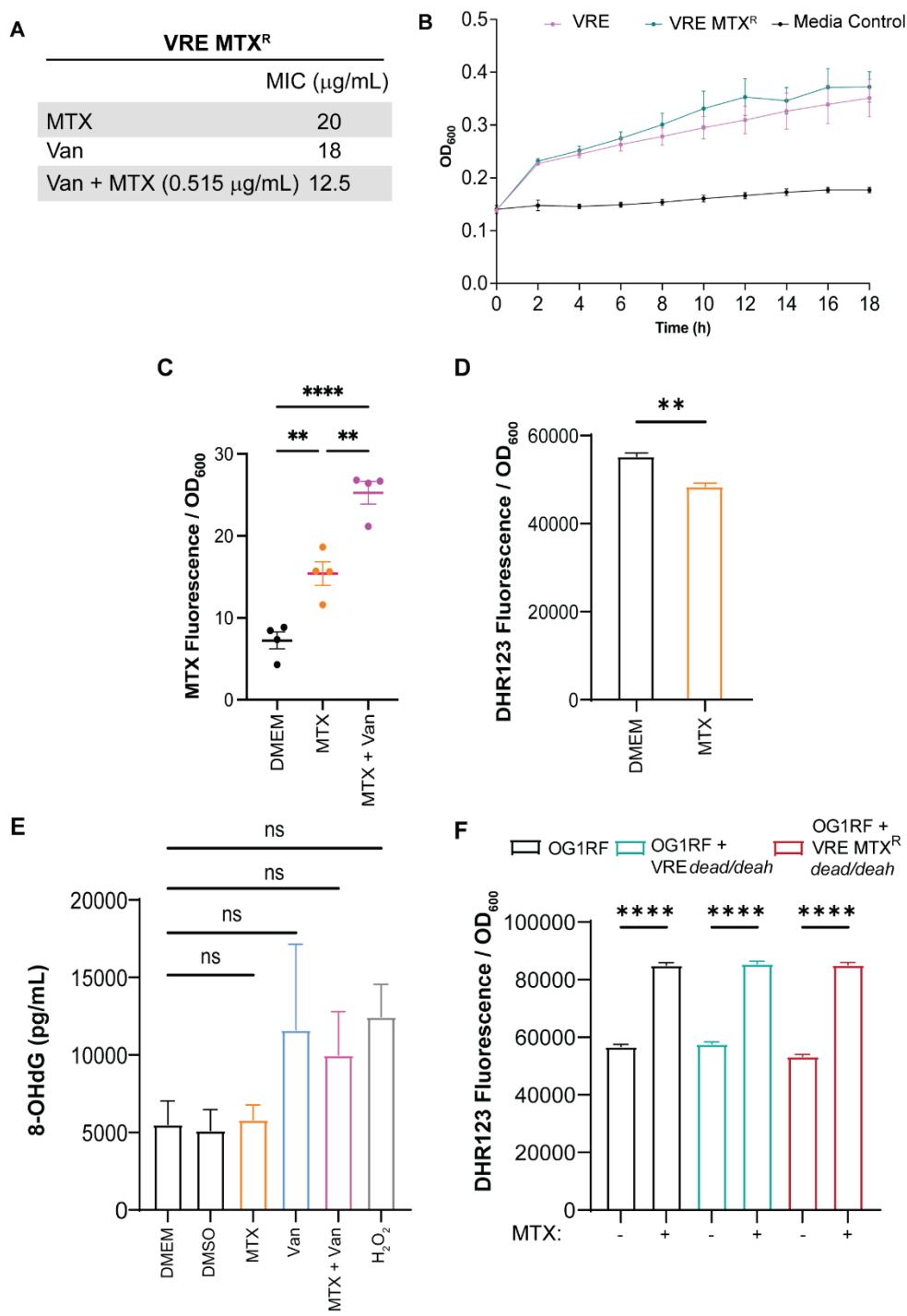
850 **Fig. 3. MTX induces production of reactive oxygen species and DNA damage in**
851 **bacterial cells.**

852 **A.** Comparison of VRE growth (OD_{600}) in oxic and anoxic conditions in the presence
853 of decreasing concentrations of MTX. Data (mean \pm SEM) are summary of three
854 independent experiments. **B.** Comparison of intracellular ROS levels, as measured by
855 DHR123 fluorescence, in VRE cultures treated with MTX (0.515 $\mu\text{g/mL}$), vancomycin
856 (4 $\mu\text{g/mL}$), or both. **C.** Comparison of 8-OHdG levels, as measured by ELISA, in VRE
857 cultures treated with MTX (0.515 $\mu\text{g/mL}$), vancomycin (4 $\mu\text{g/mL}$), or both. H_2O_2 (0.1
858 mM) was added into the VRE culture as positive control. Data (mean \pm SEM) in **C** and
859 **D** are summary from three independent experiments each. Statistical analysis was
860 performed using ordinary one-way ANOVA, followed by Tukey's multiple comparison
861 test, NS $p > 0.05$; $*p \leq 0.05$; $**p \leq 0.01$; and $***p \leq 0.001$. **D.** Comparison of VRE

862 growth in DMEM medium (black), in the presence of MTX (0.515 µg/mL) (orange), in
863 the presence of decreasing concentrations (75 – 0.0625 µg/mL) of vancomycin (blue),
864 and with a combination of MTX and vancomycin (pink). MitoTEMPO was added into
865 all cultures. Data (mean \pm SEM) were derived from three independent experiments
866 for each sample per experiment.

867
868
869

870


871 **Fig. 4. Vancomycin-treated VRE bacterial cells have increased permeability to**
872 **MTX.**

873 **A.** MTX uptake by VRE after 6 h treatment with MTX (0.515 µg/mL) alone and in
874 combination with vancomycin (4 µg/mL). Each dot represents one independent
875 experiment. **B.** Mass-spectrometry quantification of intracellular MTX of VRE cultures
876 treated with MTX (0.515 µg/mL) and in combination with vancomycin (4 µg/mL) for 1
877 h. Data (mean \pm SEM) are summary of five independent replicates. Statistical analysis
878 was performed using unpaired T-test with Welch's corrections, ***p \leq 0.0001. **C.**

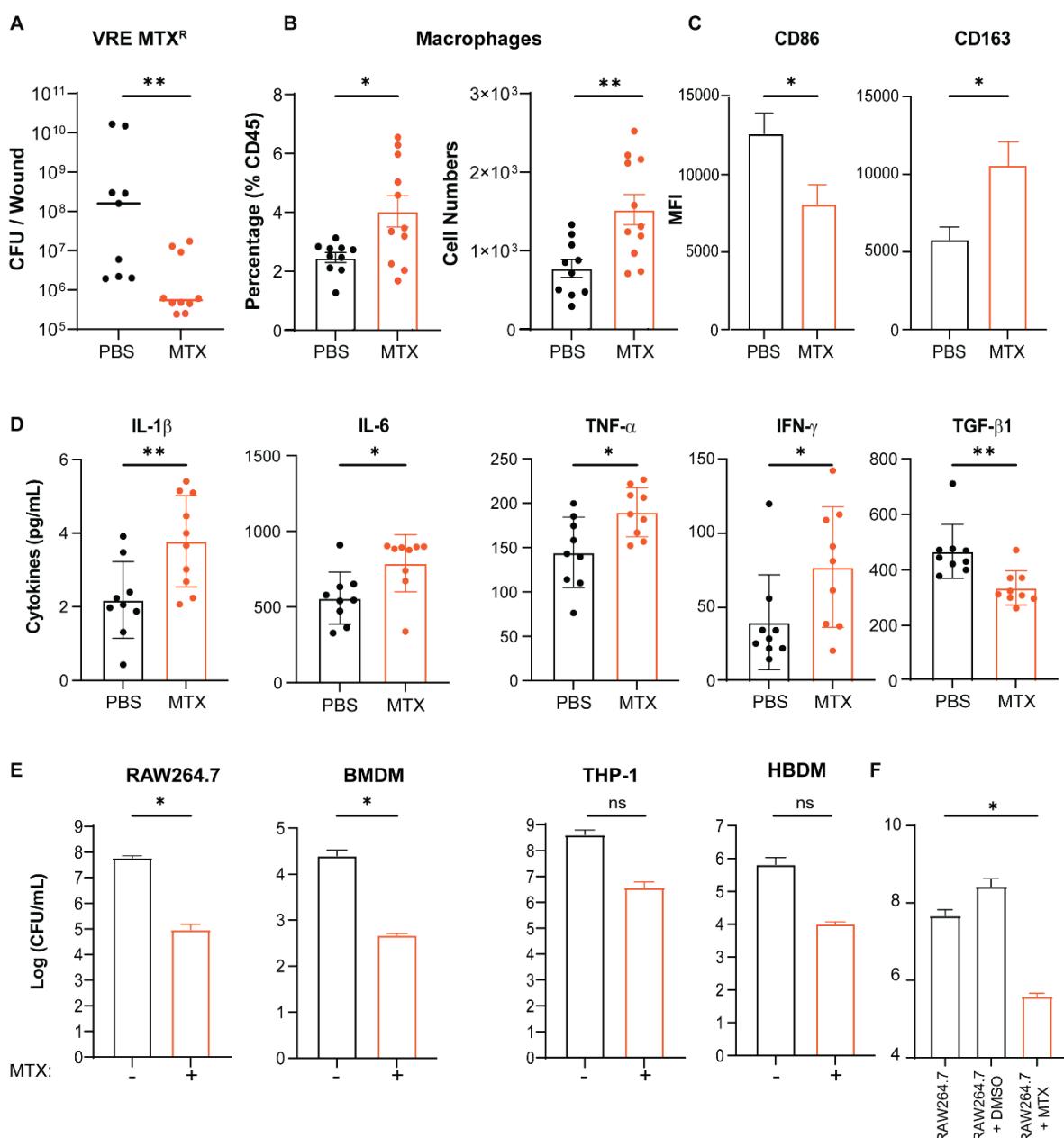
879 Comparison of PI uptake by VRE after 6 h treatment with MTX (0.515 μ g/mL) alone,
880 vancomycin alone (4 μ g/mL), or in combination. **D.** Epifluorescence microscopy
881 images of VRE stained with PI after 6 h treatment with MTX, vancomycin, or both.
882 Scale bar: 5 μ m. **A** and **C.** Data (mean \pm SEM) are summary of at least three
883 independent experiments. Statistical analysis was performed using ordinary one-way
884 ANOVA, followed by Tukey's multiple comparison test, NS p > 0.05; *p \leq 0.05; **p \leq
885 0.01; ***p \leq 0.001 and ****p \leq 0.0001

886

887

888

889 **Fig. 5. VRE MTX^R exhibits increased MTX uptake but not increased ROS
890 production and DNA damage.**


891 **A.** Comparison of MIC for MTX alone, vancomycin alone, vancomycin in the presence
892 of 0.515 mg/mL MTX between the parental VRE and VRE MTX^R. Each dot represents
893 one independent experiment. **B.** Growth curve of VRE and VRE MTX^R in DMEM. **C.**
894 MTX uptake by VRE MTX^R after 6 h treatment with MTX (0.515 $\mu\text{g/mL}$) alone and in
895 combination with vancomycin (4 $\mu\text{g/mL}$). **D.** Analysis of ROS levels in VRE MTX^R

896 treated with MTX (0.515 µg/mL). **E.** ELISA measurements of 8-OHdG levels in VRE
897 MTX^R treated with MTX (0.515 µg/mL), vancomycin (4 µg/mL), separately and in
898 combination, and the positive control H₂O₂ (0.1mM). **F.** Analysis of ROS levels in *E.*
899 *faecalis* OG1RF and *E. faecalis* OG1RF constitutively expressing either a wildtype
900 (VRE *dead/deah*) or the mutant DEAD/DEAH helicase (VRE MTX^R *dead/deah*) treated
901 with MTX (0.515 µg/mL). **C-F.** Data (mean ± SEM) are summary of at least three
902 independent experiments. Statistical analysis was performed using ordinary one-way
903 ANOVA, followed by Tukey's multiple comparison test, NS p > 0.05; *p ≤ 0.05; **p ≤
904 0.01; ***p ≤ 0.001 and ****p ≤ 0.0001.

905

906

907

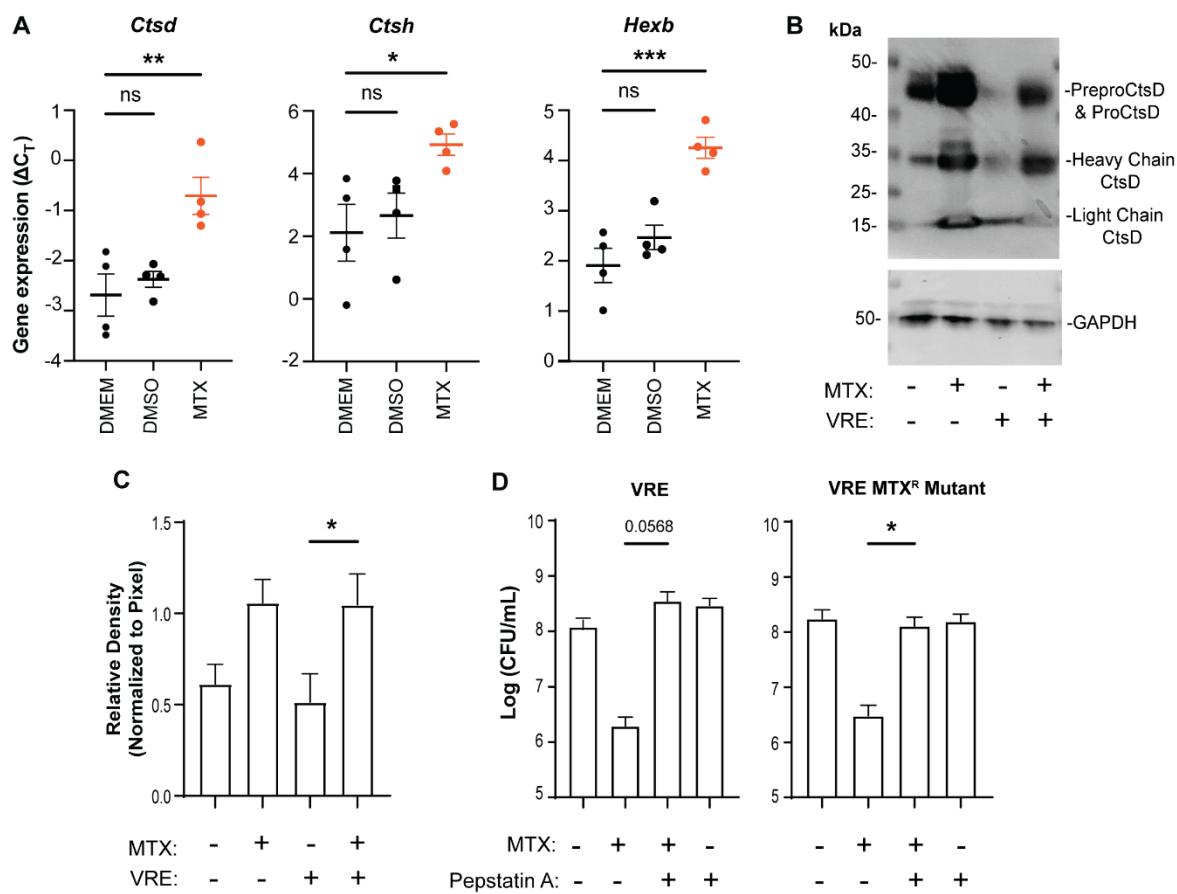
908

909 **Fig. 6. MTX treatment promotes macrophage recruitment and reprogramming to a**
910 **pro-inflammatory phenotype.**

911 VRE MTX^R infected wounds were treated for 24 h with either PBS or a single dose of
912 MTX (10 μ L of 0.515 μ g/mL MTX per wound). **A.** Comparison of VRE MTX^R CFU in
913 wound lysates treated with either PBS or MTX for 24 hpi. Data (mean \pm median) are
914 a summary of two independent experiments with 4-5 mice per group. **B.** Percentage
915 and absolute numbers of macrophages recovered from infected wounds treated with
916 PBS or MTX. Data (mean \pm SEM) are summary of two independent experiments. Each
917 dot represents one mouse. **C.** Comparison of MFI of CD86 and CD163 staining gating

918 on CD45⁺ CD11b⁺ F4/80⁺ macrophages from infected wounds treated with PBS or
919 MTX. Data (mean \pm SEM) are from 5 mice per group. **D.** The levels of cytokines IL-
920 1 β , IL-6, TNF- α , IFN- γ and TGF- β from the lysates of infected wound treated with PBS
921 or MTX. Data (mean \pm SEM) are summary of two independent experiments. Each dot
922 represents one mouse. **E.** Comparison of VRE CFU counts in RAW264.7, BMDM,
923 THP-1 and HBDM in presence or absence of MTX. Data (mean \pm SEM) are summary
924 of three independent experiments. **F.** VRE CFU performed with MTX pre-treated
925 RAW264.7 macrophage cells. Data (mean \pm SEM) are summary of at least three
926 independent experiments. Statistical analysis was performed using the non-
927 parametric Mann-Whitney Test to compare ranks (**A**), or unpaired T-test with Welch's
928 corrections (**B-E**), or ordinary one-way ANOVA, followed by Tukey's multiple
929 comparison test (**F**). NS, not significant; $p > 0.05$; * $p \leq 0.05$; ** $p \leq 0.01$; *** $p \leq 0.001$
930 and **** $p \leq 0.0001$.

931


932

933

934

935

936

937

938 **Fig. 7. MTX enhances macrophage antimicrobial activity by stimulating**
939 **lysosomal enzyme expression and activity.**

940 **A.** qRT-PCR analysis of *Ctsd*, *Ctsb* and *Hexb* transcript levels (ΔC_T) in RAW264.7
941 cells with or without DMSO or MTX treatment overnight. Each dot represents one
942 biological replicate. **B-C.** Western blotting analysis of whole cell lysates with anti-
943 Cathepsin D antibody. RAW264.7 cells with (+) and without (-) VRE infection were
944 treated with MTX (+) or left untreated (-). Whole cell lysates were separated by SDS-
945 PAGE, transferred to membrane and probed with anti-Cathepsin D antibody or anti-
946 GAPDH (control) (**B**). Relative band density of the CtsD heavy chain normalized to
947 that of GAPDH (**C**). **D.** RAW264.7 cells were infected with either VRE or VRE MTX^R
948 in the presence of MTX (0.515 μ g/mL), pepstatin A (10 μ g/mL), or both. Intracellular
949 bacterial CFU were quantified. Data (mean \pm SEM) are a summary of at least three
950 independent experiments. Statistical analysis was performed using ordinary one-way
951 ANOVA, followed by Tukey's multiple comparison test, NS p > 0.05; *p < 0.05; **p <
952 0.01; ***p < 0.001 and ****p < 0.0001.

953

954

955

956 **Tables:**

957 **Table 1-** MTX is more efficient against Gram-positive bacteria in DMEM. MTX MIC
958 for different bacterial species.

Gram-negative	MIC ($\mu\text{g/mL}$)	Gram-positive	MIC ($\mu\text{g/mL}$)
<i>E. coli</i> UTI89	6.45	<i>E. faecalis</i> V583	1.615
<i>E. coli</i> MG1655	25.87	<i>E. faecalis</i> OG1RF	0.808
<i>E. coli</i> EC958	25.87	<i>S. aureus</i> USA300	0.808
<i>P. aeruginosa</i> PAO1	12.94	<i>E. faecium</i> AUS0004	0.808
<i>S. Typhimurium</i> 14028S	25.87	<i>E. faecium</i> E745	1.615

959

960

961

962 **Table 2-** Vancomycin resistant strains have lower vancomycin MIC in presence of a
963 sub-inhibitory dose of MTX.

Strain	Vancomycin MIC ($\mu\text{g/mL}$)	Vancomycin MIC + MTX (0.515 $\mu\text{g/mL}$):
<i>E. faecalis</i> V583 (VRE)	18.00	0.125
<i>E. faecium</i> AUS0004 (VRE)	4.68	<0.14
<i>E. faecium</i> E745 (VRE)	75.00	4.68
<i>E. faecium</i> E8252 (VRE)	37.5	4.68
<i>E. faecalis</i> OG1RF	4.00	4.00
<i>S. aureus</i> USA300	2.00	2.00
<i>E. coli</i> 958	512	512
<i>P. aeruginosa</i> PAO1	800	800
<i>S. Typhimurium</i> 14028S	800	800

964

965

966

967

968

969

970

971 **Table 3-** MTX MIC of *E. faecalis* OG1RF and *E. faecalis* OG1RF constitutively
972 expressing either a wildtype (VRE *dead/deah*) or the mutant DEAD/DEAH helicase
973 (VRE MTX^R *dead/deah*). MIC was established by OD₆₀₀ to measure bacterial growth
974 in the presence of decreasing concentrations of MTX (19.31 – 0.07 µg/mL).

975

Strain	MIC (µg/mL)
<i>E. faecalis</i> OG1RF WT	0.604
<i>E. faecalis</i> OG1RF + VRE <i>dead/deah</i>	1.208
<i>E. faecalis</i> OG1RF + VRE MTX ^R <i>dead/deah</i>	4.832

976

977

978

979

980

981

982

983

984

985

986

987

988

989

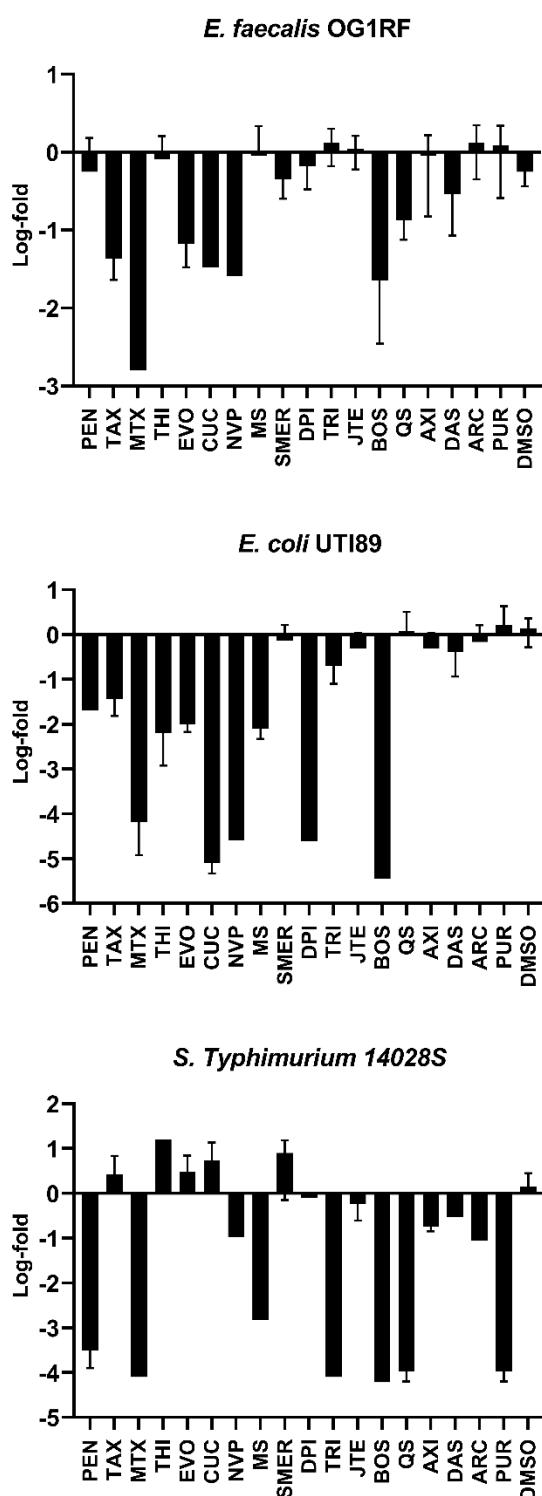
990

991

992

993

994


995

996

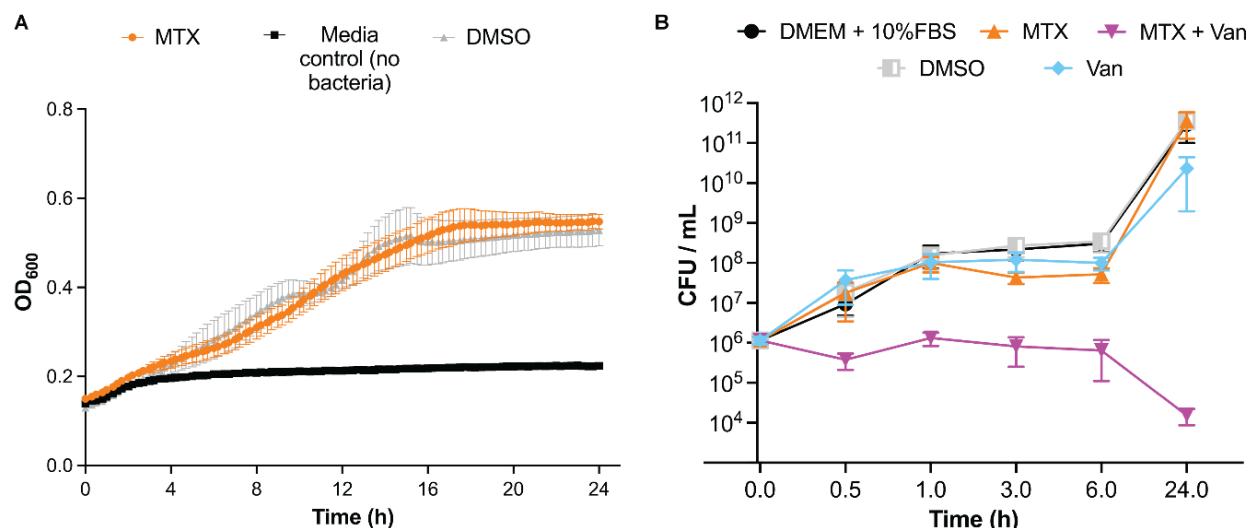
997

998

999 **Supplementary Figures and Tables:**

1000

1001 **Fig. S1 – MTX induces intracellular killing of bacteria.** Raw264.7 cells were
1002 infected with the indicated bacterial species for 3 h, followed by 1 h of antibiotic
1003 treatment to kill extracellular bacteria. After removal of the first antibiotic medium, and

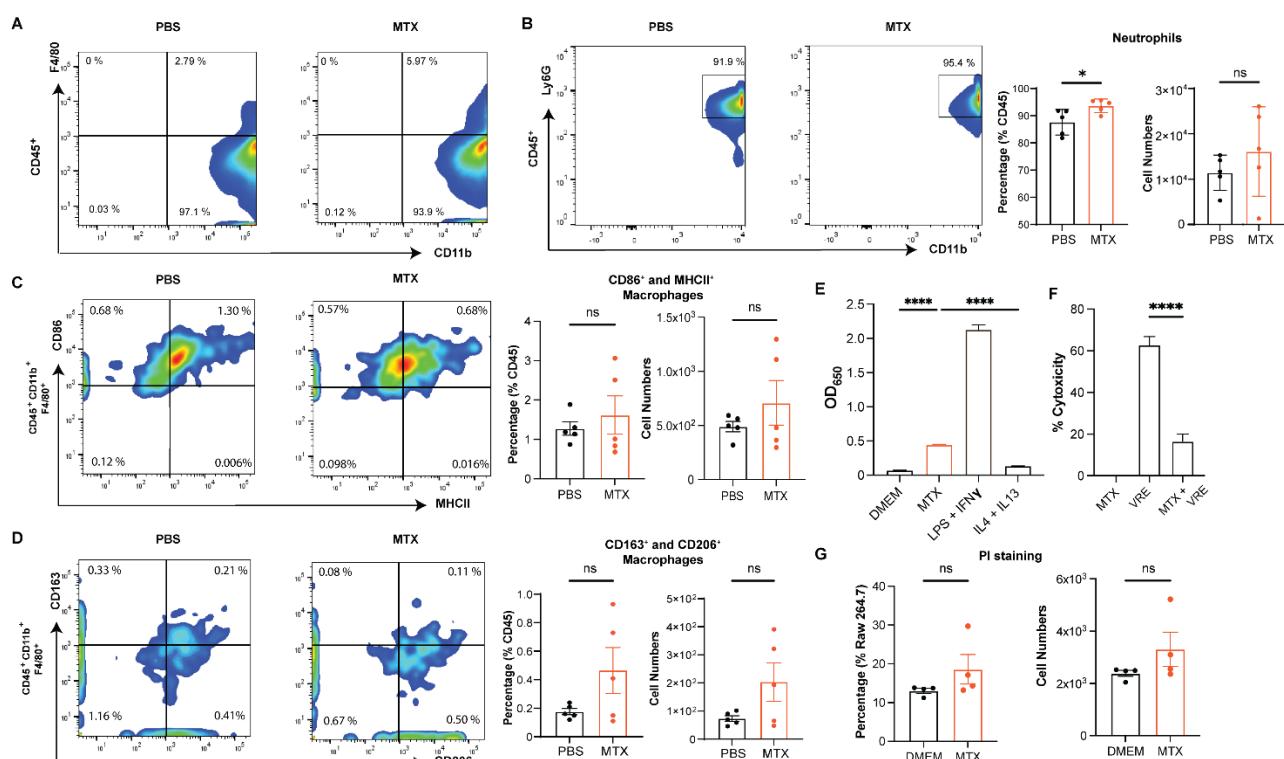

1004 wash, a new solution with antibiotics was added together with 18 different compounds.
1005 Viable intracellular CFU were enumerated after 18 h incubation. The log-fold change
1006 was calculated with reference to the intracellular CFU of infected cells that were not
1007 treated with any compound. MTX-treated cells had lower intracellular CFU regardless
1008 of the bacterial species tested.

1009

1010

1011

1012



1013

1014 **Fig. S2- Low dose of MTX in presence of low dose of vancomycin inhibits VRE**
1015 **growth. A.** Growth curve of VRE in presence of MTX (0.515 µg/mL) in DMEM for 24
1016 h. **B.** VRE growth curve by CFU counting. In a 10 mL tube, a bacterial starting culture
1017 of 10⁶ CFU/mL was incubated with MTX, Vancomycin, separately or in combination,
1018 and vehicle (DMSO). At different time points, serial dilutions were performed in a 96-
1019 well plate and spotted on a BHI plate to establish the CFU/mL. **A and B.** Data (mean
1020 ± SEM) are a combination of at least three independent experiments.

1021

1022

1023

1024

1025 **Fig. S3- MTX treatment does not affect macrophage polarization but influences**

1026 **NF-κB activity.** VRE Infected mouse wounds were treated for 24 h with either PBS or

1027 a single dose of MTX (0.515 µg/mL, 10 µL on the wound). **A.** Representative flow

1028 cytometry of macrophages (CD45⁺ CD11b⁺ F4/80⁺) from infected wounds treated with

1029 PBS or MTX. The number indicate percentages of cells within the gated areas. **B.**

1030 Representative flow cytometry of neutrophils (CD45⁺ CD11b⁺ Ly6G⁺) from infected

1031 wounds treated with PBS or MTX. The number indicate percentages of cells within the

1032 gated areas. Percentage and absolute numbers of neutrophils recovered from infected

1033 wounds treated with PBS or MTX. Each dot represents one mouse. **C.** Representative

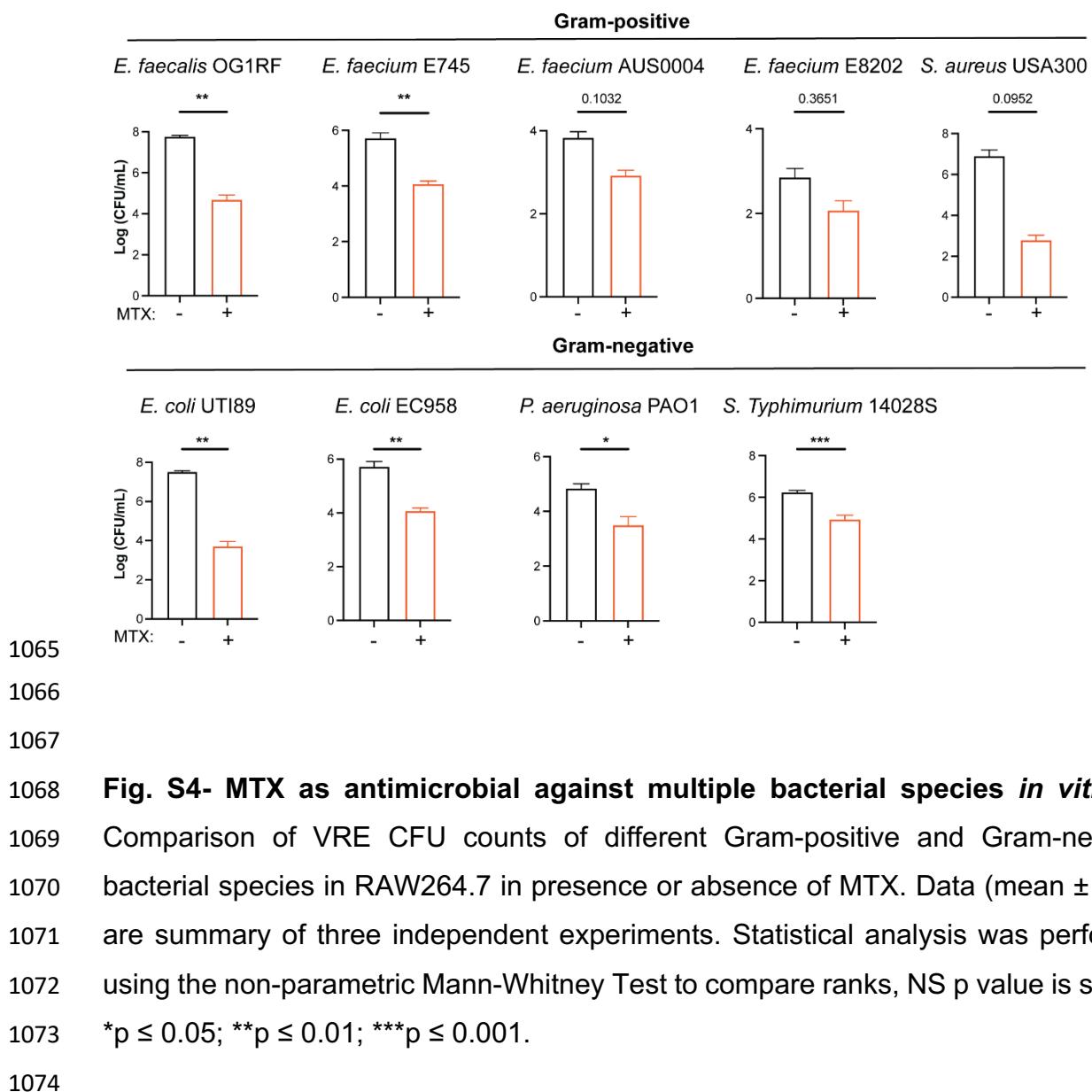
1034 flow cytometry of macrophages (CD45⁺ CD11b⁺ F4/80⁺ CD86⁺ MHCII⁺) from infected

1035 wounds treated with PBS or MTX. The number indicate percentages of cells within the

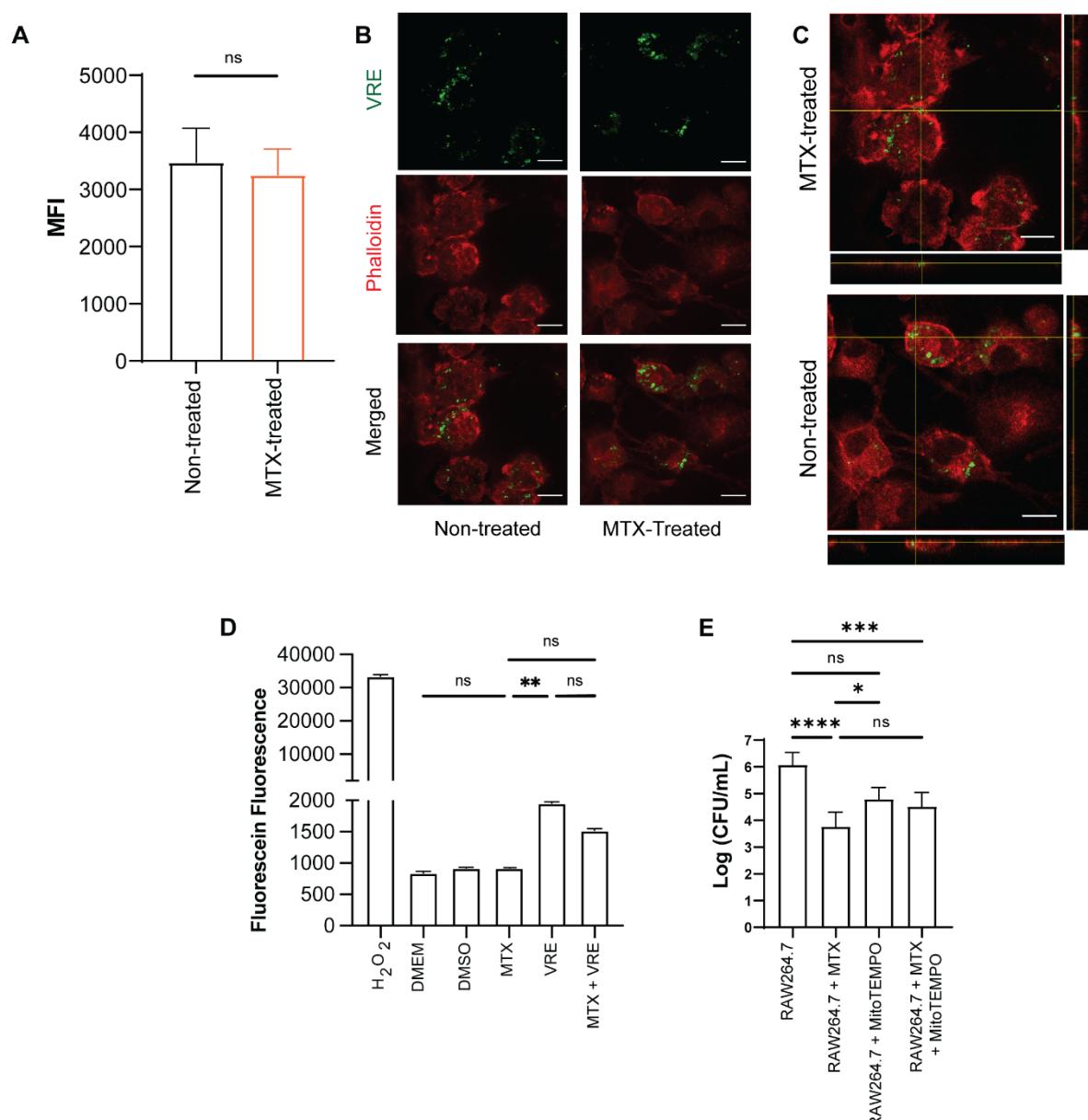
1036 gated areas. Percentage and absolute numbers of CD86⁺ MHCII⁺ macrophages

1037 recovered from infected wounds treated with PBS or MTX. Each dot represents one

1038 mouse. **D.** Representative flow cytometry of macrophages (CD45⁺ CD11b⁺ F4/80⁺


1039 CD163⁺ CD206⁺) from infected wounds treated with PBS or MTX. The number indicate

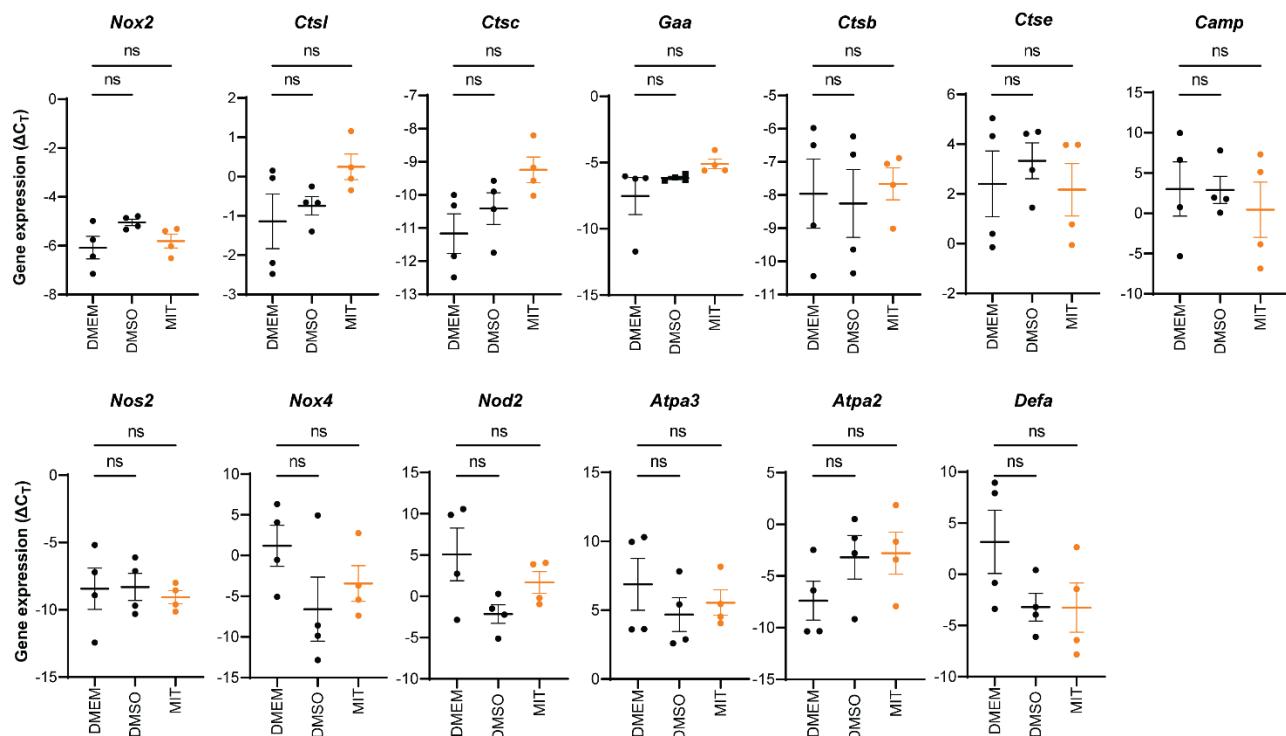
1040 percentages of cells within the gated areas. Percentage and absolute numbers of


1041 CD163⁺ CD206⁺ macrophages recovered from infected wounds treated with PBS or

1042 MTX. Each dot represents one mouse. **B-D.** Statistical analysis was performed using
1043 unpaired T-test with Welch's corrections, NS $p > 0.05$. **E.** NF- κ B-driven SEAP reporter
1044 activity. RAW267.4 macrophages were untreated or treated with MTX or LPS (100
1045 ng/mL) and IFN- γ (50 ng/mL) or IL-4 (10 ng/mL) and IL-13 (10 ng/mL) 16 h prior to
1046 measurement of NF- κ B-driven SEAP reporter activity. **F.** LDH activity after intracellular
1047 infection assay with MTX. RAW267.4 macrophages were infected or not with VRE
1048 MOI 10 for 3 h and then left untreated or treated with MTX 16 h in presence of antibiotic
1049 treatment prior to measurement cytotoxicity (LDH activity). While supernatant of
1050 untreated cells were considered the background noise and were subtracted from the
1051 test values, cells lysed with Triton X-100 were considered 100 %. **E-F.** Data (mean \pm
1052 SEM) are a summary of at least three independent experiments. Statistical analysis
1053 was performed using ordinary one-way ANOVA, followed by Tukey's multiple
1054 comparison test, NS $p > 0.05$; * $p \leq 0.05$; ** $p \leq 0.01$; *** $p \leq 0.001$ and **** $p \leq 0.0001$.
1055 **G.** Percentage and absolute numbers of PI staining of RAW267.4 macrophages
1056 untreated or treated with MTX for 16 h prior to measurement. Data (mean \pm SEM) are
1057 a summary of at least three independent experiments. Statistical analysis was
1058 performed using unpaired T-test with Welch's corrections, NS $p > 0.05$.

1059
1060
1061
1062
1063
1064

1075



1076

1077 **Fig. S5- MTX does not induce phagocytosis nor ROS in RAW264.7. A - C.**
1078 Phagocytosis assay. MTX pre-treated RAW264.7 macrophages were infected for 1 h
1079 with SYTO9-labelled VRE, quenched with Trypan Blue and then run through a flow
1080 cytometer for green fluorescence measurement. **A.** Mean Fluorescence Intensity
1081 (MFI). Data (mean \pm SEM) are a summary of at least three independent experiments.
1082 Statistical analysis was performed using unpaired T-test with Welch's corrections, NS
1083 $p > 0.05$. **B and C.** Representative CLSM images and orthogonal views of matching
1084 samples that were also stained with phalloidin ultra-cellular structure visualization.
1085 Scale bar: 20 μm . **D.** ROS levels of RAW264.7 macrophages untreated (DMEM) or
1086 treated with H_2O_2 (1 mM, positive control), DMSO, or MTX and infected or not with

1087 VRE for 6h. **E.** Comparison of VRE CFU counts in RAW264.7 in presence or absence
1088 of MTX and/or MitoTEMPO (80 μ M). **D-E.** Data (mean \pm SEM) are a summary of at
1089 least three independent experiments. Statistical analysis was performed using
1090 ordinary one-way ANOVA, followed by Tukey's multiple comparison test, NS p > 0.05;
1091 *p \leq 0.05; **p \leq 0.01; ***p \leq 0.001 and ****p \leq 0.0001.

1092
1093
1094

1096 **Fig. S6- Lysosomal genes expression not affected by MTX treatment.** qRT-PCR
1097 analysis of lysosomal genes transcript levels (ΔC_T) in RAW264.7 cells with or without
1098 DMSO or MTX treatment overnight. Each dot represents one biological replicate.
1099 Statistical analysis was performed using ordinary one-way ANOVA, followed by
1100 Tukey's multiple comparison test, NS p > 0.05.

1101
1102
1103
1104
1105
1106

1107 **Table S1** – List of compounds used in initial screen.

Abbreviation	Name	Brand
PEN	Penfluridol	Sigma-Aldrich
TAX	Taxol / Paclitaxel	Sigma-Aldrich
MTX	Mitoxantrone HCL	Sigma-Aldrich
THI	Thiostrepton	Sigma-Aldrich
EVO	Evodiamine	Sigma-Aldrich
CUC	Cucurbitacin I	Sigma-Aldrich
NVP	NVP 231	Sigma-Aldrich
MS	MS 275	SingLab
SMER	SMER3	SingLab
DPI	Diphenyleneiodonium Chloride	SingLab
TRI	Triptolide	Sigma-Aldrich
JTE	JTE 3	Sigma-Aldrich
BOS	Bosutinib	Sigma-Aldrich
QS	QS 11	SingLab
AXI	Axitinib	Sigma-Aldrich
DAS	Dasatinib	Sigma-Aldrich
ARC	Arcyriaflavin A	SingLab
PUR	Purmorphamine	Sigma-Aldrich

1108

1109

1110 **Table S2**- Antibiotic MIC alone or in the presence of a sub-inhibitory concentration of
1111 MTX (0.515 µg/mL).

Antibiotic	MIC in combination		
	MIC (µg/mL)	with MTX (0.515 µg/mL)	Fold Change
Vancomycin	18	0.125	144
Ceftriaxone	300	37.5	8
Daptomycin	0.06	0.007	8
Ampicillin	3	3	-
Rifampicin	0.585	0.585	-
Ciprofloxacin	0.156	0.039	4
Erythromycin	50	50	-
Chloramphenicol	10	2.5	4
Tunicamycin	25	25	-
Gentamicin	500	500	-
Penicillin G	0.5	0.25	2

1112

1113 **Table S3- Evolution experiment strain information.** Parental and VRE MTX^R
1114 strains MIC's are shown.

1115

Strain	Information				Vancomycin MIC (µg/mL)	Vancomycin MIC + MTX (0.515 µg/mL):	MTX MIC
<i>E. faecalis</i> V583	Parental				18.00	0.125	1.615
<i>E. faecalis</i> V583 MTX ^R	Mutation 1: G→A G389R (GGG→AGG)	Annotation and position	Gene DEAD/DEAH box helicase	Locus Tag EF_RS01660	18.00	12.50	20
	2: G→A intergenic (-54/+67)		Sugar O-acetyltransferase	EF_RS05155			
	3: 2 bp→AC insertion (805-806/912 nt)		Ethanolamine ammonia-lyase subunit EutC	EF_RS07835			
	4: (C)5→4 insertion (171/390 nt)		Conjugal transfer protein	EF_RS09020			

1116

1117 **Table S4. Strains used in this study**

Strain	Reference
<i>E. faecalis</i> OG1RF	(54)
<i>E. faecalis</i> OG1RF + pGCP123::VREDEAD	This study
<i>E. faecalis</i> OG1RF + pGCP123::VREMTX ^R DEAD	This study
<i>E. faecalis</i> V583	(55)
<i>E. faecalis</i> V583 MTX ^R	This study
<i>E. coli</i> EC958	(56)
<i>E. coli</i> UTI89	(57)
<i>S. aureus</i> USA300	(58)
<i>S. typhimurium</i> 14028S	(59)
<i>P. aeruginosa</i> PAO1	(60)
<i>E. faecium</i> E745	(61)
<i>E. faecium</i> AUS0004	(62)
<i>E. faecium</i> E8202	(63)

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128 **Table S5. Primers used in this study**

Primer	Primer Name	Sequence (5'-3')
1	DEAD_123_F	GAGGGAGAATCTCGATTGAAAGCAACGTTACATCCCT
2	DEAD_123_R	TACCGTCGACCTCGATTATCCAAGTTATCCCCCT
3	GAPDH_F	CTAGACCACAGTCCATGCCAT
4	GAPDH_R	ACACATTGGGGTAGGAACACG
5	CtsD_F	TGAAGACTCCCAGCGTCTT
6	CtsD_R	AATCGCGAAGGAGGACGAA
7	CtsB_F	TGATGCACGGGAACAATGG
8	CtsB_R	GCAGGAGCCCTGGTCTCTAA
9	NOD2_F	GCTGTCTTGGGATGTGCT
10	NOD2_R	GGATGAAGGGAGTGAGTGTC
11	CatL_F	ATGGCACGAATGAGGAAGAG
12	CatL_R	GAAAAAGCCTCCCCTTCTTG
13	Nox2_F	ACTCCTGGAGCACTGG
14	Nox2_R	GTTCCTGTCCAGTTGTCTCG
15	Nox4_F	TGAACATACAGTGAAGATTCCCTTGAAC
16	Nox4_R	GACACCCGTCAGACCAGGAA
17	vATPase_A3_F	CACCCGGGGGCCACATTAG
18	vATPase_A3_R	CCCTCGCGGCACACCAGACC
19	Nos2_F	TTACGTCCATCGTGGACAGC
20	Nos2_R	TGGGCTGGGTGTTAGTCTTA
21	Cramp_F	AAGGAACAGGGGTGGT
22	Cramp_R	CCGGGAAATTTCTTGAACC
23	CtsE_F	CAGTCCGACACATACACG
24	CtsE_R	TGCCCTGGCTCCTTGAC
25	CtsC_F	ACCTGGGTGTTCCAGGTGGGCC
26	CtsC_R	GCCCCGAATTGCCAGCTCGTCG
27	HexB_F	GCTGTTGGTGAGAGACTCTGGA
28	HexB_R	GAGGTTGTGCAGCTATTCCACG
29	CstH_F	GCCACCAAAAGTAACCTACCTCCG
30	CstH_R	CGTGGTAGAGAAAGTCCAGCAG
31	DefA_F	AACTGAGGAGCAGCCAGGAGAA
32	DefA_R	CTTCCTTGCAAGCCTTTGATCT
33	GAA_F	ACCGTCCAACTCGTTAGAGGC
34	GAA_R	ATTGGTGGCTGGAGGCACAGAT

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138 **References:**

1139 1. C. J. Murray, K. S. Ikuta, F. Sharara, L. Swetschinski, G. Robles Aguilar, A. Gray,
1140 C. Han, C. Bisignano, P. Rao, E. Wool, S. C. Johnson, A. J. Browne, M. G. Chipeta,
1141 F. Fell, S. Hackett, G. Haines-Woodhouse, B. H. Kashef Hamadani, E. A. P.
1142 Kumaran, B. McManigal, R. Agarwal, S. Akech, S. Albertson, J. Amuasi, J. Andrews,
1143 A. Aravkin, E. Ashley, F. Bailey, S. Baker, B. Basnyat, A. Bekker, R. Bender, A.
1144 Bethou, J. Bielicki, S. Boonkasidecha, J. Bukosia, C. Carvalheiro, C. Castañeda-
1145 Orjuela, V. Chansamouth, S. Chaurasia, S. Chiurchiù, F. Chowdhury, A. J. Cook, B.
1146 Cooper, T. R. Cressey, E. Criollo-Mora, M. Cunningham, S. Darboe, N. P. J. Day, M.
1147 de Luca, K. Dokova, A. Dramowski, S. J. Dunachie, T. Eckmanns, D. Eibach, A.
1148 Emami, N. Feasey, N. Fisher-Pearson, K. Forrest, D. Garrett, P. Gastmeier, A. Z.
1149 Giref, R. C. Greer, V. Gupta, S. Haller, A. Haselbeck, S. I. Hay, M. Holm, S. Hopkins,
1150 K. C. Iregbu, J. Jacobs, D. Jarovsky, F. Javanmardi, M. Khorana, N. Kissoon, E.
1151 Kobeissi, T. Kostyanev, F. Krapp, R. Krumkamp, A. Kumar, H. H. Kyu, C. Lim, D.
1152 Limmathurotsakul, M. J. Loftus, M. Lunn, J. Ma, N. Mturi, T. Munera-Huertas, P.
1153 Musicha, M. M. Mussi-Pinhata, T. Nakamura, R. Nanavati, S. Nangia, P. Newton, C.
1154 Ngoun, A. Novotney, D. Nwakanma, C. W. Obiero, A. Olivas-Martinez, P. Olliaro, E.
1155 Ooko, E. Ortiz-Brizuela, A. Y. Peleg, C. Perrone, N. Plakkal, A. Ponce-de-Leon, M.
1156 Raad, T. Ramdin, A. Riddell, T. Roberts, J. V. Robotham, A. Roca, K. E. Rudd, N.
1157 Russell, J. Schnall, J. A. G. Scott, M. Shivamallappa, J. Sifuentes-Osornio, N.
1158 Steenkeste, A. J. Stewardson, T. Stoeva, N. Tasak, A. Thaiprakong, G. Thwaites, C.
1159 Turner, P. Turner, H. R. van Doorn, S. Velaphi, A. Vongpradith, H. Vu, T. Walsh, S.
1160 Waner, T. Wangrangsimakul, T. Wozniak, P. Zheng, B. Sartorius, A. D. Lopez, A.
1161 Stergachis, C. Moore, C. Dolecek, M. Naghavi, Global burden of bacterial
1162 antimicrobial resistance in 2019: a systematic analysis. *The Lancet* **399**, 629–655
1163 (2022).

1164 2. New report calls for urgent action to avert antimicrobial resistance crisis (available
1165 at <https://www.who.int/news-room/detail/29-04-2019-new-report-calls-for-urgent-action-to->
1166 avert-antimicrobial-resistance-crisis).

1167 3. C. Y. Chiang, I. Uzoma, R. T. Moore, M. Gilbert, A. J. Duplantier, R. G. Panchal,
1168 Mitigating the impact of antibacterial drug resistance through host-directed therapies:
1169 Current progress, outlook, and challenges. *mbio* **9** (2018), doi:10.1128/MBIO.01932-
1170 17/ASSET/AF1059F5-51EA-4152-8BB3-
1171 FDBE7D97F121/ASSETS/GRAPHIC/MBO0011836790003.jpeg.

1172 4. A. Giacometti, O. Cirioni, A. M. Schimizzi, M. S. del Prete, F. Barchiesi, M. M.
1173 D'Errico, E. Petrelli, G. Scalise, Epidemiology and microbiology of surgical wound
1174 infections. *J Clin Microbiol* **38**, 918–922 (2000).

1175 5. P. G. Bowler, B. I. Duerden, D. G. Armstrong, Wound microbiology and associated
1176 approaches to wound management. *Clin Microbiol Rev* **14**, 244–269 (2001).

1177 6. S. E. Dowd, Y. Sun, P. R. Secor, D. D. Rhoads, B. M. Wolcott, G. A. James, R. D.
1178 Wolcott, Survey of bacterial diversity in chronic wounds using Pyrosequencing,
1179 DGGE, and full ribosome shotgun sequencing. *BMC Microbiology* **8**, 1–15 (2008).

1180 7. L. J. Bessa, P. Fazii, M. di Giulio, L. Cellini, Bacterial isolates from infected
1181 wounds and their antibiotic susceptibility pattern: some remarks about wound
1182 infection. *International Wound Journal* **12**, 47–52 (2015).

1183 8. M. O. Ahmed, K. E. Baptiste, Vancomycin-Resistant Enterococci: A Review of
1184 Antimicrobial Resistance Mechanisms and Perspectives of Human and Animal
1185 Health. *Microbial Drug Resistance* **24**, 590–606 (2018).

1186 9. 2019 Antibiotic Resistance Threats Report | CDC (available at
1187 <https://www.cdc.gov/drugresistance/biggest-threats.html#van>).

1188 10. H. S. Gold, Vancomycin-resistant enterococci: Mechanisms and clinical
1189 observations. *Clinical Infectious Diseases* **33**, 210–219 (2001).

1190 11. P. J. Stogios, A. Savchenko, Molecular mechanisms of vancomycin resistance.
1191 *Protein Science* **29**, 654–669 (2020).

1192 12. M. L. Faron, N. A. Ledebot, B. W. Buchan, Resistance mechanisms,
1193 epidemiology, and approaches to screening for vancomycin-resistant Enterococcus
1194 in the health care setting. *Journal of Clinical Microbiology* **54**, 2436–2447 (2016).

1195 13. B. Y. Q. Tien, H. M. S. Goh, K. K. L. Chong, S. Bhaduri-Tagore, S. Holec, R.
1196 Dress, F. Ginhoux, M. A. Ingersoll, R. B. H. Williams, K. A. Kline, Enterococcus
1197 faecalis Promotes Innate Immune Suppression and Polymicrobial Catheter-
1198 Associated Urinary Tract Infection. *Infect Immun* **85** (2017), doi:10.1128/IAI.00378-
1199 17.

1200 14. R. A. G. Da, S. Id, W. Hong Tay Id, F. Kiong, H. Id, F. Reinhart Tanoto, K. K. L.
1201 Chongid, P. Y. Choo, A. Ludwigid, K. A. Klineid, A. P. Hakansson, Ed. Enterococcus
1202 faecalis alters endo-lysosomal trafficking to replicate and persist within mammalian
1203 cells. *PLOS Pathogens* **18**, e1010434 (2022).

1204 15. K. K. L. Chong, W. H. Tay, B. Janel, A. M. H. Yong, T. H. Liew, L. Madden, D.
1205 Keogh, T. M. S. Barkham, F. Ginhoux, D. L. Becker, K. A. Kline, Enterococcus
1206 faecalis Modulates Immune Activation and Slows Healing During Wound Infection.
1207 *The Journal of Infectious Diseases* **216**, 1644 (2017).

1208 16. F. C. Fang, Antimicrobial reactive oxygen and nitrogen species: concepts and
1209 controversies. *Nat Rev Microbiol* **2**, 820–832 (2004).

1210 17. J. M. Slauch, How does the oxidative burst of macrophages kill bacteria? Still an
1211 open question. *Mol Microbiol* **80**, 580 (2011).

1212 18. J. R. Sheldon, E. P. Skaar, Metals as phagocyte antimicrobial effectors. *Curr
1213 Opin Immunol* **60**, 1 (2019).

1214 19. G. L. Lukacs\$\$ll, O. D. Rotstein&, S. Grinstein+, Phagosomal acidification is
1215 mediated by a vacuolar-type H(+)-ATPase in murine macrophages. *THE JOURNAL
1216 OF BIOLOGICAL CHEMISTRY* **265**, 21099–21107 (1990).

1217 20. E. Uribe-Querol, C. Rosales, Phagocytosis: Our Current Understanding of a
1218 Universal Biological Process. *Frontiers in Immunology* **11**, 1066 (2020).

1219 21. M. Orecchioni, Y. Ghosheh, A. B. Pramod, K. Ley, Macrophage polarization:
1220 Different gene signatures in M1(Lps+) vs. Classically and M2(LPS-) vs. Alternatively
1221 activated macrophages. *Frontiers in Immunology* **10**, 1084 (2019).

1222 22. P. J. Murray, Macrophage Polarization. <http://dx.doi.org/10.1146/annurev-physiol-022516-034339> **79**, 541–566 (2017).

1224 23. C. D. Mills, K. Kincaid, J. M. Alt, M. J. Heilman, A. M. Hill, M-1/M-2 macrophages
1225 and the Th1/Th2 paradigm. *J Immunol* **164**, 6166–6173 (2000).

1226 24. U. Theuretzbacher, K. Outterson, A. Engel, A. Karlén, The global preclinical
1227 antibacterial pipeline *Nature Reviews Microbiology* **18**, 275–285 (2020).

1228 25. G. Hu, Y. Su, B. H. Kang, Z. Fan, T. Dong, D. R. Brown, J. Cheah, K. D. Wittrup,
1229 J. Chen, High-throughput phenotypic screen and transcriptional analysis identify new
1230 compounds and targets for macrophage reprogramming. *Nat Commun* **12** (2021),
1231 doi:10.1038/S41467-021-21066-X.

1232 26. G. Hu, Y. Su, B. H. Kang, Z. Fan, T. Dong, D. R. Brown, J. Cheah, K. D. Wittrup,
1233 J. Chen, High-throughput phenotypic screen and transcriptional analysis identify new
1234 compounds and targets for macrophage reprogramming. *Nature Communications* **12**
1235 (2021), doi:10.1038/s41467-021-21066-x.

1236 27. M. J. Rybak, B. M. Lomaestro, J. C. Rotschafer, R. C. Moellering, W. A. Craig,
1237 M. Billeter, J. R. Dalovisio, D. P. Levine, Vancomycin Therapeutic Guidelines: A
1238 Summary of Consensus Recommendations from the Infectious Diseases Society of
1239 America, the American Society of Health-System Pharmacists, and the Society of
1240 Infectious Diseases Pharmacists. *Clinical Infectious Diseases* **49**, 325–327 (2009).

1241 28. R. F. Novak, E. D. Kharasch, Mitoxantrone: propensity for free radical formation
1242 and lipid peroxidation--implications for cardiotoxicity. *Invest New Drugs* **3**, 95–99
1243 (1985).

1244 29. F. Baquero, B. R. Levin, Proximate and ultimate causes of the bactericidal action
1245 of antibiotics. *Nature Reviews Microbiology* 2020 19:2 **19**, 123–132 (2020).

1246 30. C. Watanakunakorn, Mode of action and in-vitro activity of vancomycin. *J*
1247 *Antimicrob Chemother* **14 Suppl D**, 7–18 (1984).

1248 31. D. H. Bell, Characterization of the fluorescence of the antitumor agent,
1249 mitoxantrone. *Biochim Biophys Acta* **949**, 132–137 (1988).

1250 32. P. Redder, S. Hausmann, V. Khemici, H. Yasrebi, P. Linder, Bacterial versatility
1251 requires DEAD-box RNA helicases. *FEMS Microbiology Reviews* **39**, 392–412
1252 (2015).

1253 33. M. Benoit, B. Desnues, J.-L. Mege, Macrophage Polarization in Bacterial
1254 Infections. *The Journal of Immunology* **181**, 3733–3739 (2008).

1255 34. Q. Huang, J. Hou, P. Yang, J. Yan, X. Yu, Y. Zhuo, S. He, F. Xu, Antiviral activity
1256 of mitoxantrone dihydrochloride against human herpes simplex virus mediated by
1257 suppression of the viral immediate early genes. *BMC Microbiology* **19**, 1–9 (2019).

1258 35. P. F. Chan, V. Srikanthasan, J. Huang, H. Cui, A. P. Fosberry, M. Gu, M. M.
1259 Hann, M. Hibbs, P. Homes, K. Ingraham, J. Pizzollo, C. Shen, A. J. Shillings, C. E.
1260 Spitzfaden, R. Tanner, A. J. Theobald, R. A. Stavenger, B. D. Bax, M. N. Gwynn,
1261 Structural basis of DNA gyrase inhibition by antibacterial QPT-1, anticancer drug
1262 etoposide and moxifloxacin. *Nature Communications* 2015 6:1 6, 1–13 (2015).

1263 36. E. J. Fox, Mechanism of action of mitoxantrone. *Neurology* 63, S15–S18 (2004).

1264 37. R. J. Worthington, C. Melander, Combination Approaches to Combat Multi-Drug
1265 Resistant Bacteria. *Trends Biotechnol* 31, 177 (2013).

1266 38. M. L. Faron, N. A. Ledeboer, B. W. Buchan, Resistance mechanisms,
1267 epidemiology, and approaches to screening for vancomycin-resistant Enterococcus
1268 in the health care setting. *Journal of Clinical Microbiology* 54, 2436–2447 (2016).

1269 39. W. H. Tay, R. A. G. da Silva, F. K. Ho, K. K. L. Chong, A. Ludwig, K. A. Kline,
1270 Enterococcus faecalis persists and replicates within epithelial cells in vitro and in vivo
1271 during wound infection. *bioRxiv* , 2021.09.16.460717 (2021).

1272 40. K. J. I. Thorne, R. C. Oliver, A. J. Barrett, Lysis and killing of bacteria by
1273 lysosomal proteinases. *Infection and Immunity* 14, 555 (1976).

1274 41. A. Reis-mendes, J. L. Dores-sousa, A. I. Padrão, M. Duarte-araújo, J. A. Duarte,
1275 V. Seabra, S. Gonçalves-monteiro, F. Remião, F. Carvalho, E. Sousa, M. L. Bastos,
1276 V. M. Costa, Inflammation as a Possible Trigger for Mitoxantrone-Induced
1277 Cardiotoxicity: An In Vivo Study in Adult and Infant Mice. *Pharmaceuticals (Basel)* 14
1278 (2021), doi:10.3390/PH14060510.

1279 42. L. Fischer-Riepe, N. Daber, J. Schulte-Schrepping, B. C. Véras De Carvalho, A.
1280 Russo, M. Pohlen, J. Fischer, A. I. Chasan, M. Wolf, T. Ulas, S. Glander, C. Schulz,
1281 B. Skryabin, A. Wollbrink, Dipl-Ing, N. Steingraeber, C. Stremmel, M. Koehle, F.
1282 Gärtner, S. Vettorazzi, D. Holzinger, J. Gross, F. Rosenbauer, M. Stoll, S. Niemann,
1283 J. Tuckermann, J. L. Schultze, J. Roth, K. Barczyk-Kahlert, CD163 expression
1284 defines specific, IRF8-dependent, immune-modulatory macrophages in the bone
1285 marrow. *Journal of Allergy and Clinical Immunology* 146, 1137–1151 (2020).

1286 43. D. Parker, CD80/CD86 signaling contributes to the proinflammatory response of
1287 *Staphylococcus aureus* in the airway. *Cytokine* 107, 130 (2018).

1288 44. M. C. Marchitto, C. A. Dillen, H. Liu, R. J. Miller, N. K. Archer, R. v. Ortines, M. P.
1289 Alphonse, A. I. Marusina, A. A. Merleev, Y. Wang, B. L. Pinsker, A. S. Byrd, I. D.
1290 Brown, A. Ravipati, E. Zhang, S. S. Cai, N. Limjunyaawong, X. Dong, M. R. Yeaman,
1291 S. I. Simon, W. Shen, S. K. Durum, R. L. O'Brien, E. Maverakis, L. S. Miller, Clonal
1292 V γ 6+V δ 4+ T cells promote IL-17-mediated immunity against *Staphylococcus aureus*
1293 skin infection. *Proc Natl Acad Sci U S A* 166, 10917–10926 (2019).

1294 45. C. A. Dillen, B. L. Pinsker, A. I. Marusina, A. A. Merleev, O. N. Farber, H. Liu, N.
1295 K. Archer, D. B. Lee, Y. Wang, R. v. Ortines, S. K. Lee, M. C. Marchitto, S. S. Cai, A.
1296 G. Ashbaugh, L. S. May, S. M. Holland, A. F. Freeman, L. G. Miller, M. R. Yeaman,
1297 S. I. Simon, J. D. Milner, E. Maverakis, L. S. Miller, Clonally expanded $\gamma\delta$ T cells

1298 protect against *Staphylococcus aureus* skin reinfection. *The Journal of Clinical*
1299 *Investigation* **128**, 1026 (2018).

1300 46. L. J. Juttukonda, W. N. Beavers, D. Unsihuay, K. Kim, G. Pishchany, K. J.
1301 Horning, A. Weiss, H. Al-Tameemi, J. M. Boyd, G. A. Sulikowski, A. B. Bowman, E.
1302 P. Skaara, A small-molecule modulator of metal homeostasis in gram-positive
1303 pathogens. *mBio* **11**, 1–22 (2020).

1304 47. L. Cui, Y. H. Lee, T. L. Thein, J. Fang, J. Pang, E. E. Ooi, Y. S. Leo, C. N. Ong,
1305 S. R. Tannenbaum, Serum Metabolomics Reveals Serotonin as a Predictor of
1306 Severe Dengue in the Early Phase of Dengue Fever. *PLoS Negl Trop Dis* **10** (2016),
1307 doi:10.1371/JOURNAL.PNTD.0004607.

1308 48. B. Luna, V. Trebosc, B. Lee, M. Bakowski, A. Ulhaq, J. Yan, P. Lu, J. Cheng, T.
1309 Nielsen, J. Lim, W. Ketphan, H. Eoh, C. McNamara, N. Skandalis, R. She, C.
1310 Kemmer, S. Lociuro, G. E. Dale, B. Spellberg, A nutrient-limited screen unmasks
1311 rifabutin hyperactivity for extensively drug-resistant *Acinetobacter baumannii*. *Nature*
1312 *Microbiology* **5**, 1134–1143 (2020).

1313 49. K. L. Palmer, A. Daniel, C. Hardy, J. Silverman, M. S. Gilmore, Genetic basis for
1314 daptomycin resistance in enterococci. *Antimicrobial Agents and Chemotherapy* **55**,
1315 3345–3356 (2011).

1316 50. H. v. Nielsen, P. S. Guiton, K. A. Kline, G. C. Port, J. S. Pinkner, F. Neiers, S.
1317 Normark, B. Henriques-Normark, M. G. Caparon, S. J. Hultgren, The metal ion-
1318 dependent adhesion site motif of the *Enterococcus faecalis* EbpA pilin mediates pilus
1319 function in catheter-associated urinary tract infection. *mBio* **3** (2012),
1320 doi:10.1128/MBIO.00177-12.

1321 51. S. Manzanero, Generation of mouse bone marrow-derived macrophages.
1322 *Methods Mol Biol* **844**, 177–181 (2012).

1323 52. K. J. Livak, T. D. Schmittgen, Analysis of relative gene expression data using
1324 real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. *Methods* **25**, 402–
1325 408 (2001).

1326 53. K. Eliceiri, C. A. Schneider, W. S. Rasband, K. W. Eliceiri, NIH Image to ImageJ :
1327 25 years of image analysis HISTORICAL commentary NIH Image to ImageJ : 25
1328 years of image analysis. *Nature Methods* **9**, 671–675 (2012).

1329 54. G. M. Dunny, B. L. Brown, D. B. Clewell, Induced cell aggregation and mating in
1330 *Streptococcus faecalis*: evidence for a bacterial sex pheromone. *Proc Natl Acad Sci*
1331 *U S A* **75**, 3479–3483 (1978).

1332 55. A. Bourgogne, D. A. Garsin, X. Qin, K. v. Singh, J. Sillanpaa, S. Yerrapragada,
1333 Y. Ding, S. Dugan-Rocha, C. Buhay, H. Shen, G. Chen, G. Williams, D. Muzny, A.
1334 Maadani, K. A. Fox, J. Gioia, L. Chen, Y. Shang, C. A. Arias, S. R. Nallapareddy, M.
1335 Zhao, V. P. Prakash, S. Chowdhury, H. Jiang, R. A. Gibbs, B. E. Murray, S. K.
1336 Highlander, G. M. Weinstock, Large scale variation in *Enterococcus faecalis*
1337 illustrated by the genome analysis of strain OG1RF. *Genome Biology* **9**, 1–16
1338 (2008).

1339 56. M. Totsika, S. A. Beatson, S. Sarkar, M. D. Phan, N. K. Petty, N. Bachmann, M.
1340 Szubert, H. E. Sidjabat, D. L. Paterson, M. Upton, M. A. Schembri, Insights into a
1341 multidrug resistant *Escherichia coli* pathogen of the globally disseminated ST131
1342 lineage: genome analysis and virulence mechanisms. *PLoS One* **6** (2011),
1343 doi:10.1371/JOURNAL.PONE.0026578.

1344 57. S. L. Chen, C. S. Hung, J. Xu, C. S. Reigstad, V. Magrini, A. Sabo, D. Blasiar, T.
1345 Bieri, R. R. Meyer, P. Ozersky, J. R. Armstrong, R. S. Fulton, J. P. Lathreille, J.
1346 Spieth, T. M. Hooton, E. R. Mardis, S. J. Hultgren, J. I. Gordon, Identification of
1347 genes subject to positive selection in uropathogenic strains of *Escherichia coli*: a
1348 comparative genomics approach. *Proc Natl Acad Sci U S A* **103**, 5977–5982 (2006).

1349 58. L. K. McDougal, C. D. Steward, G. E. Killgore, J. M. Chaitram, S. K. McAllister, F.
1350 C. Tenover, Pulsed-Field Gel Electrophoresis Typing of Oxacillin-Resistant
1351 *Staphylococcus aureus* Isolates from the United States: Establishing a National
1352 Database. *Journal of Clinical Microbiology* **41**, 5113 (2003).

1353 59. J. C. O. T. I. C. O. S. O. P. None, The type species of the genus *Salmonella*
1354 *Lignieres* 1900 is *Salmonella enterica* (ex Kauffmann and Edwards 1952) Le Minor
1355 and Popoff 1987, with the type strain LT2T, and conservation of the epithet *enterica*
1356 in *Salmonella enterica* over all earlier epithets that may be applied to this species.
1357 Opinion 80. *Int J Syst Evol Microbiol* **55**, 519–520 (2005).

1358 60. M. Hentzer, K. Riedel, T. B. Rasmussen, A. Heydorn, J. B. Andersen, M. R.
1359 Parsek, S. A. Rice, L. Eberl, S. Molin, N. Høiby, S. Kjelleberg, M. Givskov, Inhibition
1360 of quorum sensing in *Pseudomonas aeruginosa* biofilm bacteria by a halogenated
1361 furanone compound. *Microbiology (Reading)* **148**, 87–102 (2002).

1362 61. X. Zhang, V. de Maat, A. M. Guzmán Prieto, T. K. Prajsnar, J. R. Bayjanov, M.
1363 de Been, M. R. C. Rogers, M. J. M. Bonten, S. Mesnage, R. J. L. Willems, W. van
1364 Schaik, RNA-seq and Tn-seq reveal fitness determinants of vancomycin-resistant
1365 *Enterococcus faecium* during growth in human serum. *BMC Genomics* **18**, 1–12
1366 (2017).

1367 62. M. M. C. Lam, T. Seemann, D. M. Bulach, S. L. Gladman, H. Chen, V. Haring, R.
1368 J. Moore, S. Ballard, M. L. Grayson, P. D. R. Johnson, B. P. Howden, T. P. Stinear,
1369 Comparative Analysis of the First Complete *Enterococcus faecium* Genome. *Journal
1370 of Bacteriology* **194**, 2334 (2012).

1371 63. J. Top, S. Arredondo-Alonso, A. C. Schürch, S. Puranen, M. Pesonen, J. Pensar,
1372 R. J. L. Willems, J. Corander, Genomic rearrangements uncovered by genome-wide
1373 co-evolution analysis of a major nosocomial pathogen, *Enterococcus faecium*.
1374 *Microbial Genomics* **6**, 1–8 (2020).

1375

1376

1377

1378

1379 **Funding:**

1380 R.A.G.D.S. and part of this work was supported by the National Research
1381 Foundation, Prime Minister's Office, Singapore, under its Campus for Research
1382 Excellence and Technological Enterprise (CREATE) program, through core funding
1383 of the Singapore-MIT Alliance for Research and Technology (SMART) Antimicrobial
1384 Resistance Interdisciplinary Research Group (AMR IRG). This work was also
1385 supported by the National Research Foundation and Ministry of Education Singapore
1386 under its Research Centre of Excellence Programme and by the Singapore Ministry
1387 of Education under its Tier 2 program (MOE2019-T2-2-089) awarded to K.A.K. The
1388 funders had no role in study design, data collection and analysis, decision to publish,
1389 or preparation of the manuscript.

1390

1391 **Author contributions:** R.A.G.D.S., J.J.W., H.A., P.Y.C., K.K.Y., S.J., C.L., L.T.K.S,
1392 G.H. and M.V. performed experiments and analyzed data. R.A.G.D.S., H.A., C.L.,
1393 J.C. and K.A.K. interpreted the results. K.A.K , J.C. and R.A.G.D.S.. designed the
1394 experiments and devised the project. R.A.G.D.S., J.C., and K.A.K. wrote the
1395 manuscript. All authors reviewed and approved the final manuscript.

1396

1397 **Data and materials availability:** All data associated with this study are present in
1398 the paper or the Supplementary Materials.

1399

1400 **Acknowledgments:** We thank Dr. Thomas Dean Watts and Dr. Claudia Jade
1401 Stocks for critical reading of the manuscript. We also thank Ms. Cheryl Neo Jia Yi
1402 and Mr. Muhammin Bin Hasbullah for support with animal work.

1403