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Abstract 

Neurocomputational accounts of psychosis propose mechanisms for how information is integrated 

into a predictive model of the world, in attempts to understand the occurrence of altered perceptual 

experiences. Conflicting Bayesian theories postulate aberrations in either top-down or bottom-up 

processing. The top-down theory predicts an overreliance on prior beliefs or expectations resulting 

in aberrant perceptual experiences, whereas the bottom-up theory predicts an overreliance on 

current sensory information, as aberrant salience is directed towards objectively uninformative 

stimuli. This study empirically adjudicates between these models. We use a perceptual decision-

making task in a neurotypical population with varying degrees of psychotic-like experiences. 

Bayesian modelling was used to compute individuals’ reliance on prior relative to sensory 

information. Across two datasets (discovery dataset n=363; independent replication in validation 

dataset n=782) we showed that psychotic-like experiences were associated with an overweighting of 

sensory information relative to prior expectations, which seem to be driven by decreased precision 

afforded to prior information. However, when prior information was more uncertain, participants 

with greater psychotic-like experiences encoded sensory information with greater noise. Greater 

psychotic-like experiences were also associated with generally heightened perceptions of task 

instability, which we suggest may be the cause for the observed aberrant precision in the encoding 

both prior and likelihood information. Our study lends empirical support to notions of both weaker 

bottom-up and weaker (rather than stronger) top-down perceptual processes, as well as aberrancies 

in belief updating that extend into the non-clinical continuum of psychosis.  

Keywords: Psychotic-like experiences; predictive processing; sensory uncertainty; Bayesian 

modelling; likelihood to prior information; precision weighting.  
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Introduction 

Sensory processing under uncertainty is intrinsic to how we predict and engage with the 

environment to form coherent and accurate representations or beliefs about outcomes that 

facilitate behavioural updating. Neurocomputational accounts of schizophrenia propose mechanistic 

disruptions in information processing that lead to the formation of delusions and hallucinations 

(Adams et al., 2013; Sterzer et al., 2018). Given that the world we live in is often clouded by noisy, 

ambiguous sensory inputs, the brain must create an internal representation or model that is used to 

infer the cause of this sensory information (Hohwy, 2020; Knill & Pouget, 2004). A predictive 

processing perspective assumes that perception is an inferential optimisation process whereby the 

cause of sensory events is established via a combination of both current sensory evidence 

(likelihood) and prior beliefs or expectations (priors) about the occurrence of the event (Feldman & 

Friston, 2010; Friston, 2005; Hohwy, 2020). As incoming information may differ in its reliability 

across contexts, it must be weighted accordingly to facilitate accurate perceptual inference. 

Discrepancies between predictions and observations create error signals (prediction errors) that 

guide the updating of predictions and the relative precision attributed to expectations, compared to 

sensory information (Hohwy, 2020). Aberrancies in this precision afforded priors and likelihoods 

provide a succinct mechanistic platform for understanding dysfunctions in perceptual inferences and 

experiences across the continuum of psychosis (Adams, 2018; Adams et al., 2016; Sterzer et al., 

2018). 

Early accounts of predictive processing suggest that an overreliance on sensory information 

relative to prior expectations confounds perceptual experiences in schizophrenia (Adams et al., 

2013; Fletcher & Frith, 2009). In this view, heightened salience placed on objectively uninformative 

events or stimuli results in the misinterpretation of prediction errors as meaningful change, which 

contributes to misleading belief updating about the environment. This can be explained as a failure 

to attenuate the precision of sensory information relative to prior beliefs at low hierarchical levels, 

leading to perception being overly driven by bottom-up processes (Sterzer et al., 2018). Contrasting 

accounts suggest that aberrant perceptual experiences arise due to an over-reliance on prior 

expectations or beliefs about the cause of sensory events, driven by an abnormality in top-down 

guided perception (Corlett et al., 2019; Powers et al., 2017). This results in an over-attenuation of 

prediction errors, with overly precise priors contributing to perception in the absence of objectively 

identifiable stimuli. Extensive evidence has provided support for both sides of these seemingly 

contradictory canonical accounts of hallucination and delusion formation. More recently, the 

hierarchical nature of predictive coding processes have been utilised to harmonise these competing 
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hypotheses into a unifying explanatory framework (Haarsma, Kok, et al., 2022; Katthagen et al., 

2022; Sterzer et al., 2018; Weilnhammer et al., 2018).  

Although these co-occurring aberrancies can be accounted for within the hierarchical nature 

of predictive coding, it is somewhat unclear how the precision afforded to each type of information 

is altered. For example, an overreliance on sensory information could be driven by chronically over-

precise low-level prediction errors contributing to unusual belief updating (Cole et al., 2020). This 

would mean that more weight or salience is placed on persistently surprising events, requiring the 

adoption of higher-order beliefs for them to be explained away (Corlett et al., 2009). Alternatively, 

higher-order beliefs may be of low precision, leading to a lack of regularisation that renders the 

environment seemingly volatile or unpredictable, thus enhancing the weight of lower-level 

prediction errors (Adams et al., 2013; Sterzer et al., 2018). Thus, discrepancies within the literature 

describe both increases and decreases in the relative weighting of likelihood to prior information. It 

is unclear whether these differences are driven by aberrant precision of encoding uncertainty in 

likelihood or prior information. Our study is designed to empirically adjudicate between these 

opposing accounts. We do so by directly quantifying the precision encoded in both prior and 

likelihood information in neurotypical individuals with varying levels of psychotic-like experiences. 

Recognising the complexity and dimensional nature of psychopathology, contemporary 

approaches into the investigation of psychoses signify a shift towards dissecting the spectrum of 

schizophrenia into subgroups or dimensions and even beyond dichotomous notions of health and 

disease (Guloksuz & van Os, 2018). This view suggests that perceptions about instability of the world 

may gradually extend into non-clinical populations who have psychotic-like experiences, rather than 

presenting at a threshold level for diagnostic classification. Within this psychosis-continuum 

perspective, psychotic symptoms are considered to be an extreme outcome of a continuously 

distributed phenotype which extends into the non-clinical population (van Os & Reininghaus, 2016). 

Thus, understanding aberrant information integration along the continuum of psychosis can 

elucidate the development of proneness to hallucinations and delusions, into more extreme 

symptomatologic presentations in schizophrenia. 

Here, we used Bayesian modelling to quantify the precision of representations of likelihood 

and prior information in a task that manipulated uncertainty in both (Vilares et al., 2012), providing a 

deeper elucidation of perceptual inference which is lacking in previous literature (Benrimoh & 

Friston, 2020). This allowed us to disentangle between the competing theories of the development 

of psychotic-like symptoms, namely a top-down, overreliance on priors account, and a bottom-up, 

overreliance on likelihood account. Our approach enabled us to determine whether an overreliance 

on prior or likelihood information is driven by more precise priors or more precise likelihoods, and 
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how this relates to psychotic-like experiences. Additionally, investigating variability in the relative 

weighting of prior to likelihood information across the task allowed us to determine the relationship 

between psychotic-like experiences and aberrancies in the stability of information integration in this 

paradigm. In response to the replication crisis, we present parallel results from a discovery and an 

independent, validation dataset.  

 

Methods 

Participants 

The total sample from the discovery dataset included 363 participants (age range 21-80, M = 

44.02, SD = 13.31; 150 male, 210 female, 3 non-binary/prefer not to say). A power analysis was 

conducted based on the findings of the discovery data (R software: “pwr.r.test” function), indicating 

that, to increase the power to 80% to observe small to moderate effects at a = 0.05 two-sided, an 

optimal sample size of 782 participants would be required for the validation dataset. Accordingly, 

the total sample from the validation study included 782 participants (age range 18-73, M = 31.62, SD 

= 11.15, 356 female, 412 male, 14 non-binary/prefer not to say). 

All participants were recruited through Prolific (www.prolific.co), an online platform widely 

used to source participants in the general population. To be eligible for the study, participants had to 

be at least 18 years old and have corrected to normal vision. Participants were asked about their 

highest level of education, left or right handedness, previous diagnosis of neurological conditions, 

emotional or psychological disorders, and/or substance dependence, previous drug use, and any 

other conditions that may affect performance. All participants gave informed consent and received 

monetary compensation (5GBP) for participation. The study was approved by the University of 

Melbourne Human Research Ethics Committee (Ethics ID: 20592). 

 

Experimental Design 

Procedure  

Firstly, participants provided demographic details and completed the 42-item Community 

Assessment of Psychic Experiences (CAPE; Stefanis et al., 2002), used to measure subclinical 

psychotic-like experiences via Qualtrics (www.qualtrics.com). The CAPE uses a four-point Likert scale 

to measure lifetime psychotic experiences. It measures frequency and distress of psychotic-like 

thoughts, feelings, and mental experiences. Specifically, it relates to three subdimensions of 

psychosis symptomatology, assessing alterations in thought and sensory perception (positive 

dimension), social isolation and affective blunting (negative dimension), and anhedonia and sadness 

(depressive dimension). Since we were interested in drawing parallels between the accounts 
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proposed for positive symptoms in schizophrenia and those in nonclinical individuals, this study 

focused on the positive symptom frequency subscale (CAPE-P) as our primary measure of psychotic-

like experiences. Following completion of this questionnaire, participants were then directed to 

Pavlovia (www.pavlovia.org), where they completed a computerised spatial span test (Woods et al., 

2016) as a measure of working memory. Finally, participants completed the perceptual decision-

making tasks, involving the likelihood-only estimation task followed by the coin task as modified 

from Vilares et al. (2012).  

Coin task 

Participants performed a decision-making task where they were asked to guess the position 

of a hidden target on a screen, requiring them to integrate both noisy sensory evidence of the 

target’s location, and prior expectation of the target’s location. More specifically, participants were 

told a coin was being thrown into a pond and were asked to guess where the coin had fallen. 

Likelihood and prior variance were manipulated with a two-by-two factorial design with narrow and 

wide variance respectively. On each trial, five blue dots denoted “splashes” produced by the coin 

falling in. The variance of these splashes changed on each trial as an index of either narrow or wide 

likelihood conditions. The position of these splashes was drawn from a Gaussian distribution centred 

on the (hidden) location of the coin, with standard deviation of either 6% of the screen width (SD = 

0.096; narrow likelihood trials) or 15% of the screen width (SD = 0.24; wide likelihood trials). An 

example trial is shown in Figure 1. Participants were also informed that the person throwing the coin 

changed between blocks, and one thrower was more accurate than the other. They were told that 

both throwers aimed at the screen centre (indicating the mean of the prior). Although they were not 

explicitly told which thrower was better or worse, this could be inferred through the distribution of 

previous coin locations from trial-to-trial. The location of the coin was drawn from a second, 

independent Gaussian distribution centred on the middle of the screen, with a standard deviation of 

either 2.5% of the screen width (SD = 0.04; narrow prior blocks) or 8.5% of the screen width (SD = 

0.136; wide prior blocks). The four conditions are visually depicted in Figure 1.  
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Figure 1: Coin task paradigm (adapted from Vilares et al., 2012). A) Time course of a single exemplar 

trial: participants are shown five blue dots to represent splashes of the location of a coin being 

thrown into a pond. They are then asked to move the blue bar/net to where they estimate the coin’s 

location to be, after which the coin’s true location is revealed, and they move onto the next trial. B) 

Task design as adapted from Vilares et al. (2012): the four conditions of the task are visually depicted 

including two types of likelihood as manipulated through the distribution of splashes on each trial 

(Ln = narrow likelihood; Lw = wide likelihood) and two types of prior as manipulated through the 

accuracy of the thrower on each block (Pn = narrow prior; Pw = wide prior). 

 

While the variance of the likelihood changed pseudorandomly from trial-to-trial 

(counterbalanced across all trials), the variance of the prior changed from block to block, with the 

order (thrower A vs thrower B) also counterbalanced across participants. Thus, there were four 

conditions: narrow prior and narrow likelihood (PnLn), narrow prior and wide likelihood (PnLw), 

wide prior and narrow likelihood (PwLn), and wide prior and wide likelihood (PwLw).  

For each trial, participants were instructed to move a net (blue bar) horizontally across the 

screen to indicate where they thought the coin had landed. The true position of the coin 

(represented as a yellow dot) was then shown for 1500 ms. Scoring was tallied across each trial, with 

a point earned each time any part of the coin lay within the net. Participants were provided with two 
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blocks of two practice trials before completing the main task. The main task consisted of two blocks 

per thrower, with each block containing 75 trials each (resulting in 300 trials total).  

Likelihood only task 

Prior to completing the coin task, participants completed the likelihood-only estimation task 

to determine a measure of subjective likelihood variance or sensory noise. The setup of this task was 

identical to the main task, without the incorporation of the prior condition. This provided an 

estimation of how participants perceived the centre of the splashes on their own, without prior 

knowledge. Participants were asked to estimate where they thought the true coin location was, 

which was always the centre of the displayed splashes, by moving the net horizontally across the 

screen. The true coin location (represented as a yellow dot) was revealed at the end of each trial, 

providing feedback on participants estimations. This task consisted of 100 trials, with an even 

number of wide and narrow likelihood distributions.  

Behavioural Analysis 

Successful performance of the task required participants to move the net to the most likely 

location of the hidden coin. Utilising Bayes rule, we can elucidate what the optimal estimate of the 

position of the coin would be on each trial (Körding & Wolpert, 2004; Vilares et al., 2012): 

            𝑋𝑒𝑠𝑡 =  
𝜎𝐿

2

𝜎𝐿
2+ 𝜎𝑃

2  𝜇𝑃 +
𝜎𝑃

2

𝜎𝐿
2+ 𝜎𝑃

2  𝜇𝐿                   (1) 

where 𝑋𝑒𝑠𝑡 is the estimated position of the coin (i.e., participants responses on each trial), (𝜇𝑃 ,  𝜇𝐿) 

represent the prior and likelihood means and (𝜎𝑃
2, 𝜎𝐿

2) represent the prior and likelihood variances, 

respectively. In our experiment, the mean of the prior was kept constant (the centre of the screen, 

 𝜇𝑃), while the mean of the likelihood was determined by the centre of the five blue dots in each 

trial ( 𝜇𝐿).  

Performance 

Performance in the likelihood-only task was characterised by the average distance between 

participants estimates of the coin location (net location) and the true centre of the splashes (i.e., 

mean estimation error). Similarly, performance in the coin task was characterised by the average 

distance participants estimates (net location) and the true location of the coin.   

Sensory weight (likelihood vs prior reliance) 

To estimate participants reliance on likelihood relative to prior information, we fitted a 

linear regression to participants’ estimates of the coin’s position for each trial (𝑋𝑒𝑠𝑡) as a function of 

the centre of the splashes (i.e., the likelihood mean,  𝜇𝐿): 

               𝑠𝑤 =  
𝜎𝑃

2

𝜎𝐿
2+ 𝜎𝑃

2                                                      (2) 
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where 𝑠𝑤 is the slope of the linear regression, which indicates how much each participant relies on 

likelihood information. A slope closer to one indicates a greater reliance on the likelihood 

information, while a slope closer to zero indicates greater reliance on prior information. A slope 

between zero and one indicates that participants integrate both likelihood and prior information in 

their estimates. This was calculated overall, for each condition, and for each block.  

Bayesian optimal sensory weights 

If participants perform according to the Bayesian optimum as portrayed in equation (1), then 

the optimal values for the slopes/sensory weights should be equal to the perceived 
𝜎𝑃

2

𝜎𝐿
2+ 𝜎𝑃

2, where  

𝜎𝑃
2 is the variance associated with the prior (narrow prior 𝜎𝑃

2 =  0.042; wide prior 𝜎𝑃
2 =  0.1362) and 

𝜎𝐿
2 is the variance associated with the likelihood (in this instance, narrow likelihood 𝜎𝐿

2 =  
0.0962

5
; 

wide likelihood 𝜎𝐿
2 =  

0.242

5
). These calculations of Bayesian optimality refer to posterior 

computations, integrating the relative uncertainty of both prior and likelihood information.  

Sensitivity to prior change across blocks 

An examination of how sensitive participants were to changing prior uncertainties can be 

estimated by the mean absolute difference in sensory weight from one block to the next (Bi=1,…,4):  

               𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑡𝑜 𝑝𝑟𝑖𝑜𝑟 𝑐ℎ𝑎𝑛𝑔𝑒 =  
|𝑠𝑤𝐵1− 𝑠𝑤𝐵2| + |𝑠𝑤𝐵2− 𝑠𝑤𝐵3| + |𝑠𝑤𝐵3− 𝑠𝑤𝐵4|

3
                              (3) 

which provides an indication of individuals’ sensitivity to changes in prior uncertainty across the task. 

Trial-by-trial variability in sensory weight 

Equation (1) can be rewritten to calculate an instantaneous sensory weight as an indicator of 

participants reliance on likelihood relative to prior information on any given trial: 

                                                     𝑠𝑤𝑡𝑟𝑖𝑎𝑙 =  
𝑋𝑒𝑠𝑡−  𝜇𝑃

 𝜇𝐿+  𝜇𝑃
                                                (4) 

where 𝑋𝑒𝑠𝑡 is the participants estimated position of the coin on a given trial (net location),  𝜇𝑃 is the 

mean of the mean of the prior (assumed at the centre of the screen), and  𝜇𝐿  is the mean of the 

likelihood (the centre of the five blue dots for that trial). To ensure the trial-by-trial sensory weight 

varied from 0 to 1, we calculated the logistic of the 𝑠𝑤𝑡𝑟𝑖𝑎𝑙 =  
1

(1+𝑒−𝑠𝑤𝑡𝑟𝑖𝑎𝑙)
. This variance of the trial-

by-trial sensory weight for each participant over the whole session provided an indication of how 

much participants sensory weights varied instantaneously across the task.  

Subjective likelihood variance 

The likelihood-only task can be used to determine a proxy for participants subjective 

likelihood variance or sensory noise (Randeniya et al., 2021). This is determined by the variance of 

the participants estimates of the mean (𝜇𝑒𝑠𝑡) relative to the true mean of the splashes (𝜇𝐿): 

                                                                    𝜎𝐿𝑆 
2 =  

Σ(𝜇𝑒𝑠𝑡− 𝜇𝐿)2

𝑛𝑇𝑟𝑖𝑎𝑙𝑠
                                                                           (5) 
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where the number of trials (nTrials) was equal to 100 in the likelihood-only task.  

Subjective prior variance 

To estimate participants subjective model of where each thrower would throw the coin 

(subjective prior variance, 𝜎𝑃
2), the sensory weight from equation (2) can be rearranged as follows:  

                                                                     𝜎𝑃
2 =  

𝜎𝑆𝐿
2 ∗𝑠𝑤

(1−𝑠𝑤)
                                                                                    (6) 

In this equation, 𝜎𝑆𝐿
2  is estimated from participants subjective likelihood variance (as calculated in 

equation 5). Optimal or ‘imposed’ prior variance scores were also calculated based on this equation, 

where the actual likelihood variance and optimal sensory weights replaced the perceived values (see 

section on Bayesian optimal sensory weights for calculations).  

Statistical Analysis 

To understand whether Bayesian models can explain sensory learning in psychotic-like 

experiences, we explored the relationship between CAPE-P scores and aspects of task performance. 

Spearman-ranked correlation analyses were calculated for non-parametric variables, whilst Pearson 

correlations were calculated for linearly distributed variables (such as log-transformed CAPE-P 

scores). Mean estimation error in the likelihood only task was used as a criterion to detect poor 

performance or low effort, with 7 outliers excluded from the discovery dataset and 12 outliers 

excluded from the validation dataset (z score greater than ± 3). Similarly, mean estimation error in 

the main task was used to detect poor performance, with 8 outliers excluded from the discovery 

dataset and 27 outliers excluded in the validation dataset. 

Results 

Participants 

Data from a total of 1145 participants were collected across the two datasets, with 

demographic details provided in Table 1. Interestingly, there was a significant difference between 

CAPE scores (total scores as well as each subscale scores) across the two datasets (provided in Table 

1). Specifically, the mean CAPE-P score was significantly higher in the validation dataset compared to 

the discovery dataset (see Figure 2). Despite this, a previously published mean CAPE-P score in a 

large sample (N = 21,590) with online administration (M = 27.7, SD = 4.5; Vleeschouwer et al., 2014) 

lay between the mean scores from the discovery (M = 25.07, SD = 5.38) and validation (M = 30.32, 

SD = 7.61) datasets. The country of residence of responders differed slightly across the two datasets, 

with the majority in the discovery dataset residing in the United Kingdom (75.7%) and the United 

States (17.4%), compared to the majority from the validation dataset residing in South Africa (22.4%) 

and Mexico (19.7%), followed by the United Kingdom (13.17%) and the United States (8.06%). 

Interestingly, psychotic-like experiences as measured by the CAPE have previously been found to be 

more frequent in low and middle income countries than in high income countries (Jaya et al., 2022). 
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This could account for the differences in CAPE-P distributions across the two samples, potentially 

increasing the generalisability of our findings. 

 

Table 1: Demographic profiles and scores from the CAPE across the discovery and validation 

datasets, with p-values indicating differences between the two datasets 

 Discovery dataset (n=363) Validation dataset (n=782)  

 M SD Range M SD Range p-value 

Age (years) 44.02 13.31 21-80 31.62 11.15 18-73  

Gender Female Male Other Female Male Other  

 57.9% 41.3% 0.8% 45.5% 52.7% 1.8%  

Highest 

level of 

education 

Primary 

school 

Secondary 
school 

Tertiary 

education 

Primary 

school 

Secondary 
school 

Tertiary 

education 

 

 1.1% 22.3% 76.5% 0.9% 26.3% 72.5%  

Employment 

status 

Full time Part time Unemployed Full 

time 

Part time Unemployed  

 49.3% 18.7% 10.7% 41.4% 16.7% 17.2%  

CAPE Total 63.71 14.59 42-120 73.06 15.66 42-130 2.2 x 10-16 

CAPE-P 25.07 5.38 20-55 30.32 7.61 19-63 2.2 x 10-16 

CAPE-N 24.51 7.16 14-46 27.14 7.16 14-52 2.26 x 10-09 

CAPE-D 14.13 4.21 8-31 15.61 4.36 7-31 6.32 x 10-10 

Note: CAPE-P = positive dimension, CAPE-N = negative dimension, CAPE-D = depressive dimension 

 
Figure 2: Distribution of psychotic-like experiences. Measured via CAPE-P scores in both discovery 

and validation datasets, including A) raw scores and B) log-transformed scores  
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Task Performance 

An analysis of performance accuracy in the likelihood-only task revealed significantly greater 

estimation errors in the wide likelihood condition, compared to the narrow likelihood condition for 

both the discovery (t(355) = 27.24, p < 2.2 x 10-16, 95%CI = [0.016, 0.019) and validation (t(769) = 

43.09, p < 2.2 x 10-16, 95%CI = [0.017, 0.019]) datasets. This indicated that the likelihood uncertainty 

manipulation functioned as expected, with higher uncertainty in the wide likelihood condition 

resulting in greater estimation errors. Additionally, a two-way ANOVA of task performance in the 

main task revealed no significant differences in mean estimation errors in the wide vs narrow prior 

condition (F = 1.564, p = 0.211), and the wide vs narrow likelihood condition (F = 0.014, p = 0.906), in 

the discovery dataset. In the validation dataset, a main effect of prior (Pw>Pn; F = 6.34, p = 0.011), 

indicating that greater estimation errors occurred in the wide prior condition compared to the 

narrow prior condition, however there was no significant difference in mean estimation errors 

occurring in the wide likelihood and narrow likelihood conditions (F = 2.489, p = 0.114).  

Participants Rely on the Most Reliable Source of Information Aligning with Bayesian Principles, 

Albeit Non-optimally 

 A comparison of mean sensory weights between conditions was used to establish relative 

weighting on likelihood to prior information in the main task. A two-way ANOVA revealed a main 

effect of prior (Pw>Pn; discovery: F = 282.96, p < 2.2 x 10-16; validation: F =531.31, p < 2.2 x 10-16), 

with higher sensory weights in the wide prior condition indicating that participants were more likely 

to rely on likelihood information when the prior was more variable. Similarly, a main effect of 

likelihood (Ln>Lw; discovery: F =81.76, p < 2.2 x 10-16; validation: F =126.68, p < 2.2 x 10-16) indicated 

that participants were more likely to rely more on likelihood information when the likelihood was 

less variable. This was replicated across the two datasets, indicating that reliance on likelihood 

relative to prior information functioned as expected across the four conditions (see Figure 3). 

Moreover, Wilcoxon signed rank tests indicated that participants median likelihood to prior 

weightings significantly differed from Bayesian optimal weightings (blue dashed lines in Figure 3) in 

each condition and across both datasets (see supplementary Table S1 for details). Despite this, the 

pattern of performance was verging towards optimal, suggesting that participants were 

approximating Bayesian performance.  
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Figure 3: Comparison of sensory weights across the four conditions. Sensory weight for each 

participant is calculated by the slope of the regression between the true centre of the likelihood and 

participant’s estimates of the coin’s location for each condition. Sensory weight closer to 1 indicates 

greater reliance on likelihood, whilst sensory weight closer to 0 indicates greater reliance on prior. 

Blue dashed lines indicate Bayesian optimal computations of the coin’s location, based on the 

posterior integration of uncertainty in both prior and likelihood information. Replicated patterns of 

performance were found across the A) discovery and B) validation datasets relative to Bayesian 

optimality. Conditions: PnLn = narrow prior, narrow likelihood (red dots); PnLw = narrow prior, wide 

likelihood (green dots); PwLn = wide prior, narrow likelihood (teal dots); PwLw = wide prior, wide 

likelihood (purple dots) 

 

Psychotic-like Experiences Positively Associated with Increased Reliance on Likelihood Information 

Pearson correlation between log-transformed CAPE-P scores and global sensory weights 

(i.e., reliance on likelihood to prior information across the task) revealed a significant, positive 

relationship in both the discovery (r = 0.12, p = 0.029, 95%CI = [0.012, 0.217]) and validation (r = 

0.082, p = 0.024, 95%CI = [0.106, 0.152]) datasets (Figure 4). This indicates that psychotic-like 

experiences are associated with an increased reliance on likelihood information across the task. 

When considering the relationship between log-transformed CAPE-P scores and sensory weights in 

each condition, a significant positive relationship was found in the narrow prior conditions, but not 

the wide prior conditions across both datasets (provided in Table 2). 
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Figure 4: A significant positive relationship was found between psychotic-like experiences and global 

reliance on likelihood relative to prior information across the task in both the A) discovery and B) 

validation datasets 

 

Table 2: Pearson correlation analyses between sensory weights (relative likelihood to prior reliance) 

and log-transformed CAPE-P scores across each of the four conditions 

 Discovery dataset Validation dataset 

Transformed 
CAPE-P score 

correlated with: 

rs p rs p 

 Sensory weight Sensory weight 

PnLn 0.112 0.034 0.075 0.038 
PnLw 0.109 0.041 0.083 0.022 
PwLn 0.111 0.037 0.058 0.112 
PwLw 0.069 0.192 0.021 0.567 

 

No Significant Relationship Between Psychotic-like Experiences and Variability in Likelihood vs 

Prior Reliance Across Blocks and from Trial-to-Trial 

Average change in sensory weight was computed across blocks, providing an indication of 

individuals’ sensitivity to changes in prior uncertainty (which changed every block). An analysis of 

average slope change across blocks revealed a weak, negative Spearman correlation between 

sensitivity to prior change and CAPE-P scores in the validation dataset (r = -0.074, p = 0.042), but no 

significant relationship in the discovery dataset (r = -0.056, p = 0.29). Similarly, instantaneous 

changes to sensory weights provided an indication of how much one’s reliance on likelihood to prior 

information varied from trial-to-trial. No significant relationship was found between variance in trial-

by-trial sensory weight across the task and CAPE-P scores for both the discovery (r = 0.096, p = 

0.069) and validation (r = 0.064, p = 0.079) datasets. This suggests there was little to no relationship 
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between psychotic-like experiences and variability or changes to sensory weights across blocks, and 

instantaneously across trials.  

Psychotic-like Experiences Positively Associated with Subjective Likelihood Variance in Validation 

Dataset Only 

Subjective likelihood variance was calculated in the likelihood-only task as a proxy of how 

much participants perceived uncertainty in likelihood information (i.e., distribution of the five blue 

dots) to varying across the task. As expected, participants’ average subjective likelihood variance 

was found to be significantly greater in the wide likelihood condition, compared to the narrow 

likelihood condition in both the discovery (t(339) = 11.06, p < 2.2 x 10-16) and validation (t(750) = 

12.81, p < 2.2 x 10-16) datasets. When considering the relationship between overall subjective 

likelihood variance (across the likelihood-only task) and psychotic-like experiences, no significant 

correlation was found in the discovery dataset (r = 0.077, p = 0.16; Figure 5), whilst a significant 

positive Spearman-ranked correlation between subjective likelihood variance and CAPE-P scores was 

found in the validation dataset (r = 0.15, p = 2.5x105). This might suggest that participants with 

increasing psychotic-like experiences are more likely to perceive the likelihood information to be 

more uncertain or variable across the task, however this effect was only found in the larger dataset.   

 

Figure 5: A positive relationship was found between subjective likelihood variance across the task 

and increasing psychotic-like experiences in B) the validation dataset, but not A) the discovery 

dataset 

 

Psychotic-like Experiences Positively Associated with Subjective Prior Variance Across Both 

Datasets 

Furthermore, individuals’ subjective likelihood variance and sensory weights were utilised to 

calculate subjective prior variance, as a proxy for how much participants were perceiving uncertainty 

in prior information (the accuracy of the thrower) to vary across the task. A comparison of mean 
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subjective prior variance between conditions revealed a main effect of prior (Pw>Pn; discovery: F = 

46.95, p = 1.18 x 10-11; validation: F =47.94, p = 5.56 x 10-12), suggesting that participants were more 

likely to estimate that prior information was more variable in the wide prior condition, compared to 

the narrow prior condition. Despite this expected pattern of performance, Wilcoxon ranked test 

indicated that participants’ median subjective prior variance scores significantly differed from 

optimal or ‘imposed’ prior variance scores (see supplementary Table S2 for further details).  

Spearman-ranked correlation analysis revealed a significant positive relationship between 

overall subjective prior variance (across all trials in the main task) and CAPE-P scores in both the 

discovery (r = 0.11, p = 0.046) and validation (r = 0.14, p = 1.16 x 10-4) datasets (Figure 6). This 

suggests that participants with increasing psychotic-like experiences tend to perceive prior 

information to be more uncertain or variable across the task. Spearman correlations between CAPE-

P scores and subjective prior variance were also calculated across each condition, as shown in Table 

3. Whilst significant positive relationships were found across all conditions in the validation dataset, 

this relationship was only seen in wide likelihood conditions in the discovery dataset. 

 

Figure 6: A significant positive relationship was found overall subjective prior variance across the task 

and increasing psychotic-like experiences in both the A) discovery and B) validation datasets 

 

Table 3: Spearman-ranked correlation analyses between subjective prior variance and psychotic-like 

experiences across each of the four task conditions 

 Discovery dataset Validation dataset 

CAPE-P score 
correlated with: 

rs p rs p 

 Subjective prior variance Subjective prior variance 

PnLn 0.031 0.581 0.098 0.011 
PnLw 0.131 0.017 0.146 7.5 x 10-5 

PwLn 0.065 0.247 0.131 5.8 x 10-4 
PwLw 0.123 0.027 0.125 8.4 x 10-4 
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Discussion 

This study aimed to investigate the relationship between psychotic-like experiences and 

aberrant weighting of sensory evidence (likelihood) relative to contextual beliefs (priors) in 

perceptual decision-making under uncertainty. Orthogonal manipulation of uncertainty in both 

likelihood and prior information, which is often lacking in previous literature, allowed for a deeper 

disentanglement and quantification of alterations in the precision-weighting of information, and its 

association with the non-clinical continuum of psychotic-like experiences. Specifically, we 

investigated whether an imbalance in the relative precision weighting of likelihood to prior 

information was driven by greater subjective uncertainty in likelihood information or greater 

subjective uncertainty in prior information. This extends predictive processing literature, utilised as a 

fundamental framework for understanding positive symptom formation in schizophrenia, by 

elucidating whether aberrant learning under uncertainty is also evident across the non-clinical 

continuum (Corlett et al., 2019; Sterzer et al., 2018). We found a significant, positive relationship 

between psychotic-like experiences and sensory weighting, indicating an overreliance on likelihood 

relative to prior information across the task. This relationship was replicated across two large, 

independent datasets, suggesting robust replicability of our findings. We also found that psychotic-

like experiences positively correlated with both subjective likelihood variance and subjective prior 

variance in the larger, validation dataset. This suggests that people with increasing psychotic-like 

experiences perceive the task as generally more unstable, but that the perceived instability in prior 

information is driving a greater reliance on likelihood information throughout the task. 

An overreliance on likelihood aligns with the bottom-up account of positive symptom 

formation in schizophrenia. Early predictive processing accounts suggest that heightened aberrant 

salience towards objectively uninformative events or stimuli (i.e., likelihood information) results in 

the misinterpretation of prediction errors as meaningful change (Adams et al., 2013; Fletcher & 

Frith, 2009; Sterzer et al., 2018). This misallocation of precision contributes to misleading belief 

updating and inferences about the environment, resulting in an altered internal model of the world. 

This is thought to be the foundation of faulty inference, leading to the formation of false concepts as 

seen in delusions and/or false precepts as seen in hallucinations. Dopaminergic dysfunction 

encompasses a biologically plausible formulation of this theoretical framework, whereby 

hyperactivity of phasic dopamine release contributes to aberrant processing of unexpected events 

or stimuli (Heinz & Schlagenhauf, 2010; Kapur, 2003). Interestingly, presynaptic hyperdopaminergic 

function has not only been found to be related to the severity of symptoms in people with 

schizophrenia, but also to the degree of schizotypy in healthy individuals (Howes et al., 2013; 

Woodward et al., 2011). Thus, alterations in the processing of predictions errors, closely aligning 
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with an enhanced dopaminergic tone, may contribute to confounding perceptual inferences as seen 

across the continuum of psychosis. These findings extend the aberrant salience theory of symptom 

formation into the non-clinical continuum of psychotic-like experiences. The role of dopamine in the 

precision weighting of uncertainty has been previously investigated with a similar coin task paradigm 

in patients with Parkinson’s disease, which is characterised by low dopaminergic tone (Vilares & 

Kording, 2017). Interestingly, researchers found that dopaminergic medication influenced the weight 

afforded to sensory information in patients, providing empirical evidence that increasing dopamine 

levels increases individuals’ reliance on likelihood relative to prior information in this population. 

Future research should verify this assumption across the continuum of psychosis, in order to 

investigate whether individual differences in sensory weighting correlates with dopaminergic 

sensitivity and psychotic-like experiences in healthy populations.  

Whilst our findings seem to align with a bottom-up account of aberrant sensory processing 

under uncertainty, we conflictingly found that psychotic-like experiences were associated with 

increased subjective uncertainty in both prior and likelihood information. Firstly, greater subjective 

prior variance suggests that the heightened reliance on likelihood information is driven by greater 

subjective uncertainty in the inferred prior (i.e., decreased precision in prior information). This aligns 

with a series of previous studies, demonstrating that a decreased tendency for percept stabilisation 

whilst viewing ambiguous stimuli was related to the degree of delusional convictions in people with 

schizophrenia (Schmack et al., 2015), as well as the propensity of delusional ideation in healthy 

individuals (Schmack et al., 2013). Thus, a common attenuation in predictive signalling during 

perceptual inference substantiates our finding that an overreliance on sensory observations is driven 

by decreased precision in prior expectations. Moreover, Weilnhammer and colleagues (2020) 

similarly found that the severity of perceptual anomalies and hallucinations in people with 

schizophrenia were associated with a shift of perceptual inference towards sensory information and 

away from prior expectations when deciphering perceptually ambiguous visual stimuli. In fact, 

deficits in sensory prediction have also been found to correlate with schizotypy and delusion-like 

thinking in non-clinical samples (Teufel et al., 2010), suggesting that decreased prior precision could 

be a stable, trait-like characteristic of individuals, rather than a mere consequence of deluded or 

hallucinatory states in schizophrenia. This not only provides support for the psychosis-continuum 

perspective in which frank psychosis is considered an extreme outcome of a continuously distributed 

phenotype (van Os & Reininghaus, 2016), but also provides insight into the neurocognitive basis of 

positive symptom formation in schizophrenia.  

Furthermore, although our finding of decreased prior precision can explain the shift in belief 

updating to favour sensory evidence, this interpretation is complicated by the finding of a similar 
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decrease in likelihood precision. Simultaneous aberrancies of heightened uncertainty in both 

likelihood and prior information may suggest that people with increasing psychotic-like experiences 

have general overestimation of uncertainty. In other words, they perceive greater instability or 

uncertainty in their inferred internal representation of the world (Katthagen et al., 2022; see Figure 

7). The misallocation of precision may be hierarchical, such that imprecision in higher order prior 

beliefs may lead to a lack of regularisation that renders the environment seemingly volatile or 

unpredictable (Sterzer et al., 2018). This would enhance the weight of lower-level prediction errors, 

resulting in an overreliance in sensory observations (Adams et al., 2013; Fletcher & Frith, 2009). In 

other words, heightened instability in higher order beliefs may be driving the updating of prediction 

errors, despite simultaneous instability in the representation of one’s sensory environment at lower 

hierarchical levels. Hence decreased precision in both prior and likelihood information could be 

explained through the processing of uncertainty at differ layers of the cortical hierarchy. Layer 

specific neuroimaging techniques would be required for empirical verification, providing a promising 

avenue for future research (Haarsma, Kok, et al., 2022). Interestingly, recent research found that 

high confidence false percepts (a measure of hallucinatory propensity) were related to stimulus-like 

activity in middle input layers of the visual cortex in healthy participants (Haarsma, Deveci, et al., 

2022). Task measures of hallucination propensity were also found to be associated with everyday 

hallucination severity, suggesting that hallucinatory-like perception may arise from spontaneous 

bottom-up activity in input layers of the visual cortex. This corroborates neural evidence for the 

bottom-up account of sensory processing in psychosis.  

Figure 7: Visual depiction of the precision weighting of prior and likelihood information found in 

people with greater psychotic-like experiences. A) Represents a balanced weighting of prior and 

likelihood information. B) Represents proposed explanation of findings, depicting a simultaneous 
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decrease in the precision afforded to prior and likelihood information, where the decrease in prior 

precision is driving a shift in the posterior towards likelihood information (i.e., overreliance on 

likelihood).  

 

Moreover, a wealth of previous literature corroborates our finding of aberrantly perceived 

task instability across the continuum of psychosis. This is often shown in probabilistic reversal 

learning paradigms, which demonstrate increased behavioural switching in dynamic or volatile 

environments as a predictor of subjectively heightened task or environmental instability (Cole et al., 

2020; Deserno et al., 2020). This has been found in people with schizophrenia (Deserno et al., 2020; 

Schlagenhauf et al., 2014), individuals at risk for psychosis (Cole et al., 2020), and more recently, was 

found to correlate with the degree of psychotic-like experiences in a neurotypical sample (Kreis et 

al., 2020). Similarly, when characterising belief updating on a trial-by-trial basis, Nassar and 

colleagues (2021) found that patients with schizophrenia show a generally reduced precision of 

beliefs and an inflexibility of belief updating. This finding allowed a simultaneous explanation of 

patients completely ignoring new information and persevering on previous responses (decreased 

likelihood precision), as well as the overly flexible behavioural adaptation to random noise 

(decreased prior precision; Katthagen et al., 2022). Thus, our findings directly align with this study, 

augmenting evidence that aberrant perception of task instability due to a decreased precision in 

both prior and likelihood information also extends along the continuum of psychosis into non-clinical 

populations.  

Furthermore, our study found little to no relationship between variability in sensory 

weighting and psychotic-like experiences from trial-to-trial and across blocks, suggesting that 

psychotic-like experiences were not necessarily related to aberrant learning or behavioural switching 

in the utilisation of likelihood to prior information in this task. This is contrary to what we might 

expect, given the observed association between increasing psychotic-like experiences and a general 

perception of heightened task instability. To investigate this further, specific manipulations of 

environmental volatility could provide ecological utility that the current study was somewhat lacking 

(Katthagen et al., 2022; Tulver et al., 2019). This is because certain links with psychopathology or 

individual differences may only emerge in an unstable environment (Cassidy et al., 2018). Thus, a 

more nuanced approach to investigating trial-by-trial variability in sensory weighting should 

incorporate higher-level of task instability (i.e., volatility), such as blocks where uncertainty in prior 

information changes more rapidly compared to blocks where this remains stable (Nassar et al., 

2021). Perhaps this level of environmental uncertainty is required to elucidate an association 

between aberrant switching in sensory weighting and psychotic-like experiences.  
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Interestingly, the co-occurrence of enhanced subjective uncertainty in likelihood and prior 

information was only observed in the larger, validation dataset, and not seen in the original 

discovery dataset. This exemplifies the benefit of conducting an independent replication, 

demonstrating that a sufficient sample size was critical in capturing the demonstrated results. As 

psychotic-like experiences are generally sparse in the general population (prevalence of 

approximately 7%; Linscott & van Os, 2013), it is unsurprising that to capture such small effect sizes, 

we require a larger sample. Additionally, whilst our findings support the notion that aberrant 

sensory predictions extend into the non-clinical continuum of psychosis, paradigms such as the coin 

task that orthogonally manipulate the uncertainty of likelihood and prior information have not yet 

been empirically tested in clinical samples. Thus, a limit of the current study is that, whilst it is 

advantageous to investigate continuously distributed phenomenological phenomena in healthy 

populations, it does not consider distinct neurocognitive discontinuities that may exist between 

subclinical and clinical populations (Vanes et al., 2019). A cross-sectional design sampling from 

patients with schizophrenia, first episode psychosis, and clinical high risk for psychosis could 

potentially differentiate the precision afforded to uncertainty across disease trajectory. Therefore, 

empirical verification is required to explicitly test the relative weighting of likelihood and prior 

information with the emergence and formation of psychosis across the entire continuum of 

psychosis. 

Additionally, competing hypotheses have provided contradictory perspectives on the 

emergence of hallucinations compared to delusions in schizophrenia (for review, see Sterzer et al., 

2018). Whilst delusion formation is often characterised as an overreliance on sensory observations 

leading to the formation of false concepts (Ashinoff et al., 2022), hallucination formation has 

contrastingly been characterised as abnormally strong priors, leading to the formation of false 

percepts (Corlett et al., 2019). Heterogeneity in individuals’ proneness to hallucination-like percepts 

compared to delusional-like ideation was not considered in our neurotypical sample. As this may 

influence one’s relative reliance on priors to likelihoods across the task, this could provide an 

alternative explanation for the simultaneous decrease in prior and likelihood precision found in our 

study. In fact, one study showed that the use of prior knowledge varies with the composition of 

psychotic-like phenomena (in terms of aberrant percepts vs aberrant beliefs) in healthy individuals 

(Davies et al., 2018). Thus, future research should employ separate measures to compare 

hallucinatory and delusional-like experiences, and their respective association with the precision 

weighting of likelihood to prior information, alongside a general measure of psychotic-like 

experiences.  
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In conclusion, our findings provide evidence that psychotic-like experiences are associated 

with an overweighting of sensory evidence relative to prior expectations, which seem to be driven 

by decreased precision in prior information. Our findings also suggest that psychotic-like experiences 

are associated with greater perceived task instability, resulting in aberrant precision of encoding 

uncertainty in both prior and likelihood information. This provides an interesting platform for 

understanding and quantifying aberrancies in perceptual processing under uncertainty, and how this 

relates to the non-clinical continuum of psychosis.    
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