

A Taxonomy of Seizure Spread Patterns, Speed of Spread, and Associations With Structural Connectivity

Andrew Y. Revell^{*,1,2}, Akash R. Pattnaik^{2,3}, Erin Conrad^{2,4}, Nishant Sinha^{2,3}, Brittany H. Scheid^{2,3}, Alfredo Lucas^{2,3}, John M. Bernabei^{2,3}, John Beckerle⁵, Joel M. Stein^{2,4}, Sandhitsu R. Das^{2,7}, Brian Litt^{2,3,4}, and Kathryn A. Davis^{1,2,4}

¹Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA

²Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104 USA

³Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104 USA

⁴Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA

⁵Department of Neuroscience, The Warren Alpert Medical School, Brown University, Providence, RI 02906 USA

⁶Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA

*Corresponding author: andrew.revell@pennmedicine.upenn.edu

1 Although seizure detection algorithms are widely used to localize seizure onset on intracranial EEG in epilepsy patients, relatively few studies focus on seizure activity beyond the seizure onset zone to direct treatment of surgical patients with epilepsy. To address this gap, we develop and compare fully automated deep learning algorithms to detect seizure activity on single channels, effectively quantifying spread when deployed across multiple channels. Across 275 seizures in 71 patients, we discover that the extent of seizure spread across the brain and the timing of seizure spread between temporal lobe regions is associated with both surgical outcomes and the brain's structural connectivity between temporal lobes. Finally, we uncover a hierarchical structure of seizure spread patterns highlighting the relationship between clusters of seizures. Collectively, these findings underscore the broad utility in quantifying seizure activity past seizure onset to identify novel mechanisms of seizure evolution and its relationship to potential seizure freedom.

Seizure Spread | Hierarchical Organization | Epilepsy | Structural Connectivity

1 Introduction

2 Seizure onset, timing, extent of activity, and other patterns of seizure activity captured during a seizure are used in the clinical interpretation of EEG to plan treatment for refractory epilepsy ¹⁻⁵. Surgical removal of epileptogenic tissue through resection or ablation may be appropriate given sufficient clinical evidence that the removal of localized brain tissue can cure a patient of epilepsy or improve their quality of life ^{6,7}. In other cases, patterns captured on EEG may instead indicate other treatment modalities, such as implantable neuromodulatory devices ^{8,9}, or other palliative options ^{10,11}.

3 Correct identification of the seizure onset zone and its surgical removal offers the best chance for complete seizure freedom for patients with refractory epilepsy ¹²⁻¹⁷. Accurate localization of the seizure onset has thus been a primary focus in epilepsy research to improve outcomes. Yet, overall seizure freedom rates after surgery have remained relatively stagnant over the last 30-40 years and vary greatly across centers and studies quantifying outcomes ⁶.

4 To improve outcomes of refractory epilepsy patients, the focus in epilepsy research perhaps should also include efforts in identifying patterns of seizure activity beyond seizure onset — a seizure's timing, speed, extent of activity, and spread may be just as important in identifying distinct pathophysiological mechanisms of seizure evolution and the best course of treatment for a patient with a specific type (or types) of seizure spread patterns. However, we currently lack fully automated and validated measures to quantify the spread of seizure activity.

5 Here, we develop and compare deep learning algorithms with simple features to quantify seizure spread in 71 patients across 275 seizures. We use the best performing algorithm to answer three main questions: (1) Is the extent and timing of spread associated with patient outcomes? (2) Is the timing of seizure spread related to the structural connectivity of the brain? (3) What are the rules governing seizure spread — is there a hierarchical organization separating the patterns of seizure spread into distinct clusters while grouping related seizures across patients together?

21 Results

22 **A. Deep Learning Algorithms are Effective in Differentiating Ictal and Interictal States.** To investigate the hierarchical organization of seizure spread patterns across seizures and patients, we need robust measures of seizure spread. Currently, a limited number of studies deploy automated algorithms to quantify seizure spread and usually rely on single features, such as line length ¹⁸ or power ²; however, we did not know if such algorithms reliably measure seizure spread. Many studies that do quantify spread are performed with a small number of patients or require manual annotations by an epileptologist ^{19,20}. We compare the performance of different large-scale, and completely automated seizure detection algorithms to capture spread. We use both simple EEG features (absolute slope, line length, and broadband power) and three deep learning algorithms with different neural network architectures designed for time-series data.

23 We chose the single EEG features because they have been shown to correspond with clinical annotations for seizure onset ^{17,21-23} and they are a relatively small number of simple features to compare and preserve power in our study. The deep learning algorithms were chosen because they are effective predictors of time series data ²⁴. The deep learning algorithms

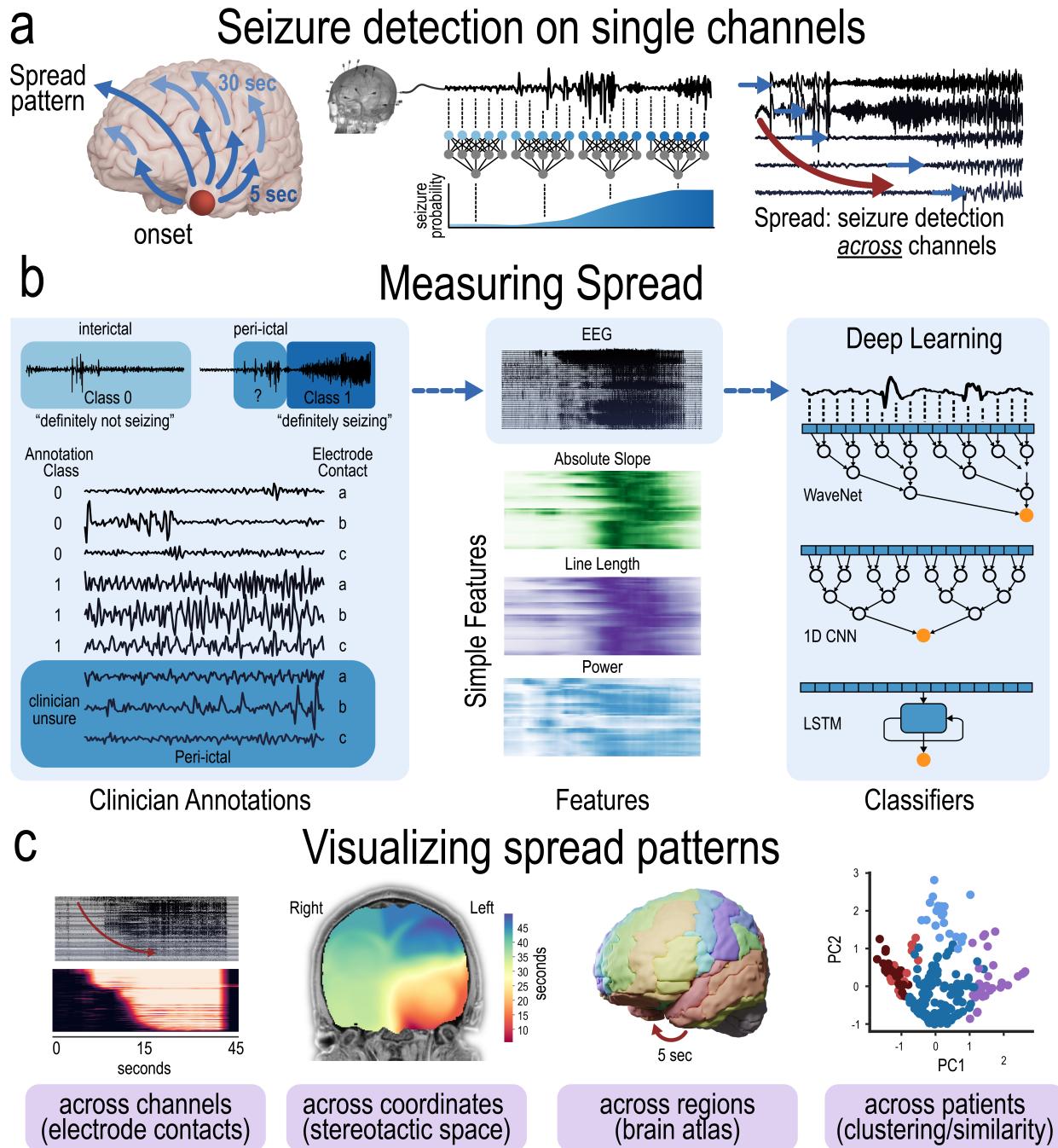


Fig. 1. Seizure detection on single channels. | **a**, Seizure spread is quantified by measuring seizure activity across multiple channels. A pattern of spread is characterized by the extent, timing, speed, and locations of seizure activity. **b**, Schematic showing how seizure spread can be measured. Machine learning algorithms can be deployed to differentiate two classes: definitely seizing (ictal) states, and definitely not seizing (interictal) states. Once excellent performance has been achieved to differentiate states, fully automated algorithms can be deployed to determine state transitions on peri-ictal data. Simple features such as absolute slope, line length, and power — all associated with seizure onset — can be used. EEG data can also be used in the case of deep learning algorithms such as (1) WaveNet, a one-dimensional conventional neural network (1D CNN) with a causal and dialated neural network architecture, (2) a 1D CNN, denoted here as a default CNN as opposed to WaveNet with a tailored architecture, or (3) a long-short-term-memory (LSTM) neural network. **c**, Seizure spread can be visualized in four different ways, all aided to enhance our understanding of seizure spread patterns.

33 were (1) WaveNet²⁵, a one-dimensional conventional neural network (1D CNN) with a causal and dilated neural network
 34 architecture, (2) a 1D CNN, denoted here as a default CNN as opposed to WaveNet with a specific neural network architecture,
 35 and (3) a long-short-term-memory (LSTM) neural network originally applied for sequence modeling²⁶.

36 To measure spread, we first trained the deep learning algorithms to differentiate between two states, ictal and interictal
 37 states, so that we could eventually quantify *when* the state transition happens across channels (Fig 2a). The area under the
 38 curve (AUC) was calculated for differentiating the two states with a leave-one-patient-out ($n = 13$ patients) cross validation
 39 across varying learning rates (Fig 2b). Similarly, a leave-one-out cross validation was performed on the single features for
 40 differentiating ictal and interictal states (Fig 2c). The deep learning algorithms at a default learning rate of 0.001 outperform
 41 the AUC of the single features ($p < 0.001$, Wilcoxon Signed-rank test, two sided, FDR correction for 15 tests pairwise across
 42 the 6 algorithms), except the comparison between LSTM and power ($p > 0.05$).

43 Once the algorithms are developed to differentiate ictal and interictal states for each channel, they can be deployed on
 44 peri-ictal data to measure the time that the state transition occurs. The timing of state transitions across multiple channels
 45 effectively measures the spread of seizure activity across the brain (Fig 2d). In the case of the deep learning algorithms, the
 46 transition from interictal to ictal states occurs when the probability of an ictal state surpasses a set threshold. In the case
 47 of single features, the transition from interictal to ictal states occurs when each respective normalized feature (rather than
 48 probabilities) surpasses a set threshold. The deep learning algorithms have larger contrasts between inter-ictal and ictal states

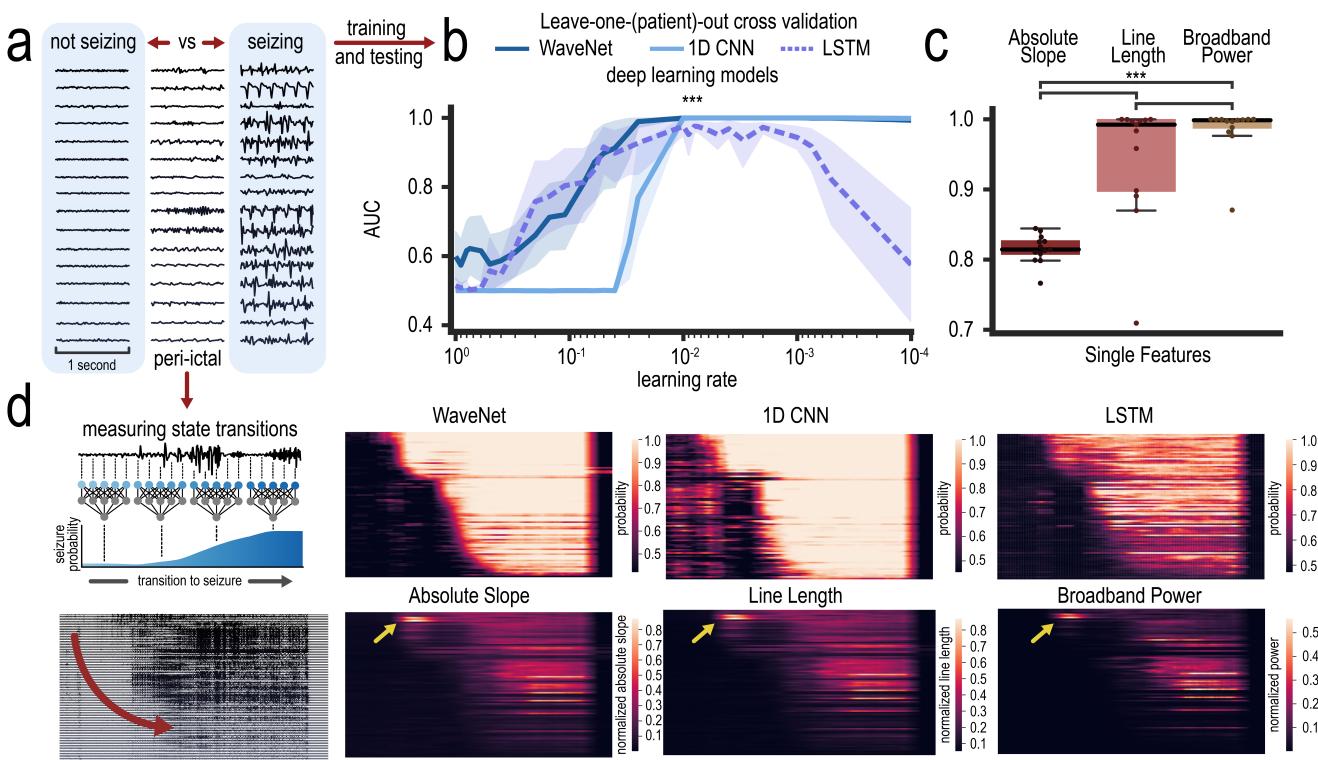


Fig. 2. Training and Testing of Binary Seizure States to Measure State Transitions. | **a**, Examples of one-second windows of non-seizing (interictal > 6 hours before seizure) and seizing states of the same channel in each row at the same gain. These two states were used for training and testing of deep learning algorithms to be deployed on peri-ictal data nearing the transition to a seizure state. Peri-ictal data show windows 1-20 seconds before seizure states of the same channel. **b**, Leave-one-out ($n = 13$ patients) cross validation and AUC as a function of learning rate is shown for the three deep learning algorithms. At a default learning rate of 0.001, the AUC was compared with each of the single feature AUC (**p < 0.001, Wilcoxon Signed-rank test, two sided, FDR correction for 15 tests pairwise across the 6 algorithms). Shaded areas represent 95% CIs. **c**, Leave-one-out ($n = 13$ patients) cross validation and AUC for each of the three single feature algorithms in detecting seizing vs non seizing binary states. (**p < 0.001 (Wilcoxon Signed-rank test, two sided, FDR correction for 15 tests pairwise across the 6 algorithms). **d**, Schematic showing that these algorithms were deployed on Peri-ictal data to measure state transitions. Heatmap and colorers indicate seizure probabilities (for the deep learning algorithm) or normalized feature values (for the single features) to measure seizure spread across time (x-axis) and across channels (y-axis, order is the same across heat maps) of the example seizure shown at the bottom left. Yellow arrows point to seizure onset channels the single feature pick up, however, the pattern of activity as shown in the heatmap is not similar between the algorithms.

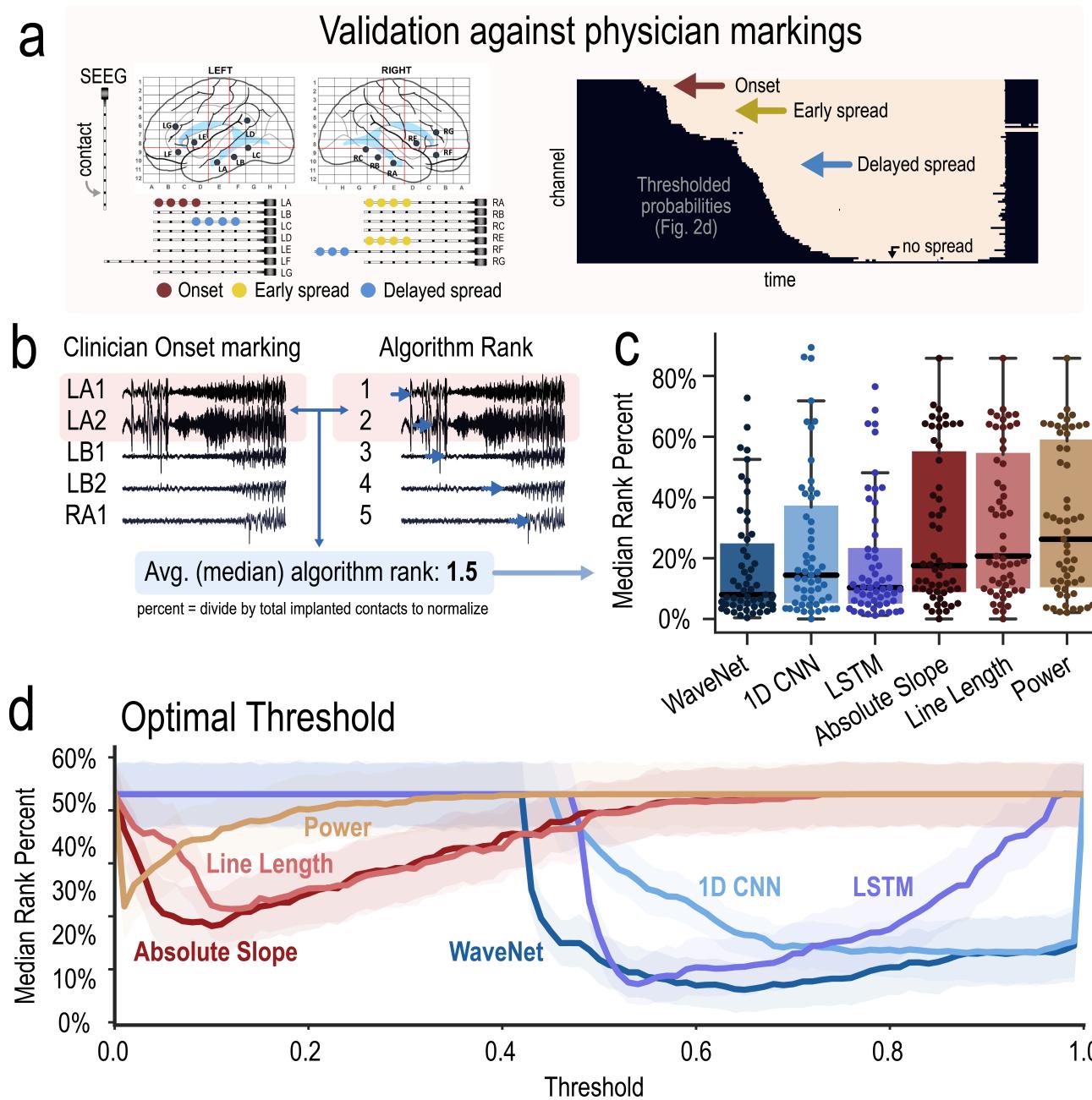


Fig. 3. Validation of Seizure Spread Detection Algorithms. | **a**, A patient example with physician markings is shown with a corresponding thresholded activation map from the WaveNet algorithm. **b**, This schematic shows how the agreement between physician markings of seizure onset contacts (red) and each algorithm marking is calculated. The algorithm ranking of the seizure onset contacts were averaged (median) and divided by the total number of implanted contacts to normalize for differences in implantations. Note, this calculation penalizes ranking scores for physicians who marked large number of contacts. **c**, Box plots showing the median rank percent for all patients with seizure onset contact annotations ($n = 55$). All six algorithms perform better than chance (one-sample Wilcoxon signed rank test, two sided, FDR correction for 6 tests, null hypothesis is 50% median rank – if a seizure onset contact is randomly assigned a rank, it would be 50% of all implanted contacts). WaveNet, 1D CNN, LSTM all perform better than the single feature algorithms ($P < 0.01$, Wilcoxon signed rank test, two sided, FDR correction for 15 tests pairwise across the 6 algorithms), but none of the deep learning algorithms outperform each other. **d**, The optimal threshold for each algorithm in agreement with physician markings of seizure onset. The optimal thresholds were chosen for the analysis in panel c.

49 than the single features (Fig 2d).

50 **B. Deep Learning Algorithms Outperform Single Features in Detecting Seizure Onset Contacts.** To validate the algorithms
51 measuring seizure spread, we first examine their performances on detecting the initial spread points – the seizure onset contacts
52 (Fig 3a).

53 The agreement between physician markings and each algorithm marking is calculated. For example, a clinician may mark
54 LA1 and LA2 as the seizure onset contacts (Fig 3b). The seizure spread algorithm also independently determines the rank
55 order of seizure activity for all contacts. The rank order from the algorithm is averaged (by computing the median) for just
56 the clinician onset contacts. In other words, if the algorithm determines that contact LA1 started to seize first and contact
57 LA2 started to seize second, the median rank of these contacts is 1.5. This median ranking is divided by the total number of
58 implanted contacts to normalize for differences in number of contacts across patients.

59 All six algorithms perform better than chance in detecting seizure onset contacts (Fig 3c), $p < 0.05$, one-sample Wilcoxon
60 signed rank test, two sided, FDR correction for 6 tests, null hypothesis is 50% median rank – if a seizure onset contact is
61 randomly assigned a rank, it would be 50% of all implanted contacts).

62 All three deep learning algorithms perform better than the single feature algorithms in differentiating states ($p < 0.01$,
63 Wilcoxon signed rank test, two sided, FDR correction for 15 tests pairwise across the 6 algorithms), but none of the deep
64 learning algorithms outperform each other.

65 We also calculated the performance of each algorithm at varying thresholds (Fig 3d). The optimal threshold for each deep
66 learning algorithm is a probability of 0.69 (WaveNet), 0.60 (1D CNN), 0.94 (LSTM), 0.26 (absolute slope), 0.11 (line length),
67 and 0.02 (broadband power). The comparison in Fig 3c was made at each algorithm's optimal threshold – the deep learning
68 algorithms capture relevant seizure onset contacts across more patients and across wider ranges of thresholds than the single
69 features (i.e. the deep learning algorithms may more likely capture relevant seizure spread patterns without having to tune
70 specific threshold parameters).

71 **C. The Extent of Seizure Spread – Poor Outcome Patients Have More Distributed Regions Involved in Seizures.** The extent of
72 seizure spread over its evolution can be quantified in two ways: (i) by the number of contacts activated over time and (ii) by
73 the number of brain regions activated over time (Fig 4).

74 The percent of contacts and regions activated over time in an example patient with 14 seizures is shown in (Fig 4a) using
75 the WaveNet algorithm at its optimal threshold. Other algorithms are shown in (Fig S2). Darker lines represent seizures
76 captured earlier during their hospital stay. Earlier seizures have more rapid activation (larger slopes) of contacts and regions.
77 The velocity of activation has a noticeable shift with smaller slopes and longer seizures at approximately the 6-8th seizure.
78 Here, we see evidence that the evolution of seizures across time and across seizures themselves can change – the quality
79 of the seizures within a patient can change during their hospital course and may be due to a variety of factors (for example,
80 medication changes). In other words, the changes in seizure patterns within a patient can be captured with algorithms designed
81 to quantify seizure spread (are their seizures stereotypical? Is their pattern changing? Should we use this seizure to localize
82 seizure onset for surgery given its stereotypical nature?).

83 We also hypothesized that the pattern of seizure spread between good and poor outcome patients is different. We reasoned
84 that poor outcome patients may have more distributed (extensive) regions involved during the seizure ²⁷. Before testing this
85 hypothesis, however, we reasoned the extent of seizure spread can be biased by a different number of contacts and regions
86 targeted for implantation between the two groups (Fig 4b). We found that poor outcome patients ($n = 30$) typically had higher
87 number of *contacts* implanted than good outcome patients ($n = 28$, * $p < 0.01$, Mann Whitney U test, null hypothesis: the
88 number of implanted contacts is the same between good and poor outcome patients). In contrast, we found that poor outcome
89 patients ($n = 30$) did not have significantly higher number of brain *regions* sampled than good outcome patients ($n = 28$, x
90 indicates trending $p < 0.10$, Mann Whitney U test, null hypotheses: the number of sampled regions is the same between good
91 and poor outcome patients).

92 Despite having more contacts and a similar number of sampled regions, poor outcome patients demonstrated a higher
93 *percentage* of contacts and regions active over time (Fig 4c). In other words, poor outcome patients have more distributed
94 (extensive) regions involved during their seizures despite a bias that would be expected to decrease the percentage of contacts
95 or regions activated over time (poor outcome patients have more contacts implanted, and if the extent of seizure spread was
96 equal between good and poor outcome patients, then the *percentage* of contacts activated would be less).

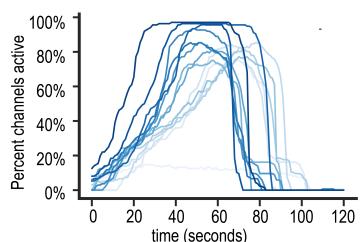
97 We also calculated effect size differences across time between good and poor outcome patients (Fig 4d). Effect sizes are
98 largest between 20 – 50 seconds into a seizure indicating that the prediction of outcome using the extent of seizure activity
99 may be best in this time window. However, effect sizes are low-to-moderate (< 0.8) and the percentages of active contacts or
100 regions may not be sufficient metrics for clinical use. These results provide evidence that the pattern of spread may be different
101 between good and poor outcome epilepsy patients. The observed pattern of spread may help direct treatment and indicate if
102 surgical intervention may result in seizure freedom at two years.

103 **D. The Speed of Seizure Spread – Poor Outcome Patients Have Quicker Spread Between Temporal Lobe Regions.** Fig 4e
104 shows contingency tables comparing the speed of spread between temporal lobes in good and poor outcome surgical epilepsy
105 patients. The activation time of all contacts in the temporal lobe structures are averaged together for each of the left and
106 right hemispheres. The difference between these average activation times between the left and right lobes are recorded. Only

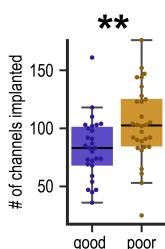
How extensive is seizure spread?

a Example patient

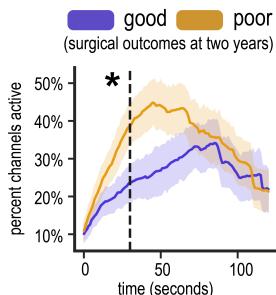
(i) By number of channels implanted



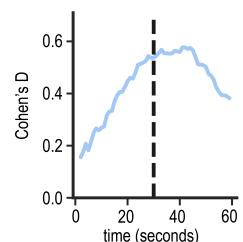
b Number implanted



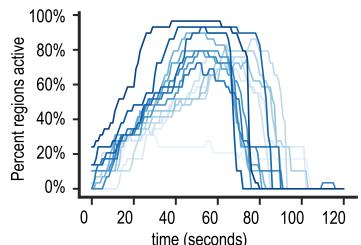
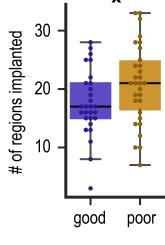
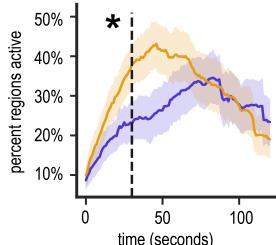
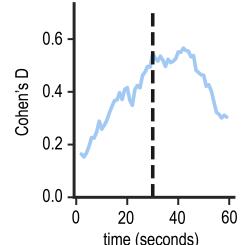
c Percent active over time



d Effect sizes over time



(ii) By number of regions implanted



How fast is seizure spread?

e Spread to contralateral temporal lobe (only patients with bilateral sampling included and outcome scores at 2 years)

5 seconds		10 seconds		15 seconds		20 seconds		30 seconds		60 seconds	
poor	good	poor	good	poor	good	poor	good	poor	good	poor	
< 5s	8	1	< 10s	9	2	< 15s	10	2	< 20s	12	4
> 5s	11	16	> 10s	10	15	> 15s	9	15	> 20s	7	13
Sensitivity: 0.42		Sensitivity: 0.47		Sensitivity: 0.52		Sensitivity: 0.63		Sensitivity: 0.63		Sensitivity: 0.63	
Specificity: 0.94		Specificity: 0.88		Specificity: 0.88		Specificity: 0.76		Specificity: 0.65		Specificity: 0.65	
PPV: 0.89		PPV: 0.82		PPV: 0.83		PPV: 0.75		PPV: 0.66		PPV: 0.57	
NPV: 0.59		NPV: 0.60		NPV: 0.63		NPV: 0.65		NPV: 0.61		NPV: 0.53	
$\chi^2: 6.27^*$		$\chi^2: 5.35^*$		$\chi^2: 6.74^*$		$\chi^2: 5.77^*$		$\chi^2: 2.79$		$\chi^2: 0.39$	
V: 0.41		V: 0.39		V: 0.52		V: 0.40		V: 0.28		V: 0.10	

Fig. 4. Extent and Speed of Seizure Spread. | The extent of seizure spread over time is quantified by (i) the number of channels and (ii) the number of regions active. **a** The percentage of channels and regions active over time for a patient with 14 seizures is shown. Darker lines indicate seizures captured earlier during their hospital stay. **b**, Extent of seizure spread can be biased by the number of contacts or regions implanted. Poor outcome patients ($n = 30$) have higher number of contacts implanted than good outcome patients ($n = 28$, ** $p < 0.01$ Mann Whitney U test, two sided, null hypothesis: number of contacts implanted is equal between outcomes). However, poor outcome patients ($n = 30$) did not have significantly higher number of regions sampled than good outcome patients ($n = 28$, x denotes trending $p < 0.10$, Mann Whitney U test, two-sided, null hypothesis: number of sampled regions is equal between outcomes). **c**, Even with larger sampling (more contacts), poor outcome patients ($n = 30$) have higher percentage of contacts active than good outcome patients ($n = 28$) at the 30 second mark (dashed line, * $p < 0.05$, Mann Whitney U test, two-sided, null hypotheses: percentage of active contacts at 30 seconds is equal between outcomes). Similarly, poor outcome patients have higher percentages of sampled regions active than good outcome patients ($n = 28$) at 30 seconds ($p < 0.05$, Mann Whitney U test, two-sided, null hypothesis: percentage of active implanted regions at 30 seconds is equal between good and poor outcome patients). Shaded areas represents 68% CIs. **d**, Effect sizes of the differences between outcomes is shown over time. Dashed line is at 30 seconds. **e**, Contingency tables comparing the speed of spread between temporal lobes in good and poor outcomes. Sensitivity, specificity, positive predictive values (PPV), negative predictive values (NPV), chi-square test, and Cramer's V are reported for each cutoff. * $p < 0.05$, FDR correction for 6 tests for the 6 cutoffs (null hypothesis: no association between timing of spread at a specific cutoff and outcome). Red highlights indicate cutoffs with significant associations or high specificity.

107 patients with bilateral temporal lobe sampling and patients with outcome scores at 2 years are used. Cutoff spread times of
 108 5, 10, 15, 20, 30, and 60 seconds are used to differentiate good and poor outcome patients. Sensitivity, specificity, positive
 109 predictive values (PPV), negative predictive values (NPV), chi-square test, and Cramer's V are reported for each cutoff.

110 We show that there is an association between timing of spread and surgical outcome if seizures spread between temporal
 111 lobes within 5, 10, 15, 20 seconds ($p < 0.05$, FDR correction for 6 tests for the 6 cutoffs, chi-squared test, null hypothesis:
 112 there is no association between the timing of spread at a specific cutoff and surgical outcome). Spread within 5 seconds has the
 113 highest specificity (94%), thus patients with seizures that spread quickly have a high likelihood of a poor outcome. Speed
 114 of spread at any time does not provide good sensitivity (40-60%, i.e. many patients with slow or no spread still have poor
 115 outcomes).

116 Cramer's V are reported to show that effect sizes are low to moderate (< 0.6), and speed of spread may not be a singularly
 117 sufficient metric for clinical use, however, these results provide evidence that the pattern of spread may be different between
 118 good and poor outcome epilepsy patients.

119 **E. Structural Connectivity Between Temporal Lobes is Associated with the Speed of Spread Between Regions.** We hypothesized
 120 that the speed of spread between temporal lobes is associated with the structural connectivity between these lobes²⁰ – greater
 121 connectivity between temporal lobes would entail a quicker spread. Of the 71 patients, 22 acquired High Angular Resolution
 122 Diffusion Imaging (HARDI). We separated these patients with bilateral temporal lobe sampling ($n = 15$) and unilateral

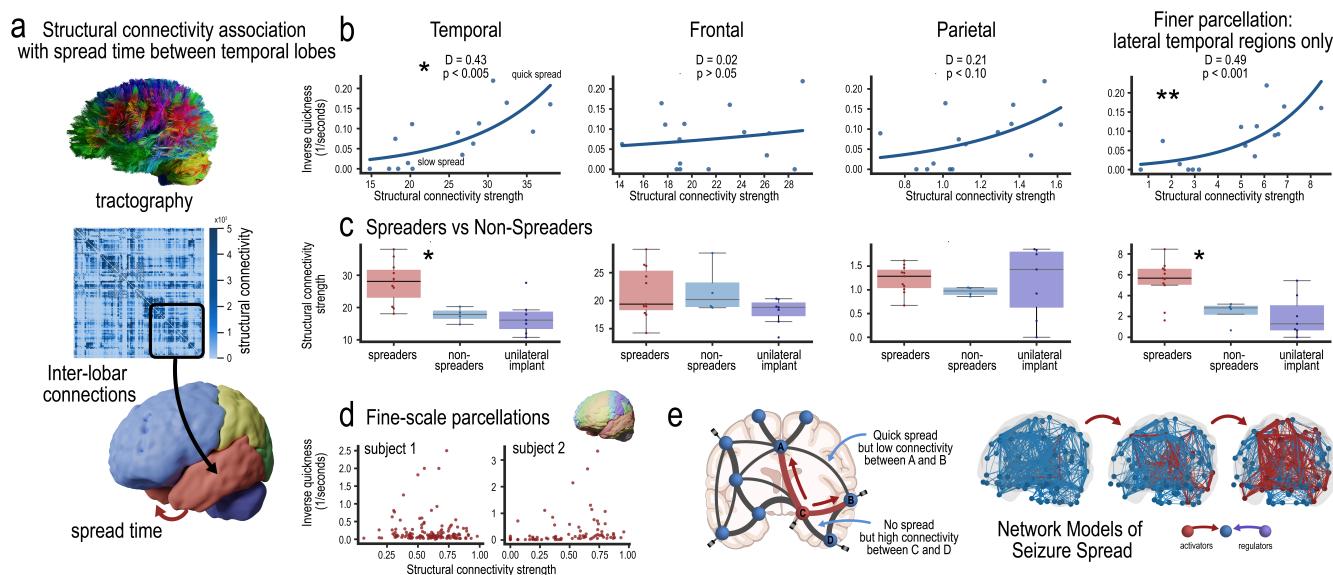


Fig. 5. Structural Connectivity Between Temporal Lobes is Associated with the Speed of Spread Between Regions. | **a**, Schematic showing how structural connectivity was measured in a subset of patients ($n = 22$) with High Angular Resolution Diffusion Imaging (HARDI). The heatmap represents the structural connectivity matrix of an example patient and color bar represents the strength of structural connectivity between all regions. The streamline counts between the regions of left and right lobes of each hemisphere was summed (i.e. the total streamline counts was computed between all the regions in the left and right temporal lobes). **b**, Scatter plots and a generalized linear model showing the relationship between the strength of connectivity between lobes and the timing of seizure spread between temporal lobes ($n = 15$ patients with bilateral sampling). X-axis indicates the total normalized streamline counts between the respective left and right lobes of each patient. Y-axis indicates inverse spread times (1/seconds). Lower numbers indicates slower spread and higher numbers indicates quicker spread. An inverse spread time of zero indicates no spread was observed between the temporal lobes of the bilaterally sampled patient. (* $p < 0.005$, ** $P < 0.001$, FDR correction with 4 tests, null hypothesis: no association between structural connectivity and spread time). **c**, Boxplots showing the structural connectivity strengths of patients ($n = 22$) divided into three cohorts: bilaterally sampled patients with any spread between temporal lobe structures (spreaders), bilaterally sampled patients with no spread (non-spreaders), and patients who had only unilateral sampling (unilateral implant, this cohort was excluded in panel b). Mann Whitney U test was performed between the spreaders ($n = 11$) and non-spreaders groups ($n = 4$). * $p < 0.01$ (FDR correction with 4 tests, null hypothesis: no differences in structural connectivity between spreaders and non-spreaders). Patients with unilateral implantation were plotted ad hoc and initially excluded, but not tested. **d**, An analysis of structural connectivity using a finer parcellation scale (i.e. regional versus lobar connections) of all pairwise regions. No association was found at the patient level (scatter plot of two patients) shown. **e**, Schematic showing why spread time between all pairwise regions at a finer parcellation scale may be better predicted with network models. Many regions with no spread can have high connectivity strengths. Other regions can have quick spread but low connectivity strengths.

123 implantation ($n = 7$). We totaled the strength of structural connectivity between all temporal lobe regions of the left and right
124 hemisphere (Fig 5a).

125 We found a relationship in the strength of connectivity between temporal lobes and the timing of seizure spread between
126 temporal lobes using a generalized linear model (Fig 5b, $p < 0.005$, $n = 15$ patients, percent deviance explained, $D^2 = 0.43$,
127 FDR corrected for 4 tests, null hypothesis: there is no relationship between the strength of structural connectivity and the
128 speed of spread). D^2 indicates the percentage of deviance explained, a generalization of the coefficient of determination R^2 .
129 Here, higher connectivity strength between temporal lobes is associated with quicker spread between the temporal lobes.

130 We performed a negative control by computing the relationship in the spread time between temporal lobes and the strength
131 of connectivity between other lobes. In other words, we would expect that spread time between temporal lobes is associated
132 with the strength of structural connectivity between the temporal lobes, and spread time between temporal lobes is not
133 determined by the strength of structural connectivity between other lobes (e.g. left frontal lobe to right frontal lobe). We found
134 no relationship between the strength of connectivity between other lobes – frontal and parietal – and the timing of seizure
135 spread between temporal lobes ($p > 0.05$, $n = 15$ patients, percent deviance explained, $D^2 = 0.02$ and 0.21 for the frontal
136 and parietal lobes respectively, FDR corrected for 4 tests, null hypothesis: there is no relationship between the strength of
137 structural connectivity and the speed of spread).

138 Next we wanted to look at the strength of connectivity between smaller parcellations to explain spread time between
139 temporal lobes. We opted to quantify the strength of structural connectivity between the lateral temporal regions (superior,
140 middle, and inferior temporal gyri) because these regions had bilateral sampling across the 15 patients (as opposed to the
141 hippocampus where many patients did not have bilaterally symmetric surgical placement). Additionally, smaller temporal lobe
142 parcellations with bilateral sampling across the 15 patients preserve power. We found a relationship between the strength of
143 connectivity between the lateral temporal lobe gyri and the timing of seizure spread between temporal lobes ($p < 0.001$, $n =$
144 15 patients, percent deviance explained, $D^2 = 0.49$, FDR corrected for 4 tests, null hypothesis: there is no relationship between
145 the strength of structural connectivity and the speed of spread). Thus, the relationship in the strength of connectivity and the
146 timing of seizure spread between temporal lobes still holds at smaller parcellation sizes.

147 **F. Patients with Spread Between Temporal Lobes Have Higher Structural Connectivity than Patients With No Spread.** We
148 divided the 22 patients with structural connectivity into three cohorts: patients with any spread between the bilaterally
149 sampled temporal lobes ($n = 11$), patients with no spread ($n = 4$), and patients with unilateral sampling who were excluded
150 from the previous section's analysis ($n = 7$). Patients who had unilateral implantation already had sufficient clinical suspicion
151 that seizure semiology was unilateral and may not have spread to the contralateral hemisphere – they can be considered similar
152 to the cohort with no spread.

153 We tested the hypothesis that patients with no spread between temporal lobes have lower structural connectivity between
154 temporal lobes than patients with spread (Fig 5c, left box plot, Mann Whitney U test, $p < 0.01$ with FDR correction for 4
155 tests. Null hypothesis: no differences in structural connectivity between spreaders and non-spreaders). Similar to the previous
156 section's analysis, we found no difference in the structural connectivity between the frontal and parietal lobes in spreaders vs.
157 non-spreader ($p > 0.05$, middle two box plots), and found a difference at a smaller parcellation scale by only considering the
158 structural connectivity between the lateral temporal gyri ($p < 0.01$, right box plot). Patients with unilateral implantation were
159 plotted for comparison and show similar trends in structural connectivity to patients with no spread.

160 **G. Structural Connectivity At Smaller Scales Cannot Predict Spread Time Between All Regions.** Previous analyses focused
161 on spread time between temporal lobes because its association with patient outcomes. We hypothesize that spread time
162 between all pairwise regions may be predicted by the strength of structural connectivity between the pairwise regions. We
163 found evidence that this may not be the case, and spread time instead may be associated with structural connectivity only at
164 the lobar level (e.g. between temporal lobes), only between specific small-scale temporal lobe regions (e.g. Fig 5b and Fig 5c
165 right most graphs), or only between unimodal association cortical areas.

166 We performed an analysis of structural connectivity between all pairwise regions using a finer parcellation scale (i.e. regional
167 versus lobar connections). No association was found at the patient level (Fig 5d, scatter plot of two patients shown). We
168 hypothesize that at smaller parcellation scales and across all pairwise regions, time of activation between pairwise regions
169 cannot be predicted by the strength of connectivity between these regions because spread may be better predicted by network
170 models. For example, Fig 5e shows that many regions with no spread can have high structural connectivity. Other regions
171 can have quick spread but low connectivity strengths because spread may come from a third node activating both regions.
172 Spread time between meso-scale regions may be better predicted by the interaction between seizure generating regions and
173 regulatory/inhibitory regions from models that incorporate these interactions such as diffusion models, source sink models²⁸,
174 push pull network models²⁹, Epileptor³⁰, and others.

175 **H. Clusters of Seizure Spread Patterns.** We performed hierarchical clustering of 275 seizures across 71 patients (Fig 6). For
176 each seizure, the pattern of seizure spread is quantified by recording the time, as a percent of seizure length, each brain region
177 becomes active. A scatter plot of the first two principle components of seizure spread pattern is shown (Fig 6a), and each point
178 represents a single seizure colored by cluster from the hierarchical clustering algorithm using "complete" linkage, also known as
179 the Farthest Point Algorithm or Voorhees Algorithm³¹.

180 Four additional scatter plots show different attributes of the seizure clusters in **Fig 6b**. Five example patients and their
 181 seizures are highlighted. Subjects 2, 3, and 4 have seizures predominantly in one cluster, but their seizures span multiple
 182 clusters. We found patients that have seizures spanning multiple clusters usually switch between cluster 1 (focal cluster)
 183 and other clusters rather than switch between the other clusters (e.g. switch between clusters 2 and 3). Seizures are also
 184 highlighted by patients who have good or poor outcome scores at two years. Cluster 1 predominately overlaps with good
 185 outcomes. Seizures are highlighted by laterality of clinically annotated seizure onset with the principle component 1 (PC1) axis
 186 separating left and right (PC1 may separate left vs right and PC2 may separate focality or extent of spread). Finally, seizures
 187 are highlighted by the length of each seizure, with seizures < 30 seconds predominantly falling in cluster 1.

188 We propose a naming of each cluster based on the the timing of activity of each region averaged across the seizures in each

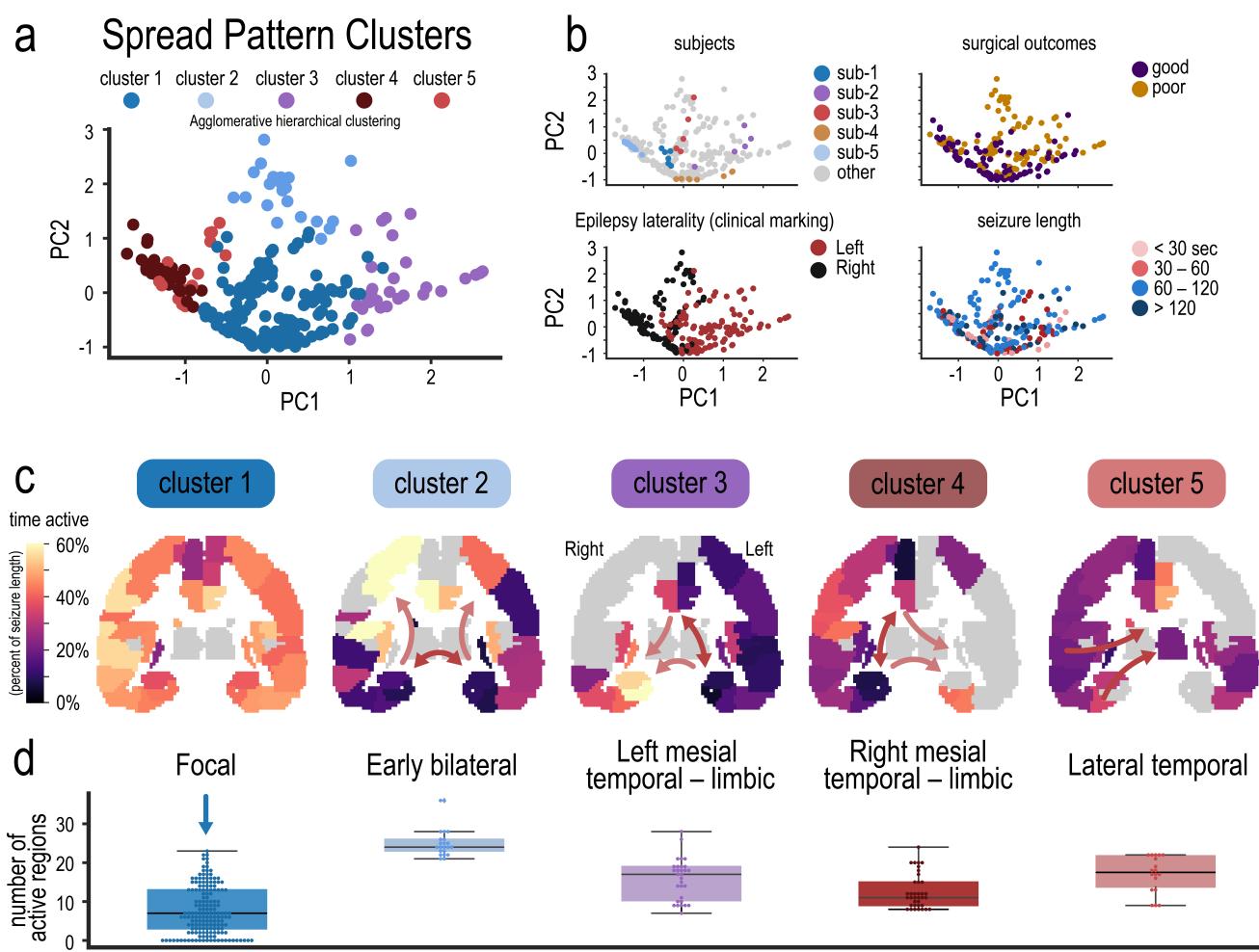


Fig. 6. Clusters of seizure spread patterns. | **a**, Hierarchical clustering of 275 seizures was performed on the pattern (location and timing) of seizure activity across 71 patients. Scatter plot of the first two principle components of seizure spread pattern is shown, and each point represents a single seizure colored by cluster. **b**, Four scatter plots are shown highlighting different attributes of the patients. Top left: five subjects with multiple seizures are highlighted. Subjects 2,3, and 4 have seizures predominantly in one cluster, but have seizures spanning multiple clusters. Top right: Seizures are highlighted by good and poor surgical outcomes. Bottom left: Seizures are highlighted by laterality of seizure onset determined though clinical chart review. Bottom right: Seizures are highlighted by length. **c**, Seizure pattern (location and timing) for each cluster is shown through a coronal slice of thee brain. Colors indicate the percentage of time in a seizure when a region was active. Darker regions indicate earlier activation. Only regions with at least two patients with seizures showing activity are colored, else regions are gray. Arrows indicate potential direction of spread. Clusters are named by the pattern of spread observed. Cluster 1 (Focal) had no early activation time, cluster 2 (early bilateral) had early activation of bilateral medial temporal lobe structures. Cluster 3 (left medial - limbic) had early activation of left medial and limbic structures. Cluster 4 (right mesial temporal -limbic) had early activation of right medial and limbic structures. Cluster 5 (lateral temporal) had early activation of right lateral temporal lobe structures. **d**, The number of regions activated at any point during a seizure for each cluster.

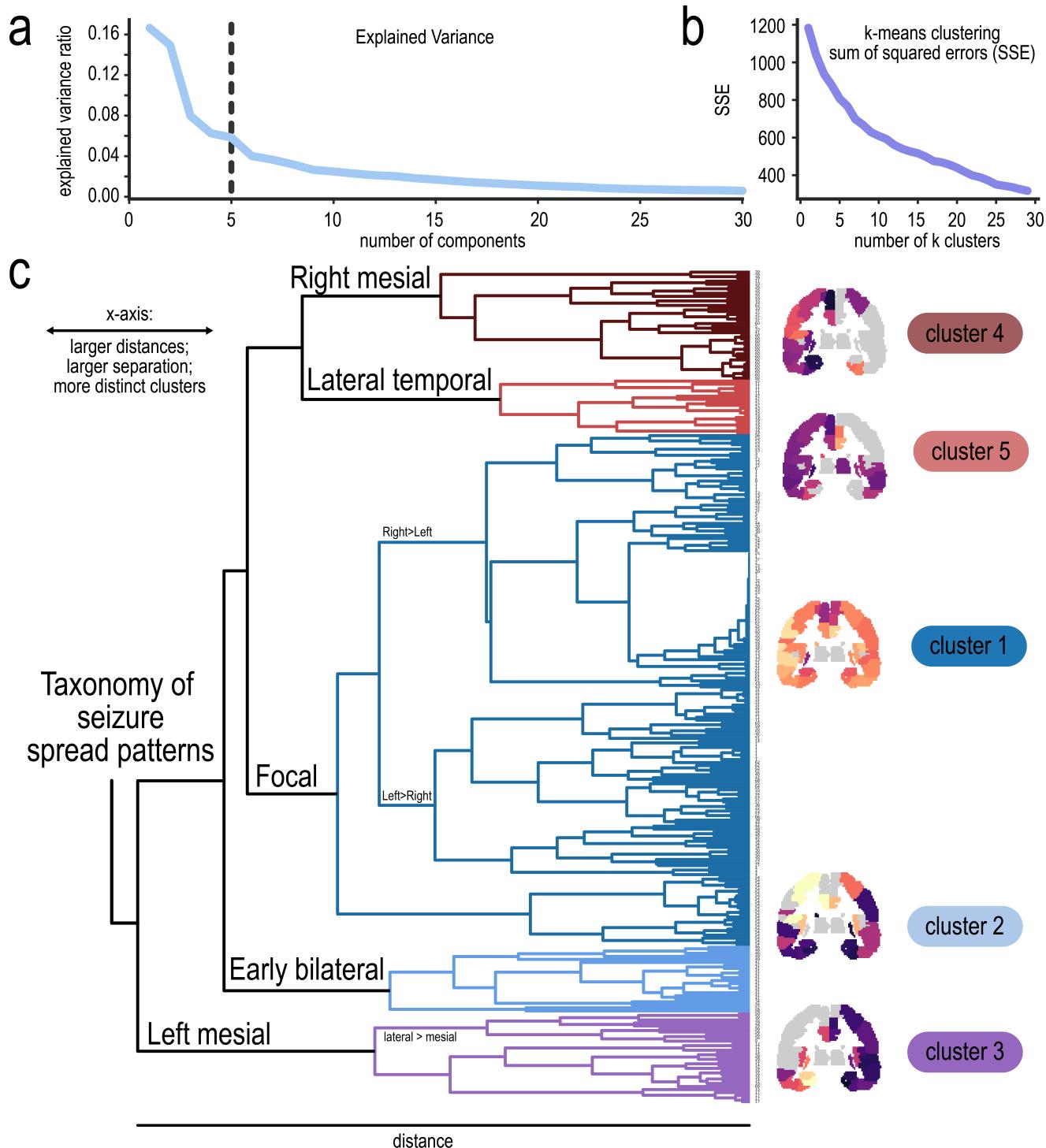


Fig. 7. Taxonomy of Seizure Spread Patterns. | **a**, Principle components analysis (PCA) showing explained variance ratio as a function of number of components to select for an optimal number of clusters. A vertical dash is at $n = 5$ components **b**, K-means clustering sum of squared errors (SSE) is plotted as a function of number of k clusters. **c**, The taxonomy of seizure spread patterns is shown using hierarchical/agglomerative clustering. Colors of branches correspond to clusters from Fig. 6. X-axis shows the euclidean distance between clusters with a “complete” linkage function, also known as the Farthest Point Algorithm or Voorhees³¹ Algorithm. For example, the left mesial cluster is the first branch point indicating that this spread pattern is a distinct evolution of seizure spread and is most different from the other clusters.

189 patient and averaged across all patients within a cluster (Fig 6c). Cluster 1 (Focal) has no early activation time, cluster 2
190 (early bilateral) has early activation of bilateral mesial temporal lobe structures. Cluster 3 (left mesial - limbic) has early
191 activation of left mesial and limbic structures. Cluster 4 (right mesial temporal -limbic) has early activation of right mesial and
192 limbic structures. Cluster 5 (lateral temporal) has early activation of right lateral temporal lobe structures.

193 We hypothesize that Cluster 1 represents a focal, or localized, spread pattern because the average of all patients within that
194 cluster does not indicate an early activation time of any one region. We plot the number of active regions at any time in a
195 seizure across all the seizures in each cluster (Fig 6d). We find a lower number of active regions in the focal cluster than the
196 other clusters. This indicates that, although seizures spread, the spread is more constrained to a lower number of regions than
197 other clusters. A limitation is that this cluster includes patients with unilateral sampling, and thus this cluster could also
198 include seizures in which there is not sufficient information to classify the seizure into another cluster. We further elaborate on
199 this limitation in the "Discussion section" and why we believe the taxonomy presented in the next section is still a clinically
200 useful representation of seizures.

201 **I. Taxonomy of Seizure Spread Patterns Shows the Relationship Between Clusters of Seizures.** The taxonomy of seizure spread
202 patterns using the hierarchical clustering algorithm across the 275 seizures is shown in (Fig 7). We first determined the optimal
203 number of clusters through a principle components analysis (PCA) by plotting explained variance ratio as a function of number
204 of components (Fig 7a). A vertical dash at $n = 5$ components shows a potential optimal number of components (the "elbow"
205 method). At more clusters, we find that some clusters may be comprised of seizures from just one patient. K-means clustering
206 is also used and sum of squared errors (SSE) is plotted as a function of number of k clusters (Fig 7b). The taxonomy of seizure
207 spread patterns is shown in Fig 7c. Earlier branch points (e.g. the left mesial temporal branch) indicates more distinct clusters
208 or a larger separation between clusters of other branches. The cluster numbers in the dendrogram is the same shown in Fig 6.
209 A discussion and interpretation of these clusters and branch points are in the "Discussion section".

210 **Discussion**

211 In this study, we develop, validate, and compare different algorithms to measure seizure spread with the goal to organize and
212 classify hierarchical patterns of seizure spread. We find that deep learning algorithms are highly effective in differentiating ictal
213 and interictal states over single features (Fig 2) which can be used to detect seizure onset and measure spread (Fig 3). We
214 discover that poor outcome patients have more distributed regions involved in seizures (Fig 4a-d) and seizure spread within 5
215 seconds between the average activation time of the left and right temporal lobes yields a specificity of 94% in differentiating
216 good and poor outcome surgical patients at two years (42% sensitivity, Fig 4e). This speed of seizure spread between temporal
217 lobe regions is associated with the strength of structural connectivity between temporal lobes, but not between other regions
218 (Fig 5). Finally, hierarchical clustering over 275 seizures and 71 patients shows 5 distinct clusters and the relationship between
219 these clusters (Fig 6 and (Fig 7)). We name each of the 5 major clusters – Cluster 1: focal, Cluster 2: early bilateral, Cluster 3:
220 left mesial temporal - limbic, Cluster 4: right mesial temporal -limbic, and Cluster 5: lateral temporal.

221 **A. The Focus of Seizure Activity Past Seizure Onset.** In our study, we show the pattern of seizure activity may be an important
222 marker that can predict response to epilepsy surgery. While correct identification of seizure onset contacts is essential for the
223 success of surgery and has been a major focus in computational studies attempting to identify location of seizure onset, it
224 perhaps should not be the only focus of EEG interpretation nor the focus to identify ideal surgical candidates and brain regions
225 targeted for surgery. Here, we show that the pattern of spread, whether through the extent of spread (Fig 4a-d) or speed of
226 spread (Fig 4e) is associated with surgical outcomes at two years.

227 Furthermore, the ability to quantify patterns of seizure spread – whether through complicated deep learning algorithms or
228 though simple features – opens new avenues to study epilepsy pathophysiology and seizure evolution. Although we present
229 evidence that deep learning algorithms may be superior in capturing spread patterns over simple features such as line length,
230 these singular features still capture onset and spread better than chance (Fig 3), and many labs or clinical software may be
231 suited for reporting spread patterns. For example, the patient in Fig 4a shows 14 seizures captured during their hospital stay
232 and we can observe how the pattern of spread changes during the days to weeks a patient may stay in the epilepsy monitoring
233 unit. We can quantify whether a seizure is a stereotypical pattern and is representative of their semiology to be used for
234 interpretation and localization of seizure onset. We can also observe how certain external factors, such as medications, sleep
235 deprivation, and other habits may change the patterns of seizure activity over time. We found that these seizure spread
236 algorithms work on both ECoG and SEEG implantations, so they may also have utility in scalp EEG, which benefits from
237 standard sampling across patients (although more coarse in localization than intracranial implantations).

238 **B. The Hierarchical Organization of Seizure Spread Patterns.** The goal of hierarchical clustering is to find the overarching
239 organization and classification of a data set in an unsupervised manner³². Here, we organize the patterns of seizure spread into
240 distinct clusters, and the discussion here is to provide interpretation of the unsupervised learning algorithm. The dendrogram of
241 Fig 7 shows the relationship between the clusters of seizure spread patterns. Earlier branch points indicate a large separation
242 from other clusters.

243 The left mesial temporal cluster (cluster 2) is the first branch point indicating that this spread pattern is a distinct evolution
244 of seizure spread and is most different from the other clusters. We interpret this as seizure activity with left mesial temporal

245 involvement and spread is a distinct form of seizure pathophysiology and evolution. Other seizures with left mesial temporal
246 seizures are included in cluster 1 (the focal cluster), however hierarchical clustering indicates that this subset of left mesial
247 temporal involvement is more limited, and that left mesial temporal involvement *with* spread (cluster 3) may be a distinct form
248 of seizure spread pattern. Some patients with left mesial temporal onset switched between clusters 1 and 3, and we interpret
249 this switching as evidence that the exact etiology of each seizure in a patient may not necessarily be the same. Epilepsy
250 pathophysiology may change from seizure to seizure (e.g. regulatory mechanisms, excitatory/inhibitory responses, push pull
251 networks, etc. may change across time during a patient's hospital stay), and this may provide clues to a clinician how to plan
252 treatment for their patient.

253 At $n = 5$ clusters, we did not see a distinct separation of left mesial and lateral temporal lobe clusters as in clusters 4 and 5
254 (right sided mesial temporal and lateral temporal patterns, respectively). However, investigation into some of the branches in
255 cluster 3 did show a branch with earlier left lateral temporal lobe activation than left mesial temporal lobe activation (lateral >
256 mesial). To see this separation would require an increase in clusters *a priori*, but more than 5 clusters would result in some clusters
257 (particularly in cluster 1) being comprised of only one patient. Thus separation of the left mesial branch into more distinct clusters
258 could not be done systematically.

259 Overall, we find that this hierarchical clustering separation also aligns similarly to clinical investigation of epilepsy onset – is
260 it left or right sided, does it have early bilateral activation or more focal spread with limited regions, is it lateral or mesial
261 temporal lobe epilepsy?

262 **C. Limitations.** A major limitation to this study is that the organization found in the hierarchical clustering can be affected
263 by the implantation and sampling bias of our patients³³. For example, the occipital lobe is rarely implanted, and thus
264 clustering using this region provides little discriminating information to the clustering algorithms. Another example is that
265 through principle components analysis (Fig 6a), PC1 seems to differentiate spread patters by laterality – spread from the right
266 hemisphere has negative PC1 value, spread from the left has positive PC1 values, and bilateral spread (namely cluster 2) has
267 PC1 values close to zero. We did not see a principle component that organizes spread patters in an anterior-posterior brain
268 axis probably because the focus of implantation is heavily subject to a left-right organization.

269 Furthermore, cluster 1 is the focal or localized cluster, and patients with unilateral sampling fall into this cluster perhaps
270 because seizures captured in these patients may not have sufficient information to classify the seizure into another cluster (i.e.
271 the spread pattern is classified into the focal cluster because there is little information about seizure spread to other brain
272 region in a unilateral implantation).

273 Despite this limitation, however, we find that many patients with unilateral sampling or other implantation schemes (rather,
274 the lack of certain sampling from regions like the occipital lobe) have their respective implantation schemes *for a clinical*
275 *reason* – there is evidence that seizure activity may be limited to the regions targeted for implantation *a priori*. The patterns
276 of spread classified by physicians are typically implanted in a stereotyped fashion (i.e. patients with suspected left mesial
277 temporal lobe epilepsy largely have similar structures targeted for implantation with modifications based on clinical history and
278 other findings). For example, many patients with limited sampling and spread (Fig 6b) have good outcomes not because their
279 sampling was limited *per se*, but rather because their spread pattern was predicted to be well-localized by their physicians,
280 they were implanted to confirm seizure onset, and subsequently had a good outcome after surgery because seizure onset was
281 already biased in its focal localization.

282 Thus we believe that in this study, our patients' implantation and the activity recorded in those regions are a fair
283 representation of the spread pattern within the brain. Patients across institutions and other studies may have similar sampling
284 and implantation schemes to our cohort of 71 patients and the hierarchical organization found in this study may provide a fair
285 representation of the taxonomic organization of seizure spread patterns in a clinically relevant manner.

286 **Conclusion.** The pattern of seizure activity past seizure onset may help direct treatment of refractory epilepsy patients and can
287 indicate if surgical intervention or other treatment options may have the best chance to improve a patient's quality of life. We
288 propose a shift in epilepsy research from a primary focus in identification of seizure onset to quantifying the patterns of seizure
289 activity past onset.

290 References

- 291 [1] Tatum, W. O. (ed.) *Handbook of EEG Interpretation* (demosMedical, an Imprint of Springer Publishing, New York, 2022), 3rd edition edn.
- 292 [2] Andrews, J. P. *et al.* Association of Seizure Spread With Surgical Failure in Epilepsy. *JAMA Neurology* **76**, 462 (2019). URL <http://archneur.jamanetwork.com/article.aspx?doi=10.1001/jamaneurol.2018.4316>.
- 293 [3] Uehara, T. *et al.* Rapidly spreading seizures arise from large-scale functional brain networks in focal epilepsy. *Neuroimage* **237**, 118104 (2021).
- 294 [4] Lieb, J. P., Engel, J. J., Babb, T. L. Interhemispheric Propagation Time of Human Hippocampal Seizures.: I. Relationship to Surgical Outcome. *Epilepsia* **27**, 286–293 (1986). URL <https://onlinelibrary.wiley.com/doi/10.1111/j.1528-1157.1986.tb03541.x>.
- 295 [5] Spencer, S. S., Spencer, D. D., Williamson, P. D. & Mattison, R. Combined depth and subdural electrode investigation in uncontrolled epilepsy. *NEUROLOGY* (1990).
- 296 [6] West, S. *et al.* Surgery for epilepsy. *Cochrane Database of Systematic Reviews* (2019). URL <https://doi.wiley.com/10.1002/14651858.CD010541.pub3>.
- 297 [7] Cascino, G. D. & Brinkmann, B. H. Advances in the Surgical Management of Epilepsy. *Neurologic Clinics* **39**, 181–196 (2021). URL <https://linkinghub.elsevier.com/retrieve/pii/S0733861920300773>.
- 298 [8] Khan, M., Paktiawal, J., Piper, R. J., Chari, A. & Tisdall, M. M. Intracranial neuromodulation with deep brain stimulation and responsive neurostimulation in children with drug-resistant epilepsy: a systematic review. *J Neurosurg Pediatr* 1–10 (2021).
- 299 [9] Matias, C. M., Sharan, A. & Wu, C. Responsive Neurostimulation for the Treatment of Epilepsy. *Neurosurgery Clinics of North America* **30**, 231–242 (2019). URL <https://linkinghub.elsevier.com/retrieve/pii/S1042368018309483>.
- 300 [10] Martin-McGill, K. J., Bresnahan, R., Levy, R. G. & Cooper, P. N. Ketogenic diets for drug-resistant epilepsy. *Cochrane Database of Systematic Reviews* **2020** (2020). URL <http://doi.wiley.com/10.1002/14651858.CD001903.pub5>.
- 301 [11] Gloss, D. & Vickrey, B. Cannabinoids for epilepsy. *Cochrane Database of Systematic Reviews* (2014). URL <https://doi.wiley.com/10.1002/14651858.CD009270.pub3>.

307 [12] Schuele, S. U. & Lüders, H. O. Intractable epilepsy: management and therapeutic alternatives. *The Lancet Neurology* **7**, 514–524 (2008). URL <https://linkinghub.elsevier.com/retrieve/pii/S147444220870108X>.

308 [13] Panzica, F., Varotto, G., Rotondi, F., Spreafico, R. & Franceschetti, S. Identification of the Epileptogenic Zone from Stereo-EEG Signals: A Connectivity-Graph Theory Approach. *Frontiers in Neurology* **4**, 6–11 (2013).

311 [14] Cosandier-Rimélé, D., Bartolomei, F., Merlet, I., Chauvel, P. & Wendling, F. Recording of fast activity at the onset of partial seizures: depth EEG vs. scalp EEG. *NeuroImage* **59**, 3474–87 (2012).

312 [15] Murin, Y., Kim, J., Parvizi, J. & Goldsmith, A. SozRank: A new approach for localizing the epileptic seizure onset zone. *PLoS computational biology* **14**, e1005953 (2018).

313 [16] Sinha, N. *et al.* Predicting neurosurgical outcomes in focal epilepsy patients using computational modelling. *Brain : a journal of neurology* **140**, 319–332 (2017).

314 [17] Bartolomei, F., Chauvel, P. & Wendling, F. Epileptogenicity of brain structures in human temporal lobe epilepsy: a quantified study from intracerebral EEG. *Brain* **131**, 1818–1830 (2008). URL <https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awn111>.

315 [18] Kleen, J. K. *et al.* Accuracy of omni-planar and surface casting of epileptiform activity for intracranial seizure localization. *Epilepsia* **62**, 947–959 (2021). URL <https://onlinelibrary.wiley.com/doi/10.1111/epi.16841>.

316 [19] Sip, V., Guye, M., Bartolomei, F. & Jirsa, V. Computational modeling of seizure spread on a cortical surface. *Journal of Computational Neuroscience* **50**, 17–31 (2022). URL <https://link.springer.com/10.1007/s10827-021-00802-8>.

320 [20] Gleichgerrcht, E. *et al.* Patterns of seizure spread in temporal lobe epilepsy are associated with distinct white matter tracts. *Epilepsy Research* **171**, 106571 (2021). URL <https://linkinghub.elsevier.com/retrieve/pii/S0920121121000243>.

321 [21] Schindler, K., Leung, H., Elger, C. E. & Lehnertz, K. Assessing seizure dynamics by analysing the correlation structure of multichannel intracranial EEG. *Brain* **130**, 65–77 (2006). URL <https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/aw304>.

324 [22] Esteller, R., Echauz, J., Tcheng, T., Litt, B. & Pless, B. Line length: an efficient feature for seizure onset detection. In *2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society*, 1707–1710 (IEEE, Istanbul, Turkey, 2001). URL <http://ieeexplore.ieee.org/document/1020545>.

326 [23] Bergstrom, R. A. *et al.* Automated identification of multiple seizure-related and interictal epileptiform event types in the EEG of mice. *Scientific Reports* **3**, 1483 (2013). URL <http://www.nature.com/articles/srep01483>.

328 [24] Goodfellow, I., Bengio, Y. & Courville, A. *Deep learning*. Adaptive computation and machine learning (The MIT Press, Cambridge, Massachusetts, 2016).

329 [25] Oord, A. v. d. *et al.* WaveNet: A Generative Model for Raw Audio. *arXiv* (2016). URL <https://arxiv.org/abs/1609.03499>. Publisher: arXiv Version Number: 2.

330 [26] Hochreiter, S. & Schmidhuber, J. Long Short-Term Memory. *Neural Computation* **9**, 1735–1780 (1997). URL <https://direct.mit.edu/neco/article/9/8/1735-1780/6109>.

331 [27] Revell, A. Y. *et al.* White Matter Signals Reflect Information Transmission Between Brain Regions During Seizures. *bioRxiv* (2021).

332 [28] Gunnarsdóttir, K. M. *et al.* Source-sink connectivity: A novel interictal EEG marker for seizure localization. preprint, Bioengineering (2021). URL <http://biorxiv.org/lookup/doi/10.1101/2021.10.15.464594>.

333 [29] Khambhati, A. N., Davis, K. A., Lucas, T. H., Litt, B. & Bassett, D. S. Virtual Cortical Resection Reveals Push-Pull Network Control Preceding Seizure Evolution. *Neuron* **91**, 1170–1182 (2016).

334 [30] Jirsa, V. K., Stacey, W. C., Quilichini, P. P., Ivanov, A. I. & Bernard, C. On the nature of seizure dynamics. *Brain : a journal of neurology* **137**, 2210–30 (2014).

335 [31] Voorhees, E. M. Implementing agglomerative hierachic clustering algorithms for use in document retrieval. *Information Processing & Management* **22**, 465–476 (1986). URL <https://linkinghub.elsevier.com/retrieve/pii/030645738690097X>.

337 [32] Murtagh, F. & Contreras, P. Algorithms for hierarchical clustering: an overview. *WIREs Data Mining and Knowledge Discovery* **2**, 86–97 (2012). URL <https://onlinelibrary.wiley.com/doi/10.1002/widm.53>.

338 [33] Bernabeij, J. M. *et al.* Electrocorticography and stereo EEG provide distinct measures of brain connectivity: implications for network models. *Brain Communications* **3** (2021).

339 [34] Litt, B. *et al.* Epileptic Seizures May Begin Hours in Advance of Clinical Onset. *Neuron* **30**, 51–64 (2001).

340 [35] Azarion, A. A. *et al.* An open-source automated platform for three-dimensional visualization of subdural electrodes using CT-MRI coregistration. *Epilepsia* **55**, 2028–2037 (2014).

341 [36] SciPy., . C. *et al.* SciPy 1.0: fundamental algorithms for scientific computing in Python. *Nature Methods Nat Methods* **17**, 261–272 (2020).

342 [37] Tzourio-Mazoyer, N. *et al.* Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. *NeuroImage* **15**, 273–89 (2002).

343 [38] Rolls, E. T., Joliot, M. & Tzourio-Mazoyer, N. Implementation of a new parcellation of the orbitofrontal cortex in the automated anatomical labeling atlas. *NeuroImage* **122**, 1–5 (2015).

344 [39] Rolls, E. T., Huang, C.-C., Lin, C.-P., Feng, J. & Joliot, M. Automated anatomical labelling atlas 3. *NeuroImage* **206**, 116189 (2020).

345 [40] Revell, A. Y. *et al.* A framework for brain atlases: Lessons from seizure dynamics. *NeuroImage* **254**, 118986 (2022). URL <https://linkinghub.elsevier.com/retrieve/pii/S105381192200115X>.

346 [41] Cieslak, M. *et al.* QSIPrep: an integrative platform for preprocessing and reconstructing diffusion MRI data. *Nat Methods* **18**, 775–778 (2021).

347 [42] Fang-Cheng, Y., Wedeen, V. J. & Tseng, W.-Y. I. Generalized q-Sampling Imaging. *IEEE Transactions on Medical Imaging* **29**, 1626–1635 (2010).

348 [43] Otsu, N. A Threshold Selection Method from Gray-Level Histograms. *IEEE Transactions on Systems, Man, and Cybernetics* **9**, 62–66 (1979).

349 [44] Zalesky, A. *et al.* Whole-brain anatomical networks: does the choice of nodes matter? *NeuroImage* **50**, 970–83 (2010).

350 [45] Wirsich, J. *et al.* Whole-brain analytic measures of network communication reveal increased structure-function correlation in right temporal lobe epilepsy. *NeuroImage. Clinical* **11**, 707–718 (2016).

351 [46] Bonilha, L., Gleichgerrcht, E., Nesland, T., Rorden, C. & Fridriksson, J. Gray Matter Axonal Connectivity Maps. *Frontiers in Psychiatry* **6** (2015).

352 [47] Park, B., Eo, J. & Park, H.-J. Structural Brain Connectivity Constrains within-a-Day Variability of Direct Functional Connectivity. *Frontiers in Human Neuroscience* **11**, 408 (2017).

353 [48] Taylor, P. N. *et al.* The impact of epilepsy surgery on the structural connectome and its relation to outcome. *NeuroImage. Clinical* **18**, 202–214 (2018).

Materials and Methods

A. Clinical Data and outcome scoring. Seventy-one individuals (mean age 33 ± 12 ; 31 female) underwent intracranial EEG implantation (iEEG) of either electrocorticography (ECOG, $n = 23$) or stereoelectroencephalography (SEEG, $n = 48$, Supplementary Table S1). Across the 71 patients, 275 seizures were captured (Fig S1, mean length 85 ± 94 seconds; mean number of seizures captured per patient 3.9 ± 3.8 seizures). Fifty eight patients had Engel outcome scores at two years after undergoing epilepsy surgery. Engel I outcome scores were classified as good outcomes and Engel II-IV were classified as poor outcomes.

B. Intracranial EEG Acquisition. ECoG and SEEG electrodes were implanted in patients based on clinical necessity. Continuous intracranial EEG (iEEG) signals were obtained for the duration of each patient's stay in the epilepsy monitoring unit. Intracranial data was recorded at 256, 512, or 1024 Hz for each patient. Seizure onset times were defined by the unequivocal electrographic onset (UEO)³⁴. Interictal data were taken at least six hours before seizure onset and were 180 seconds in length. All annotations were verified by neurologists and consistent with detailed clinical documentation. The spacing between SEEG contacts is 5 mm and the contacts are 2.41 mm in size.

C. Electrode Localization. In-house software³⁵ was used to assist in localizing electrodes after registration of pre-implant and post-implant images (T1w and CT images). All electrode coordinates and labels were saved and matched with the electrode names on IEEG.org. All electrode localizations were verified by a board-certified neuroradiologist (J.S.).

D. Pre-processing of EEG. Following removal of artifact-ridden electrodes, iEEG signals were bipolar referenced. Signals were notch-filtered at 60 Hz to remove power line noise and low-pass and high-pass filtered at 127 Hz and 1Hz to account for noise and drift. iEEG signals were downsampled to 128 Hz because a larger sampling rate would not fit into memory of a GPU for training and testing of deep learning algorithms. Signals were then pre-whitened using a first-order autoregressive model to account for slow dynamics. All iEEG signals for each channel were normalized to each respective channel's interictal data. This was done by applying the Python package sklearn robust scaler function. This function scales features by removing the median and scales the data according to the interquartile range.

E. Deep learning algorithms. The structure of the deep learning algorithms and their parameters as as follows. Python packages and versions are listed at the end of the Methods section. Python code can be found at <https://github.com/andrewyrevell/revellLab> in the SeizureSpread package. The code for the deep learning algorithms is provided explicitly below because these algorithms are central to measuring seizure spread.

378 **E.1. Global parameters**

```
379 1 import numpy as np
380 2 import tensorflow as tf
381 3 import sklearn.metrics as metrics
382 4 from tensorflow.keras.models import Sequential, load_model
383 5 from tensorflow.keras.layers import Dense, Flatten, Conv1D, MaxPooling1D, Dropout, LSTM
384 6
385 7 batch_size = 2**10 #number of samples
386 8 learn_rate = 0.001 #varying learning rates in Fig. 2 of main text
387 9 beta_1 = 0.9 #Adam optimizer
388 10 beta_2 = 0.999 #Adam optimizer
389 11 dropout = 0.3 #dropout rate
390 12 training_epochs = 2 #number of epochs
391 13 rate = 2 #dilation rate exponent for WaveNet
392
```

393 **E.2. WaveNet**

```
394 1 optimizer = tf.keras.optimizers.Adam(learning_rate = learn_rate, beta_1 = beta_1, beta_2 = beta_2)
395 2 model = Sequential()
396 3
397 4 model.add(Conv1D(filters = 128, kernel_size = 128, activation = "relu", dilation_rate = 2**rate, padding = "causal",
398 5 data_format = "channels_last", input_shape = input_shape))
399 6 model.add(MaxPooling1D(pool_size = (2)))
400 7 model.add(Dropout(dropout))
401 8
402 9 model.add(Conv1D(filters = 64, kernel_size = 64, activation = 'relu',
403 10 dilation_rate = 2**rate, padding = "causal"))
404 11 model.add(MaxPooling1D(pool_size = (2)))
405 12 model.add(Dropout(dropout))
406 13
407 14 model.add(Conv1D(filters = 32, kernel_size = 32, activation='relu', dilation_rate = 2**rate, padding = "causal"))
408 15 model.add(MaxPooling1D(pool_size = (2)))
409 16 model.add(Dropout(dropout))
410 17
411 18 model.add(Flatten())
412 19 model.add(Dense(16, activation = 'relu'))
413 20 model.add(Dropout(dropout))
414 21
415 22 model.add(Dense(2, activation = 'softmax'))
416 23
417 24 model.compile(loss = 'categorical_crossentropy',
418  optimizer = optimizer, metrics = ['accuracy'])
```

420 **E.3. 1D CNN**

```
421 1 optimizer = tf.keras.optimizers.Adam(learning_rate = learn_rate, beta_1 = beta_1, beta_2 = beta_2)
422 2 model = Sequential()
423 3
424 4 model.add(Conv1D(filters = 128, kernel_size = 128, strides = 2, activation = 'relu', padding = 'same', data_format = "
425 5 channels_last", input_shape = input_shape))
426 6 model.add(MaxPooling1D(pool_size = (2)))
427 7 model.add(Dropout(dropout))
428 8
429 9 model.add(Conv1D(filters=64, kernel_size = 64, strides = 2, activation = 'relu', padding = 'same'))
430 10 model.add(MaxPooling1D(pool_size = (2)))
431 11 model.add(Dropout(dropout))
432 12
433 13 model.add(Conv1D(filters = 32, kernel_size = 32, activation = 'relu', padding = 'same'))
434 14 model.add(MaxPooling1D(pool_size = (2)))
435 15 model.add(Dropout(dropout))
436 16
437 17 model.add(Flatten())
438 18 model.add(Dense(16, activation = 'relu'))
439 19 model.add(Dropout(dropout))
440 20
441 21 model.add(Dense(2, activation = 'softmax'))
442 22
443 23 model.compile(loss = 'categorical_crossentropy', optimizer = optimizer, metrics = ['accuracy'])
```

445 **E.4. LSTM**

```
446 1 optimizer = tf.keras.optimizers.Adam(learning_rate = learn_rate, beta_1 = beta_1, beta_2 = beta_2)
447 2 model = Sequential()
448 3
449 4 model.add(LSTM(4, activation = 'relu', input_shape = input_shape))
450 5 model.add(Dropout(dropout))
451 6
452 7 model.add(Dense(8, activation = 'relu'))
```

```
453 | 8 model.add(Dropout(dropout))
454 | 9 model.add(Flatten())
455 | 10
456 | 11 model.add(Dense(2, activation = 'softmax'))
457 | 12
458 | 13 model.compile(loss = 'categorical_crossentropy', optimizer = optimizer, metrics = ['accuracy'])
```

460 **F. Single features - Absolute Slope, Line Length, Broadband Power.** The single features, absolute slope²¹, line length^{22,23}, and broadband power were calculated on the pre-processed EEG data. Broadband power was calculated using the Scipy Python package version 1.5³⁶, and the function `scipy.signal.welch` (default parameters, with FFT epoch length equal to 1s).

463 Line length:

$$464 \quad LL(n) = \frac{1}{K} \sum_{k=n-N}^n abs([x(k-1) - x(k)]) = \frac{L(n)}{K} \quad [1]$$

465 where $LL(n)$ is the normalized line length value at a discrete time index n . $L(n)$ is the sum of distances between successive points 466 within the sliding window of size N sample points. $x[k]$ is the value at the k th sample. K is the normalization constant.²².

467 Absolute slope:

$$468 \quad S_i(t) = \left| \frac{\Delta EEG_i(t)}{\Delta t} \right| * \frac{1}{\sigma_i} \quad [2]$$

469 where i runs over all channels, t denotes time, and σ_i denotes the standard deviation of $S_i(t)$ during the interictal period of channel i .

470 **G. Training and Testing, and Measuring Seizure Spread.** Training and testing data were broken into 1 second windows with 0.5 seconds 471 overlap on interictal data ("definitely not seizing") and sections of ictal data on each channel that an annotator determined to be "definitely 472 seizing." Performance was quantified with area under the curve (AUC) for differentiating interictal and "definitely seizing" windows. A 473 leave-one-out cross validation approach was used on $n = 13$ patients.

474 To quantify seizure spread after training and testing, 180 seconds of preictal and 180 seconds of postictal data were collected in 475 addition to the seizure. For each channel, 1 second windows with 0.5 seconds overlap were used to calculate probability of seizure (for 476 the deep learning algorithms) or the normalized single feature. Probabilities or single features were smoothed over 20 seconds. Onset of 477 activity for each channel was determined by the time window at which the smoothed value crossed a pre-determined set threshold after 478 the unequivocal onset.

479 **H. Validation of Seizure Spread Algorithms: Median Rank Percent of Seizure Onset Contacts.** After measuring seizure spread, the performance 480 of each algorithm was assessed by its ability to appropriately rank seizure onset contacts with physician markings. The agreement 481 between physician markings and each algorithm marking is calculated, and the algorithm ranking of the seizure onset contacts were 482 averaged (median). This median ranking is divided by the total number of implanted contacts to normalize for differences in implantations. 483 Note, this calculation penalizes ranking scores for physicians who marked large number of contacts. However, we focused on comparing 484 algorithms, and this penalty is equal between algorithms.

485 **I. Atlas choice.** We chose the Automated Anatomical Labeling (AAL) atlas³⁷⁻³⁹ in this study because (1) it is a common structural atlases 486 used to create structural connectivity (2) it contains regions with sufficient depth to include depth electrodes (contacts that fall outside 487 the atlas are excluded from analysis, reducing power), and (3) the AAL atlas provides appropriate power to study the structure-function 488 relationship of the brain⁴⁰ (i.e. its parcellation scheme is appropriate to use in studies incorporating both structural data from diffusion 489 imaging and functional data from iEEG. Adding additional atlases may reduce power of our study).

490 **J. Calculating Extent of Spread.** The extent of seizure spread can be quantified in two ways: (1) by the number of contacts and (2) by 491 the number of brain regions activated over time (Fig 4). Each metric was converted into a percentage by (1) dividing the number of 492 active contacts by the total number of contacts implanted (excluding contacts that fell outside the brain or artifact contacts) and (2) 493 dividing the number of active brain regions by the total number brain regions sampled. If multiple contacts fell in a brain region, then 494 that region was still counted only once. The activity (i.e. probabilities or single feature metrics) of all the contacts within a single region 495 were averaged together. That region was considered active if the average probability or metric fell above a predetermined threshold.

496 **K. Calculating Speed of Spread.** Activation times of all contacts in the temporal lobe were averaged together for each of the left and right 497 hemispheres to calculate spread time. The absolute value difference in the average activation times was recorded in seconds. To account 498 for seizure with no spread, inverse spread times were calculated (1/spread time). For example, spread time could not be calculated or 499 would be considered infinite if the left temporal lobe was active and the right temporal lobe never became active. Therefore, inverse 500 spread time would be adjusted to zero and could be compared to seizures with spread.

501 **L. Contingency Tables, Sensitivity, and Specificity.** Cutoff times at 5, 10, 15, 20, 30, and 60 seconds were used to differentiate good and poor 502 outcomes. Outcomes at 2 years were used. Sensitivity, specificity, positive predictive values (PPV), negative predictive values (NPV), 503 chi-square test, and Cramer's V are reported for each cutoff.

504 **M. Structural Connectivity.** The below subsections detail the methodology for calculating structural connectivity.

505 **M.1. Imaging protocol.** Prior to electrode implantation, MRI data were collected on a 3T Siemens Magnetom Trio scanner using a 32-channel 506 phased-array head coil. High-resolution anatomical images were acquired using a magnetization prepared rapid gradient echo (MPRAGE) 507 T1-weighted sequence (repetition time = 1810 ms, echo time = 3.51 ms, flip angle = 9, field of view = 240 mm, resolution = 0.94x0.94x1.0 508 mm³). High Angular Resolution Diffusion Imaging (HARDI) was acquired with a single-shot EPI multi-shell diffusion-weighted imaging 509 (DWI) sequence (116 diffusion sampling directions, b-values of 0, 300, 700, and 2000s/mm², resolution = 2.5x2.5x2.5 mm³, field of view = 510 240 mm). Following electrode implantation, spiral CT images (Siemens) were obtained clinically for the purposes of electrode localization. 511 Both bone and tissue windows were obtained (120kV, 300mA, axial slice thickness = 1.0 mm)

512 **M.2. Diffusion Weighted Imaging (DWI) Preprocessing.** HARDI images were subject to the preprocessing pipeline, QSIPrep, to ensure
513 reproducibility and implementation of the best practices for processing of diffusion images⁴¹. Briefly, QSIPrep performs advanced
514 reconstruction and tractography methods in curated workflows using tools from leading software packages, including FSL, ANTs, and DSI
515 Studio with input data specified in the Brain Imaging Data Structure (BIDS) layout.

516 **M.3. Structural Network Generation.** DSI-Studio (<http://dsi-studio.labsolver.org>, version: December 2020) was used to reconstruct the
517 orientation density functions within each voxel using generalized q-sample imaging with a diffusion sampling length ratio of 1.25⁴².
518 Deterministic whole-brain fiber tracking was performed using an angular threshold of 35 degrees, step size of 1mm, and quantitative
519 anisotropy threshold based on Otsu's threshold⁴³. Tracks with length shorter than 10mm or longer than 800mm were discarded, and
520 a total of 1,000,000 tracts were generated per brain. Deterministic tractography was chosen based upon prior work indicating that
521 deterministic tractography generates fewer false positive connections than probabilistic approaches, and that network-based estimations are
522 substantially less accurate when false positives are introduced into the network compared with false negatives⁴⁴. To calculate structural
523 connectivity, the AAL atlas was used. Structural networks were generated by computing the number of streamlines passing through each
524 pair of atlas regions. Streamline counts were log-transformed and normalized to the maximum streamline count, as is common in prior
525 studies⁴⁵⁻⁴⁸. For each left and right hemisphere all the temporal lobe, frontal lobe, and parietal lobe structures were combined and the
526 structural connectivity between each hemisphere of each lobe were totaled together to represent the structural connectivity between the
527 hemispheres of each lobe.

528 **N. Generalized Linear Models to Quantify the Relationship Between Structural Connectivity and Speed of Spread.** The Statsmodel Python
529 package was used to construct a Tweedie regressor with 1.1 power. Structural connectivity was the independent variable and inverse
530 spread time was the dependent variable. The percent deviance explained, D^2 , was calculated using the Sklearn.linear_model Python
531 package and the TweedieRegressor score method. D^2 indicates the percentage of deviance explained, a generalization of the coefficient of
532 determination R^2 .

533 **O. Hierarchical Clustering Algorithm.** The Scipy³⁶ python package is used to calculate hierarchical clustering: Scipy.cluster.hierarchy.linkage
534 with method = "complete". This method is also known as the "Farthest Point Algorithm" or Voorhees Algorithm³¹. This algorithm was
535 chosen because it defines the distance between two groups as the distance between the two farthest-apart members. The advantage is it
536 usually yields clusters that are well separated and compact. The default "single" method (also known as the "nearest neighbor method"
537 did not yield interpretable results; the majority of seizures fell in one cluster with large number of clusters contained of single seizures
538 without a clear hierarchical organization. Clustering was performed on a matrix of shape 275 x 120, where 275 represents the number of
539 seizures in this study and 120 represents the number of regions in the AAL atlas. Each cell in the matrix contained the percent of time
540 into a seizure that a region became active.

541 **P. Python Packages and Versions.** The conda environment for the analyses can be ofound in <https://github.com/andyrevell/revellLab/> in the
542 envirnements folder. The YAML file is below:

543 **P.1. Conda environment YAML file**

```
544 1 name: seizure_spread
545 2 channels:
546 3   - defaults
547 4   dependencies:
548 5     - python=3.8
549 6     - numpy=1.19.*
550 7     - pandas=1.2.*
551 8     - scipy=1.5.*
552 9     - spyder
553 10    - pip
554 11    - pip:
555 12      - tensorflow==2.3.1 #deep learning
556 13      - scikit-learn==0.23.* #machine learning
557 14      - nibabel==3.2.* #imaging, MRI
558 15      - bctpy==0.5.2 #network analysis
559 16      - NetworkX==2.5.* #network analysis
560 17      - matplotlib==3.3.* #plotting
561 18      - seaborn==0.11.* #plotting
562 19      - deprecation==2.1.0 #download iEEG.org data
563 20      - requests==2.23.0 #download iEEG.org data
564 21      - pennprov==2.2.9 #download iEEG.org data
```

566 **Acknowledgements**

567 We thank Adam Gibson, Carolyn Wilkinson, Jacqueline Boccanfuso, Magda Wernovsky, Ryan Archer, Kelly Oechsel, members of Andrew's
568 Thesis Committee, Braden Kelner (for editing), and all other members and staff of the Center for Neuroengineering and Therapeutics for
569 their continued help and support in this work.

570 **Funding**

571 This work was supported by National Institutes of Health grants 5-T32-NS-091006-07, 1R01NS116504, 1R01NS099348, 1R01NS085211,
572 and 1R01MH112847. We also acknowledge support by the Thornton Foundation, the Mirowski Family Foundation, the ISI Foundation, the
573 John D. and Catherine T. MacArthur Foundation, the Sloan Foundation, the Pennsylvania Tobacco Fund, and the Paul Allen Foundation.

574 **Competing Interests**

575 The authors declare no competing interests.

576 **Supplementary Materials**

577 Please see supplemental materials below.

578 • Figures

579 – [Fig. S1](#): Distribution of Seizure Lengths and Number Per Patient

580 – [Fig. S2](#): Seizures Colored By Other Attributes

581 – [Fig. S3](#): Effect Size Comparisons Between Seizure Detection Algorithms in Extent and Speed of Spread

582

583 The figures below contain supplemental information for the main text.

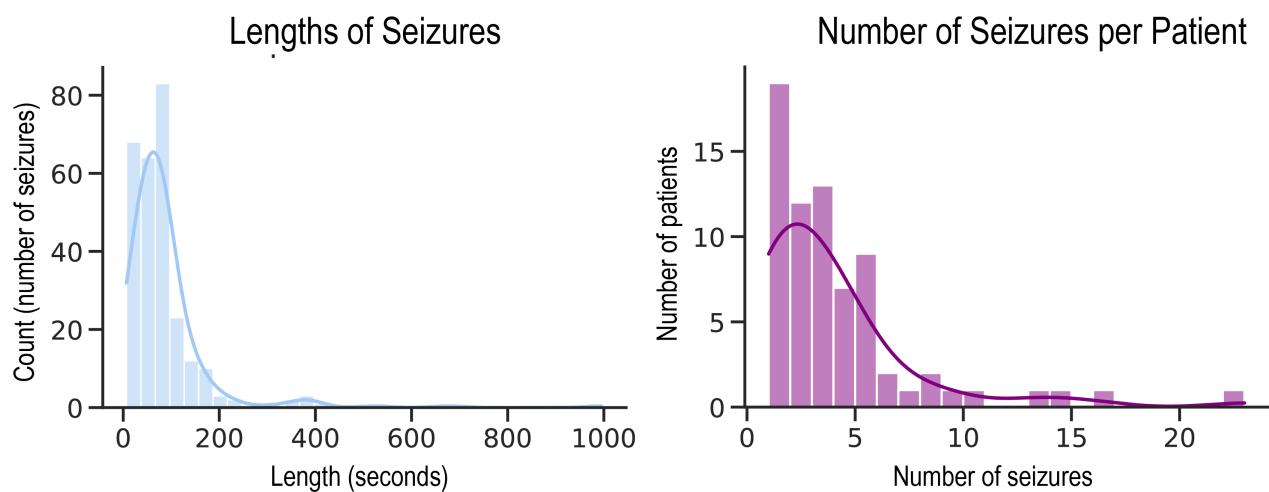


Fig. S1. Distribution of Seizure Lengths and Number Per Patient. | Left: The distribution of seizure lengths across all 275 seizures in this study. Mean: 85 seconds, median: 68 seconds, sd: 94 seconds. Right: The distribution of the number of seizures per patient. Mean: 3.9, median: 3.0, sd: 3.8.

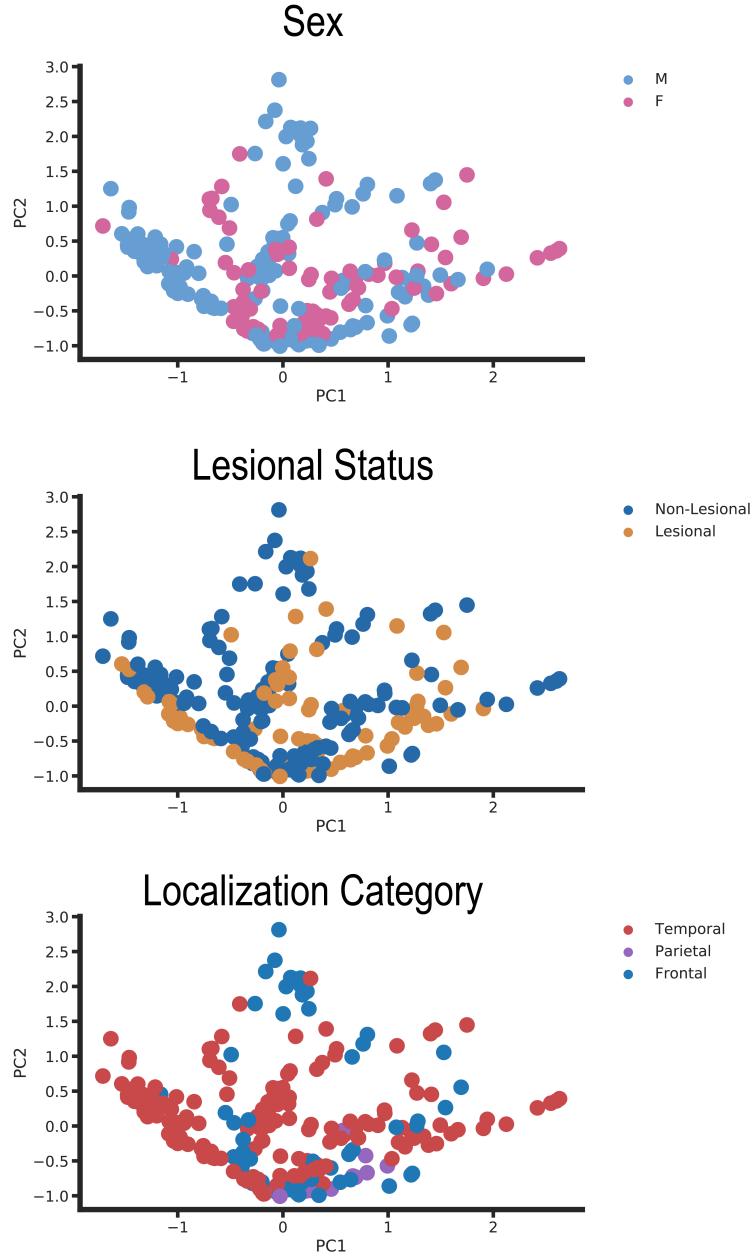


Fig. S2. Seizures Colored By Other Attributes. | Seizures from Fig. 6 are colored by other attributes such as sex (top), lesional status (middle), and lobar localization (bottom).

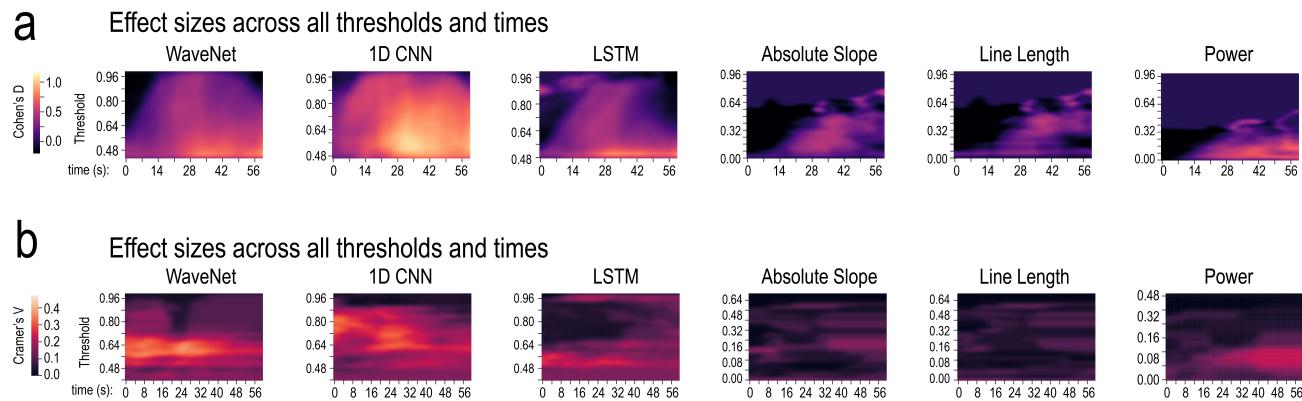


Fig. S3. Effect Size Comparisons Between Seizure Detection Algorithms in Extent and Speed of Spread. | **a**, Effect sizes across all thresholds and times for comparing the extent of seizure spread in good and poor outcome patients. Heatmaps and color bars represent Cohen's D. **b**, Effect sizes across all thresholds and times for comparing the association between the speed of seizure spread between temporal lobe regions and surgical outcomes. extent of seizure spread in good and poor outcome patients. Heatmaps and color bars represent Cramer's V.