

1 Auxin-independent effects of apical dominance induce temporal
2 changes in phytohormones

3 Da Cao (曹达)^{a,b,1}, Francois Barbier^{a,b}, Elizabeth A. Dun^{a,b}, Franziska Fichtner^{a,b,2}, Lili
4 Dong^{b,3}, Stephanie C. Kerr^{b,4}, Christine A. Beveridge^{a,b *}

5 ^aARC Centre of Excellence for Plant Success in Nature and Agriculture, School of Biological
6 Sciences, The University of Queensland, Brisbane, QLD 4072, Australia

7 ^bSchool of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia

8 ¹present address: Laboratory of Functional Plant Biology, Department of Biology, Faculty of
9 Sciences, Ghent University, 9000 Ghent, Belgium

10 ²present address: Institute of Plant Biochemistry, Heinrich Heine University Duesseldorf, 40225
11 Duesseldorf, Germany

12 ³present address: Department of Ornamental Horticulture, Anhui Agricultural University, Hefei,
13 Anhui 230061, China

14 ⁴present address: Centre for Agriculture and the Bioeconomy, School of Biology and
15 Environmental Science, Queensland University of Technology, Brisbane, QLD 4000, Australia

16 * Christine A. Beveridge

17 Email: c.beverage@uq.edu.au

18 **Running head:** Bud release and subsequent growth in pea

19 **Abstract**

20 The inhibition of shoot branching by the growing shoot tip of plants, termed apical dominance,
21 was originally thought to be mediated by auxin. Recently the importance of the shoot tip sink
22 strength during apical dominance has re-emerged with recent studies highlighting roles for sugars
23 in promoting branching. This raises many unanswered questions on the relative roles of auxin
24 and sugars in apical dominance. Here we show that auxin regulation of cytokinins, which promote
25 branching, is significant only after an initial stage of branching we call bud release. During this
26 early bud release stage, rapid cytokinin increases are associated with enhanced sugars. Auxin
27 may also act through strigolactones which have been shown to suppress branching after
28 decapitation, but here we show that strigolactones do not have a significant effect on initial bud
29 outgrowth after decapitation. We report here that when sucrose or cytokinin is abundant,
30 strigolactones are less inhibitory during the bud release stage compared to later stages and that
31 strigolactone treatment rapidly inhibits cytokinin accumulation in pea axillary buds of intact plants.
32 After initial bud release, we find an important role of gibberellin in promoting sustained bud growth
33 downstream of auxin. We are therefore able to suggest a model of apical dominance that
34 integrates auxin, sucrose, strigolactones, cytokinins and gibberellins and describes differences in
35 signalling across stages of bud release to sustained growth.

36
37 **Introduction**

38 Shoot branching is an important determinant of shoot architecture and affects the yield and/or
39 value of most agricultural, forestry and ornamental crops. Apical dominance is a form of
40 branching control whereby the growing shoot tip inhibits the outgrowth of axillary buds (Phillips,
41 1975; Ongaro and Leyser, 2007; Barbier et al., 2017). Under apical dominance, removal of the
42 shoot tip by herbivory, pruning or decapitation releases axillary buds to grow.

43 Since the pioneering work of Sachs and Thimann (1964), plant hormones have been proposed as
44 key mediators of apical dominance whereby auxin produced in the main shoot tip is transported
45 downwards and indirectly inhibits axillary bud growth. Auxin reduces the supply of the stimulatory
46 hormone cytokinin (CK) to axillary buds through suppressing CK content in stems and this
47 concept is widespread and observed across diverse plants (Nordström et al., 2004; Tanaka et al.,
48 2006; Su et al., 2011). Auxin also enhances the expression of strigolactone (SL) biosynthesis
49 genes which is thought to enhance the supply of this bud growth inhibitor to buds (Sorefan et al.,
50 2003; Foo et al., 2005; Hayward et al., 2009). Application of CK directly on axillary buds triggers
51 their outgrowth, while application of SL represses their outgrowth (Gomez-Roldan et al., 2008;
52 Brewer et al., 2009; Dun et al., 2012; Tan et al., 2019). In many species, CK and SL largely act
53 antagonistically through a common transcription factor TEOSINTE BRANCHED 1 (BRC1) which

54 is the gene largely responsible for the difference in branching between the non-tillering maize and
55 its high tillering wild progenitor teosinte. Expression of *BRC1* is correlated with bud inhibition
56 (Braun et al., 2012; Dun et al., 2012, 2013; Seale et al., 2017; Kerr et al., 2020), and *brc1*
57 deficient mutants show an increased branching phenotype in several plant species from divergent
58 groups of angiosperms (Aguilar-Martínez et al., 2007; Martín - Trillo et al., 2011; Ramsay et al.,
59 2011; Studer et al., 2011; Braun et al., 2012).

60 Interactions between SL and CK pathways have been reported (Dun et al., 2012; Duan et al.,
61 2019; Kerr et al., 2021). CK rapidly regulates transcript levels of DWARF53 (D53), which is a
62 negative regulator of SL signalling in rice, and its homologues *SMXL6/7/8* in pea (Kerr et al.,
63 2021). In rice, SL can promote CK degradation through transcriptionally enhancing *CYTOKININ*
64 *OXIDASE 9* (*OsCKX9*) (Duan et al., 2019). This finding is supported by higher CK content in SL
65 deficient mutant shoots compared with wild type (WT) plants in pea and rice (Young et al., 2014;
66 Duan et al., 2019). However, exogenous SL supply in rice reduces bud outgrowth but does not
67 affect CK levels or the expression of CK biosynthesis genes in tiller nodes (Xu et al., 2015).

68 Auxin movement in the polar auxin transport stream may suppress branching through the
69 competition of auxin flow between main stem and axillary bud (Prusinkiewicz et al., 2009; Balla et
70 al., 2011; Balla et al., 2016). This model has been prominent in arabidopsis where bud inhibition
71 has been associated with inhibition of auxin transport from buds, relative to auxin flow in the main
72 stem. This correlation has not held up in terms of the initial growth of pea buds after decapitation
73 or CK treatment (Brewer et al., 2015; Chabikwa et al., 2019). Instead, reduced auxin transport
74 specifically in buds (and not stem) had no growth inhibition effect for two days after the induction
75 of bud growth (Brewer et al., 2015; Chabikwa et al., 2019). This early stage of bud growth has not
76 generally been explored in other model systems and hence it is not clear as to whether auxin
77 transport is involved in the induction of bud release in diverse plants or, as in pea, it may be more
78 relevant at advanced stages of bud outgrowth.

79 Changes in auxin level and transport in buds relative to stem have been proposed to promote
80 branching (Gocal et al., 1991; Leyser, 2006; Barbier et al., 2015; Leyser, 2018). Several studies
81 using garden pea have questioned this model finding no correlation between auxin transport from
82 buds and their early growth (bud release)(Brewer et al., 2015; Chabikwa et al., 2019). Here we
83 question whether another means through which auxin in buds may affect bud outgrowth is
84 through the well-established role of auxin in regulating gibberellin (GA) levels (Scott et al., 1967;
85 Ross et al., 2000; Wolbang and Ross, 2001; Ross et al., 2003; Zhu et al., 2022). A stimulatory
86 role of GA in bud growth has been widely reported in tree species (Elfving et al., 2011; Ni et al.,
87 2015; Tan et al., 2018; Katayini et al., 2020) but less so for herbaceous plants and grass species

88 (Kebrom et al., 2013). Exogenous treatment of GA to buds can break bud dormancy in the woody
89 plant *Jatropha curcas*, potentially via inhibiting the expression of *BRC1* (Ni et al., 2015). Locally
90 increased GA biosynthesis gene expression in buds of the *brc1* mutant in maize also indicates
91 that *BRC1* may inhibit GA production and signalling (Dong et al., 2019). This warrants testing of
92 the hypothesis that rising auxin levels in buds may regulate bud GA levels to specifically promote
93 bud growth.

94 Several studies have associated dwarfism with increased branching including across a range of
95 lines affected in GA level or response (Sasaki et al., 2002; Lo et al., 2008; Liao et al., 2019). As
96 discussed below, additional resources available for axillary buds due to suppressed main stem
97 growth in dwarf plants, could enhance shoot branching. Similarly, given the rapid growth
98 response of the shoot tip of many herbaceous plants in response to exogenous GA, it is difficult
99 to interpret the branching response of many GA treatment experiments due to competition
100 between buds and main shoot growth.

101 The demand of the shoot tip for sugars has recently re-emerged as an important component of
102 apical dominance (Barbier et al., 2015; Kebrom, 2017; Schneider et al., 2019; Kotov et al., 2021).
103 This renewed attention on sugars including sucrose, the mobile product of photosynthesis, is
104 partly because the dynamics of auxin depletion after decapitation are too slow to account for
105 initial bud outgrowth whereas changes in sucrose are rapid (Morris et al., 2005; Mason et al.,
106 2014). Axillary bud outgrowth is promoted by sugars in different plant species (Mason et al.,
107 2014; Barbier et al., 2015; Xia et al., 2021) and the enhanced supply of sugars after decapitation
108 is sufficiently rapid to correlate with the timing of bud release (Mason et al., 2014). Levels of
109 trehalose 6-phosphate (Tre6P), a low abundant metabolite that signals sucrose availability
110 (Fichtner and Lunn, 2021), also increase in axillary buds after decapitation and this increase is
111 correlated with the onset of bud outgrowth (Fichtner et al., 2017). The branching phenotypes of
112 *arabidopsis* mutants with altered levels of Tre6P (Yadav et al., 2014; Fichtner et al., 2021) or
113 altered glucose signalling via HEXOKINASE 1 (Barbier et al., 2021) support a signalling role of
114 sugars in regulation of shoot branching (Barbier et al., 2019).

115 One effect of sugars in the regulation of shoot branching may be to promote CK accumulation
116 and suppress SL signalling. In experiments examining bud growth *in vitro*, sucrose treatment
117 increased CK levels in nodal stems of rose and dark-grown stems of potato and promoted bud
118 outgrowth (Barbier et al., 2015; Salam et al., 2021). In etiolated (dark-grown) potato sprouts,
119 sugars are very important for bud outgrowth. Sucrose feeding increases CK production and
120 exogenous CK can promote bud growth in etiolated potato sprouts even without exogenous

121 sucrose supply. The possibility that sucrose rapidly promotes cytokinin levels in decapitated
122 plants has not been tested in vivo in separation from auxin depletion.

123 Sucrose can repress SL inhibition of bud growth in a variety of plant species (Dierck et al., 2016;
124 Bertheloot et al., 2020; Patil et al., 2021). Studies show that sucrose may be involved in reducing
125 SL signalling as sucrose can repress expression of the SL signalling gene, *DWARF3*, and
126 promote accumulation of D53 in rice and pea.

127 The possibility that sugars may directly and rapidly affect CK levels and SL signalling is far
128 removed from the initial model of auxin-mediated apical dominance. This paradigm shift in apical
129 dominance thinking is yet to be tested on light-grown plants with manipulations of apical
130 dominance *in vivo*. In this study we address this by investigating responses of buds in
131 decapitated plants and in relation to timing of changes in auxin content.

132 **Results**

133

134 Previous studies in pea showed that auxin depletion in internodes close to the site of decapitation
135 can regulate local CK levels (Tanaka et al., 2006). In this study, we used tall plants with additional
136 internodes (Figure 1) such that the zone of auxin depletion in the main stem remained above
137 node 4 close to the site of decapitation (upper region), but did not extend to node 2 (lower region)
138 at 6 h after decapitation (Figure 1C). The upper region was useful to repeat the widely observed
139 correlation of auxin depletion with enhanced CK levels whilst the lower region (at and just above
140 node 2) served to explore the phytohormone properties associated with bud outgrowth outside
141 the zone of main stem auxin depletion. After decapitation in these plants, significant bud growth
142 (2 h; Figure 1A) and reduced *BRC1* gene expression (3h; Figure 1B) was observed outside the
143 zone of stem auxin depletion as reported previously (Mason et al., 2015).

144 **Endogenous CK levels increase before measurable bud growth and are not correlated with** 145 **auxin depletion**

146 To investigate whether changes in CK levels occurred outside the zone of auxin depletion, we
147 quantified CK levels in internode 2 and 4 stem segments and node 2 buds in intact and
148 decapitated plants (Figure 1D, and Supplemental Figure S1). The quantified CKs include three
149 types of bioactive forms, isopentenyladenine (iP), *trans*-zeatin (tZ) and dihydrozeatin (DZ), and
150 their precursors and transported forms including CK ribosides, which may also be bioactive
151 (Nguyen et al., 2021), and CK nucleosides. As previously reported with smaller seedlings of pea
152 (Tanaka et al., 2006), auxin levels reduced and levels of iP- and tZ-type of CKs increased in the
153 upper stem, verifying the expected anti-correlation of auxin and CK within the zone of auxin
154 depletion (internode 4 segment; Figure 1D). Auxin levels were not depleted in the stem at
155 internode 2 until after 6 h. However, in this region outside the zone of auxin depletion, CK levels

156 also increased rapidly in the stem (Figure 1D). In internode 2, all CKs except for *trans*-zeatin
157 riboside-5'-monophosphate (*t*ZMP), *t*Z and DZ increased significantly at 1 h after decapitation. CK
158 levels also increased in node 2 buds within 1 h and this included all types of CKs except for iP
159 and DZ-riboside (Figure 1D, and Supplemental Figure S1). In node 2 buds, this significant
160 increase in CKs was sustained or enhanced throughout the 24 h time course except for iP which
161 first significantly increased at 3 h in buds and then stopped accumulating and showed a
162 significant decrease at 24 h after decapitation relative to the intact control (Figure 1D).
163 Interestingly, outside the zone of auxin depletion in the stem, the auxin content in axillary buds at
164 node 2 increased significantly at 3 h and continued to rise thereafter as previously described in
165 bean (Gocal et al., 1991).

166 To test whether auxin depletion close to the site of decapitation somehow indirectly triggers the
167 distal increase in CK outside the zone of auxin depletion, we monitored changes in CK level and
168 related gene expression in internode 2 and internode 4 after decapitation and treatment with or
169 without the synthetic auxin 1-naphthaleneacetic acid (NAA) applied to the decapitated stump. As
170 expected, NAA treatment was clearly absorbed (Supplemental Figure S2A) and effectively
171 prevented decapitation-induced accumulation of CK nucleotides and CK ribosides and the
172 expression of CK biosynthesis genes *ISOPENTYL TRANSFERASE1* (*IPT1*) and *IPT2* (Figure 2A
173 and 2C). This is consistent with previous findings in excised pea segments (Tanaka et al., 2006).
174 In contrast, the accumulation of iP, *t*Z and DZ in internode 4 following decapitation was not
175 reduced by exogenous auxin supply (Figure 2A). In fact, exogenous auxin supply to the
176 decapitated stump unexpectedly increased the accumulation of these bioactive CKs at this 4 h
177 time point. This is in line with auxin-boosted gene expression of *LONELY GUY1* (*LOG1*), *LOG3*
178 and *LOG7*, which catalyze the synthesis of bioactive CKs from CK nucleotides (Figure 2B).
179 Coupled with auxin-induced decreased nucleotide levels, this is consistent with reduced overall
180 CK levels as expected in the longer term (Tanaka et al., 2006; Young et al., 2014).

181 NAA did not move to internode 2 within 4 h (Supplemental Figure 2B) and did not significantly
182 prevent decapitation-induced accumulation of any CK types and did not affect CK biosynthesis
183 gene expression (Figure 2B and 2D) in this region. Together, these results indicate that the rapid
184 accumulation of CK in internode 2 is unlikely caused by decapitation-induced auxin depletion.

185 **Sugar availability enhances CK levels in buds**

186 Given that enhanced CK content in the lower stem region was not associated with depleted
187 auxin, we hypothesised that decapitation-induced sucrose accumulation may be involved (Mason
188 et al., 2014; Fichtner et al., 2017; Salam et al., 2021; Wang et al., 2021). To determine if elevated
189 sugar levels might be able to enhance CK levels in pea, we measured endogenous CK levels in

190 buds exposed to varied sugar availability. Buds of excised stem segments showed significant
191 growth at 4 h when exposed to 50 mM sucrose (Figure 3A, Supplemental Figure S3). Indeed,
192 buds of excised stem segments grown on 50 mM sucrose contained substantially increased CK
193 levels at 3 h compared with buds grown on mannitol (osmotic control, Figure 3B). Treatment of
194 CK at a concentration that stimulates bud growth in intact pea (Dun et al., 2012), 50 μ M 6-
195 benzylaminopurine (BA), could not significantly promote the outgrowth of excised buds if sucrose
196 was not supplied (Figure 3C). BA enhanced bud outgrowth when sucrose was in the range of 2 to
197 25 mM, but had little additional effect at 50 mM sucrose (Figure 3C).

198 **SL reduces CK content in buds**

199 To further study the interconnectivity among signals regulating shoot branching, we explored the
200 effect of SL treatment on CK levels in axillary buds. GR24 (synthetic SL analogue) treatment to
201 *ramosus5* (*rms5*) SL-deficient mutant buds strongly inhibited bud outgrowth (Figure 4A) and
202 reduced endogenous CK levels in the buds within 6 h after treatment (Figure 4B, Supplemental
203 Figure S4A). To determine if this was due to a local effect of GR24 on CK levels in the bud, we
204 also profiled CK levels in adjacent stem tissues at the same time point and found no change
205 (Supplemental Figure S4A).

206 To gain insight into the cause of decreased CK in buds after SL treatment, we quantified the
207 expression of genes encoding CK biosynthesis and metabolism enzymes (Figure 4C) (Dun et al.,
208 2012; Dolgikh et al., 2017). GR24 treatment on *rms5* buds not only significantly increased CK
209 catabolism by promoting the gene expression of CKXs (CKX3, CKX5 and CKX7), but also
210 strongly inhibited CK biosynthesis by inhibiting the expression of the two *IPT* genes and five of
211 the *LOG* genes (Figure 4C). In addition, GR24 treatment significantly increased the expression of
212 bud dormancy marker genes, *DORMANCY-ASSOCIATED PROTEIN1* (*DRM1*) and *BRCA1* at 6 h
213 after treatment (Supplemental Figure S4B). These results demonstrate that SL may inhibit CK
214 levels in pea buds by decreasing CK biosynthesis and increasing CK degradation.

215 To investigate whether increased endogenous CK is able to alleviate SL inhibited bud outgrowth,
216 we used a CK oxidase inhibitor, 1-(2-(2-hydroxyethyl)phenyl)-3-(3-(trifluoromethoxy)phenyl)urea
217 (3TFM-2HE) (Nisler et al., 2021), which reduces degradation of CKs. Like exogenous CK (Dun et
218 al., 2012), 3TFM-2HE treatment promoted additional growth of *rms5* SL-deficient buds (Figure
219 4D). Similar to other long-term studies with exogenously supplied CKs (Dun et al., 2012), 3TFM-
220 2HE alleviated GR24 inhibited *rms5* bud growth over 7 d (Figure 4D). These results suggest that
221 endogenous CKs act in a similar manner as exogenous CKs and antagonistically with SL to
222 regulate bud outgrowth over long time periods.

223 **Sucrose and CK can overcome SL inhibited bud outgrowth**

224 Our recent studies have revealed that sucrose can reduce SL response *in vivo* in rice and *in vitro*
225 in pea and rose (Bertheloot et al., 2020; Patil et al., 2021). To test this hypothesis *in vivo* in pea,
226 we examined whether simultaneous treatment of sucrose and SL to intact plants could overcome
227 SL inhibition of bud release. To readily observe SL inhibition, we used SL-deficient plants and
228 supplied sucrose via a syringe to the stem and the synthetic SL, GR24, directly to the measured
229 bud. We found that while GR24 inhibited bud growth of the SL biosynthesis deficient mutant *rms1*
230 (Figure 4E), application of GR24 with sucrose was significantly less inhibitory over the first 2 days
231 (Figure 4E). After 2 days, GR24 was effective at reducing bud growth as described previously in
232 long-term experiments (Dun et al., 2013).

233 BA completely prevented SL inhibition of bud outgrowth in WT plants over the first 24 h (Figure
234 4F) (Dun et al., 2012). This lack of SL antagonism of CK response during bud release (shortly
235 after inductive treatments) contrasts with the many findings regarding the antagonism of SL and
236 CK during bud outgrowth which is thought to occur through regulation of *BRC1* (Braun et al.,
237 2012; Dun et al., 2012; Kerr et al., 2020). Hence, we confirmed that this antagonism did indeed
238 occur in the longer term under these experimental conditions (Figure 4F, inset). To test whether a
239 reduced photoassimilate supply may affect the SL/CK antagonism of *BRC1* during bud release,
240 we repeated the experiment under reduced light intensity. When WT plants were grown under
241 lower light conditions, a small but significant antagonistic effect of GR24 and BA was observed in
242 the first 24 h and an antagonistic effect was observed on *BRC1* expression (Supplemental Figure
243 S5). This effect of different light intensities on bud release and *BRC1* expression is consistent
244 with reduced SL signalling under high sucrose conditions (Patil et al., 2021).

245 Due to the rapid rise in both sucrose and CK content following decapitation (Figure 1) (Mason et
246 al., 2014; Fichtner et al., 2017), the reduced response to SL observed under high sucrose or CK
247 (Figure 4E and 4F) predicts that soon after decapitation, bud growth may be less responsive to
248 SL despite reported effects over the longer term. Indeed, treating axillary buds of WT plants with
249 GR24 prior to decapitation failed to inhibit bud growth within the first 24 h after decapitation
250 (Figure 4G). A significant suppression of bud growth by GR24 in these decapitated plants
251 occurred at 3 days (Figure 3G, inset), which is consistent with the timing used in previous reports
252 of SL-inhibition of bud growth after decapitation in pea (Dun et al., 2013).

253 **Auxin and GA in buds enhance their sustained outgrowth**

254 The interactions between SL, CK and sucrose have been emphasised above for the early stage
255 of bud growth (bud release; Figure 8). However, to form a branch, the bud must transition to
256 sustained bud growth whereby axillary shoot growth becomes largely independent of the

257 dominance of the main shoot. Many previous studies have explored a role of auxin transport in
258 bud outgrowth and yet in pea, there is little evidence for a role of auxin transport during bud
259 release (Brewer et al., 2015; Chabikwa et al., 2019). As well-established for stem elongation of
260 the main shoot (Yang et al., 1996; O'Neill and Ross, 2002), we also expect an important role of
261 auxin and GA in regulating sustained growth of axillary shoots. To determine if and how GA
262 regulates bud outgrowth in pea, we examined the responses of WT non-growing buds (dormant
263 buds of intact plants) and released buds (activated by CK treatment or decapitation) to GA
264 treatment (Figure 5A and B). Exogenous GA treatments alone did not trigger bud release at any
265 time point in the 3 days following GA treatment (Figure 5A and B). Consistent with a role of GA in
266 sustained bud growth, GA promoted growth of axillary buds released by decapitation or CK at 3
267 and 5 days after treatment, respectively (Figure 5A and B). The effect of GA on sustained bud
268 growth was further tested by measuring the response to decapitation in a GA biosynthesis
269 deficient mutant of pea (*le*). No significant difference was observed in bud growth between the
270 dwarf *le* and WT plants until day 3 after decapitation when the buds of *le* plants grew significantly
271 less than WT (Figure 5C). Interestingly, GR24 was able to reduce GA-promoted sustained bud
272 growth (Figure 5B).

273 To establish whether endogenous GA levels may be modulated to affect bud outgrowth, we
274 compared the timing of changes in endogenous GA levels with bud growth in response to
275 decapitation as described in Figure 1. In node 2 buds, levels of GA₁, the bioactive form of GA in
276 pea, GA₂₀ (the precursor to GA₁) and GA₂₉ (a metabolite of GA₁) significantly increased at 6 h
277 post decapitation (Figure 6A and Supplemental Figure S6A) which is after initial bud growth (2 h;
278 Figure 1). Unlike CK or SL (Braun et al., 2012; Wang et al., 2019), GA treatment had no
279 significant effect on expression of the bud dormancy marker genes, *DRM1*, or *BRC1*, at 6 h after
280 treatment (Supplemental Figure S6B). Combined with the phenotypic responses to GA (Figure
281 5A-C), these results indicate that GA increases sustained bud growth but has little or no effect on
282 promoting bud release.

283 Given the known regulation of GA levels by auxin in decapitated plants (Ross et al., 2000;
284 Wolbang and Ross, 2001; Ross et al., 2003), GA₁ levels in the stem initially decreased within the
285 zone of auxin depletion, but not at the stem below this zone. GA₁ levels decreased near the
286 decapitation site at 3 h, but only decreased after 24 h in the stem just above node 2, which was
287 positively correlated with auxin level changes (Figure 6B, 6C, 6E and 6F). Consequently, the
288 increase in GA level in node 2 buds at 6 h after decapitation was not correlated with a change in
289 GA or IAA level in the adjacent stem (Figure 6A and 6B, 1C). However, GA and IAA levels in the
290 buds were indeed correlated (Figure 6A and D). Interestingly, this correlation of IAA level and GA
291 level in node 2 buds coupled with the observed effect of GA on sustained growth after bud

292 release, indicates that auxin may act to regulate GA level in growing buds and that GA may act
293 downstream of auxin in promoting sustained bud growth.

294 Inhibition of auxin signalling, biosynthesis, or efflux out of buds does not affect bud release in pea
295 (Brewer et al., 2009; Brewer et al., 2015; Chabikwa et al., 2019). Here we used decapitated
296 plants with a combined treatment to buds of the auxin perception inhibitor (*p*-
297 chlorophenoxyisobutyric acid; PCIB) and auxin biosynthesis inhibitor (L-Kynurenone; Kyn) and
298 again observed no inhibitory effect on bud release but did observe a significant inhibitory effect on
299 subsequent growth from day 3 (Brewer et al., 2009; Chabikwa et al., 2019) (Figure 7). Consistent
300 with GA action downstream of IAA during this sustained bud growth period, exogenous GA could
301 restore growth to decapitated controls when supplied together with auxin inhibitors (Figure 7).

302 **Discussion**

303 **CK and sugars initiate bud release, without stem auxin depletion**

304 By investigating bud outgrowth that occurs outside the zone of auxin depletion after decapitation,
305 we have revealed shortcomings of the classical auxin-centric apical dominance model where
306 auxin depletion after decapitation promotes branching through enhancing CK levels (Sachs and
307 Thimann, 1964; Turnbull et al., 1997; Tanaka et al., 2006). Here we show that changes in stem
308 and bud CK levels following decapitation are not likely due to changes in auxin levels, at least not
309 initially. Auxin depletion occurs too slow to account for the rapid increases observed in CK levels
310 in the stem and bud (Figure 1). CK levels in node 2 buds increased significantly within 1 h of
311 decapitation and before measurable outgrowth or changes in *BRC1* gene expression (Figure 1).
312 These findings demonstrate that decapitation-induced auxin depletion is not the initial signal that
313 triggers CK accumulation in the pea stem and bud distal to the decapitation site (Figure 2).
314 Instead, as suggested previously for stimulating bud outgrowth (Mason et al., 2014), sugars are a
315 strong candidate for this enhancement in CK that occurs outside the zone of auxin depletion
316 (Figure 3).

317 Sucrose and the sugar signalling metabolite Tre6P accumulate rapidly after decapitation in pea
318 (Mason et al., 2014; Barbier et al., 2015; Fichtner et al., 2017; Fichtner et al., 2021). In rose *in*
319 *vitro* and dark grown potato, sucrose has been suggested to promote bud outgrowth through
320 enhancement of CK levels (Barbier et al., 2015; Roman et al., 2016; Salam et al., 2021). We used
321 an *in vitro* system to test whether sucrose may enhance CK levels in pea buds. Exogenous
322 sucrose supplied *in vitro* led to somewhat similar changes in CK types to those observed in
323 decapitated plants (Figure 1D and 3B). In buds of sucrose-treated isolated segments and
324 decapitated plants, the levels of *tZ*- and *tZR*-type CKs consistently increased over time while the
325 accumulation of *iP*-type CKs in buds stopped at 3-6 h and decreased afterwards (Figure 3B and

326 Supplemental Figure S1C). This supports the premise that rapid enhancement of sucrose levels
327 after decapitation is at least partly responsible for the elevated CK levels (Mason et al., 2014;
328 Fichtner et al., 2017) (Figure 8).

329 The hypothesis that sucrose may at least in part induce branching through CKs is further
330 supported by the inhibition of sucrose-induced bud growth by inhibitors of CK synthesis or CK
331 perception in potato (Salam et al., 2021). It is also likely that CK increases sugar availability in
332 buds (Ljung et al., 2015; Salam et al., 2021). The recent study in potato suggests a positive feed-
333 forward model whereby sucrose supply to buds enhances CK levels which promotes bud
334 invertase activity, causing a higher bud sink strength which attracts even more sucrose (Salam et
335 al., 2021). This is consistent with the observation that the combined supply of sucrose (up to 50
336 mM) and exogenous CK (BA) *in vitro* further enhanced the promotion of bud growth in pea
337 (Figure 3C). Moreover, endogenous CK accumulation is likely to have an important effect in pea
338 as chemically reducing endogenous CK degradation, at least in SL deficient buds, greatly
339 enhanced bud growth (Figure 4D).

340 In decapitated plants, we therefore propose that before stem auxin depletion, rapidly accumulated
341 sucrose and CK act in a module to promote rapid bud release (Figure 8). We propose that, after
342 decapitation, rapid enhancement of sucrose levels in buds followed by the slower depletion of
343 auxin levels in stems promote CK levels over the short and longer term (Figure 2A and 3A)
344 (Schaller et al., 2015). Apical dominance has long been a cornerstone example of the
345 antagonistic relationship between auxin and CK. This study questions the extent to which shoot
346 CK levels are controlled by auxin relative to sugars, and potentially other nutrients (Yoneyama et
347 al., 2020) and reveals a need for future studies on the regulation of CK homeostasis.

348 **Sugar and CK can over-ride SL signalling during bud release**

349 We used the physiological contexts of decapitation and light quantity to investigate sugar, CK and
350 SL interactions. Decapitation rapidly induces sugar and CK accumulation in buds (Figure 1)
351 (Mason et al., 2014; Fichtner et al., 2017). Using the same GR24 treatment that inhibits bud
352 growth in SL biosynthesis deficient mutants (Figure 4A), there was no significant effect of GR24
353 on initial decapitation or CK-induced bud growth (Figure 4F and G) despite GR24 being inhibitory
354 after a few days. Similarly, sucrose treatment in intact SL-deficient branching mutants diminished
355 bud inhibition by GR24 within the first two days after treatment (Figure 4E). GR24 treatment
356 under reduced light, and therefore reduced sugar availability, enhanced *BRC1* expression and
357 inhibition of bud release compared with control light conditions (Supplemental Figure S5). These
358 results suggest that the rapid increase in sugar availability (Mason et al., 2014) and CK levels
359 after decapitation (Figure 1) can substantially antagonise the inhibitory effect of SL. This is

360 consistent with the recent findings that sucrose and CK regulate the SL response and/or
361 components of the SL signalling pathway in diverse species including pea, rice and rose (Barbier
362 et al., 2015; Bertheloot et al., 2020; Kerr et al., 2021; Patil et al., 2021). The small size of dormant
363 axillary buds greatly limits their sink strength and ability to attract and utilise sugars. Sugar
364 signalling independently or via CK during bud release (Figure 8) (Barbier et al., 2021) induces
365 buds to grow. This promotion of very small buds may have selective advantage through enabling
366 growth under favourable conditions whilst enabling subsequent inhibition including via
367 competition among growing shoots (Stafstrom, 1995; Barbier et al., 2019; Luo et al., 2021).
368 Future studies should explore sugar fluxes and allocation (Fichtner et al., 2021; Fichtner and
369 Lunn, 2021) that occur during the transition of a bud with high demand for assimilates to a branch
370 comprised of source leaves and an actively growing apical sink. This will provide an excellent
371 context upon which to evaluate the relative contributions of sugar and hormone signalling.

372 In addition to interactions with sugar pathways, phytohormones also interact with each other to
373 modulate bud release (Wang et al., 2018; Barbier et al., 2019; Luo et al., 2021). Here we
374 demonstrate that exogenous SL treatment in SL-deficient mutants causes a rapid decrease of
375 bud growth and CK levels in axillary buds 6 h after treatment (Figure 4A and B). Consistently, this
376 SL treatment significantly inhibited the expression of CK biosynthesis genes (*IPT1* and *LOG1*, 3,
377 4 and 6), and promoted the expression of CK catabolism genes (*CKX* 3, 5, and 7) (Figure 4C).
378 Similar results have been found in peach, where SL treatment on buds decreased decapitation-
379 induced CK accumulation and expression of *IPT* genes (Li et al., 2018). In rice, expression of a
380 CK catabolism gene (*OsCKX9*) was rapidly enhanced by SL treatment and tiller number was
381 enhanced in the corresponding *ckx9* mutant (Duan et al., 2019).

382 Despite the effect of GR24 on endogenous CK levels, enhanced CK levels are not observed in
383 various shoot tissues of SL-deficient mutants in pea or arabidopsis perhaps due to homeostatic
384 regulation of CK levels over the long-term (Beveridge et al., 1997; Foo et al., 2007; Kiba et al.,
385 2013; Young et al., 2014; Nguyen et al., 2021). In contrast, SL mutants in pea and arabidopsis
386 have greatly suppressed levels of CKs in the xylem sap due to an unidentified systemic shoot-
387 derived feedback signal (Beveridge et al., 1997; Foo et al., 2007). Future studies could assess to
388 what extent the reduction in bud growth by SL is due to independent SL and CK regulation of
389 *SMXL7* and *BRC1* (Dun et al., 2012; Kerr et al., 2021; Patil et al., 2021) versus SL regulation of
390 CK metabolism (Figure 4) (Li et al., 2018; Duan et al., 2019) and whether the systemic shoot-
391 derived feedback signal is related to sugars.

392 **GA promotes sustained bud growth in pea**

393 After release, buds need to undergo sustained growth to complete their development into
394 branches (Figure 8). By treating released axillary buds with GA (Figure 5), we found that GA
395 promoted sustained bud growth, even though it had no effect on bud release when treated
396 independently on intact plants. A role of GA specific to enhancement of sustained bud growth
397 was supported by the observation that the bud growth difference between GA deficient mutants
398 compared with WT did not occur over the first few days after decapitation (Figure 5C). Moreover,
399 increased endogenous GA levels in buds of decapitated plants did not precede measurable bud
400 release and GA application did not regulate expression of *BRC1* or *DRM1* (Figure 6A,
401 Supplemental Figure S6B). All these results indicate that GA can promote sustained bud growth
402 in pea once buds are released but is itself unable to activate bud release and associated changes
403 in *BRC1* gene expression. It is tempting to speculate that the different effects of GA treatment on
404 buds in different species may relate to whether buds have already entered an initial bud release
405 phase (O'Neill et al., 2019).

406 In pea shoots, endogenous active GA and auxin levels are well correlated (O'Neill and Ross,
407 2002; Hedden and Thomas, 2012). As reported previously (Balla et al., 2002), endogenous auxin
408 levels increased in released buds over time (Figure 1C) and is consistent with previous reports
409 that enhanced sugars promote auxin biosynthesis and export from buds during bud release
410 (Sairanen et al., 2012; Barbier et al., 2015). The regulation of sustained growth by GA appears to
411 be tied to the previous established model of auxin- and GA-dependent growth of the main shoot
412 (O'Neill and Ross, 2002; Hedden and Thomas, 2012). Our analysis also revealed a strong
413 correlation between endogenous IAA and GA₁ levels in internode stems and axillary buds (Figure
414 6D-F). These results indicate that auxin in buds may induce GA biosynthesis thus prompting
415 sustained bud growth. Auxin efflux from axillary buds can inhibit sustained bud growth but not
416 bud release indicating a role of auxin in buds at an advanced rather than early stage (Brewer et
417 al., 2009; Chabikwa et al., 2019). Moreover, GA can rescue inhibition of sustained bud growth by
418 auxin inhibitors (Figure 7). This also indicates that GA acts downstream of auxin to promote
419 sustained bud growth in pea and provides an alternative suggestion in pea for the auxin transport
420 theory of shoot branching.

421 **Conclusion and revised model of apical dominance**

422 In the revised apical dominance model (Figure 8), sugars and CK act in a module driving bud
423 release and which suppress inhibition by SL (Figure 1, 3 and 4) (Patil et al., 2021). After an initial
424 bud release stage of growth, SL acts antagonistically against sucrose and CK to suppress

425 subsequent growth (Figure 4) (Dun et al., 2013). Auxin accumulation in released buds promotes
426 sustained growth into branches at least partly through stimulation of GA (Figures 7-8).

427 **Materials and Methods**

428 **Plant Material, Growth Conditions, Treatments**

429 The lines of garden pea (*Pisum sativum*) used in this study were Torsdag (L107, WT), the GA
430 deficient mutant *le* (NGB5839) and the SL deficient mutant *rms5-3* and *rms1-2T* derived from
431 Torsdag. Plants were grown in 68 mm square pots using the potting mix as previously described
432 (Cao et al., 2020), in a temperature-controlled room (23°C day/18°C night) with an 18-h
433 photoperiod (16 h LED light with 2 h ceiling light extension). Plants with five fully expanded leaves
434 were used unless specified otherwise. Nodes were numbered acropetally from the first scale leaf
435 as node 1 and the distance from node 2 to node 5 was approximately 11 cm. The axillary bud
436 outgrowth at node 2 was monitored following treatments with various combinations of gibberellin
437 acid A₃ (GA₃), synthetic strigolactone (rac-GR24), 6-benzylaminopurine (BA), 3TFM-2HE, L-Kyn
438 and PCIB in 10 µL except for the timelapse experiment with 5 µL. All final solutions contained 1%
439 PEG-1450 and 0.01% Tween-20. The same amount of solvent was added to the control solutions
440 (acetone for GR24, DMSO for 3TFM-2HE, L-Kyn and PCIB and ethanol for BA and GA₃). For
441 decapitation treatments, the internodes of WT plants were cut 1 cm above node 5. For NAA
442 treatments, 3 g L⁻¹ NAA in lanolin was treated at the cut stump immediately after decapitation as
443 described previously (Foo et al., 2005). The sugar treatment *in vivo* was followed as described
444 previously (Mason et al., 2014).

445 **Phenotypic analysis of bud outgrowth**

446 The measurement of bud length was performed using time-lapse photography at 1 h intervals, as
447 described previously (Mason et al., 2014). The daily measurement of bud length was performed
448 using digital callipers (resolution: 0.01 mm). Bud growth was calculated as the difference between
449 the initial and current bud size.

450 ***In vitro* cultivation of pea axillary buds**

451 Previous established method was used (Barbier et al., 2015). Briefly, node 2 pea stem segments
452 (1.5 cm) were excised from intact plants with five expanded leaves. Stipules and leaves were
453 removed before the stem segments were transferred onto half strength Murashige and Skoog
454 growth medium, supplemented with 50 mM of sucrose or mannitol. The plate containing stem
455 segments were cultured in the growth room as described above.

456 **Gene expression and phytohormone profiling**

457 Total RNA and phytohormones were extracted and processed as described previously from the
458 same plant materials and using internal standards for the phytohormones (Barbier et al., 2019;
459 Cao et al., 2020). Three to four replicates were used, each containing 10-20 buds. *PsEF1α*,
460 *PsGADPH* and *PsTUB2* were used as RT-PCR reference genes for normalization. Primer
461 sequences are listed in Supplemental Table S1.

462 **Data processing and statistical analysis**

463 Data analysis for gene expression and phytohormone profiling was performed as described
464 previously (Cao et al., 2020). Statistical analyses were performed using Graphpad prism 9.0
465 (Graphpad Software, USA) and correlation analysis was performed using R with Pearson's
466 correlation. Two tailed Student's *t*-test and one-way ANOVA (Fisher's LSD test) were used unless
467 otherwise stated.

468
469 **Acknowledgments and Funding**
470

471 The authors acknowledge the scientific and technical assistance from Dr. Amanda Nouwens and
472 Mr. Peter Josh for mass spectrometry and Dr Jaroslav Nisler for providing the CKX inhibitor. This
473 research was funded by the Chinese Scholarship Council, The University of Queensland, the
474 Australian Research Council (Georgina Sweet Laureate Fellowship, FL180100139; Centre of
475 Excellence for Plant Success in Nature and Agriculture, CE200100015). This work is dedicated to
476 the memory of our good friend and colleague, Tinashe Chabikwa, who died in March of 2022,
477 during the preparation of this paper.

478 **Author Contributions**

479 All authors contributed to experimental design and critically reviewed the manuscript. D.C., L.D.,
480 and S.K. performed experiments and analyzed data. D.C., C.B., F.B., E.D. and F.F. interpreted
481 data. D.C. and C.B. wrote the manuscript with input from the other authors, and all authors edited
482 the manuscript.

483 **References**

484 **Aguilar-Martínez JA, Poza-Carrión C, Cubas P** (2007) *Arabidopsis BRANCHED1* acts as an
485 integrator of branching signals within axillary buds. *The Plant Cell* **19**: 458-472
486 **Balla J, Blažková J, Reinöhl V, Procházka S** (2002) Involvement of auxin and cytokinins in
487 initiation of growth of isolated pea buds. *Plant Growth Regulation* **38**: 149-156
488 **Balla J, Kalousek P, Reinöhl V, Friml J, Procházka S** (2011) Competitive canalization of PIN -
489 dependent auxin flow from axillary buds controls pea bud outgrowth. *The Plant Journal*
490 **65**: 571-577
491 **Balla J, Medvedová Z, Kalousek P, Matješčuková N, Friml J, Reinöhl V, Procházka S**
492 (2016) Auxin flow-mediated competition between axillary buds to restore apical
493 dominance. *Scientific Reports* **6**: 35955

494 **Barbier F, Péron T, Lecerf M, Perez-Garcia M-D, Barrière Q, Rolčík J, Boutet-Mercey S,**
495 **Citerne S, Lemoine R, Porcheron B** (2015) Sucrose is an early modulator of the key
496 hormonal mechanisms controlling bud outgrowth in *Rosa hybrida*. *Journal of*
497 *Experimental Botany* **66**: 2569-2582

498 **Barbier FF, Cao D, Fichtner F, Weiste C, Perez-Garcia M-D, Caradeuc M, Le Gourrierec J,**
499 **Sakr S, Beveridge CA** (2021) HEXOKINASE1 signalling promotes shoot branching and
500 interacts with cytokinin and strigolactone pathways. *New Phytologist* **231**: 1088-1104

501 **Barbier FF, Chabikwa TG, Ahsan MU, Cook SE, Powell R, Tanurdzic M, Beveridge C** (2019)
502 A phenol/chloroform-free method to extract nucleic acids from recalcitrant, woody tropical
503 species for gene expression and sequencing. *Plant Methods* **15**: 62

504 **Barbier FF, Dun EA, Beveridge CA** (2017) Apical dominance. *Current Biology* **27**: R864-R865

505 **Barbier FF, Dun EA, Kerr SC, Chabikwa TG, Beveridge CA** (2019) An update on the signals
506 controlling shoot branching. *Trends in Plant Science* **24**: 220-236

507 **Bertheloot J, Barbier F, Boudon F, Perez - Garcia MD, Péron T, Citerne S, Dun E,**
508 **Beveridge C, Godin C, Sakr S** (2020) Sugar availability suppresses the auxin - induced
509 strigolactone pathway to promote bud outgrowth. *New Phytologist* **225**: 866-879

510 **Beveridge CA, Murfet IC, Kerhoas L, Sotta B, Miginiac E, Rameau C** (1997) The shoot
511 controls zeatin riboside export from pea roots. Evidence from the branching mutant rms4.
512 *The Plant Journal* **11**: 339-345

513 **Braun N, de Saint Germain A, Pillot J-P, Boutet-Mercey S, Dalmais M, Antoniadi I, Li X,**
514 **Maia-Grondard A, Le Signor C, Bouteiller N** (2012) The pea TCP transcription factor
515 PsBRC1 acts downstream of strigolactones to control shoot branching. *Plant Physiology*
516 **158**: 225-238

517 **Brewer PB, Dun EA, Ferguson BJ, Rameau C, Beveridge CA** (2009) Strigolactone acts
518 downstream of auxin to regulate bud outgrowth in pea and *Arabidopsis*. *Plant Physiology*
519 **150**: 482-493

520 **Brewer PB, Dun EA, Gui R, Mason MG, Beveridge CA** (2015) Strigolactone inhibition of
521 branching independent of polar auxin transport. *Plant Physiology* **168**: 1820-1829

522 **Cao D, Barbier F, Yoneyama K, Beveridge CA** (2020) A rapid method for quantifying RNA and
523 phytohormones from a small amount of plant tissue. *Frontiers in Plant Science* **11**:
524 605069

525 **Chabikwa TG, Brewer PB, Beveridge CA** (2019) Initial bud outgrowth occurs independent of
526 auxin flow from out of buds. *Plant Physiology* **179**: 55-65

527 **Dierck R, Dhooghe E, Van Huylenbroeck J, De Riek J, De Keyser E, Van Der Straeten D**
528 (2016) Response to strigolactone treatment in chrysanthemum axillary buds is influenced
529 by auxin transport inhibition and sucrose availability. *Acta Physiologiae Plantarum* **38**:
530 271

531 **Dolgikh E, Shaposhnikov A, Dolgikh A, Gribchenko E, Bodyagina K, Yuzhikhin O,**
532 **Tikhonovich I** (2017) Identification of *Pisum sativum* L. cytokinin and auxin metabolic
533 and signaling genes, and an analysis of their role in symbiotic nodule development.
534 *International Journal of Plant Physiology and Biochemistry* **9**: 22-35

535 **Dong Z, Xiao Y, Govindarajulu R, Feil R, Siddoway ML, Nielsen T, Lunn JE, Hawkins J,**
536 **Whipple C, Chuck G** (2019) The regulatory landscape of a core maize domestication
537 module controlling bud dormancy and growth repression. *Nature Communications* **10**: 1-
538 15

539 **Duan J, Yu H, Yuan K, Liao Z, Meng X, Jing Y, Liu G, Chu J, Li J** (2019) Strigolactone
540 promotes cytokinin degradation through transcriptional activation of *CYTOPKININ*
541 *OXIDASE/DEHYDROGENASE* 9 in rice. *Proceedings of the National Academy of*
542 *Sciences* **116**: 14319-14324

543 **Dun EA, de Saint Germain A, Rameau C, Beveridge CA** (2012) Antagonistic action of
544 strigolactone and cytokinin in bud outgrowth control. *Plant Physiology* **158**: 487-498

545 **Dun EA, de Saint Germain A, Rameau C, Beveridge CA** (2013) Dynamics of strigolactone
546 function and shoot branching responses in *Pisum sativum*. *Molecular Plant* **6**: 128-140

547 **Elfving DC, Visser DB, Henry JL** (2011) Gibberellins stimulate lateral branch development in
548 young sweet cherry trees in the orchard. International Journal of Fruit Science **11**: 41-54

549 **Fichtner F, Barbier FF, Annunziata MG, Feil R, Olas JJ, Mueller - Roeber B, Stitt M, Beveridge CA, Lunn JE** (2021) Regulation of shoot branching in arabidopsis by
550 trehalose 6 - phosphate. New Phytologist **229**: 2135-2151

551 **Fichtner F, Barbier FF, Feil R, Watanabe M, Annunziata MG, Chabikwa TG, Höfgen R, Stitt M, Beveridge CA, Lunn JE** (2017) Trehalose 6 - phosphate is involved in triggering
552 axillary bud outgrowth in garden pea (*pisum sativum* L.). The Plant Journal **92**: 611-623

553 **Fichtner F, Lunn JE** (2021) The role of trehalose 6-phosphate (Tre6P) in plant metabolism and
554 development. Annual Review of Plant Biology **72**: 737-760

555 **Foo E, Bullier E, Goussot M, Foucher F, Rameau C, Beveridge CA** (2005) The branching
556 gene *RAMOSUS1* mediates interactions among two novel signals and auxin in pea. The
557 Plant Cell **17**: 464-474

558 **Foo E, Morris SE, Parmenter K, Young N, Wang H, Jones A, Rameau C, Turnbull CG, Beveridge CA** (2007) Feedback regulation of xylem cytokinin content is conserved in
559 pea and *Arabidopsis*. Plant Physiology **143**: 1418-1428

560 **Gocal GF, Pharis RP, Yeung EC, Pearce D** (1991) Changes after decapitation in concentrations
561 of indole-3-acetic acid and abscisic acid in the larger axillary bud of *Phaseolus vulgaris* L.
562 cv Tender Green. Plant Physiology **95**: 344-350

563 **Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA, Pillot J-P, Letisse F, Matusova R, Danoun S, Portais J-C** (2008) Strigolactone inhibition of shoot branching.
564 Nature **455**: 189-194

565 **Hayward A, Stirnberg P, Beveridge C, Leyser O** (2009) Interactions between auxin and
566 strigolactone in shoot branching control. Plant Physiology **151**: 400-412

567 **Hedden P, Thomas SG** (2012) Gibberellin biosynthesis and its regulation. Biochemical Journal
568 **444**: 11-25

569 **Katyayini NU, Rinne PL, Tarkowská D, Strnad M, Van Der Schoot C** (2020) Dual role of
570 gibberellin in perennial shoot branching: inhibition and activation. Frontiers in Plant
571 Science **11**: 736

572 **Kebrom TH** (2017) A growing stem inhibits bud outgrowth—the overlooked theory of apical
573 dominance. Frontiers in Plant Science **8**: 1874

574 **Kebrom TH, Spielmeyer W, Finnegan EJ** (2013) Grasses provide new insights into regulation of
575 shoot branching. Trends in Plant Science **18**: 41-48

576 **Kerr SC, de Saint Germain A, Dissanayake IM, Mason MG, Dun EA, Tanurdzic M, Beveridge CA** (2020) Hormonal regulation of the BRC1-dependent strigolactone transcriptome
577 involved in shoot branching responses. bioRxiv: 2020.2003.2019.999581

578 **Kerr SC, Patil SB, de Saint Germain A, Pillot JP, Saffar J, Ligerot Y, Aubert G, Citerne S, Bellec Y, Dun EA** (2021) Integration of the SMXL/D53 strigolactone signalling repressors
579 in the model of shoot branching regulation in *Pisum sativum*. The Plant Journal **107**:
580 1756-1770

581 **Kiba T, Takei K, Kojima M, Sakakibara H** (2013) Side-chain modification of cytokinins controls
582 shoot growth in *Arabidopsis*. Developmental Cell **27**: 452-461

583 **Kotov AA, Kotova LM, Romanov GA** (2021) Signaling network regulating plant branching:
584 Recent advances and new challenges. Plant Science **307**: 110880

585 **Leyser O** (2006) Dynamic integration of auxin transport and signalling. Current Biology **16**: R424-
586 R433

587 **Leyser O** (2018) Auxin signaling. Plant Physiology **176**: 465-479

588 **Li M, Wei Q, Xiao Y, Peng F** (2018) The effect of auxin and strigolactone on *ATP/ADP*
589 *isopentenyltransferase* expression and the regulation of apical dominance in peach. Plant
590 Cell Reports **37**: 1693-1705

591 **Liao Z, Yu H, Duan J, Yuan K, Yu C, Meng X, Kou L, Chen M, Jing Y, Liu G** (2019) SLR1
592 inhibits MOC1 degradation to coordinate tiller number and plant height in rice. Nature
593 Communications **10**: 2738

594

595

596

597

598

599

600 **Ljung K, Nemhauser JL, Perata P** (2015) New mechanistic links between sugar and hormone
601 signalling networks. *Current Opinion in Plant Biology* **25**: 130-137

602 **Lo S-F, Yang S-Y, Chen K-T, Hsing Y-I, Zeevaart JA, Chen L-J, Yu S-M** (2008) A novel class
603 of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice.
604 *The Plant Cell* **20**: 2603-2618

605 **Luo Z, Janssen BJ, Snowden KC** (2021) The molecular and genetic regulation of shoot
606 branching. *Plant Physiology* **187**: 1033–1044

607 **Martín - Trillo M, Grandío EG, Serra F, Marcel F, Rodríguez - Buey ML, Schmitz G, Theres
608 K, Bendahmane A, Dopazo H, Cubas P** (2011) Role of tomato *BRANCHED1* - like
609 genes in the control of shoot branching. *The Plant Journal* **67**: 701-714

610 **Mason MG, Ross JJ, Babst BA, Wienclaw BN, Beveridge CA** (2014) Sugar demand, not
611 auxin, is the initial regulator of apical dominance. *Proceedings of the National Academy
612 of Sciences* **111**: 6092-6097

613 **Morris SE, Cox MC, Ross JJ, Krisantini S, Beveridge CA** (2005) Auxin dynamics after
614 decapitation are not correlated with the initial growth of axillary buds. *Plant Physiology*
615 **138**: 1665-1672

616 **Nguyen HN, Nguyen TQ, Kisiala AB, Emery R** (2021) Beyond transport: Cytokinin ribosides are
617 translocated and active in regulating the development and environmental responses of
618 plants. *Planta* **254**: 1-17

619 **Ni J, Gao C, Chen M-S, Pan B-Z, Ye K, Xu Z-F** (2015) Gibberellin promotes shoot branching in
620 the perennial woody plant *Jatropha curcas*. *Plant and Cell Physiology* **56**: 1655-1666

621 **Nisler J, Kopečný D, Pěkná Z, Končitíková R, Koprna R, Murvanidze N, Werbrouck SP,
622 Havlíček L, De Diego N, Kopečná M** (2021) Diphenylurea-derived cytokinin
623 oxidase/dehydrogenase inhibitors for biotechnology and agriculture. *Journal of
624 Experimental Botany* **72**: 355-370

625 **Nordström A, Tarkowski P, Tarkowska D, Norbaek R, Åstot C, Dolezal K, Sandberg G**
626 (2004) Auxin regulation of cytokinin biosynthesis in *Arabidopsis thaliana*: a factor of
627 potential importance for auxin-cytokinin-regulated development. *Proceedings of the
628 National Academy of Sciences* **101**: 8039-8044

629 **O'Neill DP, Ross JJ** (2002) Auxin Regulation of the Gibberellin Pathway in Pea. *Plant
630 Physiology* **130**: 1974-1982

631 **O'Neill CM, Lu X, Calderwood A, Tudor EH, Robinson P, Wells R, Morris R, Penfield S**
632 (2019) Vernalization and floral transition in autumn drive winter annual life history in
633 oilseed rape. *Current Biology* **29**: 4300-4306. e4302

634 **Ongaro V, Leyser O** (2007) Hormonal control of shoot branching. *Journal of Experimental
635 Botany* **59**: 67-74

636 **Patil SB, Barbier FF, Zhao J, Zafar SA, Uzair M, Sun Y, Fang J, Perez - Garcia MD,
637 Bertheloot J, Sakr S** (2021) Sucrose promotes D53 accumulation and tillering in rice.
638 *New Phytologist*

639 **Phillips I** (1975) Apical dominance. *Annual Review of Plant Physiology* **26**: 341-367

640 **Prusinkiewicz P, Crawford S, Smith RS, Ljung K, Bennett T, Ongaro V, Leyser O** (2009)
641 Control of bud activation by an auxin transport switch. *Proceedings of the National
642 Academy of Sciences* **106**: 17431-17436

643 **Ramsay L, Comadran J, Druka A, Marshall DF, Thomas WT, Macaulay M, MacKenzie K,
644 Simpson C, Fuller J, Bonar N** (2011) *INTERMEDIUM-C*, a modifier of lateral spikelet
645 fertility in barley, is an ortholog of the maize domestication gene *TEOSINTE BRANCHED
646 1*. *Nature Genetics* **43**: 169-172

647 **Roman H, Girault T, Barbier F, Périon T, Brouard N, Pencik A, Novak O, Vian A, Soulaiman
648 S, Lothier J** (2016) Cytokinins are initial targets of light in the control of bud outgrowth.
649 *Plant Physiology* **172**: 489–509

650 **Ross JJ, O'Neill DP, Smith JJ, Kerckhoffs LHJ, Elliott RC** (2000) Evidence that auxin
651 promotes gibberellin A₁ biosynthesis in pea. *The Plant Journal* **21**: 547-552

652 **Ross JJ, O'Neill DP, Rathbone DA** (2003) Auxin-gibberellin interactions in pea: integrating the
653 old with the new. *Journal of Plant Growth Regulation* **22**: 99-108

654 **Sachs T, Thimann KV** (1964) Release of lateral buds from apical dominance. *Nature* **201**: 939-
655 940

656 **Sairanen I, Novák O, Pěnčík A, Ikeda Y, Jones B, Sandberg G, Ljung K** (2012) Soluble
657 carbohydrates regulate auxin biosynthesis via PIF proteins in *Arabidopsis*. *The Plant Cell*
658 **24**: 4907-4916

659 **Salam BB, Barbier F, Danieli R, Teper-Bamnolker P, Ziv C, Spíchal L, Aruchamy K,**
660 **Shnaider Y, Leibman D, Shaya F** (2021) Sucrose promotes stem branching through
661 cytokinin. *Plant Physiology* **185**: 1708-1721

662 **Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito**
663 **T, Kobayashi M, Khush GS** (2002) A mutant gibberellin-synthesis gene in rice. *Nature*
664 **416**: 701-702

665 **Schaller GE, Bishopp A, Kieber JJ** (2015) The yin-yang of hormones: cytokinin and auxin
666 interactions in plant development. *The Plant Cell* **27**: 44-63

667 **Schneider A, Godin C, Boudon F, Demotes-Mainard S, Sakr S, Bertheloot J** (2019) Light
668 regulation of axillary bud outgrowth along plant axes: an overview of the roles of sugars
669 and hormones. *Frontiers in Plant Science* **10**: 1296

670 **Scott TK, Case DB, Jacobs WP** (1967) Auxin-gibberellin interaction in apical dominance. *Plant*
671 *Physiology* **42**: 1329-1333

672 **Seale M, Bennett T, Leyser O** (2017) *BRC1* expression regulates bud activation potential but is
673 not necessary or sufficient for bud growth inhibition in *Arabidopsis*. *Development* **144**:
674 1661-1673

675 **Sorefan K, Booker J, Haurogné K, Goussot M, Bainbridge K, Foo E, Chatfield S, Ward S,**
676 **Beveridge C, Rameau C** (2003) MAX4 and RMS1 are orthologous dioxygenase-like
677 genes that regulate shoot branching in *Arabidopsis* and pea. *Genes & Development* **17**:
678 1469-1474

679 **Stafstrom JP** (1995) Influence of bud position and plant ontogeny on the morphology of branch
680 shoots in pea (*Pisum sativum* L. cv. Alaska). *Annals of Botany* **76**: 343-348

681 **Studer A, Zhao Q, Ross-Ibarra J, Doebley J** (2011) Identification of a functional transposon
682 insertion in the maize domestication gene *tb1*. *Nature Genetics* **43**: 1160

683 **Su Y-H, Liu Y-B, Zhang X-S** (2011) Auxin-cytokinin interaction regulates meristem development.
684 *Molecular Plant* **4**: 616-625

685 **Tan M, Li G, Chen X, Xing L, Ma J, Zhang D, Ge H, Han M, Sha G, An N** (2019) Role of
686 cytokinin, strigolactone and auxin export on outgrowth of axillary buds in apple. *Frontiers*
687 in *Plant Science* **10**: 616

688 **Tan M, Li G, Liu X, Cheng F, Ma J, Zhao C, Zhang D, Han M** (2018) Exogenous application of
689 GA 3 inactively regulates axillary bud outgrowth by influencing of branching-inhibitors and
690 bud-regulating hormones in apple (*Malus domestica* Borkh.). *Molecular Genetics and*
691 *Genomics* **293**: 1547-1563

692 **Tanaka M, Takei K, Kojima M, Sakakibara H, Mori H** (2006) Auxin controls local cytokinin
693 biosynthesis in the nodal stem in apical dominance. *The Plant Journal* **45**: 1028-1036

694 **Turnbull CG, Raymond MA, Dodd IC, Morris SE** (1997) Rapid increases in cytokinin
695 concentration in lateral buds of chickpea (*Cicer arietinum* L.) during release of apical
696 dominance. *Planta* **202**: 271-276

697 **Wang B, Smith SM, Li J** (2018) Genetic regulation of shoot architecture. *Annual Review of Plant*
698 *Biology* **69**: 437-468

699 **Wang M, Le Moigne M-A, Bertheloot J, Crespel L, Perez-Garcia M-D, Ogé L, Demotes-**
700 **Mainard S, Hamama L, Davière J-M, Sakr S** (2019) BRANCHED1: a key hub of shoot
701 branching. *Frontiers in Plant Science* **10**: 76

702 **Wang M, Pérez-García M-D, Davière J-M, Barbier F, Ogé L, Gentilhomme J, Voisine L,**
703 **Péron T, Launay-Avon A, Clément G** (2021) Outgrowth of the axillary bud in rose is
704 controlled by sugar metabolism and signalling. *Journal of Experimental Botany* **72**: 3044-
705 3060

706 **Wolbang CM, Ross JJ** (2001) Auxin promotes gibberellin biosynthesis in decapitated tobacco
707 plants. *Planta* **214**: 153-157

708 **Xia X, Dong H, Yin Y, Song X, Gu X, Sang K, Zhou J, Shi K, Zhou Y, Foyer CH, Yu J** (2021)
709 Brassinosteroid signaling integrates multiple pathways to release apical dominance in
710 tomato. *Proceedings of the National Academy of Sciences* **118**

711 **Yadav UP, Ivakov A, Feil R, Duan GY, Walther D, Giavalisco P, Piques M, Carillo P, Hubberten H-M, Stitt M** (2014) The sucrose–trehalose 6-phosphate (Tre6P) nexus: specificity and mechanisms of sucrose signalling by Tre6P. *Journal of Experimental Botany* **65**: 1051-1068

712 **Yang T, Davies PJ, Reid JB** (1996) Genetic dissection of the relative roles of auxin and
713 gibberellin in the regulation of stem elongation in intact light-grown peas. *Plant
714 Physiology* **110**: 1029-1034

715 **Yoneyama K, Xie X, Nomura T, Yoneyama K** (2020) Do phosphate and cytokinin interact to
716 regulate strigolactone biosynthesis or act independently? *Frontiers in plant science* **11**:
717 438

718 **Young NF, Ferguson BJ, Antoniadi I, Bennett MH, Beveridge CA, Turnbull CG** (2014)
719 Conditional auxin response and differential cytokinin profiles in shoot branching mutants.
720 *Plant Physiology* **165**: 1723-1736

721 **Zhu L, Jiang B, Zhu J, Xiao G** (2022) Auxin promotes fiber elongation by enhancing gibberellin
722 acid biosynthesis in cotton. *Plant Biotechnology Journal* **20**: 423-425

723

724

725

726

727

728 **Figure legends**

729 **Figure 1** Tall plants enabled an exploration of growth (A), gene expression (B) and changes in
730 hormone level (C, D) in buds within and below a zone of auxin depletion. (A) Growth of node 2
731 wild-type buds in decapitated and intact plants. $P < 0.05$, one-tailed Student's t test, $n = 5$. (B)
732 Expression of *BRC1* in node 2 buds at 1, 3, 6, and 24 h after decapitation. Results are presented
733 relative to intact control at 1 h, $n = 4$. (C, D) Endogenous auxin (C) and cytokinin levels (D) in
734 internode 2, internode 4 and node 2 bud at 1, 3, 6, and 24 h after decapitation, $n = 4$. Each
735 replicate contains 20 individual buds. Node 2 was approximately 12 cm from the decapitation site.
736 Values are mean \pm SE. * $P < 0.05$, ** $P < 0.01$, two-tailed Student's t test for B, C and D. IAA,
737 indole-3-acetic acid; iP, isopentenyladenine; tZ, *trans*-zeatin; tZR, *trans*-zeatin riboside.
738

739 **Figure 2.** Decapitation-induced CK accumulation is not initially caused by auxin depletion. (A, B)
740 Endogenous CK levels in internode 4 (A) and internode 2 (B) 4 h after decapitation. Decapitated
741 shoots were treated either with mock or 3 g/L NAA above internode 4. Values are mean \pm SE, $n =$
742 4. Multiple comparison tests were performed with one-way ANOVA. Different letters on the top of
743 columns indicate statistically significant differences. (C, D) Log₁₀ fold changes compared with
744 intact plants in transcript of CK biosynthesis and signalling genes in internode 4 (C) and internode
745 2 (D) of decapitated plants treated either with mock or 3 g/L NAA above internode 4. Numbers
746 represent fold change compared with intact plants. Abbreviations: DMAPP, dimethylallyl
747 diphosphate; iPRMP, isopentenyladenosine-5'-monophosphate; tZRMP, *trans*-zeatin riboside-5'-
748 monophosphate; DZRMP, dihydrozeatin riboside-5'-monophosphate; iPR, isopentenyladenosine;
749 tZR, *trans*-zeatin riboside; DZR, dihydrozeatin riboside; iP, isopentenyladenine; tZ, *trans*-zeatin;
750 DZ, dihydrozeatin; IPT, adenosine phosphate-isopentenyltransferase; LOG, cytokinin
751 phosphoribohydrolase 'Lonely guy'; CYP735A, cytochrome P450 mono-oxygenase; ARR5, type-
752 A response regulator 5.

753 **Figure 3.** Sucrose initiates bud release and promotes CK accumulation in buds. (A) Outgrowth of
754 buds on excised stem segments incubated with 50 mM sucrose or mannitol for 24 h, $n = 5$. *
755 indicates timing of first significant difference, one-tailed Student's t test. (B) Levels of endogenous
756 CKs in buds on excised stem segments incubated with 50 mM sucrose or mannitol, $n = 4$. Each
757 replicate contains 20 individual buds. Values are mean \pm SE. * $P < 0.05$, ** $P < 0.01$, two-tailed
758 Student's t test. (C) Outgrowth of buds on excised stem segments incubated with 0, 2, 5, 10, 25,
759 50 mM sucrose and treated with or without 50 μ M 6-benzylaminopurine (BA) for 5 days, $n = 5$.
760 Values are mean \pm SE. * $P < 0.05$, ** $P < 0.01$, two-tailed Student's t test. DMAPP, dimethylallyl
761 diphosphate; iPRMP, isopentenyladenosine-5'-monophosphate; tZRMP, *trans*-zeatin riboside-5'-
762 monophosphate; DZRMP, dihydrozeatin riboside-5'-monophosphate; iPR, isopentenyladenosine;
763 tZR, *trans*-zeatin riboside; DZR, dihydrozeatin riboside; iP, isopentenyladenine; tZ, *trans*-zeatin;
764 DZ, dihydrozeatin; IPT, adenosine phosphate-isopentenyltransferase; LOG, cytokinin
765 phosphoribohydrolase 'Lonely guy'; CYP735A, cytochrome P450 mono-oxygenases.
766

767 **Figure 4.** SL acts antagonistically with CK and sugars to inhibit axillary bud outgrowth and
768 reduces CK levels in buds. (A) Growth of node 2 buds of *rms5* mutants treated with or without 1
769 μ M GR24 (a synthetic SL). * indicates timing of first significant difference. One-tailed Student's t
770 test; $n = 4$. (B) Endogenous CK levels in *rms5* node 2 buds treated with or without 10 μ M of GR24
771 for 6 h. $n = 3$. Each replicate contains 20 individual buds. (C) Expression levels of CK metabolism
772 genes in *rms5* node 2 buds treated with or without 10 μ M of GR24 for 6 h. $n = 3$. Each replicate
773 contains 20 individual buds. (D) Growth of *rms5* node 4 buds treated with mock, 10 μ M GR24,
774 100 μ M 3TFM-2HE, or 10 μ M GR24 with 100 μ M 3TFM-2HE (a CK oxidase inhibitor) after 7
775 days; $n = 7$. (E) Node 2 buds of *rms1* mutants treated with or without 5 μ M GR24 and with or
776 without 600 mM sucrose supplied to the stem vasculature. $n = 4-6$. (F) Growth of wild-type node 2
777 buds treated with or without 5 μ M GR24 and 50 μ M BA. $n = 4-6$. (G) Growth of wild-type node 2
778 buds treated with or without 1 μ M GR24 and with decapitation at internode 8. $n = 4-10$. *rms5*

779 plants with four fully expanded leaves were used for A-D. All values are mean \pm SE. * $P < 0.05$; **
780 $P < 0.01$ compared with mock control, two-tailed Student's t test for B, C and G. One-way
781 ANOVA for D, E, and F. Different letters on the top of columns indicate statistically significant
782 differences. iP, isopentenyladenine; tZ, *trans*-zeatin; tZR, *trans*-zeatin riboside.

783 **Figure 5.** GA does not promote bud release, but rather enhances sustained bud growth. (A)
784 Growth of wild-type node 2 buds after decapitation and/or treatment with 100 μ M GA₃. $n = 12$. **
785 indicates significant difference between decapitation+GA and decapitation treatment groups. (B)
786 Growth of node 2 wild-type (WT) buds treated with solution containing 0 (mock) or 1g/L GA₃,
787 and/or 50 μ M BA (synthetic CK), and/or 2 μ M GR24 (synthetic SL). $n = 16$. (C) Growth of node 4
788 buds of WT or GA deficient mutant (*le*) plants after decapitation. $n = 6$. All values are mean \pm SE.
789 * $P < 0.05$; ** $P < 0.01$, two-tailed Student's t test.

790 **Figure 6.** GA level is correlated with auxin level in axillary buds after decapitation. (A, B and C)
791 Endogenous level change of GA₁ in node 2 bud (A), internode 2 stem (B) and internode 4 stem
792 (C) after decapitation. $n = 4$. Each replicate contains 20 individual buds. Values are mean \pm SE, *
793 $P < 0.05$; ** $P < 0.01$; Student's t test. (D, E and F) The correlations between GA₁ and IAA level
794 changes in node 2 buds (D), internode 2 (E) and internode 4 (F). The Pearson correlation
795 coefficient (r), coefficient of determination (R²) and probability (p) values for each relationship are
796 indicated. These results are from the same plants as in Figure 1.

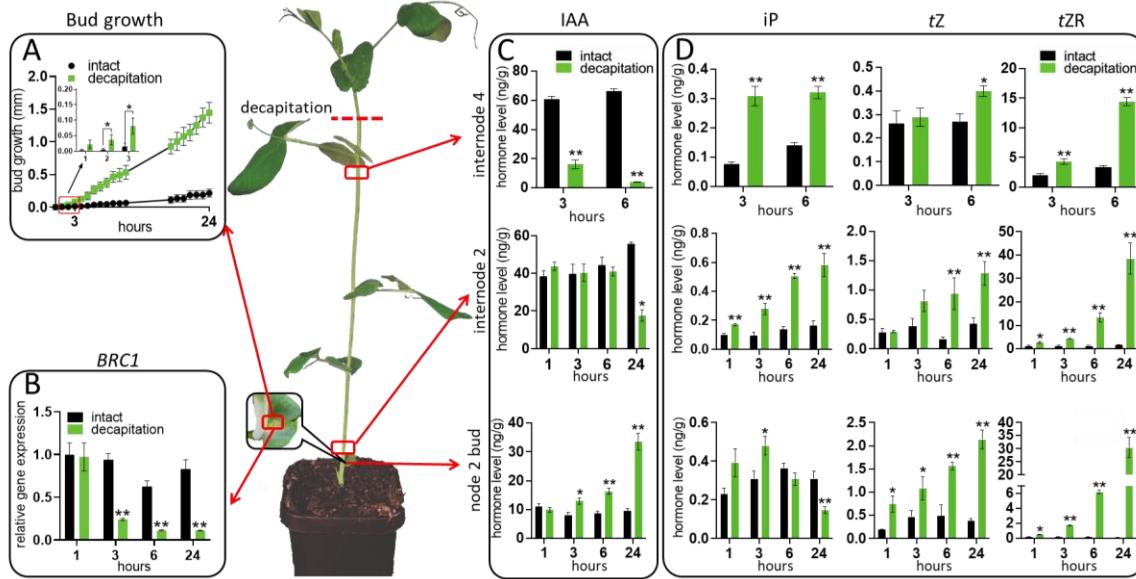
797 **Figure 7.** GA can restore decapitation-induced bud growth in absence of auxin. Growth at node 2
798 after wild-type plants were left intact or decapitated and the buds at node 2 were treated with 10
799 μ l solution containing 0 or 2.5 mM L-Kyn (auxin biosynthesis inhibitor) and 2.5 mM PCIB (auxin
800 perception inhibitor) and/or 500 μ M GA₃. $n = 6$.

801 **Figure 8.** Hypothesis of the network of phytohormone and sugar regulation in apical dominance
802 highlighting different stages including bud dormancy, bud release and sustained bud growth.
803 Dormant buds have very suppressed growth due to the main shoot tip producing auxin and
804 attracting sucrose through its sink strength. This causes comparatively low CK and high SL levels
805 in the stem and buds. After shoot tip removal, rapid accumulation of sugars and CK and reduced
806 SL response trigger bud release. IAA levels in buds also increase at this time consistent with
807 enhanced sugar signalling (Barbier et al., 2015; Ljung et al., 2015). Sustained growth is promoted
808 by continued sucrose supply, together with auxin depletion in the adjacent stem which also
809 enhances CK levels and auxin flow out of buds and reduces SL levels. Enhanced auxin levels in
810 buds promotes GA leading to enhanced bud sink strength and sustained bud growth. The dashed
811 lines indicates a diminished role or effect; flat line inhibition; arrow promotion.

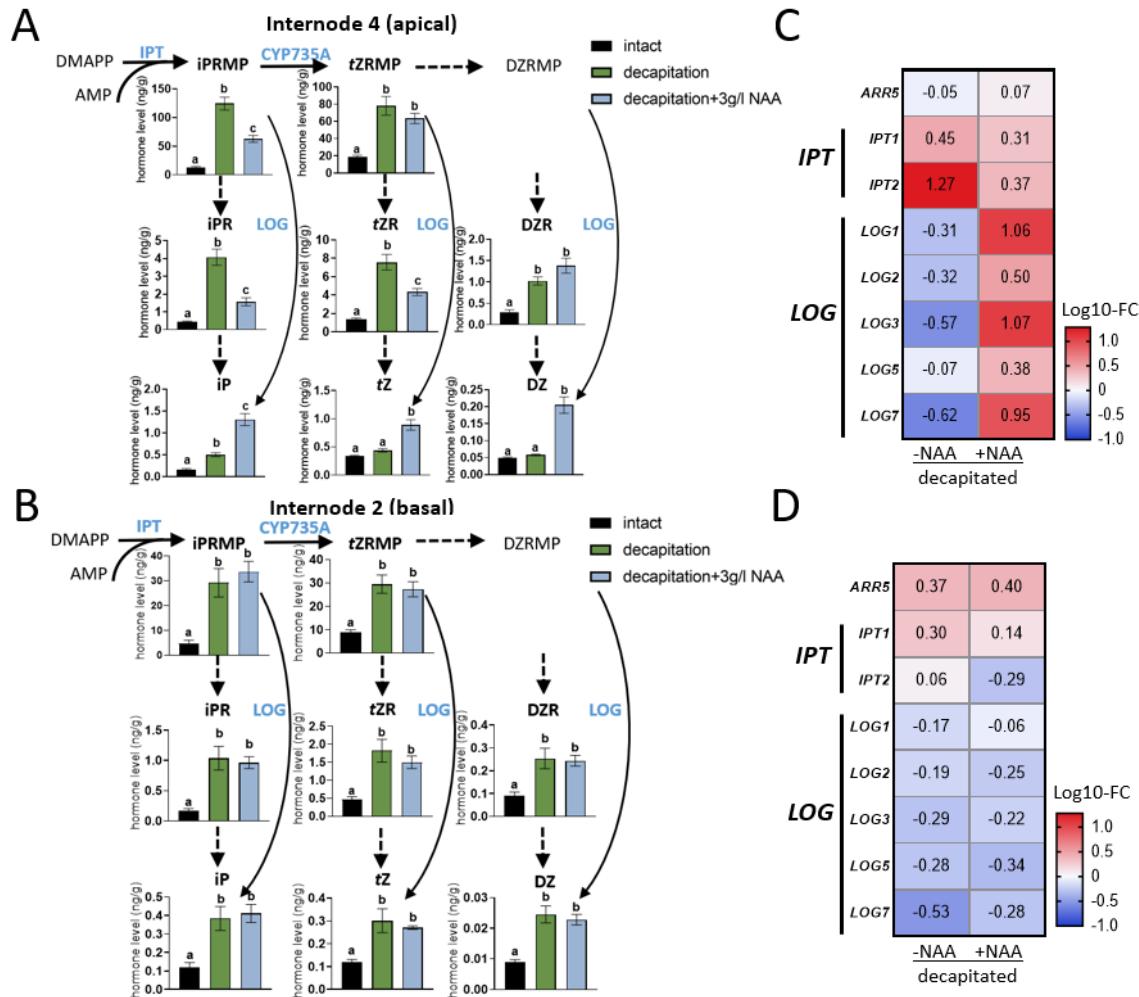
812 **Supplemental Material**

813 **Supplemental Figure S1.** Endogenous CK levels in internode 4 (A), internode 2 (B), node 2 bud
814 (C) at 1, 3, 6, and 24 h after decapitation. Node 2 was about 12 cm from the decapitation site. *
815 P<0.05, **P< 0.01, Student's t test, n = 4. Each replicate contains 20 individual buds. Values are
816 mean \pm SE. Abbreviations: iPRMP, isopentenyladenosine-5'-monophosphate; tZRMP, trans-
817 zeatin riboside-5'-monophosphate; DZRMP, dihydrozeatin riboside-5'-monophosphate; iPR,
818 isopentenyladenosine; tZR, trans-zeatin riboside; DZR, dihydrozeatin riboside; iP,
819 isopentenyladenine; tZ, trans-zeatin; DZ, dihydrozeatin; IPT, adenosine phosphate-
820 isopentenyltransferase; LOG, cytokinin phosphoribohydrolase 'Lonely guy'; CYP735A,
821 cytochrome P450 mono-oxygenases. ND, not detected.

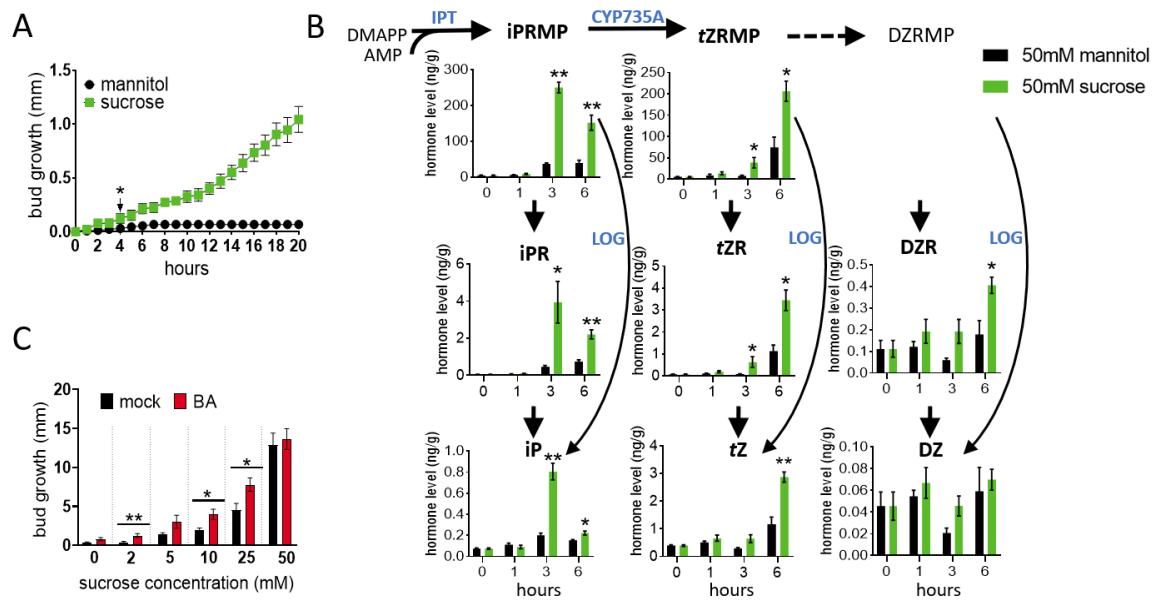
822 **Supplemental Figure S2.** (A, B) Extracted ion chromatograms showing a detectable NAA signal
823 (186.9-141 m/z transition, 9.8 min retention time) in internode 4 (A) and undetectable NAA signal
824 in internode 2 (B) 4 h after decapitation and treatment with 3g/L NAA applied to the decapitated
825 stump above internode 4. (C, D) Endogenous GA₁ levels in internode 4 (C) and internode 2 (D) 4
826 h after decapitation of decapitated plants treated either with mock or 3 g/L NAA above internode
827 4. Values are mean \pm SE, n = 4. Multiple comparison tests were performed with one-way
828 ANOVA; n = 4.

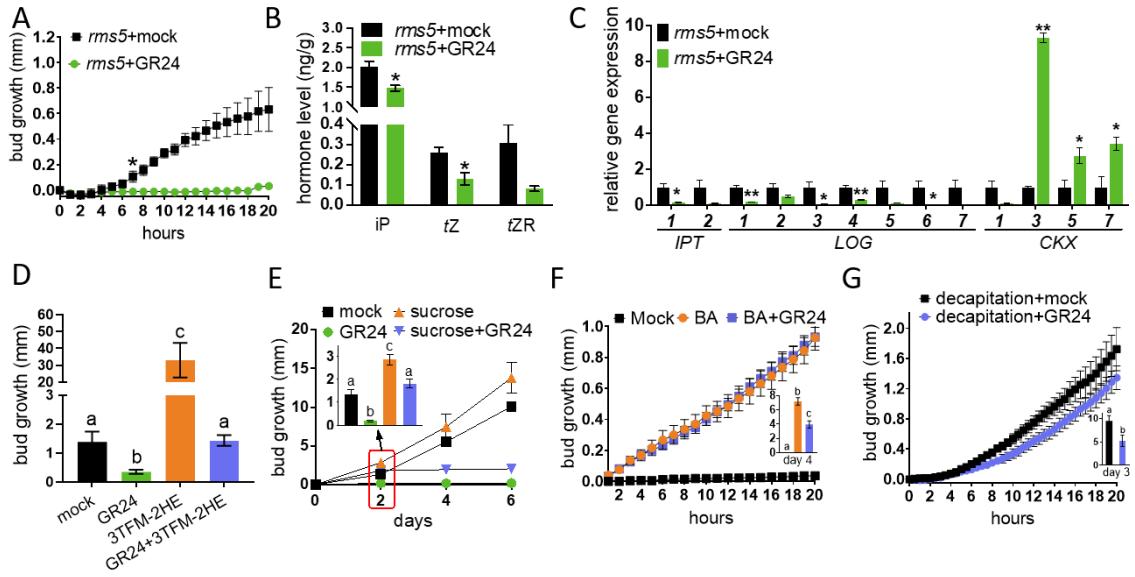

829 **Supplemental Figure S3.** Buds of nodal stem segments exhibit growth after 24 h treatment with
830 50 mM sucrose compared to 50 mM mannitol control.

831 **Supplemental Figure S4.** (A) Endogenous CK levels in *rms5* node 2 buds and internode 2
832 treated with or without 10 μ M of GR24 on node 2 buds for 6 h. n = 3. (B) Expression of bud
833 dormancy genes in *rms5* node 2 buds treated with or without 10 μ M of GR24 for 6 h. n = 3.
834 Values are mean \pm SE. Each replicate contains 20 individual buds. * P<0.05, **P< 0.01, Student's
835 t test.


836 **Supplemental Figure S5.** The early response of CK treated buds to SL is reduced under higher
837 light. Effect of GR24 on BA-induced bud outgrowth at 24 h (A) and *BRC1* expression at 6 h (B)
838 after treatment. Treatments were 50 μ M BA \pm 5 μ M GR24; normal light, 150-200 μ mol m⁻²s⁻¹; low
839 light, 50-75 μ mol m⁻²s⁻¹. Expression of *BRC1* in the bud at node 2 is represented relative to the
840 high light mock control. Different letters on the top of columns indicate significant difference with
841 one-way ANOVA. Values are mean \pm SE; n = 6 plants (A) or 6 pools of 6 plants (B).

842 **Supplemental Figure S6.** (A) Changes in levels of endogenous GAs (GA₁, GA₂₀, GA₂₉) in node 2
843 bud, internode 2 and internode 4 after decapitation. Each replicate contains 20 individual buds; n
844 = 4. Values are mean \pm SE. * P < 0.05; ** P < 0.01, with respect to the directly comparable
845 treatment; Student's t test. NA, not available. (B) Node 2 axillary buds were treated with 2.9 mM
846 GA or 50 μ M BA for 6 hours. Values are mean \pm SE, n = 4. Each replicate contains 20 individual
847 buds. **P < 0.01 compared to mock control, Student's t test.


848 **Supplemental table S1.** Primers used in the study.


Figure 1 Tall plants enabled an exploration of growth (A), gene expression (B) and changes in hormone level (C, D) in buds within and below a zone of auxin depletion. (A) Growth of node 2 wild-type buds in decapitated and intact plants. $P<0.05$, one-tailed Student's t test, $n=5$. (B) Expression of *BRC1* in node 2 buds at 1, 3, 6, and 24 h after decapitation. Results are presented relative to intact control at 1 h, $n=4$. (C, D) Endogenous auxin (C) and cytokinin levels (D) in internode 2, internode 4 and node 2 bud at 1, 3, 6, and 24 h after decapitation, $n=4$. Each replicate contains 20 individual buds. Node 2 was approximately 12 cm from the decapitation site. Values are mean \pm SE. * $P<0.05$, ** $P<0.01$, two-tailed Student's t test for B, C and D. IAA, indole-3-acetic acid; iP, isopentenyladenine; tZ, trans-zeatin; tZR, trans-zeatin riboside.

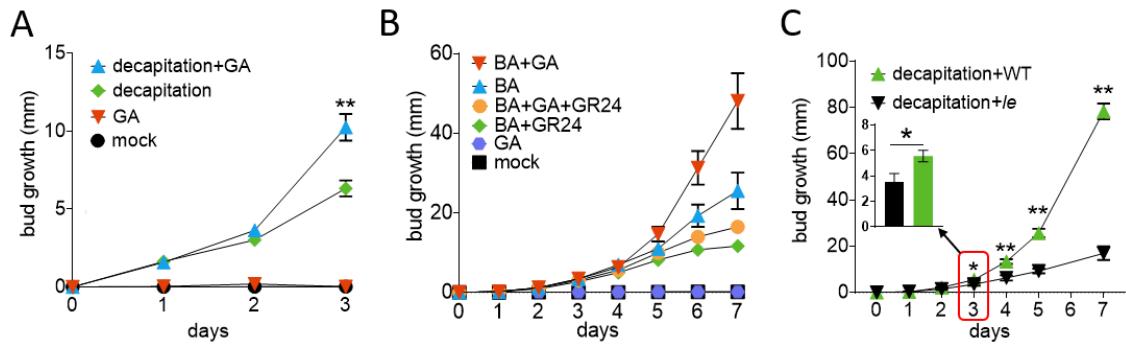
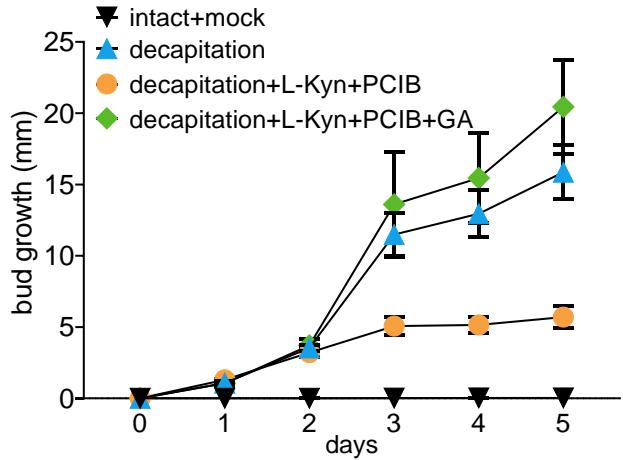

Figure 2. Decapitation-induced CK accumulation is not initially caused by auxin depletion. (A, B) Endogenous CK levels in internode 4 (A) and internode 2 (B) 4 h after decapitation. Decapitated shoots were treated either with mock or 3 g/L NAA above internode 4. Values are mean \pm SE, $n = 4$. Multiple comparison tests were performed with one-way ANOVA. Different letters on the top of columns indicate statistically significant differences. (C, D) Log₁₀fold changes compared with intact plants in transcript of CK biosynthesis and signalling genes in internode 4 (C) and internode 2 (D) of decapitated plants treated either with mock or 3 g/L NAA above internode 4. Numbers represent fold change compared with intact plants. Abbreviations: DMAPP, dimethylallyl diphosphate; iPRMP, isopentenyladenosine-5'-monophosphate; tZRMP, *trans*-zeatin riboside-5'-monophosphate; DZRMP, dihydrozeatin riboside-5'-monophosphate; iPR, isopentenyladenosine; tZR, *trans*-zeatin riboside; DZR, dihydrozeatin riboside; iP, isopentenyladenine; tZ, *trans*-zeatin; DZ, dihydrozeatin; IPT, adenosine phosphate-isopentenyltransferase; LOG, cytokinin phosphoribohydrolase 'Lonely guy'; CYP735A, cytochrome P450 mono-oxygenase; ARR5, type-A response regulator 5.

Figure 3. Sucrose initiates bud release and promotes CK accumulation in buds. (A) Outgrowth of buds on excised stem segments incubated with 50 mM sucrose or mannitol for 24 h, $n = 5$. * indicates timing of first significant difference, one-tailed Student's t test. (B) Levels of endogenous CKs in buds on excised stem segments incubated with 50 mM sucrose or mannitol, $n = 4$. Each replicate contains 20 individual buds. Values are mean \pm SE. * $P < 0.05$, ** $P < 0.01$, two-tailed Student's t test. (C) Outgrowth of buds on excised stem segments incubated with 0, 2, 5, 10, 25, 50 mM sucrose and treated with or without 50 μ M 6-benzylaminopurine (BA) for 5 days, $n = 5$. Values are mean \pm SE. * $P < 0.05$, ** $P < 0.01$, two-tailed Student's t test. DMAPP, dimethylallyl diphosphate; iPRMP, isopentenyladenosine-5'-monophosphate; tZRMP, *trans*-zeatin riboside-5'-monophosphate; DZRMP, dihydrozeatin riboside-5'-monophosphate; iPR, isopentenyladenosine; tZR, *trans*-zeatin riboside; DZR, dihydrozeatin riboside; iP, isopentenyladenine; tZ, *trans*-zeatin; DZ, dihydrozeatin; IPT, adenosine phosphate-isopentenyltransferase; LOG, cytokinin phosphoribohydrolase 'Lonely guy'; CYP735A, cytochrome P450 mono-oxygenases.


Figure 4. SL acts antagonistically with CK and sugars to inhibit axillary bud outgrowth and reduces CK levels in buds. (A) Growth of node 2 buds of *rms5* mutants treated with or without 1 μ M GR24 (a synthetic SL). * indicates timing of first significant difference. One-tailed Student's *t* test; $n = 4$. (B) Endogenous CK levels in *rms5* node 2 buds treated with or without 10 μ M of GR24 for 6 h. $n = 3$. Each replicate contains 20 individual buds. (C) Expression levels of CK metabolism genes in *rms5* node 2 buds treated with or without 10 μ M of GR24 for 6 h. $n = 3$. Each replicate contains 20 individual buds. (D) Growth of *rms5* node 4 buds treated with mock, 10 μ M GR24, 100 μ M 3TFM-2HE, or 10 μ M GR24 with 100 μ M 3TFM-2HE (a CK oxidase inhibitor) after 7 days; $n = 7$. (E) Node 2 buds of *rms1* mutants treated with or without 5 μ M GR24 and with or without 600 mM sucrose supplied to the stem vasculature. $n = 4-6$. (F) Growth of wild-type node 2 buds treated with or without 5 μ M GR24 and 50 μ M BA. $n = 4-6$. (G) Growth of wild-type node 2 buds treated with or without 1 μ M GR24 and with decapitation at internode 8. $n = 4-10$. *rms5* plants with four fully expanded leaves were used for A-D. All values are mean \pm SE. * $P < 0.05$; ** $P < 0.01$ compared with mock control, two-tailed Student's *t* test for B, C and G. One-way ANOVA for D, E, and F. Different letters on the top of columns indicate statistically significant differences. iP, isopentenyladenine; tZ, trans-zeatin; tZR, trans-zeatin riboside.

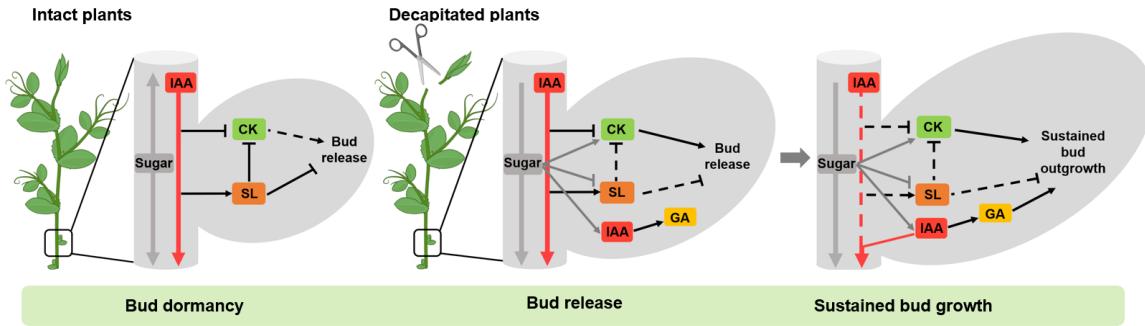

Figure 5. GA does not promote bud release, but rather enhances sustained bud growth. (A) Growth of wild-type node 2 buds after decapitation and/or treatment with 100 μ M GA₃. $n = 12$. ** indicates significant difference between decapitation+GA and decapitation treatment groups. (B) Growth of node 2 wild-type (WT) buds treated with solution containing 0 (mock) or 1g/L GA₃, and/or 50 μ M BA (synthetic CK), and/or 2 μ M GR24 (synthetic SL). $n = 16$. (C) Growth of node 4 buds of WT or GA deficient mutant (*l/e*) plants after decapitation. $n = 6$. All values are mean \pm SE. * $P < 0.05$; ** $P < 0.01$, two-tailed Student's *t* test.

Figure 6. GA level is correlated with auxin level in axillary buds after decapitation. (A, B and C) Endogenous level change of GA₁ in node 2 bud (A), internode 2 stem (B) and internode 4 stem (C) after decapitation. $n = 4$. Each replicate contains 20 individual buds. Values are mean \pm SE, * $P < 0.05$; ** $P < 0.01$; Student's *t* test. (D, E and F) The correlations between GA₁ and IAA level changes in node 2 buds (D), internode 2 (E) and internode 4 (F). The Pearson correlation coefficient (r), coefficient of determination (R^2) and probability (p) values for each relationship are indicated. These results are from the same plants as in Figure 1.

Figure 7. GA can restore decapitation-induced bud growth in absence of auxin. Growth at node 2 after wild-type plants were left intact or decapitated and the buds at node 2 were treated with 10 μ l solution containing 0 or 2.5 mM L-Kyn (auxin biosynthesis inhibitor) and 2.5 mM PCIB (auxin perception inhibitor) and/or 500 μ M GA₃. $n = 6$.

Figure 8. Hypothesis of the network of phytohormone and sugar regulation in apical dominance highlighting different stages including bud dormancy, bud release and sustained bud growth. Dormant buds have very suppressed growth due to the main shoot tip producing auxin and attracting sucrose through its sink strength. This causes comparatively low CK and high SL levels in the stem and buds. After shoot tip removal, rapid accumulation of sugars and CK and reduced SL response trigger bud release. IAA levels in buds also increase at this time consistent with enhanced sugar signalling (Barbier et al., 2015; Ljung et al., 2015). Sustained growth is promoted by continued sucrose supply, together with auxin depletion in the adjacent stem which also enhances CK levels and auxin flow out of buds and reduces SL levels. Enhanced auxin levels in buds promotes GA leading to enhanced bud sink strength and sustained bud growth. The dashed lines indicates a diminished role or effect; flat line inhibition; arrow promotion.

Parsed Citations

Aguilar-Martínez JA, Poza-Carrión C, Cubas P (2007) *Arabidopsis BRANCHED1* acts as an integrator of branching signals within axillary buds. *The Plant Cell* 19: 458-472
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Balla J, Blažková J, Reinöhl V, Procházka S (2002) Involvement of auxin and cytokinins in initiation of growth of isolated pea buds. *Plant Growth Regulation* 38: 149-156
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Balla J, Kalousek P, Reinöhl V, Friml J, Procházka S (2011) Competitive canalization of PIN-dependent auxin flow from axillary buds controls pea bud outgrowth. *The Plant Journal* 65: 571-577
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Balla J, Medvedová Z, Kalousek P, Matješčuková N, Friml J, Reinöhl V, Procházka S (2016) Auxin flow-mediated competition between axillary buds to restore apical dominance. *Scientific Reports* 6: 35955
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Barbier F, Péron T, Lecerf M, Perez-Garcia M-D, Barrière Q, Rolčík J, Boutet-Mercey S, Citerne S, Lemoine R, Porcheron B (2015) Sucrose is an early modulator of the key hormonal mechanisms controlling bud outgrowth in *Rosa hybrida*. *Journal of Experimental Botany* 66: 2569-2582
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Barbier FF, Cao D, Fichtner F, Weiste C, Perez-Garcia M-D, Caradeuc M, Le Gourrierec J, Sakr S, Beveridge CA (2021) HEXOKINASE1 signalling promotes shoot branching and interacts with cytokinin and strigolactone pathways. *New Phytologist* 231: 1088-1104
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Barbier FF, Chabikwa TG, Ahsan MU, Cook SE, Powell R, Tanurdzic M, Beveridge C (2019) A phenol/chloroform-free method to extract nucleic acids from recalcitrant, woody tropical species for gene expression and sequencing. *Plant Methods* 15: 62
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Barbier FF, Dun EA, Beveridge CA (2017) Apical dominance. *Current Biology* 27: R864-R865
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Barbier FF, Dun EA, Kerr SC, Chabikwa TG, Beveridge CA (2019) An update on the signals controlling shoot branching. *Trends in Plant Science* 24: 220-236
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Bertheloot J, Barbier F, Boudon F, Perez-Garcia MD, Péron T, Citerne S, Dun E, Beveridge C, Godin C, Sakr S (2020) Sugar availability suppresses the auxin-induced strigolactone pathway to promote bud outgrowth. *New Phytologist* 225: 866-879
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Beveridge CA, Murfet IC, Kerhoas L, Sotta B, Miginiac E, Rameau C (1997) The shoot controls zeatin riboside export from pea roots. Evidence from the branching mutant rms4. *The Plant Journal* 11: 339-345
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Braun N, de Saint Germain A, Pillot J-P, Boutet-Mercey S, Dalmais M, Antoniadi I, Li X, Maia-Grondard A, Le Signor C, Bouteiller N (2012) The pea TCP transcription factor PsBRC1 acts downstream of strigolactones to control shoot branching. *Plant Physiology* 158: 225-238
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Brewer PB, Dun EA, Ferguson BJ, Rameau C, Beveridge CA (2009) Strigolactone acts downstream of auxin to regulate bud outgrowth in pea and *Arabidopsis*. *Plant Physiology* 150: 482-493
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Brewer PB, Dun EA, Gui R, Mason MG, Beveridge CA (2015) Strigolactone inhibition of branching independent of polar auxin transport. *Plant Physiology* 168: 1820-1829
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Cao D, Barbier F, Yoneyama K, Beveridge CA (2020) A rapid method for quantifying RNA and phytohormones from a small amount of plant tissue. *Frontiers in Plant Science* 11: 605069
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Chabikwa TG, Brewer PB, Beveridge CA (2019) Initial bud outgrowth occurs independent of auxin flow from out of buds. *Plant Physiology* 179: 55-65
Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Dierck R, Dhooghe E, Van Huylenbroeck J, De Riek J, De Keyser E, Van Der Straeten D (2016) Response to strigolactone treatment in chrysanthemum axillary buds is influenced by auxin transport inhibition and sucrose availability. *Acta Physiologae*

Plantarum 38: 271

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Dolgikh E, Shaposhnikov A, Dolgikh A, Gribchenko E, Bodyagina K, Yuzhikhin O, Tikhonovich I (2017) Identification of *Pisum sativum* L. cytokinin and auxin metabolic and signaling genes, and an analysis of their role in symbiotic nodule development. International Journal of Plant Physiology and Biochemistry 9: 22-35

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Dong Z, Xiao Y, Govindarajulu R, Feil R, Siddoway ML, Nielsen T, Lunn JE, Hawkins J, Whipple C, Chuck G (2019) The regulatory landscape of a core maize domestication module controlling bud dormancy and growth repression. Nature Communications 10: 1-15

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Duan J, Yu H, Yuan K, Liao Z, Meng X, Jing Y, Liu G, Chu J, Li J (2019) Strigolactone promotes cytokinin degradation through transcriptional activation of CYTOKININ OXIDASE/DEHYDROGENASE 9 in rice. Proceedings of the National Academy of Sciences 116: 14319-14324

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Dun EA, de Saint Germain A, Rameau C, Beveridge CA (2012) Antagonistic action of strigolactone and cytokinin in bud outgrowth control. Plant Physiology 158: 487-498

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Dun EA, de Saint Germain A, Rameau C, Beveridge CA (2013) Dynamics of strigolactone function and shoot branching responses in *Pisum sativum*. Molecular Plant 6: 128-140

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Elfving DC, Visser DB, Henry JL (2011) Gibberellins stimulate lateral branch development in young sweet cherry trees in the orchard. International Journal of Fruit Science 11: 41-54

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Fichtner F, Barbier FF, Annunziata MG, Feil R, Olas JJ, Mueller-Roeber B, Stitt M, Beveridge CA, Lunn JE (2021) Regulation of shoot branching in *arabidopsis* by trehalose 6-phosphate. New Phytologist 229: 2135-2151

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Fichtner F, Barbier FF, Feil R, Watanabe M, Annunziata MG, Chabikwa TG, Höfgen R, Stitt M, Beveridge CA, Lunn JE (2017) Trehalose 6-phosphate is involved in triggering axillary bud outgrowth in garden pea (*pisum sativum* L.). The Plant Journal 92: 611-623

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Fichtner F, Lunn JE (2021) The role of trehalose 6-phosphate (Tre6P) in plant metabolism and development. Annual Review of Plant Biology 72: 737-760

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Foo E, Bullier E, Goussot M, Foucher F, Rameau C, Beveridge CA (2005) The branching gene RAMOSUS1 mediates interactions among two novel signals and auxin in pea. The Plant Cell 17: 464-474

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Foo E, Morris SE, Parmenter K, Young N, Wang H, Jones A, Rameau C, Turnbull CG, Beveridge CA (2007) Feedback regulation of xylem cytokinin content is conserved in pea and *Arabidopsis*. Plant Physiology 143: 1418-1428

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Gocal GF, Pharis RP, Yeung EC, Pearce D (1991) Changes after decapitation in concentrations of indole-3-acetic acid and abscisic acid in the larger axillary bud of *Phaseolus vulgaris* L. cv Tender Green. Plant Physiology 95: 344-350

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA, Pillot J-P, Lettisse F, Matusova R, Danoun S, Portais J-C (2008) Strigolactone inhibition of shoot branching. Nature 455: 189-194

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hayward A, Stirnberg P, Beveridge C, Leyser O (2009) Interactions between auxin and strigolactone in shoot branching control. Plant Physiology 151: 400-412

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Hedden P, Thomas SG (2012) Gibberellin biosynthesis and its regulation. Biochemical Journal 444: 11-25

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Katyayini NU, Rinne PL, Tarkowská D, Strnad M, Van Der Schoot C (2020) Dual role of gibberellin in perennial shoot branching: inhibition and activation. Frontiers in Plant Science 11: 736

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kebrom TH (2017) A growing stem inhibits bud outgrowth—the overlooked theory of apical dominance. Frontiers in Plant Science 8: 1874

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kebrom TH, Spielmeyer W, Finnegan EJ (2013) Grasses provide new insights into regulation of shoot branching. Trends in Plant Science 18: 41-48

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kerr SC, de Saint Germain A, Dissanayake IM, Mason MG, Dun EA, Tanurdzic M, Beveridge CA (2020) Hormonal regulation of the BRC1-dependent strigolactone transcriptome involved in shoot branching responses. bioRxiv: 2020.2003.2019.999581

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kerr SC, Patil SB, de Saint Germain A, Pillot JP, Saffar J, Ligerot Y, Aubert G, Citerne S, Bellec Y, Dun EA (2021) Integration of the SMXL/D53 strigolactone signalling repressors in the model of shoot branching regulation in *Pisum sativum*. The Plant Journal 107: 1756-1770

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kiba T, Takei K, Kojima M, Sakakibara H (2013) Side-chain modification of cytokinins controls shoot growth in *Arabidopsis*. Developmental Cell 27: 452-461

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Kotov AA, Kotova LM, Romanov GA (2021) Signaling network regulating plant branching: Recent advances and new challenges. Plant Science 307: 110880

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Leyser O (2006) Dynamic integration of auxin transport and signalling. Current Biology 16: R424-R433

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Leyser O (2018) Auxin signaling. Plant Physiology 176: 465-479

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Li M, Wei Q, Xiao Y, Peng F (2018) The effect of auxin and strigolactone on ATP/ADP isopentenyltransferase expression and the regulation of apical dominance in peach. Plant Cell Reports 37: 1693–1705

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Liao Z, Yu H, Duan J, Yuan K, Yu C, Meng X, Kou L, Chen M, Jing Y, Liu G (2019) SLR1 inhibits MOC1 degradation to coordinate tiller number and plant height in rice. Nature Communications 10: 2738

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ljung K, Nemhauser JL, Perata P (2015) New mechanistic links between sugar and hormone signalling networks. Current Opinion in Plant Biology 25: 130-137

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Lo S-F, Yang S-Y, Chen K-T, Hsing Y-I, Zeevaart JA, Chen L-J, Yu S-M (2008) A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice. The Plant Cell 20: 2603-2618

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Luo Z, Janssen BJ, Snowden KC (2021) The molecular and genetic regulation of shoot branching. Plant Physiology 187: 1033–1044

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Martín-Trillo M, Grandío EG, Serra F, Marcel F, Rodríguez-Buey ML, Schmitz G, Theres K, Bendahmane A, Dopazo H, Cubas P (2011) Role of tomato BRANCHED1-like genes in the control of shoot branching. The Plant Journal 67: 701-714

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Mason MG, Ross JJ, Babst BA, Wienclaw BN, Beveridge CA (2014) Sugar demand, not auxin, is the initial regulator of apical dominance. Proceedings of the National Academy of Sciences 111: 6092-6097

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Morris SE, Cox MC, Ross JJ, Krisantini S, Beveridge CA (2005) Auxin dynamics after decapitation are not correlated with the initial growth of axillary buds. Plant Physiology 138: 1665-1672

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Nguyen HN, Nguyen TQ, Kisiala AB, Emery R (2021) Beyond transport: Cytokinin ribosides are translocated and active in regulating the development and environmental responses of plants. Planta 254: 1-17

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ni J, Gao C, Chen M-S, Pan B-Z, Ye K, Xu Z-F (2015) Gibberellin promotes shoot branching in the perennial woody plant *Jatropha curcas*. Plant and Cell Physiology 56: 1655-1666

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Nisler J, Kopečný D, Pěkná Z, Končitíková R, Koprna R, Murvanidze N, Werbrouck SP, Havlíček L, De Diego N, Kopečná M (2021) Diphenylurea-derived cytokinin oxidase/dehydrogenase inhibitors for biotechnology and agriculture. *Journal of Experimental Botany* 72: 355-370

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Nordström A, Tarkowski P, Tarkowska D, Norbaek R, Åstot C, Dolezal K, Sandberg G (2004) Auxin regulation of cytokinin biosynthesis in *Arabidopsis thaliana*: a factor of potential importance for auxin-cytokinin-regulated development. *Proceedings of the National Academy of Sciences* 101: 8039-8044

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

O'Neill DP, Ross JJ (2002) Auxin Regulation of the Gibberellin Pathway in Pea. *Plant Physiology* 130: 1974-1982

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

O'Neill CM, Lu X, Calderwood A, Tudor EH, Robinson P, Wells R, Morris R, Penfield S (2019) Vernalization and floral transition in autumn drive winter annual life history in oilseed rape. *Current Biology* 29: 4300-4306. e4302

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ongaro V, Leyser O (2007) Hormonal control of shoot branching. *Journal of Experimental Botany* 59: 67-74

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Patil SB, Barbier FF, Zhao J, Zafar SA, Uzair M, Sun Y, Fang J, Perez-Garcia MD, Bertheloot J, Sakr S (2021) Sucrose promotes D53 accumulation and tillering in rice. *New Phytologist*

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Phillips I (1975) Apical dominance. *Annual Review of Plant Physiology* 26: 341-367

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Prusinkiewicz P, Crawford S, Smith RS, Ljung K, Bennett T, Ongaro V, Leyser O (2009) Control of bud activation by an auxin transport switch. *Proceedings of the National Academy of Sciences* 106: 17431-17436

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ramsay L, Comadran J, Druka A, Marshall DF, Thomas WT, Macaulay M, MacKenzie K, Simpson C, Fuller J, Bonar N (2011) INTERMEDIUM-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1. *Nature Genetics* 43: 169-172

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Roman H, Girault T, Barbier F, Péron T, Brouard N, Pencik A, Novak O, Vian A, Soulaiman S, Lothier J (2016) Cytokinins are initial targets of light in the control of bud outgrowth. *Plant Physiology* 172: 489-509

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ross JJ, O'Neill DP, Smith JJ, Kerckhoffs LHJ, Elliott RC (2000) Evidence that auxin promotes gibberellin A1 biosynthesis in pea. *The Plant Journal* 21: 547-552

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Ross JJ, O'Neill DP, Rathbone DA (2003) Auxin-gibberellin interactions in pea: integrating the old with the new. *Journal of Plant Growth Regulation* 22: 99-108

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Sachs T, Thimann KV (1964) Release of lateral buds from apical dominance. *Nature* 201: 939-940

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Sairanen I, Novák O, Pěnčík A, Ikeda Y, Jones B, Sandberg G, Ljung K (2012) Soluble carbohydrates regulate auxin biosynthesis via PIF proteins in *Arabidopsis*. *The Plant Cell* 24: 4907-4916

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Salam BB, Barbier F, Danieli R, Teper-Bamnolker P, Ziv C, Spíchal L, Aruchamy K, Shnaider Y, Leibman D, Shaya F (2021) Sucrose promotes stem branching through cytokinin. *Plant Physiology* 185: 1708-1721

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush GS (2002) A mutant gibberellin-synthesis gene in rice. *Nature* 416: 701-702

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Schaller GE, Bishopp A, Kieber JJ (2015) The yin-yang of hormones: cytokinin and auxin interactions in plant development. *The Plant Cell* 27: 44-63

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Schneider A, Godin C, Boudon F, Demotes-Mainard S, Sakr S, Bertheloot J (2019) Light regulation of axillary bud outgrowth along plant axes: an overview of the roles of sugars and hormones. *Frontiers in Plant Science* 10: 1296

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Scott TK, Case DB, Jacobs WP (1967) Auxin-gibberellin interaction in apical dominance. Plant Physiology 42: 1329-1333

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Seale M, Bennett T, Leyser O (2017) BRC1 expression regulates bud activation potential but is not necessary or sufficient for bud growth inhibition in *Arabidopsis*. Development 144: 1661-1673

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Sorefan K, Booker J, Haurogné K, Goussot M, Bainbridge K, Foo E, Chatfield S, Ward S, Beveridge C, Rameau C (2003) MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in *Arabidopsis* and pea. Genes & Development 17: 1469-1474

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Stafstrom JP (1995) Influence of bud position and plant ontogeny on the morphology of branch shoots in pea (*Pisum sativum* L. cv. Alaska). Annals of Botany 76: 343-348

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Studer A, Zhao Q, Ross-Ibarra J, Doebley J (2011) Identification of a functional transposon insertion in the maize domestication gene tb1. Nature Genetics 43: 1160

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Su Y-H, Liu Y-B, Zhang X-S (2011) Auxin-cytokinin interaction regulates meristem development. Molecular Plant 4: 616-625

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Tan M, Li G, Chen X, Xing L, Ma J, Zhang D, Ge H, Han M, Sha G, An N (2019) Role of cytokinin, strigolactone and auxin export on outgrowth of axillary buds in apple. Frontiers in Plant Science 10: 616

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Tan M, Li G, Liu X, Cheng F, Ma J, Zhao C, Zhang D, Han M (2018) Exogenous application of GA3 inactively regulates axillary bud outgrowth by influencing of branching-inhibitors and bud-regulating hormones in apple (*Malus domestica* Borkh.). Molecular Genetics and Genomics 293: 1547-1563

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Tanaka M, Takei K, Kojima M, Sakakibara H, Mori H (2006) Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance. The Plant Journal 45: 1028-1036

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Turnbull CG, Raymond MA, Dodd IC, Morris SE (1997) Rapid increases in cytokinin concentration in lateral buds of chickpea (*Cicer arietinum* L.) during release of apical dominance. Planta 202: 271-276

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wang B, Smith SM, Li J (2018) Genetic regulation of shoot architecture. Annual Review of Plant Biology 69: 437-468

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wang M, Le Moigne M-A, Bertheloot J, Crespel L, Perez-Garcia M-D, Ogé L, Demotes-Mainard S, Hamama L, Davière J-M, Sakr S (2019) BRANCHED1: a key hub of shoot branching. Frontiers in Plant Science 10: 76

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wang M, Pérez-Garcia M-D, Davière J-M, Barbier F, Ogé L, Gentilhomme J, Voisine L, Péron T, Launay-Avon A, Clément G (2021) Outgrowth of the axillary bud in rose is controlled by sugar metabolism and signalling. Journal of Experimental Botany 72: 3044-3060

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Wolbang CM, Ross JJ (2001) Auxin promotes gibberellin biosynthesis in decapitated tobacco plants. Planta 214: 153-157

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Xia X, Dong H, Yin Y, Song X, Gu X, Sang K, Zhou J, Shi K, Zhou Y, Foyer CH, Yu J (2021) Brassinosteroid signaling integrates multiple pathways to release apical dominance in tomato. Proceedings of the National Academy of Sciences 118

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Yadav UP, Ivakov A, Feil R, Duan GY, Walther D, Giavalisco P, Piques M, Carillo P, Hubberten H-M, Stitt M (2014) The sucrose-trehalose 6-phosphate (Tre6P) nexus: specificity and mechanisms of sucrose signalling by Tre6P. Journal of Experimental Botany 65: 1051-1068

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Yang T, Davies PJ, Reid JB (1996) Genetic dissection of the relative roles of auxin and gibberellin in the regulation of stem elongation in intact light-grown peas. Plant Physiology 110: 1029-1034

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Yoneyama K, Xie X, Nomura T, Yoneyama K (2020) Do phosphate and cytokinin interact to regulate strigolactone biosynthesis or act independently? Frontiers in plant science 11: 438

Young NF, Ferguson BJ, Antoniadi I, Bennett MH, Beveridge CA, Turnbull CG (2014) Conditional auxin response and differential cytokinin profiles in shoot branching mutants. Plant Physiology 165: 1723-1736

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)

Zhu L, Jiang B, Zhu J, Xiao G (2022) Auxin promotes fiber elongation by enhancing gibberellic acid biosynthesis in cotton. Plant Biotechnology Journal 20: 423-425

Google Scholar: [Author Only](#) [Title Only](#) [Author and Title](#)