

1 **Title**

2

3 **Spatiotemporal tissue maturation of thalamocortical pathways in the human fetal brain**

4

5 **Authors**

6 Siân Wilson^{1,2}, Maximilian Pietsch¹, Lucilio Cordero-Grande^{1,3,4}, Daan Christiaens^{1,5}, Alena Uus⁶,
7 Vyacheslav Karolis¹, Vanessa Kyriakopoulou¹, Kathleen Colford¹, Anthony N. Price¹, Jana Hutter¹,
8 Mary A. Rutherford¹, Emer J. Hughes¹, Serena J. Counsell¹, Jacques-Donald Tournier¹, Joseph V
9 Hajnal¹, A. David Edwards^{1,2}, Jonathan O'Muircheartaigh^{*1,2,7,8}, Tomoki Arichi^{*1,2,9,10}

10 *joint last author

11 **Affiliations**

- 12 1. Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences,
13 King's College London, London, SE1 7EH, United Kingdom;
- 14 2. Centre for Neurodevelopmental Disorders, Kings College London, London, SE1 1UL, United
15 Kingdom;
- 16 3. Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de
17 Madrid, 28040 Madrid, Spain;
- 18 4. Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine
19 (CIBER-BBN), 28029 Madrid, Spain;
- 20 5. Department of Electrical Engineering (ESAT/PSI), Katholieke Universiteit Leuven, 3001
21 Leuven, Belgium;
- 22 6. Department of Biomedical Engineering, School Biomedical Engineering and Imaging
23 Sciences, King's College London, St. Thomas' Hospital, London, United Kingdom
- 24 7. Department of Forensic and Neurodevelopmental Sciences, King's College London, London
25 SE5 8AF, United Kingdom;
- 26 8. Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's
27 College London, London SE5 8AF, United Kingdom
- 28 9. Children's Neurosciences, Evelina London Children's Hospital, Guy's and St Thomas' NHS
29 Foundation Trust, London SE1 7EH, United Kingdom;
- 30 10. Department of Bioengineering, Imperial College London, London SW7 2AZ, United
31 Kingdom

32

33 **Abstract**

34

35 The development of connectivity between the thalamus and maturing cortex is a fundamental process
36 in the second half of human gestation, establishing the neural circuits that are the basis for several
37 important brain functions. In this study, we acquired high-resolution *in utero* diffusion MRI from 140

38 fetuses as part of the Developing Human Connectome Project, to examine the emergence of
39 thalamocortical white matter over the second to third trimester. We delineate developing
40 thalamocortical pathways and parcellate the fetal thalamus according to its cortical connectivity using
41 diffusion tractography. We then quantify microstructural tissue components along the tracts in the fetal
42 compartments that are critical substrates for white matter maturation, such as the subplate and
43 intermediate zone. We identify patterns of change in the diffusion metrics that reflect critical
44 neurobiological transitions occurring in the second to third trimester, such as the disassembly of radial
45 glial scaffolding and the lamination of the cortical plate. These maturational trajectories of MR signal
46 in transient fetal compartments provide a normative reference to complement histological knowledge,
47 facilitating future studies to establish how developmental disruptions in these regions contribute to
48 pathophysiology.

49

50 **Introduction**

51

52 Thalamocortical connections represent the most important inputs into the developing cortex during the
53 second half of human gestation, where they play a key role in guiding cortical areal differentiation and
54 establishing the circuitry responsible for sensory integration across the lifespan (Jones 2007; Price et
55 al. 2006; Schummers, Sharma, and Sur 2005; Sharma, Angelucci, and Sur 2000; Sur and Rubenstein
56 2005). Their importance is highlighted by previous work implicating disruptions to thalamocortical
57 development during the perinatal period in the pathophysiology of neurodevelopmental disorders such
58 as schizophrenia (Klingner et al. 2014; Marenco et al. 2012) bipolar disorder (Anticevic et al. 2014),
59 and autism (Nair et al. 2013). Altered thalamocortical connectivity has also been described in preterm
60 infants, and was used to predict cognitive outcome (Ball et al. 2013, 2015; Toulmin et al. 2021),
61 highlighting the specific vulnerability of these pathways during the second to third trimester. Although
62 thalamocortical development has been studied in animals (Brody et al. 1987; Ivica Kostović and
63 Jovanov-Milošević 2006; Molnár and Blakemore 1995; Yakovlev et al. 1960) and post-mortem human
64 tissue (Krsnik et al. 2017; Takahashi et al. 2012; Wilkinson et al. 2017) little is known about *in vivo*
65 white matter maturation during fetal development.

66

67 White matter development in the late second and third trimesters of human gestation (between 21 and
68 37 weeks) is characterised by a sequence of precisely timed biological processes occurring in transient
69 compartments of the fetal brain (I. Kostović and Judaš 2015; Ivica Kostović and Judaš 2010). These
70 processes include the migration of neurons along the radial glial scaffold, accumulation of
71 thalamocortical axons in the superficial subplate, innervation of the target cortical area, conversion of
72 radial glial cells into astrocytes, and ensheathment of axonal fibres (Krsnik et al 2017, Molliver et al.
73 1973; Kostovic and Molliver 1974; Kostovic and Goldman-Rakic, 1983, 1984, 1990; Kostovic' and
74 Judas' 2002, 2006, 2007, 2010). The challenge for *in vivo* neuroimaging studies is to disentangle the
75 effect of these different neurobiological processes on the diffusion MRI signal, to improve mechanistic
76 insight about the transformation of transient fetal compartments into segments of developing white
77 matter (Kostovic 2012).

78

79 Recent advances in diffusion weighted imaging now allow *in vivo* characterization and estimation of
80 white matter development during the fetal period. Tractography has been used to estimate the fetal
81 brain's major white matter bundles and quantitatively characterise the evolution of the microstructure
82 across the second half of gestation (Bui et al. 2006; Jaimes et al. 2020; Jakab et al. 2015; Keunen et al.
83 2018; Khan et al. 2019; Lockwood Estrin et al. 2019; Machado-Rivas et al. 2021; Wilson et al. 2021;
84 Zanin et al. 2011). Advanced acquisition and analysis methods enable the relative contribution of
85 constituent tissue and fluid compartments to the diffusion signal to be estimated (Jeurissen et al. 2014;
86 Pietsch et al. 2019). Using this approach, previous work has identified non-linear trends in diffusion
87 metrics over the second to third trimester (Wilson et al., 2021). Namely, we observed an initial decrease
88 in tissue fraction within developing white matter between 22 and 29W, which could be due to the radial
89 glial scaffold disassembling (Rakic 2003). Subsequently, we observed an increase from 30 to 36W,
90 potentially linked to more coherent fibre organisation, axonal outgrowth and ensheathment (Back 2002,
91 Haynes 2005, Wimberger 1995), increasing the structural integrity of maturing white matter.
92 Interpreting these trends is especially challenging in the rapidly developing fetal brain, because of the
93 high sensitivity and low specificity of diffusion metrics to various co-occurring biological processes.

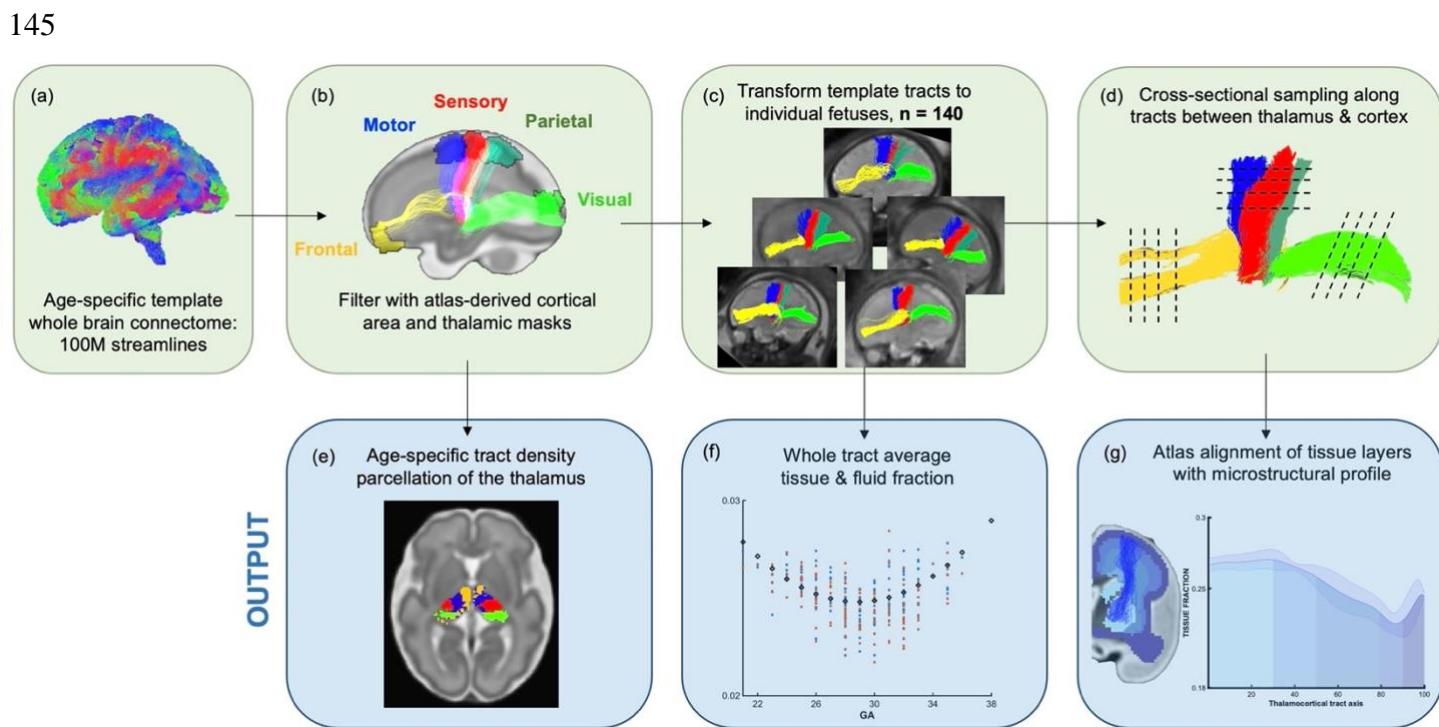
94

95 We hypothesise that the biological processes occurring in different fetal compartments leads to
96 predictable changes in diffusion metrics along tracts, reflecting the appearance and resolution of these
97 transient zones. When a mean value across the whole-tract is calculated, sensitivity to the unique
98 neurobiological properties of each transient compartment is lost. For example, in the early prenatal and
99 mid prenatal period, the subplate is a highly water-rich compartment containing extracellular matrix,
100 whereas the cortical plate and the deep grey matter are relatively cell dense (Kostovic 2010). We
101 therefore predict that the tissue fraction would be higher in the deep grey matter and the cortical plate
102 and lower in the subplate. We investigate this by characterising the entire trajectory of tissue
103 composition changes between the thalamus and the cortex, to explore the role of transient fetal brain
104 developmental structures on white matter maturational trajectories.

105

106 We acquired diffusion weighted imaging from 140 fetuses over a wide gestational age (GA) range (21
107 to 37W) and use tractography to delineate five distinct thalamocortical pathways. To investigate
108 whether the immature axonal bundles can be traced back to specific and distinct locations within
109 thalamus, we parcellate the thalamus according to streamline connectivity (Behrens et al., 2003). We
110 find consistent and distinct origins of different tracts, resembling the adult topology of thalamic nuclei
111 (Toulmin et al., 2015, Behrens et al., 2003) as early as 23W gestation. We then apply a multi-shell
112 multi-tissue constrained spherical deconvolution (MSMT-CSD) diffusion model (Jeurissen et al, 2014)
113 and derive tissue and fluid fraction values, charting tract-specific maturational profiles over the second
114 to third trimester. We overlay the tracts on an atlas of transitioning fetal compartments and correlate
115 changes in the diffusion MRI signal across time with critical neurodevelopmental processes, such as
116 the dissolution of the subplate and lamination of the cortical plate. We demonstrate that along-tract
117 sampling of diffusion metrics can capture temporal and compartmental differences in the second to third
118 trimester, reflecting the maturing neurobiology of the fetal brain described in histology studies. With
119 these methods, we provide a detailed, accurate reference of the unique developing microstructure in
120 each tract that improves mechanistic insight about fibre maturation, bridging the gap between MRI and
121 histology.

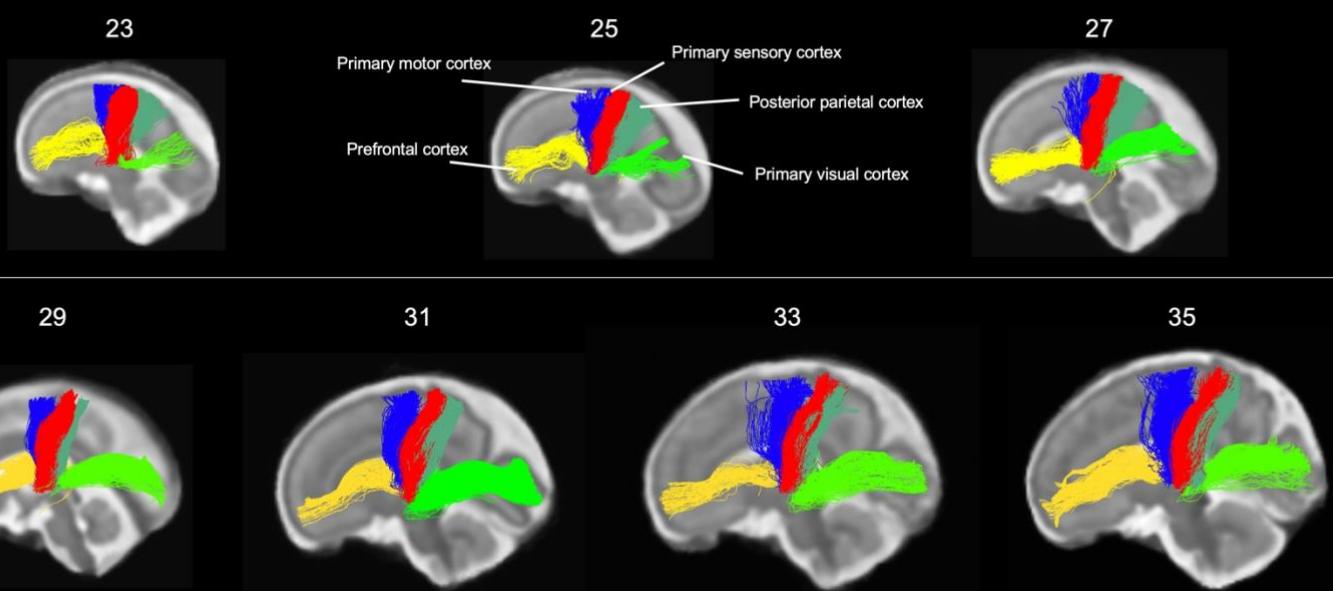
123 **Results**


124

125 **Estimating thalamocortical pathways using probabilistic streamline tractography**

126

127 High-angular-resolution multi-shell diffusion weighted imaging (HARDI) was acquired from 140
128 fetuses between 21 and 37 gestational weeks (70 male, 70 female) as part of the Developing Human
129 Connectome Project (dHCP). Data were corrected for fetal head motion and other imaging artefacts
130 (Christiaens et al, 2021). Individual subject orientation density functions (ODFs) were then computed
131 using cohort-specific fluid and “tissue” response functions and compiled to generate weekly diffusion
132 templates (see Methods). The diffusion templates were then registered to a T2-weighted brain atlas
133 (Gholipour et al. 2017) of tissue segmentations, used to generate anatomically constrained whole-brain
134 connectomes for each gestational week (Smith et al. 2012; Tournier et al. 2019). To constrain our
135 investigation, we selected thalamocortical pathways that are at a critical stage in their development and
136 are vulnerable to external influences in the second to third trimester (Bataille et al. 2017; Nosarti et al.
137 2014; Raybaud et al. 2013), the anterior thalamic radiation (AT), thalamic-motor tract (TM), thalamic-
138 sensory tract (TS), posterior parietal tract (PP) and optic radiation (OR) . The connectomes were filtered
139 down to the pathways of interest using inclusion regions defined by the T2 atlas, including the thalamus
140 and specific cortical areas (Figure 1). These included the primary motor cortex, primary sensory cortex,
141 posterior parietal cortex, dorso-lateral prefrontal cortex, and the primary visual cortex. With this
142 method, we were able to delineate five major thalamocortical pathways in each gestational week. To
143 keep regions of interest more consistent across the cohort, we grouped all cases into two-weekly
144 intervals, starting at 23w (Figure 2), replicating methods used previously (Wilson et al., 2021).


ANALYSIS PIPELINE

146 **Figure 1. Methods pipeline to estimate and quantify thalamocortical tracts development. (Top Row)**

147 (a) Whole brain connectomes generated for each gestational week template. (b) Atlas-defined masks of
148 the thalamus and cortical areas were used to extract white matter pathways of interest from the
149 connectomes. (c) These pathways were transformed to the native fetal diffusion space, (d) the values
150 were sampled along the tract. (f) Whole-tract average diffusion metrics were calculated or (g) values
151 sampled along the tract were aligned to an atlas of transient fetal compartments.

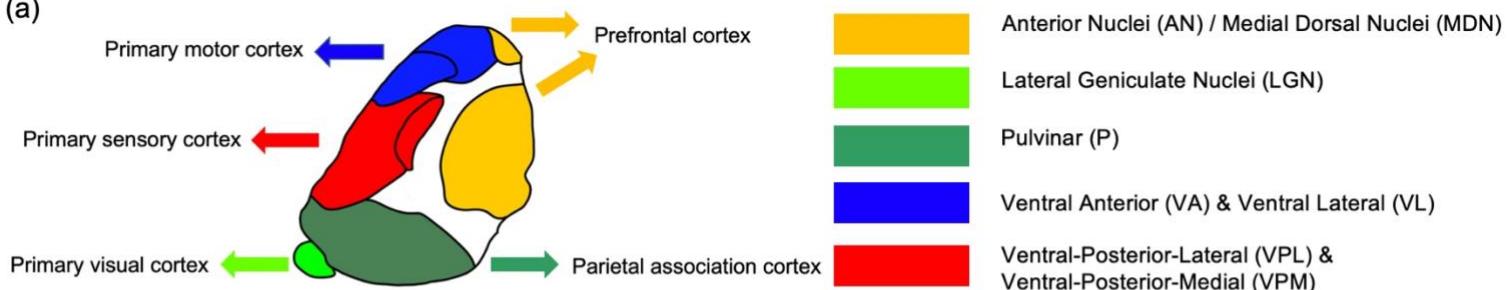
152

153

154 **Figure 2.** Tractography of thalamocortical pathways in different gestational week templates across the
155 second to third trimester. Tracts project to 5 different cortical areas, the primary motor cortex, (blue)
156 primary sensory cortex (red), posterior parietal cortex (teal), prefrontal cortex (yellow) and primary
157 visual cortex (bright green).

158

159 **Structural connectivity parcellation of the fetal thalamus resembles adult topology of thalamic
160 nuclei**


161

162 Tract density imaging (Calamante 2010) was used in each ODF template to explore whether the
163 different cortical areas were connected to distinct, specific regions of the thalamus (Figure 3a). We
164 found that for all ages, there was symmetrical topographical representation of the cortical regions of
165 interest in the thalamus. Furthermore, they spatially corresponded to the adult organisation of thalamic
166 nuclei, demonstrated by the schematic (Figure 3a) which is based on Morel's thalamus and other
167 connectivity derived parcellations from adult imaging studies (Morel, Magnin, and Jeanmonod 1997;
168 Najdenovska et al. 2018; Niemann et al. 2000). The tract projecting to the prefrontal cortex was
169 connected to the anterior thalamus and in the younger ages (23-29W) also to the medial thalamus. In

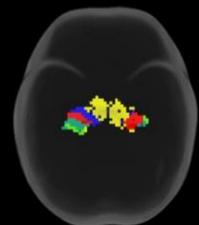
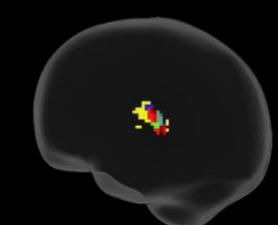
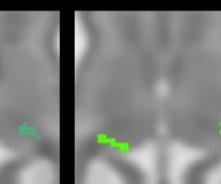
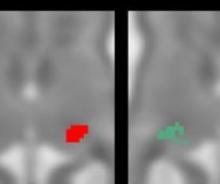
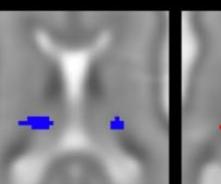
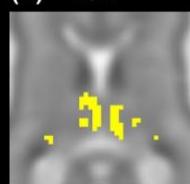
170 the older templates (31, 33 and 35W), frontal connectivity was more localised to the anterior thalamus
171 and less evident in the medial area. There were distinct but neighbouring areas in the ventral thalamus
172 connecting to the sensory and motor cortical areas, the motor-connected thalamic region being more
173 frontal. The connectivity of the posterior parietal area was in the posterior part of the thalamus, and the
174 most posterior voxels in the thalamic mask projected to the primary visual cortex.

175

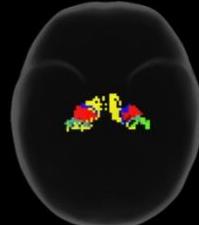
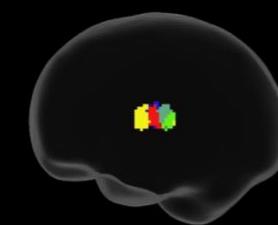
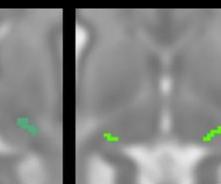
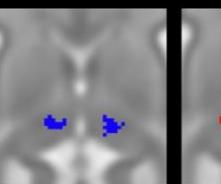
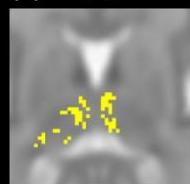
(a)

(b) AT

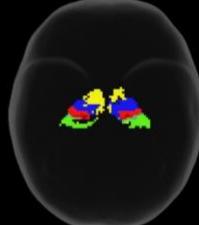
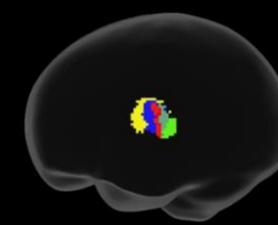
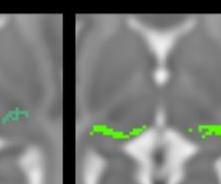
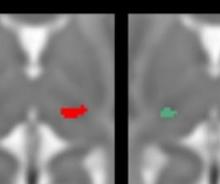
TM

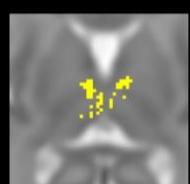






TS

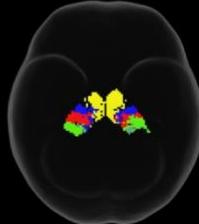
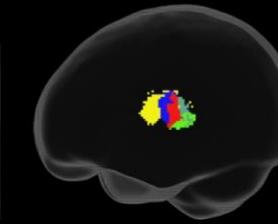
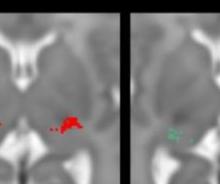
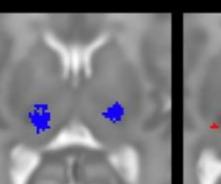
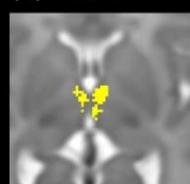
PP






OR

3D


23w

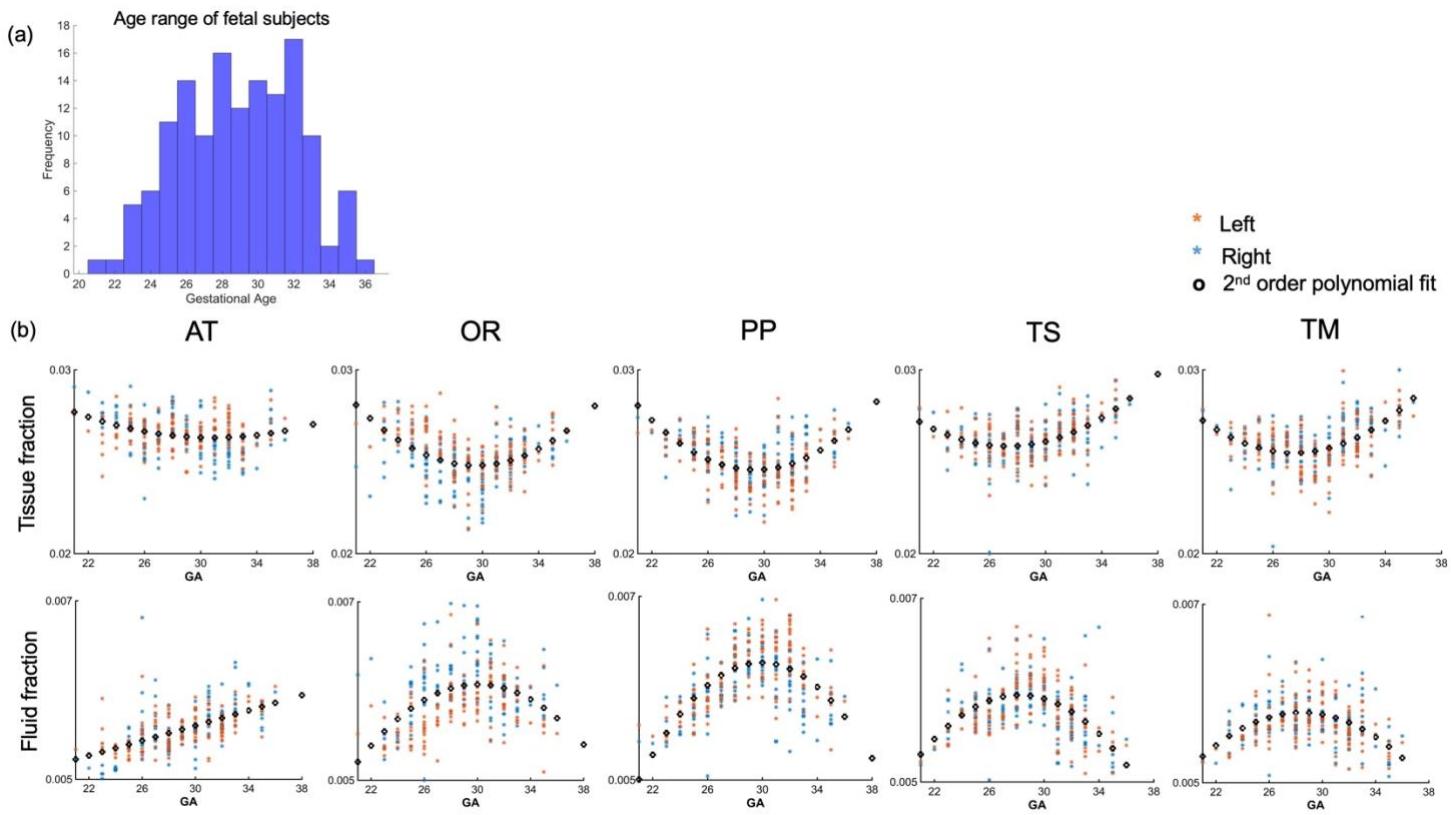





27w

31w

35w

176

177 **Figure 3. Tract-density imaging parcellation of at different fetal ages (a)** A schematic of expected
178 cortical connectivity arrangement across the thalamus, based on Morel's parcellation of the adult
179 thalamic nuclei (b) Axial slices of thalamic parcellation, thresholded for the top 20% of voxels, colour-
180 coded according to streamline connectivity of different tracts at 23w, (c) 27w (d) 31w and (e) 35w.


181

182 **Whole-tract average diffusion metrics have a characteristic U-shaped trend across the second to**
183 **third trimester**

184

185 The thalamocortical pathways were transformed from the age-matched templates to the native subject
186 space for 140 fetal subjects (Figure 4a). The MSMT-CSD-derived voxel-average tissue and fluid ODF
187 values were sampled along the warped group-average streamline tracts. Tract-specific values were
188 derived by averaging these for each tract in each subject, replicating the approach that has been used in
189 previous fetal studies (Wilson et al., 2021). The values for each tract were plotted against the GA of the
190 subject. The Akaike Information Criterion (AIC) suggested second order polynomial relationships for
191 all tracts for both tissue and fluid fraction metrics, except the fluid fraction in the AT which is linear
192 (Figure 4b).

193

194

195 **Figure 4. Diffusion metric age-trajectories for each tract** (a) Distribution of age among the fetal cohort
196 in gestational weeks. (b) Whole-tract average tissue (top) and fluid fractions (bottom) for each subject
197 in the left (orange) and right (blue) hemisphere, plotted against gestational age (GA) of the subject,
198 best fit by 2nd order polynomials. (AT = anterior thalamic radiation, OR = optic radiation, PP =
199 TS = thalamic-sensory tract, TM = thalamic-motor tract).

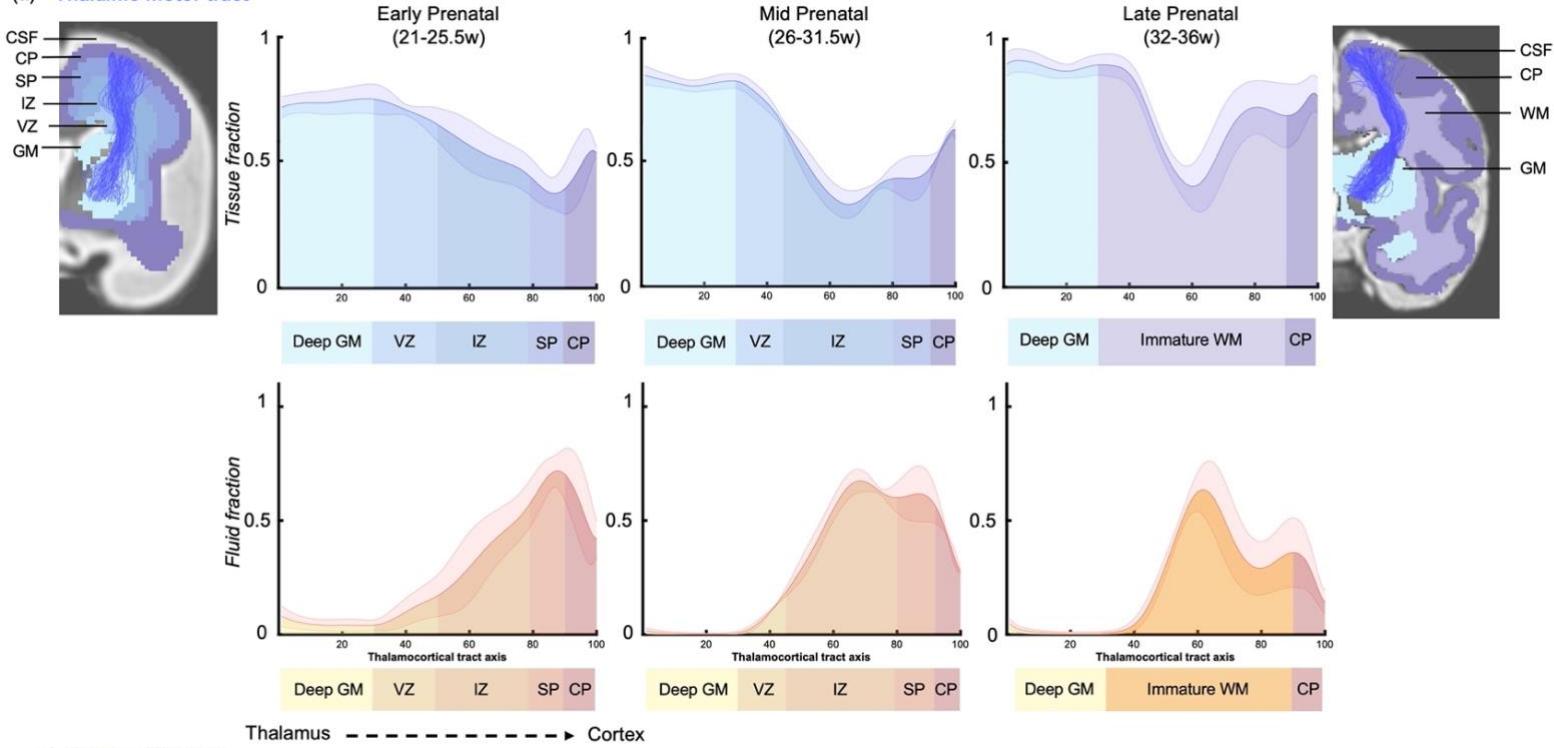
200

201

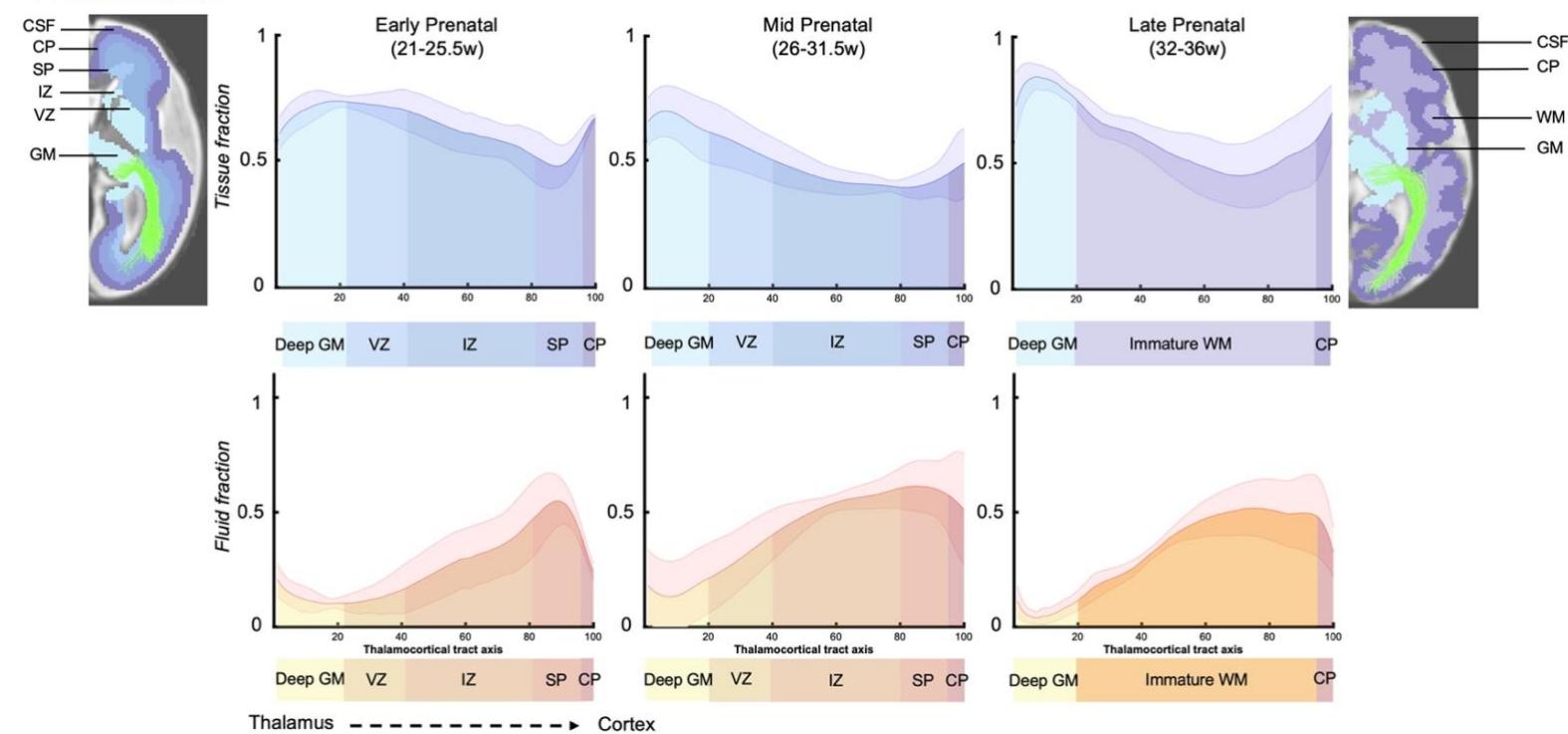
202 **Along-tract sampling reveals evolving properties of fetal brain transient compartments**

203

204 To explore the origins of these trends in diffusion metrics, the values of tissue and fluid fraction were
205 sampled in subject-space at 100 equidistant intervals between the thalamus and the cortex. Tissue and
206 fluid fraction are scaled jointly per scan such that they are approximately reciprocal of one another
207 across the brain using a cubic polynomial spatial model (Pietsch et al. 2019). In each subject, we
208 sampled the tissue and fluid fraction values beneath the streamlines from the thalamus to the cortex,


209 plotting the microstructural tissue composition against the distance from the thalamus (Figure 5). We
210 found that trajectories changed gradually between gestational weeks, and therefore we grouped them to
211 match previous histology studies that define this fetal period according to three developmental
212 windows, early (21-25.5w), mid (26-31.5w) and late (32-36w) prenatal period (Kostovic, Vasung et al
213 2020) (see supplementary info). When comparing the microstructural profiles of all the tracts in the
214 different periods, the motor, sensory and parietal tracts shared similar trajectories, whilst those in the
215 anterior thalamic and optic radiation tracts were more distinct (Figure 5a, b, c and Supplementary Figure
216 1(a) and (b)).

217

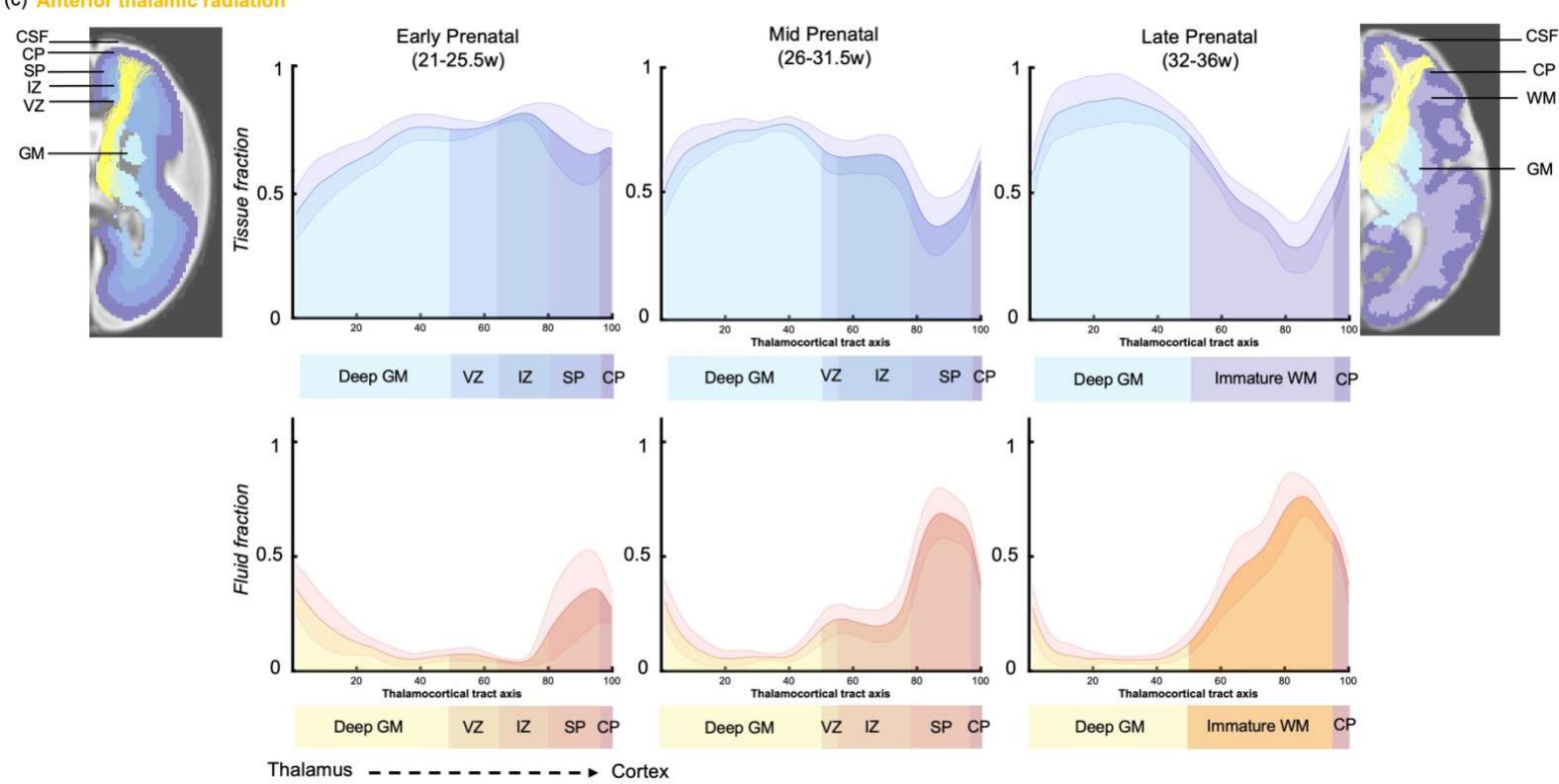

218 To improve our ability to corroborate changes in the diffusion MRI signal with observations from
219 histological studies, we mapped the maturational trajectories to an atlas of fetal brain compartments
220 (Gholipour et al. 2017) and overlayed the boundaries of these compartments on the tissue and fluid
221 fraction trajectories (Figure 5). Tissue fraction values in the deep grey matter and the cortical plate areas
222 increased with gestational age in all tracts. This increase was most marked in the tracts terminating in
223 superior areas of the brain (motor, sensory and superior parietal cortex) (Figure 5(a) TM, Supplementary
224 Figure 1(a) TS and (b) PP). The tissue fraction of the ventricular and intermediate zones decreased
225 between the early and mid-prenatal period, in all tracts. This decrease was very pronounced in the motor,
226 sensory and superior parietal tracts. The subplate tissue fraction changes were more tract specific. In
227 the subplate of sensorimotor and parietal tracts, there was initially a very high fluid fraction and low
228 tissue fraction, which transitions across the second to third trimester, increasing in tissue fraction from
229 early to mid and then to late prenatal. Whereas in the anterior thalamic radiation, there was a decrease
230 in subplate tissue fraction with GA (and a reciprocal increase in fluid fraction). In the optic radiation,
231 the subplate tissue fraction decreases between early and mid-prenatal to then increase again in late
232 prenatal. Highest tissue fractions were generally observed in the ventricular zone, with the lowest tissue
233 fraction in the subplate area.

234

(a) Thalamic-motor tract

(b) Optic Radiation

235


236

237

238

239

(c) **Anterior thalamic radiation**

240

241

242 **Figure 5. Microstructural composition of fetal compartments traversed by developing thalamic white**
 243 **matter. Tracts were overlayed on the atlas of fetal compartments (examples highlight the difference**
 244 **between fetal brain structure in early prenatal (25w) on far left, and late prenatal (35w) on far right).**
 245 **Tissue fraction trends (top row) and fluid fraction trends (bottom row), normalised to 1, between the**
 246 **thalamus and cortex (thalamocortical tract axis) for the (a) Thalamic-motor tract, (b) Optic radiation**
 247 **and (c) Anterior thalamic radiation. Subjects were grouped by age, and average trajectories plotted for**
 248 **early prenatal (22-25.5w), mid prenatal (26-31.5w), late prenatal (32-36w). Error bars represent the**
 249 **standard deviation among all subjects in each group. Atlas-derived tissue boundaries are marked on**
 250 **the trajectories to reveal the changing tissue properties of each layer between early, mid and late**
 251 **prenatal development. (Cortical spinal fluid = CSF, Cortical plate = CP, Subplate = SP, Intermediate**
 252 **zone = IZ, Ventricular zone = VZ, Deep grey matter = GM, Immature white matter = WM).**

253

254 **Discussion**

255 In this work, we studied *in utero* development of five distinct thalamocortical pathways using state-of-
256 the-art diffusion MR imaging methods and bespoke pre-processing pipeline (Christiaens et al. 2019;
257 Cordero-Grande et al. 2019; Hutter, Christiaens, et al. 2018; Pietsch et al. 2019; Wilson et al. 2021) in
258 140 fetuses aged 21 to 37 weeks gestation. We show that these pathways connect to distinct thalamic
259 nuclei, which could be clearly defined at group level even at 23W. To disentangle the impact of different
260 neurobiological processes on diffusion metrics, we characterized the tissue composition profile along
261 each of the thalamocortical tracts as they traverse the different developmental tissue layers of the fetal
262 brain. We found the spatiotemporal changes in the diffusion signal reflected known developmental
263 processes that take place between the early, mid and late prenatal period. The early period is
264 characterized by higher tissue fractions in the middle of the tract, where there is a radial scaffold for
265 migrating neurons. As this scaffold dissipates in the mid prenatal period, this is accompanied by a
266 reduction in the tissue fraction in the middle of the tract, and an increase in towards the termination of
267 the tracts as the neurons of the cortical plate mature. Finally in the late prenatal period, we observe the
268 highest tissue fraction values at the start and end of the axis, as the premyelination phase of white matter
269 development commences. This study demonstrates how the diffusion MRI signal can be modelled to
270 create *in vivo* spatiotemporal trajectories which relate to underlying neurobiological properties and are
271 consistent with described trends from post-mortem histology (Kostovic, Progress in Neurobiology
272 2020).

273 Early embryonic patterning of gene expression and cell division in the thalamus provide a template for
274 specialised nuclei to emerge over the course of development, such that specific cells eventually occupy
275 distinct locations within the thalamus (Clascá, Rubio-Garrido, and Jabaudon 2012; Nakagawa 2019)
276 Thalamocortical tracts emerge over the same timescale as the thalamus parcellates and matures into its
277 specialised group of nuclei (Clascá, Rubio-Garrido, and Jabaudon 2012). Although the topography of
278 thalamic nuclei and their cortical connectivity is acquired embryonically, no *in vivo* parcellation of the
279 thalamus in the fetal brain has been published. Using tract density imaging, we observed that the cortical
280 areas were connected to specific thalamic regions, organised in an anterior-posterior axis. This anterior-
281 posterior representation of cortical connectivity in the thalamus was consistent across the second to

282 third trimester and is in accordance with the topology of thalamic nuclei described in animal studies
283 and histology (Molnar & Blakemore, 1995; Molnar et al., 1998a, b). In addition, our fetal structural
284 connectivity parcellation resembles the functionally-derived thalamic parcellation in neonates,
285 supporting the view that there is a strong association between structure and function in thalamocortical
286 circuitry that begins early in life (Johansen-Berg 2005, Toulmin 2015, Alcauter 2014). It is worth noting
287 that this thalamic parcellation is dependent on streamline count through a voxel, and in the fetal brain
288 streamlines are prone to spurious detection. Particularly in the youngest fetuses, where we observe an
289 extremely dense connectome (due to a fixed number of streamlines in a smaller brain) but there are very
290 few coherent axonal bundles, tracts might be overrepresented in the thalamic parcellation.

291
292 Recent studies characterising developing white matter pathways using human fetal MRI identified 2nd
293 order polynomial maturational trends in diffusion metrics unique to this developmental period (Wilson
294 et al., 2021, Machado-Riveras et al., 2021). Here we replicated these methods with a different group of
295 tracts and found the same U-shaped trends in thalamocortical white matter development. The inflection
296 point at around 29-30w was hypothesised to be the result of the dissipating radial glial scaffold followed
297 by the pre-myelination phase of white matter development (Wilson et al., 2021, Machado-Riveras et
298 al., 2021). The sensitivity of HARDI to radially organised structure in the fetal brain has been described
299 by previous studies (Miyazaki, Song, and Takahashi 2016; Takahashi et al. 2012; Xu et al. 2014)
300 combining it with post-mortem tissue analysis to show that radially coherent diffusion signal
301 corresponded to radial glial fibres in the early prenatal period, transitioning to cortico-cortical fibres
302 around 30 weeks, coinciding with the appearance of astrocytes (Takahashi et al. 2012; Xu et al. 2014).
303 However, with whole-tract average values, it is not possible to establish the precise effect of different
304 neurodevelopmental processes on diffusion metrics across gestation.

305
306 To address this ambiguity, we characterised the entire trajectory of tissue composition changes between
307 the thalamus and the cortex. We found that age-related changes in the tissue and fluid fraction along
308 the tracts concurred with histological observations (Ivica Kostović and Judaš 2010). During the early
309 prenatal period (22 - 25.5 GW), neuronal precursors migrate along the radial glial scaffold from

310 proliferative zones to their destination in the cortical plate and thalamocortical axons accumulate in the
311 superficial subplate, entering a “waiting phase”, forming transient synaptic connections (Ghosh et al.
312 1990; I. Kostovic and Rakic 1984; Ivica Kostovic and Goldman-Rakic 1983; Ivica Kostovic and Rakic
313 1990a). In terms of the diffusion signal, this strongly aligned microstructure of the radial glia is
314 represented in our results by a higher tissue fraction in the transient compartments containing the most
315 migratory cells (such as the VZ, IZ) (Ivica Kostović and Judaš 2010). Conversely, we observe the lowest
316 tissue fraction in the early prenatal SP, as this compartment predominantly contains hydrophilic
317 extracellular matrix (Allendoerfer and Shatz 1994; Miller et al. 2014; Bakken et al. 2016; Molnár and
318 Hoerder-Suabedissen 2016).

319

320 By the mid prenatal period (26w-31.5w), we observe increased tissue fraction in the cortical plate,
321 coinciding with the innervation of the cortical plate by thalamocortical axons, increasing soma volume
322 and dendritic branching of CP neurons and CP synaptogenesis (Huttenlocher and Dabholkar 1997; Peter
323 R. 1979; zljak et al. 1992). We also observe increased tissue fraction in the SP zone in the mid prenatal
324 period, consistent with histological observations of increased coherence of axonal fibres between
325 cortical areas (Takahashi et al. 2012; Xu et al. 2014). The tissue fraction in the VZ and IZ decreases
326 compared to the early prenatal period, corresponding to the timeframe when the radial glial scaffold
327 dissipates (Back et al. 2001; Haynes et al. 2005; Kinney et al. 1988).

328

329 From the mid to late prenatal period, there is a marked increase in tissue fraction in last third of the axis
330 between thalamus and cortex. By this point in development, the radial glia have converted into
331 oligodendrocyte precursor cells which ensheathe the axonal fibres to commence pre-myelination,
332 enhancing the structural integrity of the fibre pathways (Back et al. 2001, 2002; Haynes et al. 2005;
333 Kinney et al. 1988, 1994). A previous study has shown that this oligodendrocyte lineage progression
334 correlates with diffusion metrics (Drobyshevsky et al. 2005) suggesting it is likely to contribute to the
335 increased tissue fraction we observe in the late prenatal period. The tissue fraction increase in the CP
336 area is consistent in time with the lamination of the CP, the elaboration of thalamocortical terminals in
337 layer IV and a rapid growth of basal dendrites of layer III and V pyramidal neurons (Ivica Kostovic and

338 Goldman-Rakic 1983; Ivica Kostović and Judaš 2006; Krsnik et al. 2017; Molliver, Kostović, and Van
339 Der Loos 1973). These high tissue fraction values at the origin and termination of the tracts suggest co-
340 maturation between ascending and descending pathways between the thalamus and cortex to eventually
341 form continuous, structurally mature fibre bundles. This concept was proposed in the 90's by Blakemore
342 and Molnar, termed the "handshake hypothesis". They suggested that thalamocortical pathways
343 ascending through the internal capsule project to their cortical targets with assistance from reciprocal
344 descending cortical pathways (Molnár and Blakemore 1995). We hypothesise that continuing this
345 analysis over subsequent weeks into the neonatal period, would lead to an increasing tissue fraction in
346 the middle of the axis, as fibre bundles become more uniformly structurally mature and the subplate
347 completely resolves (Haynes et al. 2005; Kinney et al. 1988, 1994; Ivica Kostović and Judaš 2006).

348

349 We observed that tracts terminating superiorly (motor, sensory and parietal) shared very similar
350 trajectories in the early, mid and late periods. However, the optic radiation and the anterior thalamic
351 radiation had more distinct trajectories. The microstructural change along the anterior thalamic radiation
352 suggests increasing tissue fraction between the deep grey matter, VZ and IZ. We hypothesise that the
353 high tissue fraction in the IZ is due to densely packed ascending and descending bundles within the
354 anterior limb of the internal capsule (Emos and Agarwal 2019). On the other hand, the optic radiation
355 traverses the deep parietal lobe along the border of the lateral ventricle and has smoother transitions in
356 tissue fraction between the fetal compartments. This is likely due to the tract area running more parallel
357 to the tissue interfaces. Another explanation for the regional differences in microstructural properties is
358 the variation in subplate remnants. In the late prenatal trajectories, all tracts except the optic radiation
359 have a large dip in tissue fraction along the tract. In the primary visual cortex, the subplate disappears
360 during the final weeks of gestation, whereas in the somatosensory cortex there are still subplate neurons
361 present in term-born neonates (Ivica Kostovic and Rakic 1990b) and the subplate of the pre-frontal
362 associative cortex gradually disappears over the six postnatal months. Therefore, the peaks of fluid
363 fraction in the frontal and sensory trajectories might reflect the lasting presence of subplate in these
364 areas (Ivica Kostović and Judaš 2006; Ivica Kostovic and Rakic 1990a).

365

366 The methods described allow the direct study of the maturational effects of the subplate and
367 intermediate zones, which are known to represent critical substrates for early synaptogenesis and the
368 spatial guidance of thalamocortical axons (Ghosh et al. 1990). Damage to this essential structural
369 framework for developing cortical circuitry has been implicated in the origins of numerous
370 developmental disorders, and is suspected to underly the altered structural and functional connectivity
371 of the thalamus in preterm infants (Kostovic et al. 1989; Kostovic et al. 2011; Volpe 1996, 2000; Huppi
372 et al. 2001; Kostovic and Judas 2002, 2006, 2007, 2010; Counsell et al. 2003; McQuillen and Ferriero
373 2005; Hadders-Algra 2007; Mathur and Inder 2009; Kinney et al. 2012, Toulmin et al., 2015, Ball et
374 al., 2012, Ball et al., 2015, Kostovic & Judas 2010, Volpe 2009, Toulmin cerebral cortex). It is therefore
375 critical to use clinically relevant tools, such as in utero MRI, to relate the microstructural properties of
376 these transient fetal compartments to neurobiological processes. This improves mechanistic insight
377 about both healthy white matter maturation and the developmental origins of white-matter pathologies.
378

379 With this study we explore the development of thalamocortical white matter by quantifying
380 microstructure in the different layers of the fetal brain. Using diffusion metrics, we characterise the
381 emergence of structural connectivity from the thalamus to spatially and functionally distinct cortical
382 brain regions. We observe correlations between the transitioning tissue components and key
383 neurobiological processes in white matter development. By providing a detailed normative reference of
384 MR signal change during the second to third trimester, this will help future studies to identify if the
385 tissue properties of specific compartments are affected by preterm birth or other perinatal injury. To
386 this effect, all fetal MRI data is made available to the research community.
387

388 **Materials and Methods**

389 **Sample**

390 The study was approved by the UK Health Research Authority (Research Ethics Committee reference
391 number: 14/LO/1169) and written parental consent was obtained in every case for imaging and open
392 data release of the anonymized data.

393

394 **Acquisition, pre-processing, and quality control**

395

396 GA was determined by sonography at 12 post-ovulatory weeks as part of routine clinical care. 300 fetal
397 MRI datasets were acquired with a Philips Achieva 3T system, with a 32-channel cardiac coil in
398 maternal supine position. dMRI data was collected with a combined spin echo and field echo (SAFE)
399 sequence (Hutter, Slator, et al. 2018, Cordero-Grande et al., 2018) at 2 mm isotropic resolution, using
400 a multi-shell diffusion encoding that consists of 15 volumes at $b= 0 \text{ s/mm}^2$, 46 volumes at $b= 400 \text{ s/mm}^2$
401 , and 80 volumes at $b= 1000 \text{ s/mm}^2$ lasting 14 minutes (Christiaens et al., 2019). The protocol also
402 included the collection of structural T2w, T1w, and fMRI data, for a total imaging time of approximately
403 45 minutes (Price et al., 2019).

404

405 dMRI data were processed using a bespoke pipeline (Christiaens et al., 2019) that includes Generalized
406 Singular Value Shrinkage (GSVS) image denoising and debiasing from complex data (Cordero-Grande
407 et al., 2019), dynamic distortion correction of susceptibility-induced B0 field changes using the SAFE
408 information (Ghiglia 1994, Cordero-Grande et al., 2018, Hutter, Slator, et al. 2018) and slice-to-volume
409 motion correction based on a multi-shell spherical harmonics and radial decomposition (SHARD)
410 representation (Christiaens et al., 2021). Quality control was implemented using summary metrics based
411 on the gradient of the motion parameters over time and the percentage of slice dropouts in the data
412 (Christiaens et al., 2021). This was followed up with expert visual assessment, which considered any
413 residual or uncorrected artefacts. Based on the above criteria, 140 of the 300 subjects that were pre-
414 processed were classified as high-quality reconstructions for both DWI and T2 modalities. Both DWI
415 and T2 for each fetus were required to facilitate co-registration to template space via a structural
416 intermediate.

417

418 **Diffusion modelling and template generation**

419

420 All diffusion processing and tractography was done using MRtrix3 (Tournier 2019). To model the tissue
421 and fluid components of the diffusion data, WM and CSF response functions were estimated for each

422 subject using T2-based tissue segmentations as inclusion areas. WM response functions were extracted
423 from areas of relatively mature white matter (corticospinal tract and corpus callosum) using the
424 “tournier” algorithm and CSF responses using the “dhollander” algorithm in MRtrix3 (Jeurissen et al.
425 2014; Tournier et al. 2019; Tournier, Calamante, and Connelly 2013, Dhollander 2019). The WM
426 response functions of the oldest 20 subjects were averaged to obtain a group-average response function
427 of relatively mature WM, whilst a group-average CSF response function was calculated from the whole
428 cohort of subjects. dMRI signal of all subjects was subsequently deconvolved into tissue ODF and fluid
429 components using MSMT-CSD and the group-average WM and CSF response functions (Jeurissen et
430 al. 2014), and resulting components were intensity normalised for each subject (Raffelt et al. 2011).
431 Subject ODFs warped into weekly templates through a series of coarse pose normalisation and nonlinear
432 diffeomorphic image registration steps (Jenkinson 2002, Raffelt 2011, Pietsch 2019). These
433 transformations were composed to obtain pairs of inverse consistent diffeomorphic subject-to-template
434 and template-to subject warps.

435

436 **Connectome generation & tractography**

437

438 The ODF templates were co-registered to the Boston T2-fetal atlas (Gholipour et al. 2017) using non-
439 linear registration (Avants, Tustison, and Johnson 2014). The tissue segmentations of the cortex, white
440 matter and deep grey matter were used for anatomically constrained tractography to generate whole-
441 brain structural connectomes of 100M streamlines in each gestational week (Smith et al. 2012; Tournier
442 et al. 2019). The connectomes were filtered down to 10M streamlines using the SIFT algorithm (Smith
443 et al. 2013; Tournier et al. 2019), so that the number of streamlines connecting the two regions are
444 approximately proportional to the cross-sectional area of the fibres connecting them (Smith et al. 2013).
445 In each weekly template, thalamocortical pathways of interest were defined in both hemispheres by
446 filtering the connectome using seed regions derived from the Boston T2-fetal atlas (Gholipour et al.
447 2017), including the thalamus, primary motor cortex, primary sensory cortex, posterior parietal cortex,
448 dorso-lateral prefrontal cortex, and primary visual cortex. We also used additional ROIs to exclude

449 spurious streamlines that were projecting away from the expected path of the tract (for example, to
450 exclude callosal fibres from the thalamic-motor tract).

451

452 **Tract-density parcellation of thalamus**

453

454 Tckmap was used to identify which voxels in the thalamus mask were traversed by the streamlines of
455 each tract (Calamante et al. 2010). The tract density maps were merged using FSL (Jenkinson et al.
456 2012) and a colour-coded parcellation volume was constructed reflecting the maximum density tract
457 for each voxel. For visualisation, the tract density maps for each tract were thresholded at 80%, only to
458 include voxels with the highest streamline connectivity.

459

460 **Extracting tissue and fluid fraction values**

461

462 To extract diffusion metrics for analysis, In parallel, tracts were transformed from the templates to
463 age-matched subject space to be overlaid onto the normalised fluid ODF, and the normalised tissue
464 ODF. The mean value within the segmented tracts was calculated to give the tissue and fluid
465 fractions.

466

467 **Microstructural profiling**

468

469 In each template, thalamocortical tracts were filtered so all the streamlines for each tract were the same
470 length, to ensure even sampling intervals along them. All template tracts were then registered into a
471 standard space and resampled to 100 points (Tournier et al. 2019), before being transformed to
472 individual subjects and overlaid on the normalised tissue and fluid fraction maps. The average value for
473 each sampling point was calculated to create a microstructural profile along the path between the
474 thalamus and the cortical plate. To provide a reference for microstructural differences between fetal
475 brain compartments, tracts were overlaid on the atlas-derived tissue parcellations. The value of the
476 tissue labels underlying the tract were used to establish which sampling points corresponded to each

477 fetal compartment. These boundaries between compartments were then used to label the plots in Figure
478 5.

479

480 **Acknowledgements**

481 We thank the patients who agreed to participate in this work and the staff of St. Thomas' Hospital
482 London. This work was supported by the European Research Council under the European Union
483 Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement No. 319456. We acknowledge
484 infrastructure support from the National Institute for Health Research (NIHR) Mental Health
485 Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust, King's
486 College London, and the NIHR-BRC at Guy's and St Thomas' NHS Foundation Trust. We also
487 acknowledge grant support in part from the Wellcome Engineering and Physical Sciences Research
488 Council (EPSRC) Centre for Medical Engineering at King's College London (WT 203148/Z/16/Z) and
489 the Medical Research Council (UK) (MR/K006355/1 and MR/L011530/1). J.O. is supported by a Sir
490 Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society (Grant
491 206675/Z/17/Z). J.O. and A.D.E. received support from the Medical Research Council Centre for
492 Neurodevelopmental Disorders, King's College London (Grant MR/N026063/1). T.A. was supported
493 by an MRC Clinician Scientist Fellowship (MR/P008712/1). Support for this work was also provided
494 by the NIHR-BRC at Kings College London, Guy's and St Thomas' NHS Foundation Trust in
495 partnership with King's College London, and King's College Hospital NHS Foundation Trust.

496

497 **Competing interests**

498 The authors declare no competing interests.

499

500 **References**

501

502 Anticevic, Alan et al. 2014. "Characterizing Thalamo-Cortical Disturbances in Schizophrenia and
503 Bipolar Illness." *Cerebral Cortex* 24(12): 3116–30.

504 <https://academic.oup.com/cercor/article/24/12/3116/272693>.

505 Avants, Brian B, Nick Tustison, and Hans Johnson. 2014. *Advanced Normalization Tools (ANTS)*
506 *Release 2.X*. <https://brianavants.wordpress.com/2012/04/13/updated-ants-compile-instructions-april-12-2012/> (June 23, 2021).

508 Back, Stephen A. et al. 2002. “Arrested Oligodendrocyte Lineage Progression during Human Cerebral
509 White Matter Development: Dissociation between the Timing of Progenitor Differentiation and
510 Myelinogenesis.” *Journal of Neuropathology and Experimental Neurology* 61(2): 197–211.
511 <https://pubmed.ncbi.nlm.nih.gov/11853021/> (January 25, 2021).

512 Back, Stephen A et al. 2001. “Late Oligodendrocyte Progenitors Coincide with the Developmental
513 Window of Vulnerability for Human Perinatal White Matter Injury.” *Journal of Neuroscience*
514 21(4): 1302–12.

515 Ball, Gareth et al. 2013. “The Influence of Preterm Birth on the Developing Thalamocortical
516 Connectome.” *Cortex* 49(6): 1711–21.
517 ———. 2015. “Thalamocortical Connectivity Predicts Cognition in Children Born Preterm.”
518 *Cerebral Cortex* 25(11): 4310–18. <https://pubmed.ncbi.nlm.nih.gov/25596587/> (August 16,
519 2022).

520 Brody, Betty Ann, Hannah C. Kinney, Alexander S. Kloman, and Floyd H. Gilles. 1987. “Sequence
521 of Central Nervous System Myelination in Human Infancy. I. An Autopsy Study of
522 Myelination.” *Journal of Neuropathology and Experimental Neurology* 46(3): 283–301.
523 <https://academic.oup.com/jnen/article-lookup/doi/10.1097/00005072-198705000-00005> (June
524 24, 2020).

525 Bui, Tony et al. 2006. “Microstructural Development of Human Brain Assessed in Utero by Diffusion
526 Tensor Imaging.” *Pediatric Radiology* 36(11): 1133–40.

527 Calamante, Fernando, Jacques Donald Tournier, Graeme D. Jackson, and Alan Connelly. 2010.
528 “Track-Density Imaging (TDI): Super-Resolution White Matter Imaging Using Whole-Brain
529 Track-Density Mapping.” *NeuroImage* 53(4): 1233–43.

530 Christiaens, D., Cordero-Grande, L., Price, A.N., Hutter, J., Hughes, E., Counsell, S.J., Tournier, J-D.,
531 Hajnal, J.V. (2019). Fetal diffusion MRI acquisition and analysis in the developing Human
532 Connectome Project. vol. 27, (Abstract No. 629). Presented at the ISMRM Annual Meeting &

533 Exhibition, Montréal, QC, Canada, 11 May 2019-16 May 2019.

534 Christiaens, Daan et al. 2019. “In Utero Diffusion MRI: Challenges, Advances, and Applications.”

535 *Topics in Magnetic Resonance Imaging* 28(5): 255–64.

536 <https://doi.org/10.1097/RMR.0000000000000211> (February 3, 2021).

537 Clascá, Francisco, Pablo Rubio-Garrido, and Denis Jabaudon. 2012. “Unveiling the Diversity of

538 Thalamocortical Neuron Subtypes.” *European Journal of Neuroscience* 35(10): 1524–32.

539 <https://onlinelibrary.wiley.com/doi/full/10.1111/j.1460-9568.2012.08033.x> (July 5, 2022).

540 Cordero-Grande, L., Price, A.N., Ferrazzi, G., Hutter, J., Christiaens, D., Hughes, E., Hajnal, J.V.

541 (2018). Spin And Field Echo (SAFE) dynamic field correction in 3T fetal EPI. vol. 26, (Abstract

542 No. 208). Presented at the Joint Annual Meeting ISMRM-ESMRMB, Paris, France, 16 Jun

543 2018-21 Jun 2018.

544 Cordero-Grande, L., Christiaens, D., Hutter, J., Price, A.N., Hajnal, J.V. (2019). Complex diffusion-

545 weighted image estimation via matrix recovery under general noise models. *NeuroImage*, 200,

546 391-404. doi: 10.1016/j.neuroimage.2019.06.039

547 Drobyshevsky, Alexander et al. 2005. “Developmental Changes in Diffusion Anisotropy Coincide

548 with Immature Oligodendrocyte Progression and Maturation of Compound Action Potential.”

549 *Journal of Neuroscience* 25(25): 5988–97.

550 Emos, Marc Christopher, and Sanjeev Agarwal. 2019. *StatPearls Neuroanatomy, Internal Capsule*.

551 StatPearls Publishing. <https://www.ncbi.nlm.nih.gov/books/NBK542181/> (July 29, 2022).

552 Gholipour, Ali et al. 2017. “A Normative Spatiotemporal MRI Atlas of the Fetal Brain for Automatic

553 Segmentation and Analysis of Early Brain Growth.” *Scientific Reports* 7(1).

554 www.nature.com/scientificreports.

555 Ghosh, Anirvan, Antonella Antonini, Susan K. McConnell, and Carla J. Shatz. 1990. “Requirement

556 for Subplate Neurons in the Formation of Thalamocortical Connections.” *Nature* 347(6289):

557 179–81. <https://www.nature.com/articles/347179a0> (August 2, 2022).

558 Haynes, Robin L. et al. 2005. “Axonal Development in the Cerebral White Matter of the Human Fetus

559 and Infant.” *Journal of Comparative Neurology* 484(2): 156–67.

560 <https://pubmed.ncbi.nlm.nih.gov/15736232/> (February 19, 2021).

561 Huttenlocher, Peter R., and Arun S. Dabholkar. 1997. “Regional Differences in Synaptogenesis in
562 Human Cerebral Cortex.” *Journal of Comparative Neurology* 387(2): 167–78.
563 <https://onlinelibrary.wiley.com/doi/epdf/10.1002/%28SICI%291096-9861%2819971020%29387%3A2%3C167%3A%3AAID-CNE1%3E3.0.CO%3B2-Z> (August 3,
564 2022).
565
566 Hutter, Jana, Paddy J. Slator, et al. 2018. “Integrated and Efficient Diffusion-Relaxometry Using
567 ZEBRA.” *Scientific Reports* 2018 8:1 8(1): 1–13. <https://www.nature.com/articles/s41598-018-33463-2> (August 19, 2022).
568
569 Hutter, Jana, Daan J. Christiaens, et al. 2018. “Slice-Level Diffusion Encoding for Motion and
570 Distortion Correction.” *Medical Image Analysis* 48: 214–29.
571 <https://europepmc.org/articles/PMC6191883> (June 24, 2020).
572 Jaimes, Camilo et al. 2020. “In Vivo Characterization of Emerging White Matter Microstructure in
573 the Fetal Brain in the Third Trimester.” *Human Brain Mapping* 41(12): 3177–85.
574 <https://onlinelibrary.wiley.com/doi/abs/10.1002/hbm.25006> (June 24, 2020).
575 Jakab, András et al. 2015. “Fetal Cerebral Magnetic Resonance Imaging Beyond Morphology.”
576 *Seminars in Ultrasound, CT and MRI* 36(6): 465–75.
577 Jenkinson, Mark et al. 2012. “Review FSL.” *NeuroImage* 62(2): 782–90.
578 <https://research.utwente.nl/en/publications/fsl> (June 23, 2020).
579 Jeurissen, Ben et al. 2014. “Multi-Tissue Constrained Spherical Deconvolution for Improved Analysis
580 of Multi-Shell Diffusion MRI Data.” *NeuroImage* 103: 411–26.
581 Jones, Edward G. 2007. *The Thalamus*.
582 Keunen, Kristin et al. 2018. “Early Human Brain Development: Insights into Macroscale Connectome
583 Wiring.” *Pediatric Research* 84(6): 829–36.
584 Khan, Shadab et al. 2019. “Fetal Brain Growth Portrayed by a Spatiotemporal Diffusion Tensor MRI
585 Atlas Computed from in Utero Images.” *NeuroImage* 185(August 2018): 593–608.
586 Kinney, Hannah C. et al. 1994. “Myelination in the Developing Human Brain: Biochemical
587 Correlates.” *Neurochemical Research* 19(8): 983–96.
588 <https://link.springer.com/article/10.1007/BF00968708> (January 25, 2021).

589 Kinney, Hannah C., Betty Ann Brody, Alexander S. Kloman, and Floyd H. Gilles. 1988. "Sequence of
590 Central Nervous System Myelination in Human Infancy. II. Patterns of Myelination in
591 Autopsied Infants." *Journal of Neuropathology and Experimental Neurology* 47(3): 217–34.
592 <https://academic.oup.com/jnen/article-lookup/doi/10.1097/00005072-198805000-00003>
593 (January 25, 2021).

594 Klingner, Carsten M et al. 2014. "Thalamocortical Connectivity during Resting State in
595 Schizophrenia." *European Archives of Psychiatry and Clinical Neuroscience* 264(2): 111–19.
596 <http://www.fil.ion>.

597 Kostović, I., and M. Jadaš. 2015. "Embryonic and Fetal Development of the Human Cerebral
598 Cortex." *Brain Mapping: An Encyclopedic Reference* 2: 167–75.

599 Kostovic, I., and P. Rakic. 1984. "Development of Prestriate Visual Projections in the Monkey and
600 Human Fetal Cerebrum Revealed by Transient Cholinesterase Staining." *Journal of
601 Neuroscience* 4(1): 25–42. <https://pubmed.ncbi.nlm.nih.gov/6693940/> (July 27, 2022).

602 Kostovic, Ivica, and Patricia S. Goldman-Rakic. 1983. "Transient Cholinesterase Staining in the
603 Mediodorsal Nucleus of the Thalamus and Its Connections in the Developing Human and
604 Monkey Brain." *Journal of Comparative Neurology* 219(4): 431–47.
605 <https://onlinelibrary.wiley.com/doi/full/10.1002/cne.902190405> (July 27, 2022).

606 Kostović, Ivica, and Nataša Jovanov-Milošević. 2006. "The Development of Cerebral Connections
607 during the First 20–45 Weeks' Gestation." *Seminars in Fetal and Neonatal Medicine* 11(6): 415–
608 22. <https://pubmed.ncbi.nlm.nih.gov/16962836/> (June 24, 2020).

609 Kostović, Ivica, and Miloš Jadaš. 2006. "Prolonged Coexistence of Transient and Permanent Circuitry
610 Elements in the Developing Cerebral Cortex of Fetuses and Preterm Infants." *Developmental
611 Medicine and Child Neurology* 48(5): 388–93. <http://www.ncbi.nlm.nih.gov/pubmed/16608549>
612 (June 24, 2020).

613 ———. 2010. "The Development of the Subplate and Thalamocortical Connections in the Human
614 Foetal Brain." *Acta Paediatrica, International Journal of Paediatrics* 99(8): 1119–27.

615 Kostovic, Ivica, and Pasko Rakic. 1990a. "Developmental History of the Transient Subplate Zone in
616 the Visual and Somatosensory Cortex of the Macaque Monkey and Human Brain." *Journal of*

617 *Comparative Neurology* 297(3): 441–70.

618 <https://onlinelibrary.wiley.com/doi/full/10.1002/cne.902970309> (July 27, 2022).

619 ———. 1990b. “Developmental History of the Transient Subplate Zone in the Visual and

620 Somatosensory Cortex of the Macaque Monkey and Human Brain.” *The Journal of Comparative*

621 *Neurology* 297(3): 441–70. <http://doi.wiley.com/10.1002/cne.902970309> (December 24, 2019).

622 Krsnik, Željka et al. 2017. “Growth of Thalamocortical Fibers to the Somatosensory Cortex in the

623 Human Fetal Brain.” *Frontiers in Neuroscience* 11(APR): 233. www.frontiersin.org.

624 Lockwood Estrin, Georgia et al. 2019. “White and Grey Matter Development in Utero Assessed

625 Using Motion-Corrected Diffusion Tensor Imaging and Its Comparison to Ex Utero Measures.”

626 *Magnetic Resonance Materials in Physics, Biology and Medicine* 32(4): 473–85.

627 Machado-Rivas, Fedel et al. 2021. “Spatiotemporal Changes in Diffusivity and Anisotropy in Fetal

628 Brain Tractography.” *Human Brain Mapping* 42(17): 5771–84.

629 <https://onlinelibrary.wiley.com/doi/full/10.1002/hbm.25653> (August 3, 2022).

630 Marenco, Stefano et al. 2012. “Investigation of Anatomical Thalamo-Cortical Connectivity and fMRI

631 Activation in Schizophrenia.” *Neuropsychopharmacology* 37(2): 499.

632 [/pmc/articles/PMC3242311/](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3242311/) (August 2, 2022).

633 Miyazaki, Yuta, Jae W. Song, and Emi Takahashi. 2016. “Asymmetry of Radial and Symmetry of

634 Tangential Neuronal Migration Pathways in Developing Human Fetal Brains.” *Frontiers in*

635 *Neuroanatomy* 10(JAN).

636 Molliver, Mark E., Ivica Kostović, and Hendrik Van Der Loos. 1973. “The Development of Synapses

637 in Cerebral Cortex of the Human Fetus.” *Brain Research* 50(2): 403–7.

638 Molnár, Zoltán, and Colin Blakemore. 1995. “How Do Thalamic Axons Find Their Way to the

639 Cortex?” *Trends in Neurosciences* 18(9): 389–97. <https://pubmed.ncbi.nlm.nih.gov/7482804/>

640 (August 2, 2022).

641 Morel, Anne, Michel Magnin, and Daniel Jeanmonod. 1997. “Multiarchitectonic and Stereotactic

642 Atlas of the Human Thalamus.” *Journal of Comparative Neurology* 387(4).

643 Nair, Aarti et al. 2013. “Impaired Thalamocortical Connectivity in Autism Spectrum Disorder: A

644 Study of Functional and Anatomical Connectivity.” *Brain* 136(6): 1942–55.

645 <https://academic.oup.com/brain/article/136/6/1942/619231>.

646 Najdenovska, Elena et al. 2018. “In-Vivo Probabilistic Atlas of Human Thalamic Nuclei Based on
647 Diffusion-Weighted Magnetic Resonance Imaging.” *Scientific Data* 5(1): 1–11.
648 <https://www.nature.com/articles/sdata2018270> (August 16, 2022).

649 Nakagawa, Yasushi. 2019. “Development of the Thalamus: From Early Patterning to Regulation of
650 Cortical Functions.” *Wiley Interdisciplinary Reviews: Developmental Biology* 8(5): e345.
651 <https://onlinelibrary.wiley.com/doi/full/10.1002/wdev.345> (July 5, 2022).

652 Niemann, K., V. R. Mennicken, D. Jeanmonod, and A. Morel. 2000. “The Morel Stereotactic Atlas of
653 the Human Thalamus: Atlas-to-MR Registration of Internally Consistent Canonical Model.”
654 *NeuroImage* 12(6): 601–16.

655 Peter R., Huttenlocher. 1979. “Synaptic Density in Human Frontal Cortex - Developmental Changes
656 and Effects of Aging.” *Brain Research* 163(2): 195–205.

657 Pietsch, Maximilian et al. 2019. “A Framework for Multi-Component Analysis of Diffusion MRI
658 Data over the Neonatal Period.” *NeuroImage* 186: 321–37.

659 Price, David J. et al. 2006. “The Development of Cortical Connections.” *European Journal of
660 Neuroscience* 23(4): 910–20. <https://onlinelibrary.wiley.com/doi/full/10.1111/j.1460-9568.2006.04620.x> (August 2, 2022).

662 Price, A.N., Cordero-Grande, L., Hughes, E., Hiscocks, S., Green, E., McCabe, L., Hutter, J.,
663 Ferrazzi, G., Deprez, M., Roberts, T., Christiaens, D., Duff, E., Karolis, V., Malik, S.,
664 Rutherford, M., Edwards, A.D., Hajnal, J.V. (2019). The developing Human Connectome
665 Project (dHCP): fetal acquisition protocol. vol. 27, (Abstract No. 244). Presented at the ISMRM
666 Annual Meeting & Exhibition, Montréal, QC, Canada, 11 May 2019-16 May 2019.

667 Raffelt, David et al. 2011. “Symmetric Diffeomorphic Registration of Fibre Orientation
668 Distributions.” *NeuroImage* 56(3): 1171–80. <https://pubmed.ncbi.nlm.nih.gov/21316463/> (June
669 25, 2020).

670 Schummers, James, Jitendra Sharma, and Mriganka Sur. 2005. “Bottom-up and Top-down Dynamics
671 in Visual Cortex.” In *Progress in Brain Research*, Elsevier, 65–81.

672 Sharma, Jitendra, Alessandra Angelucci, and Mriganka Sur. 2000. “Induction of Visual Orientation

673 Modules in Auditory Cortex.” *Nature* 404(6780): 841–47.

674 <https://www.nature.com/articles/35009043> (August 2, 2022).

675 Smith, Robert E., Jacques Donald Tournier, Fernando Calamante, and Alan Connelly. 2012.

676 “Anatomically-Constrained Tractography: Improved Diffusion MRI Streamlines Tractography

677 through Effective Use of Anatomical Information.” *NeuroImage* 62(3): 1924–38.

678 ———. 2013. “SIFT: Spherical-Deconvolution Informed Filtering of Tractograms.” *NeuroImage* 67:

679 298–312.

680 Sur, Mriganka, and John L.R. Rubenstein. 2005. “Patterning and Plasticity of the Cerebral Cortex.”

681 *Science (New York, N.Y.)* 310(5749): 805–10. <https://pubmed.ncbi.nlm.nih.gov/16272112/> (July

682 5, 2022).

683 Takahashi, Emi, Rebecca D Folkerth, Albert M Galaburda, and Patricia E Grant. 2012. “Emerging

684 Cerebral Connectivity in the Human Fetal Brain: An MR Tractography Study.” *Cerebral Cortex*

685 22(2): 455–64. <https://academic.oup.com/cercor/article-abstract/22/2/455/340633> (June 24,

686 2020).

687 Toulmin, Hilary et al. 2021. “Functional Thalamocortical Connectivity at Term Equivalent Age and

688 Outcome at 2 Years in Infants Born Preterm.” *Cortex* 135: 17–29.

689 Tournier, J. Donald et al. 2019. “MRtrix3: A Fast, Flexible and Open Software Framework for

690 Medical Image Processing and Visualisation.” *NeuroImage* 202.

691 Wilkinson, Molly, Tara Kane, Rongpin Wang, and Emi Takahashi. 2017. “Migration Pathways of

692 Thalamic Neurons and Development of Thalamocortical Connections in Humans Revealed by

693 Diffusion MR Tractography.” *Cerebral Cortex* 27(12): 5683–95.

694 <https://academic.oup.com/cercor/article/27/12/5683/2629223>.

695 Wilson, Siân et al. 2021. “Development of Human White Matter Pathways in Utero over the Second

696 and Third Trimester.” *Proceedings of the National Academy of Sciences of the United States of*

697 *America* 118(20): 2023598118. <https://www.pnas.org/content/118/20/e2023598118> (June 21,

698 2021).

699 Xu, Gang et al. 2014. “Radial Coherence of Diffusion Tractography in the Cerebral White Matter of

700 the Human Fetus: Neuroanatomic Insights.” *Cerebral Cortex* 24(3): 579–92.

701 <https://pubmed.ncbi.nlm.nih.gov/23131806/> (February 19, 2021).

702 Yakovlev, P. I., S. Locke, D. Y. Koskoff, and R. A. Patton. 1960. "Limbic Nuclei of Thalamus and
703 Connections of Limbic Cortex." *Archives of Neurology* 3(6): 620–41.

704 <https://jamanetwork.com/journals/jamaneurology/fullarticle/562977> (August 2, 2022).

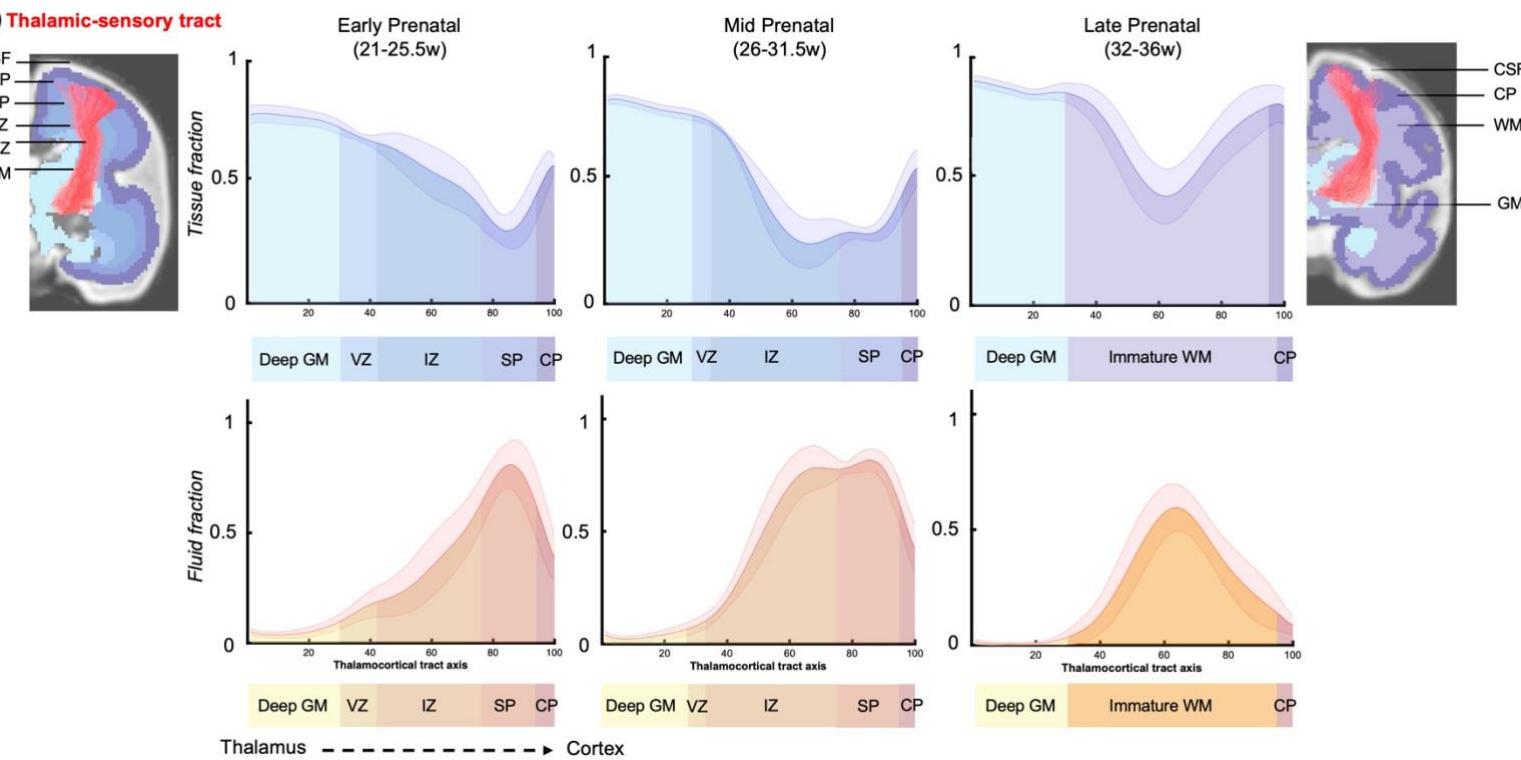
705 Zanin, Emilie et al. 2011. "White Matter Maturation of Normal Human Fetal Brain. An in Vivo
706 Diffusion Tensor Tractography Study." *Brain and Behavior* 1(2): 95–108.

707 <http://doi.wiley.com/10.1002/brb3.17> (May 4, 2020).

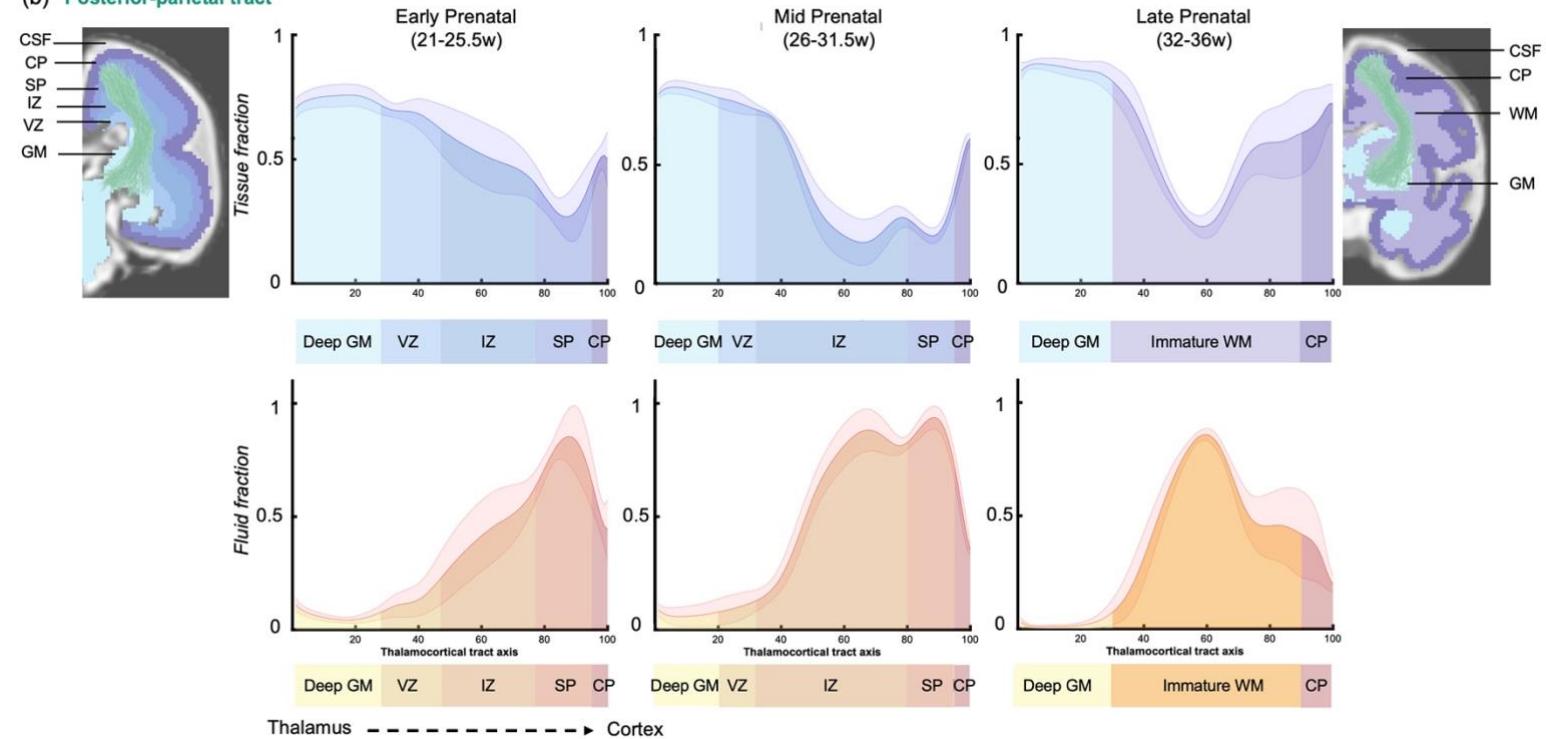
708 zljak, Ladislav, Harry B.M. Uylings, Ivica Kostovic, and Corbert G. van Eden. 1992. "Prenatal
709 Development of Neurons in the Human Prefrontal Cortex. II. A Quantitative Golgi Study."
710 *Journal of Comparative Neurology* 316(4): 485–96.

711 <https://onlinelibrary.wiley.com/doi/full/10.1002/cne.903160408> (August 3, 2022).

712

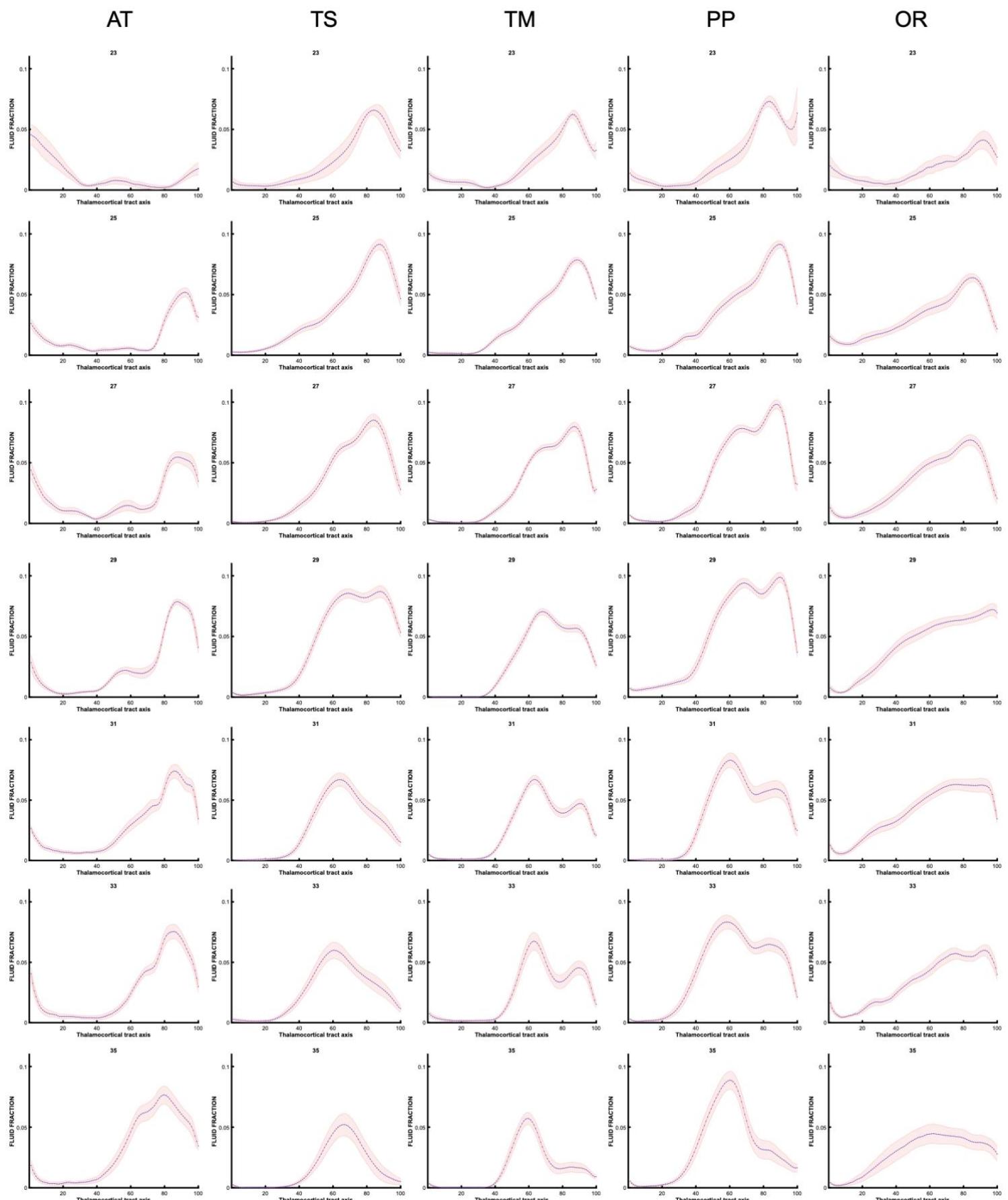

713

714

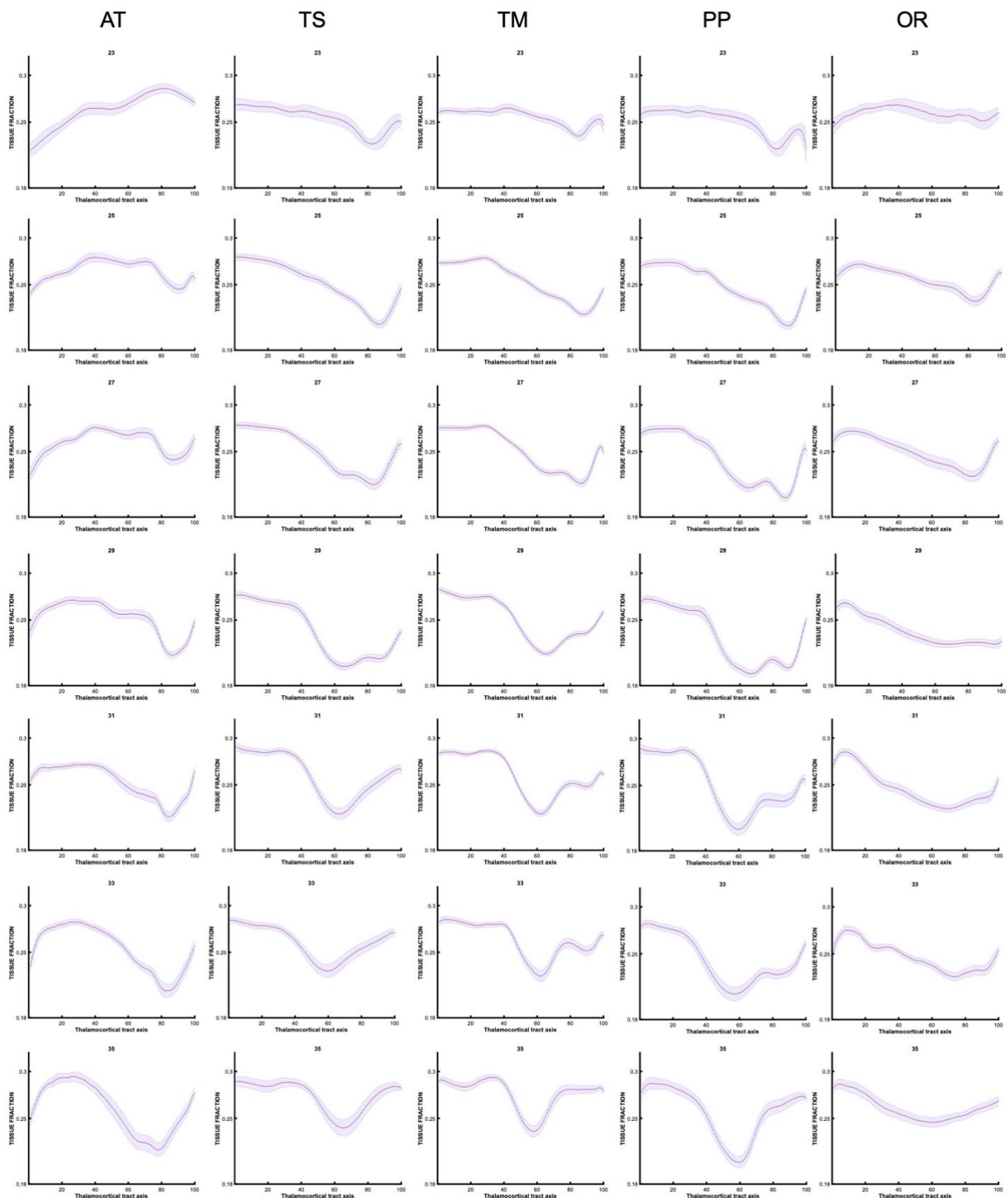

Supplementary Information

Supplementary Figure 1.

(a) Thalamic-sensory tract

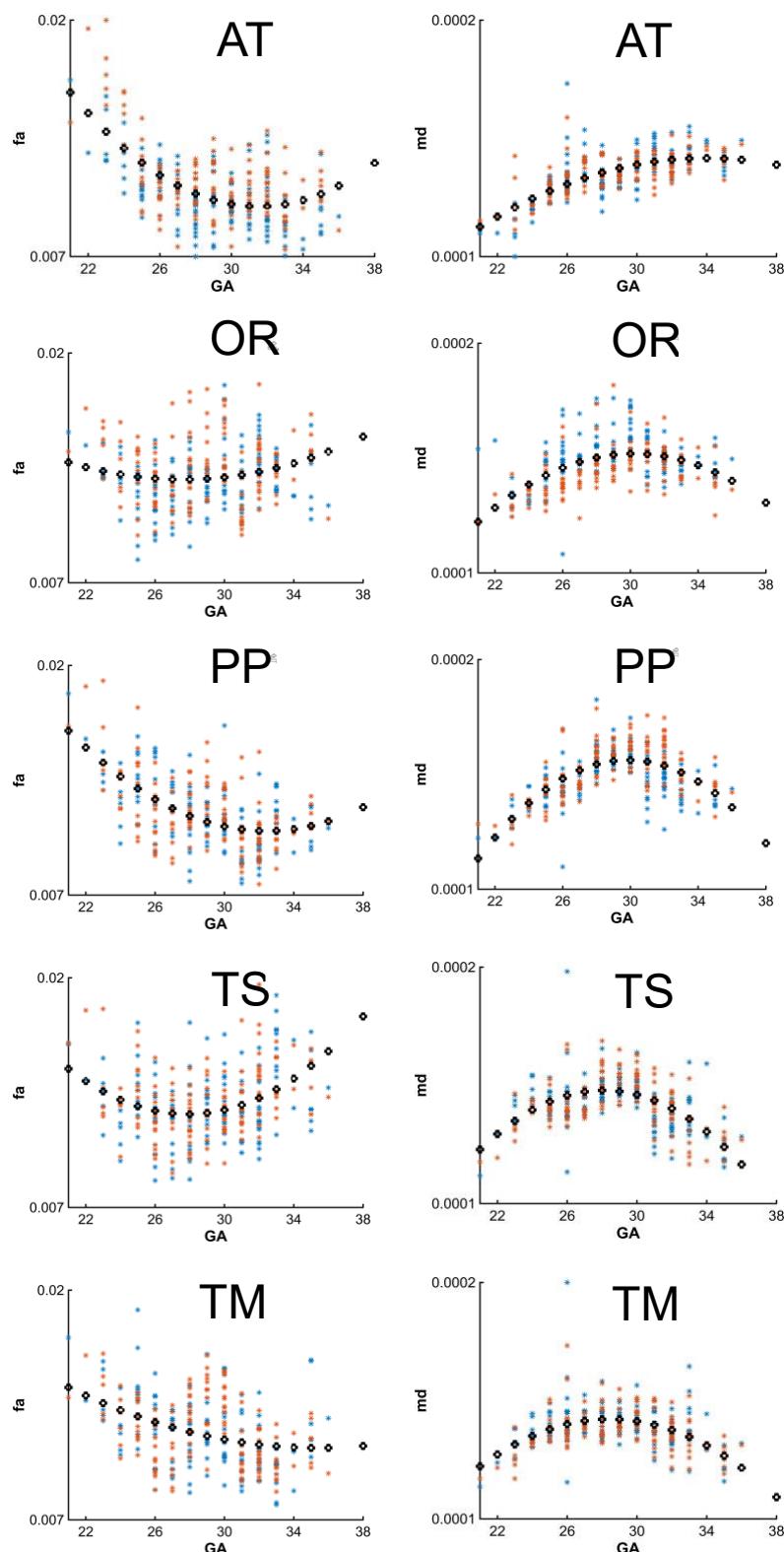


(b) Posterior-parietal tract



Supplementary Figure 1. Microstructural composition of fetal compartments traversed by developing thalamic white matter. (a) Thalamic-sensory tract & (b) Posterior- parietal tract. Tracts were overlayed on the atlas of fetal compartments (examples highlight the difference between fetal brain structure in early prenatal (25w) on far left, and late prenatal (35w) on far right). Tissue fraction trends (top row) and fluid fraction trends (bottom row), normalised to 1, between the thalamus and cortex (thalamocortical tract axis). Subjects were grouped by age, and average trajectories plotted for early prenatal (22-25.5w), mid prenatal (26-31.5w), late prenatal (32-36w). Error bars represent the standard deviation among all subjects in each group. Atlas-derived tissue boundaries are marked on the trajectories to reveal the changing tissue properties of each layer between early, mid and late prenatal development. (Cortical spinal fluid = CSF, Cortical plate = CP, Subplate = SP, Intermediate zone = IZ, Ventricular zone = VZ, Deep grey matter = GM, Immature white matter = WM).

Supplementary Figure 2 (a)



(b)

Supplementary Figure 2. Trajectories of fluid (a) and tissue (b) fraction along the thalamocortical axis for subjects in each gestational week (every other week shown)

Supplementary Figure 3.

Supplementary Figure 3.

Diffusion tensor metric age-trajectories for each tract (a) Whole-tract average fractional anisotropy (FA) and mean diffusivity (MD) for each subject in the left (orange) and right (blue) hemisphere, plotted against gestational age (GA) of the subject, best fit by 2nd order polynomials (AT = anterior thalamic radiation, OR = optic radiation, PP = posterior parietal tract, TS = thalamic-sensory tract, TM = thalamic-motor tract).