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Abstract:

Chromosome number change is a driver of speciation in eukaryotic organisms. Carnivorous
sundews, the plant genus Drosera L., exhibit single chromosome number variation among and
within species, especially in the Australian Drosera subg. Ergaleium D.C., potentially linked to
the presence of holocentromeres. We reviewed literature, verified chromosome counts, and using
an rbcL chronogram, tested alternate models where the gain, loss, and doubling rates (+1, —1,
x2) were the same or different between D. subg. Ergaleium and the other subgenera. Ancestral
chromosome number estimations were performed, and the distributions of self-compatibility and
genome size were visualized across the genus. The best model for chromosome evolution had
equal rates of polyploidy (0.014 per million years; Myr) but higher rates of single chromosome
number gain (0.19 and 0.027 per Myr) and loss (0.23 and 0.00059 per Myr) in D. subg.
Ergaleium compared to the other subgenera. We found no evidence for differences in single
chromosome evolution to be due to differences in diploidization after polyploidy or to
holocentromeres as had been proposed. This study highlights the complexity of factors
influencing rates of chromosome number evolution.
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Chromosome evolution events, such as duplication, inversion, fusion, and fission, are universal
across the eukaryotic tree of life but appear to be more common in some lineages than others
(reviewed in Coghlan et al., 2005). These chromosomal changes have long been considered
driving forces of speciation and lineage diversification (Stebbins, 1971; Grant, 1981; Coyne and
Orr, 2004). Therefore, identifying lineages with unusual rates of chromosome change and the
intrinsic and environmental factors influencing these rates is critical to our understanding of
evolutionary processes in general.

Recent developments in macroevolutionary modeling approaches have explored the association
of chromosome evolution with trait evolution and lineage diversification (Mayrose et al., 2011;
Freyman and Hohna, 2018; Baniaga et al., 2019; Zenil-Ferguson et al., 2019; Romén-Palacios et
al., 2020; Zhan et al., 2021). However, most of this work has focused on the role of chromosome
doubling. Putative factors influencing the occurrence of single chromosome change include post-
polyploidy dysploidy and rediploidization (Mandékova and Lysak, 2018), as well as centromere
type (Lucefio and Guerra, 1996; Mayrose and Lysak, 2020; Ruckman et al., 2020). Factors
influencing the establishment of a new karyotype, such as autogamy (selfing) and clonality in
plants, have only been explored in relation to polyploidy but likely impact single chromosome
evolution as well (Husband et al., 2013; Weiss-Schneeweiss et al., 2013; Van Drunen and
Husband, 2019). The relative importance of selfing and clonality in single chromosome
evolution and establishment remains largely unknown.

Despite the importance of chromosome change to understanding evolution, obtaining a dataset of
chromosome numbers with a matching phylogenetic tree to model the rates of chromosome
change is challenging. A well-resolved phylogeny with a comprehensive species-level sampling
is not always available. Further, because fresh root tips or flower buds are required to obtain
chromosome counts, chromosome counts are often incomplete for lineages with wide geographic
distributions. In addition to incomplete sampling, the quality of chromosome count datasets is
eroded by chromosome counting errors (Windham and Yatskievych, 2003), reporting errors in
chromosome number databases (Rivero et al., 2019), and taxonomic uncertainty from species
misidentifications or taxonomic changes.

The carnivorous plants known as sundews (genus Drosera L.; family Droseraceae; order
Caryophyllales) are exceptionally well-studied cytologically, with chromosome counts available
for about half of its ca. 260 species. Drosera species are widely distributed and occur in a wide
variety of habitats from boreal peatlands to tropical savannahs and subtropical sandplain
heathlands and rock outcrops (Fleischmann et al., 2018). Hotspots of species diversity include
Australia (ca. 170 species), Africa (ca. 40 species), and South America (ca. 40 species;
Fleischmann et al., 2018). Drosera consists of four well-supported subgenera (Fleischmann et
al., 2018): the two early-branching D. subg. Regiae Seine & Barthlott and Arcturia (Planch.)
Schlauer harbor only one and two species respectively, while the sister D. subg. Drosera L. and
Ergaleium D.C. are species-rich and harbor ca. 110 and ca. 150 species, respectively.
Cytological studies on Drosera have been undertaken for over 120 years (Huie, 1897;
Rosenberg, 1903), resulting in a rich literature record comprising more than 600 individual
chromosome counts for ca. 140 species (e.g., Rothfels and Heimburger, 1968; Kress, 1970;
Sheikh and Kondo, 1995; Chen, 1998; Rivadavia, 2005).
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103 Previous karyotype studies in Drosera have revealed strikingly elevated levels of single

104  chromosome number variation in D. subg. Ergaleium (almost every number from n = 3 to 23,
105  with numbers up to 45; tuberous, pygmy, and woolly sundews of Australia; Table S1; Sheikh
106  and Kondo 1995; Hoshi and Kondo, 1998; Rivadavia et al., 2003; Shirakawa, Hoshi, et al.,

107 2011). In contrast, the other three subgenera exhibit primarily polyploid chromosome variation
108  (Hoshi and Kondo, 1998; Rivadavia et al., 2003). The increased single chromosome number
109  variation has been attributed to the presence of holocentric chromosomes in Drosera (Sheikh et
110 al., 1995). Holocentric chromosomes have a centromere along their entire length rather than
111 localized in the typical, X-shaped, monocentric chromosome. Because chromosomes of all

112 Drosera except D. regia (Shirakawa, Nagano, et al., 2011) and D. slackii (Bennett and Cheek,
113 1990) lack a visible centromere constriction (Nontachaiyapoom et al., 2000; Kondo and

114  Nontachaiyapoom, 2008), and all eight species tested so far undergo successful mitotic

115  segregation after breakage (Sheikh et al., 1995; Furuta and Kondo, 1999; Shirakawa, Hoshi, et
116  al,2011; Zedek et al., 2016; Kolodin et al., 2018), researchers have hypothesized

117  holocentromeres to be present in almost all Drosera. However, the distribution of phospho-
118  histone 2A threonine-120, a histone commonly associated with the centromeric and pericentric
119  region (Dong and Han, 2012; Wanner et al., 2015), indicates monocentromeres in three species
120 from D. subg. Drosera and D. subg. Ergaleium (Demidov et al., 2014). Together, the evidence
121  suggests that holocentromeres do not correspond to higher levels of chromosome number

122 variation in Drosera. However, contrasting levels of chromosome number variation could also
123 result from different ages of the lineages, uneven taxon sampling, counting errors, and taxonomic
124  misidentification of material used for counts (e.g., the confusion of D. aliciae and D. spatulata;
125  see Kress 1970; of D. montana and closely allied taxa; see Rivadavia, 2005). A critical

126  evaluation of chromosome count data quality across all records is required to lay the foundations
127  for subsequent analyses. Furthermore, the rate of chromosome number change has yet to be
128  tested using a modeling framework that considers both the phylogenetic history and different
129  modes of chromosome evolution. This phylogenetic modeling framework would also allow the
130  investigation of associations between rates of chromosome number evolution and traits such as
131  centromere type, life history, clonal propagation, and mating system.

132

133 In this study, we quantified the rate of chromosome doubling and single chromosome gain and
134 loss on a dated phylogeny of Drosera. We tested whether the rates of chromosome evolution
135  differ significantly between D. subg. Ergaleium and the other three subgenera, by critically
136  evaluating previously published chromosome counts, verifying voucher specimens to identify
137  possible taxonomic misidentifications, and using BiChrom (binary state linked to chromosome
138  number change) models (Zenil-Ferguson et al., 2017) and Bayes factors to compare models of
139  subgeneric differences in rates of chromosome evolution in a genus-wide phylogenetic context.
140  An ancestral state reconstruction based on the resulting best-fit model was compared with

141  genome size, life history, and centromere type to explore potential factors associated with

142 different chromosome evolution rates between Drosera subgenera. Our analyses show highly
143 elevated rates in single chromosome evolution but not polyploidy in D. subg. Ergaleium

144  compared to the rest of the genus. Contrary to previous proposals, we found no evidence that
145  such rate shift was due to diploidization after polyploidy or to holocentromeres, pointing to the
146  complexity of factors contributing to rates of single chromosome evolution.

147

148 METHODS
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149  Literature review and evaluation of chromosome counts

150  Lists of original references for Drosera chromosome counts were obtained from the

151  Chromosome Counts Database (Rice et al., 2015), Index of Plant Chromosome Numbers

152 (Goldblatt and Johnson, 1979-), citations referenced by additional publications on karyotypes in
153 Drosera (Kondo, 1969; Dawson, 2000; Rivadavia et al., 2003; Veleba et al., 2017), and searches
154  on Google Scholar and the library databases of the University of Minnesota, Curtin University,
155  and University of Western Australia. Voucher specimen information, chromosome count

156  methodology, and provenance data were recorded for every chromosome count identified either
157  from the original publication or from subsequent literature in the case of 14 counts (six

158  publications) where the original data could not be obtained.

159

160  Chromosome counts were excluded from analyses where the chromosome count methodology
161  was flawed or original publication expressed uncertainty about the exact chromosome count (10
162  counts), where counts were made from primary hybrids (25 counts), or if there was taxonomic
163  uncertainty about the material examined (73 counts). Taxonomic uncertainty was characterized
164 by 1) counts that lack both species identification and voucher specimen; 2) species with

165  taxonomy updates after the karyotype publication (especially in the case of species complexes),
166  that lack sufficient provenance or character description and any voucher specimen with which to
167  assign the taxon to the updated species name; 3) counts made from cultivated material of a

168  species often misidentified in cultivation; or 4) a mismatch between the voucher specimen and
169  the name associated with the count. See Supplemental Information S1 for details on evaluating
170  published chromosome count data.

171

172 For species with two or more chromosome numbers after filtering, the number with the most
173 counts was used for subsequent modeling analyses. For 11 species where multiple chromosome
174  numbers had an equal number of counts, one value was selected at random.

175

176  Phylogenetic reconstruction for comparative analyses

177  In order to estimate a chronogram for modeling chromosome number evolution, rbcL sequences
178  for Drosera species and outgroup taxa for non-core Caryophyllales were retrieved from the

179  GenBank (Table S2). Five sequences were removed due to ambiguous nucleotide sites. The

180  taxonomy for rbcL sequences with herbarium vouchers at M and SPF (herbarium acronyms

181  following Index Herbariorum) were updated as noted in Table S2. For species with multiple

182  rbcL sequences, the longest sequence was kept.

183

184  Sequences were aligned with default settings using the MAFFT (Katoh and Standley, 2013)

185  plug-in for Geneious version 11.1.5 (Kearse et al., 2012). The ends of sequences that were only
186  present in two outgroup species were trimmed. Priors for molecular dating in BEAST version
187  2.6.4 (Bouckaert et al., 2014) followed previous molecular dating analysis across the

188  Caryophyllales (Yao et al., 2019) using a lognormal relaxed molecular clock and the birth-death
189  model of speciation. For each fossil, the prior node was constrained to a lognormal distribution
190  with a mean of 1.0, a standard deviation of 0.5, and an offset based on the age of the fossil. As in
191  Yaoetal. (2019), fossil Aldrovanda intermedia and A. ovata was used to set the prior for the
192  most recent common ancestor (MRCA) of Dionaea and Aldrovanda with an offset of 41.2 Ma,
193 and Polygonocarpum johnsonii was used to constrain the MRCA of the Polygonoideae (in

194  Polygonaceae) included with an offset of 66.0 Ma. The MRCA of non-core Caryophyllales was
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195  constrained to 115 Ma with a normal distribution and a standard deviation of 4.0 Ma representing
196  the 95% confidence interval in the posterior distribution of the dating analysis of Yao et al.

197  (2019). The Markov-Chain Monte Carlo (MCMC) was run for 100,000,000 generations,

198  sampling every 1000 generations. The BEAST input file and data are available at

199  10.5281/zenodo.6081366. The resulting summary statistics were visualized in Tracer version
200  1.7.1 (Rambaut et al., 2018). The obtained phylogenetic trees were further reduced to 1 in 10 and
201  summarized in TreeAnnotator version 2.6.2 (Drummond and Rambaut, 2007) with a 10% burn-
202  in, and the maximum clade credibility tree was visualized in FigTree version 1.4.4 (Rambaut,
203 2018). The chronogram (using the ape R package; Paradis and Schliep, 2019) and chromosome
204  count matrices were trimmed to species shared by both datasets for subsequent analyses.

205

206  Modeling chromosome number evolution

207  We used the binary trait linked to chromosome number change model (BiChrom; Zenil-Ferguson
208  etal. 2017) and implemented it in RevBayes software version 1.1.0 (Hohna et al., 2016) to

209  estimate the differences in three rates of chromosome number evolution for each binary state

210  (Fig. 1): y (a single chromosome gain, by duplication or fission), 6 (a single chromosome loss, by
211  rearrangement, fusion, or loss), and p (a polyploidy event). The binary state is defined as whether
212 ataxon belongs to D. subg. Ergaleium (state E) or not, in which case it belongs to D. subg.

213 Drosera, Arcturia, or Regiae (state D). By defining our binary state in this fashion, we estimate a
214  transition rate q, which is a nuisance parameter but allows us to correctly compare rates of

215  chromosome change between the two groups. Species were assigned as state E or state D sensu
216  Fleischmann et al. (2018).

217

218  Our macroevolutionary modeling framework involved simultaneously estimating the rate of

219  evolution of chromosome number and a binary state along a phylogeny. We first defined a

220  matrix describing the instantaneous rate of chromosome number change between two

221  chromosome numbers and between the two states at the same chromosome number (Fig. S1;

222 Mayrose et al., 2010; Zenil-Ferguson et al., 2017). Commonly known as the Q-matrix for

223 continuous time Markov chains, this matrix can be numerically difficult to use because

224 chromosome transition matrices are large and contain many zeros since transitions reflect only
225  single chromosome number changes or doubling (Mayrose et al., 2010; Zenil-Ferguson et al.,
226  2017). These types of matrices are numerically unstable when exponentiated, so limiting the

227  maximum number of chromosomes and rates included is key for estimation (Zenil-Ferguson et
228  al., 2018). Therefore, in our dataset with chromosome number (27) ranging from 8 to 60, we first
229  calculated haploid chromosomes (1#) and set the chromosome states for the Q-matrix ranging
230  from 1 to 35 and a bin for 35+ haploid chromosomes to make the matrix more computationally
231  stable (Fig. S1; Zenil-Ferguson et al., 2017, Zenil-Ferguson et al., 2018). We removed Drosera
232 lanata (2n = 19), to avoid non-integer haploid chromosome numbers, and records of B-

233 chromosomes, as these small satellite chromosomes do not segregate normally during cell

234 division. The resulting matrix had 72 rows and 72 columns reflecting 1 to 35 and 35+

235  chromosome numbers for both states E and D (Fig. S1). Since we expect the chromosome

236  evolution rate in Drosera outside of D. subg. Ergaleium to be more similar to the rate in most
237  angiosperms, we considered state D the ancestral state and E the derived state and only allowed
238 transitions from state D to state E. The probabilities of the root being 1 to 35+ chromosomes in
239  either state were set equal.

240
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Fig. 1: A summary of the processes that can give rise to changes in chromosome number. Each cell is depicted in
haploid form. The original cell (center) starts with two haploid chromosomes. Arrows indicate changes in
chromosomes and, where possible, are labelled with the type of change (+1, -1, X2) and the symbol used in
BiChrom models (y, 9, and p respectively; Mayrose & Lysak, 2020). The centromere is shown as a black spot in
the recombination error to emphasize the steps required to handle an additional centromere. Since +1 and -1 can
occur via multiple mechanisms with different impacts on gene copy number, for example, a subscript is used to
distinguish the cause of change. An increase in one chromosome can be due to telomere healing after a
chromosome break or a single chromosome duplication; a single chromosome decrease can be due to a
recombination error (Nested insertion, end-to-end translocation, or Robertsonian Translocation; Mayrose &
Lysak, 2020), two chromosomes fusing after a breakage, or the loss of a single chromosome. Single chromosome
loss is unlikely except after polyploidy (Luceno & Guerrra, 1996). A doubling of all chromosomes can be due to
an auto- or allo-polyploidy. Holocentromeres are expected to alleviate issues caused by acentric fragments after
double stranded breaks and tangling of bicentric chromosomes after fusion (Cuacos et al., 2015).

Three nested models were used for comparison, each with a subset of the rates being constrained
as equal across the two states. The full model (H2) allowed rates (p = chromosome doubling, 6 =
chromosome loss, y = chromosome gain) to vary as a function of each of the states D or E. The
fixed-polyploid model (H1; pp = pE) constrained the rate of chromosome doubling to be the same
in D and E. The null model (HO) constrained all rates to be equal for the two states (pp = pg, Yp =
YE, Op = Or). Rate priors for all chromosome transitions in both states were set to an exponential
distribution with a mean of 1/3 probability of change per million years (Myr).
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249  We ran our custom MCMC scripts in RevBayes (Hohna et al., 2016) for more than 200,000

250  generations until convergence was reached and checked using Tracer (Rambaut et al., 2018). We
251  also verified that effective sample sizes for all the parameters were above 200. Concurrently, we
252  reconstructed ancestral states using marginal posterior probabilities for each of the internal nodes
253  as part of the inference following Freyman and Hohna (2018) and Zenil-Ferguson et al. (2019).
254  The RevBayes input data and scripts are at 10.5281/zenodo.6081366.

255

256  The three models were compared using Bayes factors in RevBayes (Hohna et al., 2016) by

257  calculating power posterior distributions with twenty stepping-stones (Xie et al., 2011). The

258  stepping-stone algorithm was used to calculate the marginal likelihood of each model by

259  estimating the probability of the data between the prior and the posterior. This is done by raising
260  the posterior distribution of the MCMC to a power ranging from 0 to 1, thus providing a discrete
261  approximation between the prior and posterior probabilities. The marginal log likelihoods were
262  calculated from these stepping-stones and were then subtracted to calculate the Bayes factors k
263  statistic. k > 6 is strong evidence in favor of the model input first in the calculation of x is

264  assumed. If k > 1, there is moderate support, and no evidence in favor of either model if k is

265  between -1 and 1 as described in Kass and Raftery (1995). If k results in large negative values,
266  the evidence goes in favor of the model whose marginal log-likelihood is subtracting in the

267  calculation of k.

268

269  All the MCMC outputs were analyzed using Tracer with a burn-in of 10% discarded. The

270  resulting ancestral state reconstruction for the best supported model was visualized with

271  RevGadgets R package (Tribble et al., 2021).

272

273  Genome size and mating system

274  Self-compatibility data for 98 species of Drosera were obtained from publications (Table S3).
275  Recent studies (Fleischmann, in press) suggest all D. auriculata are self-compatible contrary to a
276  (doubtful) previously-published report by Chen et al. (1997). Drosera genome sizes were

277  obtained from Veleba et al. (2017), or newly generated in this study for 17 species at the Flow
278  Cytometry Core Lab at the Benaroya Research Institute (Seattle, WA, U.S.A.). Source, voucher,
279  and size standards used for generating new flow cytometry data are listed in Table S3.

280

281 RESULTS

282  Chromosome Counts for 127 Drosera species show distinctive patterns of variation between D.
283  subgenus Ergaleium and other subgenera

284  Aninitial dataset of 676 chromosome counts in Drosera from 150 species or hybrids were

285  compiled (Table S1). After removing hybrids and low-quality counts, 510 counts from 127

286  species were used for downstream analyses (ca. 48% of all species). These counts included 32%
287  of named species from Africa, 45% from South America, 51% from Australia, 60% from Asia,
288  and all species from North America and Europe. Drosera subg. Arcturia, Drosera, Ergaleium,
289  and Regiae had respectively 50%, 43%, 51%, and 100% of species with counts.

290

291  Almost every even chromosome number from 2n = 6 to 46 was reported from D. subg.

292 Ergaleium, including within-species variation. In contrast, D. subg. Drosera has chromosome
293  numbers from 2n = 16 to 80 with variation primarily in polyploid series (2n = 20, 40, 60, 80; Fig.
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Fig. 2: Drosera subg. Ergaleium (left) exhibits marked chromosome variation within sections, and even within
species. Little within species or within section variation was observed for D. subg. Drosera (right), and where
variation was observed it fell primarily into polyploidy series. The shade of the square indicates the number of
samples for each species, emphasizing that the lack of variation within D. subg. Drosera is not due to a lack of
samples.
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295  2). Chromosome number for D. arcturi (D. subg. Arcturia) was 2n =20 and for D. regia (D.
296  subg. Regiae) was 2n = 34 (Fig. 2; Table S1).

297

298  Chronogram Reconstruction

299  The trimmed rbcL matrix included 1,440 bases with 478 variable sites across the 17 outgroup
300 and 79 ingroup taxa. After burn-in, the ESS in BEAST was greater than 200 for all continuous
301  statistics. The rbcL tree placed D. regia and D. arcturi in a clade with Aldrovanda and Dionaea
302  that was sister to the rest of Drosera with strong to moderate support, likely due to long-branch
303  attraction. BEAST analysis estimated the crown age of D. subg. Ergaleium at 52.0 Mya and D.
304  subg. Drosera at 49.6 Mya (Fig. S2).

305

306 Drosera subgenus Ergaleium differs from other subgenera in chromosome evolution rate
307  We had available chromosome counts and phylogenetic »bcL data for 59 species: 25 species
308  from D. subg. Ergaleium, 32 species from D. subg. Drosera, and one species each from D. subg.
309  Arcturia and D. subg. Regiae. The BiChrom analysis for the full model with all rates estimated
310  separately between D. subg. Ergaleium and the other subgenera (H2) took over 200,000

311  generations to converge as the posterior distribution was bimodal.

312

313  In the full model (H2), the mean of the posterior probabilities of gaining (yg= 0.23) or losing (O
314  =0.25) one chromosome in D. subg. Ergaleium was 8.8-fold and 40.3-fold higher than other
315  subgenera (yp=0.026; 6p= 0.0062; Table S4; Fig. 3). These rates are interpreted as the amount
316  of single chromosome change per million years. However, the rate of chromosome gain for D.
317  subg. Drosera, Arcturia, and Regiae falls within the first quartile of the rate of chromosome gain
318  for D. subg. Ergaleium and only the 95% credible interval for the rates of single chromosome
319  loss was distinct (95% HPD &g = 0.063 to 0.52; 95% HPD &p = 6.2x107% to 4.4x1072; Table S4;
320  Fig. 3). The rates of polyploidy largely overlapped (Fig. 3).

321

322  Compared to rates estimated in the full model, the null model (HO) estimated an intermediate rate
323  for losing one chromosome, while the estimated rate of polyploidy doubled and the rate for

324  gaining a chromosome decreased (Fig. 3). Comparing Bayes factors for the full model and null
325  model found that the full model had strong support (BF =13.5), showing supporting evidence
326  that there are differences between D. subg. Ergaleium and the other subgenera.

327

328  Rate of polyploidy does not differ among Drosera subgenera

329  Given the very similar inferred chromosome doubling rates for all the subgenera and the

330  genomic instability and potential chromosome loss post a polyploidy event, we tested an

331  additional model estimating chromosome loss and gain for the two groups separately but

332 polyploidy together (H1). The MCMC run for HI had an effective sampling size above 200 for
333  all statistics and solved issues with the bimodality found in model H2. We found a moderate
334  preference for H1 over the full model (H2; BF = 5.1; Table S4; Fig. 3).

335

336  The best fit model (H1) with both chromosome loss (8) and gain (y) as functions of each of the
337  subgenera showed higher chromosome loss and chromosome gain rates in D. subg. Ergaleium
338  and 95% credible intervals similar to the full model (Table S4; Fig. 3). The mean 6 was 389.8-
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340  fold higher than dp and the 95% HPD did not overlap (Table S4; Fig. 3). With overlapping 95%
341  HPDs, the mean yg was over 6-fold different than yp (Table S4; Fig. 3).

342

343  Under the H1 model, the ancestral state reconstruction estimated the MRCA of Drosera to have
344  ahaploid chromosome number of eight and state D. The base of D. subg. Ergaleium also had a
345  haploid chromosome number of eight but with state E. The difference in single chromosome
346  change between subgenera is supported across the reconstruction by the stability of chromosome
347  number in D. subg. Drosera and repeated changes in D. subg. Ergaleium. Based on the

348  reconstruction, polyploidization events occurred five times in D. subg. Ergaleium, three times in
349  D. subg. Drosera, and once in D. subg. Regiae (Fig. 4).

350

351  Self-compatibility differs between Drosera subgenera

352  In D. subg. Ergaleium, 48 of the 60 (80%) species with known mating systems are self-

353  incompatible in at least some populations (Fig. 4; Table S3.2). In contrast, only three of the 38
354  species (8%) in the remaining three subgenera are self-incompatible, both of them are in D. subg.
355  Drosera but not closely related (Fig. 4; Table S3.2).

356

357 DISCUSSION

358  Rates of single chromosome number change significantly differ among Drosera subgenera
359  After correcting for counting and taxonomic errors and using a model that considers time, the
360 rate of polyploidy in Drosera (0.014 per Myr) did not differ between subgenera and was very
361  similar to the polyploidy rate previously reported for perennial angiosperms (0.015 per Myr; Van
362  Drunen and Husband, 2019) and median rate across angiosperm families (0.025 per Myr; Zhan et
363  al, 2021). Similarly, the single chromosome gain (0.027) and loss rate (0.00059) for Drosera
364 lineages except D. subg. Ergaleium fell higher and lower, respectively, than the average rate

365  (0.0061 and 0.016 respectively) across angiosperm families (Zhan et al., 2021). In contrast, the
366 rate of single chromosome shifts in D. subg. Ergaleium was 6-fold (chromosome gain) and 350-
367  fold (chromosome loss) higher than in the remainder of the genus, and the rates of D. subg.

368  Ergaleium are likely even higher with increased species sampling. Orders of magnitude

369  differences in chromosome loss and gain rates have also been documented between herbaceous
370  versus woody plants, among some Carex lineages and among some insect lineages (Escudero et
371  al, 2014; Zenil-Ferguson et al., 2017; Ruckman et al., 2020; Sylvester et al., 2020).

372

373  Elevated rates of single chromosome evolution can be due to increased rates of polyploidy and
374  subsequent rediploidization (Mandakova and Lysak, 2018). However, we found no difference in
375 rates of polyploidy among subgenera in Drosera. Although polyploid species in D. subg.

376  Drosera were considered stable polyploids as their chromosome numbers follow polyploid series
377  (Hoshi and Kondo, 1998; Shirakawa, Hoshi, et al., 2011), we found evidence for genome

378  downsizing after polyploidy across Drosera. Of the nine polyploidy events inferred, the most
379  recent (ca. 3.3 Mya) has a genome size close to double that of the sister lineage, while the

380 remaining eight more ancient polyploid lineages have similar or, in seven cases, smaller genome
381  sizes than their diploid sister lineages (Fig. 4; Table S3.1; Veleba et al., 2017). Therefore, both
382  the rate of polyploidy and the post-polyploidy diploidization show similar patterns across

383  Drosera and no evidence supports either being the major cause in single chromosome number
384  shifts in Drosera.
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Fig. 4: In addition to having higher rates of single chromosome change, Drosera subg. Ergaleium (species name
in blue) have more species that reproduce clonally and are self-incompatible than the other three subgenera
(species name in red). Most polyploid lineages have smaller genome sizes than their diploid sister lineages
(marked with a black x on tree). Numbers and colored bubbles on nodes and tips were ancestral state
reconstruction of the chromosome numbers and binary state. Size of bubbles indicate the posterior probability of
number. Clonality (occurring in a section with a structure for reproducing genetically identical individuals), self-
incompatibility (the ability or inability to produce viable offspring when crossed with itself), and diploid genome
size were presented to the right of the species names. Polyploidy as seen by chromosome complete doubling
(older and smaller genomes than sister lineages: black x; recent and equal too or bigger than sister lineages: blue
x) and 1.5 duplication (yellow x) were marked on branches.
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386

387  While the chromosome loss rates were clearly distinct between D. subg. Ergaleium and the other
388  subgenera, the credible intervals for chromosome gain rates overlapped. Our analysis included
389  23% of the named species. To narrow the credible intervals, it is critical for future molecular and
390 cytological work to include proper vouchers, locality information, the number of cells, and

391  individuals counted.

392

393 Towards drivers of chromosome evolution rate shift

394  Holocentromeres have been associated with increased chromosome fission producing a higher
395  number of smaller chromosomes (Cuacos et al., 2015; Ruckman et al., 2020) as chromosome
396  fragments with centromeres can pair and segregate properly even in heterozygous individuals
397  (Luceno and Guerra, 1996; Jankowska et al., 2015; Ruckman et al., 2020). So far, no

398  experimental evidence supports D. subg. Ergaleium having a distinct centromere type from the
399  rest of the genus. This lack of association between holocentromeres and significant differences in
400  chromosome evolution rates was also documented in insects (Ruckman et al., 2020).

401

402 A newly formed karyotype may be eliminated due to drift or selection against the deleterious
403  nature of heterozygous individuals, especially in monocentric plants (Husband et al., 2013).

404  Species with means of reproductive assurances (clonal propagation, selfing, etc.) may avoid

405  these issues as the proportion of individuals in the population with the new chromosome number
406  can increase without producing heterozygous individuals (Husband et al., 2013; Van Drunen and
407  Husband, 2019; Spoelhof, Keeffe, et al., 2020). While a perennial life history and clonal

408  propagation are common across Drosera (Fleischmann et al. 2018), contrary to expectation, a
409  higher percentage of species studied in D. subg. Ergaleium are self-incompatible compared to
410  the other subgenera (Fig 4; Table S3). Interestingly, Spoelhof, Keeffe, et al. (2020) proposed that
411  sexual reproduction (especially outcrossing) is important for the long-term maintenance of

412  species diversity after the formation of a new karyotype.

413

414  Moving forward, exploring the factors that are typically considered within a single species, such
415  as population size, spatial distribution, and meiotic drive, would help dissect the mechanisms
416  underlie new karyotype establishment and macroevolutionary diversification in Drosera and
417  beyond (Reed et al., 2013; Bures and Zedek, 2014; Blackmon et al., 2019; Ruckman et al., 2020;
418  Spoelhof, Soltis, et al., 2020; Griswold, 2021).

419

420  Conclusion

421  Differences in chromosome number variation between Drosera subg. Ergaleium and D. subg.
422 Drosera, Arcturia, and Regiae result from significant differences in single chromosome

423  evolution rate rather than sampling bias, chromosome counting errors, or clade age. D. subg.

424 Ergaleium not only exhibits highly accelerated single chromosome evolution but also a higher
425  percentage of self-incompatible species. Future work on both the natural history and molecular
426  fronts are needed to tease apart the mechanisms underlying the highly elevated rate of single

427  chromosome change. More broadly, our findings illustrate that additional factors other than

428  genome downsizing after polyploidy and holocentromeres impact the rate of single chromosome
429  evolution.

430

431 SUPPLEMENTAL MATERIALS:
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432 Figure S1: The transition matrix. See Fig. 1 for definition of chromosome transition parameters.
433 Qo is the transition state from state 1 to state 0.

434  Figure S2: The dated rbcL phylogeny with all taxa included from the BEAST analysis. Bars on
435  nodes represent the 95% HPD intervals for the age of the node.

436  Table S1: The chromosome count data matrix with notes. Table S1.1 is the matrix itself, Table
437  S1.2 contains the headers and information, and Table S1.3 contains the references for all the

438  data.

439  Table S2: Source for rbcL sequences (Table S2.1) including the species name used, the GenBank
440 D, the originally reported species name, and the reason for taxonomic change if applicable. The
441  species authority for each Drosera species (Table S2.2)

442  Table S3: The genome size (Table S3.1), self-compatibility (Table S3.2), and reference (Table
443  S3.3). The genome size matrix included species names, locality and voucher information (visit
444 10.5281/zenodo.6081366 for photo vouchers), control, and reference. The self-compatibility data
445  included species, reference, and notes on changes in taxonomy.

446  Table S4: Table S4.1 shows the marginal log likelihood; estimated rate of chromosome loss (0),
447  gain (y), and polyploidy (p) for both state E (Drosera subg. Ergaleium) and state D (the other
448  three Drosera subgenera); and the transition from state D to state E for three models. In the full
449  model (H2) all the rates are estimated independently. Table S4.2 contains the 95% HPD

450  distributions for the three models.

451  Supplemental Information S1: Methods for the chromosome count scoring and filtering.

452
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