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Abstract: 

 

Our incomplete knowledge of the human transcriptome impairs the detection of disease-

causing variants, in particular in transcripts only expressed under certain conditions. These 

transcripts are often lacking from reference transcript sets, such as Ensembl/GENCODE and 

RefSeq, and could be relevant for establishing genetic diagnoses. We present SUsPECT 

(Solving Unsolved Patient Exomes/gEnomes using Custom Transcriptomes), a pipeline based 

on the Ensembl Variant Effect Predictor (VEP) to predict variant impact on custom transcript 

sets, such as those generated by long-read RNA-sequencing, for downstream prioritization. 

Our pipeline predicts the functional consequence and likely deleteriousness scores for 

missense variants in the context of novel open reading frames predicted from any 

transcriptome. We demonstrate the utility of SUsPECT by uncovering potential mutational 

mechanisms of pathogenic variants in ClinVar that are predicted to be benign using the 

reference transcript annotation. In further support of SUsPECT’s utility, we identified an 

enrichment of immune-related variants predicted to have a more severe molecular 

consequence when annotating with a newly generated transcriptome from stimulated 

immune cells instead of the reference transcriptome. Our pipeline outputs crucial 

information for further prioritization of potentially disease-causing variants for any disease 

and will become increasingly useful as more long-read RNA sequencing datasets become 

available.  

 

Background/objectives: 
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The number of recorded nucleic acid variants in the human genome increased significantly 

with the advent of next-generation sequencing (NGS). The sequencing of the new genetic 

variants has outpaced the understanding of them. As genetic diversity is linked to disease 

susceptibility, therapy response and clinical outcomes, there is great interest in accurately 

predicting the functional consequences of genetic variants. Since only a small fraction of all 

available variants can be characterized clinically or by functional efforts, there is a heavy 

reliance on computational methodology for prioritization. Several computational methods 

predict the effect of genetic variant effects on function such as PolyPhen-2 (1), SIFT (2), and 

MutPred2 (3). Variant annotators such as the Ensembl Variant Effect Predictor (VEP) (4) and 

ANNOVAR (5) collect gene/transcript information from reference databases (containing pre-

computed scores of the aforementioned software in some cases) and provide effect 

predictions to end users. Their interpretation of the variant effects has implications for 

clinical diagnosis and treatment, and paves the way for precision medicine. 

 

Short-read RNA sequencing has provided us with the majority of knowledge we currently 

have about the transcriptome, but has some intrinsic limitations with isoform discovery (6). 

As a result, the use of current reference transcript sequences does not provide a complete 

picture of how a variant affects molecular functioning. Long-read sequencing allows for the 

accurate elucidation of isoforms (7) and long-read RNA sequencing datasets are proving that 

the human transcriptome has much more diversity than previously thought (8–10). In 

addition, both short and long-read sequencing have shown that gene expression is highly 

variable in a context dependent manner, e.g. based on conditions (infection, stress, disease) 

or tissue- or cell-types (11–14).  

 

Understanding the coding potential of these newly discovered transcripts is key to 

predicting functional consequences of variants within them. Since long-reads often capture 

whole transcripts, more accurate open reading frames (ORFs) can be predicted. Alternative 

splicing is known to increase the proteomic diversity, but less understood is the contribution 

of novel transcripts to this diversity and what it means for function (15–18). There are 

several computational methods available to predict ORFs of these novel transcripts either 

based on sequence features (19–21) or homology to existing protein coding transcripts (22–

24). The prediction of ORFs on novel sequences is an essential first step for the detection of 

new proteoforms, as proteomics usually relies on previously observed sequences. 

Transcripts derived from long-read sequencing can provide better predictions of (novel) 

proteoforms (Figure 1). Thus, long-read transcriptome data relevant to the disease of 

interest may not only improve our understanding of the ever-growing number of genetic 

variants that are identified in human disease context, but also aid in diagnoses for rare 

and/or unsolved disease (25, 26). 

 

The prediction of variant pathogenicity is an active area of development and, for ease of 

use, many tool creators release pre-computed sets of scores generated using reference 

transcript sets (27). This information is routinely used when evaluating variants against 

reference transcripts, but is not available when using novel transcript sets necessitating 

manual evaluation of the effects of variants on alternative proteoforms. One of the most 

commonly used variant annotators, Ensembl VEP, predicts molecular consequence for 

custom transcripts in standard formats, but the lack of pathogenicity predictions for 

missense variants in those transcripts limits interpretation. Considering the well-established 
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importance of missense variants on a variety of diseases (28–30), this presents a hurdle in 

the re-annotation of variants with a custom transcriptome data. 

 

The pipeline presented here, SUsPECT (Solving Unsolved Patient Exomes/gEnomes using 

Custom Transcriptomes), is designed to leverage cell/tissue-specific alternative splicing 

patterns to re-annotate variants and provide missense variant pathogenicity scores 

necessary for downstream variant prioritization. This pipeline was designed to be 

generalizable to any type of rare disease variant set paired with a relevant (long-read) 

transcriptome. For example, a researcher interested in annotating variants in a patient with 

a rare intellectual disability could consider using this tool along with a brain transcriptome 

dataset. We demonstrate the usefulness of this tool by reannotating ClinVar variants with a 

newly generated immune-related long-read RNA-sequencing dataset.  

 

Material and Methods: 

 

Severity classification 

 

SUsPECT classifies variants according to their expected impact and their molecular 

consequence. Impact scores used by SUsPECT are based on the predicted molecular 

consequence groupings in Ensembl VEP (Figure 2A) with higher numbers corresponding to 

more severe consequences: zero being equivalent to “modifier”, one to “low” severity, two 

to “moderate” severity, and four to “high” severity.  SUsPECT uses Polyphen-2 predictions to 

distinguish between (likely) benign (score: 2) and (likely) deleterious (score: 3) missense 

variants. 

 

Additional filters for output variant list 

 

SUSPeCT initial output is a list of variants with higher severity scores based on the custom 

transcriptome annotation compared to the reference annotation. The variants that remain 

in the final list of “increasing severity” are filtered to retain only variants that are potentially 

interesting for establishing a disease diagnosis. Thus, the pipeline removes variants that are 

already considered as (likely) pathogenic based on the reference annotation., i.e. variants 

that have original Ensembl VEP scores of 3 or 4. An additional criterion was applied for 

missense variants. Missense variants for which the same amino acid substitution found in 

the custom and reference annotation are also removed. To reduce computational time 

further, missense variant alleles in novel sequences that are common (AF > 0.01) are 

removed. These filters are integrated in SUsPECT. For the use case described in this 

manuscript, missense variants present in the custom annotation that are predicted by 

PolyPhen-2 to be “benign” in both custom and reference annotation are removed. In our 

ClinVar example, we define “immune-related” variants as those variants that contain the 

string “immun” somewhere in the clinical description. 

 

Software details 

 

A pipeline was built to streamline the process of variant prioritization using custom 

transcript annotation. The pipeline is written in Nextflow (31), using Ensembl VEP as the 

variant annotator. Each step of the pipeline runs Singularity/Docker containers pulled 
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automatically from Docker Hub. The input of the pipeline is the sample-specific/non-

reference long-read transcriptome in GTF format, variants in a VCF file, and a FASTA file of 

the genome sequence. It is designed for use with output from TALON (32).  

 

First, the GTF file is converted to BED format with AGAT v0.9.0(33). ORFs for any novel 

sequences are predicted based on the BED annotation and FASTA genome reference using 

CPAT v3.0.4. CPAT output is converted to BED format with the biopj python package and 

filtered for a coding probability of at least 0.364, which is the recommended human cutoff 

by the authors of CPAT(19). Conversion from CPAT CDS to protein FASTA is performed with 

EMBOSS transeq v6.5.7. This ORF BED file is combined with the BED file of transcripts to 

make a complete BED12 file with ORF/transcript information. Then, we convert this BED12 

file to GTF with UCSC’s bedToGenePred and genePredToGtf. The resulting GTF file is used 

for a preliminary annotation of the variants with Ensembl VEP to fetch variants predicted as 

missense in the custom transcript sequences. Next, variant filtering was performed as 

outlined in the previous section with filter_vep utility distributed with Ensembl VEP as well 

as bedtools v2.30.0. The pathogenicity predictions are reformatted and one final run of 

Ensembl VEP (with the custom plugin enabled) integrates the pathogenicity predictions to 

the VCF. The output is the -annotated VCF, as well as a VCF with the subset of variants 

predicted to have higher severity. 

 

Ex vivo peripheral blood mononuclear cell (PBMC) experiments 

Venous blood was drawn from a healthy control(34) and collected in 10mL EDTA tubes. 

Isolation of peripheral blood mononuclear cells (PBMCs) was conducted as described 

elsewhere(35). In brief, PBMCs were obtained from blood by differential density 

centrifugation over Ficoll gradient (Cytiva, Ficoll-Paque Plus, Sigma-Aldrich) after 1:1 dilution 

in PBS. Cells were washed twice in saline and re-suspended in cell culture medium (Roswell 

Park Memorial Institute (RPMI) 1640, Gibco) supplemented with gentamicin, 50 mg/mL, 2 

MM L-glutamine, and 1 mM pyruvate. Cells were counted using a particle counter 

(Beckmann Coulter, Woerden, The Netherlands) after which, the concentration was 

adjusted to 5 × 10
6
/mL. Ex vivo PBMC stimulations were performed with 5×10

5
 cells/well in 

round-bottom 96-well plates (Greiner Bio-One, Kremsmünster, Austria) for 24 hours at 37°C 

and 5% carbon dioxide. Cells were treated with lipopolysaccharide (E. Coli LPS, 10 ng/mL), 

Staphylococcus aureus (ATCC25923 heat-killed, 1×10
6
/mL), TLR3 ligand Poly I:C (10 µg/mL), 

Candida albicans yeast (UC820 heat-killed, 1×10
6
/mL), or left untreated in regular RPMI 

medium as normal control. After the incubation period of 24h and centrifugation, 

supernatants were collected and stored in 350uL RNeasy Lysis Buffer (Qiagen, RNeasy Mini 

Kit, Cat nr. 74104) at −80°C until further processing. 

 

RNA isolation and library preparation 

RNA was isolated from the samples using the RNeasy RNA isolation kit (Qiagen) according to 

the protocol supplied by the manufacturer. The RNA integrity of the isolated RNA was 

examined using the TapeStation HS D1000 (Agilent), and was found to be ≥7.5 for all 

samples.  Accurate determination of the RNA concentration was performed using the Qubit 

(ThermoFisher). Libraries were generated using the Iso-Seq-Express-Template-Preparation 

protocol according to the manufacturer’s recommendations (PacBio, Menlo Parc, CA, USA). 

We followed the recommendation for 2-2.5kb libraries, using the 2.0 binding kit, on-plate 

loading concentrations of final IsoSeq libraries was 90 pM (C. albicans, S. aureus, PolyIC, 
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RPMI) and 100 pM (LPS) respectively. We used a 30h movie time for sequencing. The five 

samples were analyzed using the isoseq3 v3.4.0 pipeline. Each sample underwent the same 

analysis procedure. First CCS1 v6.3.0 was run with min accuracy set to 0.9. Isoseq lima 

v2.5.0 was run in isoseq mode as recommended. Isoseq refine was run with ‘--require-

polya’. The output of isoseq refine was used as input for TranscriptClean v2.0.3. 

TranscriptClean was run with ‘--primaryOnly’ and ‘--canonOnly’ to only map unique reads 

and remove artifactual non-canonical junctions of each of the samples. The full TALON 

pipeline was then run with all five samples together using GRCh38 

(https://www.encodeproject.org/files/GRCh38_no_alt_analysis_set_GCA_000001405.15/@

@download/GRCh38_no_alt_analysis_set_GCA_000001405.15.fasta.gz). Assignment of 

reads to transcripts was only allowed with at least 95% coverage and accuracy. A minimum 

of 5 reads was required to allow isoforms to be kept in the final transcript set (default of 

talon_filter_transcripts). Ensembl/GENCODE annotation (v39) was used by TALON to 

determine novelty of transcripts in the sample. 

 

 

Results 

 

Analysis pipeline overview 

 

We developed SUsPECT to re-annotate variants using custom transcriptomes. This pipeline 

returns a VCF file with alternative variant annotations for downstream evaluation and 

prioritization. SUsPECT is based on Ensembl VEP and additionally predicts pathogenicity for 

missense variants different from the user-provided RNA sequencing dataset. A schematic 

overview of the pipeline is presented in Figure 2B. The main steps in the pipeline are: 

• Validate pipeline input, including 1) an assembled (long-read) transcriptome in GTF 

format with novel transcripts. A long-read transcriptome assembly tool such as 

TALON will output a suitable file. 2) A VCF containing patient(s) variants. 

• ORF prediction is performed on the transcripts that do not match any in the human 

reference transcriptome. 

• Ensembl VEP adds predicted molecular consequence annotations based on your 

transcripts/ORFs. Variants considered as missense in the user-provided 

transcriptome are reformatted and submitted to Polyphen-2. 

• Polyphen-2 calculates pathogenicity scores and provides predictions. These are 

reformatted and incorporated into the final VCF annotation file.  

• A sub-list of variants that have a more severe molecular consequence in the input 

transcriptome are provided in tabular format. 

 

A long-read sequencing transcriptome of stimulated PBMCs 

 

We have generated long-read sequencing data on atypical, i.e. in vitro stimulated samples - 

provoking a strong expression response, to illustrate the use of the pipeline. We chose this 

dataset to exemplify less-studied tissues/conditions because novel transcripts are more 

numerous in these samples and SUsPECT is most likely to yield interesting results when the 

input transcriptome has many novel transcripts. Our custom transcriptome is based on long-

read transcript sequences related to host-pathogen interactions and is derived from human 

PBMCs exposed to four different classes of pathogens. We combined the transcript 
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structures of all four pathogenic conditions and control samples for the reannotation. We 

identified a total of 80,297 unique transcripts, 37,434 of which were not present in the 

Ensembl/GENCODE reference transcriptome. Relative abundances of novel transcripts were 

lower than of reference transcripts (Supp figure 1). The custom transcriptomes resulted in 

prediction of 34,565 unique novel ORFs passing CPAT’s coding capacity threshold. The 

majority of transcripts had at least one ORF predicted (Supp figure 2). 

 

Reannotation of ClinVar variants 

 

Variants that fall in the novel transcripts may result in a more severe molecular 

consequence, but the functional and ultimately clinical implications remain unclear. We 

therefore focused on re-annotating ClinVar variants to demonstrate that SUsPECT can 

suggest new candidate pathogenic variants associated with clinical outcomes. ClinVar 

contains variants with clinical significance curated by different authorative sources. We 

hypothesized that ClinVar variant that were annotated as pathogenic and not predicted to  

to be deleterious with the reference annotation, but predicted deleterious with a (relevant) 

sample transcriptome, would support the utility of this pipeline.  

 

We tested SUsPECT on a recent ClinVar (36) release (April 2022), excluding all variants that 

were annotated in ClinVar to be (probably) benign. We compared the predicted severity of 

the 776,866 variants using our custom transcript annotation versus the reference. After 

applying filters as described in the Methods section, 1,867 candidate variants remained. Of 

these variants, 145 were associated with monogenic immune-related disorders, which is 

significantly more than expected by chance (odds ratio=5.46, p=1.51x10
-55

). This could 

indicate that annotation with an immune-relevant transcriptome is better suited for the 

identification of variants with an impact on immune function than annotating with a 

reference transcriptome. The strongest argument for the utility of this pipeline can be made 

with variants that are curated in ClinVar to be pathogenic rather than those of uncertain 

significance (VUS). After excluding variants of unknown significance (VUS) from the full 

candidates list, there are 90 variants remaining (5 immune-related). These 90 variants had 

an enrichment of severity level 4 events (Supp figure 3).  

 

Five immune-related variants curated in ClinVar to be pathogenic were reannotated from a 

low severity molecular consequence in the Ensembl/GENCODE transcript set to a moderate 

or high severity in our transcriptome (Table 1). Two were missense variants in the custom 

annotation and three were start-loss/stop-gain. We visualized the variants in the context of 

the transcript structures/ORFs on the UCSC genome browser. Two examples can be seen in 

Figure 3. The variant in IFNGR1 (dbSNP identifier rs1236009877) is associated with IFNGR1 

deficiency. It is curated by a single submitter in ClinVar as ‘likely pathogenic’ using clinical 

testing. Annotation of the variant with reference transcripts results in a low severity 

(intronic variant) result, but results in a stop-gain variant (high severity) when annotating 

with our transcriptome. Our custom transcriptome contained multiple novel transcripts with 

a retained intron at the site of the variant, but only 1 of these transcripts had a predicted 

ORF in this intron. The particular transcript affected by this stop gained variant was found in 

all samples sequenced with minimum 3 and up to 10 supporting reads, indicating that it is 

unlikely an artifact. The predicted ORF extended 30 base pairs into the retained intron in the 
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region of this variant. It was the most probable ORF for that transcript with a coding 

probability by CPAT of 0.934.  

 

In addition, the variant in STAT1 (dbSNP identifier rs387906763) was pathogenic according 

to the LitVar (37) literature mining tool and a clinical testing submission. It is a missense 

variant (Tgc/Cgc) in the reference annotation that is predicted by PolyPhen-2 to be benign. 

However, in one novel transcript it causes an M/T substitution, leading to loss of translation 

start site. Further inspection revealed that the transcript affected by the start-loss was 

expressed in C. albicans, S. aureus and PolyIC stimulated conditions by up to 6 supporting 

reads, but 0 in the control condition. STAT1 is previously described to be involved in the 

immune disease (chronic mucocutaneous candidiasis) linked to this variant by weakened 

response to C. albicans (38), which is a condition where this novel transcript was expressed. 

The ORF affected was the most probable ORF for that transcript and had a coding 

probability of almost 1 by CPAT. 

 

Discussion 

 

The human transcriptome is more complex than the current reference annotation would 

suggest. Variants in non-reference transcripts may aid in explaining missed genetic 

diagnoses, especially when disease-specific transcripts are used. SUsPECT puts genetic 

variants in the context of transcript isoform expression and can contribute to an increase in 

diagnostic yield. We used ClinVar pathogenicity assertions to demonstrate the potential of 

this methodology to re-annotate variants that may have previously been overlooked due to 

insufficient transcript isoform information. We have shown that annotating missense 

variants in the light of the expressed isoforms can change their predicted effect from benign 

to pathogenic. The enrichment of immune-related variants after reannotation suggests 

there is biological significance to these findings. 

 

Considering the clinical applications of this pipeline, it is important to underline that variant 

causality is not an output of this pipeline. The pipeline simply brings new candidates forward 

for further interpretation; the user may choose to cross-reference the clinical phenotypes of 

the patients with the functions of the genes that the patients’ variants are found to disrupt. 

In our use case, ClinVar variants were used as they already have widely accepted 

annotations. However, 40% of ClinVar is made up of variants of unknown significance (VUS), 

some of which are suspected to have some impact on clinical phenotype. Many of these 

variants changed annotation from benign to deleterious in our reannotation. As more 

people use sample-specific transcriptomes to annotate variant sets, an increasing number of 

VUS may be classified as benign or deleterious.  

 

We observed that many increased severity variants were missense, which may have to do 

with the numerous new ORFs. Multiple ORFs passing CPAT’s ‘human threshold’ were often 

predicted per novel sequence; for our 37,434 novel sequences we predicted 34,565 novel 

ORFs. Some proteogenomics tools choose the ‘best’ ORF per sequence, but we have chosen 

to keep all that passed the probability threshold. We do not filter out non-coding genes 

when predicting ORFs, opting instead for minimal filtering to provide all information to the 

end user. Missense results implicitly depend on the confidence of the ORF predictions that 

are produced by CPAT. New deleterious missense variants may not be relevant if the protein 
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in question is not produced. Coding ability of novel transcript isoforms is an area of active 

research (39–41) and new techniques to identify credible ORFs may be added to the 

pipeline as they become available. In the meantime, it may be prudent to validate 

interesting candidates using targeted proteomics techniques before establishing a genetic 

diagnosis. 

 

 

Data Availability 

 

SUsPECT is open source and freely available for download on Github 

(https://github.com/cmbi/SUsPECT) 

 

Raw PacBio sequencing data and transcriptome is available on EGA under accession number 

##. 
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Figure 1: Premise for the creation of SUsPECT. A) Some pathogenic variants may be missed without actual 

transcript isoform information from a relevant sample. A variant in a particular genomic position may be 

incorrectly predicted to be non-deleterious. B) A variant at the same genomic position may cause a different 

missense variant in different transcript structures due to varying open reading frames per transcript. 

 

  

 
Figure 2: Reannotation with SUsPECT. A) Defining “more severe”. The five categories of severity are modifier, 

low, moderate, damaging missense and high. We consider levels 3 and 4 to be deleterious, and thus 

potentially pathogenic. B) The schematic of the pipeline. 

 

Reannotated ClinVar pathogenic variants in immune-related genes 
dbSNP Location 
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Combined T and B 

cell 

immunodeficiency 

rs113994173 2:97733464 A ZAP70 Intron  Missense 

(unknown) 

Combined 

immunodeficiency 

due to ZAP70 

deficiency 

rs387906763 2:190999647 G STAT1 Benign 

missense 

Start lost Immunodeficiency 

31C 

rs1236009877 6:137203727 A IFNGR1 Intron Stop gained Immunodeficiency 

27A 

 

Table 1: Five ClinVar pathogenic immune-related variants were reannotated from low severity in hg38 to high 

severity in the custom transcriptome. 
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Figure 3: Two examples of ClinVar pathogenic variants being re-annotated. Both variants were considered low 

severity variants when using hg38 reference transcriptome to annotate. A) IFNGR1 whole view and close-up of 

region around the variant. Variant causes a stop-gain effect (K>*) in the custom transcript novelT001005410. 

B) STAT1 whole view and close-up of region around variant. Variant causes a start loss (M>T) in the custom 

transcript novelT001115628. 
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